
Programming in Java

A C Norman, Lent Term 2008

Part IA

2

Contents

1 Preface 7

1.1 What is programming about? . 7

1.2 What about good programming? 8

1.3 Ways to save time and effort . 9

1.3.1 Use existing resources 9

1.3.2 Avoid dead-ends . 10

1.3.3 Create new re-usable resources 10

1.3.4 Documentation and Test trails 10

1.3.5 Do not make the same mistake twice 10

1.4 Where does Java fit in? . 12

2 General advice for novices 13

3 Introduction 15

3.1 Introduction . 15

3.1.1 Books . 18

3.2 Practical work . 21

3.2.1 Exercises . 24

3.3 A Cook-book Kick-start . 28

3.3.1 Code Layout . 33

3.3.2 Emacs . 34

3.3.3 Drawing to a window: JApplets 37

3.3.4 HTML and appletviewer 42

3.3.5 Exercises . 43

4 Basic use of Java 49

4.1 Data types, constants and operations 49

4.1.1 Reserved Words . 49

4.1.2 Basic Types . 51

4.1.3 Exercises . 65

4.2 Operators and expressions . 71

3

4 CONTENTS

4.2.1 Exercises . 74

4.3 Control structures . 77

4.3.1 Exercises . 77

4.4 Control structures Part 2 . 82

4.4.1 Expression Statements 82

4.4.2 Blocks . 82

4.4.3 Null statements . 83

4.4.4 if . 83

4.4.5 while, continue and break 84

4.4.6 do . 84

4.4.7 for . 85

4.4.8 switch, case and default 85

4.4.9 return . 87

4.4.10 try, catch and throw, finally 87

4.4.11 assert . 88

4.4.12 Variable declarations . 88

4.4.13 Method definitions . 89

4.4.14 Exercises . 90

4.5 Java classes and packages . 98

4.5.1 Exercises . 108

4.6 Inheritance . 115

4.6.1 Inheritance and the standard libraries 116

4.6.2 Name-spaces and classes 120

4.6.3 Program development with classes 125

4.7 Generics . 129

4.7.1 Exercises . 130

4.8 Important features of the class libraries 139

4.8.1 File input and output . 140

4.8.2 Big integers . 147

4.8.3 Collections . 150

4.8.4 Simple use of Threads 150

4.8.5 Network access . 153

4.8.6 Menus, scroll bars and dialog boxes 155

4.8.7 Exercises . 160

5 Designing and testing programs in Java 167

5.1 Different sorts of programming tasks 171

5.2 Analysis and description of the objective 179

5.2.1 Important Questions . 179

5.2.2 Informal specifications 180

5.2.3 Formal descriptions . 181

CONTENTS 5

5.2.4 Executable specifications 181

5.3 Ethical Considerations . 182

5.4 How much of the work has been done already? 183

5.5 What skills and knowledge are available? 185

5.6 Design of methods to achieve a goal 186

5.6.1 Top-Down Design . 186

5.6.2 Bottom-Up Implementation 189

5.6.3 Data Centred Programming 190

5.6.4 Iterative Refinement . 190

5.6.5 Which of the above is best? 191

5.7 How do we know it will work? 191

5.8 While you are writing the program 194

5.9 Documenting a program or project 195

5.10 How do we know it does work? 197

5.11 Is it efficient? . 200

5.12 Identifying errors . 201

5.13 Corrections and other changes 204

5.14 Portability of software . 205

5.15 Team-work . 206

5.16 Lessons learned . 207

5.17 Final Words . 208

5.18 Challenging exercises . 208

6 A representative application 219

6.1 A Lisp interpreter . 219

6.1.1 Exercises . 233

7 What you do NOT know yet 235

8 Model Examination Questions 237

8.1 Java vs ML . 237

8.2 Matrix Class . 238

8.3 Hash Tables . 238

8.4 Compass Rose . 239

8.5 Language Words . 239

8.6 Exception abuse . 240

8.7 Queues . 240

8.8 Loops . 240

8.9 Snap . 240

8.10 Partitions . 241

8.11 Laziness . 241

6 CONTENTS

8.12 Cryptarithmetic . 242

8.13 Bandits . 242

8.14 Exception . 244

8.15 Features . 245

8.16 More features . 245

8.17 Debate . 246

8.18 Design . 246

8.19 Filter (Coffee?) . 246

8.20 Parse trees . 247

8.21 Big Addition . 248

8.22 Lists in Java . 248

8.23 Pound, Shillings and Ounces . 248

8.24 Details . 249

8.25 Name visibility . 250

8.26 Several Small Tasks . 250

8.27 Some Tiny Questions . 251

9 Java 1.5 or 5.0 versus previous versions 253

9.1 An enhanced for loop . 253

9.2 Generics . 254

9.3 assert . 254

9.4 Static imports . 254

9.5 Auto-boxing . 254

9.6 Enumerations . 254

9.7 printf . 255

9.8 Scanner . 255

9.9 Variable numbers of arguments for methods 255

9.10 Annotations . 256

9.11 Enhanced concurrency control 256

Chapter 1

Preface

1.1 What is programming about?

There are two stories you can tell yourself about what this course is going to do for

you. The first is the traditional one that it is so you can learn some Java. Acquire

knowledge and skills. The second, which may be more interesting, is to see this

course as part of your journey as you start to become (or at least appreciate what

it is to be) a Computer Scientist. This second perspective suggests that there may

be something for you here whether or not you believe you are already skilled in

Java, and it challenges you to look beyond the mere details to the tought patterns

that link them together.

In the early days of computers programming involved a full understanding of

the way that the hardware of your computer worked, your program, when run,

took over essentially the whole machine and it had to include everything needed

to manage input and output. In extreme cases one started the process of load-

ing code into a computer by using hand-switches to place bit-patterns directly

into the machine’s memory. After a while operating systems came along and

provided serious insulation from that level of extreme awareness of hardware, and

high-level languages make it possible to express programs in at least semi-human-

understandable form. But still the emphasis was on “writing a program”, which

tended to be a stand-alone application that solved some problem.

Libraries of pre-written sub-programs grew up, but for a very long time the

ones that anybody could rely on having access to were either rather specialist or

the functionality that they provided was at a rather low and boring level. There

were libraries that could really help you with serious tasks (such as building a

windowed user-interface) but none of them gained really global acceptance, and

only a few were of any use on more than one brand of computer. The libraries that

were standard with typical programming languages provided for fairly limited file

7

8 CHAPTER 1. PREFACE

and terminal access input and output, modest string handling and really not a lot

else. Operating systems made their capabilities available in the form of libraries

that programs could call on, but overall coherent design was rare and use of these

“libraries” led to inherently non-portable code.

Building a new library was not part of the common experience of program-

mers, and indeed large-scale re-use of code was the exception rather than the rule.

There has been an ideal or a dream of re-usable software components for ages,

but it is only recently that it has started to become something that can be not

just feasible but reasonably convenient. Java is one of the languages that encour-

ages this move, and the whole Object Oriented Programming movement that Java

forms part of provides a context.

So in the old world one thought of a program as a large complicated thing

that called upon facilities from a few fixed libraries that you happened to have

available. Today instead of that you should often start a project with the intention

of developing a set of new re-usable and general libraries that themselves build on

and extend existing software components. You will design these libraries so that

once they exist the program you had to write becomes a fairly simple application

of them: it will do some minor customisation and link together different units

within the overall structure of your libraries, but with luck it will of itself be

fairly small and straightforward. If you do this well you will find that the library

you have created will serve you well in future projects, or it may even become

something worth circulating (or selling) of itself. With these ideas in mind you

will want to make it well-structured, robust and you may even feel motivated to

accompany it with some coherent documentation!

So overall the mind-set for the 21st Century is that you design and write re-

usable components and libraries, and that writing mere stand-alone programs is a

terribly old-fashioned and dull thing to do!

1.2 What about good programming?

The first and utterly overriding character of a good program is that it must be fit

for its purpose. Good programming must not only lead to a good program, but

should do so in a way that reaches a successful conclusion reliably and without

taking more time and effort than is really required.

These comments may seem bland and self-evident, but they have real conse-

quences! The first is that you can not judge a program until you know what its

purpose is. Even though almost all the exercises you will do this year will be

both small and will never have any part of their code re-used it will be proper for

you to practise writing them as if they are much larger and more important. That

will mean that you are expected to accompany the code you write with both notes

1.3. WAYS TO SAVE TIME AND EFFORT 9

about its external behaviour and how to use it and with comments that describe its

internal structure and organisation. For certain sorts of library code it will make

sense to use the documentation arrangements that the main Java libraries use. This

involves things called “documentation comments” and a utility called javadoc

that will be described later.

Without this documentation you may believe that your programs meet their

purpose but you do not have any basis for expecting others the agree.

1.3 Ways to save time and effort

Working with computers can swallow up an astonishing amount of time. To be

able to get everything you need done you will want to find ways of economising.

The key to doing this effectively is to concentrate on techniques that save time in

the long run. Some ideas that appear to speed things up in the short run can end

up costing more later on!

1.3.1 Use existing resources

You are encouraged to use code-fragments from these notes in any way you want.

You can sometimes get a fresh project off the ground by extracting at least frag-

ments from a previous piece of work you have done. The Java libraries are your

friend: they contain facilities to do many of the things you will find yourself need-

ing. In general before you ever write anything from scratch for yourself consider

whether there is something that can give you a head-start.

Everybody might reasonably worry that the above paragraph could be seen as

an invitation to plagiarise! Do not take it that way: couple it with a very firm re-

mark that when you use other material you should acknowledge your sources, and

you should not pillage the material of those who are unwilling to make their work

available to you. As far as tickable exercises for this course are concerned you are

encouraged to discuss what you are doing with friends and supervisors, and col-

lect code-sketches and fragments from them, provided that when you submit your

work to the department you really understand everything in your submission and

you have learned enough that (if necessary) you could then instantly and comfort-

able re-create your submission in a sound-proof booth visibly cut-off from further

help. So rather than sit and suffer in isolation, seek web-sites, friends, demonstra-

tors, books and code libraries to give you guidance so long as you learn from then

and do not just blindly copy!

10 CHAPTER 1. PREFACE

1.3.2 Avoid dead-ends

Sometimes you can start designing or writing some code and as you go things

seem to get harder and harder. Something is not working and you have no idea

why. You do not want to get in such a state! Clear advance planning and a well

organised set of working habits are the best way to avoid the mess. If you find

yourself in what feels like a dead-end then avoid (a) panic (b) a tendency to try

almost random changes in the hope that things will improve and (c) temptation

to work all afternoon, evening and night until you solve things. Go back and

look at your plan. If necessary refine it so you can make progress in tiny steps.

Explain your plan and your code to somebody else (either in person or in the form

of written documentation). But do not just get bogged down: taking a break and

coming back fresh can often save overall time.

1.3.3 Create new re-usable resources

An ideal that this course would like to instil in you is one of creating re-usable

bodies of code. This will take more care and time when you first implement them

(and of course anything re-usable deserves proper documentation and testing) but

that can be well paid back when you get a chance to call on it again. At a mini-

mum this can include keeping all your working code from both the tickable and

other exercises in these notes so you can use parts of them as templates in future

projects.

1.3.4 Documentation and Test trails

Neatly formatted code with clear comments and a well set out collection of test

cases can seem slower to write then a jumble of code that is just thrown together.

However long experience suggests that the jumble of code is much less likely to

work first time, and that especially as your projects get bigger that early investment

in good habits pay dividends.

1.3.5 Do not make the same mistake twice

Especially while learning a new language, such as Java, you will make mistakes.

As you design and write gradually larger and larger bodies of code you will make

mistakes. Observe and appreciate these, and try to observe yourself as you un-

cover and correct them. Possibly even keep a small notebook of “bugs I have had

in my code”. Then each time you make a mistake seek some scheme that can pre-

vent the same one from causing significant trouble in the future. Your fingers will

always leave typos in everything you write and your mind can always wander: the

1.3. WAYS TO SAVE TIME AND EFFORT 11

idea is not to avoid glitches totally, it is to build up a personal toolkit of ways to

overcome them without pain or waste.

12 CHAPTER 1. PREFACE

1.4 Where does Java fit in?

Figure 1.1: Silver Bullet

Needed.

There are those who believe that Object Oriented De-

sign and Programming is The Answer to reliable

large-scale system building, a silver bullet1 that cures

the major woes of the last fifty years of over-costly and

haphazard use of computers. Java is one of the major

practical and widely-used languages that fall within

the Object Oriented family. Key attitudes that come

with this are that projects should be structured into po-

tentially re-usable blocks (the Java class construct

that you will learn about later being a major way of

achieving this). These blocks should each take respon-

sibility for just one aspect of the overall behaviour you

are trying to code up. The decomposition should be

arranged so that interaction between blocks is as tidy

and disciplined as possible.

Overall at least a rough caricature is that ML

stresses absolute correctness via mathematically styled

structure, and encourages very concise programming

styles. Java on the other hand follows a view that language constructs that support

large-scale structuring of projects are the key. It also expects that having the user

write out types and qualifiers explicitly will help others to read your program.

ML as taught last term provides a fairly basic library, but mostly you spend the

Michaelmas Term writing stand-alone programs and fragments. With Java there

is heavy emphasis on a rich (and perhaps hence complicated) library that supports

a very full range of computing needs.

1Brad Cox in Byte magazine October 1990, pp 209–218 puts things in much these extreme

words.

Chapter 2

General advice for novices

Following tradition, I provide ten items of guidance for the benefit of those who

are relatively new to programming. I hope that each of these will be re-inforced

during the course as a whole, but here they are collected together at the beginning:

1 Understand the task you are about to solve before starting to write a pro-

gram about it. Work through methods and procedures by hand on paper

etc. Plan some test cases. Identify cases that will represent boundaries

or oddities. In general prepare a plan before you start going anywhere

near a computer;

2 Sketch the structure of the whole of your code out informally so you have

full overview before fussing about exact syntax etc. Ensure you know

what you expect that the computer will do. This initial sketch can be

very informal, and may be in terms of diagrams rather than anything that

looks much like real programming. The key word here is “structure”.

This applies with way greater force when your code starts to grow: you

should always design a good way to factor your code into reasonably

self-contained and independent components (each will be one “class” in

your code) right from the start;

13

14 CHAPTER 2. GENERAL ADVICE FOR NOVICES

3 Write out key parts of above in the form of comments before you start

the real code. Concentrate in these comments on the “what” and “why”

of your code rather the details of “how”. This will really help when you

show your work to somebody else because you need help! I will explain

this one again: The first thing you will type into a computer when you

start writing any program will be a set of overview comments that explain

its strategy and structure;

4 At least for a first version of anything, favour clarity and obvious cor-

rectness over pretty well everything else. Clever tricks, worries about

efficiency, generalisations etc can come later;

5 Neat consistent layout and thoughtfully named fields, methods, variables

etc. are a good investment of your time. Cryptic is bad even if it saves

keystrokes in the short term;

6 If a task is too big to solve in just one gulp look for ways of breaking it

down into sub-tasks. As you do this think about ways you will be able to

test code you write for each sub-task and work on the whole thing step

by step;

7 When you try to compile your code and see a syntax error do not panic.

Learn to interpret the compiler’s diagnostics. And only try to remove

one error at a time: count it as a success if next time you try to compile

the first error has give so you can then concentrate on the second;

8 When you have compiled your program and run it and it gives wrong

answers or behaves badly do not panic. First work to understand what is

wrong and only after you have found where the problem is think about

ways to fit it. Do not just try random changes! Eg. confirm what your

program actually does by adding assert and extra print statements;

9 Whenever you find you have to change your program review comments,

consider if it will now do exactly what you want, and re-run all your test

cases. Experience shows that changes (for whatever cause) can introduce

new problems while you are in the process of fixing old ones;

10 If you find you are spending a seriously long time trying to make sense

of anything then find help from friends or a supervisor or a book. Do not

just keep building up your frustration not getting anywhere!

Chapter 3

Introduction

3.1 Introduction

We have been using Java as a first-year teaching language here in Cambridge

since 1997-8. We teach this course following on from “Foundations of Computer

Science” which used ML, and there are a number of things it is intended to do:

1. Provide all of our students with exposure to a common programming lan-

guage that can be used by later courses and practical work in the CST;

2. Introduce the syntax that is (almost) common to several of the most widely

used practical programming languages today (the syntax of Java has a great

deal in common with that of C and C++, so having learned Java you are

quite a long way to understanding those languages too);

3. Discuss the process of designing, writing and debugging programs and raise

some awareness of issues of style;

4. Present the Object Oriented aspects of a programming language as means

to enforce modularity in large programs;

5. Teach basic use of Java, a language that has significant relevance in the

outside world today.

Note that in our Part IA course “Software Engineering II” provides significant ex-

tra coverage on issues of structuring programs (especially ones that are large or

developed by collaborative work in a group), and in Part IB course there is a lec-

ture course once entitled “Further Java” and now renamed ”Concurrent Systems

and Applications”: it should not be imagined that I will cover all aspects of the

language or its use here!

15

16 CHAPTER 3. INTRODUCTION

The nature of teaching a course involving programming in some particular lan-

guage means that some features need to be mentioned well before the place where

they can be fully explained, and so it will not make sense to keep the presentation

in lectures totally linear and tied to these notes, but for supervision purposes the

structure shown here should suffice. With each section I will have a few examples

or exercises. Especially at the start of the course these will often be pretty silly,

but the ones right at the end can be viewed as samples of the sort of question that

might arise in the examination. Although I want some of my examples to be nice

and easy I would like to have others that are interesting challenges for those who

already think they know it all (ha ha). It is always very hard to judge the amount

of trouble these will give you all, so if they are either too easy or too difficult

I apologise. Examination questions will be set on the supposition that you have

attempted a reasonable sampling of the exercises.

The aim of these notes is that they should serve both as guidance to students

and to supervisors, and so there is no separate supervisor’s guide. Originally I had

intended that they would be structured into sixteen sections corresponding to the

sixteen lectures available. As I prepared the notes I concluded that such a rigid

arrangement was not tenable. Thus the lectures can be expected to cover roughly

the material in these notes in roughly the same order, with an approximation to

one-sixteenth of the entire notes corresponding to each lecture!

It might be noted that a Java course for the Diploma students runs during the

Michaelmas term. The lecture notes associated with that course may provide a

presentation of Java which is different from mine and thus may complement my

lectures or shed light on issues that I fail to.

The course is be based on use of the version of Java sometimes known as

“Java 5.0” and sometimes as “Java 1.5” or 1.6. This should now be counted as

the current and widely-used version, but if you use computers other than the main

university ones here you may come across earlier releases. Please avoid them for

course-related work to avoid confusion.

Some members of the audience for this course will already have significant

practical experience with Java. Others will have written lots of programs before

but in C, C++ or Pascal, but the only thing I can properly assume here is that

everybody has attended the Foundations of Computer Science course given in the

Michaelmas term and hence that everybody is used to writing code in the language

ML. While those who have seen Java before will undoubtedly find the first few

lectures and exercises here very easy, I hope that they will find material that is new

and worth-while being introduced in due course. In the first year that this course

was given it was observed by one Director of Studies at a large College that some

of his students who did already know Java concluded on that basis that they need

not attend the lectures, but that their examination results indicated that this had

not been a perfect judgement call.

3.1. INTRODUCTION 17

Figure 3.1: Reproduced courtesy Kevin McCurley.

18 CHAPTER 3. INTRODUCTION

3.1.1 Books

All bookshops these days seem to devote many metres of shelf-space to books that

purport to teach you Java in a given small number of days, to help you even if you

are an “idiot”, or to provide “comprehensive and detailed” coverage of even those

parts of Java that the language definers have left deliberately vague. I believe that

this is a course where it is important for every student to have their own copy

of a supporting textbook/manual. But the issue of which book to buy will end

up a somewhat personal choice since differing levels of detail will suit different

students! Browse the following in libraries and bookshops, talk to students in

higher years and seek advice from your Directors of Studies and Supervisors about

what is liable to suit you.

My first recommendation has as most of its pages what is in effect hard copy

of the on-line detailed documentation of the Java library. As a result it is not a

smooth consistent read, but I find that very many people need that information in

printed form while they are getting used to navigating the library and understand-

ing what it can do for them. Java in a Nutshell fifth edition (Feb 2005)

Java Foundation Classes in a Nutshell (1999)

David Flanagan

O’Reilly

There are two books[11, 6] that I think you might reasonably consider and that

are probably easier for self study in that they do not get so rapidly enmeshed in

full detail.

Thinking in Java

Bruce Eckel

Prentice-Hall, 2002 third edition

and

Java Gently

Judy Bishop

Addison Wesley, 2003, third edition

Eckel’s book is distributed (at no cost) via www.eckelobjects.com so if

you are actually prefer reading computer screens to real books it counts as a great

bargain!

Some Directors of Studies will strongly point you towards the book[2] that

was that main text for this course a couple of years ago:

Objects First with Java: a Practical Introduction using BLUEJ

David Barnes and Michael Kölling

Prentice Hall/Pearson, 2005, second edition

3.1. INTRODUCTION 19

Figure 3.2: Not (quite) the main course book.

20 CHAPTER 3. INTRODUCTION

This book emphasises issues of overall program structure and design above

concern for the exact details of the Java language or its libraries and so is almost

exactly the antithesis of the Nutshell books! It was used as the main teaching text

here in 2003-4, and you may find the BlueJ software (http://www.bluej.org)

provides a useful environment within which to develop and test your code. Note

that this year’s edition of both the book and the software has developed from the

versions available last year.

There will be plenty of other useful books, and any individual student may

find a different one especially to their own taste. If selecting a book other than

the one I suggest that you make sure that what you learn from it can be related to

the lectures that I give. Since this year we are using a rather new version of Java

beware that old editions of books may not be sufficiently up to date.

Java is a “buzzword-compliant” language, and when people hear that you are

learning it they will instantly pick up all sorts of expectations. Even though this

course is sixteen lectures long I will not be able to fulfil all of these, and that is in

part why the Computer Science Tripos has a course entitled “Concurrent Systems

and Applications” in Part IB that follows on from this one. There are three issues

that I should mention right here at the start of the notes, if only to protect myself

and the department against misunderstandings as to our purpose:

Java is for use animating Web pages:

Some of the huge first flush of enthusiasm that greeted the emergence of

Java was because it could be used to make rather naff animated figures dance

on web pages. This was of course amazing when web pages had previously

been so rigidly static, but it is not a good model for the central issues in

Computer Science. This will typically not be the sort of use of Java that we

try to teach you here;

Java is the best programming language:

The Computer Laboratory shows by its actions that it views ML as its pref-

erence for a first language to teach its students, with Java as a second one.

Later on in the course we will provide coverage ranging from brief men-

tion to detailed explanations of quite a few other languages: certainly C,

C++, Lisp and Prolog. The Software engineering courses mention a scheme

called just ‘Z’ that is in effect a programming language, and you will see

from past examination papers that we have high regard for Modula 3. What

is shown by that is that the Computer Laboratory view is that different lan-

guages may prove best for different tasks, and that the optimal choice will

change as the years go by (it happens that we no longer teach our students

either Fortran or COBOL, and our coverage of assembly code is present

because it forms an important link between the concerns of hardware de-

signers, operating system experts and compiler writers, and not because we

3.2. PRACTICAL WORK 21

expect students to do project work in it). At present Java is our choice for

the first “traditional”-style programming language we teach: this does not

mean it will automatically be the only or best choice for all future practical

work and projects;

Students should be taught about “programming in the large”:

As this is a first year course I will be concentrating on the fundamental

building blocks of program construction. This is in line with the Engineer-

ing Council “EA1” concern about introducing students to the fundamental

tools, materials and techniques in their subject. I view it is self-evident

that until a student can write small programs competently and painlessly it

would not make sense to expect them to be able to work in groups on large

projects. However in all the practical work associated with this course you

should expect the assessors to demand that all code you write is well laid

out, properly commented, that it displays a sensible programming style and

that you are in a position to justify its correctness. In short that a generally

professional approach has been taken even though many of the exercises are

short and somewhat jokey toy problems.

3.2 Practical work

The main environment the laboratory expects you to use for this course is PWF

Linux. At the start of Term you should be given an introduction that explains how

to re-boot certainly the PWF systems in Cockroft 4 or in the Intel Laboratory in

the Gates Building so they run Linux. PWF workstations in other parts of the

University may not have been configured with this dual-boot option, but if they

have then you can use them. Although Java runs perfectly happily on Windows

we want you to do much of your practical work on Linux so that by the time you

come to the Operating System course later in the year you have made significant

personal use of both Windows and Linux.

At least for the first half of the Term we would also encourage you to use the

emacs editor and build and run your Java programs using the somewhat primitive

command-line driven tools javac, java and appletviewer. Use of these will

be explained later. The reasoning behind this is not that it guarantees to make your

Java-specific experience as comfortable as possible, but because the technologies

involved are ones you need to find out about at some stage! Specifically I note

that

• emacs is a rich and powerful editor. You can use it in a simple way while

you are beginning work, but it has extension mechanisms that allow it to

morph to provide specialist support for different sorts of document, and it

22 CHAPTER 3. INTRODUCTION

can provide a single environment (and set of keystrokes to learn) that covers

not just editing your program but also compiling and running it, reading and

sending e-mail and many other tasks. It probably counts as the most widely

used general-purpose Unix/Linux editor and versions for Windows are also

available. Your really simple use of it now will help those of you who

choose to use if in more elaborate ways later on.

• The use of the javac and java commands explicitly (as distinct from you

using them implicitly through an all-encompassing specialist Java devel-

opment environment) means that when you see any curious messages or

complaints you know where they come from. It also introduces you to a

typical model for how software is built (the edit, compile, test cycle). When

you are more experienced you will no doubt move on and use integrated

environments1. In some respects these help by doing things for you – but

especially since you have survived the Foundations of Computer Science

course last Term it now seems proper that you get to see how to do things

for yourself.

For reference material it may prove most convenient to use on-line documenta-
tion, and in particular the web-browsable HTML version. This is available to you
in $CLTEACH/acn1/java/docs, so you can launch a browser and start looking
at it by going

firefox $CLTEACH/acn1/java/docs/index.html &

and around the first thing you may want to do is to set yourself a bookmark on that

page. There is a huge amount of documentation there. The bits I find most useful

are the “Java 2 Platform API Specification” which documents (in painful detail)

all of the library facilities that are provided, and the “Java Tutorial” which links

to a Sun website with much helpful explanation, and which you may find a very

good complement to the textbooks I have suggested. All the time I am writing

any Java code at all I will have a web-browser open on the “API” section of the

documentation, since it is useful to have a quick way to check details of the library

very close at hand.

You can obviously run PWF Linux in one of the big shared workstation areas,

and there is a great deal to be said for at least starting off that way: you can com-

pare notes with other students when you have problems. But you can also access

PWF by using ssh and an “X-windows server” to access of of the lab’s PWF

linux systems that are set up for remote use, eg linux2.pwf.cl.cam.ac.uk or

1Microsoft’s Visual Studio is perhaps a definitive example: for Java you can install either

Netbeans (from Sun) or Eclipse (from IBM) free of charge. BlueJ has very different objectives but

may also prove useful to some.

3.2. PRACTICAL WORK 23

Figure 3.3: Remember about RSI, posture etc, please.

24 CHAPTER 3. INTRODUCTION

linux.pwf.cam.ac.uk. If your own computer is set up to run Linux those will

already be present for you. If you run Windows you can get good versions free of

charge by installing a Unix-compatibility layer from http://www.cygwin.com,

but getting everything to work nicely there may be messy enough that those of a

nervous disposition would do better to work in Cockroft 4 or one of the College

computer rooms where PWF Linux is directly available!

It is also perfectly in order for you to install Java on your own computer. Apart

from the fact that the Java development kit uses around 450 Mbytes installing it

should not prove hard, it does not cost anything and performance should work

well under either Windows, Linux or MacOS on any even reasonably recent pc.

If you do that you must be willing to take full responsibility for installing and

maintaining everything, and should take care to back up all important files. For

just running small Java exercises there should not be much difference in the ex-

perience you have using your own rather than a public machine2, however if you

habitually use a PWF system somewhere other than in Cockroft 4 or the Intel

laboratory your own system might reduce your need to wait while you re-boot a

public machine into Linux, and if you experiment with one of the integrated Java

environments you nay find performance much better on your own system. If you

have a Macintosh note that Java 1.5 has only very recently become available, so

please double-check that that is the version you have.

To fetch a Java compiler you will need to connect to

http://java.sun.com/j2se

where you can find the Java “SDK Standard Edition, version 5.0”, and its ac-

companying documentation. You should be aware that the package you have to

download is around 50 Mbytes for the main kit, with the documentation being an

additional large download and the “Netbeans” development environment yet more

that you may want to explore but are not obliged to worry about. Sun can supply

either Windows (2000/XP) or Linux versions of all of these.

The Eclipse development environment can be found at http://www.eclipse.org.

3.2.1 Exercises

Tickable Exercise 1

The first part of this tickable exercise is issued as part of the introduction to the

use of Linux on the PWF. The task set here is thus “Part B” of the complete Tick.
Log on to the PWF. Create a new directory and select it as your current one,

eg

2Great thanks are due to the Computing Service for ensuring that this is the case.

3.2. PRACTICAL WORK 25

mkdir Tick1B

cd Tick1B

On the lab’s PFW Unix systems issue the following commands that copy two
files form the Computer Lab’s teaching filespace into your new directory.

cp $CLTEACH/acn1/TickBase.class .

cp $CLTEACH/acn1/TickBase1.class .

You should be able to check that the files are present. These two files provide

a basis upon which the exercise builds. Alternatively you can download the two

“.class” files from the “Material provided by the lecturer” web pages of the Com-

puter Lab’s web-site, http://www.cl.cam.ac.uk/teaching/0708/ProgJava/.
Now inspect Figure 3.4 which is documentation associated with the two files

that you have just copied. A more extensive version of the same material is avail-
able on-line as

www.cl.cam.ac.uk/Teaching/current/ProgJava/notes/TickDoc/

Now prepare a file that called Tick1.java containing the text

// Tick 1. Your Name Goes Here

public class Tick1 extends TickBase

{

public static void main(String []args)

{

(new Tick1()).setVisible(true);

}

public String myName()

{

return "Your Name";

}

}

Obviously you will put your own name in the places that are suggested by

what I have written here!
Compile your program and then run it:

javac Tick1.java

java Tick1

26 CHAPTER 3. INTRODUCTION

Figure 3.4: Documentation of Tick 1 Part B.

3.2. PRACTICAL WORK 27

If all has gone well a window should appear, and it should have some text
and a pattern on it. There is a menu that you can select. If you copy the files
to your own machine you can try the print menu, but on the PWF there are
technical reasons why that is not supported, and these lie outside just Java. So
select the menu item labelled postscript. You should then see a dialog box
asking you to choose a file name. I suggest that you select the name tick1.ps
and I very strongly suggest that you use the extension .ps whatever name you
actually choose. When you accept the file-name you have chosen the “select file”
dialog box disappears and you can not see that anything much has happened, but
the file you indicated should have been created for you. It should contain an
image of the screen window in the Postscript document format. Close the little
Java window, and you can send this to a printer using the command

lpr tick1.ps

The resulting sheet of paper is what goes to your ticker.

As an optional extra you can arrange to change the colour of (some of) the text
generated by adding lines roughly like the following to your Java source file:

public java.awt.Color myColour()

{

// RED GREEN BLUE

return new java.awt.Color(0.7f, 0.1f, 1.0f);

}

where the three floating point numbers given (note that you have to write a letter

‘f’ at their end) should each be in the range 0.0 to 1.0 and they give the proportions

or red, green and blue in the colour.

You can also check what happens if you present your name in different ways.

For instance I tried “A C Norman” as well as “Arthur Norman”. If you wanted

to keep your program in a file called say MyTick.java rather than Tick1.java

you would have to change its name within the file too. Verify that you can do that.

Discussion

This exercise is intended to send several signals and messages about Java:

• One can build new programs building on existing components that do quite

a lot for you. Here you copied in the TickBase class files, but your own pro-

gram then builds on them and can customise the behaviour of the provided

code in various ways. Through doing this a very short fragment of code let

you create a window and print its contents;

28 CHAPTER 3. INTRODUCTION

• To use the software component TickBase you do not need to see its internal

structure: all you need is documentation about how to use it. As part of

stressing this I am not going to provide you with the source code of Tick-

Base, but by the end of this course you will probably be able to re-create

it;

• Part of the way of using components like this involves the Java keyword

extends, and part of the way that the code runs involves the keyword new.

These are both key parts of the Object Oriented structure of Java, and you

should look forward to finding out more about just what they really mean

later on.

• The page of documentation included as part of these notes tells you that

TickBase is interested in a myName(). This documentation is in the style

of the bulk of the Java on-line documentation, and was created by using a

simple tool called javadoc that interpreted some special comments in the

TickBase source code. However the full output from javadoc is on the web

page listed a little earlier and perhaps gives a bit more of an idea of just how

much complexity is involved under the surface. The lesson that I learn is

that if you use javadoc for anything other than a full-scale project you will

need to edit its output heavily to remove material that your audience does

not really need to see.

(End of tickable exercise)

3.3 A Cook-book Kick-start

In this section I will try to get you started with Java. This means that all sorts of

aspects of it will be described in an order that is not really logical, but is motivated

by that fact that some features of the language must be described early if you are

to get any programs at all written. I will not provide much justification for the

recipes that I give. Later on it will be possible to re-visit these examples and

understand what the various odd keywords are all saying and what options might

be available, but for now you can just copy them out parrot fashion.

I would like you to type in all the examples for yourselves and try them out,

since that will educate your fingers into following the rules that Java imposes, and

it will also (each time your fingers stray) give you exposure to Java error messages

and the joys of finding and fixing mistakes.
My first example in fact is an echo of the first part of Java Tick 1. A mildly silly

tradition in teaching programming languages is that the first program presented
should just print out “hello”. The way of doing this in Java looks like this:

3.3. A COOK-BOOK KICK-START 29

System.out.printf("Hello");

which is a call to a library function called printf3 that will display the given

string. The prefix “System.out” is not part of the name of the function — it

happens to be providing the instruction that that printed output should be sent to

the standard output stream, ie typically straight to your screen or terminal. In

essential terms the line shown above is the whole important part of your first Java

program. However there is actually quite a lot more to be discussed before you

can try it!

The first thing is that Java is a compiled programming language, so unlike

the situation you have seen in ML it is essential to place your program in a file

before it can be used. In this case you should use a file called Hello.java and

it is essential that the file name should start with the word Hello since that is the

name that we will soon repeat within the file. The spelling should be with a capital

letter as shown4, and the file-name should be completed with the suffix .java.

If you start emacs and use the menu selection “Files/Open File” you get a

chance to create a new file for this project, and if you may5 notice that when you

type in the string in the example it is displayed in an alternate colour (to help

remind you to match your quote marks), and when you type the close parenthesis

after the string the matching bracket gets flashed to help you keep that side of

things under control.
It is possible to make very extensive customisations of emacs. If you put a

file called .emacs in your home directory it can contain directives that apply
whenever emacs starts. In particular if you put a line

(global-font-lock-mode t)

then you will get syntax colouring enabled every time: I find this convenient. For

now I suggest that you avoid putting large amounts of other clever stuff there!

You will also see that the menu-bar at the top of the emacs window has en-

tries that let you do all the things that editors ought to — and more besides. See

figures 3.5 and 3.7: note that the printed form of my notes will be in black and

white but the downloadable version on the lab’s web page

http://www.cl.cam.ac.uk/Teaching/2005/ProgJava

will show relevant information in colour. Also note that the sample programs

being edited and tested in the pictures of emacs in use may be ones taken from

previous years’ versions of this course.

3Many Java texts use a function println here rather than printf.
4Well actually if you are working on a Windows system the capitalisation is not so important,

but even there you are strongly advised to keep to it so that when you transfer your programs back

to Unix before showing them to the assessors they still work!
5Provided the “global font lock” options is selected.

30 CHAPTER 3. INTRODUCTION

A “Java mode” is automatically selected when you edit a file whose name ends

in .java and this is the first pay-off you see from this convention. If you select

a “global font lock” this can colour your code so that language keywords, strings,

comments and so on are all displayed in different colours6. It also assists with

indentation and provides editing commands that move around in the file in a way

that understands Java syntax. A major feature of emacs is that it is amazingly

customisable, and configuration files can provide it with special support for many

languages and layout conventions. If you browse enough sites on the web you

may find many extra options that you can install: hold back and avoid these until

you have got really used to the default setup! Please!

Figure 3.5: Two windows, with emacs editing a program.

Your complete first Java program needs a great pile of guff that surrounds the
one interesting line we have and turns it into something that can be executed. In
essence two things need to be documented. The first is something that indicates
the external name that the program will be known by. This will always be exactly
the same as the start of the name of the file it is stored in. You may consider it
silly to have to re-state information that looks as if it should already be available,
but for now please suspend disbelief and accept that a program that lives in a file
called Hello.java will have to contain the text

6At a minimum this can be very helpful if you accidentally fail to close a string or comment!

3.3. A COOK-BOOK KICK-START 31

public class Hello

{

...

}

where the ... will be filled in soon with material that includes our call to

System.out.println.
The second piece of information needed is an indication of where Java should

start its processing, and the convention that the language imposes here is that it
expects to find a procedure7 with the name main. The definition of a suitable
procedure then involves the incantation

public static void main(String[] args)

{

...

}

of which the only word that is currently worth describing is “main”, which is a

reminder of the historical tendency to refer to the place where a program started as

being the “main program” while what are now known as functions or procedures

might have been called “sub-programs”.

Comments can be introduced by “//” and every good program starts with a

note that explains a few key facts about it. Obviously the longer the program

the more that it will be proper to put in comments at both the start and throughout

your code, but note that assessors will certainly expect your name and the exercise

identification to be at the head of every submission you make.
Putting this all together we get the full contents of the file Hello.java as

// This is the file "Hello.java" prepared by A C Norman

// and the program just prints a fixed message. 1998-2006.

public class Hello

{

public static void main(String[] args)

{

System.out.printf("Hello%n");

}

}

7In these notes I will use the terms “function”, “procedure” and “method” pretty-well inter-

changeably. Some other languages use these words to indicate refined differences — typically

the term “procedure” would be something that did not return a value, while a “function” would.

The word “method” comes out of ideas of so-called Object Oriented Programming and indicated

a function that is defined within a “class”. Although I have not yet explained what a class is we

have seen the keyword class towards the head of our Java programs.

32 CHAPTER 3. INTRODUCTION

Figure 3.6: Style does matter.

3.3. A COOK-BOOK KICK-START 33

There is a yet further odd addition in what I have just shown. The %n arranges

to put a newline at the end of your message.

For a very short program that hardly does anything interesting that seems to

have a lot of “magic” keywords. But in only a few weeks time you will know what

they all mean, and why they make sense. For now just keep a file that contains the

above basic sample code and copy it every time you want to start a new program

so you do not have to waste time keying in all the junk repeatedly!

3.3.1 Code Layout

Many people have quite strong views about code layout and indentation. That

includes me! The style you will see in these notes almost always places any “}”

vertically below the “{” that it matches. I try to indent anything that is within

such braces by four space positions. Beyond that my guiding principle is to try to

keep my code so that it looks pretty on the screen or page, is efficient in its use of

the page and is as easy to navigate over as I can manage. Saving keyboard effort

is not a high priority, since actually typing in programs is such a very small part

of the total pain that goes into getting a complete and robust working program.

The default emacs idea about indentation and brace layout is differs from mine:

whichever you choose to follow please be consistent and try to make your code

easy for yourself and others to read.

The comment above about efficiency in the use of the page is because when

reading your code it is especially convenient if all the bits you want to see fit

within one screen-full of the editor’s window. Thus I count excessive splitting of

constructs over multiple lines as unhelpful, just as are large swathes of blank lines.

I prefer comments in blocks (which may often make up significant paragraphs)

that describe the code that follows them. And the comments should be readable

English in proper sentences intended to help some poor person faced with revising

or updating the code to correct some imaginary bug or add a new feature.

Java provides some encouragement for special comments that are introduced

with the sequence “/**”8 and going on over possibly many lines until the next

“*/”. These are there to support extra software tools that extract those comments

and format them as separate documentation for the program. In this course I will

illustrate that scheme later on.

Well all the above discussion has just left us with a file Hello.java. Unlike
(typical teaching use of) ML, Java expects programs to be processed by a sepa-
rate compiler before they are executed. This compiler is a program that checks
the syntax and types of the code you show to it, and translates from the human-

8Ordinarily as well as “//” comments that just run to the end of the line you can write long

comments starting with “/*”.

34 CHAPTER 3. INTRODUCTION

readable9 source file such as Hello.java into a more compact10 digested binary
file (called Hello.class in this case) that can subsequently be executed repeat-
edly without any need to re-do all the potentially time-consuming checking. To
carry out this conversion you need to say

javac Hello.java

The javac command tends to be jolly taciturn unless it finds something in
your program that offends it. It does not say anything and so after it has run you
may like to use ls to verify that the file Hello.class has been created. Finally
we can run it:

java Hello

Note that when javac was used to compile the program it was essential to

quote the .java extension, while when the program was to be run you must not

use the .class extension that the pre-digested version of the program was given.

This level of apparent inconsistency is not at all restricted to Java, and the exact

rules on matters such as this are liable to differ between different vendor’s sets of

Java tools. What I describe here relates just to Sun’s SDK!

3.3.2 Emacs

The editor emacs is the preferred text editor to use while taking this course. I

think it may be best for most people to start by keeping two windows available

on their screens, one the emacs edit window and the second a command-prompt

from which they can issue the build and run commands directly. When working

with an edit and a command window note that you have to go “File/Save Buffer”11

to get emacs to ensure that the file on disc is brought up to date with respect to the

version you have been editing in its buffer. Provided you do this before issuing the

javac command from your other window it is reasonable and most convenient to

keep emacs loaded throughout your session. It is also possible to compile and run

Java (or other) programs while remaining entirely within emacs, and to get any

reports of syntax errors generated by a compiler to re-position the editor’s caret

close to where the error was detected. But for the rather small programs you will

be working with during this Part IA course all is excessive and using one window

to edit and one to compile as in Figure 3.5 remains simplest.
The next program to be shown is a rather simple extension of the one we have

already discussed, but instead of just printing a fixed message it prints a table of
squares. In a file called Squares.java you should place:

9Well, at least it is readable if you include enough comments!
10Actually for really tiny programs like this one the binary file may be bigger than the source it

relates to, but for and program big enough to be interesting what I say will hold true.
11Or the equivalent keyboard sequence, Ctrl-x Ctrl-s.

3.3. A COOK-BOOK KICK-START 35

public class Squares

{

public static void main(String[] args)

{ for (int i=0; i<10; i++)

{ System.out.printf("The square of %d is %d%n",

i, i*i);

}

}

}

There are two new things here. The first is the iteration statement

for (int i=0; i<10; i++) { ... }

which arranges to declare a variable called i and set it first to 0, then to 1, then 2

and so on for so long as i<10 remains true. The curious syntax i++ is inherited

from the C programming language and means “increment i”: a less cryptic way of

achieving the same effect would be to write “i=i+1” instead. The single = sign in

Java is an assignment operator and changes the value of the variable named on its

left. The word int is short for “integer” and specifies the type that i should have.

Type Java type int denotes integers which are explicitly limited to a range that

is consistent with representation as 32-bit values. Unlike ML Java expects you to

specify the type of pretty well everything you mention, and when you introduce a

new variable you can change its value later using a = operation without having to

worry about any special extra works like ref.
The second new feature is the string argument to printf where emdedded

percent signs stand for where the numeric values you want displayed need to be
substituted in. The %d indicates that what you want displayed is expected to be an
integer: other letters could be used when you were needing to print other sorts of
item. Once again I need to make a remark this year that is to do with the transition
to Java 1.5: in previous years and in many books you will see this code written as

System.out.println("The square of " + i + " is " + (i*i));

where the plus signs in fact indicate string concatenation and Java is converting

integers to printable form fairly automatically. I prefer the use of printf because

the %d indicates very explicitly that I am about to print an integer (not some other

sort of thing). It can also be extended to give me quite refined control over the

layout of the table I generate.

Note that when I came to want to type in the Squares program to check it I did

not type it in from scratch. Instead a copied the earlier Hello program and adjusted

the few lines in its middle to perform the new operations. Typically it will also

be necessary to change a few comments to make them relate to the new reality,

but creating new code by making incremental extensions to old is a very useful

36 CHAPTER 3. INTRODUCTION

technique and can save a lot of time and effort. It also means that remembering

all those boring bits is at least slightly less necessary.
One further development of the Squares example will illustrate a few more

Java idioms. This code (which I will put in a file Powers.java) computes powers
and does so by a repeated-squaring technique that may be familiar from the ML-
based course last term:

public class Powers

{

public static void main(String[] args)

{

// I will use println for simple fixed text

System.out.println("Table of powers");

for (int i=0; i<10; i++)

// .. and printf to incorporate values within a template

{ System.out.printf("%dˆ%d = %d%n", i, i,

power(i, i));

}

}

static int power(int x, int n)

{ if (n == 0) return 1;

int y = power(x, n/2);

if ((n % 2) != 0) return x*y*y;

else return y*y;

}

}

which produces the results

Table of powers

0ˆ0 = 1

1ˆ1 = 1

2ˆ2 = 4

3ˆ3 = 27

4ˆ4 = 256

5ˆ5 = 3125

6ˆ6 = 46656

7ˆ7 = 823543

8ˆ8 = 16777216

9ˆ9 = 387420489

The new features shown here are the definition of a function and calls to it.

Observe that the types of the arguments for the function and the type of its result

are all explicitly given (as int here). The code does distinctly more arithmetic,

3.3. A COOK-BOOK KICK-START 37

where +, -, * and / stand for addition, subtraction, multiplication and division.

The percent sign % gives a remainder. Numeric comparisons are written with >,

<, >= and <= for the obvious comparisons, and the rather less obvious == for an

equality test and != for inequality.
Conditional statements appear as

if (condition) statement

or

if (condition) statement

else statement

Note that the parentheses around the condition are part of the Java syntax

(inherited from C) and they may not be omitted.

You need to use the word return explicitly to indicate what value your pro-

cedure should hand back.

It is a very common beginner’s error to get mixed up about where braces and

semicolons are needed — and mix-ups on this front can cause special trouble

with the else after an if statement. In doubt just remember that you can group

several statements (or indeed just one) together to make a single big statement

just by enclosing them (or it) in braces “{ . . .}”. The braces I have around the

call to printf just after the for were put in not because they are essential (the

call to printf counts as a single statement and could be the thing that the for

loop performed in a repetitive way) but because I think the braces there make it

easier to see just what the range of the for is. Similarly it is often good style to

use braces that are in some sense redundant after the keyword if just to ensure

that the structure of your code is utterly evident to any reader.

The series of small examples above show enough of Java that they can form the

basis for exercises that use integer arithmetic and a few recursive sub-functions.

With luck they contain enough examples of usage that you can now go away and

write all sorts of little programs that perform calculations with at most minor

recourse to the textbook to check exact details.

3.3.3 Drawing to a window: JApplets

I will therefore move onto another cook-book example which shows a different

sort of Java program. The ones seen so far are refereed to as stand-alone applica-

tions. The next one will be described as an “applet”. It has an even higher load

of mumbo-jumbo to surround the small bits that are its essential core, but illus-

trates how you can start to use Java for graphics programming and to interact with

windows, mice and the like. As with my Hello program I will start by quoting

38 CHAPTER 3. INTRODUCTION

Figure 3.7: emacs on Windows, with the “Global Font Lock” option for syntax

colouring.

the important bit of the code that lives in the middle. In this case it will arrange

to keep track of where your mouse last was when you pressed its button, and will

respond to new mouse clicks by drawing a straight line on the screen to join the

old to new position.

Since at this stage I want to make this key part of the code look as short and

easy as possible I have omitted any comments — after all I am about to give an

explanation here in the accompanying text!

3.3. A COOK-BOOK KICK-START 39

In the Hello program we used a function called printf by referencing it rela-
tive to some library object System.out. Here we need to suspend disbelief for a
short while and image two things, one called e that allows us to call library func-
tions that reveal the position of the mouse (getX and getY) and another called
g that is analogous to System.out but which supports a function drawLine for
putting a straight line up on the screen. Suppose furthermore that there are integer
variables lastX and lastY that will be used to store the previous position where
the mouse was clicked. It now makes sense to show the kernel of the drawing
program:

int x = e.getX(), y = e.getY();

g.drawLine(lastX, lastY, x, y);

lastX = x;

lastY = y;

Look under the link Java Platform Core API on the web-browsable doc-

umentation. Clicking at the top of the screen through Index makes it almost as

quick to look up getX, getY and drawLine as it would be to check for them

in the index of a book. In either case you are liable to find near their documen-

tation the explanation of other related functions, such as drawRect, drawOval,

fillArc, drawString and many many more.

Once one has sorted out how to use one of these in general the rest follow on

naturally, so it can be useful to browse the documentation occasionally to make

yourself familiar with the collection of operations that are supported.

The next natural question is one of where the mysterious e and g came from,
and how it could be arranged that the above code is activated every time the
mouse button is pressed. Well just as a simple stand-alone application has a spe-
cial function called main, one that deals with the mouse will have one called
mousePressed. This gets the object e passed down to it from the system. all
one needs to know is that the type used to declare this variable is MouseEvent.
Access to the screen is obtained by declaring g to be of type Graphics and ini-
tialising it with the value returned by a call to getGraphics12. These types and
conventions are to some extent part of a large design that underlies the Java li-
braries, but at this stage the only proper way to cope with them is to copy them
carefully from existing working programs and check details in the documentation.
When you look at the documentation I expect your main initial response to be one
close to “Wow” as you see just how many types and functions Java provides you
with. Overall there is more complexity and power in these libraries than there is
in the language itself. Anyway here is the full version of the mouse click handler
function — not too messy provided one is happy to take the library calls on trust!

12In this initial example I use getGraphics but often the object you want will come to you

in other ways.

40 CHAPTER 3. INTRODUCTION

public void mousePressed(MouseEvent e)

{

// I have to obtain access to a drawing context

Graphics g = getGraphics();

// I also need to extract (x,y) co-ordinates from

// the mouse event.

int x = e.getX(), y = e.getY();

g.drawLine(lastX, lastY, x, y);

lastX = x;

lastY = y;

}

I can now give the whole file Draw.java which includes the above important

function definition, but which also has the relevant junk that is needed to connect

it in to the Java run-time environment. You will see that I have this time used

comments from /* to */ for some of the big block comments. The arrangement

with columns of vertical stars is purely a convention that I like and which makes

the range of the comment clearly visible. The lines starting import arrange for

convenient access to several extra Java libraries. You will find import statements

at the top of most of my sample programs from now on and the exact list of things

you need to “import” will seem jolly mysterious. All I can say at this stage is

that you can start by copying the lines I give and that in a week or so you will

understand how to check the Java on-line documentation to sort out exactly what

you need exactly when.
The qualifications (extends and implements) on the declaration of the

Draw class ensure that this program can draw to the screen and respond to the
mouse. When a file contains a class that extends JApplet the rules for it start-
ing up are not like ordinary programs. Instead of defining main it defines the
functions shown here.

/*

* Draw.java A C Norman

*

* Simple applet to draw lines on a screen

* in response to mouse clicks. See also "Draw.html".

*/

/*

* At the start of almost any Java program it will

* be necessary to incant a few "import" statements to

* provide Java with more convenient access to various

* standard libraries.

*/

3.3. A COOK-BOOK KICK-START 41

import javax.swing.*;

import java.awt.*;

import java.awt.event.*;

public class Draw extends JApplet

implements MouseListener

{

private int lastY = 0, lastY = 0;

public void init()

{

// I need to activate the mouse event handlers.

this.addMouseListener(this);

}

/*

* Each time the mouse button is pressed I will draw a

* line on the screen from the previous mouse position

* (or (0,0) at the start) to where the mouse now is.

*/

public void mousePressed(MouseEvent e)

{

// I have to obtain access to a drawing context

Graphics g = getGraphics();

// I also need to extract (x,y) co-ordinates

// from the mouse event.

int x = e.getX(), y = e.getY();

g.drawLine(lastX, lastY, x, y);

lastX = x;

lastY = y;

}

/*

* The full mouse event model uses the four extra

* procedures shown below. To keep this code as short

* and simple as I can I will not cause them to do

* anything, but the Java event handler scheme demands

* that they exist. Hence these definitions of functions

* that do nothing at all!

*/

public void mouseReleased(MouseEvent e) {}

public void mouseClicked(MouseEvent e) {}

42 CHAPTER 3. INTRODUCTION

public void mouseEntered(MouseEvent e) {}

public void mouseExited(MouseEvent e) {}

}

/* end of Draw.java */

Without a prototype such as the above to start from it could take a huge amount

of reading of the manuals to find all of the Java types and functions to put together.

However once you have the prototype to work from there is at least some chance

that variations on the theme can be constructed by making incremental changes,

and the details of these changes can be sorted out by looking in the manuals close

to the place where the features that are currently used get documented. The ver-

sion I have given here uses the class JApplet while you may find some books use

Applet (without the initial letter J) that is an older version of something similar.

3.3.4 HTML and appletviewer

The earlier examples were run using commands such as java Hello. This one
is not a stand-alone application but a JApplet, and so has to be run using a thing
called appletviewer. What is more it needs yet another file to be prepared: one
that will let it know how large an area of the screen should be set aside for the
drawing to appear in. This new file must be called Draw.html, and its contents
are as follows:

<HTML>

<BODY>

<APPLET code="Draw.class" width=400 height=400>

Java is not available.

</APPLET>

</BODY>

</HTML>

This file consists of a set of nested sections, where the start of a section is a
word contained in angle brackets and the corresponding end-marker is the same
word but with “/” in front of it. Once again the most interesting part is in the mid-
dle where the APPLET tag is used to provide a reference to the compiled version of
our program (ie Draw.class) and to specify the width and height of the window
in which it is to work. The text “Java is not available” should never appear when
you use this file! It is there so that it can be displayed as an error message if this
HTML13 file is inspected using software that does not understand Java. For the
purposes of this course the only use you will make of the file is to say

13Hypertext Mark-Up Language.

3.3. A COOK-BOOK KICK-START 43

appletviewer Draw.html

which should cause a 400 by 400 (pixel) window to appear within which you

can click the mouse to good effect. The window that appletviewer should

provide a pull-down menu that contains an entry quit or close than can be

used to terminate the program. Observe (with quiet gloom) that appletviewer

demands that you quote the .html suffix, and that inside the HTML file you have

to specify the full name of your class file (ie including the .class suffix), while

to run simple stand-alone Java applications you just gave the base part of the file-

name. Ah well!

The Draw program shown here is a useful prototype, but the most glaring

problem it exhibits is that if you rearrange your windows while using it so as to

obscure part of what you have drawn then that bit does not get re-painted when

you reveal the window again.

When you move towards larger programs (ones spread over very many files)

you will probably need to read up about a tool called jar and find out (it is easy!)

how you can package many Java class files into a single archive, and how HTML

files refer to such archives. I will not explain that in this Part IA course.

3.3.5 Exercises

Tickable Exercise 2

Do both parts A and B please.

Part A

The following Java function is a rather crude one for finding a factor of a
number n and returning it, or returning 1 if the number is prime.

static int factorof(int n)

{ int factor = 1;

for (int i=2; i*i<=n; i++)

{ if (n % i == 0) factor = i;

}

return factor;

}

The code works by checking each possible factor from 2 upwards, stopping

when the trial factor exceeds the square root of the number being tested.

This stopping condition is reasonable because if a number n is not prime

than it must have at least one factor in the range 2 . . .
√

n.

44 CHAPTER 3. INTRODUCTION

Write a stand-alone Java program that incorporates the above code and that

prints out a list of all the prime numbers from 2 to 100.

Optional: Change factorof to make it more efficient by first letting it

check whether 2, 3 or 5 is a factor and then instead of trying all possible

factor up to the square root of n let it just try those that are 1, 7, 11, 13, 17,

19, 23 or 29 mod 30. Ie do not bother with numbers that are themselves

divisible by 2, 3 or 5. This should lead to making just 8/30 = 26.66% of the

number of test divisions that the original version did. Does the new version

run faster, and if so by about what factor?

Part B: Binomial Coefficients

This exercise is a deliberate incitement to write a very inefficient program.

Later on there will be an example that prompts you to write a much faster

program that can computer the same answers! The binomial coefficients14

may be defined by the rules

nCr = n−1Cr +n−1 Cr−1

nC0 = 1
nCn = 1

This definition could naturally turn into an ML function definition

fun binom(n, r) =

if r = 0 orelse r = n then 1

else binom(n-1, r-1) + binom(n-1, r);

Write the corresponding Java code and use it to tabulate 2nCn for n from 0

to 12.

If you are using Java on Unix you should go “time java Binom” to run

the example and when your program has run you will get a report of how

long the computation took. Keep all the output so you can compare both

results and timing data with the method described later on.

(End of tickable exercise)

14There is some question as to whether I should use the notation nCr here or

(

n

r

)

. I hope this

will not confuse you too much!

3.3. A COOK-BOOK KICK-START 45

A better drawing program

The drawing program as presented is very clumsy. There are a number of ways it

could be improved. The suggestions made here are not the correct route towards

a properly finished professional quality drawing program but may still count as

useful practise with Java.

1. In the 400 by 100 window, interpret mouse clicks in the top 50 pixels as
button activity that can select options. The x co-ordinate may be split into
(say) 4 ranges to give four buttons. In mousePressed add:

if (y < 50)

{ if (x < 100) .. action1

else if (x < 200) .. action2

else if (x < 300) .. action3

else .. action4

}

else

{ normal mouse processing

}

2. The crude buttons as above could select whether further regular mouse
clicks drew lines (as before) or used drawOval to draw circles. Another
button might select a drawing colour using

g.setColor(Color.blue); // or red, black etc

3. My code, which was trying to be as short as possible, did not treat the

first mouse click specially, and so all trails started at (0,0). That should

be changed.

4. drawString(string, x, y) places text in a window at the given posi-

tion. It could be used to label the “buttons”.

I think that the code that you could potentially achieve here would be pretty good

for this stage in the course!

46 CHAPTER 3. INTRODUCTION

Turtle Graphics

The following code shows some

more new features of Java. It de-

fines a paint method (ie function)

in an applet. The appletviewer ar-

ranges that this function is invoked

every time the applet’s window is

uncovered or otherwise needs re-

drawing, and so it leads to pictures

that are a lot more robust than the

mouse-driven Draw program shown

earlier. The code also uses a new

type, double which is for floating

point numbers, and some calls to the

Maths library to compute sines and cosines. The odd notation (int)x indicates

that the code wants to convert the floating point value x into an integer (int) so it

is of the correct type to be passed on to drawLine.
Put the code in a file Turtle.java and prepare a suitable associated file

Turtle.html. Experiment with the code and see how the image changes de-
pending on the values of the three variables marked. For most values of inc I
seem to find that a closed figure is drawn provided N is large enough, but I have
some trouble producing an explanation of why or a characterisation of exactly
what values of inc will lead to this behaviour. I also find the degree of symme-
try hard to explain. Generally this is an illustration of the fact that quite short
programs can have behaviour that is complicated to explain!

/*

* Turtle.java A C Norman

* illustration of Turtle Graphics and the "paint" method.

*/

import javax.swing.*;

import java.awt.*;

import static java.lang.Math.*;

public class Turtle extends JApplet

{

public void paint(Graphics g)

{ // Try changing the following 3 numbers...

double size = 5.0, inc = 11.0;

int N = 5000;

double x = 200.0, y=200.0,

3.3. A COOK-BOOK KICK-START 47

th1 = 0.0, th2 = 0.0, th3 = 0.0;

for (int i=0; i<N; i++)

{ th3 = th3 + inc;

th2 = th2 + th3;

th1 = th1 + th2;

double x1 = x+size*cos(PI*th1/180.0);

double y1 = y+size*sin(PI*th1/180.0);

g.drawLine((int)x, (int)y, (int)x1, (int)y1);

x = x1;

y = y1;

}

}

}

/* end of Turtle.java */

The code is really using angles in degrees (not in radians), and the variables
th1, th2 and th3 hold values that are angles. As coded above some of these
angles can grow to ridiculously large values, it might make sense to insert lines
based on the prototype

if (th2 >= 180.0) th2 = th2 - 360.0;

in suitable places with a view to keeping all the angles that are used in the range

−180.0 to +180.0.

The import static java.lang.Math.* line makes it possible to use

sin, cos and PI in the simple way shown.

Note that in Java (and indeed with many window systems) the y co-ordinate

starts at 0 at the top of the screen and increases as you go down. This makes sense

(sort of) when the screen is containing text, in that counting lines you normally

start at the top. For pictures it can be a little muddling until you are used to it, and

can mean that things sometimes come out upside down the first time you try them.

48 CHAPTER 3. INTRODUCTION

Chapter 4

Basic use of Java

4.1 Data types, constants and operations

The first section of these notes introduced a few small but complete Java programs,

but when you type them into the computer you still have to take a great deal on

trust. But with those examples to use as a framework I can now start a more

systematic introduction of the Java language and its associated libraries. Actually

in the lectures I expect to skim over this material very rapidly: you will in reality

learn about the Java data types and syntax as you write programs. However I

view it as important that you have reference material in your handout that shows

what everything is so that if you have trouble in your coding you have somewhere

reasonably close at hand where you can check some details. However if you need

a gentle path to settle into Java programming I do suggest that you try various of

the example programs and exercises here so that you get used to and comfortable

with a good range of Java syntax.

4.1.1 Reserved Words

The first thing to do is to catalogue the words that are reserved: if you accidentally

try to use one of these names as the name of one of your variables or functions you

can expect most curious error messages from Java! So even though I do not want

to explain what all of these mean yet it may help you if I provide a list of words

to be avoided. In some cases of course the presence of a word here will alert you

to the availability of some operation, and you can then look up the details in the

manual. A clever editor might display words from this list in some alternative

colour to help you notice any unintentional uses. An even more clever one might

use different colours for the one (such as int) that name basic types, the ones

such as for that introduce syntax and ones like true that are just the names of

49

50 CHAPTER 4. BASIC USE OF JAVA

Figure 4.1: Start with some small examples. . .

4.1. DATA TYPES, CONSTANTS AND OPERATIONS 51

important built-in constants.

abstract assert boolean break byte

case catch char class const

continue default do double else

enum extends false final finally

float for goto if implements

import instanceof int interface long

native new null package private

protected public return short static

strictfp super switch synchronizedthis

throw throws transient true try

void volatile while

A joke about the above table of reserved words is that at present Java does not

actually use them all — specifically const and goto do not represent any oper-

ation supported by Java. By prohibiting people from using these words as names

for variables the Java designers have left themselves a little flexibility to extend

the language in the future if they want to or are forced to, and they can perhaps

give better error messages when people who are used to some other language that

does include these keywords first tries out Java.
There are some other words which are used for names that perform important

system functions. If you unintentionally define a function with one of these names
you might find that you have introduced side-effects of amazing magnitude when
the system calls your function instead of the one it was expecting! Beware here,
because although incorrect use of a genuine reserved word will result in a syntax
error it could be that defining a function with one of the following names would
have subtle or delayed bad consequences rather than a nice clean instant crash.

clone equals finalize getClass hashCode

notify notifyAll toString wait

OK so the above information is more negative then positive, but I hope it will

rescue a few of you from otherwise most mysterious behaviour when you might

otherwise have tried to use one of the reserved words for your own purposes.

4.1.2 Basic Types

Earlier examples used the word int to declare integer variables, and the range of
values that can be represented goes from around −2 billion to around +2 billion.
To be more precise the smallest valid int is −231 =−2147483648 and the largest
one is 231−1 = 2147483647. You are not expected to remember the decimal form
of the numbers, but you should be aware of roughly how big they are. Integer

52 CHAPTER 4. BASIC USE OF JAVA

overflow is ignored: the result of an addition, subtraction or multiplication will
always be just what you would get by representing the true result as a binary
number and just keeping the lowest 32 bits. A way to see the consequences of this
is to change the Powers program so it goes up to higher powers, say 20. The final
section of the output I get is

...

8ˆ8 = 16777216

9ˆ9 = 387420489

10ˆ10 = 1410065408

11ˆ11 = 1843829075

12ˆ12 = -251658240

13ˆ13 = -1692154371

14ˆ14 = -1282129920

15ˆ15 = 1500973039

16ˆ16 = 0

17ˆ17 = 1681328401

18ˆ18 = 457441280

19ˆ19 = -306639989

where the value shown for 1010 is clearly wrong and where we subsequently get

values that probably count as rubbish. Note both the fact that overflow can turn

positive values into negative ones (and vice versa) and the special case (obvious in

retrospect) where 1616 shows up as zero. Since 16 is 24 the binary representation

of 1616 is clearly a 1 followed by a string of 64 zeros, and in particular the least

significant 32 bits are all zero. This lack of detection of integer overflow is some-

times convenient but it is also a potential major source for getting wrong answers

without even knowing it.

Java provides several alternative integer-style primitive data-types which rep-

resent different trade-offs between expected speed, space and accuracy. They are:

byte: 8-bit integers in the range −128 to +127;

short: 16-bit integer, range −215 = −32768 to 215 −1 = 32767;

int: 32-bit integers as discussed already;

long: 64-bit integers, is range is from −263 to 263 − 1 which means that almost

all numbers with up to 19 decimal digits can be represented.

It may be helpful to those who are not already used to the binary representation

of signed values if I tabulate the representation used for the byte datatype. The

wider integral types use just the natural generalisation:

4.1. DATA TYPES, CONSTANTS AND OPERATIONS 53

Number Representation in binary

−27 26 25 24 23 22 21 20

127 0 1 1 1 1 1 1 1

126 0 1 1 1 1 1 1 0

. . .

3 0 0 0 0 0 0 1 1

2 0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0

−1 1 1 1 1 1 1 1 1

−2 1 1 1 1 1 1 1 0

−3 1 1 1 1 1 1 0 1

−4 1 1 1 1 1 1 0 0

. . .

−126 1 0 0 0 0 0 1 0

−127 1 0 0 0 0 0 0 1

−128 1 0 0 0 0 0 0 0

One way to understand how the negative numbers arose is to see that −1 is the

bit-pattern that has the property that if you add 1 to it and ignore the final carry

you get the representation that means 0. It can also help to suppose that negative

number “really’ have an infinite string of 1 bits glued onto their left hand end. The

representation used is known as “two’s complement”.
When you write an integer literal in your Java code you can write it in decimal,

octal or hexadecimal (base-16). You can also make your written integer either of
type int or type long; there is no direct way to write either a byte or short.
Decimal numbers are written in the utterly ordinary way you would expect. You
add a suffix “L” if you want to make the value a long and you should always do
this if the value is outside the range of ordinary available to an int, but you might
sometimes like to do it for even small values when using them in a context where
arithmetic on them should be done in long precision. Examples are:

12345 an ordinary int

1234567890123L a long value

10L a long but with a smallish value

1000000L*1000000L an expression where the L suffix

matters

1000000*1000000 without the L this would overflow.

My belief is that hardly anybody ever wants to write a number in octal these

days1, but Java allows it, taking any number that starts with 0 as being in octal.

1But this may be just a matter of fashion, and perhaps elsewhere in the world octal is still

appreciated.

54 CHAPTER 4. BASIC USE OF JAVA

Thus 037 is the octal way of writing the number 31. The L suffix can be used to

specify long octal values. Observe a slight jollity. If you write the number 0 it

is interpreted as being in octal. Fortunately zero is zero whatever radix is used to

write it!

Hexadecimal is much more useful. Each hexadecimal digit stands for four

bits in the number. Letters from A to F are used to stand for the digits with weight

10 . . .15. Hexadecimal numbers are written with the prefix 0X. Note that the suffix

L for long, the X in hexadecimal numbers and the extended digits from A to F can

all be written in either upper or lower case. I strongly recommend use of upper

case for L since otherwise it is painfully easy for a casual reader to muddle 10l

(long ten) and 101 (one hundred and one).
Here are some numbers written in hexadecimal

0X0 this is zero, not gravy powder

0xe otherwise 14

0xffffffff -1 as an int

0xBadFace what other words can you spell?

0x7fffffff largest int

0x80000000 most negative int

0x00010000 2 to the power 16

0x7fffffffffffffffL largest long

I rather suspect that the main importance of byte and short is for when you

have huge blocks of them2 where the fact that they take up less space can be of

practical value.

Floating point values also come in two flavours, one with a larger range and

precision than the other. The more restricted one is called float. A float uses

32-bits of memory and can represent values up to about 3.4e383 with a precision

of six to seven significant figures. Until you have sat through the course on numer-

ical analysis please avoid use of it4. The more sensible floating point type is called

double and uses 64 bits to store numbers with magnitude up to about 1.7e308,

with an accuracy of sixteen or seventeen significant figures. The internal repre-

sentation of floating point values and the exact behaviour in all circumstances was

originally taken from an International Standard referred to as IEEE 754. Some

bit-patterns are reserved to represent “+∞” and “−∞” while others are values that

are explicitly not representations of valid floating point values — these are known

as NaNs (Not A Number). A few possibly unexpected effects arise from this. For

2See the description later on of arrays.
3ie 3.4×1038.
4In fact a number of the Java library functions require arguments of type float, so it is not

possible to avoid this type. Its use is satisfactory in circumstances where the precision it supports

is all that is justifiable, for instance when specifying the brightness of a colour.

4.1. DATA TYPES, CONSTANTS AND OPERATIONS 55

instance floating point division never fails: 0.0/0.0 yields a NaN, while any other

value divided by 0.0 results in an infinity. Also if u is a floating point value then

it is possible for the expression u == u to evaluate to false (!) because the

rules for all numeric comparison operators is that they return false when at least

one of their arguments is a NaN. Another oddity is that one can have two floating

point values u and v such that both u == v and (1.0/u) != (1.0/v)! This

oddity is achieved by having u = -0.0 and v = +0.0. These delicacies are al-

most certainly exhibited by most other languages you will come across, but Java

documents them carefully since it is very keen indeed to make sure that Java pro-

gram will give exactly the same results whatever computer it is run on. Even if

it does very delicate things with the marginal and curious cases of floating point

arithmetic. Recent versions of the Java language use a keyword strictfp to

indicate places where all the consequences of IEEE floating point must be hon-

oured: specifically its use means that the results computed should be identical

whatever machine run on, and will have rounding errors exactly as expected.

Without strictfp and on some computers Java will deliver results that are both

more accurate and are computed faster!
Here are some floating point constants:

0.0 this is double (by default)

0.0F if you REALLY want a float

1.3e-11 specify an exponent (double)

22.9e11F float not double

22.9e11D be explicit that a double is required

1e1 no "." needed if there is an "e"

2. "." can come at end

.2 "." can come at start

2D must be a double because of the D

I would suggest that you always make your floating point constants start with

a digit and contain a decimal point with at least one digit after it since I think that

makes things more readable.

In Java the result of a comparison is of type boolean, and the boolean con-

stants are true and false. As in ML (and unlike the situation in C, in case you

know about that), boolean is a quite separate type from int.
Despite the fact that this section is about the Java primitive types and not about

the operations that can be performed on data, it will make some of my examples
easier if I next mention the ways in which Java can convert from one type to
another. In some cases where no information will be lost (eg converting from a
byte or short to an int) the conversion will often happen without you having to
worry much about it and without anything special having to be written. However
the general construction for making a type conversion is called a cast, and it is
written by using a type name in parentheses as an operator. We have already

56 CHAPTER 4. BASIC USE OF JAVA

already seen a couple of examples in the Draw program where (int)x was used
to convert the floating point value x into an integer. The opposite conversion can
then of course be written as in

for (int i=1; i<10; i++)

System.out.printf("%22.8g%n", 1.0/(double)i);

where the (double) is a cast to convert i to floating point5. The format spec-

ifier6 %22.8g is for printing a floating point value in a General format using a

precision of 8 significant figures and padding with blanks to make 22 characters

printed in all. Until you understand exactly when automatic conversions apply it

may be safest to be explicit. Java allows you to write casts for those conversions

that it thinks are sufficiently reasonable. You can cast between any of the flavours

of integer. When you promote from a narrower integer to a wider one the value

is always preserved. When you cast from a wider integer to a narrower one the

result is what you get from considering the binary representation of the values

concerned, and the cast just throws away unwanted high-order bits. Casts from

integers to float and double preserve value as best they can7. Casts from float-

ing point values to integers turn NaNs into 0, and infinities into either the most

positive or most negative integer. Floating point values that are too large to be

an int or long also turn into the largest available integer. The exact rules for

casts from floating point values to byte and short are something to look up in

the reference manual in the improbable case it matters to you. There are no casts

between boolean and other types. You need to use explicit expressions such as

(i != 0) to map from an integer to a truth-value8.
The type char can be used to declare a variable that holds a single character.

To write a constant suitable for putting into such a variable you just write the
relevant character within single quote marks, as in

char mychar = ’A’;

if (myChar == ’q’) ...

It is frequently necessary to use characters that do not fit so neatly or clearly
between quotes. For instance the single quote character itself, or a “character” to
represent the end of a line. A set of escape codes are used for these, where instead
of a single character one writes a short sequence starting with the escape character
“\”. The supported escape sequences are:

5In this case the cast is not needed: Java will do the required conversion so that it can perform

the division.
6You will see a bunch of common format specifiers just in examples here. You can look up full

details in the on-line documentation, or find a medium-sized synopsis later in these notes.
7Casts from int or long to float or from long to double can not always preserve

an exact result because the floating point format may not have enough precision available. The

closest floating point value to the true result will be delivered.
8Unlike the position in C where there is not much distinction between integers and booleans.

4.1. DATA TYPES, CONSTANTS AND OPERATIONS 57

\n newline, linefeed (very commonly used)

\" double quote mark

\’ single quote mark

\\ use when a single \ is wanted

\b backspace

\t tab

\f newpage, formfeed (unusual)

\r carriage-return

Carriage returns are used in Windows text files and as line separation in some

Internet protocols, but when creating simple text files you do not generally see

or need to mention it: Java does any necessary conversions to you so that on

Windows, Macintosh and Unix an end of line in a file is talked about in your

programs as just ‘\n’.

In addition it is possible to write \nnn where nnn stands for 1, 2 or 3 octal

digits: this indicates the character with the specified character-code in a standard

encoding. Use of octal escapes is not at all common. Furthermore Java allows

inclusion of characters from an astonishingly large character set by use of a nota-

tion \u followed by four hexadecimal digits. The 16-bit number represented by

the hexadecimal digits is taken as being in a set of character encodings known

as Unicode. Casts between int and char give direct access to this encoding.

For example \u2297 and (char)0x2297 both give the character “⊗”. In fact

the Unicode escapes do not just apply within Java character literals but can be

used anywhere in a Java program where you want an unusual symbol — and

this means that in some sense you can have variables names with Greek, Rus-

sian and Eastern glyphs in them. Unicode gradually becoming more widely used,

but most computers still do not have full Unicode fonts installed, and so exotic

characters will not always be displayed properly even though within Java they are

handled carefully. The following applet displays the characters that are available

using the viewer it is run under. It uses a cast (char) to convert an integer to

a character and some fresh library calls (eg setFont(new Font(...)) and

drawString). It also illustrate something that you will probably want to retrofit

to most of the little examples in these notes. It allocates a BufferedImage that

it draws into, and then the paint method just displays whatever is in the bitmap.

This does wonders for arranging that when you obscure bits of your window the

content gets re-painted nicely!
It also makes a crude modification of the earlier Draw program so that mouse

clicks at various places in the window adjust the range of characters displayed.

/*

* Unicode.java A C Norman

*

58 CHAPTER 4. BASIC USE OF JAVA

* Display the Unicode characters as supported

* by the current browser.

*/

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

import java.awt.image.*;

public class Unicode extends JApplet

implements MouseListener

{

private boolean isFilled = false;

private int fontSize = 20; // or whatever!

private int page = 0;

private BufferedImage p =

new BufferedImage(

32*fontSize,

35*fontSize,

BufferedImage.TYPE_BYTE_BINARY);

public void init()

{

addMouseListener(this);

}

public void mousePressed(MouseEvent e)

{

if (e.getX() < 200) page++;

else page--;

if (page > 63) page = 0;

if (page < 0) page = 63;

isFilled = false;

repaint(); // force screen to re-draw

}

public void paint(Graphics g)

{

if (!isFilled) fillImage();

// Note drawImage may need repeating!!!

while (!g.drawImage(p, 0, 0, this));

}

4.1. DATA TYPES, CONSTANTS AND OPERATIONS 59

void fillImage()

{

Graphics g = p.getGraphics();

g.setColor(Color.WHITE); // background

g.fillRect(0, 0, 32*fontSize, 35*fontSize);

g.setFont(new Font("Serif",

Font.PLAIN, fontSize));

g.setColor(Color.BLACK); // text

g.drawString("page = " +

Integer.toHexString(32*32*page),

0, fontSize);

for (int y=0; y<32; y++)

{ for (int x=0; x<32; x++)

{ char c = (char)((32*page+y)*32+x);

g.drawString(String.valueOf(c),

fontSize*x,

fontSize*(y+2));

}

}

isFilled = true;

}

public void mouseReleased(MouseEvent e) {}

public void mouseClicked(MouseEvent e) {}

public void mouseEntered(MouseEvent e) {}

public void mouseExited(MouseEvent e) {}

}

/* end of Unicode.java */

The output from this program will depend on the range of fonts installed on

the computer you run it on. PWF Linux has a range of European characters, math-

ematical symbols and oddments available. While preparing these notes I ran the

code on my home Windows XP system where all sorts of fonts have accumulated

over the years, and the image included here (figure 4.2.) is from there. I also

use a program called Vmware which lets me install many “virtual” computers on

my single home one: using that I installed essentially the version of Linux used

on the PWF but told the Linux installer to include support for all available lan-

guages: by moving some files into a directory “jre/lib/fonts/fallback” I

could get results very similar to those that I get from Windows. A message I hope

you will absorb here is that Java itself provides portable support for international

and special-purpose character sets you may need to configure its runtime before

you can take full advantage of it. Also before you distribute applications relying

60 CHAPTER 4. BASIC USE OF JAVA

Figure 4.2: Unicode characters in the range 0x3000 to 0x33ff

on that you have to concern yourself with how well your customers’ operating

systems will deal with the fonts!

We have already seen string literals in our code, just written within double

quote-marks. The associated type is String. Although the use of capitals and

lower case is just a convention in Java the fact that the type is String rather

than string is a hint that this does not have exactly the same status as the types

int, char and so on. In fact String is the name of a quite complicated data-

type (in Java we will find that this is known as a class) and this class pro-

4.1. DATA TYPES, CONSTANTS AND OPERATIONS 61

vides access to a number of string conversion and manipulation functions. We

have already seen “+” can be used to give string concatenation. Java also ar-

ranges that if one argument for + is a String it will take steps to convert the

other to String format so that this concatenation can take place. You can look

up “Class java.lang.String” in the on-line documentation or a reference

manual to see that there are standard library functions for case-conversion and all

sorts of other string operations.

For now the points to observe are that

1. Strings are represented by a data-type that exports functions to find the

length of a string, concatenate strings and perform various conversions;

2. Strings are read-only, so if you want to change one you in fact make a new

string containing the adjusted text;

3. Strings are not the same as arrays9 of characters;

4. It is not necessary to memorise every single string operation that Java pro-

vides.

Java supports arrays. An array is just a block of values where one has the
ability to use an integer index to select which one is to be referenced. The types for
arrays are written with the array size in square brackets. An empty pair of square
brackets means that the size is not being specified at that point, but it will be made
definite somewhere else in the program. We saw an array declaration as early as
the Hello program where the function main was passed an array of Strings.
In this case the array will be used to pass down to the Java application any words
given on the command line after the parts that actually launch the application:

// File "Args.java"

// Display arguments from command line

public class Args

{

public static void main(String[] args)

{

for (String s : args)

System.out.println(s)

}

}

This introduces a new version of the for statement. It can be compiled and then
run by saying

9Which will be covered in the next section of these notes!

62 CHAPTER 4. BASIC USE OF JAVA

javac Args.java

java Args one two three

it prints out

one

two

three

The points to notice here are that the type of argument that main was an array
of strings, and the for loop will obey its body once for each string in that array.
An alternative and older-fashioned way of achieving the same effect would be to
find the length of the array and count, indexing into the array to extract values
explicitly:

for (int i=0; i<args.length; i++)

System.out.println(args[i])

In this case the array held Strings, but Java arrays can be declared in forms to

hold any sort of Java data. This includes having arrays of arrays, which is the Java

way of modelling multi-dimensional structures.
In Java a distinction is made between declaring a variable that can hold an

array and actually creating the array that will live there. Declaring the variable
happens just as for declaring integer or floating point variables, and you do not at
that stage specify how big the array will be:

{ int[] a;

...

has declared10 a to be ready to store an integer array (of unspecified size and
currently unknown contents), much as

{ double d;

...

says that d will subsequently be able to store double-precision floating point val-
ues. There are two ways that the actual concrete array can come into existence.
The first is to combine the declaration with an initializer that makes the array and
fills in its elements:

10The syntax that I will try to use throughout these notes has all declarations written as a

type followed by the name of the variable that is to be declared. Thus int[] is the type of

an array able to hold integers. When you declare a variable of an array type Java allows you

to put the brackets either next to the base type (as I will generally do) or after the name of the

variable that is being declared, as in int myArray[];. This latter case is perhaps useful

when you want to declare a bunch of variables at once, some scalars and some arrays, as in

int simple,row[],grid[][];.

4.1. DATA TYPES, CONSTANTS AND OPERATIONS 63

{ int[] p = {2,3,5,7,11,13,17};

...

where the values within the braces can in fact be arbitrary (integer-valued)
expressions. The second way of creating an array uses a keyword new which
is Java’s general mechanism for allocating space for things. The word new is
followed by a type that describes the structure of the item to be allocated.

{ int[] fairly_big = new int[1000];

...

In this case the array contents will be left in a default state. In fact Java is very

keen to avoid leaving anything undefined or uncertain, since it wants all programs

to execute in exactly the same way every time and on every machine, so it demands

that a fresh integer array starts off holding 0 in every element. It has analogous

rules to specify the initial value of any other field or array element that has not

had a value given more explicitly.

Note that all Java arrays use subscripts that start at 0, so an array of length

1000 will accept subscripts 0, . . . , 999. Attempts to go outside the bounds will be

trapped by the Java run-time system. Subscripts must be of type int. You may

not use long values as subscripts. If you write a char, byte or short expression

as a subscript Java will convert it to an int for you as if there had been a suitable

cast visible.
When an array is passed as an argument to a function the called function can

update the members of the array, but if it creates a whole new array by something
such as

args = new String [5];

this will replace the array wholesale within the current function but have no effect

on the calling routine. The terminology that Java uses for all this is that it will

pass a “reference” to the array as the actual argument.

The following example shows the creation of an array, code that fills in entries

in it, a slightly dodgy illustration of the fact that two-dimensional arrays can be

viewed as arrays of one-dimensional arrays and a crude demonstration of how you

might print multiple values of a single line by building up a string that maps the

entire contents of the line.

64 CHAPTER 4. BASIC USE OF JAVA

// Array1.java

// Create a 3 by 3 array, swap rows in it (!)

// and print tolerably neatly.

public class Array1

{

public static void main(String[] args)

{

int [][] a = new int[3][3]; // 3 by 3 array

int [] b; // array of length 3

for (int i=0; i<3; i++) // fill in all of a

for (int j=0; j<3; j++) a[i][j] = i+10*j;

// The next line recognises that a[i] are 1-dimensional

// arrays of length 3. It swaps two of them around!

b = a[0]; a[0] = a[2]; a[2] = b;

for (int i=0; i<3; i++) // Print each row

{ String s = ""; // Build row up here

for (int j=0; j<3; j++)

s = s + " " + a[i][j];

System.out.println(s); // Then print it

}

}

}

which prints

2 12 22

1 11 21

0 10 20

The things to notice in the above example are firstly that variables a and b are

declared with array types, but these types neither specify sizes nor imply that a

genuine array actually exists, and secondly the way in which the two-dimensional

array is dismembered. Observe also the syntax associated with new for allocating

space for the array, and the fact that nothing special had to be done at the end

to discard the space so allocated. Java will recycle memory previously used by

arrays (and indeed any other structures) once it knows that they are no longer

needed. This is of course just like the situation in ML.
We have seen a number of other types in the sample programs. As well as

String there was Graphics, Font and MouseEvent. Java 1.2 defines over 500
such non-simple types! Thus one thing you can be certain of is that I will not
discuss all of them, and neither will the follow-on Java course next year. Each of
these has (in some sense) the same status and possibilities as the programs you
have written where you start off by declaring a new class. Each of String,

4.1. DATA TYPES, CONSTANTS AND OPERATIONS 65

Graphics and so on represents a class and its implementation might well be in
Java stored in a file that starts off

public class Whatever ...

You have seen with the classes that you define for yourself that a class is a

context within which you can define a collection of functions, and so it should be

no surprise that each of the 500+ Java library classes provides a whole bunch of

associated functions (eg for String we have mentioned the valueOf operation,

and for Graphics we have used drawLine and drawString). There are thus

literally thousands of library functions available. Their organisation into classes

provides some structure to the collection, but in the end you probably have to find

out about the ones you need to use by searching through the documentation. These

notes will introduce a sampling of library classes and the functions they support

with a view to directing you towards interesting areas of Java functionality. Very

often I find that the best way to start to understand the use of a new part of the

class library is to study and then try to modify some existing code that uses it.

The Java designers suggest use of a convention where the names of ordinary

variables and functions start with a lower case letter while class-names start with

a capital. They further recommend use of words spelt in all capitals for things that

should be thought of as constants (such as PI that we used earlier). The syntax

associated with declaring something immutable will be covered later on once we

have got through the use of other important words such as public and static

which are of course still unexplained.

4.1.3 Exercises

Tickable Exercise 3

The function System.currentTimeMillis() returns a long value that is the
count of the number of milliseconds from midnight on 1st January 1970 to the
moment at which it is executed. Thus something like

long start = System.currentTimeMillis();

for (int i=0; i<13; i++)

{ System.out.println(binom(2*i, i));

}

long timeSpent = System.currentTimeMillis()-start;

System.out.println("Done in " + timeSpent +

" milliseconds");

in the middle of a program can be used to record how long it takes to run. Note

that this is the time as measured by a stop-watch (or hour glass), and will depend

66 CHAPTER 4. BASIC USE OF JAVA

quite strongly on how many other people are using the computer at the same time.

On a single-user computer it can give a tolerably reliable indication of the cost of

a computation and even on a shared machine it is better than no information at all.

1. Adapt the Binomial Coefficients program suggested in the previous set of

examples so that it reports the time it takes to get as far as displaying 24C12,

which (I think) has the value 2704156. Your submission to the assessors

should include a table of the values of 2nCn for n from 1 to 12, and the

number of milliseconds that your program took to run.

2. Remove the definition of the sub-function that you used to compute the bi-

nomial coefficients, and add to your program a line that declares and create

an array called c of size 25 by 25. Set the c[0][0] to 1. Now the first row

of the matrix holds values of 0Cr.

Now fill in subsequent rows one at a time using the rules

c[n][0] = c[n][n] = 1

c[n][r] = c[n−1][r−1]+ c[n−1][r]

so that the matrix gradually gets filled up with binomial coefficients. Keep

going until the 24th row has been filled in. Then print out the values of

c[2*i][i] for i from 0 to 12, and again measure how long this takes.

3. [From here on is optional] The above calculation can be done using a one-
dimensional array, so that at each stage in the calculation it holds just one
row of binomial coefficients, ie values of nCr for a single value of n. At each
stage by filling its values in in reverse order something like

c[i] = 1;

for (int j=i-1; j>0; j=j-1) c[j] = ...

the new values can replace the old ones in such a way that nothing is over-

written too early. The for loop shown here sets j first to the value i-1,

then to i-2, and so on all the way down to 3, 2 and finally 1. I could of

course have written j-- or --j where here I put j=j-1!

Write this version of the program using an array of length 80, and make the

array contain long values rather than just int. First arrange that on every

even row it prints the middle element from the part of the array that is in use,

so it duplicates the output printed by the previous two examples. Then make

the loop continue further and thus find (by inspection) the largest value of i

such that 2iCi can be represented exactly as a Java long. The value is less

than 40.

(End of tickable exercise)

4.1. DATA TYPES, CONSTANTS AND OPERATIONS 67

A Numerical Monster

A very fine paper called “Numeri-

cal Monsters” by Essex et al[12] ex-

plains how many calculations that

you might think were straight-

forward have extra depth when done

using finite precision computer arith-

metic. One example is the function

y = (x2 −2x+1)− (x−1)2

In ideal arithmetic y would always be

zero. If however the function is com-

puted using floating point arithmetic

as shown (and provided an over-

clever compiler does not do alge-

braic re-arrangement of the formula:

the Java compiler is well-behaved in

this respect) an interesting graph can emerge. For instance the graph shown here

was produced using a very simple Java program and plotting for x in the range 1-

3.0e-8<x<1.0+3.0e-8 and y from -1.5e-16 to +1.5e-16. Write your own version

of a program to re-create this graph, and investigate the what it shows near other

values of x. Two cases I will suggest investigating are 1.0e8<x<2.0e8, |y|<10

and 14999.99999999253<X<14999.99999999257, |y|<3.2e-8. Your challenge

is to understand exactly how the finite nature of computer arithmetic leads to the

precise patterns generated, and how these patterns would vary if details of the

arithmetic model were altered.

The Dutch National Flag

Provided that at the start of your program you have written

import java.util.*;

The code

int [] a = new int [1000];

Random r = new Random();

for (int i=0; i<1000; i++) a[i] = (byte) r.nextInt();

first makes an array of length 1000. It then creates a new random-number genera-

tor (called r), and finally calls the random number generator 1000 times to fill in

entries in the array. The cast to type byte ensures that each entry in the array will

68 CHAPTER 4. BASIC USE OF JAVA

end up in the range from −128 to +127. There will of course be duplicate values

in the array.

The task you have to achieve is to rearrange the numbers in the array so that

they fall into three bands. The first band, say all the elements from 0 to m, should

contain all the numbers x with x < −40. The second band (m+1 to n) will be for

−40 ≤ x < 40, while the final band (n+1 to 999) is for x ≥ 40. This is known as

the Dutch National Flag problem because its originator (E J Dijkstra) presented it

in terms of values that had one of the three colours that his country’s flag11 used,

rather than the numeric ranges I have suggested here.

The problem would probably be easy if you could allocate three fresh arrays

and copy each item from the original into one or the other of these, based on its

“colour”. At the end you could then copy the three chunks back into the original

array at the positions they needed to go. But this challenge involves the idea of

efficiency too, and your final solution must not use any extra arrays, and it should

ideally inspect or move each value as few times as it can. Note that just sorting the

values in the array into ascending order would satisfy the objectives that concern

where values must end up, but since the problem does not state anything at all

about any desired order of the items that fall within any of the three bands a

solution based on sorting is over-elaborate and too expensive.

It may well be useful to try your hand at the Polish Flag problem — my ency-

clopaedia shows the Polish flag as having just two stripes12. Thus the Polish Flag

problem is to rearrange the values in the original chaotic array so that all negative

ones (say) come before all positive ones, but without any further constraint on the

re-ordering apart that it should be achieved reasonably efficiently.

The Mauritian Flag seems to go Red, Blue, Yellow and then Green. . .

Matrix Operations

Set up two 5 by 5 arrays of type double[][]. Fill in the first so that13 the element

at position (i, j) has value 1/(i+ j+1.0). Fill in the other so that the the elements

on the diagonal have the value 1.0 while all other elements hold 0.0.

The program wanted now will be one that gradually turns the first matrix into

one that has just 1.0 elements down its diagonal and zeros elsewhere. The permit-

ted operations are

1. Multiply all the elements in a row by the same non-zero value;

2. Subtract a multiple of one row from another.

11Red, White and Blue in that order
12Red and White
13This form of matrix is known as a Hilbert Matrix.

4.1. DATA TYPES, CONSTANTS AND OPERATIONS 69

and whenever one of these operations is performed on the first matrix it must also

be performed on the second.

The first matrix can be made diagonal by tidying up first the first column, then

the second, then the third and so on. To tidy up column i you first multiply row i

by 1/ai,i, since this will leave14 the element on the diagonal as 1.0. Then for every

row apart from row i you subtract a suitable multiple of row i so as to make the

element in column i vanish.

Do this and display the elements of the second matrix, which should in fact

have ended up as the inverse of the original Hilbert matrix!

Encryption

The following code fragment starts with a string called key and fills out an array
k with repeated copies of the character codes from the key until k has 256 entries
in it:

String key = "My Secret Key";

int keyLength = key.length();

int [] k = new int [256];

for (int i=0; i<256; i++)

k[i] = (int)key.charAt(i % keyLength) % 256;

All the values stored in k have been reduced so as to be in the range 0 to 255.

Observe the use of functions length() and charAt() from the String class. I

have used a fixed string as the keyword here.

The repeated use of the fixed numeric constant “256” in this code is a stylistic

oddity. In some ways once the array k has been declared it might be nicer to use

k.length to talk about the number of elements it has. I took the view when

writing this that the exact size of the array is part of the core specification of the

algorithm I am implementing. . . When you write this program whatever else you

do please do not use your password as text in the program you write!

The program you have to write here may be related to an encryption method

known as RC4 that was once a trade secret of RSA15 but which was published

anonymously and presumably improperly a couple of years ago. RC4 is used

as the encryption technology in a large number of generally used packages and

although its security may not have been proved it is widely believed to be re-

spectable. It is also fast.

14For now assume please that the diagonal element was non-zero so that the division behaved

properly and did not end up yielding and IEEE infinity.
15The major American encryption and security company. You may like the view consideration

of the proper uses of such code as an exercise relating to the Professional Practise and Ethics

course.

70 CHAPTER 4. BASIC USE OF JAVA

The first part of the procedure is to create an array s of 256 integers, and ini-

tialise it. It is first set so that the value at position i is just i (i runs from 0 to 255).

Now your code should scramble this up using they key k using the following pro-

cess:

For i from 0 to 255 do

Let j be (s[i] + k[i]) reduced to 8 bits

Swap the items at positions i and j in the array s

The term “reduced to 8 bits” can be implemented by just taking the remain-

der16 when the value concerned is divided by 256.

At the end of this the array s holds a working collection of scrambled data.

This is used to generate a sequence of 8-bit numbers which can be combined

with a message to encrypt it. Starting with variables i and j both zero the next

encryption-number is obtained as follows:

Increment i modulo17 256

Set j to j + s[i], again modulo 256

Swap s[i] with s[j]

Let t be s[i] + s[j] modulo 256

The result is s[t]

The algorithm is clearly short enough to be utterly memorable! The sequence

of numbers it generates can be added to the (8-bit) character codes of a message

to give the encoded version, and if the recipient knows the key that was used then

decryption is just generating and subtracting the same sequence of values. It is

vital that a key used with this method should never be re-used, and competent

security tends to involve really careful attention to many details that do not belong

in this course18.

Code the scheme described above. Print the first dozen output values from

it for your chosen key. You may like to check with a friend to see if their im-

plementation generates the same sequence as yours when given the same key —

by the nature of this code there is not obviously going to be any other way of

characterising the correct output!

16In the next section we will also see that it can be achieved by writing something like

(s[i] + k[i]) & 0xff.
17“modulo” means just the remaindering operation.
18But which will be covered later in the CST.

4.2. OPERATORS AND EXPRESSIONS 71

4.2 Operators and expressions

The examples shown already have included uses of the usual arithmetic operators,

both as used on integers and on floating point values. Now is the time to present

a systematic list of the operators that Java provides and the way they are used

in expressions. One of the critical things in any programming language is the

syntactic priority of operators. For instance in normal usage the expression a +
b×c must be read as if it had been a+(b×c) rather than as (a+b)×c. To stress

the importance of knowing which operators group most tightly I will list things

ordered by their syntactic precedence rather than by what they do. The simple

arithmetic cases will be listed but not discussed at any great length.

++, --: We have already see use of ++ as a postfix operator that increments

a variable. The full story is that the expression ++a has the side-effect of

increasing the value of the variable a by 1 and its overall value is that in-

cremented value while a++ increments a but the value of the expression is

the original value of a. The use of -- is similar except that it subtracts one

rather than adds one to the variable mentioned. These operations can apply

to either integer or floating point variables;

+, - (unary): Unary + does not do anything but is there for completeness. Unary

- negates its (numeric) argument;

˜: The ˜ operator treats its integer operand as a binary number and negates each

bit in the representation. If you look back at the earlier table that illustrated

binary numbers you can check that ˜0 will have the same value as -1;

!: The ! operator may only be applied to a boolean operand, and it complements

the logical value concerned, so that !true is false;

(type): Casts are included here to show their precedence and to point out that

as far as syntax is concerned a cast acts just as a unary operator;

*, /, %: Multiplication, division and remaindering on any arithmetic values. The

odd case is the % operation when applied to floating point arguments. If

x % y is computed then Java finds an integer value q that is the quotient

x/y truncated towards zero, and then defines the remainder r by x = qy+ r.

If integer and floating point values both appear in the same expression the

integers are promoted to the floating type before the arithmetic is performed.

Similarly if integers of different lengths are mixed or if floats and doubles

come together the arithmetic is performed in the wider of the two types;

+, -: Both integers and floating point can be added and subtracted much as one

might expect;

72 CHAPTER 4. BASIC USE OF JAVA

+ (string): If the + operator is used in a context where at least one argument is

a string then the other argument will be converted to a string (if necessary)

and the operation then denotes string concatenation. We have seen this used

as a way of forcing a conversion from a numeric type to a string ready for

printing. Note that the concatenation step will generally involve allocating

extra memory and copying data from each of the two original strings, so

it will tend to be much more expensive that the arithmetic uses of the +

operator.

<<, >>, >>>: Consider an integer as represented in binary. Then the << operator
shifts every bit left by a given number of places, filling in at the right hand
end with zeros. Thus the program fragment:

for (int i=0; i<32; i++)

System.out.printf("%d : %d%n", i, (1 << i));

will print out numbers each of which have representations that have a single

1 bit, with this bit in successive places. The result is a table of powers of 2,

except that the penultimate line of output will display as a negative integer

and the final one will be zero! There are two right-shift operators. The

usual one, >>, treats numbers as signed values. A signed value is treated

as if they were first converted to binary numbers with an unlimited number

of bits. For positive values this amounts to sticking an infinite run of 0

digits to the left while for negative ones it involved preceding the number

with lots more 1 digits. Next the value is shifted right, and finally the value

is truncated to its proper width. The effect is that positive integers get 0

bits moved into the vacated high order positions while negative ones get 1s.

When shifting an int the shift amount will be forced to lie in the range 0

to 31, while for type long it can only be from 0 to 63. The special right

shift written as >>> shifts right but always fills vacated bits with 0. It is very

useful when an integer is being thought of not as a numeric value but as a

collection of individual bits;

<, <=, >, >=: The usual arithmetic comparisons are available, and I have al-

ready remarked that there are a few delicacies with regard to floating point

comparisons and NaNs, infinities and signed zeros;

instanceof: This will be discussed later;

==, !=: Equality and inequality tests. For the primitive types they test to see if

things have the same value. For other types (arrays and the object-types that

are introduced later on) the test determines if the things compared are “the

same object”;

4.2. OPERATORS AND EXPRESSIONS 73

&: On integer operands the & operator forms a number whose binary value has a

1-bit only where both of the inputs have a 1. For positive values, for instance

a & 0xf and a % 16 will always yield the same result. Long tradition of

languages where the “and” operator is significantly faster then division and

remainder means that many old-fashioned programmers will make what is

now maybe excessive use of this idiom. The & operator can also be applied

to boolean operand, in which case is means just “and”;

ˆ: Exclusive or. See below to compare inclusive and exclusive or;

|: Inclusive or. Note that for integer values a&˜b | b&˜a == aˆb and the

same identity holds for boolean values except that ! has to be used for the

complement/negation operation rather than ˜. Here are the truth tables for

inclusive and exclusive or:
“|” 0 1

0 0 1

1 1 1

“ˆ” 0 1

0 0 1

1 1 0

&&: In a boolean expression such as A & B if the value of A was false there is

perhaps no need to evaluate B. The simple “and” notation does not take ad-

vantage of this, but the alternate form A && B does. Apart from efficiency

this can only make a difference if evaluating the sub-expression B would

have side-effects. In general I think it is probably good style to use &&

rather than just & whenever a boolean expression is being used to control an

if or similar statement, while & is probably nicer to use when calculations

are being performed on boolean variables;

||: This is the version of the “or” operator that avoids processing its right hand

operand in cases where the left hand one shows that the final value should

be true. Its use is entirely analogous to that of &&;

?: It is sometimes nice to embed a conditional value within an expression, and

Java lets you do that using the slightly odd-looking syntax a ? b : c. This

expects a to be of type boolean, while the other two operands can have

any type provided that they are compatible. If a is true the result is the first

of these expressions, otherwise it is the second. For instance the messy-

looking expression

(a==0 ? "zero" : "non-zero")

has the value "zero" if a is zero and "non-zero" otherwise. The phrase

(a || b) could be replaced by the equivalent form (a ? true : b),

while (a && b) has the same meaning as (a ? b : false);

74 CHAPTER 4. BASIC USE OF JAVA

=: Assignment in Java is just an operator. Thus you can assign to a variable

anywhere within an expression. The value of a sub-expression that is an

assignment is just the value assigned. Thus silly things like ((a=a+a) +

(b=b-1)) are good syntax if not good sense. A more benign use of the

fact that assignments are just expressions arises in the idiom (a = b = c

= d = 0). The assignment operator associates to the right so the example

means (a = (b = (c = (d = 0)))) and thus assigns zero to all of the

four variables named;

*=, /=, %=, +=, -=, <<=, >>=, >>>=, &=, ˆ=, |=: These operators combine
assignment with one of the other operators that have been listed earlier.
They provide a short-hand notation when the same thing would otherwise
appear to the left and immediately to the right in an assignment. For instance
a = a+3 can be shortened to a += 3 The abbreviation has slightly more
real value when the assignment concerned is to some variable with a name
much longer than just a, or especially if it is into an array element, since the
short form only has to evaluate the array subscript expression once. This
can lead to a difference in meaning in cases where evaluating the subscript
has a side-effect, as in the artificial fragment

int [] a = ...;

int [] b = ...;

int p = 0, q = 1;

for (int i=0; i<10; i++)

a[p++] += b[q++];

where index variables p and q step along through the arrays a and b and it

is important that they are each incremented just once each time around the

loop.

4.2.1 Exercises

Bitwise operations on integers

Investigate, either on paper or by writing test programs, each of the following

operations. Explain what they all mean, supposing that the variables used are all

of type int:

1. ˜a + 1;

2. a++ + ++b;

3. a & (-a);

4.2. OPERATORS AND EXPRESSIONS 75

4. a & ((1<<b)-1);

5. (a>>>i) | (a<<(32-i));

6. a + (a<<2);

7. (int)(byte)a;

8. (a & 0x80000000) != 0;

9. (a++ != b++) && (a++ == b++);

10. (--a != --b) | (--a == --b);

11. (a < 0 ? -a : a).

Counting bits in a word

Write a function that counts the number of non-zero bits in the binary represen-
tation of an integer. You can first do this using a test for each bit in the style
a & (1<<n) != 0. Next see if any of the examples in the previous exercise
give you a way to identify a single bit to subtract off and count. Consider also the
expression

(c[a & 0xff] + c[(a>>8) & 0xff] +

c[(a>>16) & 0xff] + c[(a>>24) & 0xff])

for some suitable array c.

What does this do?

This exercise and the few following it introduce a few fragments of amazingly

twisted and “tricky” code. Please do not view the inclusion of these programming

techniques here as an indication that you will be examined on them or that you

are being encouraged to use such obscure constructions in your own programs.

It is more that puzzling through these examples can refine your understanding of

the interactions between the Java arithmetic operations such as + and % and the

ones that work on the binary representations of numbers, ie & and >>. In a few

circumstances the ultra-cunning bit-bashing might save time in a really critical

part of some program and so could be really important, but almost always clarity

of exposition is even more important than speed. Certainly use of these tricks will

not make your programs any shorter, in that the bulk of the comments needed to

justify and explain them will greatly exceed the length of more straight-forward

code that has the same effect!

76 CHAPTER 4. BASIC USE OF JAVA

Start off with a any positive value. Execute the following19 and discuss what
value gets left in a at the end. Hint: look at the binary representation of a to start
with.

a -= (a>>>1) & 03333333333;

a -= (a>>>1) & 03333333333;

a = ((a>>>3) + a) & 0707070707;

a = a % 63;

And this. . .

a &= 0x3f;

a = ((a * 02020202) & 0104422010) % 255;

And this. . .

c = a & -a;

r = a + c;

a = (((r ˆ a) >>> 2) / c) | r;

[In each case it will help if you look at the numbers in binary.]

Integers used to represent fractions

Consider a as a value expressed in binary but now as a positive fractional value
in the range 0 to 1. This means that there will be an implicit binary point just to
its left. Then 0xffffffff will be just a tiny bit less than 1, 0x80000000 will
stand for 1/2 and 0x40000000 for 1/4. In terms of this representation interpret
the effect of executing the following four statements one after the other.

a += a >>> 2;

a += a >>> 4;

a += a >>> 8;

a += a >>> 16;

Division and Shifts

If a is a positive integer than a/2 and a>>1 give the same result. What is the

relationship between their values if a is negative. Carry on the analysis for division

by 4, 8, 16,. . . and the corresponding right shifts.

19Discussions with Alan Mycroft caused this and some of the other curious examples here to

re-surface. For a collection of real programming oddities including some of these try searching

for “Hakmem” on the World Wide Web or find “The Hacker’s Delight”[15] in a library

4.3. CONTROL STRUCTURES 77

Some Exclusive-Or operations

What is the final effect on a and b of the sequence

a ˆ= b;

b ˆ= a;

a ˆ= b;

Sieve for primes

Create an array of type boolean and length 1000. Set all elements to true to

start with. Then set items 0 and 1 to false

Repeat the following two steps

1. Find the first true item in the array. If there are none left then exit. Print

out the index of the value you have found, and call it p.

2. Set each item in the array that is at a position that is a multiple of p to be
false, for instance as in

for (i=p; i<1000; i+=p) map[i] = false;

The numbers you have printed should be the primes up to 1000.

If you wanted to find the primes up to several million (for instance to count

them rather than to tabulate them) it would make sense to make the array represent

just the odd numbers not all numbers. It might also save significant amounts of

space to represent the array as an array on int rather than boolean and pack

information about 32 odd-numbers into each int. You might note that some

programming languages can implement boolean arrays in that way without much

user intervention — Java does not.

4.3 Control structures

4.3.1 Exercises

Ambiguous If

Consider the sample code fragment

if (a == 0)

if (b == 0) System.out.println("Both 0");

else System.out.println("Some other case");

78 CHAPTER 4. BASIC USE OF JAVA

Figure 4.3: Keep control structures simple!

4.3. CONTROL STRUCTURES 79

and wonder exactly what happens if one or other of a or b is non-zero. Write

sample programs that test the actual behaviour of the real Java compiler either to

discover how Java resolves the near-ambiguity in syntax that this example repre-

sents.

Periodic Forests of Stunted Trees

The forms explained here were investigated by J C P Miller who was a lecturer

here in the Computer Laboratory. Their study leads on into that of error correcting

codes and so is perhaps less detached from the serious technical side of computer

science than one might think.
A root-line for a forest is a periodic binary sequence. Since it is hard to draw

things that repeat indefinitely it is useful to display such sequences by showing
one or two cycles and than agreeing that the ends of display should be treated as
being joined up to make a circle. Here is a sample root-line:

. X . . X X X . . X . . X X X . . X . . X X X .

A forest grows from a root-line by the simple rule that a branch grows when and
only when exactly one cell in the row beneath it is present (this is an exclusive OR
operation). I am drawing lines upwards20 following this rule from the root-line I
showed above yields

? ?

? X X X X X X X X X X X X X X X X X X ?

? X . X . X . X . X . X . X . X . X . X ?

? X . . X X . . X X . . X X . . X X . . X ?

? . X X X . X X X . X X X . X X X . X X X . ?

? X X . X . . X . X X . X . . X . X X . X . . ?

? . X . . X X X . . X . . X X X . . X . . X X X ?

and the pattern seems to have died. In many cases after a number of rows the orig-

inal row will re-appear21. Triangular clearings appear on the way. The challenge

is to understand when a pattern will die and when it will repeat, how the vertical

repetition period relates to the original horizontal one, and how large the largest

clearings will be. Write a Java application or Applet that takes a command-line

argument or otherwise accepts information from the user in the form of a string of

X and . characters. It should then display the generated forest.

20If you print things to System.out it would probably be easier to print with growth down-

wards. If you draw things to the screen in an Applet putting it either way up is easy. Observe that I

have drawn question marks to show where the pattern depends on data beyond the initial segment

of pattern. If you can allow for the (infinite) repetition of the base-line you do not need these.
21You will see that I have only drawn a finite section of the infinite repeating base-line, and so

the forest is drawn as getting narrower as you grow it upwards. However it should be understood

to be of infinite width and so patters can re-occur exactly.

80 CHAPTER 4. BASIC USE OF JAVA

Life

1

2

3 4 5

6

78

⊙

The world consists of an infinite sheet of graph paper. Each

square may at any one time be either black or white. Ev-

ery square has eight neighbours Every so often all squares

simultaneously follow the following rules:

1. A square that is black at present remains black if it

has two or three black neighbours. Otherwise it turns

white;

2. A white square becomes black if it has exactly three

black neighbours.

These rules define a behaviour which was invented by John Conway

(who at the time was in the Mathematics department here) and which

is known as Life. One starts off with a board that has a small number

of black seed points and display the position as the generations go

by. There are many astonishingly complicated things that can happen

and people have designed starting positions that illustrate them. The

challenge here is to make the computer run the rules and display the world-state.

A useful starting configuration to try has just five black cells arranged as at the

head of this paragraph. It explodes and seethes for quite a long while before the

situation stabilises. One thing to note is that all decisions about the next generation

are expected to be taken simultaneously, so any program that updates the world

incrementally is liable to get wrong answers. A further problem is that the the

ideal playing surface for Life is infinite, while computers tend not to be. Two

resolutions to this are usually considered. One places an immutable wall of white

cells as a border around the world so that all activity is contained within them.

The other scheme often used is to use a finite playing area but considers its left

hand column to be adjacent to its right most one and its top to be adjacent to its

bottom row. This amounts (depending on how you think of it) to playing Life on

a torus or to ensuring that all initial positions are replicated in a periodic manner

across an infinite plane.

The easiest program for this will set up two boolean arrays. The first holds the

current generation, while the second will be filled in with the next. My version

of a program that does this, complete with code to set up the initial pattern that I

have suggested and to draw the board positions in an applet window is around 75

lines long. I used a 200 by 200 board and kept the outermost rows and columns

permanently blank. That means that when accessing neighbours I can read from

them without going outside my array. Clearly the first exercise here is to reproduce

something like that.

4.3. CONTROL STRUCTURES 81

There are then three follow-up challenges. The first looks back to the optional

part of the binomial coefficient tickable exercise: can you get away with just one

boolean array rather than two, possibly keeping a boolean vector to store just one

row of backup information but mostly updating the world in place. To do so would

save around half of the memory that the simple program uses.

Figure 4.4: Gosper’s Glider Gun.

The second challenge ob-

serves that representing the

playing area as arrays of type

boolean is probably wasteful.

This would be a typical appli-

cation where packing 32 cells

into an int and using lots of

bitwise and, or and shift oper-

ations to deal with them would

be common practice. It would

of course be possible to achieve

this by having nice abstract

procedures to reference the bit

at position (x,y) in an array

even though the array was be-

ing represented in a packed way. But it would perhaps give big speed savings to

look for ways to exploit the fact that bitwise operations on integers can handle 32

bits all at once and to try to use this to compute new values for several cells at the

same time.

Finally, and given that this program tends to run a little slowly, one looks at

where the time goes. Much of it will be wastage on parts of the board that are

totally white and hence where nothing is going to happen. Try to speed your code

up by avoiding as much of such wasted as is reasonable.

Eight Queens

Count the number of ways of placing eight queens on a chess board so so that

no pair are in the same row, column or diagonal as each other. This is a classical

puzzle to go in an introduction to programming and there are lots of clever tricks

that can be used. It is the sort of thing that most supervisors will have come across

before so I will not provide a fully worked through solution here, but I might

observe that the search might well be done by a recursive function that when

called at depth n will try to place a queen on row n of the chess-board.

82 CHAPTER 4. BASIC USE OF JAVA

Permutations

In Java arrays can be passed as arguments and newly created arrays can be re-

turned as results. Write a function that accepts an array of strings as its argument,

and which hands back and array whose elements are themselves arrays of strings

giving all possible permutations of the input. For instance if I use curly brackets

to denote arrays here one might like {"a", "b", "c"} to turn into {{"a", "b",

"c"}, {"a", "c", "b"} {"b", "a", "c"}, {"b", "c", "a"}, {"c", "a", "b"},

{"c", "b", "a"}}.

As with several of the other Java exercises I might suggest that you design and

test an ML version first.

4.4 Control structures Part 2

There are two aspects of syntax that I will put off until a yet later section. One if

the syntax associated with the word class that we have seen wrapped around

every program we have written. The other is the matter of the “.” that ap-

pears between or possibly within so many names, eg System.out.println and

g.drawString. A few other bits of syntax will just not be covered in this first

course, although you may find traces of them in the grammar and discussion of

them in textbooks — and possibly also in next year’s “Concurrent Systems and

Applications” course.

But I will talk through each of the important components of the syntax and

give at least one illustration of each.

4.4.1 Expression Statements

Certain sorts of Java expression can be used as a statement — all that is necessary

is to stick a semicolon on the end of it. The cases permitted are where evaluating

the expression might have a side-effect. Thus an assignment expression, a function

call or a pre- or post-increment expression can be used. As an example, consider

the statement x++; which just increments x. An example such as 1+2+3; is not

considered valid: it would calculates the value 6 and then throws it away!

4.4.2 Blocks

Several statements can be placed one after the other to make a single large state-

ment. Braces { . . .} are used around the statements to group them. In various

earlier languages the keywords begin and end were used instead of braces, but

Java prefers the version where you type in fewer key-strokes. If you see a block

4.4. CONTROL STRUCTURES PART 2 83

with semicolons in the semicolons are just parts of expression statements and

nothing special to do with the fact that there is a block there. Again some earlier

languages differed by using semicolons between statements in a block rather than

as termination of expression statements. Blocks can be nested any way you want.

You may insert extra braces to stress the grouping of any collection of statements

you feel deserves that, in much the same way that extra parentheses can always

be used to emphasis the grouping within expressions. I think there are enough

examples of blocks throughout these notes that I do not need to give a special one

here.

4.4.3 Null statements

If you insert a stray semicolon into a Java program it (mostly) does not matter
much, since a semicolon alone can be interpreted as an empty statement that does
nothing. The most striking example of the use of a null statement is in something
like

if (a > 7);

else System.out.println("Gotcha");

where the if needs a statement before its else part but no real action is needed.
If you really need such a place-holder I would suggest that the following is clearer
and flags your unusual intent more clearly.

if (a > 7) {/*NOTHING*/}

else System.out.println("Gotcha");

Better yet rearrange your code to make tests happen in a positive sense:

if (a <= 7) System.out.println("Gotcha");

4.4.4 if

It takes a little while to get used to the fact that the condition tested by if is

written in parentheses. Some people prefer a style where the statement after an

if is always written as a block, even if it is only a single statement, so that the

range that the if controls is made very explicit. This point of view has some sense

behind it, especially if the statement after the if is more than half a line long.

The control expression used by if must be of type boolean and so equality

tests are written as in a==0 and not a=022. Using a single rather than double

equals sign is a common slip.

22Which would be an assignment and would have type inti.

84 CHAPTER 4. BASIC USE OF JAVA

4.4.5 while, continue and break

A while loop executes its command repeatedly for so long as the guarding ex-
pression remains true. Its syntax is very much like that of if. Within the iterated
command you can embed a statement “break;”, and execution of that will cause
a premature exit from the loop. The command continue;23 can be useful if the
iterated command is a long block, and it causes the loop to proceed at once to its
next cycle. Both break; and continue; are very convenient at times, but it is
often good style to avoid them when reasonably convenient so that the boolean
expression at the top of the while loop represents a total statement about the cir-
cumstances in which it will loop and when it will terminate. The following sample
shows a fairly typical while loop. Look back at your Discrete Mathematics notes
for explanation of why it computes a highest common factor and to give clues to
a reason for carrying out the extra computations. You may also like to code up an
extended Euclidean algorithm as a function that calls itself (say in ML rather than
Java) and observe that use of while loops does not always lead to the shortest or
most transparent code.

int a = 72, b = 30;

int u = 1, v = 0;

while (b != 0)

{ int q = a / b;

int r = a - q*b;

a = b;

b = r;

int t = u - q*v;

u = v;

v = t;

}

// Here a is the HCF. What are u, v?

Note that break can be used to exit other loops, and it is also used with

switch statements, which will be described soon.

4.4.6 do

Sometimes the most natural way to write a loop puts the test of a termination
condition at the end of the loop rather than at the start. This circumstance is
supported by the do statement, although I find it much less useful than while. In
fact I will often express

do

23Observe that the syntax for each of these command includes a semicolon, The identifier men-

tioned in the full grammar is something I will not discuss here.

4.4. CONTROL STRUCTURES PART 2 85

{

...

} while (xxx);

by writing it instead as

while (true)

{

...

if (!xxx) break;

}

since I think that do puts the details of what the loop is about rather too far down

the page. Anyway that also gave me a chance to include an example of a break

statement for you! The issues of programming style here could give rise to a

variety of discussions. A good policy is to try rather hard to make it very clear and

obvious just when each loop you write is going to terminate, and indeed to make

it clear (in comments as necessary) why you know it will eventually terminate.

4.4.7 for

Iteration with for has been seen in several examples. What is shown in the Java

syntax is that each of the three components within the parentheses and separated

by semicolons is optional. The most extreme case is when none are present:

for (;;) { ... } means just the same as while (true) { ... }.

In for (A;B;C) the expression A is an initializer evaluated just once at the

start of the loop. B is a boolean expression and is used just as in a while statement

to determine when to terminate. Finally C gets evaluated between each cycle of the

loop, and it often increments some variable. The idiom for (i=0;i<N;i++)

executes its command N times counting from 0 to N-1. The alternative way of

writing things is for (i=1;i<=N;i++). It loops the same number of times but

is maybe slightly less commonly used. Of course with the second version the

variable i starts at 1 not 0: this typically makes it less suitable for use as an array

subscript because in Java subscripts start at 0.

4.4.8 switch, case and default

There are occasions when one wants to dispatch to many different code fragments

based on the value of some expression. This could be achieved by writing a chain

of if .. else statements, but often switch provides a much neater way of

expressing things.

The construction starts with switch (Expression). The expression given

must be of type char, byte, short or int. Note that long is not allowed. The

86 CHAPTER 4. BASIC USE OF JAVA

switch-header is followed by a block enclosed in braces, and within this block

there can be special switch labels. The usual sort reads “case Constant:” and

control arrives just after the colon if the integer value of the switch expression

agrees with the constant after case. It is often useful to specify what action

should be taken if none of the cases that have explicit coverage happen, and for

this a label “default:” can be set. Case (and default) labels do not disturb the

usual sequential execution of statements, and so unless something special is done

after one case is processed control will proceed to the next one. This is usually not

what is wanted. A break; can be used to exit from the entire switch block. Many

programmers would count it is good style to put an explicit comment in whenever

a break is not being used, to show that its omission was deliberate and not an

accident.

If no explicit default label is given but a switch is executed in such a way that

none of the cases match it just acts as if there had been a default label just before

its final close brace.

It is generally a good thing to use switch whenever you have more than

three or four options to select between, in that it tends to be much clearer and

easier to understand than length strings of nested if statements. In the following

rather silly example it is imagined that the user has provided the function show

Observe that the case labels do not have to be in any special order, and that a

single statement can be attached to several labels.

switch ((int)n)

{

case 2: show("the only even ");

// drop through

case 3: case 5: case 7:

case 11: case 13: case 17:

show("prime\n");

break;

case 4: case 9:

case 16: show("square\n");

break;

case 8: show("cube\n");

break;

default:show("dull or too large\n");

// now just drop off the end

}

4.4. CONTROL STRUCTURES PART 2 87

4.4.9 return

When a function has done all it needs to it will want to return a result. This is

achieved using the return statement. Function definitions (see later) always in-

dicate what type of result is required. They may have used the keyword void to

indicate that no result is needed. Such is the case with main. For void functions

one just writes “return;”, while in all other cases the syntax is “return Ex-

pression;”.

4.4.10 try, catch and throw, finally

Real programming languages need to be able to implement code that can recover

from errors and handle unusual cases tidily. The handling scheme in Java uses

the throw statement to raise exceptions. Throw statements specify an object

which should generally24 be of type Exception25. The effect is that control

exits from the current block or procedure and any enclosing ones, all the way

until a suitable handler is found. If no such handler is present the computation

is terminated. The system has a number of built-in exceptions it will generate.

For instance an attempt to divide by the integer 0 raises an exception of type

ArithmeticExpression. Various functions that read from files can raise ex-

ceptions to indicate that the file did not exist, the current user did not have permis-

sion to read it or an attempt was made to read data beyond its end.
Handling exceptions involves prefixing a block with the word try and adding

on the end of it one or more clauses that describe what to do in unusual cases.
A clause that starts catch (Argument) is followed by another block which gets
obeyed if the system detects an exception whose type matches that declared for the
Argument. A single try may be followed by catch handlers for several different
types of exception.

try

{ z = 1/0; } // raises an exception!

catch (ArithmeticException e) { ... }

After all catch clauses you can put the keyword finally followed by another
block. The intent here is that this block will get executed come whatever, and it
will usually be used to tidy files or data-structures that the program might other-
wise have left in a mess. A typical scheme to provide robust access to files would
go something like

<open the file for reading>

try

24I do not want to give the full and precise rules here!
25To be more precise of some type derived from Exception.

88 CHAPTER 4. BASIC USE OF JAVA

{ while (true) <read-more-from-file>

}

catch (<end-of-file-exception>)

{ // whole file read here. Good!

<success code>

}

finally

{ // must tidy up even if some failure

// other than end-of-file intruded

<close the file>

}

Later on I will give concrete examples that fill in the function calls and so on in

this framework.

Some programmers view catch and throw as neat and convenient language

features to be used wherever they fit. Certainly the file-handling example above

makes very good use of them. Others, and I tend to fit into this category, would

like to see them used rather sparingly in code since they can result in all sorts

of loops and functions terminating unexpectedly early and therefore undermine

attempts to make absolute statements about their end results.

4.4.11 assert

A statement of the form assertExpression; will evaluate the expression (which

really ought not to have any side-effects. If its value is false and if some magic

flag was supplied when the Java launcher was run then an exception is raised.

Assertions can have a second expression that can be used to give more details of

what you thought had gone wrong. It is proper style to include them at places in

your code where there is some reasonably cheap consistency check that you could

apply and when used well they are a huge aid to testing and debugging.
If you run your program normally the assertions will not be checked, and

furthermore having them in your source file will not hurt performance enough to
notice. If however you run the java command with the extra flag -ea the extra
checks will be done. Usage such as

java -ea:CheckThisClass SomeClass

will arrange to check just the assertions in the named class.

4.4.12 Variable declarations

Variable declarations can occur anywhere within a block. They are also allowed
in the first component of a for statement. The scope of a variable that is declared

4.4. CONTROL STRUCTURES PART 2 89

within a block runs from the declaration onwards until the end of the block. A
declaration made in a for statement has a scope that covers the remainder of the
for statement, including the end-test and increment expressions as well as the
iterated block. In fact the scope of a declaration appears to include the initialiser
for that variable, but if you try to use the variable there you should expect at least
a warning message. So things like

{ int x = x+5;

...

}

should not be attempted! A local consists of a type, then the name of the variable
being declared, and optionally one or more pairs of square brackets (to denote the
declaration of an array). Any initializer follows an “=” sign, and for arrays the
initializers are written in braces so that many individual values can be given so
as to fill in the whole array. A local variable declaration can be preceded by the
word final, and this marks the variable that is being declared as one that will not
subsequently change. A convention is that constants should be spelt entirely in
upper case, as have the examples PI and PLAIN that have been seen so far. Here
is an example:

final double E = 2.718281828459045235;

E = 1/E; // NOT valid because of "final"

4.4.13 Method definitions

A function definition starts with some optional qualifier words. The available
words are

public protected private static

abstract final native synchronized

and if present these can be written in any order. I will explain what they mean

later on. Next comes the type of result the function will return, which is either

an type or the special word void to indicate “no result”. Next is the name of

the function that is being declared, followed by a list of formal arguments (in

parentheses). A formal argument must be given a type, and may be preceded by

final if the body of the function will never update it. The grammar shown earlier

indicated that pairs of square brackets may be written after the formal parameter

list, but this should not be used in any new code26. If the execution of the function

can cause an exception to be raised and this exception is to be caught somewhere

then the fact must be mentioned by following the list of formal parameters by the

26It is a concession to some earlier versions of Java where it could be used for functions that

returned arrays.

90 CHAPTER 4. BASIC USE OF JAVA

keyword throws and then a list of exception types. Finally there is a block (ie

some statements within braces) that forms the body of the function that is being

defined.

For the moment you will still have to take the qualifiers public and static

on trust. They relate to the construction of the class that the whole file defines.

4.4.14 Exercises

Concerning 3n+1

Take any number n. If it is even then halve it, while if it is odd replace it with

3n+1. Repeat this process to see what happens in the long run. For various very

small integers you will find that you end up in a cycle 1 → 4 → 2 → 1 . . . but it is

not at first clear whether this is the ultimate fate when you start from an arbitrary

integer.

Write a program that generates the sequence starting from each integer from

1 to 1000. If the sequence ends at 1 record the number of steps it took to get

there. If you have taken over 10000 steps on some particular sequence then stop

and report just that value: after all maybe the sequence starting from that seed

goes on for ever, either by diverging to infinity or by finding a cycle different from

the one that includes 1. If on the way you generate an odd number larger than

(Integer.MAX VALUE-1)/3 you should also stop the calculation there since

otherwise you would suffer from integer overflow and subsequent work would be

nonsense. The constant Integer.MAX VALUE is another Java built-in constant

useful in cases such as this.

Arrange that you only print anything when a new record is broken for the

length of a sequence or when you would reach integer overflow. For each record-

breaker display the seed, the number of steps taken before 1 is reached (or the fact

that an overflow occurs) and the largest value in the sequence concerned.

Tickable Exercise 4

As you start this exercise note that ticks 1, 2, 3 and 4 are probably fairly easy. Tick

5 is going to be a somewhat larger piece of work so as soon as you have finished

this one you might like to look ahead and get started on it!
In ML a function called quicksort could be defined as

fun select ff [] = []

| select ff (a :: b) =

if (ff a) then a :: select ff b

else select ff b;

4.4. CONTROL STRUCTURES PART 2 91

fun quicksort [] = []

| quicksort (a :: b) =

quicksort (select (fn p => p < a) b) @

[a] @

quicksort (select (fn p => p >= a) b);

The idea is to use the first element of the input list as a pivot. One then selects out

first all the remaining values that are less than this pivot, and all the values that are

at least as large. Recursive calls sort the two sub-lists thus generated, and a final

and completely sorted list is obtained by concatenating the various parts that have

been collected.
The ML version is very elegant and shows some of the important ideas behind

the Quicksort algorithm. However it misses out several other things that are im-
portant in the real Quicksort method, mostly issues concerning use of memory.
In this exercise you are to implement a version of Quicksort in Java. You should
write a procedure with signature27

void quickSortInner(int [] v, int i, int j)

which will sort that part of the array v that has subscripts from i to j. It will

be up to you to decide if these limits are inclusive or exclusive. The procedure

should work by first seeing if the sub-array it has to work on is empty. If so it can

return without doing anything! Otherwise it should take the first (active) element

of the array as a pivot and rearrange28 the remaining items so that the array gets

partitioned at a point k such that the pivot has been moved to position k, all items

to the left are smaller than the pivot and all items to the right are at least as large

as it. It should do this re-arrangement without using more than a few extra simple

variables: ie it is not acceptable to create a whole fresh array and copy material

via it. quickSortInner can then call itself recursively in a way suggested by

the ML code to complete the sorting process.

You should also define a function called just quickSort that takes only one

argument — the array to be sorted. Remember that the .length selector can tell

you how large the array is.

To show that your code works you should demonstrate the following tests:

1. Create an array of length 10 and show the effect of sorting it when its initial

contents are (a) the numbers 1 to 10 starting of in the right order to begin

with, (b) 1 to 10 in exactly the opposite order to begin with, (c) ten num-

bers generated by nextInt() from the random number package (d) ten

numbers all of which are zero;

27The signature of a function is just the specification of the types of its arguments and result.
28Remember the National Flag exercise.

92 CHAPTER 4. BASIC USE OF JAVA

2. Measure the time taken to sort various length vectors of random data where

you should use lengths 16, 32, 64, . . . up until the sorting run takes several

seconds. For each test compute the quotient of the time taken and the value

N log(N) where N is the number of items being sorted.

Optional part for those who are keen: Read the Java documentation for the

Array.sort(int []) method that Java 2 provides. Write code to time it and

compare the results with the code you wrote yourself. When measuring times

work with arrays long enough that each test takes several seconds. Observe

that the fact that the Java libraries provide you with sorting methods (see also

Collections.sort) means that most Java users will never need to implement

their own Quicksort: you are doing it here as an exercise and because it is good for

Computer Scientists to understand what goes on inside libraries, since next time

around it may be their job to implement libraries for some new language.

As a further optional extension to this exercise consider the following and

adjust your code accordingly, then repeat all your tests:

1. The ML quicksort partitions items by comparing them with the value that

happened to be first in the list. In the plausible cases where the original

data is already in ascending or descending order this leads to excessive cost.

Selecting as the “pivot” the median of the first, last and middle element from

the array being sorted29 does better;

2. It is probably best to stop quickSort from recursing once it gets down to

sub-arrays of length 3 or 4. The end result is that it almost sorts the array,

but a final pass of bubble-sort can finish off the job nice and fast. Is this

born out in your code?

3. The partitioning code here can be delicate! Unless you are careful it can
escape beyond the bounds of the array, or it can get muddled about whether
the two final values in the middle of the array need exchanging or not. Sim-
ple implementations can be made safe by making all the end-conditions in
your loops composite ones rather like

while (k>=i && v[k] > pivot) ...

while if we could get away with it it should be faster to go something more
like

while (v[k] > pivot) ...

29Always supposing there are at least 3 items in the list.

4.4. CONTROL STRUCTURES PART 2 93

Investigate how well you can trim down your inner loops while retaining

code that always works! The Part IB course on Data Structures and Algo-

rithms and the textbook by Cormen et al[9] are where this level of detailed

study really belongs!

(End of tickable exercise)

Highest Common Factors

Implement code to compute Highest Common Factors using the Euclidean Algo-

rithm. Extend it to use the extended algorithms that at the end will allow you to

solve equations of the form

Au+Bv = 1

Tickable Exercise 5

The work called for here will be done in sections, and it is expected that while

working towards the tick you will be able to design, code and test each section

before moving on to the next. The idea involves creating a package of routines

that can compute with (univariate) polynomials. For the purposes of this exercise

a polynomial

(a0 +a1x+a2x2 + . . .+anxn)/b

will be represented as an instance of a the class:

class Poly

{

private String variableName;

private long [] coeffs;

private long denominator;

... constructors and methods as needed

}

where variableName holds “x”, the array called coeffs stores the coefficients

a0 to an and the long denominator holds the value shown as b above. Because

Java lets you enquire as to the length of an array it is not necessary to store the

degree n explicitly. In this representation common factors should be cancelled

out between numerator and denominator, and the highest degree coefficient an

should never be zero. In this exercise all polynomials will be in terms of the

same variable, x, so the variableName should always be set to "x" and it will

not play much of a part in any of the calculations! Step by step carry out the

following tasks, testing what you have done as best you can as you go:

94 CHAPTER 4. BASIC USE OF JAVA

Create simple polynomials: Write functions that can create the “polynomial”

that represents just a given integer, a given fraction and the simple poly-

nomial “x”;

Debug-quality printing: Write code that takes a polynomial and displays its co-
efficients. For this part of the exercise it is not at all important that the
display format you design be tidy or that it respects line-lengths. So for
instance you may generate output such as

(1*xˆ0 + 0*xˆ1 + -3*xˆ2)/2

with various unnecessary symbols in there. The object is to be able to see

your polynomials clearly enough that you can test and demonstrate what

comes next!

Special-case multiplication: Write code to multiply a polynomial by an integer,

to divide it by an integer, and to multiply it by x. Note that in the first

two cases you will need to do calculations (involving greatest common di-

visors30) to reduce the coefficients to lowest terms. In the latter case the

result will be of one higher degree than the input and so will be represented

with a coefficient vector one item longer. These routines should not alter

their input, but should create new polynomial data to represent the results;

Addition and Subtraction: Take two polynomials and create another that repre-

sents their sum (or difference). This involves more fun with ensuring that

the result is over a common denominator, and subtracting two polynomi-

als can lead to a result of lower degree if the leading terms cancel (as can

adding if the leading terms start off as similar but with opposite signs);

Multiply: If you have one polynominal of degree m and one of degree n then

their product is of degree m+n. Write code that computes it;

Differentiate: in fact differentiation of a polynomial by its variable is rather an

easy operation (and so would be integration, which you would need in an

optional extra to this exercise). If the polynomial contains an original terms

aix
i then the derivative contains just (iai)x

i−1;

Proof of pudding part 1: Let P0 = 1, P1 = x and from there on define a sequence

using the recurrence relationship

Pn = ((2n−1)xPn−1 − (n−1)Pn−2)/n

30Otherwise known as highest common factor.

4.4. CONTROL STRUCTURES PART 2 95

Using your polynomial manipulation program calculate and tabulate the val-

ues up to (and including) P12;

Proof of pudding part 2: Now instead define

Pn =
1

2nn!

dn

dxn
(x2 −1)n

(This is known as Rodrigues formula, in case you wondered, and the poly-

nomials you are computing are Legendre Polynomials)

Using this recipe compute and display values up to P12. The two sequences

of polynomials you have computed ought to match!

Testing to destruction: extend your tables until the values computed by the two

recipies for Pn are incorrect because of some internal integer overflow, and

report where your program first displays a result that is certainly incorrect;

Optional extra (a): Write code that evaluates a polynomial at an integer value of

its variable, ie at x = n. Write code that computes the (indefinite) integral of

a polynomial with respect to its variable. Combine these two to allow you

to evaluate definite integrals. Display a table showing values of

∫ 1

x=−1
Pi(x)Pj(x)

for i and j running from 0 to 5 (say);

Optional extra (b): Let y be one of the polymonials (Pn) that you have just com-

puted. Evaluate

(1− x2)y′′−2xy′ +n(n+1)y

Tabulate this for various small values of n.

Note: the examples worked with here are Legendre polynomials, and provide an

example taken from Sturm-Liouville theory. Optional extra (a) shows that they are

orthogonal over the range from −1 to +1 and this in fact makes them useful for

producing certain sorts of good numerical approximations to functions. Optional

extra (b) is showing you that these polynomials are solutions of a differential

equation: many other interesting sequences of functions satisfy recurrence for-

mulae, have orthogonality properties and are solutions to differential equations!

Abramowitz and Stegun’s book of tables[1] is probably the easiest place to sug-

gest you look to find out more.

(End of tickable exercise)

96 CHAPTER 4. BASIC USE OF JAVA

Pollard Rho integer factorisation

In previous years this was Tickable exercise 5. There are in fact a few delicacies

with regard to integer overflow (which do not greatly damage it as an exercise but

which could raise questions about it). You may still like to try it!

The explanation of this exercise is quite long, and it maybe looks messy, but I

can assure you that the code that has to be written is tolerably short and managable

once you have sorted out what needs doing.

Randomised factorisation: Implement the following algorithm that (possibly)

finds a factor of an integer that it is given:

A single trial that looks for a factor of N is performed by selecting a random

positive number R and computing S = R % N. This is a number between 0

and N − 1. If the number is 0 deem this trial a failure. Next compute the

highest common factor of S and N. If this is 1 then again the trial is deemed

a failure. However if the HCF is not 1 then it is a factor of N and because it

is also a factor of S it must be less than N. This counts as success!

The complete factorisation algorithm works by running a number of trials.

If for a number N the first
√

N trials all fail then we will pretend that N

is prime. Otherwise a factor of it has been found, and dividing this into N

gives us its co-factor. Smaller factors of each of these can then be sought

using the same technique.

Use this procedure to try to factorise the numbers 2i − 1 for i from 2 up-

wards, stopping when your program starts to take more than a second or so

to run.

The Birthday problem: Suppose we have a sequence of numbers all of which

are less than N, and these values are generated in some way such that each

number xn is some fixed function of xn−1. A concrete example would be if

xn = (x2
n−1 − 1) % N. For most N and for x0 = 2 this sequence31 is in fact

pretty unpredictable.

Any such sequence must eventually repeat a value, and once it has it nec-

essarily continues in a loop. If consecutive values behave well enough as if

they are random up to this point then the expected length of the sequence

31There is a significant delicacy here: when you compute x2
n−1 its value can be almost as large

as N2 even though the remaindering will rapidly bring it down to a smaller range. This can lead

to integer overflow and a particularly un-wanted effect is that a value you generate may end up

unexpectedly negative (when N2 is outside the valid range of integers). I suggest you mostly

ignore this here (!) and at most take an absolute value to ensure that the sequences you generate

consist of positive numbers. Also there is not much special about starting with x0 = 2 and other

randomish starting values might work just as well.

4.4. CONTROL STRUCTURES PART 2 97

before a repeat is related to the problem of how many people you have to

have in a room before you should expect to find that two of them share a

birthday. In this case the room is on a planet in a galaxy far far away, where

the length of the year is N, and the statistics suggest that we need around√
N of our aliens.

For this exercise you are to imagine one algorithm that detects a cycle and

implement a second and much better one.

The algorithm you just have to imagine guarantees to find a cycle as soon

as it arises. It allocates a big array and stores values in this array as they are

generated. As each one is generated it also checks through the ones already

seen to see if the new value has occurred before, and if so declare the loop

detected. This method is easy to visualise but it needs an array as long as

the longest potential loop, and the search means that before finding a loop

at step n it has done about n2/2 comparisons with old values. This is slow.

The second method, which you should implement, records the value of xi

each time i reaches the next power of 2 and compares newly generated val-

ues against this one stored value. It argues that if there is a loop then even-

tually the loop will be totally traversed between consecutive powers of 2,

and thus will be detected. Furthermore this will be at worst a factor of two

beyond the place where the first repeat happened.

Having coded the second loop-detection algorithms try it on sequences gen-

erated by xn = x2
n−1 − 1 mod N for various N and verify that for a reason-

able proportion of values of N and x0 a loop is found after very roughly
√

N

steps.

Pollard Rho: This builds on the previous two parts, so please do not start it until

you have completed them. But then re-work the loop detection code so that

instead of comparing each new xn with a saved value x2k using an equality

test compute the HCF of N and xn − x2k . Stop if this is not 1, ie if a factor

of N has been found. In the case when xn = x2k the method has failed: you

may either give up in that case or try starting again with a different value

for x0.

Implement this using the Java long type. If the number N is composite

it is probable (although not guaranteed) that this will find a factor of N

within around 4
√

N trials, and will thus be able to find a factor any Java

long value quite rapidly. Of course if N starts off as a prime this scheme

will never manage to find a factor of it! To test this you should probably

create numbers that are known to be composite by multiplying together two

int-sized values.

98 CHAPTER 4. BASIC USE OF JAVA

Optional: The scheme above does not of itself find a complete decomposition

of an integer into prime factors — it just splits composite numbers into

two. A complete fatorisation method needs to extend it with first a filter so

that numbers that are prime are not attacked, and secondly with recursive

calls that try to factor the two numbers that Pollard Rho split our num-

ber into. Investigate the Java BigInteger class that provides arithmetic

on long integers and which also provides a test for (probable) primality.

Re-implement your code to use BigInteger rather than long and to use

isProbablyPrime to avoid trying to factor when it is futile. Thus produce

code that can produce complete factorisations of reasonably large numbers.

How many digits long a number can you factorise in say 20 seconds?

Some of you no doubt consider yourselves to be Java experts! You may like

to arrange that the calculation x2
n−1 − 1 mod N is computed exactly even

when N is almost as large as a Java long can be, and that overflow does

not interfere. An easy way to do this is to use the Java library big integer

support, but what I would prefer here would be code expressed entirely in

terms of use of long arithmetic.

4.5 Java classes and packages

What has been described thus far should provide a foundation for understanding

the small-scale structure of Java programs. If you have understood it you are

equipped to write programs that have up to (say) half a dozen sub-functions and

that are limited to living in a single source file. So far the data that Java can work

with has been limited to the primitive types int and so on, together with arrays

of them. The time has now come to discuss the Java idea of a class. This is used

both to support the construction of user-defined data-structures and to impose an

order on programs that are large enough that they should properly be spread across

several source files. A discussion of Java classes will include an explanation of

what all the “.” characters are doing in the sample programs seen so far. All of

this counts as “Object Oriented Programming”.

One of the aspects of programming language design that has proved to be

especially important is that control of the visibility of names. This whole issue

tends to look rather frivolous — a distraction — while your programs are only a

page or two long but it makes a critical difference to big (and perhaps especially

collaborative) projects. There are several interlocking reasons to want to keep

name-spaces under control. One as so that a large chunk of code can be given

a cleanly defined interface consisting of the functionality that it makes visible to

the outside world. Everything not so exported is then deemed private to the group

who maintain that body of code, and they may change internal parts of their design

4.5. JAVA CLASSES AND PACKAGES 99

Figure 4.5: Classes and Packages make Java “modern”.

100 CHAPTER 4. BASIC USE OF JAVA

with complete confidence that this can not hurt anybody else.

A second reason for keeping name-spaces well controlled is so that different

parts of a large program are free to re-use the most obvious names for their func-

tions and variables, secure that this can not introduce unexpected clashes.

Related to both of these is the fact that when trying to understand code limits

on the visibility of names can allow you to concentrate on just the range in the

code where something is relevant.
Java controls access to names at three levels. At the finest grain it has scope

rules that are much like those of most other programming languages. If a local
variable is declared within a block that variable can only be referenced using code
textually within that block. Java understands the idea that a re-declaration of a
variable in an inner block would create a different variable with the same name,
and that within the inner block the new variable would shadow the old one, as in

int func(int a)

{

{ int a = 4, b = 5; // ????

for (int a=0; a<10; a++) b++; // ????

System.out.printf("%d %d%n", a, b);

}

return a;

}

and it views this as something that could be codified and that to a computer has
a totally logical interpretation. But that it is a potential cause of real confusion to
human programmers so it should be prohibited! Thus the above example will be
rejected by the Java compiler and all the interesting computer-science discussion
of exact rules about scope can be set aside. You may like to note, however, the
variables do not clash in any way if their scopes do not overlap, so the following
is valid:

int func(int a)

{

{ int i = 4;

for (int j=0; j<a; j++) i++;

System.out.println(a + " " + i);

}

for (int i=0; i<10; i++) a *= 2;

for (int i=0; i<a; i++) a--;

return a;

}

The scopes associated with each declaration of i are disjoint.

The other two aspects of Java name-space control are more interesting. The

important words used here are class and package.

4.5. JAVA CLASSES AND PACKAGES 101

All names of Java variables and procedures32 live in some class. In general

you have to gain access to the class before you can use its members33. A member

of the current class can be referred to just by giving its unqualified name, but in

other cases you need to have access to an object of the required class and refer to

the member using a dot “.” as a selector on it. This is what was happening in cases

such as g.drawLine where g was a variable of type Graphics and drawLine

was a member of that class. When a class is defined the user can arrange which

of its members can be referenced by other classes in this manner, so that internal

details of the class can not even be accessed using this sort of explicit naming.

The word public flags a component of a class that should be universally visible

while private marks one that should not.

Classes thus contribute in two ways to the avoidance of confusion over names.

Firstly they mean that most references to things outside the current class will

include a dot selector that indicates fairly explicitly what context the name is to be

taken from, and secondly they can arrange that some names are kept totally local

to the class within which they are used and can never be accessed from anywhere

else. It is perhaps worth reminding you at this stage of the qualifier final that

can turn a variable declaration into the definition of a constant. There are further

refinements in the control of name visibility and use that Java provides, and the

keywords protected, abstract and static relate to some of them: these will

be discussed later on.

Classes themselves have names, and so a scheme is needed to structure the

name-space that they live in. A collection of classes can be placed in a “package”.

When classes are declared only those that have been given the public attribute34

are visible outside the package. Furthermore since the idea is that any other Java

code35 can access the public classes of a package there is a somewhat curious

linkage between package names and the filing system on your computer. This

linkage is mediated by a thing called the “class path” which can list the places

that Java should search to find the compiled code if you refer to a class defined

in some package. You can expect that any reasonable default Java setup will have

your class path set up for you already so that you can access all of the standard

Java libraries and so that code in the current directory can be used. The full names

of classes generally contain dots. Various names starting with the component

java are reserved for the system, and ones starting with sun are for use by Sun

32From now on I will increasingly move towards the Java notation and call these “methods”.
33We will see later that in some cases, when the name has been declared as static, one

can refer to the item via the name of its containing class. But in the more general case it will be

necessary to have an instance of the class and access the item via that.
34Making a class public is a similar idea to making a member of that class public, but of

course we are talking now about a different level in the structure of a program.
35Ideally anywhere in the world!

102 CHAPTER 4. BASIC USE OF JAVA

Computers, who designed Java. The various further parts to package names are

intended to group packages into hierarchies. For instance every package whose

name starts with java.awt is to do with the Java Abstract Window Toolkit, which

is the part of Java that provides facilities to pop up windows on your display. The

package java.awt.event is the sub-part of this that contains classes relating

to events — we have seen an example where these could be caused by the user

clicking with the mouse but there are others. The Java documentation contains a

list of all the predefined packages that are part of the Java core, and then lets you

browse the complete set of classes defined in each. Each class of course provides

a number of variables and methods: the number of standard library methods is

huge!
Specifying full names in the package hierarchy could become very tedious, so

Java provides a user-configurable way of setting up shorthand forms of reference.
Recall that various sample programs we have seen began with a collection of
import statements

import javax.swing.*;

import java.awt.*;

import java.awt.event.*;

This adjusted Java’s name resolution scheme so that the class MouseEvent (say)

could be referred to by that short name. Without the import it would still have

been possible to write the same program but it would have been necessary to use

a fully spelt-out “java.awt.event.MouseEvent” to name the class, and that

would involve knowing exactly which of the standard parts of the Java library

MouseEvent belongs in. The “*” in the import statements show tells Java to

support short names for all the classes in the packages named. It is also possible

to put a single class name in an import statement. This could be useful if only

one member of a package was to be used and you did not want to risk confusion

with other names from that package. Some Java programmers take the view that

import with a “*” introduces risk of giving them access to classes other than ones

the know about, and so always spell their imports out fully, despite that being a

little more verbose. Note that the syntax of Java only allows the wild-card “*”

to be placed right at the end of an import where it means “all the classes in this

package”.

If you issue import statements that attach to two or more packages that define

identically named classes then Java will refuse to get muddled: it just insists that

you use fully spelt-out names for the classes that could otherwise be ambiguously

resolved. This is probably safer than a scheme where the first (or possibly the

last?) import statement took precedence.

Java comes with around 200 and huge numbers of pre-defined classes, and so

getting to know them all is a big job. You are not expected to do so especially

4.5. JAVA CLASSES AND PACKAGES 103

as future Java releases will add yet more, and it is probable that when you work

on any big Java project you may find yourself using substantial third-party class

libraries. But it does make a lot of sense for you to have a good overview of what

is available to you so that when relevant you can use existing well-tested library

code rather than starting to write something of your won.

As well as being a way of organising the name-space all Java classes count

as data-types. When something’s type is a class it is usual to refer to the thing

as an “object”. Thought of in terms of objects, a class defines a data structure

that contains fields that are the variables defined in it and happens also to be able

to contain definitions of functions that will access these fields. If the variables

were declared public then any code anywhere can access them and so there do not

really have to be any (explicit) methods defined within the class. There will in

fact always be a few implicitly defined ones that are to do with the creation and

deletion of objects.
Taking a minimal approach36 to class definition I can now set up a definition

that would let me represent binary trees where each node in the tree contains an
integer:

// Compare the ML version, which would be

// datatype Tree =

// nullTree |

// makeTree of int*Tree*Tree;

// or some such.

class BinaryTreeOfIntegers

{

public int value;

public BinaryTreeOfIntegers left;

public BinaryTreeOfIntegers right;

}

Comparison with the ML version reminds us that it is important to be able to have

some way of telling when the left and right children of such a tree do not really

exist. In ML that was achieved with an explicit alternative constructor, which I

called nullTree. In Java any variable which has a class37 as its type can either

hold a proper instance of that class (ie an object) or it can hold the special value

null. This value is provided as a keyword in Java. Ie the word null is hard-

wired into the Java language and not just some curious pre-defined variable. It

also has the odd property that the same value may be used with any sort of class

36The class I define here would work, but it misses out on exploiting a lot of structuring and

security features that classes can provide, and so is just a minimal start.
37Or array.

104 CHAPTER 4. BASIC USE OF JAVA

or array variable to set the variable to a state where it “does not hold an any object

at all”.
Once a class has been defined it will be useful to declare variables using it and

create objects to go in them. Here I will create a rather small tree using the above
class definition:

...

BinaryTreeOfIntegers a1, a2, a3;

// a1, a2, a3 are all un-initialised here, and

// Java complains if you try to compile a program

// that relies on the values of variables that

// might not have been given a value.

a1 = new BinaryTreeOfIntegers();

a2 = new BinaryTreeOfIntegers();

a3 = new BinaryTreeOfIntegers();

a1.value = 1;

a2.value = 2;

a3.value = 3;

a1.left = a2;

a1.right = a3;

// the next 2 lines are not needed in that

// null is the default value given to a field

// that would hold an object.

a2.left = a2.right = null;

a3.left = a3.right = null;

...

Note (but do not worry about, for now) the parentheses after the class name fol-

lowing new. And also observe how dreadfully clumsy all this is.

Note that Java provides default initialisers for instance variable in classes and

elements in arrays, but not for local variables within methods. The default values

used are zero for numeric fields, false for booleans, ‘\0’ for characters and null

for all references.
Anybody who is a C or C++ programmer is liable to have a question to ask at

this stage, but those who have mostly seen ML should see all this as reasonable.
You can also see “.” being used as a selector to access the components of a class
object. The C programmers can read my footnote38! Java objects are created in
much the same way as Java arrays are, using new, and there is no need to take

38In C or C++ one would distinguish rather carefully between a structure and a pointer to the

structure. And in C terms all Java class variables hold pointers. However in Java it is not really

useful to think this way since all Java operations have been designed to prevent any explicit tricks

involving pointers. Please try to think of Java objects as more in the style of ML data. In C

you the explicit visibility of the difference between a structure that is directly at hand and one

that is referred to via a pointer leads to a distinction between the use of “.” and “->” to access

4.5. JAVA CLASSES AND PACKAGES 105

any special action when you have finished with one. The Java run-time system is
expected to tidy up memory for you. However grossly excessive object creation
can either consume time or utterly run you out of memory. The first loop in the
following code does not do anything very useful with the objects it creates, and it
discards them all rather rapidly. It may be a bit inefficient. The second loop creates
a million objects and chains them all together so that none of space concerned can
be recycled. At one million you may get away with this, but if you tried to do this
a few hundred times more your computer’s memory would not be able to keep up
with the demands of the program and an exception would be raised to report this
fact.

for (int i=0; i<1000000; i++)

{ BinaryTreeOfIntegers x =

new BinaryTreeOfIntegers();

x.value = i;

// x is implicitly discarded here

}

BinaryTreeOfIntegers w;

for (int i=0; i<1000000; i++)

{ BinaryTreeOfIntegers x =

new BinaryTreeOfIntegers();

x.right = w; // chain on to w

w = x;

}

There are very few cases in Java where it would be considered good style to

define a class that only had variables defined within it39. Mostly an attempt will

be made to collect almost all of the methods that work with the class as part of

it. Very frequently the variables in the class can then be made private, and

the public methods provide a clean and abstract interface to everything. There

is something of a convention about providing and naming methods to access the

data stored in an instance of a class: methods that update variables have names

starting with set, ones that retrieve boolean values start is while others that

retrieve information start with get. Here is the previous example expanded to

follow these conventions, and adjusted so that the case of boolean variables can

be illustrated:

components. Again Java does not need this and so only has one notation, even though in some

sense it uses dot where a C programmer would naturally reach for an arrow.
39The most plausible good case I can think of is when all the variables are marked as final

so they are constants and the class is just used to encapsulate the name-space within which these

constants are defined.

106 CHAPTER 4. BASIC USE OF JAVA

// Compare the previous Java version where

// the variables were public but there were

// no methods.

class BinaryTreeOfBools

{

private boolean value;

private BinaryTreeOfBools left;

private BinaryTreeOfBools right;

public void setValue(boolean n) { value = n; }

public void setLeft(BinaryTreeOfBools t)

{ left = t; }

public void setRight(BinaryTreeOfBools t)

{ right = t; }

public boolean isValueTrue()

{ return (value==true); }

public BinaryTreeOfBools getLeft()

{ return left; }

public BinaryTreeOfBools getRight()

{ return right; }

}

For small classes this just adds way too much extra verbiage and feels silly. How-

ever for a large and compilicated class with many other methods having a regular

and predictable naming can be a real help. It also provides a way that you can

give read-only access to some variables or you can check the sanity of values

to be assigned to others, ending up with much finer-grained control over access

than even use of the public and private qualifiers give you. The term “bean”

is sometimes used for Java classes that follow this set of conventions, and some

programming tools exploit it. Because it makes small programs so much bulkier

I will not use this style in every example in these notes, but you can notice that

many of the Java library classes clearly have and you might think about it again

when you move on to writing large classes for yourself.

Here is a sample Java class that might be useful within other programs and that
illustrate methods that actually do something useful. It is a start at code that will
enable Java code to work with complex numbers. An odd-looking programming
style that it illustrates is one where to combine two complex numbers, say a and b,
one will call a method associated with one of them, passing the other as argument.
Thus the sum of the two values will be requested as a.plus(b). It is not possible
(in Java) to redefine or extend the basic “+” operator to make it “add” objects
from some new user-defined class, hence use of a method name such as add is

4.5. JAVA CLASSES AND PACKAGES 107

necessary here40.

public class Complex

{ private double x, y;

// define setX, setY, getX, getY here if you want.

public Complex(double realPart, double imagPart)

{ x = realPart;

y = imagPart;

}

public double modulus()

{ return Math.sqrt(x*x+y*y);

}

public Complex plus(Complex a)

{ return new Complex(x + a.x, y + a.y);

}

public Complex times(Complex a)

{ return new Complex(x*a.x - y*a.y,

x*a.y + y*a.x);

}

}

This would be placed in a file Complex.java and compiled using javac in the

usual way to make a file Complex.class. Because I have not put in a package

statement this class will live in a default package, and when other Java programs

run and they want a class called Complex they might manage to find this one if

its class file is still in the current directory.
The Complex class illustrates one new concept. Observe the method defini-

tion that uses the name of the class as its own name and which does not specify a
separate return type:

public Complex(double realPart, double imagPart)

{ x = realPart;

y = imagPart;

}

It has no return statement in it. A method whose name matches that of the class is

a constructor and you will typically use it with new to create fresh instances of the

class thing concerned. If you do not specify an explicit constructor function then

a default one is supplied — it has no arguments and does not leaves all variables

in their default state. It is valid to have several constructors provided that the types

40In contrast the language C++ does allow you to extend the meaning of all the operators that

are denoted by punctuation marks. Many people believe the conciseness and elegance that can be

achieved that way is more then balanced out by the potential for severe confusion.

108 CHAPTER 4. BASIC USE OF JAVA

of their arguments are different. Observe here how the methods that are members

of the class all have access to the private variables, but no code outside the class

will have.
Sometimes when referencing a variable it is useful to stress that you are talking

about one in the current instance. The keyword this always refers to the object
from which you invoked a method, and so the constructor and the plus methods
above could have been written out in a way that some would consider clearer:

public Complex(double x, double y)

{ this.x = x;

this.y = y;

}

public Complex plus(Complex a)

{ return new Complex(this.x + a.x, this.y + a.y);

}

Explicit use of this can be used to avoid mixups if the name of a formal pa-
rameter for a method matches the name of a variable in the class. Consider the
following and the muddle that would arise without the use of this, but also note
how much nicer it is to select names that avoid any hint of a clash.

public Complex plus(Complex x)

{ return new Complex(this.x + x.x, this.y + x.y);

}

4.5.1 Exercises

Complete the Complex class

The class as shown here does not support division, and does not have an equal-

ity test. If you define a method called toString() in it then will be called to

“print” the number when you use “+” to concatenate it with a string. Finish off

the Complex class adding in these and whatever other facilities you feel will be

generally useful.

Polar Complex Numbers

The Complex represents complex numbers in Cartesian form, ie as x + iy. But

the internal variables x and y that it uses are both private so nobody outside

the class can tell this! An alternative representation of complex numbers would

store a number as a pair (r,θ) where the complex value concerned had modulus r

and argument θ. In other words one would have z = reiθ. At the cost of comput-

ing a few arc-tangents and the like it is possible to create a re-worked complex

4.5. JAVA CLASSES AND PACKAGES 109

class that has exactly the same external behaviour as the original one but which

stores internal values in polar form. The constructor function and addition become

messier, multiplication becomes easier and the modulus function becomes utterly

trivial. Implement and test the polar version of the class.

Wolves and Caribou

On a certain island there live some wolves and some caribou. In year n there are

obviously wn wolves and cn caribou. What happens the next year depends. . .

• Wolves hunt, and the total number of dinners they get is proportional to

wnkn. The number of baby wolves is automatically proportional to the num-

ber of dinners their (potential) parents are able to eat over and above the

amount needed to keep the parents active. The wolf minimum feed intake

and reproductive capability may be modelled as

wn+1 = wn + k1wn(cn − k2)

• In each year the stock of caribou would increase by a factor k3 were it not

for the depredations of the wolves, since each dinner for a wolf is one less

member of the herd. Thus

cn+1 = k3cn − k1wncn

• Baby wolves eat, hunt and reproduce as from year n + 1, and there are no

losses of caribou other than as described above. In particular we do not have

to worry about over-grazing etc.

At the beginning of time the island is stocked with a herd of 100000 caribou,

and a medium-sized pack of ravening wolves. Over a number of years various

things could happen. Either wolves or caribou or both could die out, or the pop-

ulations could stabilise. For some values of the constants and initial wolf popula-

tion various of these do indeed occur. For instance if at the start there are twice as

many wolves as caribou the next year there will only be wolves left (one should

adjust the equations given so that negative populations get turned into zero ones),

and the year after that the wolves all expire of hunger.

In fact for many configurations the populations do not stabilise, but they do of-

ten get locked into stable cycles that last several years. This improbable situation

has been observed by real naturalists not only in the situation described here but

with regard to disease spread (mumps and children say) and other natural systems.

Write java code to investigate.

110 CHAPTER 4. BASIC USE OF JAVA

Packages and jar files

Make a sub-directory called (say) ex251 and put some Java source files there. Put

package ex251 at the top of the files. Now compile the code, eg saying javac

ex251/*.java. By unless you explicitly set a classpath Java looks for classes

that are in a given package by using the package name as if it described a chain of

sub-directories down from the current directory. So now set up several different

packages and create files that illustrate the use of protected and others that

fail to compile because you have not made allowance for suitable cross-package

visibility. Now look up about jar files and prove to yourself that you can take

a complete Java program (consisting of many classes) and consolidate it into a

single (jar) file that can then let anybody else run it in a simple and convenient

way.

These activities are not essential for any of the example programs that you

have to write for this year’s Java course, but starting to investigate and practise

now will put you in a good position for some of next year’s work, and particularly

the Group Project. I am also aware that this exercise is asking you to read ahead

in these notes. . .

Tickable Exercise 6

The following definition of a paint method uses the rudimentary Complex class

as shown earlier in this section. The Mandelbrot set can be drawn

by considering the sequence defined

by z0 = 0 and zn+1 = z2
n + c where

both z and c are complex numbers.

For most values of c eventually val-

ues of zn become large. If one counts

and finds the smallest n such that

|zn| > K for some suitable K then

that n will depend on the value of c

that was used. The well-known pic-

tures arise by using different colours

to display the values of n associated

with values of c = x + iy as x and

y vary. Because drawing this in-

volves a significant calculation for

every single point within the ap-

plet’s window it can be painfully

time-consuming. To arrange that the

screen looks more interesting this

4.5. JAVA CLASSES AND PACKAGES 111

code arranges to draw a crude blocky version first and then gradually refine it

into the correct high-resolution image. You may have seen some web browsers do

similar things to give better apparent responsiveness when loading and displaying

pictures from web sites! The code draws a part of the Mandelbrot set centred

around (midX, midY) and with width range, these referring to the values of the

constant c in the iteration. If the value of z has not grown large within LIMIT

steps it is supposed that it never will. The code illustrates use of the Color class.

Colours are sometimes specified in terms of the amounts of Red, Blue and Green

that go to make them up. Printers will tend to think in terms of Cyan, Magenta

and Yellow41 while in yet other circumstances one uses Hue (running through the

colours of the rainbow), Saturation (eg white through pinks up to a full-blooded

rich red) and Brightness (all colours fading to black at zero brightness, just as all

wash out to white (or grey) at zero saturation).

Insert this program in a suitable framework and investigate other areas of the

display by altering the relevant variables. You should be aware that if you increase

the screen size or LIMIT the code can become very time-consuming. Indeed it

might very well be sensible while testing to decrease the finest resolution used to

say 8 rather than 1. And because the paint method computes the whole picture

each time it is called any disturbance of the screen is liable to provoke a complete

re-calculation (at great cost). I find that the appletviewer does not exit until the

end of a call to paint() and so even quitting from it can involve an amazingly

long delay!

public void paint(Graphics g)

{ // I Paint first in crude 16*16 blocks and then

// in finer and finer tiles. This is so that

// SOMETHING appears on the screen rather rapidly.

for (int resolution=16; resolution>=1; resolution/=2)

{ double midX = -0.25, midY = 0.85; // Adjust these

double range = 0.004; // Adjust this

int screenSize = 400; // Match .html

int s2 = screenSize/2;

for (int y=0; y<screenSize; y+=resolution)

for (int x=0; x<screenSize; x+=resolution)

{ int n = 0;

int LIMIT = 250; // Maybe adjust this?

Complex z = new Complex(0.0, 0.0);

Complex c =

new Complex((range*(x-s2))/s2 + midX,

(range*(y-s2))/s2 + midY);

// Important loop follows.

41Printing inks favour analysis in terms of subtractive colours rather than additive ones.

112 CHAPTER 4. BASIC USE OF JAVA

while (n++ < LIMIT && z.modulus() < 4.0)

{ z = z.times(z); // z = z * z;

z = z.plus(c); // z = z + c;

}

// Draw in black if count overflowed

if (n >= LIMIT) g.setColor(Color.black);

// ... otherwise select a colo(u)r based on

// the Hue/Saturation/Brightness colour model.

// This gives me a nice rainbow effect. If

// your display only supports 256 (or fewer)

// colours it will not be so good.

else g.setColor(Color.getHSBColor(

// cycle HUE as n goes from 0 to 64

(float)(n % 64)/64.0f,

// vary saturation from 0.2 to 1.0 as n varies

(float)(0.6+0.4*
Math.cos((double)n/40.0)),

// leave brightness at 1.0

1.0f));

// screen coords point y downwards, so flip to

// agree with norman human conventions.

g.fillRect(x, screenSize-y, // posn

resolution, resolution); // size

}

}

}

Complete the program based on the above and test it.

Next check Graphics.getClipBounds and Rectangle.contains in the

Java documentation. Adjust the program so that when paint is called it first finds

the clip rectangle associated with the re-paint operation. This is a rectangle on the

screen such that only points within this area need to be re-displayed. Arrange

that the loop on x and y that at present re-computes the colour for every point on

the whole screen just loops round doing nothing for points outside the clipping

rectangle and so only does the expensive operations for points inside it. Try the

new version, and in particular move other windows to obscure small parts of it and

then move them away so you can see the effect of the partial re-draw operations.

Note that the above program will display best if your screen is set up to support

lots of colours. On a display with either 16-bit colour (65536 colours) or true-

colour (24 or 32 bit) and at high resolution the effect is fairly stunning. If only

256 colours are supported the shapes will remain nice and wiggly but the delicate

shading will be lost. While preparing these notes I have adjusted the program

4.5. JAVA CLASSES AND PACKAGES 113

to display a 1200 by 1200 image at best-possible resolution in 16-bit colour, and

although it takes utterly ages for the screen to refresh I think it is almost worth it!

The program that I give has a bug that you can see if you watch carefully when

it re-paints at the various different resolutions. It relates to the fact that in Java the

x-co-ordinate increases from left to right (as expected) but the y-co-ordinate is

zero at the top of the screen and largest at the bottom. Identify and correct the

behaviour that I count as a defect.

Optional: Add a BufferedImage to make the re-painting of the screen cleaner. I

might like to be able to reset the view to some standard one at the click of a mouse,

and to be able to drag with the mouse to select a sub-part of the current picture for

zooming in on. Those who are feeling keen can investigate these possibilities.

There is also quite some incentive to find ways of speeding up drawing of the

images here!

(End of tickable exercise)

Fractions

Create a class similar to the Complex one but that implements rational numbers,

is fractions. You will probably want to make the internal representation a pair of

long values rather than just int, and keep everything reduced to lowest terms by

cancelling out highest common factors.

Series for tan(x)

It may be well known that

tan(x) = x+
1

3
x3 +

2

15
x5 +

17

315
x7 +

62

2835
x9 + . . .

but fewer people are happy about being able to predict what the next few coef-

ficients in the expansion are. However if we have a computer program able to

compute with rational numbers it is in fact easy to generate as many more coeffi-

cients as are desired. The coefficients satisfy a recurrence formula

t0 = 0

t1 = 1

tn =
1

n

n−1

∑
i=0

titn−i−1

Use this to confirm the series as I have tabulated it and display the next few

terms. The result here may be derived from the fact that the derivative of tan(x)
is 1 + tan2(x), and is also related to (but rather harder than!) the discussion of

“generating functions” in the probability course.

114 CHAPTER 4. BASIC USE OF JAVA

Complex elementary functions

Perhaps you already did this when making your complete version of the complex

numbers class. . .
It might be useful to be able to construct complex numbers either by specifying

real and imaginary parts or by giving argument and modulus42. Failing any better
scheme you could distinguish between the two constructors by adding declarations

public static final int CARTESIAN = 0;

public static final int POLAR = 1;

in the Complex class and then having the constructor take an extra argument that

specifes which option is being used. It would then also make sense to provide

data access methods that make it equally easy to access the number in polar or

cartesian interpretation.

If that is done it becomes reasonably easy to support complex versions of

several of the elementary functions. Observe the identities:

√

reiθ =
√

reiθ/2

log(reiθ) = log(r)+ iθ
exp(x+ iy) = exp(x)eiy

sin(z) = (exp(iz)− exp(−iz))/2i

cos(z) = (exp(iz)+ exp(−iz))/2

pq = exp(q log(p))

The expressions for sin and cos can be inverted to find ways of writing the inverse

trigonometric functions as messy complex logarithms. And it may be seen that the

neatest way of using these formulae to implement complex-values versions of the

elementary functions really does benefit from being able to slip very comfortably

between the cartesian and polar views of the values. Implement it all.

I should observe carefully that the code you have just written is liable to be a

very long way from the last word in elementary function libraries, for the follow-

ing reasons, which are given in descending order of importance:

1. Several of the complex-valued elementary functions have branch-cuts. For

instance the square root function has a principal value which is discontinu-

ous as you cross the negative real axis, and the various inverse trig functions

will also have cuts. Your code can not automatically be assumed to imple-

ment these cuts in the way that will be considered proper by experts in the

field. Probably the most readily accessible description of which cuts are

desirable is in Common Lisp, the Language by Guy Steele[21];

42Ie by giving the polar version.

4.6. INHERITANCE 115

2. Your implementation will probably suffer from arithmetic overflow (and

hence give back answers that are infinities or NaNs) substantially before

the desired result would overflow. For instance the identity given for cos

computes an intermediate result that is twice as big as the final answer, and

hence can suffer in this way thereby returning incorrect answers;

3. In many cases the naive use of the formula given can lead to serious loss

of numerical accuracy when values of similar magnitude are subtracted one

from the other. For instance this problem would arise in the calculation of

sin(z) for z near zero;

4. Direct use of these formulae will not even give an efficient set of recipes for

the desired functions!

however the numerical analysis to address these problems is certainly beyond the

scope of this course.

Binary Trees

Start from the BinaryTreeOfIntegers class sketched above and extend it so

that as well as defining variables in the class it provides a set of methods to work

with them. The methods you introduce should arrange that any binary tree built

is always structured so that all integers stored in the left sub-tree that hangs off a

node are smaller than the integer in the node itself, while all integers in the right

tree are greater (or equal). You should provide a constructor that creates such

a tree out of all the integers in an integer array, and another function that first

counts the size of a tree, then allocates an array that big and finally copies all the

integers back into the array so that they end up in ascending order. I would fairly

strongly suggest that you design and implement the key parts of this in ML before

you move on to the Java version. Your code is an implementation of tree-sort:

you should compare it with quicksort for clarity, amount of code that has to be

written, robustness (ie are there any truly bad sorts of input it can be given) and

performance.

4.6 Inheritance

There is one more major feature of the Java class mechanism. It provides yet

further refined control over name visibility and it can often be a huge help when

organising the structure of large projects. It is called inheritance and the idea of it

is to allow the user to define new classes as variants on existing ones. When this

happens the new class starts off with all the components and methods of the one

116 CHAPTER 4. BASIC USE OF JAVA

upon which it is based, and it counts as having defined a sub-type. It can however

define extra variables and/or methods and implement more specialised versions

of some of the methods already present in its parent class. This is what has been

happening every time we have used the word extends, and so for instance every

applet we have written has defined a new class extending the library class Applet.

This library class implements all the major functionality for getting a window to

appear, and to get the visual effects we wanted all that was needed was to provide

our sub-class with its own version of a paint method.

There seem to be three interlocking reasons why inheritance is important when

large programs are to be written:

1. Class libraries can be provided in forms that implement all the generic be-

haviour of really quite complicated programs, but by making a new program

that inherits from such a class and that overrides some of its methods lots

of flexibility is left for the programmer to create a system that does exactly

what they want. Prior to languages that supported inheritance there was a

severe conflict between having libraries that contained large enough com-

ponents to give large time-savings and those that were adaptable enough to

be realistically useful;

2. Class inheritance serves a linguistic purpose in Java. If you start from a sin-

gle base class it is possible to derive several other classes from it. All these

count as specialisations of the original one, and a variable capable of hold-

ing a member of the base class can therefore automatically refer to instances

of any of the derived ones. This is how Java can support data-structures that

can have several variants. Furthermore the name-visibility rules in Java can

use the way in which inheritance groups classes into families to further re-

fine access to class members.

3. It often becomes possible to implement a set of basic classes first, and test

them, and then leave those alone (and hence stable) while deriving new

classes that add extra functionality. This both provides a respectable strat-

egy for organising system development, and means that there is a significant

chance that the basic classes that are developed will be useful in the next

project;

I will try to illustrate these three points in turn.

4.6.1 Inheritance and the standard libraries

The richest and most valuable place where this happens in the libraries relate to

applications that pop up windows. Examples given before show user code being

4.6. INHERITANCE 117

derived from a class called Applet. One of the things that has been seen about

Applet and hence any class derived from it is that the method paint has a special

status, in that it is invoked whenever the screen needs to be refreshed. The fact that

by deriving a new class you get an opportunity to write your own paint method

and that in your new class your own definition takes the place of a standard one

(which probably does nothing much!) is obviously critical. If you could not alter

the re-painting behaviour of an applet the whole structure would lose its point. If

you look at the documentation for the Applet class you will find that it is listed

as having around a couple of dozen associated methods. Each of these will define

a default behaviour for an Applet and each can be replaced43 in a derived class if

some special behaviour is needed. However these two-dozen methods are very far

from being the whole story. For instance paint is not listed among them. This is

because Applet is descended from java.awt.Panel which in turn is derived

from java.awt.Container which itself inherits from java.awt.Component

and java.lang.Object. Each of these super-classes define (often many) meth-

ods of their own. The lower-down ones sometimes replace a few of the higher

level methods with more specialised versions, but they also tend to provide lots

of new methods of their own. Thus in this case the paint method is defined as

an aspect of a Container, and is only part of Applet via inheritance. The end

effect is that something that is as easy to get started with as an Applet in fact

comes complete with perhaps hundreds of bits of pre-defined behaviour almost

any of which can be adjusted by the simple expedient of overriding some method.

Sometimes of course this arrangement whereby library facilities are structured
into hierarchies of classes means that the very simplest thing one might want to do
involves explicit construction of objects from various classes in a way that looks
less smooth. To print simple text as the output from a simple Java stand-alone
application one can invoke System.out.println. The long name is because
System is a class (its full name is java.lang.System), and out is then a vari-
able in that class. The field out has as its type PrintStream and the class
PrintStream provides a method called println. It is possible to reference the
variable out just by giving its class (without having to have a variable whose type
is that class) because it was defined as being static. The recipe as typed in by
the programmer is not too bulky but the full explanation of why it works is a bit
clumsy. “Simple” input is if anything worse. There is a static variable System.in
which is of type InputStream, and for an application to accept input from the
keyboard one needs to use it. However the class InputStream only provides the
most basic reading functions, and various derived classes are needed if flexible,
efficient and convenient reading is to occur. A suggested protocol for a single

43The fuller story is that any member of a class that has been marked as final can not be

redefined in a derived class. The use of final thus provides the designer of a class with a way

to guarantee some aspects of class behaviour even in derived classes.

118 CHAPTER 4. BASIC USE OF JAVA

integer from the standard input ends up something like

BufferedReader in =

new BufferedReader(

new InputStreamReader(System.in),

1);

int n;

try

{ n = Integer.parseInt(in.readLine());

}

catch (IOException e)

{ n = -1; }

catch (NumberFormatException e)

{ n = 0; }

System.out.println("I got: " + n + "....");

This creates an InputStreamReader out of System.in, and then builds from

that a BufferedReader where here I have indicated that a buffer size of 1 should

be used. For reading directly from the keyboard a ridiculously small buffer size

means that the program gets characters as soon as they are available. If the “, 1”

was omitted the BufferedReader would use some default buffer size and you

would have to have keyed in that many characters before anything ever happened!

The BufferedReader class then provides a readLine method, and the string

that it returns can be interpreted as an integer by the static method parseInt in

the Integer class. Both readLine and parseInt may raise exceptions if any-

thing goes wrong, and so a proper program should be prepared to handle these.

The above tends to look very heavy-handed because “real” programs will gen-

erally want to decode much more complicated input than just the single number

shown above, and will really need to put in the catch clauses so that they can

respond cleanly to erroneous input. Even the buffering control is really quite im-

portant — direct keyboard input may need to be unbuffered so that interaction

works well while input of large amounts of input from a file may be much faster

if buffering is used.
Java in fact provides another rather larger class than BufferedReader which

may be useful in many applications that want to accept free-format input. This is
the class java.io.StreamTokenizer44 which can help you read in a mixture
of numbers and words. Here is a demonstration:

import java.io.*;

44Actually I think that StreamTokenizer is very useful while you are getting started, but

although it can be customised quite substantially it is not flexible enough for most really serious

uses. In the Compiler Construction course in Part IB you may learn about a package called JLex

that is harder to set up but which provides enormously more power and flexibility.

4.6. INHERITANCE 119

...

StreamTokenizer in =

new StreamTokenizer(

new BufferedReader(

new InputStreamReader(System.in),

1));

in.eolIsSignificant(true); // see newlines

in.ordinaryChar(’/’); // ’/’ is not special

in.slashSlashComments(true); // ’//’ for comment

try

{ int type;

// The next line loops reading tokens until end of file.

while ((type = in.nextToken()) !=

StreamTokenizer.TT_EOF)

{ switch (type)

{

// There are a number of predefined "token types" in

// StreamTokenizer, so I process each of them.

case StreamTokenizer.TT_WORD:

System.out.println("word " + in.sval);

// If the user says "quit" then do so. NB "break" only

// exits the switch statement here.

if (in.sval.equalsIgnoreCase("quit"))

break;

continue;

// in.sval and in.nval get set when string or numeric

// tokens are parsed and contain the value.

case StreamTokenizer.TT_NUMBER:

System.out.println("number " + in.nval);

continue;

// the method lineno() tells us which line we are on.

case StreamTokenizer.TT_EOL:

System.out.println("start of line " +

in.lineno());

continue;

// quotes and doublequotes contain strings.

case ’\’’: // drop through

case ’\"’:

System.out.println("string " + in.sval);

continue;

// Other characters end up here. Eg +, - etc.

default:

120 CHAPTER 4. BASIC USE OF JAVA

System.out.println("sym " + (char)type);

continue;

}

break; // here if "quit" typed in

}

}

catch (IOException e)

{ System.out.println("IO exception");

}

The level of complexity here seems much more reasonable! The initial code that
sets up a StreamTokenizer is not very different from that which set up the
simpler buffered stream before, and is clearly a small overhead to pay to be able
to have Java split your input up into words and numbers. The StreamTokenizer
provides methods that allow you to customise its behaviour so that it can recognise
one of several possible styles of comments and accept various string delimiters.
The calls

in.eolIsSignificant(true); // see newlines

in.ordinaryChar(’/’); // ’/’ is not special

in.slashSlashComments(true); // ’//’ for comment

illustrate a little of this. The first call tells the tokenizer that newlines should

be returned to the caller. By default they are counted as whitespace and so not

passed back. The second call makes a single / into an ordinary character, where

by default it introduces a comment if followed by a second / or a *. The final line

enables recognition of comments that are started by //. As always you need to

browse the full documentation to discover what all the other options are!

Two lessons emerge. The first is that the bigger and more powerful classes

in the Java libraries may really save you time if you find out how to use them,

while direct use of very low level facilities may end up feeling pretty clumsy.

The other is that these high level facilities are often very flexible, but if you need

some feature that they do not support you may have to drop down a level. For

instance StreamTokenizer does not know how to handle numbers expressed in

hexadecimal or octal, and it always reads numbers in type double which is not

good enough if what you needed was a long value.

4.6.2 Name-spaces and classes

When you derive one class from another it is sometimes desirable if the methods

and fields of the base class are visible in the derived one, but in other cases it may

not be. This aspect of name visibility needs to be considered in conjunction with

the consequences of classes falling into different packages. Java confronts all this

by defining four levels of name visibility within classes:

4.6. INHERITANCE 121

Figure 4.6: Classes and inheritance are a sort of magic.

122 CHAPTER 4. BASIC USE OF JAVA

private: is the most restrictive one. A method or variable that has been de-

clared as private can be referenced from within the class in which it is

defined, but not from anywhere else. In particular code that is in another

class can not see it regardless of whether the other class is in the same pack-

age as or was derived from the original one;

package: relaxes things so that code in any class that is in the same package can

reference a value. This is the default arrangement, and is indicated by not

using any of the other visibility qualifiers. Note that the keyword package

is used at the head of a file to specify which package that class will reside

in, and it is not valid in method or variable declarations;

protected: When a name is declared as protected it becomes visible in

derived classes even if they are in other packages. Because during this first

course you will probably not be creating new packages yourself this case

will mostly be relevant where a library class has some protectedmembers

and you derive a few class from it. Your class will probably be in the default

package but despite that you will be able to access the members involved;

public: is the final case, and it makes names generally available regardless of

packages and inheritance.

It seems tidy to document the other possible qualifiers for declarations here,

even though they are not concerned with name visibility. Indeed their conse-

quences are rather mixed, and since this is a first Java course it is not essential to

be fully comfortable with them all.

final: When a variable is declared final nobody will be allowed to assign

a new value to it. When a method is final then it can not be overridden

in any derived class. In both cases the effect is to make the definition in its

visible form the one that can be relied upon everywhere else;

static: The default situation for items defined within classes is that the items
only come into existence when an object of the class-type is created. This
makes obvious sense for data fields. For instance after the declaration

class IntList

{ public int head;

public IntList tail;

}

it is clear that the only context in which the head and tail fields can be used
is in association with an object of type IntList as in

4.6. INHERITANCE 123

int sum(IntList x)

{ int r = 0;

while (x != null)

{ r += x.head;

x = x.tail;

}

}

For consistency the same access rule is then applied to member functions
(ie methods) in a class. If however an item in a class has been declared
static it is as if a single globally allocated instance of the class gets cre-
ated automatically, and the field can then be referred to relative to just the
class name. For instance (a nonsense code fragment!)

class MyConsts

{ static final double ZETA2 =

1.6449340668482264365;

static final double CATALAN =

0.91596559417721901505;

static int square(int x)

{ return x*x; }

}

...

double a = MyConsts.CATALAN -

Myconsts.ZETA2 +

(double)MyConsts.square(1729);

...

abstract: Sometimes it is useful to define a base class not because it is useful
as such, but because the various other classes that get derived from it might
be. Consider the ML declaration

datatype option = A of int | B of double;

One way of producing a Java equivalent would be to start by defining a
rather vacuous class called Option and then deriving from it two new
classes one to correspond to each of the two cases in the ML version:

abstract class Option

{}

class OptionA extends Option

{ int a;

}

124 CHAPTER 4. BASIC USE OF JAVA

class OptionB extends Option

{ double d;

}

The base class here only exists to be extended, and it would be silly to create
an object that was of that type45. The qualifier abstract prevents anybody
from creating objects of the base class. It marks things that must be inherited
from before meaningful use can be made of them. In cases such as this it is
often useful to discriminate as to which derived class a particular instance
belongs to. The instanceof operator can be used to do this. Again my
illustrative code is artificial:

Option x = new OptionA(); // or maybe OptionB?

...

if (x instanceof OptionB) ...

else ...

It is very often neater and easier to define different overridings of a com-

mon (abstract) method in the two derived classes so that the correct be-

haviour is achieved for each. If that is done46 the if statement and use of

instanceof could be replaced by a simple call to the method concerned. It

is of course not essential to make a base class in such examples abstract,

but doing so prevents any possible embarrassment if some code created an

instance of it in its raw and useless form, so it is generally considered to be

good style.

native: If a method is defined as native then Java somehow expects there to

be an implementation of it that was coded in some language other than Java.

This can be used by system builders to interface Java code down to lower

level and perhaps machine-specific system calls, but will not be discussed

further in these notes.

synchronized: related to Java code where several threads of computation may

be active at once. Although the very basic aspects of this will be covered

in this course a proper treatment needs to wait until you have had a Part IB

course on concurrent systems.

interface: The keyword interface is not a modifier for use in class defini-

tions but a keyword whose use is very much like that of class. An interface

45Of course objects of type OptionA and OptionB are also of type Option, so what I

mean is it would be silly to go new Option().
46A similar stylistic issue arises in ML where user of pattern-matching in function definitions

can often reduce the number of explicit if statements that have to be written.

4.6. INHERITANCE 125

can be declared much as an abstract class is. Classes can be defined to ex-

tend other classes, but a restriction that Java applies is that a new class can

only be an extension of a single parent class. Interfaces provide an approx-

imation to being able to extend several parent classes — a new class can

specify that it implements one or more interfaces. When a class indicates

that it will implement an interface it has to contain (concrete) definitions of

all the (abstract) methods that the interface specifies.

At (very) long last we have covered all the magic that arose in the initial

Hello.java program and can see what each keyword present there was indi-

cating.

4.6.3 Program development with classes

In Java, as in other Object Oriented languages, the whole shape of a large pro-

gram needs to be designed in terms of terms of the packages and classes that will

be built. It is worth putting particularly careful thought into the way in which

hierarchies of classes will be derived from one another via inheritance.

There are two application areas that were pioneers in illustrating the benefits

and strengths of object oriented programming (which is what this is). It can thus

be worthwhile considering examples of these as some of the earliest ones you

work with when getting used to the idiom. The first application area was that

of simulation47, while the other was graphics and especially the display of geo-

metric figures in windows. The following example, which is taken from Java in

a Nutshell and shows how use of several classes rather than just one may allow

the programmer to keep distinct aspects of their task separate. But doing this the

size of unit that has to be debugged is reduced, and the possibility of re-using

parts of the code later on in another project is increased. The example supposes

that a graphical design and modelling package is being written. Within it it will

keep data-structures that represent circles, squares and other shapes. For much of

its time it will work on these busily computing their areas, their circumferences,

whether they intersect and similar properties. It may also adjust their sizes and

positions. As well as performing all these calculations the complete package will

also have a user interface that can draw the objects. There will be options to con-

trol the colour of each individual circle (and so on) as well as to determine whether

the items are drawn just as outline figures or as filled-in shapes.

Without use of inheritance and thus without serious use of the Java class mech-

anism the code would probably have to consist of a single class, say called Shape,

which would contain a master variable indicating what sort of shape was involved,

47Indeed the way that object-oriented C++ developed from the simpler language C was initially

specifically for use in this area.

126 CHAPTER 4. BASIC USE OF JAVA

Figure 4.7: See also the “Software Engineering” courses.

4.6. INHERITANCE 127

then other variables that could be used to specify the exact parameters of that

shape (eg its radius if it was a circle). The method functions such as area would

need to dispatch on the type of the figure and do different calculations in each

case. Further code would arrange to be able to draw pictures to represent the data.

All the geometric and graphical parts of the code would be in the same class and

thus the same source file — something which would not cause trouble in tiny cases

but would become clumsy for a fully elaborated version.
With inheritance it would be natural to start with a basic class (again I will call

it Shape) which will probably be abstract. Its purpose is to allow the program
to declare variable of type Shape and then store circles, squares, stars and all
other possible sorts of shape in that single sort of variable. The methods declared
for Shape can be given as just declarations, rather than as full definitions:

public abstract class Shape

{

public abstract double area();

public abstract double circumference();

}

which makes these methods available in any object of class Shape but expects

that concrete variants on the class will provide the real implementations.
For each sub-class of Shape a new class could then be derived:

class Circle extends Shape

{

protected double radius;

public Circle() { radius = 1.0; }

public area() { return Math.PI*radius*radius; }

public circumference()

{ return 2.0*Maths.PI*radius; }

public double getRadius() { return radius; }

}

Note that this can introduce new public members that are not relevant for general

Shape quantities, but which do make sense when you know you have a Circle.

Next an interface would be set up, defining the methods relevant for draw-

ing48 things on the screen:

48Java is an American language, and so the character of being Red, White or Blue is Color

rather than Colour. Given that the library uses this spelling it seems best to swallow nationalistic

pride and adopt it elsewhere in the code. . .

128 CHAPTER 4. BASIC USE OF JAVA

public interface Drawable

{

public void setColor(Color c);

public void draw(Graphics g);

// etc etc.

}

Now it is reasonable to derive a new class for a version of each sort of shape but
in a form that supports the drawing operations:

class DrawableCircle extends Circle

implements Drawable

{

Color c;

public void setColor(Color c)

{ this.c = c; }

public void draw(Graphics g)

{ ... // whatever, maybe

g.drawOval(...);

}

// etc etc.

}

It is now possible to use the drawing methods as well as the data manipulation

methods in one of these ultimate data-structures.
Often when producing a derived class and overriding a method the newly ex-

tended method needs to use the corresponding operation from its parent class. For
instance if a class defines a method that is used to initialise its variables then a
derived class may add extra variables that need initial values too, but it would be
clumsy to insist that it also had to repeat all the code to setup the variables in the
base class. And indeed if some of those were private or protected it might
not be able to. The solution is hidden in the keyword super. This is a bit like
this in that it always refers to the current object, but it views it as a member of
the immediate parent class. Thus code like

class SubClass extends MyClass

{ private int variable;

public void init()

{ super.init(); // init as a MyClass

variable = -1; // finish off as SubClass

}

}

and the word super is only of relevance when extending a class and overriding

methods. In the case of some library classes and methods the documentation will

4.7. GENERICS 129

explain to you that you must use it, see for instance the method paint in the class

Container.

4.7 Generics

The material here is now for Java 1.5 and I expect my coverage of it to grow over

the next year or so. This year I will do hardly more than just mention it and let

Part IbB coverage consider filling in the gaps. This seems especially reasonable

since textbooks that catch up with this are still somewhat rare.

In ML you got used to having types that were polymorphic. For instance a

sort function that took a predicate and a list might have had type

(α ∗α → bool)∗αlist → αlist

to indicate that the elements of the input and output lists had the same type and

the ordering predicate was compatible with that. A particular feature of ML to

recall is the availability of parameterised types such as αlist. In Java instead of

saying “type” we will say “class”, and instead of saying “polymorphic” we say

“generic”. A generic class is established by putting type variables within angle

brackets. You can then use the type variable within the class as if it were a regular

type name: small

class MyClass<E>

{

E myMethod(E arg1, int arg2)

{ MyClass<String> newvar = ...

...

}

}

With your ML experience of polymorphism you can now probable see at once

how to use this capability to write implementations of various generic data struc-

tures (trees, lists and the like) and provide useful functions that traverse, search or

sort them. In fact that Java libraries have done a great deal of that in their so-called

Collection classes.
In ML polymorphism is all-or-nothing. If you have a type-variable α it can

stand for absolutely any ML type. To improve security you may sometimes like
to have a way of expressing more limited flexibility (eg generic over all sorts of
numbers, but not over non-numeric data). Java provides a capability using a type
wildcard written as question mark, and can limit the range of the wildcard using
notation like

130 CHAPTER 4. BASIC USE OF JAVA

public void sum(List<? extends Number> arg)

{ for (n:arg)

{ ... }

}

Here the sum method takes an argument that is some sort of List49 but it

insists that the polymorphism that List provides has been used in a way that

means you know that all the objects in the list are some subclass on Number.

You will use generics every time you use the Java Collection Classes. You can

use it in your own code too. There is a fair amount more that I could say about

exactly how it interacts with the type-hierarchy that class inheritance provides and

when a generic class is a sub-class of another, but I believe that the details there

do not belong in a first Java course!

4.7.1 Exercises

Objects everywhere

The Java libraries make extensive use of classes in hierarchies (and also a more

modest number of interfaces). The arrangement in the basic set of classes is that

everything is ultimately descended from a base class called Object. The most

immediate consequence is that an object of any class from the basic libraries may

be stored in a variable of type Object. It is exactly as if whenever you define

a new class and do not give an explicit extends clause as part of its definition

Java just sticks in “extends Object” for you. Of course when you extend some

other class it in turn will somehow have Object as an ancestor-class so this way

as previously stated every instance of any class is an Object.

A few basic methods are defined for Object, of which perhaps the most inter-

esting at present is getClass which returns an thing from the class Class. If x is

any Object then x.getClass().getName() is a string that is the name of the

class of x! The general parts of the Java libraries that allow you to investigate the

classes that Objects belong to and then retrieve lists of the variables and methods

that they provide are referred to as Reflection: as it were a Java program can look

at itself as if in a mirror.

Check the documentation and write Java code that accepts an Object and

prints out as detailed and as readable description of it as you reasonably can.

Note that Object underpins the polymorphism of Java generics, but now that

generics are available programmers will use Object directly much less than they

used to.

49A Collection class that does just what you expect!

4.7. GENERICS 131

Primitive is second class?

The ability to treat things as “Objects” does not (directly) extend to the Java prim-

itive types. To work around that the libraries contain classes with names that

are rather like those of the primitive types except that they are capitalised. Ie

Boolean, Character, Byte, Short, Integer, Long, Float and Double. As

of the most recent revision of Java you will find that the compiler arranges to con-

vert between int and Integer (and the other primitive types and their associated

wrapper classes) when it believes that that will help you. The conversion naturally

involves some run-time cost so it is perhaps advisable to be aware when it hap-

pens. The sort of circumstance where it is especially convenient that this happens

is when you want to store a primitive object (eg an integer, floating point number

or character) in a Hashmap or a Vector (or indeed any of the collection classes).

It was then natural for the Java designers to set methods associated with these

to implement a wide range of basic conversions and tests on the values, as in

Integer.doubleValue and Double.isNaN (and many more).

The numeric types the classes Integer etc do not inherit directly from Object

but via a class called Number Eg

Number a, b;

a = 2; // new Integer(2);

b = 11.7; // new Double(11.7);

can be written as shown, but behaves as if the constructors in the comments have

been used. If the Number objects are used in a context where primitive num-

bers are needed (eg you try to perform arithmetic using them) the values will be

unpackaged for you.

Write a class that defines lists of Numbers, with suitable set of facilities for

constructing such lists and a method sum that can add up the values in a list return-

ing the result as a double. You may need to use “x instanceof Integer” to

sort out which flavour of number is present in some particular node.

Some text output using Objects

Since Object is an almost universal type it can be used to pass arbitrary data
to a function. This is in fact what happens with printf, but one extra thing
happens there. If a method is declared with three dots after the type at the end of
its argument list, as in

PrintStream printf(String format, Object... args)

{ // whatever definition you need

}

132 CHAPTER 4. BASIC USE OF JAVA

indicates that the final argument to printf will actually be passed as an array of

Object values. But the calls to it will just appear to permit a variable number

of arguments, and each argument will be converted to (if a primitive type) or

interpreted as (if a class type) Object.
While this scheme can be used in your own code to support variable numbers

of arguments, and it can also be used with more restrictive types than Object it
will almost always count as poor style since it can easily reduce type-safety and
cause confusion if you mix it with method overloading. But where it is useful it
really helps make code concise. Without it instead of writing

int i=1, j=2;

System.out.printf("%d, %d", i, j);

you would need to wrap i and j up in the type Integer explicitly, and create an
array to pass the multiple arguments explicitly.

int i=1, j=2;

myOwnMethod("%d, %d",

new Object [] {new Integer(i), new Integer(j)});

But note very well that within the code that implements things such as printf

everything has to work understanding that the concise calls are in fact mapped by

the java compiler onto the clumsy looking code that packaged up primitive types

and makes an array.

Now seems a good time to provide a summary of more of the formatting op-

tions available with printf, and also to note that the method String.format

does exactly the same job of layout but returns a formatted string rather than doing

any direct printing. We have already seen "%d" for laying out integers, and know

that "%n" generates a newline.

Within a format string the character "%" introduces a format specifier. After

the percent sign a number of optional elements can appear:

• An argument index followed by a dollar sign ($). Without one of these the

values to be converted are taken one at a time from the arguments provided.

An index such as (2$) tells the formatter to use the second argument now,

even if that is out of order. Often you may want to display the same data

several times, eg in different formats. In that case (<) is very useful: it tells

the system to re-use the argument most recently dealt with;

• Some flag characters. Just what is valid here will depend on just what sort

of layout is being performed, but various punctuation marks as flags can, for

instance, force left-justification of text within a field (-), ensure that num-

bers are always displayed with an explicit sign (+), include leading zeros

(0) or be more fussy about the actual types of arguments (#). You need to

check fine details in the documentation when you use flags!

4.7. GENERICS 133

• a field-width, written as an unsigned non-zero integer. You should expect

that if this is specified that the output from the conversion will have exactly

that number of characters;

• A dot followed by a integer precision. Eg (.4). For some conversions this

sets an upper limit on the number of characters to be generated. For floating

point conversions it controls either significant figures of the number of digits

after the decimal point.

• (and finally!) a character (or in some cases a pair of characters) that in-

dicated just what sort of conversion is to be performed. Perhaps the more

important cases are the letters s, each of which is discussed briefly below!

The full set of format letters and options can be found in the online documen-

tation, but key cases are

s, S: This takes any value at all and tried to convert it] to a string. If the argu-

ment implements the Formattable interface then its formatTo method is

used to do the conversion, otherwise its smalltoString method is used.

When you define a class of your own you may often wish to override or

define one or both of these methods so that you can easily print instances

of your class. Many of the Java library classes implement these methods in

ways that at least try to be helpful. If you write a capital S the material that

is displayed is forced into upper case. Similar effects apple for other use of

upper case format letters;

d: This is the case most often seen in these notes so far, and prints an integer. But

you can also display BigInteger values with this (and the x) format;

x, X: Integers can be displayed in hexadecimal rather than normal decimal no-

tation this way;

c: character

e, f, g, E, F, G: Floating point and their display involve lots of compli-

cation! The “e” formats always use scientific notation with an explicit ex-

ponent. The “f” formats use the specified precision as the number of digits

to display after the decimal point (eg it is a good thing to use for printing

pounds and pence with "%.2f"), while “g” tries to select between those

two formats to select one that will be natural and will take up as little space

as possible.

%: If you want to print a percent sign you will need to write two in a row!

134 CHAPTER 4. BASIC USE OF JAVA

n: Unix and Windows have different ideas about what constitutes a “newline”.

The format code %n makes allowance for that for you.

tx: Java provides an amazingly rich range of ways of formatting times and dates.

YOu can use these formats when printing objects of type Long, Calendar

or Date. I think there is too much to list here, but a very few of the options

available are

tY year displayed as 4 digits, eg “2005”;

tA full name of day of the week, eg “Monday”;

TA as above, but upper case: “MONDAY”;

ta short name of day: “Mon”;

tM minute within the hour, as 2 digits;

tm number of the month as 2 digits, counting January as number 1;

tT time formatted for the 24-hour clock as "%tH:%tM:%tS";

tD date formatted as "%tm/%td/%ty".

A bigger exercise

There are twelve shapes that can be made by joining five squares together by their

edges to get a connected unit. It is possible to pack these shapes (the pentominoes)

into a six by ten50 rectangle in a number of ways. Here is one such packing, which

will also serve to show you the shapes of all the pieces:

50also into a five by twelve or three by twenty.

4.7. GENERICS 135

The object of this exercise is to find other solutions to the puzzle.
The suggested strategy is to represent the 10 by 6 board using 60 of the 64 bits

in a long. You can them treat these as if they are arranged as a rectangular array,
and then a single long value can represent a possible position of a piece. In this
representation the twelve pieces can be described by the array:

final long [] rawPieces =

{ 0x000001f, 0x0100407, 0x000040f, 0x0300403,

0x0401c01, 0x2008007, 0x0201c02, 0x0000c07,

0x0301808, 0x0000c0e, 0x000100f, 0x0301802

};

where the values look pretty ugly but are at least all in quite a small table. A
bulkier but perhaps cleaner way to set up the initial table of shapes would be to
use a function such as:

long piece(String line1, String line2, String line3)

{ return (row(line1) << 2*boardWidth) |

(row(line2) << boardWidth) |

row(line3);

}

long row(String line)

{ long r;

for (int i=0; i<line.length(); i++)

{ r <<= 1;

if (line.charAt(i) == ’X’) r |= 1;

}

}

...

piece("X ",

"XXX",

" X ");

The init method for the applet should start by setting up a table first of all

the twelve pieces normalised so that they are down in one corner of the board,

and then a larger table showing each piece in every location on the board that it

could possibly be. Doing this will involve writing code that reflects and rotates

pieces — not especially nice when using bits packed into a long — and which

avoids setting up entries that are redundant because of symmetry. The code that is

involved in getting this far is quite messy enough to keep you busy for a while.

136 CHAPTER 4. BASIC USE OF JAVA

The overall structure of the code that searches for solutions might then be

// search(i) looks for ways of placing piece

// i on the board. The array entry maps[i][j]

// is a bitmap showing the j-th place that

// piece i could bit, and the variable "board"

// shows which parts of the board have already

// been filled. There are 12 pieces, known as

// 0 to 11.

void search(int i, long board)

{ if (i == 12)

{ // Here a solution has been found

... record it somehow ...

return;

}

for (int trial=0; trial<maps[i].length; trial++)

{ if ((maps[i][trial] & board) == 0)

{ // no overlap with existing pieces

// so put this in and next try to

// fit in piece i+1.

search(i+1, board | maps[i][trial]);

}

}

}

The first challenge would be just to count the solutions, and so the place in

the above which is incomplete could be replaced by a single statement that in-

cremented a variable. But since it is easy to use fillRect to draw filled-in

rectangles in Java it would seen natural to try to draw some of the solutions and

that would mean doing something distinctly harder.

The search function I have sketched tries the twelve pieces one after each

other, and at each stage considers each piece at ever position on the board where it

would still fit. A different search strategy would be to scan the board at each stage

and find the first vacant square. The program would then identify and try every

piece that could be used to fill in that square. I believe that this second search

strategy is rather closer to the one most people would use than my original one

was.

A curve to plot

Use Java to plot a picture of the following curve as t varies from 0 to 2π:

x = cos(t)(1+ cos(40t))

y = sin(t)+ cos(t)sin(40t)

4.7. GENERICS 137

Find a copy of A Book of Curves, E. H. Lockwood, Cambridge 1963, and in a

similar style re-create variants on as many of the pictures as you can.

Reading hexadecimal numbers

We have seen various ways of decoding numeric input, eg Integer.parseInt

and the whole set of joys associated with StreamTokenizer. You can note from

the full documentation that there is a two-argument version of parseInt that

allows you to specify what radix the input string was supposed to be in. You

may also like to check details of the class smallScanner which has a method

nextInt that can also accept an argument indicating what radix to read in.

Now imagine that these facilities did not exist, or that for some strange reason

you could not use them. Implement your own functions that can be given strings

as arguments and which will make it possible to convert the strings into int and

long values, allowing for the possibility of octal or hexadecimal specifications.

Displaying floating point numbers

In versions of Java prior to 1.5/5.0 the functionality of printf was not available.

This exercise is to re-create some of it thereby getting a chance to feel what work

is involved in making worthwhile extensions to the existing libraries.

The method Double.toString allows you to generate a printable represen-

tation of a floating point number. However compared to the floating point layout

flexibility available in many other languages it seems pathetically simple-minded.

A typical programming language will provide for three ways of printing floating

point values:

F format: here numbers are written as illustrated in the following examples

-1.000

1234567890000000000.0

0.000000005656

and even if the values are very large or very small their magnitude is indi-

cated by having suitable numbers of leading or trailing zeros. It is typically

possible to specify how many digits will be printed following the decimal

point, and to indicate the width that the whole number will be padded to

with either leading or trailing blanks.

E format: For very large or small numbers it may be convenient to use scientific
notation. So with E format an explicit exponent will always be displayed:

138 CHAPTER 4. BASIC USE OF JAVA

-1.0e000

1.234568E018

5.656000e-009

Observe that there is always exactly one digit before the decimal point

(sometimes a scaling option is provided to allow the user to specify a differ-

ent number of digits before the point), and the exponent is always present

and probably always displayed in a way where the largest possible exponent

value could be fitted in. A “precision” specifier can indicate how many sig-

nificant digits are to be shown, and the number will be padded with zeros

or rounded to meet that requirement. Numbers close to 1.0 tend to look a

bit ugly this way! Again it is useful to be able to place the number in a

fixed-width field, either right or left-justified.

G format: Large numbers are best shown in E format while modest size ones

do best in F. So G is a composite scheme that looks at the value of a num-

ber and decides which of the other two formats would lead to the most

compact representation, and it then uses that. It is roughly what Java’s

Double.toString method provides, but again we would really like op-

tions to indicate precision and field width.

Implement functions which convert Java double values to strings in each of the

above formats.

I might suggest that you start by using toString to do the basic conversion

and then let your code restrict its worry to unpicking that string and re-formatting

the characters. If you decide you want to do the numeric to string conversion from

scratch you should be aware that preserving numeric accuracy is quite hard!

Write a test-suite that compares the strings your code generates with the ones

that String.format produces. Then worry about NaNs, infinities, careful round-

ing and the like!

Double as bit-patterns

Double.doubleToLongBits takes a double as an argument and returns a
long. The long is the internal IEEE-format bit-pattern that represents the double
The matching function longBitsToDouble accepts a long and manufactures a
double in the same dubious sort of way. Investigate whether there is any double
value x in Java so that

(double)Double.doubleToLongBits(x) == x

4.8. IMPORTANT FEATURES OF THE CLASS LIBRARIES 139

Continued fractions

Any positive number can be expanded as a continued fraction as in

x = x0 +
1

x1 + 1
x2+...

where the values xi are called partial quotients and are all positive integers. If

the original number is rational the continued fraction terminates at some stage.

Otherwise it goes on for ever, and can be viewed as providing an alternative

to the usual decimal expansion of numbers. Instead of writing a value as say

1.414213562. . . the partial quotients would be listed [1, 2, 2, 2, . . .]. Gosh in fact

for this number it looks as if the continued fraction is astonishingly regular!

The sequence of partial quotients in the expansion of a number are easy to

compute - the first is just obtained by casting the number to an int. The rest can

be obtained from the reciprocal of what you get by subtracting that value from the

original number. Write code to do this and tabulate the first dozen partial quotients

you get in the expansions of the following numbers:

√
3

(
√

5+1)/2
√

7

e = 2.71828 . . .

π

4.8 Important features of the class libraries

The coverage thus far has shown the use of some small parts of the Java libraries,

but has also missed a great deal out. In this course I will not have anything like

enough time to describe everything that is available. However there are a few

bits of functionality that either seem to be generally useful enough or sufficiently

fun to be worth covering. The little bits of explanation given here are thus to be

viewed as a sampler of what Java can do for you. If you can work through all these

demonstrations and navigate the documentation of the classes that they introduce

you should have got a reasonably broad idea of the system, and in looking up the

documentation details while working on these cases you will as a side-effect be

noticing what other classes are present. I will only give the most basic possible

demonstrations of the things illustrated here. Full competent use of them can only

come with serious work on rather larger bodies of code. I will also totally ignore

140 CHAPTER 4. BASIC USE OF JAVA

several of the newer parts of the Java class libraries, or to be more precise, I will

leave fuller details of some of these facilities and of the other ones to next year’s

“Concurrent Systems and Applications” course and/or your own private study.

4.8.1 File input and output

The character input and output shown so far has used the pre-defined “standard”

streams System.in and System.out. Obviously in many real applications it is

necessary to access named files.

In many programming languages there is a logical (and practical) distinction

made between files that will contain text and those while will be used to hold

binary information. Files processed as binary are thought of as sequences of 8-

bit bytes, while ones containing text model sequences of characters. In Java this

distinction has two main manifestations, one of which is somewhat frivolous but

can matter on an every-day basis in the UK while the other is of wider importance

but will not impinge on immediate coursework:

1. Windows and some internet protocols use a pair of characters, carriage-

return and line-feed, to mark the end of a line. Unix and Linux use a single

character (newline). In text mode Java makes whatever adjustments are

needed so that external files adhere to platform conventions, but your Java

code sees just the character ’\n’.

2. In many parts of the world (and in particular in the Far East) text documents

need to cope with alphabets that involve many thousands of symbols. Uni-

code is designed to be able to cope with these, but there can be a variety

of ways of encoding text as streams of bytes. When working in such an

environment Java can be configures so it knows how to pack and unpack

Unicode using various of the major encoding conventions. But obviously it

will only even try to do this when it knows that the programmer wants data

to be viewed as character-based rather than binary.

Java uses names typically based on the word Stream for binary access, and

Reader and Writer for text. So when you read the documentation expect to find

two broadly parallel sets of mechanisms, one for each style of access!

Java input and output can seem clumsy to start with because almost all of

the functions involved are able to throw exceptions, and it is expected that Java

code using them should be prepared to handle these. This is in fact good because

experience with earlier languages indicates that most programmers do not find

it easy or natural to put error-checks after simple I/O operations, even though

logically almost any of them could fail. For instance writing a single character

4.8. IMPORTANT FEATURES OF THE CLASS LIBRARIES 141

to a file could unexpectedly fail if the disc on which the file lived became full51,

or it it was on a floppy disc and the disc was removed from the drive or had a

scratch, or if there was a hardware glitch in a disc interface. Different but equally

delicate issues arise with output that goes directly to a printer, across a network to

a remote file-system, or with input from a semi-reliable device such as a bar-code

scanner. The Java use of exceptions encourages all programmers to consider I/O

failure right from the start.

There is one final complication about Java input and output that ought to be

mentioned up front. One use of Java is in applets to be embedded within web

pages, and hence sometimes fetched from remote web-sites. It could be bad if

code from an untrusted site could read and write all your files! So Java introduces

the idea of a security manager and can classify code as either trusted or untrusted.

Untrusted code will not be permitted to access the local filing system. The short

form way around this is to make everything you do an application not an applet:

security restrictions are then (by default) not imposed. If you do need to make

applets that access disc or do other things that default controls lock out you need

to impose security on an application then you will need to find out about the

creation of custom Security Policies and signed Java code. I will not describe that

here.
Java provides a rich and somewhat elaborate set of capabilities, but perhaps

a good place to start will be simple reading of text files. The class FileReader
does almost everything you are liable to need: here is a minimal demonstration
that shows that you can use a method called read to read characters, and that it
returns the integer -1 at end of file.

import java.io.*;

public class ReadDemo

{

public static void main(String [] args)

throws IOException

{

Reader r = new FileReader("filename");

int c;

while ((c = r.read()) != -1)

{ System.out.printf(

"Char code %x is \"%<c\"%n", c);

}

r.close();

}

}

51Or the user’s quota expired.

142 CHAPTER 4. BASIC USE OF JAVA

There are a significant number of things about this small bit of sample code

that deserve further explanation, and by trying to be minimal the code is not really

very good: an improved version is given soon.

Firstly note that FileReader is in the java.io package so we have an im-

port statement to make use if it easy. Next observe that almost all input and output

functions can raise exceptions, and this code just admits defeat and notes that its

main method might therefor fail. I view it as bad style to do this and strongly

believe that exceptions should be handled more locally.

Now FileReader is a subclass of Reader, which is the general class that

reads from character streams. So I create a FileReader using a constructor that

takes a file-name as its argument but store what I get as just a Reader . This

helps stress to me and remind me that the rest of my code would be equally valid

if using some other sort of Reader, such as one that gets its input from a pipe,

from a string, from characters packed in an array, from a network connection,

by running a character decoder on a stream of bytes or otherwise. The way I do

things here supposes that the data in the file concerned is encoded in the standard

local character-set that Java has been set up for. For reading files imported from

elsewhere in the world you have to do things a more complicated way!

The read method hands back either the numeric code for a character, or the

value -1 to denote end-of-file. It perhaps seems odd that it returns an int not a

char, but doing so allows it to hand back -1 which does not stand for any normal

character. You can of course case the int to a char any time you want to!

After having read the file you are expected to call the close method. If you

fail to do this for an input file you may just leave some machine resources cluttered

and unless you try to open and read very many files without closing any of them

you will probably not feel any pain. However for output files it may sometimes be

that the last bit of your data is not actually sent to the file until you do the close.

You should get into the habit of ensuring that every file you open does get closed.

A much improved version of the same code can be arrived at by handling

the possible exceptions. You may note that FileNotFoundException is a sub-

class of IOException which is why the throws clause above was sufficient, but

which also allows us to see how the improved code is more precise. When you get

an exception out of Java it can often be useful to print it, in that it is liable to carry

some text that explains further what went wrong. I use finally to guarantee that

the close method of the Reader will always be invoked.

import java.io.*;

public class BetterReadDemo

{

public static void main(String [] args)

4.8. IMPORTANT FEATURES OF THE CLASS LIBRARIES 143

{

Reader r;

try

{ r = new FileReader("filename");

}

catch (FileNotFoundException e)

{ System.out.printf(e);

return;

}

int c;

try

{ while ((c = r.read()) != -1)

{ System.out.printf(

"Char code %x is \"%<c\"%n", c);

}

}

catch (IOException e)

{ System.out.printf("Reading failed (%s)%n", e);

return;

}

finally

{ r.close();

}

}

}

Output to a file is somewhat similar, and if you only ever want to write indi-

vidual characters and simple strings then FileWriter will suffice. However you

may like to be able to use println and printf when writing data to your file,

and they come in a class called PrintWriter. Unlike the class FileWriter,

PrintWriter hides all exceptions so you do not need to catch them, but you can

check for error using the checkError method and you still need to ensure that

close is called.

import java.io.*;

public class PrintDemo

{

public static void main(String [] args)

{

try

{ PrintWriter w = new PrintWriter("filename");

try

144 CHAPTER 4. BASIC USE OF JAVA

{ w.printf("Hoorah%n");

assert !w.checkError();

}

finally

{ w.close();

}

}

catch (FileNotFoundException e)

{ System.out.println("Sorry!");

}

}

}

This time you must make w a PrintWriter and not just a Writer to gain

access to printf and so on.
If errors arise on a PrintWriter the flag marking them persists so you do not

need to use checkError after every single print statement – every so often and
once when you have generated all that you want to end up in the file will suffice.
Although I have used assert here I probably feel that error checking should be
done always an that something along the lines of

if (w.checkError())

throw new IOException("failure on PrintWriter");

might well be better policy.

The long-winded but more flexible way to access files is to start by creating

an instance of java.io.File. An object of this type can be created using either

a constructor that takes a single String that names the file (as a complete path,

if necessary), or with a two-argument constructor where one argument specifies

the directory to look in and the other the file-name within that directory. A File

object supports methods exists, canRead and canWrite and also one called

isFile, which test for a “normal” file, ie one that is not a directory or any of the

exotic things that in Unix masquerade as sort-of-files. You can pass a File rather

than a string when opening a FileReader or FileWriter.

Other methods available via the File class include ones to check the length

of a file52, rename it, create new directories, list all the files in a directory and

delete files. You can also create a file by giving just a local name (eg such as

"java.tex") and call getAbsolutePath to obtain a fully-rooted file-path that

identifies it. The exact result you get will clearly be system-dependent, and on

one computer I tried that I got back

52The length reported is liable to count in bytes, and so for text files it can well be that the length

reported differs from system to system.

4.8. IMPORTANT FEATURES OF THE CLASS LIBRARIES 145

"e:\UNIV\notes\java\java.tex"

while on another it was

"/home/acn1/javanotes/java.tex".

The fact that all these facilities are so conveniently supported may make Java

one of the more useful programming languages for writing file-management util-

ities. Once again if you look at Java code and compare it against other languages

for very tiny tasks and where previously you would have missed out all error

handling Java can look clumsy — but when you look at more realistic and well-

engineered examples it starts to feel much nicer.

Binary data access are useful for cases when your data really is raw data and

not composed of characters. There classes called java.io.FileInputStream

and (of course) FileOutputStream that take a File or a string as an argument

and create streams. They of course throw exceptions if the files can not be opened

as requested. Once a file has been opened you should in due course call the rele-

vant close method to tidy up.

Earlier examples have shown an extra layer of Java constructor arranging to

buffer input in the expectation that that may speed it up. I have done that here too.
Putting these together we might arrive at something like this to copy a file in

binary mode:

String fromName = "source.file";

String toName = "destination.file";

File fromFile = new File(fromName),

toFile = new File(toName);

if (!fromFile.exists() ||

!fromFile.canRead() ||

toFile.exists() ||

!toFile.canWrite())

{ System.out.println("Can not copy");

return;

}

InputStream fromStream =

new BufferedInputStream(

new FileInputStream(fromFile));

try

{ OutputStream toStream =

new BufferedOutputStream(

FileOutputStream(toFile));

try

{ for (;;)

{ toStream.write(fromStream.read());

146 CHAPTER 4. BASIC USE OF JAVA

}

}

catch (EOFException e)

{} // Use exception to break out of for loop

finally

{ toStream.close();

}

}

catch (IOException e)

{ System.out.printf("IO error " + e);

}

finally

{ fromStream.close();

}

This code is in fact not yet complete! It needs yet more try blocks to guard against
FileNotFoundException cases where the two streams are created. But it illus-
trates how the EOFException can be used to stop processing at end of file, and
demonstrates very clearly that in real file-processing applications most of what
you write will be to do with setting everything up and arranging to handle excep-
tions, while the central interesting bit of the code may be as short as just

for (;;)

{ toStream.write(fromStream.read());

}

Overall it may seem pretty grim, but in large programs the complication will

still remain at the level of the dozen or so lines shown above, rather than growing

out of control. It is also probable that the visible pain is because writing high qual-

ity file-manipulation code is in fact nothing like as easy as earlier programming

languages have tried to make it out to be!
There is a potential down-side in Java being so very insistent that you catch

all these errors, in that it can encourage a style of cop-out that just wraps all your
code in

try

{ ...

}

catch (Exception e)

{}

where the block is set up so it catches all sorts of Exception not just the very
special ones that you know are liable to arise, and rather than doing anything it just
ignores the error. This very much defeats the purpose Java is trying to achieve! If
you are (quite reasonably!) in a rush some time at least go:

4.8. IMPORTANT FEATURES OF THE CLASS LIBRARIES 147

try

{ ...

}

catch (Exception e)

{ System.out.printf("Exception: %s%n", e);

System.exit(1);

}

so that the exceptions you catch are reported and make your program stop.

The above example used BufferedInputStream which should not have

any effect at all on what your program actually does, but may have an impact

on performance when you work with big files. For binary data there are more

interesting classes that you could use just as easily: ones to compress and and de-

compress data, encryption and checksumming capabilities. For text data you can

use LineNumberReader in place of BufferedReader and it will keep track of

which line you are on in your input. See the classes FilterInputStream and

FilterReader in the documentation for further details.

4.8.2 Big integers

The Discrete Mathematics course had an extended section where it discussed

highest common factors, modular arithmetic and eventually the RSA encryption

scheme. To refine your understanding of all that you could quite properly want

to code it all up. To make any pretence at all of reasonable security this means

that you need to do a lot of arithmetic on integers that are between 1024 and 1536

bits long. This sort of range of values is about what is required because there is

a serious possibility that numbers smaller than that might be factorisable by the

best current algorithms and fastest current computers. An implementation of RSA

will also need to generate a couple of primes, each with around half that number

of bits.

Java has thought of that and it provides a class java.math.BigInteger

which does essentially everything you could need! And note that printf lets

you print these big values easily.

In this class there are half a dozen constructors. The more obvious ones con-

struct big integers from strings or byte arrays, and a valueOf method allows you

to create a big integer from a long. The two interesting constructors create ran-

dom big numbers. They both accept an argument that is an object from the class

Random which actually gives them their randomness. One creates an arbitrary

n-bit number while the other creates an n-bit number which is (almost certainly)

prime. For the second of these it is possible to tune the degree of certainty that a

prime has indeed been found by giving a “certainty” argument that tells the con-

148 CHAPTER 4. BASIC USE OF JAVA

structor how hard to work to check things. I might suggest that a value of 50

would be sufficient for all reasonable purposes.

I should provide a rather heavy health warning here. If you use the Java-

provided Random class to help you create private keys or other values of cryp-

tographic significance you will be throwing away almost all the security that the

RSA method could give you, since this random number generator comes too close

to having a predictable behaviour. Specifically there is a chance that to arrange

to get the same “random” values that you do it may suffice for somebody to run

a similar Java program having reset their computer so that their run appears to

happen at the exact time of day that yours did. This may be hard but is nothing

like as hard as factorising 1536-bit integers. If you ever wanted to use serious

encryption you must instead use java.security.SecureRandom. Anybody

really serious about security would think at length before trusting even the things

in java.security: how is it possible to tell that they do what they are supposed

to and that they do not include secret weaknesses? And even if they are honest it

is astonishingly easy to lose all the security you thought you had by some appar-

ently minor clumsiness in how you use your cryptographic primitives. A course

on security later in the Tripos gives much more information about all of this!

Note that some of the functionality in the Java security and encryption pack-

ages may be missing or limited unless your installation has provided some level

of assertion that you are not a national of a country that the US Government does

not like and that you are not a terrorist. But as is the way of any such attempt

at blocking access to technology, there are easy to find drop-in replacements not

hampered by (so many) export license issues. You might still be aware that good

encryption is viewed by some as something with significant security implications

and that it should not be given any opportunity to cross international borders until

you at the very very least know what all the rules are! Java itself provides ways

that those who satisfy the correct eligibility conditions can use the standard Java

libraries and obtain unlimited security, via the installation of special “JCE policy

files”.

Once you have made suitable objects of class BigInteger the library pro-

vides you with methods to add, subtract, multiply and divide them, to even raise

one big number to a huge power modulo another number (what a give-away about

the expected use of this class!). The function that computes what the Discrete

Mathematics notes called a Highest Common Factor is here known as a Great-

est Common Divisor (gcd), but the change of name does not hide any change of

behaviour53.

53The java_security package provides easy to use functions for generating keys and com-

puting message digests and digital signatures. There is a standard extension to Java that supplies

encryption and further functionality: this part may be subject to export regulation and has to be

fetched and installed as a separate item from the main SDK.

4.8. IMPORTANT FEATURES OF THE CLASS LIBRARIES 149

import java.math.*;

import java.util.*;

...

Random r = new Random(); // inadequate!

// use the SecureRandom class instead!!!

// Create two big primes p and q

BigInteger p =

new BigInteger(768, // length in bits

50, // only 1 in 2ˆ50 prob of non-prime

r); // random number source

BigInteger q = new BigInteger(768, 50, r);

// form their product, n, which can be public

BigInteger n = p.multiply(q);

// compute phi = (p-1)*(q-1)

BigInteger bigOne = BigInteger.ONE;

BigInteger pMinusOne = p.subtract(bigOne);

BigInteger qMinusOne = q.subtract(bigOne);

BigInteger phi = pMinusOne.multiply(qMinusOne);

// select a random exponent whose HCF with phi

// is 1.

BigInteger e;

do

{ e = new BigInteger(1536, r);

} while (!phi.gcd(e).equals(bigOne));

// now (n, e) is the public key

...

// Set up a message to encrypt

BigInteger msg =

new BigInteger("12341234"); // silly message

// Encrypt with public key. One line of code!

BigInteger k = msg.modPow(e, n);

...

The code is clearly about as short as it possibly could be. Again let me warn you

that cryptographically satisfactory random number generators are hard to come

by, and that such issues as managing the secure distribution of public keys and

keeping private ones truly private mean that security involves very much more

than just these few lines of code. But Java is clearly making it easy to make a start

on it.

How do you know that the Authorities and not bugging your computer while

you run the above code? How do you know that no traces of the secret information

remain anywhere when you have logged off or even powered down the computer?

The Computer Lab’s security group has a fine track-record of demonstrating that

150 CHAPTER 4. BASIC USE OF JAVA

even apparently safe computing habits leak information to a sufficiently skilful

and ingenious snooper.

4.8.3 Collections

Java has an interface called Collection and a whole range of interesting classes

derived form it. The general idea is that Collection covers ideas like “set”,

“list” and “vector”. In some cases the elements in a collection can be ordered

(in which case the objects included must all implement the Comparable inter-

face54), but might not be. Collections may be implemented as linked lists or as

vectors, but the library classes arrange that when a vector is used it will be en-

larged as necessary so that the user does not have to specify a limit to the size of

the collection too early. One sub-case of a Collection is a Map, which provides

for general ways to organize various sorts of table or dictionary. I am not pro-

viding any sample code using Collections in this little section since I believe

that when you browse the documentation you will find them easy to cope with.

However it may make sense for me to list more of the names of classes worth

looking at: Collection, Collections, Set, HashSet, TreeSet, Vector,

LinkedList.

The collection classes are keyed to the Java for statement to make it trivial to

iterate over the values in a collection: as has been seen in various of the sample

programs here.
Very typically when you create an instance of a Collection Class you will use

the generics capability to indicate the type of the objects you will keep in it, eg

Vector<String> v = new Vector<String>();

and if you do so Java will know that the values you extract will be of the type

indicated.

4.8.4 Simple use of Threads

A thread is a stream of computation that can go on in parallel with others. The

term is used when the activities are part of a single program, and where there is

no need for security barriers to protect one thread from the next. The more gen-

eral term used when the extra overhead of protection is needed is process. Java

is one of the first languages to make a big point of having threads supported as

54An especially interesting issue here is the way that Java can compare strings. To support the

needs of different nationalities a class Collator is provided, and methods in it can order strings

based on properLocale-specific understandings of where accented or non-English letters should

go. Alphabetic ordering with international texts is a more complicated business that almost all of

you would have imagined.

4.8. IMPORTANT FEATURES OF THE CLASS LIBRARIES 151

a standard facility. Many systems in the past have had threads, but usually in

rather non-portable form. Almost any program that has to implement a compli-

cated windowed user interface or which accesses remote computers55 will need to

use threads so that one high priority thread can ensure that the user always gets

responses to requests, while several lower priority ones keep on with some bigger

calculation. There are very many subtleties in any program that exhibits concur-

rency. I will not describe these here, and in consequence I expect that people who

try to make substantial use of threads based on just these notes will get themselves

into deep water. There are two typical bad effects that can arise. In one the system

just locks up as a chain of threads each wait for the others to complete some task.

In the other two threads both attempt to update some data structure at around the

same time and their activities interfere, leaving data in a corrupted state. The Java

keyword synchronized is involved in some of the resolutions of these sorts of

problem.
The example here is supposed to do not much more than to alert you to the

possibility of writing multi-threaded Java programs, and to show how easy it is.
I will start by defining a class that will encapsulate the behaviour I want in the
rather silly thread that I will use here:

class Task extends Thread

{

boolean resultShown;

String result;

int identification;

Task(int i)

{ identification = i;

resultShown = false;

}

public void run()

{ try { sleep(20+100*identification % 77); }

catch (InterruptedException e) { return; }

result = String.valueOf(identification);

}

}

The two critical things are that my class extends Thread and that it implements

run. The method run will be to a thread much what main is to a complete

program. In this case I make my thread do something rather minimal. It goes to

sleep for an amount of time that depends on the argument that was passed to its

constructor, and it then sets one of its variables, result, to a string version of

that value. When created my task also sets a flag that I will use later on to record

whether I have picked up its result.

55Often a slow business.

152 CHAPTER 4. BASIC USE OF JAVA

To demonstrate use of threads I will create half a dozen instances of the above,
and then wait around until each has finished its work. As I notice each task com-
pleting I will pick up its result and display it. When I have done that I will set
the resultShown flag so that I do not display any result twice. I could surely
find a cleverer way of achieving that, but the solution I use here is at least quite
concise. Once all my threads have finished I will let my main program terminate.
I let my top-level class inherit from Thread just because I want to use sleep in
it so that while waiting for the sub-tasks to finish I am mostly idle.

public class Threads extends Thread

{

static final int THREADCOUNT = 6;

public static void main(String[] args)

{

// Create and start six threads

Task [] spawn = new Task [THREADCOUNT];

for (int i = 0; i<THREADCOUNT; i++)

{ spawn[i] = new Task(i);

spawn[i].start();

}

System.out.println("All running now");

int stillGoing = THREADCOUNT;

// Scan looking for terminated threads

while (stillGoing != 0)

{ for (int i=0; i<THREADCOUNT; i++)

{ if (!spawn[i].isAlive() &&

!spawn[i].resultShown)

// print result the first time I notice a thread dead

{ System.out.println("Result from " +

i + " = " + spawn[i].result);

spawn[i].resultShown = true;

stillGoing--;

}

}

System.out.println("One scan done");

// sleep for 7 milliseconds between scans to avoid waste

try { sleep(7); }

catch (InterruptedException e) { break; }

}

System.out.println("All done");

}

}

Observe that sleep can raise an exception if the sleeping task receives an in-

4.8. IMPORTANT FEATURES OF THE CLASS LIBRARIES 153

terrupt from elsewhere, and I (have to) catch this and quit. The results I obtain
follow, and you can see traces that show the main program scanning round look-
ing for threads that have finished and also you can see that the different threads
terminate in some curious order. Of course a more worthwhile example would put
real computation into each of the threads and their termination would be based on
how long that took rather than on the artificial sleeping I have used here!

java Threads

All running now

One scan done

One scan done

One scan done

Result from 0 = 0

Result from 4 = 4

One scan done

Result from 1 = 1

One scan done

One scan done

Result from 5 = 5

One scan done

Result from 2 = 2

One scan done

One scan done

One scan done

Result from 3 = 3

One scan done

All done

The reason my example is respectably simple and trouble-free is that the threads

only communicate by receiving data when first created and by delivering some-

thing back when they have finished. Inter-process communication beyond that can

be astonishingly hard to get right.

4.8.5 Network access

Java really hit the news as a language for animating your own web pages. One

part of doing this is the set of graphical operations that it supports. Another less

instantly visible but equally important thing is the ability to connect to remote

computers and retrieve data from them. The set of rules that make up HTTP56 are

what defines the World Wide Web. Standard Java libraries provide various degrees

of ability to connect using it. The small program shown here links through to a

56HyperText Transfer Protocol.

154 CHAPTER 4. BASIC USE OF JAVA

fixed location named as its fire command-line argument and displays the data

found there. This data comes out as an HTML document with lots of tags that are

enclosed in angle brackets.

// Read file from a possibly remote web server

import java.net.*;

import java.io.*;

public class Webget

{

public static void main(String [] args)

{

URL target;

try

{ target = new URL(args[0]);

}

catch (MalformedURLException e)

{ return; } // Badly formed web-page address

try

{ URLConnection link = target.openConnection();

link.connect(); // connect to remote system

// Now just for fun I display size and type information

// about the document that is being fetched. Note that

// documents might be pictures or binary files as well

// as just text!

System.out.println("size = " +

link.getContentLength());

System.out.println("type = " +

link.getContentType());

// getInputStream() gives me a handle on the content, and

// I rather hope it is text. In that case I can get the

// characters that make it up from the InputStream.

Reader in = new InputStreamReader(

link.getInputStream());

int c;

// Crude echo of text from the document to the screen.

// It will have lots of HTML encoding in it, I expect.

while ((c = in.read()) != -1)

System.out.print((char)c);

}

// A handler is needed in case exceptions arise.

catch (IOException e)

4.8. IMPORTANT FEATURES OF THE CLASS LIBRARIES 155

{ System.out.println("IO error on link"); }

// I am lazy here and do not close anything down.

}

}

// end of Webget.java

The data stored on the CL teaching support pages in mid February 1998 started
off as follows, apart from the fact that I have split some of the lines to make the
text fit neatly on the pages of these notes. It has of course changed by now! I keep
this old material in the notes out of nostalgia.

<HTML>

<HEAD>

<TITLE>Comp.Sci. Teaching pages</TITLE>

</HEADER>

<BODY>

<H1> Computer Science teaching material on Thor</H1>

<P>

 Some Information

about Java (on this server)

...

The main message here is that accessing a remote web-site is just about as

trivial as reading from a local file.

4.8.6 Menus, scroll bars and dialog boxes

Back when Java 1.2 was released Sun finalised a whole set of windows man-

agement code that they called Swing. This extended and in places replaced earlier

windowing capabilities that were known as AWT. I believe that by now it is proper

to use the Swing versions of things even in those cases where older AWT versions

remain available. You can tell that you are doing that when you use a lot of class

names that start with a capital “J”!
The code presented here is called MenuApp and is a pretty minimal demon-

stration of menus! I will use this example to show how something can be both
an application and an applet. The “application” bit of course defined a method
called main, and this just sets up a window (frame) that can contain the applet
stuff. There is a bit of mumbo jumbo to allow the application to stop properly

156 CHAPTER 4. BASIC USE OF JAVA

when the window is closed. As usual I will show the inner bit of the code first –
the fragment that actually does the work:

public static void main(String[] args)

{

Menuapp window = new Menuapp();

JFrame f = new JFrame("Menu Demonstration");

f.addWindowListener(new WindowAdapter()

{ public void windowClosing(WindowEvent e)

{ System.exit(0);

}

});

f.getContentPane().add(window, BorderLayout.CENTER);

f.setSize(600, 400);

f.setVisible(true);

}

I should point out the syntax

new WindowAdapter()

{ public void windowClosing(WindowEvent e)

{ System.exit(0);

}

}

}

Menuapp running

which extends the class WindowAdapter

to produce a new (anonymous) class.

In this new class it overrided the

windowClosing method. It then cre-

ates an instance of the new anonymous

class. This arrangement is known as an

“Inner Class” and can be very handly

when you need a small variant on some

existing class and will use it just once

so that giving it a name would be over-

clumsy.

The constructor for Menuapp will

establish a menu bar at the top of it-

self, then makes menus on that bar, and

places menu items on each menu. In

much the way that mouse events were

dealt with by registering a handler for

them it is necessary to implement an

4.8. IMPORTANT FEATURES OF THE CLASS LIBRARIES 157

interface called ActionListener and

tell each menu to report via it. The report hands down an ActionEvent from

which it is possible to extract the name of the menu item (and if need be which

menu it was on) that was activated. I illustrate this by showing how to pop up

a dialog box for selecting a file, although once I have the name of the file I just

display that in the text area rather than actually opening it.
I put a scrollable editable window for the text. The version I use could in fact

support multi-colour text in mixed fonts and with icons and other things inter-
leaved with the words: finding out about that is an exercise for those of you who
feel keen. You will also find that I have coded this using the “swing” facilities
(ie it will not compile on a simple un-extended installation of JDK 1.1.x), and the
arrangements for selecting a file and for making the text window scrollable relate
to that. The inclusion of javax.swing classes gives access to the relevant bits
of the class libraries. Furthermore the code can be run as either an applet or an
application. So lots of things are being illustrated at once. You are not expected
to be able to follow all of them at first, but maybe the code will be a useful model
when sometime later you do need to use some of these facilities in anger. The
complete code follows:

// Demonstration of Menus and a window created

// from an application rather than an applet.

// A C Norman 1998-2000

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

import javax.swing.text.*;

public class Menuapp extends JApplet

implements ActionListener

{

// This can be run as either an application or an applet!

public static void main(String[] args)

{

Menuapp window = new Menuapp();

JFrame f = new JFrame("Menu Demonstration");

f.addWindowListener(new WindowAdapter()

{ public void windowClosing(WindowEvent e)

{ System.exit(0);

}

});

f.getContentPane().add(window,

BorderLayout.CENTER);

158 CHAPTER 4. BASIC USE OF JAVA

f.setSize(600, 400);

f.setVisible(true);

}

// All real work happens because of this

// constructor. I create a JTextPane to hold

// input & output and make some menus.

JTextPane text;

Container cc;

public Menuapp()

{

cc = getContentPane();

text = new JTextPane();

text.setEditable(true);

text.setFont(

new Font("MonoSpaced", Font.BOLD, 24));

JScrollPane scroll = new JScrollPane(text,

JScrollPane.VERTICAL_SCROLLBAR_AS_NEEDED,

JScrollPane.HORIZONTAL_SCROLLBAR_NEVER);

cc.add(scroll);

// Menus hang off a menu bar and contain menu items

JMenuBar bar;

JMenu mFile, mEdit, mHelp;

JMenuItem mNew, mOpen, mSave, mCut,

mPaste, mContents;

// Create a menu bar first and add it to the Frame

bar = new JMenuBar(); setJMenuBar(bar);

// Create a menu and add it to the MenuBar

mFile = new JMenu("File"); bar.add(mFile);

// Create menu items and add to menu

mNew = new JMenuItem("New"); mFile.add(mNew);

mOpen = new JMenuItem("Open"); mFile.add(mOpen);

mSave = new JMenuItem("Save"); mFile.add(mSave);

mEdit = new JMenu("Edit"); bar.add(mEdit);

mCut = new JMenuItem("Cut"); mEdit.add(mCut);

mPaste = new JMenuItem("Paste");mEdit.add(mPaste);

mHelp = new JMenu("Help Menu");

4.8. IMPORTANT FEATURES OF THE CLASS LIBRARIES 159

bar.add(mHelp);

mContents = new JMenuItem("Contents");

mHelp.add(mContents);

// Each menu has to be activated to be useful.

mNew.addActionListener(this);

mOpen.addActionListener(this);

mSave.addActionListener(this);

mCut.addActionListener(this);

mPaste.addActionListener(this);

mContents.addActionListener(this);

}

// When a menu item is selected this gets called,

// and getActionCommand() retrieves the text from

// the menuItem. Here I clear the area when New

// is used, and do something with Open, but otherwise

// just display a message.

public void actionPerformed(ActionEvent e)

{

String action = e.getActionCommand();

try

{ if (action.equals("New")) text.setText("");

else if (action.equals("Open")) openFile();

else

{ StyledDocument s =

text.getStyledDocument();

s.insertString(s.getLength(),

"Request was " + action + "\n", null);

}

}

catch (BadLocationException e1)

{}

}

void openFile() throws BadLocationException

{ JFileChooser d = new JFileChooser("Open a file");

if (d.showOpenDialog(cc) ==

JFileChooser.APPROVE_OPTION)

{ StyledDocument s = text.getStyledDocument();

s.insertString(s.getLength(),

"Load file \"" +

d.getSelectedFile().getAbsolutePath() +

160 CHAPTER 4. BASIC USE OF JAVA

"\"\n", null);

}

}

}

// end of Menuapp.java

You should expect that extending the above example or writing your own code

that sets up controllable visual effects will cause you to have to do rather a lot

of reading of the class library documentation to plan which classes you will de-

rive items from. Also when you have mastered the basics of GUI construction by

hand you will very probably want to take advantage of one of the Java develop-

ment environments that can set up frameworks for user-interfaces for you in really

convenient ways.

4.8.7 Exercises

Replacement for “ls”

On Unix the command ls lists all the files in the current directory. With a

command-line flag -R it also lists members of sub-directories. Investigate the

Java File class and see how much of the behaviour of ls (or the DOS/Windows

dir) you can re-create.

RSA

The code fragment above suggests how to create a public key and then how to use

it to encrypt a message once that message has been reduced to a BigInteger

of suitable size. Flesh this out with code that can use the private key to decrypt

messages, and with some scheme that can read text from the standard input (or a

file, maybe), split it up into chunks and represent each chunk as a BigInteger.

You might also want to investigate the Java Cryptographic Architecture and

find out what is involved in creating cryptographic-grade random values. You

should be made very aware that the ordinary Java random number generator does

not pretend that the values it returns to you are suitable for use in security appli-

cations.

Then do a literature search to discover just what you are permitted to do with

an implementation of an idea that has been patented57 and also what the Secu-

57The main RSA US patent expired on the 20th September 2000, but that does not necessar-

ily mean that all associated techniques and uses are unprotected. Also note that there are other

public key methods for both digital signatures and for encryption where the original patents have

4.8. IMPORTANT FEATURES OF THE CLASS LIBRARIES 161

rity Policies of various countries are about the use, import and export of strong

encryption technology.

Note again that Java provides the specification of a security library that would

do all this for you if it were not for the USA government’s export restrictions, and

if these restrictions do not apply to you you could use the Java strong security.

There are international re-implementations of this library that can be fetched and

used here. See for instance www.openjce.org. But also be aware that exporting

code that includes strong encryption may be subject to government restriction.

Big Decimals

The class BigDecimal builds on BigInteger to provide for long precision dec-

imal fractions. When a BigDecimal is created it will behave as if it has some

specified number of digits to the right of its decimal point, but as arithmetic is

carried out there can be any number of digits generated before the decimal point.

For any number z one can define a sequence of values xi by x0 = 1 and

xi+1 = (xi + z/xi)/2. This sequence will converge to
√

z, and once it gets even

reasonably close it homes in rapidly, roughly doubling the number of correct sig-

nificant values at each step. For finding square roots of numbers between 0.5 and

2 (say) the starting value x0 = 1 will be quite tolerable.

If one wanted the square root of a number larger than 2 or smaller than 0.5
it would make sense to augment the recurrence formula by use of the identity√

4z = 2
√

z to pre-normalise z.

Implement the method and use it to create a table of square roots of the integers

from 1 to 10 all to 100 decimal places.
If you can perform high-precision arithmetic on floating point numbers you

should try the following calculation. I am going to use informal syntax with
double constants written where you will need to use BigDecimals, and I will
use the ordinary operators to work on values not calls to suitable methods in the
BigDecimal class. I am also not going to tell you here either how many cycles
of the loop you should expect the code to obey or what the values it prints out will
look like! But I suggest that you work to (say) 1000 decimals and see what you
get.

a = 1.0;

b = 1/sqrt(2.0);

u = 0.25;

x = 1.0;

pn = 4.0;

do

also expired, and so using these can also be of interest without patent worries about deployment.

Investigate “El Gamal”.

162 CHAPTER 4. BASIC USE OF JAVA

{ p = pn;

y = a;

a = (a+b)/2.0;

b = sqrt(y*b);

u = u-x*(a-y)*(a-y);

x = 2*x;

pn = a*a/u;

print(pn);

} while (pn < p);

When you have investigated this for yourself try looking for arithmetic-geometric

mean (and the cross-references from there!) in Hakmem.

Mandelbrot set (again)

Adjust the Mandelbrot set program, as considered in an earlier exercise, so that at

the start (maybe in an init method?) it allocates a 400 by 400 array of integers

all initially set to 0. Change the paint method so that it just displays colours as

recorded in this array, and have a separate thread that (a) computes values to go in

the array and (b) uses repaint at the end of each of its resolution cycles to bring

make sure that the screen is brought fully up to date then. The objective here is to

arrange that each pixel is only calculated once and that thus the paint method is

a lot quicker.

Further extension of this code would add mouse support so that (as a start) a

mouse click would cause the display to re-centre at the selected point and start

drawing again using half the previous range. Those of you who get that far are

liable to be able to design more flexible and convenient user-driven controls than

that, I expect!

Tickable exercise 7

Tick 5 was the largest single exercise. Tick 6 was a fairly easy example of getting

an Applet working. This final exercise is intended to be a reasonably manageable

one to end off the series of Java practicals.

The illustration of network code that I gave represents a minimal way of ac-

cessing a remote file.

1. Extend it so that it can be used as

java Webget URL destination

to fetch the contents of an arbitrary web document and store it on the local

disc. If an explicit destination file is not specified your program should

display the document fetched on the screen;

4.8. IMPORTANT FEATURES OF THE CLASS LIBRARIES 163

2. Investigate document types and encodings and try to arrange that text doc-

uments are fetched as streams of characters while binary documents come

across the net verbatim;

3. Optional: Some files on the web are of type “zip”, being compressed.

Java provides a set of library functions for uncompressing such files. Use

it so that when a zipped file is fetched the data that arrives locally is the

decompressed form of it.

4. Very optional: A javax.swing.JEditorPane can be set up so that it

renders (a subset of) HTML for you. Using this perhaps you could go a

significant way towards implementing your own light-weight web browser

and you might only need a fairly modest amount of Java!

(End of tickable exercise)

Yet further network-related code

Figure 4.8: www.arthurnorman.org!

The parts of the Java libraries that

can fetch material from remote ma-

chines understand quite well that you

will only occasionally be fetching

raw text, and that fairly often the data

to be accessed will be a picture or

a sound. Investigate the documen-

tation and sort out how to use these

facilities. An image from a local

student-run web site is shown here to

illustrate the usefulness of these fa-

cilities. Further parts of the network

classes allow you to detect (to some

extent) what sort of data is about to

be fetched from a web location so

that different sorts of data can each

be handled in the most appropriate

manner.

If you could write code that lo-

cated words enclosed in angle brack-

ets within text, and lay text out in a

window in such a way that you could

tell which word was the subject of a mouse click you might find yourself half-way

to writing your very own web browser!

164 CHAPTER 4. BASIC USE OF JAVA

A minimal text editor

The menu example already allows you to re-position the cursor and type in extra

text. I have shown how to identify files to be loaded and saved. The TextArea

class provides methods that would implement cut and paste. Put all these together

to get a notepad-style editor.

More Fonts

The Unicode example showed that it is easy to select which font Java uses to

paint characters. The class FontMetrics then provides methods that allow you

to obtain very detailed measurements of both individual characters and rows of

them. Using all this you can get rather fine control over visual appearance. Using

however many of few of these facilities you like create a Java applet that displays

the word LATEX in something like the curious layout that the designers of that

text-formatting program like to see.

Two flasks

This was a puzzle that I found in one of the huge anthologies of mathematical

oddities:

An apothecary has two spherical flasks, which between them hold ex-

actly 9 measures of fluid. He explains this to his friend the mathema-

gician, and adds that the glass-blower who makes his flasks can make

them perfectly spherical but will only make flasks whose diameter is

an exact rational number. The mathemagician looks unimpressed and

says that the two flasks obviously have diameters 1 and 2, so their

volume is proportional to 13 + 23 = 9. Hmmm says the apothecary,

that would have worked, but I already had a pair like that. This pair of

flasks has exactly the same total capacity, still has linear dimensions

that are exact fractions but the neither flask has diameter 1.

Find a size that the smaller of his two flasks might have had.

This is clearly asking for positive solutions to x3 + y3 = 9 with the solution

being a neat fraction. In an earlier exercise you were invited to write a class to

handle fractions. Before continuing with this one you might like to ensure that

you have a version of it that uses BigInteger just to be certain that overflow

will not scupper you.

Here is an attack you can make on the problem. We are interested in solutions

to x3 +y3 = 9 and know an initial solution x = 1, y = 2. Imagine the cubic equation

drawn as a graph (I know it is an implicit equation, so for now I will be happy if

4.8. IMPORTANT FEATURES OF THE CLASS LIBRARIES 165

you imagine that there is a graph and do not worry about actually drawing it!). The

point (1,2) lies on the curve. Draw the tangent to the curve at (1,2). This straight

line will have an equation of the form lx +my+n = 0 for some l, m and n which

you can find after you have done a little differentiation. Now consider where the

straight line meets the curve. If one eliminated y between the two equations the

result is a cubic in x, but we know that x = 1 is one solution (because the curve

and line meet there). In fact because the line is a tangent to the curve that is a

double solution, and thus the cubic we had will necessarily have a factor (x−1)2.

If you divide that out you get a linear equation that gives you the x co-ordinate of

the other place where the tangent crosses the curve. Solve that and substitute into

the line equation to find the corresponding value of y. The pair x, y were found by

solving what were in the end only linear equations, and so the numbers must be at

worst fractions. This has therefore given another rational point on the cubic curve.

What you get there is not a solution to the problem as posed, since one of x and

y will end up negative. But maybe if you take a tangent at the new point that will

lead you to a third possibility and perhaps following this path you will eventually

manage to find a solution that is both rational and where both components are

positive.

Write code to try this out, and produce the tidiest fractional solution to the

original puzzle that you can, ie the one with smallest denominators.

166 CHAPTER 4. BASIC USE OF JAVA

Figure 4.9: Odds and Ends follow: watch what the lecturer happens to cover.

Chapter 5

Designing and testing programs in

Java

At this stage in the “Programming in Java” course I will start to concentrate more

on the “programming” part than the “Java”. This is on the basis that you have now

seen most of the Java syntax and a representative sampling of the libraries: now

the biggest challenge is how to use the language with confidence and competence.

In parallel with this course you get other ones on Software Engineering. These

present several major issues. One is that errors in software can have serious conse-

quences, up to and including loss of life and the collapse of businesses. Another is

that the construction of large computer-related products will involve teams of pro-

grammers working to build and support software over many years, and this raises

problems not apparent to an individual programmer working on a private project.

A third is that formal methods can be used when defining an planning a project to

build a stable base for it to grow on, and this can be a great help. The emphasis is

on programming in the large, which is what the term “Software Engineering” is

usually taken to have at its core. Overall the emphasis is on recognition of the full

life-time costs associated with software and the management strategies that might

keep these costs under control.

The remaining section of this Java course complements that perspective and

looks at the job of one person or a rather small group, working on what may well

be a software component or a medium sized program rather than on a mega-scale

product. The intent of this part of the course is to collect together and emphasise

some of the issues that lie behind the skill of programming. Good programmers

will probably use many of the techniques mentioned here without being especially

aware of what they are doing, but for everybody (even the most experienced) it can

be very useful to bring these ideas out into the open. It seems clear to me that all

computer science professionals should gain a solid grounding carrying out small

projects before they actually embark on larger ones, even though a vision of what

167

168 CHAPTER 5. DESIGNING AND TESTING PROGRAMS IN JAVA

will be needed in big projects help shape attitudes and habits.

It is at least a myth current in the Computer Laboratory that those who intend

to become (mechanical) engineers have as an early part of their training an exer-

cise where they fashion a simple cube of solid metal, and they are judged on the

accuracy of their work. Such an activity can be part of bringing them into direct

touch with the materials that they will later be working with in more elaborate

contexts. It gets them to build experience with tools and techniques (including

those of measurement and assessment). Programming in the small can serve simi-

lar important purposes for those who will go on to develop large software systems:

even when large projects introduce extra levels of complication and risk the design

issues discussed here remain vital.

One of the major views I would like to bring to the art (or craft, or science, or

engineering discipline, depending on how one likes to look at it) of programming

is an awareness of the value of an idea described by George Orwell in his book

“1984”. This is doublethink, the ability to believe two contradictory ideas without

becoming confused. Of course one of the original pillars of doublethink was the

useful precept Ignorance is Strength, but collections of views specifically about

the process of constructing programs. These notes will not be about the rest of

the association of computers with surveillance, NewSpeak or other efficiency-

enhancing ideas. The potentially conflicting views about programming that I want

to push relate to the prospect of a project succeeding. Try to keep in your minds

both the idea Programming is incredibly difficult and this program will never work

correctly: I am going to have to spend utterly hopeless ages trying to coax it

into passing even the most minimal test cases and its optimistic other face, which

claims cheerfully In a couple of days I can crack the core of this problem, and

then it will only take me another few to finish off all the details. These days even

young children can all write programs. The concise way to express this particular

piece of doublethink (and please remember that you really have to believe both

part, for without the first you will make a total botch of everything, while without

the second you will be too paralysed ever to start actual coding), is

Writing programs is easy.

A rather closely related bit of doublethink alludes both to the joy of achieve-

ment when a program appears to partially work and the simultaneous bitter way in

which work with computers persistently fail. Computers show up our imperfec-

tions and frailties, which range through unwillingness to read specifications via

inability to think straight all the way to incompetence in mere mechanical typing

skills. The short-hand for the pleasure that comes from discovering one of your

own mistakes, and having spent many frustrating hours tracking down something

that is essentially trivial comes out as

169

Writing programs is fun.

A further thing that will be curious about my presentation is that it does not

present universal and provable absolute truths. It is much more in the style of

collected good advice. Some of this is based on direct experience, other parts has

emerged as an often-unstated collective view of those who work with computers.

There are rather fewer books covering this subject than I might have expected.

There is a very long reading list posted regularly on comp.software-eng,

but most of it clearly assumes that by the time things get down to actually writing

programs the reader will know from experience what to do. Despite the fact that it

is more concerned with team-work rather than individual programming I want to

direct you towards the Mythical Man Month[7], if only for the cover illustration of

the La Brea Tar Pits1 with the vision that programmers can become trapped just as

Figure 5.1: The La Brea tar pits.

the Ice Age mammoths and so on were. Brooks worked for IBM at a time that they

were breaking ground with the ambitious nature of their operating systems. The

analogous Microsoft experience is more up to date and can be found in Writing

1You may not be aware that the tar pits are in the middle of a thoroughly built-up part of

Los Angeles, and when visiting them you can try to imagine some of the local school-children

venturing too far and getting bogged down, thus luring their families, out for a week-end picnic,

to a sticky doom.

170 CHAPTER 5. DESIGNING AND TESTING PROGRAMS IN JAVA

Solid Code[18] which gives lots of advice that is clearly good way outside the

context of porting Excel between Windows and the Macintosh. If you read the

Solid Code book you will observe that it is concerned almost entirely with C, and

its examples of horrors are often conditioned by that. You should therefore let it

prompt you into thinking hard about where Java has made life safer than C and

where it has introduced new and different potential pitfalls.

For looking at programming tasks that are fairly algorithmic in style the book

by Dijkstra[10] is both challenging and a landmark. There are places where peo-

ple have collected together some of the especially neat and clever little programs

they have come across, and many of these indeed contain ideas or lessons that may

be re-cyclable. Such examples have come to be referred to as “pearls”[4][5]. Once

one has worked out what program needs to be written ideas (now so much in the

mainstream that this book is perhaps now out of date) can be found in one of the

big presentations by some of the early proponents of structured programming[19].

Stepping back and looking at the programming process with a view to estimating

programmer productivity and the reliability of the end product, Halstead[14] in-

troduced some interesting sorts of software metrics, which twenty years on are

still not completely free of controversy. All these still leave me feeling that there

is a gap between books that describe the specific detail of how to use one particular

programming language, and those concerned with large scale software engineer-

ing and project management. To date this gap has generally been filled by an ap-

prentice system where trainee programmers are invited to work on progressively

larger exercises and their output is graded and commented on by their superiors.

Much like it is done here! With this course I can at least provide some back-

ground thoughts that might help the apprentices start on their progression a little

more smoothly.

When I started planning a course covering this material it was not quite ob-

vious how much there was going to be for me to say that avoided recitations of

the blindingly obvious and that was also reasonably generally applicable. As I

started on the notes it became clear that there are actually a lot of points to be

covered. To keep within the number of lectures that I have and to restrict these

notes to a manageable bulk I am therefore restricting myself (mostly) to listing

points for consideration and giving as concrete and explicit recommendations as I

can: I am not including worked examples or lots of anecdotes that illustrate how

badly things can go wrong when people set about tasks in wrong-minded ways.

But perhaps I can suggest that as you read this document you imagine it expanded

into a very much longer presentation with all that additional supporting material

and with a few exercises at the end of each section. You can also think about all

the points that I raise in the context of the various programming exercises that you

are set or other practical work that you are involved with.

5.1. DIFFERENT SORTS OF PROGRAMMING TASKS 171

5.1 Different sorts of programming tasks

Java experience illustrates very clearly that there are several very different sorts of

activity all of which are informally refereed to as “programming”. On style of use

of Java — of great commercial importance — involves understanding all of the

libraries and stringing together uses of them to implement user interfaces and to

move data around. In such cases the focus is entirely on exploiting the libraries,

on human factors and on ensuring that the code’s behaviour agrees with the man-

ual or on-line documentation that its users will work from. At another extreme

come tasks that involve the design of many new data-structures and algorithmic

innovations in their use. Often in this second style of program there will also be

significant concern over efficiency.

Given that there are different sorts of software it might be reasonable to start

with a classification of possible sorts of program. There are three ways in which

this may help with development:

1. Different sorts of computer systems are not all equally easy to build. For

instance industrial experience has shown repeatedly that the construction of

(eg) an operating system is very much harder than building a (again eg) a

compiler even when the initial specifications and the amount of code to be

written seem very similar. Thinking about the category into which your par-

ticular problem falls can help you to plan time-scales and predict possible

areas of difficulty;

2. The way you go about a project can depend critically on some very high

level aspects of the task. A fuller list of possibilities is given below, but

two extreme cases might be (a) a software component for inclusion in a

safety-critical part of an aero-space application, where development budget

and timescale are subservient to an over-riding requirement for reliability,

and (b) a small program being written for fun as a first experiment with a

new programming language, where the program will be run just once and

nothing of any real important hands on the results. It would be silly to carry

forward either of the above two tasks using a mind-set tuned to the other:

knowing where one is on the spectrum between can help make the selection

of methodology and tools more rational;

3. I will make a point in these notes that program development is not some-

thing to be done in an isolated cell. It involves discussing ideas and progress

with others and becoming aware of relevant prior art. Thinking about the

broad area in which your work lies can help you focus on the resources

worth investigating. Often some of these will not be at all specific to the

172 CHAPTER 5. DESIGNING AND TESTING PROGRAMS IN JAVA

immediate description of what you are suppose to achieve but will con-

cerned with very general areas such as rapid prototyping, formal validation,

real-time responsiveness, user interfaces or whatever.

I will give my list of possible project attributes. These are in general not

mutually exclusive, and in all real cases one will find that these are not yes–no

choices but more like items to be scored from 1 to 10. I would like to think

of them as forming an initial survey that you should conduct before starting any

detailed work on your program just to set it in context. When you find one or

two of these scoring 9 or 10 out of 10 for relevance you know you have identified

something important that ought to influence how you approach the work. If you

find a project scores highly on lots of these items then you might consider trying

to wriggle out of having to take responsibility for it, since there is a significant

chance that it will be a disaster! The list here identifies potential issues, but does

not discuss ways of resolving them: in many cases the project features identified

here will just tell you which of the later sections in these notes are liable to be the

more important ones for your particular piece of work. The wording in each of

my descriptions will be intended to give some flavour of how severe instances of

the issue being discussed can cause trouble, so keep cheerful because usually you

will not be plunging in at the really deep end of the pool.

Ill-defined One of the most common and hardest situations to face up to is when

a computer project is not clearly specified. I am going to take this case to

include ones where there appears to be a detailed and precise specification

document but on close inspection the requirements as written down boil

down to “I don’t know much about computer systems but I know what I

like, so write me a program that I will like, please.” Clearly the first thing to

do in such a case is to schedule a sub-project that has the task of obtaining a

clear and concise description of what is really required, and sometimes this

will of itself be a substantial challenge;

Safety-critical It is presumably obvious that safety-critical applications need ex-

ceptional thought and effort put into their validation. But this need for reli-

ability is far from an all-or-nothing one, in that the reputation of a software

house (or indeed the grades obtained by a student) may depend on ensuring

that systems run correctly at least most of the time, and that their failure

modes appear to the user to be reasonable and soft. At the other extreme

it is worth noting that in cases where robustness of code and reliability of

results are not important at all (as can sometimes be the case, despite this

seeming unreasonable) that fact can be exploited to give the whole project a

much lighter structure and sometimes to make everything very much easier

to achieve. A useful question to ask is “Does this program have to work

5.1. DIFFERENT SORTS OF PROGRAMMING TASKS 173

correctly in all circumstances, or does it just need to work in most common

cases, or indeed might it be sufficient to make it work in just one carefully

chosen case?”

Large It is well established that as the size of a programming task increases the

amount of work that goes into it grows much more rapidly than the number

of lines of code (or whatever other simple measurement you like) does. At

various levels of task size it becomes necessary to introduce project teams,

extra layers of formal management and in general to move away from any

pretence that any single individual will have a full understanding of the

whole effort. If your task and the associated time-scales call for a team of

40 programmers and you try it on your own maybe you will have difficulty

finishing it off! Estimating the exact size that a program will end up or just

how long it will take to write is of course very hard, but identifying whether

it can be done by one smart programmer in a month or if it is a big team

project for five years is a much less difficult call to make.

Shifting sands If either project requirements or resources can change while soft-

ware development is under way then this fact needs to be allowed for. Proba-

ble only a tiny minority of real projects will be immune from this sort of dis-

traction, since even for apparently well-specified tasks it is quite usual that

experience with the working version of the program will lead to “wouldn’t

it be nice if . . . ” ideas emerging even in the face of carefully discussed and

thought out early design decisions that the options now requested would not

be supportable. Remember that Shifting Sands easily turn into Tar Pits!

Figure 5.2: The museum frieze at La Brea.

Urgent When are you expected to get this piece of work done? How firm is the

deadline? If time constraints (including the way that this project will com-

pete with other things you are supposed to do) represents a real challenge it

174 CHAPTER 5. DESIGNING AND TESTING PROGRAMS IN JAVA

is best to notice that early on. Note that if, while doing final testing on your

code, you find that it has a bug in it there may be no guarantee that you can

isolate or fix this to any pre-specified time-scale. This is because (at least

for most people!) there is hardly any limit to the subtlety of bugs and the

amount of time and re-work needed to remove them. If the delivery date

for code is going to be rigidly enforced (as is the case with CST final year

projects!) this fact may be important: even if there is plenty of the project

as a whole a rigid deadline can make it suddenly become urgent at the last

minute;

Unrealistic It is quite easy to write a project specification that sounds good, but is

not grounded in the real world. A program that modelled the stock markets

and thereby allowed you to predict how to manage your portfolio, or one to

predict winning numbers in the national lottery, or one to play world-class

chess. . . Now of course there are programs that play chess pretty well, and

lots of people have made money out of the other two projects (in one case

the statistics that one might apply is much easier than the other!), but the

desirability of the finished program can astonishingly often blind one to the

difficulties that would arise in trying to achieve it. In some cases a project

might be achievable in principle but is beyond either today’s technology or

this week’s budget, while in other cases the idea being considered might not

even realistic given unlimited budget and time-scales. There are of course

places where near-unreasonable big ideas can have a very valuable part to

play: in a research laboratory a vision of one of these (currently) unrealis-

tic goals can provide direction to the various smaller and better contained

projects that each take tiny steps towards the ideal. At present my favourite

example of something like this is the idea of nanotechnology with armies of

molecular-scale robots working together to build their own heirs and suc-

cessors. The standard example of a real project that many (most?) realistic

observers judged to be utterly infeasible was the “Star Wars” Strategic De-

fence Initiative, but note that at that sort of level the political impact of

even starting a project may be at least as important as delivery of a working

product!

Multi-platform It is a luxury if a program only has to work on a single fixed com-

puter system. Especially as projects become larger there is substantial extra

effort required to keep them able to work smoothly on many different sys-

tems. This problem can show up with simple issues such as word-lengths,

byte-arrangements in memory and compiler eccentricities, but it gets much

worse as one looks at windowed user interfaces, multi-media functions, net-

work drivers and support for special extra plug-in hardware;

5.1. DIFFERENT SORTS OF PROGRAMMING TASKS 175

Long life-time The easiest sort of program gets written one afternoon and is

thrown away the next day. It does not carry any serious long-term support

concerns with it. However other programs (sometimes still initially written

in little more than an afternoon) end up becoming part of your life and get

themselves worked and re-worked every few years. In my case the program

I have that has the longest history was written in around 1972 in Fortran,

based on me having seen one of that year’s Diploma dissertations and hav-

ing (partly unreasonably) convinced myself I could do better. The code was

developed on Titan, the then University main machine. I took it to the USA

with me when I spent a year there and tried to remove the last few bugs and

make it look nicer. When the University moved up to an IBM mainframe I

ran it on that, and at a much later stage I translated it (semi automatically)

into BBC basic and ran it (very slowly) on a BBC micro. By last year I had

the code in C with significant parts of the middle of it totally re-written, but

with still those last few bugs to find ways of working around. If I had been

able to predict when I started how long this would be of interest to me for

maybe I would have tried harder to get it right first time! Note the radical

changes in available hardware and sensible programming language over the

lifetime of this program;

User interface For programs like modern word processors there is a real chance

that almost all of the effort and a very large proportion of the code will go

into supporting the fancy user interface, and trying to make it as helpful

and intuitive as possible. Actually storing and editing the text could well

be fairly straight forward. When the smoothness of a user interface is a

serious priority for a project then the challenge of defining exactly what

must happen is almost certainly severe too, and in significant projects will

involve putting test users in special usability laboratories where their eye-

movement can be tracked by cameras and their key-strokes can be timed.

The fact that an interface provides lots of windows and pull-down menus

does not automatically make it easy to use;

Diverse users Many commercial applications need to satisfy multiple users with

diverse needs as part of a single coherent system. This can extend to new

computer systems that need to interwork seamlessly with multiple existing

operational procedures, including existing computer packages. Some users

may be nervous of the new technology, while others may find excessive

explanation an offensive waste of their time. The larger the number of in-

terfaces needed and the wider the range of expectations the harder it will be

to make a complete system deliver total satisfaction;

Speed critical Increasingly these days it makes sense to buy a faster computer if

176 CHAPTER 5. DESIGNING AND TESTING PROGRAMS IN JAVA

Figure 5.3: The search for speed can lead to eccentric-looking results.

some task seems to take a little longer than is comfortable. However there

remain some areas where absolute performance is a serious issue and where

getting the very best out of fixed hardware resources can give a competitive

edge. The case most in my mind at present is that of (high security) encryp-

tion, where the calculations needed are fairly demanding but where there

is real interest in keeping some control over the extra hardware costs that

user are expected to incur. If speed requirements lead to need for signifi-

cant assembly code programming (or almost equivalently to the design of

task-specific silicon) then the resource requirements of a project can jump

5.1. DIFFERENT SORTS OF PROGRAMMING TASKS 177

dramatically. If in the other hand speed is of no importance at all for some

task it may become possible to use a higher level programming system,

simpler data structures and algorithms and generally save a huge amount of

aggravation;

Real time Real-time responsiveness is characteristic of many control applica-

tions. It demands that certain external events be given a response within

a pre-specified interval. At first this sounds like a variant on tasks that are

just speed-critical, but the fine granularity at which performance is spec-

ified tends to influence the entire shape of software projects and rule out

some otherwise sensible approaches. Some multi-media applications and

video games will score highly in this category, as will engine management

software for cars and flight control software for airports;

Memory critical A programming task can be made much harder if you are tight

on memory. The very idea of being memory-limited can feel silly when we

all know that it is easy to go out and buy another 64 Mbytes for (currently)

of the order of £502. But the computer in your cell-phone will have an

amount of memory selected on the basis of a painful compromise between

cost (measured in pennies), the power drain that the circuitry puts on the

battery (and hence the expected battery life) and the set of features that can

be supported. And the software developers are probably give the memory

budget as a fixed quantity and invited to support as long a list of features as

is at all possible within it;

Add-on A completely fresh piece of software is entitled to define its own file

formats and conventions and can generally be designed and build without

too much hindrance. But next year the extension to that original package

is needed, or the new program is one that has to work gracefully with data

from other people’s programs. When building an add-on it is painfully often

the case that the existing software base is not very well documented, and that

the attempted new use of it reveals previously unknown bugs or limitations

in the core system. Thus the effort that will need to be put into the second

package may be much greater than would have been predicted based on

experience from the first;

Embedded If the computer you are going to program is one in an electric egg-

timer (or maybe a toy racing car, or an X-ray scanner) then testing may

involve be a quite different experience from that you become used to when

2Last year these notes indicates 16 Mbytes for £50! I may have rounded prices up and down

somewhat but still. . .

178 CHAPTER 5. DESIGNING AND TESTING PROGRAMS IN JAVA

debugging ordinary applications that run on standard work-stations. In par-

ticular it may become necessary to become something of an expert in the

hardware and electronics and also in the application area of the system

within which your code will be placed;

Tool-weak environment This is a follow-on from the “embedded” heading, in

that it is perhaps easiest the envisage an electric pop-up toaster where any-

thing that slowed down or enlarged the code being run would perturb system

timing enough to burn the toast, and where the target hardware is not auto-

matically equipped with printers and flashing lights that can be used to help

sense what is going on inside its CPU. For some such cases it is possible

to buy or build real-time emulators or to wire in extra probes into a debug-

gable version of the hardware. There are other cases where either technol-

ogy or budget mean that program development has to be done with a slow

turn-around on testing and with only very limited ability to discover what

happened when a bug surfaced. It is incredibly easy to simulate such a tool-

weak environment for yourself by just avoiding the effort associated with

becoming familiar with automated testing tools, debuggers and the like;

Novel One of the best and safest ways of knowing that a task is feasible is to

observe that somebody else did it before, and their version was at least more

or less satisfactory. The next best way is to observe that the new task is

really rather similar to one that was carried out successfully in the past. This

clearly leads to the obvious observation that if something is being attempted

and there are no precedents to rely on then it becomes much harder to predict

how well things will work out, and the chances of nasty surprises increases

substantially.

There are two sort of program not listed above which deserve special mention.

The first is the implementation of a known algorithm. This will usually end up as

a package or a subroutine rather than a complete free-standing program, and there

are plenty of algorithms that are complicated enough that programming them is

a severe challenge. However the availability of a clear target and well specified

direction will often make such programming tasks relatively tractable. It is how-

ever important to distinguish between programming up a complete and known

algorithm (easyish) from developing and then implementing a new one, and un-

comfortably often things that we informally describe as algorithms are in fact just

strategies, and lots of difficult and inventive fine detail has to be filled into make

them realistic.

The second special sort of program is the little throw-away one, and the recog-

nition that such programs can be lashed together really fast and without any fuss

5.2. ANALYSIS AND DESCRIPTION OF THE OBJECTIVE 179

is important, since it can allow one to automate other parts of the program devel-

opment task through strategic use of such bits of jiffy code.

5.2 Analysis and description of the objective

Sometimes a programming task starts with you being presented with a complete,

precise and coherent explanation of exactly what has to be achieved. When this

is couched in language so precise that there is not possible doubt about what is

required you might like to ask why you are being asked to do anything, since

almost all you need to do is to transcribe the specification into the particular syntax

of the (specified) programming language. Several of the Part IA tickable problems

come fairly close to this pattern, and there the reason you are asked to do them

is exactly so you get practical experience with the syntax of the given language

and the practical details of presenting programs to the computer. But that hardly

counts as serious programming!

Assuming that we are not in one of these artificial cases, it is necessary to

think about what one should expect to find in a specification and what does not

belong there. It is useful to discuss the sorts of language used in specifications,

and to consider who will end up taking prime responsibility for everything being

correct.

A place to start is with the observation that a specification should describe

what is wanted, rather than how the desired effect is to be achieved. This ideal can

be followed up rather rapidly by the observation that it is often amazingly difficult

to know what is really wanted, and usually quite a lot of important aspects of

the full list of requirements will be left implicit or as items where you have to

apply your own judgement. This is where it is useful to think back to the previous

section and decide what style of project was liable to be intended and where the

main pressure points are liable to be.

5.2.1 Important Questions

I have already given a check-list that should help work out what general class of

problem you are facing. The next stage is to try to identify and concentrate on

areas of uncertainty in your understanding of what has to be done. Furthermore

initial effort ought to go into understanding aspects of the problem that are liable

to shape the whole project: there is no point in agonising over cosmetic details

until the big picture has become clear. Probably the best way of sorting this out is

to imagine that some magic wand has been waved and it has conjured up a body

of code and documentation that (if the fairy really was a good one!) probably

does everything you need. However as a hard-headed and slightly cynical person

180 CHAPTER 5. DESIGNING AND TESTING PROGRAMS IN JAVA

you need to check it first. Deciding what you are going to look for to see if the

submitted work actually satisfied the project’s needs can let you make explicit a

lot of the previously slightly woolly expectations you might have. This viewpoint

moves you from the initial statement “The program must achieve X” a little closer

to “I must end up convinced that the program achieves X and here is the basis for

how that conviction might be carried”. Other things that might (or indeed might

not) reveal themselves at this stage are:

1. Is user documentation needed, and if so how detailed is it expected to be?

Is there any guess for how bulky the user manual will be?

2. How formal should documentation of the inner workings of the code be?

3. Was the implementation language to be used pre-specified, and if not what

aspects of the problem or environment are relevant to the choice?

4. Is the initial specification a water-tight one or does the implementer have to

make detailed design decisions along the way?

With regard to choice of programming language note that evidence from stud-

ies that have watched the behaviour of real programmers suggests that to a good

first approximation it is possible to deliver the same number of lines of working

documented code per week almost whatever language it is written in. A very

striking consequence of this is that languages that are naturally concise and which

provide built-in support for more of the high-level things you want to do can give

major boosts to productivity.

The object of all this thought is to lead to a proper specification of the task.

Depending on circumstances this may take one of a number of possible forms:

5.2.2 Informal specifications

Documents written in English, however pedantically phrased and however volu-

minous, must be viewed as informal specifications. Those who have a lot of spare

time might try reading the original description of the language C[16] where Ap-

pendix A is called a reference manual and might be expected to form a useful basis

for fresh implementations of the language. Superficially it looks pretty good, but

it is only when you examine the careful (though still “informal” in the current

context) description in the official ANSI standard[22] that it becomes clear just

how much is left unsaid in the first document. Note that ANSI C is not the same

language as that defined by Kernighan and Ritchie, and so the two documents just

mentioned can not be compared quite directly, and also be aware that spotting

and making clear places where specifications written in English are not precise

5.2. ANALYSIS AND DESCRIPTION OF THE OBJECTIVE 181

is a great skill, and one that some people enjoy exercising more than others do!

The description in section 5.18 is another rather more manageable example of an

informal textual specification. When you get to it you might like to check to see

what it tells you what to do about tabs and back-spaces, which are clearly charac-

ters that have an effect on horizontal layout. What? It fails to mention them? Oh

dear!

5.2.3 Formal descriptions

One response to the fact that almost all informal specifications are riddled with

holes (not all of which will be important: for instance it might be taken as under-

stood by all that messages that are printed so that they look like sentences should

be properly spelt and punctuated) has been to look for ways of using formal de-

scription languages. The ZED language (developed at Oxford3, and sometimes

written as just Z) is one such and has at times been taught in Software Engineer-

ing courses here. The group concerned with the development of the language ML

were keen to use formal mathematically-styled descriptive methods to define ex-

actly what ML ought to do in all possible circumstances. Later on in the CST

there are whole lecture courses on Specification and Verification and so I am not

going to give any examples here, but will content myself by observing that a good

grounding in discrete mathematics is an absolute pre-requisite for anybody think-

ing of working this way.

5.2.4 Executable specifications

One group of formal specification enthusiasts went off and developed ever more

powerful mathematical notations to help them describe tasks. Another group ob-

served that sometimes a careful description of what must be achieved looks a

bit like a program in a super-compact super-high-level programming language.

It may not look like a realistic program, in that it may omit lots of explana-

tion about how objectives should be achieved and especially how they should be

achieved reasonably efficiently. This leads to the idea of an executable specifica-

tion, through building an implementation of the specification language. This will

permitted to run amazingly slowly, and its users will be encouraged to go all out

for clarity and correctness. To give a small idea of what this might entail, consider

the job of specifying a procedure to sort some data. The initial informal spec-

ification might be that the output should be a re-ordering of the input such that

the values in the output be in non-descending order. An executable specification

might consist of three components. The first would create a list of all the different

3http://www.comlab.ox.ac.uk/oucl/prg.html

182 CHAPTER 5. DESIGNING AND TESTING PROGRAMS IN JAVA

permutations of the input. The second would be a procedure to inspect a list and

check to see if its elements were in non-descending order. The final part would

compose these to generate all permutations then scan through them one at a time

and return the first non-descending one found. This would not be a good practical

sorting algorithm, but could provide a basis for very transparent demonstrations

that the process shown did achieve the desired goal! It should be remembered that

an executable specification needs to be treated as such, and not as a model for how

the eventual implementation will work. A danger with the technique is that it is

quite easy for accidental or unimportant consequences of how the specification is

written to end up as part of the project requirements.

5.3 Ethical Considerations

Quite early on when considering a programming project you need to take explicit

stack of any moral or ethical issues that it raises. Earlier in the year you have

had more complete coverage of the problems of behaving professionally, so here

I will just give a quick check-list of some of the things that might give cause for

concern:

1. Infringement of other people’s intellectual property rights, be they patents,

copyright or trade secrets. Some companies will at least try to prevent others

from creating new programs that look too much like the original. When

licensed software is being used the implications of the license agreement

may become relevant;

2. Responsibility to your employer or institution. It may be that certain sorts

of work are contrary to local policy. For instance a company might not be

willing to permit its staff to politically motivated virtual reality simulations

using company resources, and this University has views about the commer-

cial use of academic systems;

3. A computing professional has a responsibility to give honest advice to their

“customer” when asked about the reasonableness or feasibility of a project,

and to avoid taking on work that they know they are not qualified to do;

4. It can be proper to take a considered stance against the development of

systems that are liable to have a seriously negative impact on society as a

whole. I have known some people who consider this reason to avoid any

involvement with military or defence-funded computing, while others will

object to technology that seems especially liable to make tracking, surveil-

lance or eavesdropping easier. Those of you with lurid imaginations can no

5.4. HOW MUCH OF THE WORK HAS BEEN DONE ALREADY? 183

doubt envisage plenty more applications of computers that might be seen as

so undesirable that one should if necessary quit a job rather than work on

them.

5.4 How much of the work has been done already?

The points that I have covered so far probably do not feel as if they really help you

get started when faced with a hard-looking programming task, although I believe

that working hard to make sure you really understand the specification you are

faced with is in fact always a very valuable process. From now onwards I move

closer to the concrete and visible parts of the programming task. The first question

to ask here is “Do I actually have to do this or has it been done before?”

There are three notable cases where something has been done before but it is

still necessary to do it again. Student exercises are one of these, and undue reliance

on the efforts of your predecessors is gently discouraged. Sometimes a problem

has been solved before, but a solution needs to be re-created without reference to

the original version because the original is encumbered with awkward commer-

cial4 restrictions or is not locally available. The final cause for re-implementation

is if the previous version of the program concerned was a failure and so much of a

mess that any attempt to rely on it would start the new project off in wrong-minded

directions.

Apart from these cases the best way to write any program at all is to adopt,

adapt and improve as much existing technology as you can! This can range from

making the very second program that you ever write a variation on that initial

“Hello World” example you were given through to exploiting existing large soft-

ware libraries. The material that can be reclaimed may be as minor as a bunch of

initial comments saying who you (the author) are and including space to describe

what the program does. It might just be some stylised “import” statements needed

at the head of almost any program you write. If you need a tree structure in today’s

program do you have one written last week which gives you the data type defini-

tion and some of the basic operations on trees? Have you been provided with a

collection of nice neat sample programs (or do you have a book or CD ROM with

some) that can help? Many programming languages are packaged with a fairly

extensive collection of chunks of sample code.

Most programming languages come with standardised libraries that (almost al-

ways) mean there is no need for you to write your own sorting procedure or code to

convert floating point values into or out of textual form. In many important areas

4Remember that if the restriction is in the form of a patent then no amount of re-implementation

frees you from obligations to the patent-owner, and in other cases you may need to be able to give a

very clear demonstration that your new version really has been created completely independently.

184 CHAPTER 5. DESIGNING AND TESTING PROGRAMS IN JAVA

there will be separate libraries that contain much much more extensive collections

of facilities. For instance numerical libraries (eg the one from NAG) are where

you should look for code to solve sets of simultaneous equations or to maximise

a messy function of several variables. When you need to implement a windowed

interface with pull-down menus and all that sort of stuff again look to existing

library code to cope with much of the low-level detail for you. Similarly for data

compression, arbitrary precision integer arithmetic, image manipulation. . .

Observing that there is a lot of existing support around does not make the

problem of program construction go away: knowing what existing code is avail-

able is not always easy, and understanding both how to use it and what constraints

must be accepted if it is used can be quite a challenge. For instance with the NAG

(numerical) library it may take beginners quite a while before they discover that

E04ACF (say, and not one of the other half-dozen closely related routines) is the

name of the function they need to call and before they understand exactly what

arguments to pass to it.

As well as existing pre-written code (either in source or library form) that

can help along with a new project there are also packages that write significant

bodies of code for you, basing what they do one on either a compact descriptive

input file or interaction with the user through some clever interface. The well-

established examples of this are the tools yacc and lex that provide a convenient

and reliable way of creating parsers. Current users of Microsoft’s Visual C++

system will be aware of the so-called “Wizards” that it provides that help create

code to implement the user interface you want, and there are other commercial

program generators in this and a variety of business application areas. To use one

of these you first have to know of its availability, and then learn how to drive it:

both of these may involve an investment of time, but with luck that will be re-paid

with generous interest even on your first real use. In some cases the correct use

of a program generation tool is to accept its output uncritically, while on other

occasions the proper view is to collect what it creates, study it and eventually

adjust the generated code until you can take direct responsibility for subsequent

support. Before deciding which to do you need to come to a judgement about the

stability and reliability of the program generator and how often you will need to

adjust your code by feeding fresh input in to the very start.

Another way in which existing code can be exploited is when new code is

written so that it converts whatever input it accepts into the input format for some

existing package, one that solves a sufficiently related problem that this makes

some sense. For instance it is quite common to make an early implementation

of a new programming language work by translating the new language into some

existing one and then feeding the translated version into an existing compiler. For

early versions of ML the existing language was Lisp, while for Modula 3 some

compilers work by converting the Modula 3 source into C. Doing this may result

5.5. WHAT SKILLS AND KNOWLEDGE ARE AVAILABLE? 185

in a complete compiler that is slower and bulkier than might otherwise be the case,

but it can greatly reduce the effort in building it.

5.5 What skills and knowledge are available?

Figure 5.4: Nancy Silverton’s bakery is in La Brea near the tar pits, and her book

(Bread from the La Brea Bakery) is unutterably wonderful. I like her chocolate-

cherry loaf. This photo is if the racks in her shop. Not much about Java I agree

but baking good bread is at least as important to know about as computing.

A balance needs to be drawn between working through a programming project

using only the techniques and tools that you already know and pushing it forward

using valuable but unfamiliar new methods. Doing something new may slow you

down substantially, but an unwillingness to accept that toll may lead to a very

pedestrian style of code development using only a limited range of idioms. There

is a real possibility that short-term expediency can be in conflict with longer term

productivity. Examples where this may feel a strain include use of formal meth-

ods, new programming languages and program generation tools. The main point

to be got across here is that almost everything to do with computers changes every

five years or so, and so all in the field need to invest some of their effort in con-

tinual personal re-education so that their work does not look too much as if it has

been chipped out using stone axes. The good news is that although detailed tech-

nology changes the skills associated with working through a significant project

should grow with experience, and the amount of existing code that an old hand

will have to pillage may be quite large, and so there is a reasonable prospect for

a long term future for those with skills in software design and construction. Re-

member that all the books on Software Engineering tell us that the competence of

186 CHAPTER 5. DESIGNING AND TESTING PROGRAMS IN JAVA

the people working on a project can make more difference to its success than any

other single factor.

It is useful to have a conscious policy of collecting knowledge about what

can be done and where to find the fine grubby details. For example the standard

textbook[9] contains detailed recipes for solving all sorts of basic tasks. Only

rarely will any one of these be the whole of a program you need to write, but quite

often a larger task will be able to exploit one or more of them. These and many of

the other topics covered in the CST are there because there is at least a chance that

they may occasionally be useful! It is much more important to know what can be

done than how to do it, because the how can always be looked up when you need

it.

5.6 Design of methods to achieve a goal

Perhaps the biggest single decision to be made when starting the detailed design

of a program is where to begin. The concrete suggestions that I include here are to

some extent caricatures; in reality few real projects will follow any of them totally

but all should be recognisable as strategies. The crucial issue is that it will not be

possible to design or write the whole of a program at once so it is necessary to

split the work into phases or chunks.

5.6.1 Top-Down Design

In Top Down Design work on a problem starts by writing a “program” that is just
one line long. Its text is:

{ solveMyProblem(); }

where of course the detailed punctuation may be selected to match the program-
ming language being used. At this stage it is quite reasonable to be very informal
about syntax. A next step will be to find some way of partitioning the whole task
into components. Just how these components will be brought into existence is at
present left in the air, however if we split things up in too unreasonable a way we
will run into trouble later on. For many simple programs the second stage could
look rather like:

/* My name, today’s date, purpose of program */

import Standard-libraries;

{

/* declare variables here */

data = readInData();

results = calculate(data);

5.6. DESIGN OF METHODS TO ACHIEVE A GOAL 187

displayResults(results);

}

The ideal is that the whole development of the program should take place in

baby-sized steps like this. At almost every stage there will be a whole collection

of worrying-looking procedures that remain undefined and not yet thought about,

such as Calculate above. It is critical not to worry too much about these,

because each time a refinement is made although the number of these unresolved

problems may multiply the expected difficulty of each will reduce. Well it had

better, since all the ones that you introduce should be necessary steps towards

the solution of your whole original task, and it makes sense to expect parts to be

simpler than the whole.

After a rather few steps in the top-down development process one should ex-

pect to have a fully syntactically correct main program that will not need any

alterations later as the low level details of the procedures that it calls get sorted

out. And each of the components that remain to be implemented should have

a clearly understood purpose (for choice that should be written down) and each

such component should be clearly separated from all the others. That is not to

say that the component procedures might not call each other or rely on what they

each can do, but the internal details of any one component should not matter to

any other. This last point helps focus attention on interfaces. In my tiny example

above the serious interfaces are represented by the variables data and results

which pass information from one part of the design to the next. Working out ex-

actly what must be captured in these interfaces would be generally need to be done

fairly early on. After enough stages of elaboration the bits left over from top-down

design are liable to end up small enough that you just code them up without need

to worry: anything that is trivial you code up, anything that still looks murky you

just apply one more expansion step to. With luck eventually the process ends.

There are two significant worries about top-down design. These are “How

do I know how to split the main task up?” and “But I can’t test me code until

everything is finished!”. Both of these are proper concerns.
Splitting a big problem up involves finding a strategy for solving it. Even

though this can be quite hard, it is almost always easier to invent a high-level idea
for how to solve a problem than it is to work through all the details, and this is
what top-down programming is all about. In many cases sketching on a piece of
paper what you would do if you had to solve the problem by hand (rather than
by computer) can help. Quite often the partition of a problem you make may end
up leading your design into some uncomfortable dead end. In that case you need
to look back and see which steps in your problem refinement represented places
where you had real choice and which ones were pretty much inevitable. It is then
necessary to go back to one of the stages where a choice was possible and to re-
think things in the light of your new understanding. To make this process sensible

188 CHAPTER 5. DESIGNING AND TESTING PROGRAMS IN JAVA

you should refuse to give up fleshing out one particular version of a top-down
design until you are in a position to give a really clear explanation of why the
route you have taken represents failure, because without this understanding you
will not know how far back you need to go in the re-planning. As an example
of what might go wrong, the code I sketched earlier here would end up being
wrongly structured if user interaction was needed, and that interaction might be
based on evaluation of partial results. To make that sort of interface possible it
might be necessary to re-work the design as (say)

/* My name, today’s date, purpose of program */

import Standard-libraries;

{

/* declare variables here */

/* set empty data and results */

while not finished do

{

extra = readInMoreData();

if (endOfUserInput(extra)) finished = true;

else

{

data = combine(data, extra);

results = upDateResults(results, data);

displaySomething(results);

}

}

displayFinalResults(results);

}

which is clearly getting messier! And furthermore my earlier and shorter version

looked generally valid for lots of tasks, while this one would need careful extra

review depending on the exact for of user interaction required.

There is a huge amount to be said in favour of being able to test a program as

it is built. Anybody who waits right to the end will have a dreadful mix of errors

at all possible levels of abstraction to try to disentagle. At first sight it seems that

top-down design precludes any early testing. This pessimism is not well founded.

The main way out is to write stubs of code that fill in for all the parts of your

program that have not yet been written. A stub is a short and simple piece of

code that takes the place of something that will later on be much more messy. It

does whatever is necessary to simulate some minimal behaviour that will make

it possible to test the code around it. Sometimes a stub will just print a warning

message and stop when it gets called! On other occasions one might make a stub

print out its parameters and wait for human intervention: it then reads something

back in, packages it up a bit and returns it as a result. The human assistant actually

5.6. DESIGN OF METHODS TO ACHIEVE A GOAL 189

did all the clever work.

There are two other attitudes to take to top-down design. One of these is to

limit it to design rather than implementation. Just use it to define a skeletal shape

for your code, and then make the coding and testing a separate activity. Obviously

this only makes sense when you have enough confidence that you can be sure that

the chunks left to be coded will in fact work out well. The final view is to think

of top-down design as an ideal to be retrofitted to any project once it is complete.

Even if the real work on a project went in fits and starts with lots of false trails

and confusion, there is a very real chance that it can be rationalised afterwards and

explained top-down. If that is done then it is almost certain that a clear framework

has been built for anybody who needs to make future changes to the program.

5.6.2 Bottom-Up Implementation

Perhaps you are uncertain about exactly what your program is going to do or how

it will solve its central problems. Perhaps you want to make sure that every line

of code you ever write is documented, tested and validated to death before you

move on from it and certainly before you start relying on it. Well these concerns

lead you towards a bottom-up development strategy. The idea here is to identify

a collection of smallish bits of functionality that will (almost) certainly be needed

as part of your complete program, and to start by implementing these. This avoids

having to thing about the hard stuff for a while. For instance a compiler-writer

might start by writing code to read in lines of program and discard comments,

or to build up a list of all the variable names seen. Somebody starting to write a

word processor might begin with pattern-matching code ready for use in search-

and-replace operations. In almost all large projects there are going to be quite a

few fundamental units of code that are obviously going to be useful regardless of

the high level structure you end up with.

The worry with bottom-up construction is that it does not correspond to having

any overall vision of the final result. That makes it all to easy to end up with a

collection of ill-co-ordinated components that do not quite fit together and that do

not really combine to solve the original problem. At the very least I would suggest

a serious bout of top-down design effort be done before any bottom-up work to

try to put an overall framework into place. There is also a clear prospect that some

of the units created during bottom-up work may end up not being necessary after

all so the time spend on them was wasted.

An alternative way of thinking about bottom-up programming can soften the

impact of these worries. It starts by viewing a programming language not just as a

collection of fragments of syntax, but as a range of ways of structuring data and of

performing operations upon it. The fact that some of these operations happen to be

hard-wired into the language (as integer arithmetic usually is) while others exist as

190 CHAPTER 5. DESIGNING AND TESTING PROGRAMS IN JAVA

collections of subroutines (floating point arithmetic on 3000-digit numbers would

normally be done that way) is of secondary importance. Considered this way each

time you define a new data type or write a fresh procedure you have extended and

customised your programming language by giving it support for something new.

Bottom-up programming can then be seen as gradually building layer upon layer

of extra support into your language until it is rich in the operations most important

in your problem area. Eventually one then hopes that the task that at first had

seemed daunting becomes just half a dozen lines in the extended language. If

some of the procedures built along the way do not happen to be used this time,

they may well come in handy the next time you have to write a program in the

same application area, so the work they consumed has not really been wasted

after all. The language Lisp is notable for having sustained a culture based on this

idea of language extension.

5.6.3 Data Centred Programming

Both top-down and bottom-up programming tend to focus on what your program

looks like and the way in which it is structured into procedures. An alternative is

to concentrate not on the actions performed by the code but on the way in which

data is represented and the history of transformations that any bit of data will be

subject to. These days this idea is often considered almost synonymous with an

Object Oriented approach where the overall design of the class structure for a pro-

gram is the most fundamental feature that it will have. Earlier (and pre-dating the

widespread use of Object Oriented languages) convincing arguments for design

based on the entities that a program must manipulate or model come from Jackson

Structured Programming and Design[8]. More recently SSADM[3] has probably

become one of the more widespread design and specification methodologies for

commercial projects.

5.6.4 Iterative Refinement

My final strategy for organising the design of a complete program does not even

expect to complete the job in one session. It starts by asking how the initial prob-

lem can be restricted or simplified to make it easier to address. And perhaps it

will spot how the most globally critical design decisions for the whole program

could me made in two or three different ways, with it hard to tell in advance which

would work out best in the end. The idea is then to start with code for a scruffy

mock-up of a watered down version of the desired program using just one of these

sets of design decisions. The time and effort needed to write a program grows

much faster then linearly with the size of the program: the natural (but less obvi-

ous) consequence of this is that writing a small program can be much quicker and

5.7. HOW DO WE KNOW IT WILL WORK? 191

easier than completing the full version. It may in some cases make sense even to

write several competing first sketches of the code. When the first sketch version

is working it is possible to step back and evaluate it, to see if its overall shape is

sound. When it has been adjusted until it is structurally correct, effort can go into

adding in missing features and generally upgrading it until it eventually gets trans-

formed into the beautiful butterfly that was really wanted. Of all the methods that

I have described this is the one that comes closest to allowing for “experimental”

programming. The discipline to adhere to is that experiments are worthy of that

tag if the results from them can be evaluated and if something can thus be learned

from them.

5.6.5 Which of the above is best?

The “best” technique for getting a program written will depend on its size as well

as its nature. I think that puritanical adherence to any of the above would be unrea-

sonable, and I also believe that inspiration and experience (and good taste) have

important roles to play. However if pushed into an opinion I will vote for present-

ing a design or a program (whether already finished or still under construction)

as if it were prepared top-down, with an emphasis on the early design of what

information must be represented and where it must pass from one part of the code

to another.

5.7 How do we know it will work?

Nobody should ever write a program unless they have good reason to believe that

it ought to work. It is of course proper to recognise that it will not work, because

typographic errors and all sorts of oversights will ensure that. But the code should

have been written so that in slightly idealised world where these accidental imper-

fections do not exist it would work perfectly. Blind and enthusiastic hope is not

sufficient to make programs behave well, and so any proper design needs to have

lurking behind it the seeds of a correctness proof. In easy-going times this can re-

main untended as little comments that can just remind you of your thinking. When

a program starts to get troublesome it can be worth growing these comments into

short essays that explain what identities are being preserved intact across regions

of code, why your loops are guaranteed to terminate and what assumptions about

data are important, and why. In yet more demanding circumstances it can become

necessary to conduct formal validation procedures for code.
The easiest advice to give here is that before you write even half a dozen

lines of code you should write a short paragraph of comment that explains what
the code is intended to achieve and why your method will work. The comment

192 CHAPTER 5. DESIGNING AND TESTING PROGRAMS IN JAVA

should usually not explain how it works (the code itself is all about “how”), but
why. To try to show that I (at least sometimes!) follow this advice here is a short
extract from one of my own5 programs. . .

/*

* Here is a short essay on the interaction between flags

* and properties. It is written because the issue appears

* to be delicate, especially in the face of a scheme that

* I use to speed things up.

* (a) If you use FLAG, REMFLAG and FLAGP with some

* indicator then that indicator is known as a flag.

* (b) If you use PUT, REMPROP and GET with an indicator

* then what you have is a property.

* (c) Providing the names of flags and properties are

* disjoint no difficulty whatever should arise.

* (d) If you use PLIST to gain direct access to property

* lists then flags are visible as pairs (tag . t) and

* properties as (tag . value).

* (e) Using RPLACx operations on the result of PLIST may

* cause system damage. It is considered illegal.

* Also changes made that way may not be matched in

* any accelerating caches that I keep.

* (f) After (FLAG ’(id) ’tag) [when id did not previously

* have any flags or properties] a call (GET ’id ’tag)

* will return t.

* (g) After (PUT ’id ’tag ’thing) a call (FLAGP ’id

* ’tag) will return t whatever the value of "thing".

* A call (GET ’id ’tag) will return the saved value

* (which might be nil). Thus FLAGP can be thought of

* as a function that tests if a given property is

* attached to a symbol.

* (h) As a consequence of (g) REMPROP and REMFLAG are

* really the same operation.

*/

Lisp_Object get(Lisp_Object a, Lisp_Object b)

{

Lisp_Object pl, prev, w, nil = C_nil;

int n;

/*

5This happens to be written in C rather than Java, but since most of it is comment maybe that

does not matter too much.

5.7. HOW DO WE KNOW IT WILL WORK? 193

* In CSL mode plists are structured like association

* lists, and NOT as lists with alternate tags and values.

* There is also a bitmap that can provide a fast test for

* the presence of a property...

*/

if (!symbolp(a))

{

#ifdef RECORD_GET

record_get(b, NO);

errexit();

#endif

return onevalue(nil);

}

... etc etc

The exact details of what I am trying to do are not important here, but the evidence

of mind-clearing so that there is a chance to get the code correct first time is. Note

how little the comment before the procedure has to say about low-level implemen-

tation details, but how much about specifications, assumptions and limitations.

I would note here that typing a program in is generally one of the least time-

consuming parts of the whole programming process, and these days disc storage is

pretty cheap, and thus various reasons which in earlier days may have discouraged

layout and explanation in code no longer apply.

Before trying code and as a further check that it ought to work it can be useful

to “walk through” the code. In other words to pretend to be a computer executing

it and see if you follow the paths and achieve the results that you were supposed

to. While doing this it can be valuable to think about which paths through the

code are common and which are not, since when you get to testing it may be that

the uncommon paths do not get exercised very much unless you take special steps

to cause them to be activated.

The “correctness” that you will be looking for can be at several different lev-

els. A partially correct program is one that can never give an incorrect answer.

This sounds pretty good until you recognise that there is a chance that it may just

get stuck in a loop and thereby never give any answer at all! It is amazingly often

much easier to justify that a program is partially correct than to go the whole hog

and show it is correct, ie that not only is it partially correct but that it will always

terminate. Beyond even the requirements of correctness will be performance de-

mands: in some cases a program will need not only to deliver the right answers

but to meet some sort of resource budget. Especially if the performance target is

specified as being for performance that is good “on the average” it can be dread-

fully hard to prove, and usually the only proper way to start is by designing and

justifying algorithms way before any mention of actual programming arises.

194 CHAPTER 5. DESIGNING AND TESTING PROGRAMS IN JAVA

A final thing to check for is the possibility that your code can be derailed by

unhelpful erroneous input. For instance significant security holes in operating

systems have in the past been consequences of trusted modules of code being too

trusting of their input, and them getting caught out by (eg) input lines so long that

internal buffers overflowed thereby corrupting adjacent data.

The proper mind-set to settle in to while designing and starting to implement

code is pretty paranoid: you want the code to deliver either a correct result or a

comprehensible diagnostic whenever anything imaginable goes wrong in either

the data presented to it or its own internal workings. This last statement leads

to a concrete suggestion: make sure that the code can test itself for sanity and

correctness every so often and insert code that does just that. The assertions that

you insert will form part of your argument for why the program is supposed to

work, and can help you (later on) debug when it does not.

5.8 While you are writing the program

Please remember to get up and walk around, to stretch, drink plenty of water,

sit up straight and all the other things mentioned at the Learning Day as relevant

occupational health issues. My experience is that it is quite hard to do effective

programming in 5 minute snippets, but that after a few hours constant work pro-

ductivity decreases. A pernicious fact is that you may not notice this decrease at

the time, in that the main way in which a programmer can become unproductive

is by putting more bugs into a program. It is possible to keep churning out lines of

code all through the night, but there is a real chance that the time you will spend

afterwards trying to mend the last few of them will mean that the long session did

not really justify itself.

In contrast to programming where long sessions can do real damage (because

of the bugs that can be added by a tired programmer) I have sometimes found that

long sessions have been the only way I can isolate bugs. Provided I can discipline

myself not to try to correct anything but the very simplest bug while I am tired

a long stretch can let me chase bugs in a painstakingly logical way, and this is

sometimes necessary when intuitive bug-spotting fails.

Thus my general advice about the concrete programming task would be to

schedule your time so you can work in bursts of around an hour per session, and

that you should plan your work so that as much as possible of everything you

do can be tested fairly enthusiastically while it is fresh in your mind. A natural

corollary of this advice is that projects should always be started in plenty of time,

and pushed forward consistently so that no last-minute panic can arise and force

sub-optimal work habits.

5.9. DOCUMENTING A PROGRAM OR PROJECT 195

5.9 Documenting a program or project

Student assessed exercises are expected to be handed in complete with a brief

report describing what has been done. Larger undergraduate projects culminate in

the submission of a dissertation, as do PhD studies. All commercial programming

activities are liable to need two distinct layers of documentation: one for the user

and one for the people who will support and modify the product in the future.

All these facts serve to remind us that documentation is an intrinsic part of any

program.

Two overall rules can guide the writing of good documentation. The first is

to consider the intended audience, and think about what they need to know and

how your document can be structured to help them find it. The second is to keep a

degree of consistency and order to everything: documents with a coherent overall

structure are both easier to update and to browse than sets of idiosyncratic jottings.

To help with the first of these, here are some potential styles of write-up that

might be needed:

1. Comments within the code to remind yourself or somebody who is already

familiar with the program exactly what is going on at each point in it;

2. An overview of the internal structure and organisation of the whole program

so that somebody who does not already know it can start to find their way

around;

3. Documentation intended to show how reliable a program is, concentrating

on discussions of ways in which the code has been built to be resilient in the

face of unusual combinations of circumstance;

4. A technical presentation of a program in a form suitable for publication in a

journal or at a conference, where the audience will consist of people expert

in the general field but not aware of exactly what your contribution is;

5. An introductory user manual, intended to make the program usable even by

the very very nervous;

6. A user reference manual, documenting clearly and precisely all of the op-

tions and facilities that are available;

7. On-line help for browsing by the user while they are trying to use the pro-

gram;

8. A description of the program suitable for presentation to the venture capi-

talists who are considering investing in the next stage of its development.

196 CHAPTER 5. DESIGNING AND TESTING PROGRAMS IN JAVA

It seems inevitable that the above list is not exhaustive, but my guess is that

most programs could be presented in any one of the given ways, and the resulting

document would be quite different in each case. It is not that one or the other of

these styles is inherently better or more important than another, more that if you

write the wrong version you will either not serve your reader well or you will find

that you have had to put much more effort into the documentation than was really

justified.

A special problem about documentation is that of when it should be written.

For small projects at least it will almost always be produced only after the program

has been (at least nearly) finished. This can be rationalised by claiming “how can

I possibly document it before it exists?”

I will argue here for two ideals. The first is that documentation ought to fol-

low on from design and specification work, but precede detailed programming.

The second is that the text of the documentation should live closely linked to the

developing source code. The reasoning behind the first of these is that writing

the text can really help to ensure that the specification of the code has been fully

thought through, and once it is done it provides an invaluable stable reference to

keep the detailed programming on track. The second point recognises some sort

of realism, and that all sorts of details of just what a program does will not be

resolved until quite late in the implementation process. For instance the exact

wording of messages that are printed will often not be decided until then, and it

will certainly be hard to prepare sample transcripts from the use of the program

ahead of its completion6. Thus when the documentation has been written early it

will need completing when some of these final details get settled and correcting

when the code is corrected or extended. The most plausible way of making it

feasible to keep code and description in step is to keep them together. The con-

cept of Literate Programming[17] pursues this goal. A program is represented as

a composite file that can be processed in (at least) two different ways. One way

“compiles” it to create typeset-quality human readable documentation, while the

other leaves just statements in some quite ordinary programming language ready

to be fed into a compiler. This goes beyond just having copious comments in the

code in two ways. Firstly it expects that the generated documentation should be

able to exploit the full range of modern typography and that it can include pic-

tures or diagrams where relevant. It is supposed to end up as cleanly presented

and readable as any fully free-standing document could ever be. Secondly Literate

Programming recognises that the ordering and layout of the program that has to

be compiled may not be the same as that in the ideal manual, and so the disentan-

gling tool needs to be able to rearrange bits of text in a fairly flexible way so that

description can simultaneously be thought of as close to the code it relates to and

6Even though these samples can be planned and sketched early.

5.10. HOW DO WE KNOW IT DOES WORK? 197

to the section in the document where it belongs. This idea was initially developed

as part of the project to implement the TEX typesetting program that is being used

to prepare these lecture notes.

5.10 How do we know it does work?

Figure 5.5: Many people think that their work is over well before it actually is.

A conceptual difficulty that many people suffer from is a confusion between

whether a program should work and whether it does. A program should work if

it has been designed so that there are clear and easily explained reasons why it

can achieve what it should. Sometimes the term “easily explained” may conceal

the mathematical proof of the correctness of an algorithm, but at least in theory it

198 CHAPTER 5. DESIGNING AND TESTING PROGRAMS IN JAVA

would be possible to talk anybody through the justification. As to programs that

actually do work, well the reality seems to be that the only ones of these that you

will ever see will be no more than around 100 lines long: empirically any program

much longer than that will remain flawed even after extensive checking. Proper

Oriental rugs will always have been woven with a deliberate mistake in them,

in recognition of the fact that only Allah is perfect. Experience has shown very

clearly indeed that in the case of writing programs we all have enough failings

that there is no great need to insert extra errors — there will be plenty inserted

however hard we try to avoid them. Thus (at least at the present state of the art)

there is no such thing as a (non-trivial) program that works.

If, however, a program should work (in the above sense) then the residual

errors in it will be ones that can be corrected without disturbing the concepts

behind it or its overall structure. I would like to think of such problems as “little

bugs”. The fact that they are little does not mean that they might not be important,

in that missing commas or references to the wrong variable can cause aeroplanes

to crash just as convincingly as can errors at a more conceptual level. But the

big effort must have been to get to a first testable version of your code with only

little bugs left in it. What is then needed is a testing strategy to help locate as

many of these as possible. Note of course that testing can only ever generate

evidence for the presence of a bug: in general it can not prove absence. But

careful and systematic testing is something we still need whenever there has been

human involvement in the program construction process7.

The following thoughts may help in planning a test regime:

1. Even obvious errors in output can be hard to notice. Perhaps human society

has been built up around a culture of interpreting slightly ambiguous input

in the “sensible” way, and certainly we are all very used to seeing what we

expect to see even when presented with something rather different. By the

time you see this document I will have put some effort into checking its

spelling, punctuation, grammar and general coherence, and I hope that you

will not notice or be upset by the residual mistakes. But anybody who has

tried serious proof-reading will be aware that blatant mistakes can emerge

even when a document has been checked carefully several times;

2. If you are checking your own code and especially if you know you can

stop work once it is finished then you have a clear incentive not to notice

mistakes. Even if a mistake you find is not going to cause you to have to

spend time fixing it it does represent you having found yet another instance

of your own lack of attention, and so it may not be good for your ego;

7Some see this observation as a foundation for hope for the future

5.10. HOW DO WE KNOW IT DOES WORK? 199

3. It is very desirable to make a clear distinction between the job of testing a

program to identify the presence of bugs and the separate activity of correct-

ing things. It can be useful to take the time to try to spot as many mistakes

as you can before changing anything at all;

4. A program can contain many more bugs and oddities than your worst night-

mares would lead you to believe!

5. Testing strategies worked out as part of the initial design of a program are

liable to be better than ones invented only once code has been completed;

6. It can be useful to organise explicit test cases for extreme conditions that

your program may face (eg sorting data where all the numbers to be sorted

have the same value), and to collect test cases that cause each path through

your code to be exercised. It is easy to have quite a large barrage of test

cases but still have some major body of code unvisited.

7. Regressions tests are a good thing. These are test cases that grow up during

project development, and at each stage after any change is made all of them

are re-run, and the output the produce is checked. When any error is de-

tected a new item in the regression suite is prepared so that there can remain

a definite verification that the error does not re-appear at some future stage.

Automating the application of regression tests is a very good thing, since

otherwise laziness can too easily cause one to skip running them;

8. When you find one bug you may find that its nature gives you ideas for other

funny cases to check. You should try to record your thoughts so that you do

not forget this insight;

9. Writing extra programs to help you test your main body of code is often a

good investment in time. On especially interesting scheme is to generate

pseudo-random test cases. I have done that while testing a polynomial fac-

torising program and suffered randomly-generated tests of a C compiler I

was involved with, and in each case the relentless random coverage of cases

turned out to represent quite severe stress;

10. You do not know how many bugs your code has in it, so do not know when

to stop looking. One theoretical way to attack this worry would be to get

some fresh known bugs injected into your code before testing, and then see

what proportion of the bugs found were the seeded-in ones and which had

been original. That may allow you to predict the total bug level remaining.

Having detected some bugs there are several possible things to do. One is to sit

tight and hope that nobody else notices! Another is to document the deficiencies

200 CHAPTER 5. DESIGNING AND TESTING PROGRAMS IN JAVA

at the end of your manual. The last is to try to correct some of them. The first

two of these routes are more reasonable than might at first seem proper given that

correcting bugs so very often introduces new ones.

In extreme cases it may be that the level of correctness that can be achieved

by bug-hunting will be inadequate. Sometimes it may then be possible to attempt

a formal proof of the correctness of your code. In all realistic circumstances this

will involve using a large and complicated proof assistant program to help with all

the very laborious details involved. Current belief is that it will be very unusual

for bugs in the implementation of this tool to allow you to end up with a program

that purports to be proved but which in fact still contains mistakes!

5.11 Is it efficient?

I have made this a separate section from the one on detecting the presence of

errors because performance effects are only rarely the result of simple oversights.

Let me start by stressing the distinction between a program that is expensive to

run (eg the one that computes π to 20,000,000,000 decimal places) and ones that

are inefficient (eg one that takes over half a second to compute π correct to four

places). The point being made is that unless you have a realistic idea of how long a

task ought to take it is hard to know if your program is taking a reasonable amount

of time. And similarly for memory requirements, disc I/O or any other important

resource. Thus as always we are thrown back to design and specification time

predictions as our only guideline, and sometimes even these will be based on little

more than crude intuition.

If a program runs fast enough for reasonable purposes then there may be no

benefit in making it more efficient however much scope for improvement there is.

In such cases avoid temptation. It is also almost always by far best to concentrate

on getting code correct first and only worry about performance afterwards, taking

the view that a wrong result computed faster is still wrong, and correct results may

be worth waiting for.

When collecting test cases for performance measurements it may be useful

to think about whether speed is needed in every single case or just in most cases

when the program is run. It can also be helpful to look at how costs are expected to

(and do) grow as larger and larger test cases are attempted. For most programming

tasks it will be possible to make a trade between the amount of time a program

takes to run and the amount of memory it uses. Frequently this shows up in a

decision as to whether some value should be stored away in case it is needed

later or whether any later user should re-calculate it. Recognising this potential

trade-off is part of performance engineering.

For probably the majority of expensive tasks there will be one single part of the

5.12. IDENTIFYING ERRORS 201

entire program that is responsible for by far the largest amount of time spent. One

would have expected that it would always be easy to predict ahead of time where

that would be, but it is not! For instance when an early TITAN Fortran compiler

was measured in an attempt to discover how it could be speeded up it was found

that over half of its entire time was spent in a very short loop of instructions that

were to do with discarding trailing blanks from the end of input lines. Once the

programmers knew that it was easy to do something about it, but one suspects

they were expecting to find a hot-spot in some more arcane part of the code. It

is thus useful to see if the languages and system you use provide instrumentation

that makes it easy to collect information to reveal which parts of your code are

most critical. If there are no system tools to help you you may be able to add in

time-recording statements to your code so it can collect its own break-down to

show what is going on. Cunning optimisation of bits of code that hardly ever get

used is probably a waste of effort.

Usually the best ways to gain speed involve re-thinking data structures to pro-

vide cheap and direct support for the most common operations. This can some-

times mean replacing a very simple structure by one that has huge amounts of al-

gorithmic complexity (there are examples of such cases in the Part IB Complexity

course and the Part II one on Advanced Algorithms). In almost all circumstances

a structural improvement that gives a better big-O growth rate for some critical

cost is what you should seek.

In a few cases the remaining constant factor improvement in speed may still

be vital. In such cases it may be necessary to re-write fragments of your code in

less portable ways (including the possibility of use of machine code) or do other

things that tend to risk the reliability of your package. The total effort needed to

complete a program can increase dramatically as the last few percent in absolute

performance gets squeezed out.

5.12 Identifying errors

Section 5.7 was concerned with spotting the presence of errors. Here I want to talk

about working out which part of your code was responsible for them. The sections

are kept separate to help you to recognise this, and hence to allow you to separate

noticing incorrect behaviour from spotting mistakes in your code. Of course if,

while browsing code, you find a mistake you can work on from it to see if it can

ever cause the program to yield wrong results, and this study of code is one valid

error-hunting activity. But even in quite proper programs it is possible to have

errors that never cause the program to misbehave in any way that can be noticed.

For instance the mistake might just have a small effect on the performance of

some not too important subroutine, or it may be an illogicality that could only

202 CHAPTER 5. DESIGNING AND TESTING PROGRAMS IN JAVA

be triggered into causing real trouble by cases that some earlier line of code had

filtered out.

You should also recognise that some visible bugs are not so much due to any

single clear-cut error in a program but to an interaction between several parts of

your code each of which is individually reasonable but which in combination fail.

Most truly serious disasters caused by software failure arise because of compli-

cated interactions between multiple “improbable” circumstances.

The first thing to try to locate the cause of an error is to start from the original

test case that revealed it and to try to refine that down to give a minimal clear-cut

demonstration of the bad behaviour. If this ends up small enough it may then be

easy to trace through and work out what happened.

Pure thought and contemplation of your source code is then needed. Decide

what Sherlock Holmes would have made of it! Run your compilers in whatever

mode causes them to give as many warning messages as they are capable of, and

see if any of those give valuable clues. Check out the assert facility and place

copious assertions in your program that verify that all the high level expectations

you have are satisfied.

If this fails the next thought is to arrange to get a view on the execution of

your code as it makes its mistake. Even when clever language-specific debuggers

are available it will often be either necessary or easiest to do this by extra print

statements into your code so it can display a trace of its actions. There is a great

delicacy here. The trace needs to be detailed enough to allow you to spot the first

line in it where trouble has arisen, but concise enough to be manageable. My

belief is that one should try to judge things so that the trace output from a failing

test run is about two pages long.

There are those who believe that programs will end up with the best reliability

if they start off written in as fragile way as possible. Code should always make as

precise a test as possible, and should frequently include extra cross checks which,

if failed, cause it to give up. The argument is that this way a larger number of

latent faults will emerge in early testing, and the embedded assertions can point

the programmer directly to the place where an expectation failed to be satisfied,

which is at least a place to start working backwards from in a hunt for the actual

bug.

5.12. IDENTIFYING ERRORS 203

Figure 5.6: Effective debugging calls for great skill.

204 CHAPTER 5. DESIGNING AND TESTING PROGRAMS IN JAVA

With many sorts of bugs it can be possible to home in on the difficulty by some

sort of bisection search. Each test run should be designed to halve the range of

code within which the error has been isolated.

Some horrible problems seem to vanish as soon as you enable any debugging

features in your code or as soon as you insert extra print statements into it. These

can be amazingly frustrating! They may represent your use of an unsafe language

and code that writes beyond the limit of an array, or they could involve reliance on

the unpredictable value of an un-initialised variable. Sometimes such problems

turn out to be bugs in the compiler you are using, not in your own code. I believe

that I have encountered trouble of some sort (often fairly minor, but trouble nev-

ertheless) with every C compiler I have ever used, and I have absolute confidence

that no other language has attained perfection in this regard. So sometimes trying

your code on a different computer or with a different compiler will either give you

a new diagnostic that provides the vital clue, or will behave differently thereby

giving scope for debugging-by-comparison.

Getting into a panic and trying random changes to your code has no proper

part to play either in locating or identifying bugs.

5.13 Corrections and other changes

With a number of bugs spotted and isolated the time comes to extirpate them. The

ideal should be that when a bug is removed it should be removed totally and it

should never ever be able to come back. Furthermore its friends and offspring

should be given the same treatment at the same time, and of course no new mis-

takes should be allowed to creep in while the changes are being made. This last

is often taken for granted, but when concentrating on one particular bug it is all

too easy to lose sight of the overall pattern of code and even introduce more new

bugs than were being fixed in the first case. Regression testing is at least one line

of defence that one should have against this, but just taking the correction slowly

and thinking through all its consequences what is mostly wanted. Small bugs (in

the sense discussed earlier) that are purely local in scope give fewest problems.

However sometimes testing reveals a chain of difficulties that must eventually be

recognised as a sign that the initial broad design of the program had been incor-

rect, and that the proper correction strategy does not involve fixing the problems

one at a time but calls for an almost fresh start on the whole project. I think that

would be the proper policy for the program in section 5.18, and that is part of why

the exercise there asks you to identify bugs but not to correct them.

Upgrading a program to add new features is at least as dangerous as correcting

bugs, but in general any program that lasts for more than a year or so will end up

with a whole raft of alterations having been made to it. These can very easily

5.14. PORTABILITY OF SOFTWARE 205

damage its structure and overall integrity, and the effect can be thought of as a

form of software rot that causes old code to decay. Of course software rot would

not arise if a program never needed correcting and never needed upgrading, but

in that case the program was almost certainly not being used and was fossilised

rather than rotting. Note that for elderly programs the person who makes correc-

tions is never the original program author (even if they have the same name and

birthday, the passage of time has rendered them different). This greatly increases

the prospect of a would-be correction causing damage.

All but the most frivolous code should be kept under the control of some source

management tool (perhaps rcs) that can provide an audit trail so that changes can

be tracked. In some cases a discussion of a bug that has now been removed might

properly remain as a comment in the main source code, but much more often a

description of what was found to be wrong and what was changed to mend it

belongs in a separate project log. After all if the bug really has been removed who

has any interest in being reminded of the mistake that it represented?

Whenever a change is made to a program, be it a bug-fix or an upgrade, there

is a chance that some re-work will be needed in documentation, help files, sample

logs and of course the comments. Once again the idea of literate programming

comes to the fore in suggestion that all these can be kept together.

5.14 Portability of software

Most high level languages make enthusiastic claims that programs written in them

will be portable from one brand of computer to another, just as most make claims

that their compilers are “highly optimising”. Java makes especially strong claims

on this front, and its owners try rather hard to prevent anybody from diverging

from a rigid standard. However even in this case there are differences between

Java 1.0 and 1.1 (and no doubt 1.2) that may cause trouble to the unwary.

In reality achieving portability for even medium sized programs is not as easy

as all that. To give a gross example of a problem not addressed at all by program-

ming language or standard library design, a Macintosh comes as standard with

a mouse with a single button, while most Unix X-windows systems have three-

button mice. In one sense the difference is a frivolity, but at another it invites a

quite substantial re-think of user interface design. At the user interface level a de-

sign that makes good use of a screen with 640 by 480 pixels and 16 or 256 colours

(as may be the best available on many slightly elderly computers) may look silly

on a system with very much higher resolution and more colours.

For most programming languages you will find that implementations provided

by different vendors do not quite match. Even with the most standardised lan-

guages hardly any compiler supplier will manage to hold back from providing

206 CHAPTER 5. DESIGNING AND TESTING PROGRAMS IN JAVA

some private extra goodies that help distinguish them from their competitors. Such

extras will often be things that it is very tempting to make use of. Around 1997-8

a good example of such a feature is “Active-X” which Microsoft is promoting. To

use such a feature tends to lock you to one vendor or platform, while to ignore it

means that you can not benefit from the advantages that it brings. By now you will

know what my suggested response to conflicts like this will be. Yes, it is to make

your decisions explicitly and consciously rather than by default, to make them in

view of stated ideas about what the users of your code will need, and to include

all the arguments you use to support your decision in your design portfolio.

There are frequently clever but non-portable tricks that can lead to big perfor-

mance gains in code but at cost in portability. Sometimes the proper response to

these is to have two versions of the program, one slow but very portable and the

other that takes full advantage of every trick available on some platform that is

especially important to you.

5.15 Team-work

Almost all of this course is about programming in the small, with a concentration

on the challenges facing a lone programmer. It is still useful to think for a while

how to handle the transition from this state into a large-team corporate mentality.

One of the big emotional challenges in joining a team relates to the extent to

which you end up “owning” the code you work on. It is very easy to get into a

state where you believe (perhaps realistically) that you are the only person who

can properly do anything to the code you write. It is also easy to become rather

defensive about your own work. A useful bit of jargon that refers to breaking out

of these thought patterns is ego-free programming. In this ideal you step back and

consider the whole project as the thing you are contributing to, not just the part

that you are visibly involved in implementing. It may also be useful to recognise

that code will end up with higher quality if understanding of it is shared between

several people, and that bugs can be viewed as things to be found and overcome

and never as personal flaws in the individual who happened to write that fragment

of code.

When trying to design code or find a difficult bug it can be very valuable to

explain your thoughts to somebody else. It may be that they need not say much

more than er and um, and maybe they hardly need to listen (but you probably need

to believe that they are). By agreeing that you will listen to their problems at a

later stage this may be a habit you can start right now with one or a group of your

contemporaries.

Reading other people’s code (with their permission, of course) and letting

them read yours can also help you settle on a style or idiom that works well for

5.16. LESSONS LEARNED 207

you. It can also help get across the merits of code that is well laid out and where

the comments are actually helpful to the reader.

If you get into a real group programming context, it may make sense to con-

sider partitioning the work in terms of function, for instance system architect,

programmer, test case collector, documentation expert,. . . rather than trying to dis-

tribute the management effort and split the programming into lots of little mod-

ules, but before you do anything too rash read some more books on software engi-

neering so that once again you can make decisions in an informed and considered

way.

5.16 Lessons learned

One of the oft-repeated observations about the demons of large-scale software

construction is that there is no silver bullet. In other words we can not expect to

find a single simple method that, as if by magic, washes away all our difficulties.

This situation also applies for tasks that are to be carried out by an individual

programmer or a very small team. No single method gives a key that makes it

possible to sit down and write perfect programs without effort. The closest I can

come to an idea for something that is generally valuable is experience – experience

on a wide range of programming projects in several different languages and with

various different styles of project. This can allow you to spot features of a new

task that have some commonalty with one seen before. This is, however, obviously

no quick fix. The suggestions I have been putting forward here are to try to make

your analysis of what you are trying to achieve as explicit in your mind as possible.

The various sections in these notes provide headings that may help you organise

your thoughts, and in general I have tried to cover topics in an order that might

make sense in real applications. Of course all the details and conclusions will be

specific to your problem, and nothing I can possibly say here can show you how

to track down your own very particular bug or confusion! I have to fall back on

generalities. Keep thinking rather than trying random changes to your code. Try

to work one step at a time. Accept that errors are a part of the human condition,

and however careful you are your code will end up with them.

But always remember the two main slogans:

Programming is easy

and

Programming is fun.

208 CHAPTER 5. DESIGNING AND TESTING PROGRAMS IN JAVA

5.17 Final Words

Do I follow my own advice? Hmmm I might have known you would ask that!

Well most of what I have written about here is what I try to do, but I am not

especially formal about any of it. I only really go overboard about design and

making documentation precede implementation when starting some code that I

expect to give me special difficulty. I have never got into the swing of literate

programming, and suspect that I like the idea more than the reality. And I some-

times spend many more hours on a stretch at a keyboard than I maybe ought to. If

this course and these notes help you think about the process of programming and

allow you to make more conscious decisions about the style you will adopt then

I guess I should be content. And if there is one very short way I would like to

encapsulate the entire course, it would be the recommendation that you make all

the decisions and thoughts you have about programming as open and explicit as

possible.

Good luck!

5.18 Challenging exercises

Some of you may already consider yourselves to be seasoned programmers able

to cope with even quite large and complicated tasks. In which case I do not you to

feel this course is irrelevant, and so I provide here at the end of the notes some pro-

gramming problems which I believe are hard enough to represent real challenges,

even though the code that eventually has to be written will not be especially long.

There is absolutely no expectation that anybody will actually complete any of

these tasks, or even find good starting points. However these examples may help

give you concrete cases to try out the analysis and design ideas I have discussed:

identifying the key difficulties and working out how to partition the problems into

manageable chunks. In some cases the hardest part of a proper plan would be the

design of a good enough testing strategy. The tasks described here are all both

reasonably compact and fairly precisely specified. I have fought most of these

myself and found that producing solutions that were neat and convincing as well

as correct involved thought as well as more coding skill. There are no prizes and

no ticks, marks or other bean-counter’s credit associated with attempting these

tasks, but I would be jolly interested to see what any of you can come up with,

provided it can be kept down to no more than around 4 sides of paper.

5.18. CHALLENGING EXERCISES 209

MULDIV

The requirement here is to produce a piece of code that accepts four integers and

computes (a ∗ b + c)/d and also the remainder from the division. It should be

assumed that the computer on which this code is to be run has 32-bit integers, and

that integer arithmetic including shift and bitwise mask operations are available,

but the difficulty in this exercise arises because a ∗ b will be up to 64-bits long

and so it can not be computed directly. “Solutions” that use (eg) the direct 64-bit

integer capabilities of a DEC Alpha workstation are not of interest!

It should be fairly simple to implement muldiv if efficiency where not an

issue. To be specific this would amount to writing parts of a package that did

double-length integer arithmetic. Here the additional expectation is that speed

does matter, and so the best solution here will be one that makes the most effec-

tive possible use of the 32-bit arithmetic that is available. Note also that code of

this sort can unpleasantly easily harbour bugs, for instance due to some integer

overflow of an intermediate result, that only show up in very rare circumstances,

and that the pressure to achieve the best possible performance pushes towards code

that comes very close to the limits of the underlying 32-bit arithmetic. Thought

will be needed when some or all of the input values are negative. The desired be-

haviour is one where the calculated quotient was rounded towards zero, whatever

its sign.

Overlapping Triangles

A point in the X–Y plane can be specified by giving its co-ordinates (x,y). A

triangle can then be defined by giving three points. Given two triangles a number

of possibilities arise: they may not overlap at all or they may meet in a point or

a line segment, or they may overlap so that the area where they overlap forms a

triangle, a quadrilateral, a pentagon or a hexagon. Write code that discovers which

of these cases arises, returning co-ordinates that describe the overlap (if any).

A point to note here is that any naive attempt to calculate the point where

two lines intersect can lead to attempts to divide by zero if the lines are parallel.

Near-parallel lines can lead to division by very small numbers, possibly leading

to subsequent numeric overflow. Such arithmetic oddities must not be allowed to

arise in the calculations performed.

Matrix transposition

One way of representing an m by n matrix in a computer is to have a single vector

of length mn and place the array element ai, j at offset mi+ j in the vector. Another

would be to store the same element at offset i + n j. One of these representation

210 CHAPTER 5. DESIGNING AND TESTING PROGRAMS IN JAVA

means that items in the same row of the matrix live close together, the other that

items in the same column are adjacent.

In some calculations it can make a significant difference to speed which of

these layouts is used. This is especially true for computers with virtual memory.

Sometimes one part of a calculation would call for one layout, and a later part

would prefer the other.

The task here is therefore to take integers m and n and a vector of length mn,

and rearrange the values stored in the vector so that if they start off in one of as

one representation of a matrix they end up as the other. Because the matrix should

be assumed to be quite large you are not allowed to use any significant amount of

temporary workspace (you can not just allocate a fresh vector of length mn and

copy the data into it in the new order — you may assume you may use extra space

of around m+n if that helps, but not dramatically more than that).

If the above explanation of the problem8 feels out of touch with today’s com-

puter uses, note how the task relates to taking an m by n matrix representing a pic-

ture and shuffling the entries to get the effect of rotating the image by 90 degrees.

Just that in the image processing case you may be working with data arranged in

sub-word-sized bite-fields, say at 4 bits per pixel.

Sprouts

The following is a description of a game9 to be played by two players using a

piece of paper. The job of the project here is to read in a description of a position

in the game and make a list of all the moves available to the next player. This

would clearly be needed as part of any program that played the game against

human opposition, but the work needed here does not have to consider any issues

concerning the evaluation of positions or the identification of good moves.

The game starts with some number of marks made on a piece of paper, each

mark in the form of a capital ‘Y’. Observe that each junction has exactly three

little edges jutting from it. A move is made by a player identifying two free edges

and drawing a line between them. The line can snake around things that have been

drawn before as much as the player making the move likes, but it must not cross

any line that was drawn earlier. The player finishes the move by drawing a dot

somewhere along the new line and putting the stub of a new edge jutting out from

it in one of the two possible directions. Or put a different but equivalent way, the

player draws a new ‘Y’ and joins two of its legs up to existing stubs with lines that

do not cross any existing lines. The players make moves alternately and the first

player unable to make a further legal move will be the loser.

8This is an almost standard classical problem and if you dig far enough back in the literature

you will find explanations of a solution. If you thought to do that for yourself, well done!
9Due to John Conway

5.18. CHALLENGING EXERCISES 211

A variation on the game has the initial state of the game just dots (not ‘Y’

shapes) and has each player draw a new dot on each edge they create, but still

demands that no more that three edges radiate from each dot. The difference

is that in one case a player can decide which side of a new line any future line

must emerge from. I would be equally happy whichever version of the game

was addressed by a program, provided the accompanying documentation makes it

clear which has been implemented!

The challenge here clearly largely revolves around finding a way to describe

the figures that get drawn. If you want to try sprouts out as a game between people

before automating it, I suggest you start with five or six starting points.

ML development environment

The task here is not to write a program, but just to sketch out the specification

of one. Note clearly that an implementation of the task asked about here would

be quite a lot of work and I do not want to provide any encouragement to you to

attempt all that!

In the Michaelmas Term you were introduced to the language ML, and invited

to prepare and test various pieces of test code using a version running under Mi-

crosoft Windows. You probably used the regular Windows “notepad” as a little

editor so you could change your code and then paste back corrected versions of

it into the ML window. Recall that once you have defined a function or value in

ML that definition remains fixed for ever, and so if it is incorrect you probably

need to re-type not only it but everything you entered after it. All in all the ML

environment you used was pretty crude (although I am proud of the greek letters

in the output it generates), and it would become intolerable for use in medium or

large-scale projects. Design a better environment, and append to your descrip-

tion of it a commentary about which aspects of it represent just a generically nice

programmer’s work-bench and which are motivated by the special properties of

ML.

An example from the literature

The following specification is given as a paragraph of reasonably readable English

text, and there is then an associated program written in Java. This quite small

chunk of code can give you experience of bug-hunting: please do not look up the

original article in CACM10 until you have spent some while working through the

code checking how it works and finding some of the mistakes. In previous years

when I have presented this material to our students they did almost as well as the

professional programmers used in the original IBM study, but they still found only

10Communications of the ACM, vol 21, no 9, 1978.

212 CHAPTER 5. DESIGNING AND TESTING PROGRAMS IN JAVA

a pathetically small proportion of the total number of known bugs! I am aware that

the Java transcription of this program has changed its behaviour from the original

PL/I version and the intermediate C one. I do not believe that the changes are a

case of bugs evaporating in the face of Java, but some may be transcription errors

I have made. But since the object of this exercise is that you locate bugs, whatever

their source, this does not worry me much, and I present the example as it now

stands, oddities and all.

Figure 5.7: Picture courtesy Shamila Corless.

5.18. CHALLENGING EXERCISES 213

Formatting program for text input. Converted from

the original PL/I version which is in a paper by Glen

Myers, CACM vol 21 no 9, 1978

(a) This program compiles correctly: it is believed

not to contain either syntax errors or abuses of

the Java library.

(b) A specification is given below. You are to imagine

that the code appended was produced by somebody who

had been provided with the specification and asked

to produce an implementation of the utility as

described. But they are not a very good programmer!

(c) Your task is one of quality control - it is to

check that the code as given is in agreement with

the specification.

If any bugs or mis-features are discovered they

should be documented but it will be up to the

original programmer to correct them. If there are

bugs it is desirable that they all be found.

(d) For the purposes of this study, a bug or a

mis-feature is some bad aspect of the code that

could be visible to users of the binary version of

the code. Ugly or inefficient code is deemed not

to matter, but even small deviations from the

letter of the specification and the things sensibly

implicit in it do need detecting.

(e) Let me repeat point (a) again just to stress it -

the code here has had its syntax carefully checked

and uses the Java language and library in a legal

straightforward way, so searching for bugs by

checking fine details of the Java language

specification is not expected to be productive.

I have put in comments to gloss use of library

functions to help those who do not have them all

at their finger-tips. The code may be clumsy in

places but I do not mind that!

I have tried to keep layout of the code neat and

consistent. There are few comments "because the

original programmer who wrote the code delivered

it in that state".

214 CHAPTER 5. DESIGNING AND TESTING PROGRAMS IN JAVA

/***

* Specification *

* ============= *

* *

* Given an input text consisting of words separated by *

* blanks or new-line characters, the program formats it *

* into a line-by-line form such that (1) each output *

* line has a maximum of 30 characters, (2) a word in *

* the input text is placed on a single output line, and *

* (3) each output line is filled with as many words as *

* possible. *

* *

* The input text is a stream of characters, where the *

* characters are categorised as break or nonbreak *

* characters. A break character is a blank, a new-line *

* character (&), or an end of text character (/). *

* New-line characters have no special significance; *

* they are treated as blanks by the program. & and / *

* should not appear in the output. *

* *

* A word is defined as a nonempty sequence of non-break *

* characters. A break is a sequence of one or more *

* break characters. A break in the input is reduced to *

* a single blank or start of new line in the output. *

* *

* The input text is a single line entered from a *

* simple terminal with an fixed 80 character screen *

* width. When the program is invoked it waits for the *

* user to provide input. The user types the input line, *

* followed by a / (end of text) and a carriage return. *

* The program then formats the text and displays it on *

* the terminal. *

* *

* If the input text contains a word that is too long to *

* fit on a single output line, an error message is *

* typed and the program terminates. If the end-of-text *

* character is missing, an error message is issued and *

* the user is given a chance to type in a corrected *

* version of the input line. *

* *

* (end of specification) *

**/

5.18. CHALLENGING EXERCISES 215

import java.io.*;

public class Buggy

{

final static int LINESIZE = 31;

public static void main(String [] args)

{

int k,

bufpos,

fill,

maxpos = LINESIZE;

char cw,

blank = ’ ’,

linefeed = ’$’,

eotext = ’/’;

boolean moreinput = true;

char [] buffer = new char [LINESIZE];

bufpos = 0;

fill = 0;

while (moreinput)

{ cw = gchar();

if (cw == blank || cw == linefeed || cw == eotext)

{

if (cw == eotext) moreinput = false;

if ((fill + 1 + bufpos) <= maxpos)

{ pchar(blank);

fill = fill + 1;

}

else

{ pchar(linefeed);

fill = 0;

}

for (k = 0; k < bufpos; k++) pchar(buffer[k]);

fill = fill + bufpos;

bufpos = 0;

}

else if (bufpos == maxpos)

{ moreinput = false;

System.out.println("Word to long");

}

216 CHAPTER 5. DESIGNING AND TESTING PROGRAMS IN JAVA

else

{ bufpos = bufpos + 1;

buffer[bufpos-1] = cw;

}

}

pchar(linefeed);

return;

}

// I use B as a shorthand for the character ’ ’.

final static char B = ’ ’;

final static int ILENGTH = 80;

// Make suitable array with initial contents Z

// then a load of blanks.

static char [] buffer = {

’Z’,B,B,B,B,B,B,B,B,B,

B,B,B,B,B,B,B,B,B,B,

B,B,B,B,B,B,B,B,B,B,

B,B,B,B,B,B,B,B,B,B,

B,B,B,B,B,B,B,B,B,B,

B,B,B,B,B,B,B,B,B,B,

B,B,B,B,B,B,B,B,B,B,

B,B,B,B,B,B,B,B,B,B};

// bcount is defined here so that it keeps its values

// across several calls to gchar().

static int bcount = 1;

static char gchar()

{

char [] inbuf = new char [ILENGTH];

char eotext = ’/’;

char c;

if (buffer[0] == ’Z’)

{ getrecord(inbuf);

5.18. CHALLENGING EXERCISES 217

// indexOf returns the index of a position where the given

// character is present in a string, or -1 if it is not

// found.

if (new String(inbuf).indexOf((int) eotext) == -1)

{ System.out.println("No end of text mark");

buffer[1] = eotext;

}

else for (int j=0; j<ILENGTH; j++)

buffer[j] = inbuf[j];

}

c = buffer[bcount-1];

bcount = bcount + 1;

return c;

}

// a static ouput buffer, again blank-filled.

static char [] outline =

{ B,

B,B,B,B,B,B,B,B,B,B,B

};

// i indicates which place in outline pchar should

// put the next character at.

static int i = 1;

static void pchar(char c)

{

int linefeed = ’$’;

if (c == linefeed)

{ System.out.println(outline);

for (int j=0; j<LINESIZE; j++)

outline[j] = B;

i = 1;

}

else

{ outline[i-1] = c;

i = i + 1;

}

}

218 CHAPTER 5. DESIGNING AND TESTING PROGRAMS IN JAVA

// Get access to keyboard input. No tricks here!

static BufferedReader in =

new BufferedReader(

new InputStreamReader(System.in),

1);

static void getrecord(char [] b)

{

String s;

try

{ s = in.readLine();

}

catch (IOException e)

{ s = " ";

}

for (int i = 0; i < ILENGTH; i++)

{ if (i < s.length()) b[i] = s.charAt(i);

else b[i] = ’ ’;

}

}

}

/* End of file */

Chapter 6

A representative application

The purpose of this chapter is not to form part of the official examinable course,

but to provide you with some extended samples of Java so that you can see the

various facilities working together and so you can consider how the code ought

to have been written to make it as clear and robust as possible. Note that I do

not guarantee that my code is a paragon of clarity, and although the example

here is much larger than the ones that have gone before it has still been trimmed

fairly close to the bone to make it as small and perhaps comprehensible as I could

manage.

6.1 A Lisp interpreter

This final example for these notes is as large and complicated as any of the others

here — but most of the Java features it uses are ones that have been seen before.

It is an implementation of a very much cut-down version of the programming lan-

guage Lisp. In this language, which is one of the oldest programming languages

that is still in use today, and a version of which is used to customise the emacs ed-

itor, all syntax is indicated with explicit parentheses. The programs that one writes

are very much like ML ones, except that Lisp does not have either the syntax and

operators of ML nor the type-checking. While I do not want to divert this Java

course into one on Lisp I will give a brief example of the sort of program that can

be used to test my Minilisp. It defines a function to reverse lists and demonstrates

its use.

(defun reverse (x)

(rev1 x nil))

(defun rev1 (a b)

(cond

219

220 CHAPTER 6. A REPRESENTATIVE APPLICATION

((eq a nil) b)

(t (rev1 (cdr a) (cons (car a) b)))))

(reverse ’(a b c d))

To find out about Lisp in its modern and very large form you could check

out Common Lisp — the Language[21] however the Minilisp here perhaps makes

better sense with reference to the Lisp 1.5 manual[13], which is amazingly ancient

now but which has the huge advantage of brevity. Of course the Common Lisp

manual was written by Guy Steele who participated in writing the Java language

reference — so as well as Lisp being a very direct ancestor of ML it can also be

seen as having had noticable input into Java1. Another reason for including an

implementation of it here.

I have in fact extended the tiny Lisp shown here into a full-scale one that is

capable of running programs that are many tens of thousands of lines long. The

write-up of that work is in “Further evaluation of Java for Symbolic Calculation”,

Proc. ISSAC 00, St Andrews, Scotland, August 2000.

1The “Flavours” package developed for Lisp at MIT was one of the earlier programming sys-

tems that encouraged object oriented design, supported inheritance and worked to make large-scale

programming practical. CLOS (Common Lisp Object System) is the major internationally stan-

dardised model for dynamic object-oriented programming.

6.1. A LISP INTERPRETER 221

Now for the implementation. Making sense of it is liable to be a substantial strug-

gle for most of you, but I hope that the fact that I can fit an implementation of a

programming language into these notes is at least interesting!

// Minilisp

//

// Basic and utterly tiny Lisp system coded

// in Java by Arthur Norman, 1998.

//

// In spirit much like an older BCPL then C

// version of the same thing!

//

// Supports

// quote, cond, defun

// atom, eq, car, cdr, cons

// has fragments of code waiting to be extended

// to do rather more.

import java.io.*;

// Lisp has a single inclusive data-type, which I call

// LispObject here. It has sub-types that are symbols,

// numbers, strings and lists. Here I give just two

// methods (print and eval) that may be used on anything.

abstract class LispObject

{

public abstract void print();

public abstract LispObject eval(Environment env);

}

// A "cons" is an ordered pair. In ML terms it would be

// a bit like (’a * ’b)

class Cons extends LispObject

{

// The left and right parts of a pair are called

// CAR and CDR

public LispObject car, cdr;

Cons(LispObject car, LispObject cdr)

{ this.car = car; this.cdr = cdr; }

222 CHAPTER 6. A REPRESENTATIVE APPLICATION

// Function calls are written as lists (fn a1 a2 ...)

public LispObject eval(Environment env)

{ int n = 0;

for (LispObject a=cdr;

a instanceof Cons;

a = ((Cons)a).cdr) n++;

LispObject [] args = new LispObject [n];

n = 0;

for (LispObject a=cdr;

a instanceof Cons;

a = ((Cons)a).cdr) args[n++] = ((Cons)a).car;

// Now I have unpicked the actual arguments into a vector

if (car instanceof Symbol)

{ Symbol f = (Symbol)car;

// "special" functions are for QUOTE, CONS and DEFUN. They

// do not evaluate their arguments

if (f.special != null)

return f.special.op(args, env);

// All other functions have their arguments evaluated.

for (int i=0; i<n; i++)

args[i] = args[i].eval(env);

// Call the function!

return f.fn.op(args);

}

// return NIL if I do not otherwise know what to do

else return Minilisp.nil;

}

// Lists print as (a b c ...)

// and if a list ends in NIL then it is displayed with

// just a ")" at the end, otherwise the final atom is

// shown after a "."

public void print()

{ LispObject x = this;

String delim = "(";

while (x instanceof Cons)

{ System.out.print(delim);

delim = " ";

((Cons)x).car.print();

x = ((Cons)x).cdr;

}

6.1. A LISP INTERPRETER 223

if (x != Minilisp.nil)

{ System.out.print(" . ");

x.print();

}

System.out.print(")");

}

}

// I do not do a lot with strings here.

class LispString extends LispObject

{

public String string;

LispString(String s)

{ this.string = s; }

public LispObject eval(Environment env)

{ return this; }

public void print()

{ System.out.print("\"" + string + "\"");

}

}

class Symbol extends LispObject

{

public String pname; // print name

public LispObject plist; // property list (unused)

Symbol obListNext; // chaining of symbols

public LispFunction fn; // function (if any)

public SpecialFunction special; // special fn (if any)

// intern() looks up a Java String and find the Lisp

// symbol with that name. It creates it if needbe.

public static Symbol intern(String name,

LispFunction fn, SpecialFunction special)

{ Symbol p;

for (p=Minilisp.obList; p!=null; p=p.obListNext)

{ if (p.pname.equals(name)) return p;

}

224 CHAPTER 6. A REPRESENTATIVE APPLICATION

// not found on "object-list" (oblist), so create it

p = new Symbol();

p.pname = name;

p.plist = Minilisp.nil;

p.obListNext = Minilisp.obList;

Minilisp.obList = p;

p.fn = fn != null ? fn : new Undefined(name);

p.special = special;

return p;

}

// The symbols NIL and T are special - they evaluate

// to themselves. All others get looked up in an

// environment that stores current values of local vars.

public LispObject eval(Environment env)

{ if (this == Minilisp.nil ||

this == Minilisp.lispTrue) return this;

return env.eval(this);

}

public void print()

{ System.out.print(pname);

}

}

// An environment is a chain of Bindings terminated with

// a NullEnvironment. Each binding holds information of

// the form

// variable = value

abstract class Environment

{

public abstract LispObject eval(Symbol name);

}

class NullEnvironment extends Environment

{

public LispObject eval(Symbol name)

{ System.out.println("Undefined variable: " +

name.pname);

System.exit(1);

return null;

}

}

6.1. A LISP INTERPRETER 225

class Binding extends Environment

{

public Symbol name;

public LispObject value;

public Environment next;

Binding(Symbol name, LispObject val, Environment next)

{ this.name = name;

this.value = val;

this.next = next;

}

public LispObject eval(Symbol x)

{ if (x == name) return value;

else return next.eval(x);

}

}

// I do not do a lot with numbers here!

class LispNumber extends LispObject

{

public int value;

LispNumber(int value)

{ this.value = value; }

public LispObject eval(Environment env)

{ return this; }

public void print()

{ System.out.print(value);

}

}

// Each built-in function is created wrapped in a class

// that is derived from LispFunction.

abstract class LispFunction

{

public abstract LispObject op(LispObject [] args);

}

226 CHAPTER 6. A REPRESENTATIVE APPLICATION

class Undefined extends LispFunction

{

String name;

Undefined(String name)

{ this.name = name; }

public LispObject op(LispObject [] args)

{ System.out.println("Undefined function " + name);

System.exit(1); // throw?

return null;

}

}

// If a symbol has an interpreted definition its

// associated function is this job, which knows how to

// extract the saved definition and activate it.

class Interpreted extends LispFunction

{

LispObject a, b;

Environment env;

Interpreted(LispObject a, // formal args

LispObject b, // body

Environment env) // environment

{ this.a = a;

this.b = b;

this.env = env;

}

public LispObject op(LispObject [] args)

{ LispObject a1 = a;

int i = 0;

Environment e = env;

while (a1 instanceof Cons)

{ e = new Binding(

(Symbol)((Cons)a1).car, args[i++], e);

a1 = ((Cons)a1).cdr;

}

return b.eval(e);

}

}

6.1. A LISP INTERPRETER 227

// Similar stuff, but for "special functions"

abstract class SpecialFunction

{

public abstract LispObject op(LispObject [] args,

Environment env);

}

// (quote xx) evaluates to just xx

class QuoteSpecial extends SpecialFunction

{

public LispObject op(LispObject [] args,

Environment env)

{ return args[0];

}

}

// (cond (p1 e1) if p1 then e1

// (p2 e2) else if p2 then e2

// (p3 e3)) else if p3 then e3

// else nil

class CondSpecial extends SpecialFunction

{

public LispObject op(LispObject [] args,

Environment env)

{ for (int i=0; i<args.length; i++)

{ Cons x = (Cons)args[i];

LispObject predicate = x.car;

LispObject consequent = ((Cons)x.cdr).car;

if (predicate.eval(env) != Minilisp.nil)

return consequent.eval(env);

}

return Minilisp.nil;

}

}

228 CHAPTER 6. A REPRESENTATIVE APPLICATION

// (defun name (a1 a2 a3) body-of-function)

class DefunSpecial extends SpecialFunction

{

public LispObject op(LispObject [] args,

Environment env)

{ Symbol name = (Symbol)args[0];

LispObject vars = args[1];

LispObject body = args[2];

name.fn = new Interpreted(vars, body, env);

return name;

}

}

// like ML "fun car (a :: b) = a;"

class CarFn extends LispFunction

{

public LispObject op(LispObject [] args)

{ return ((Cons)(args[0])).car;

}

}

// like ML "fun cdr (a :: b) = b;"

class CdrFn extends LispFunction

{

public LispObject op(LispObject [] args)

{ return ((Cons)(args[0])).cdr;

}

}

// like ML "fun atom (a :: b) = false | atom x = true;"

class AtomFn extends LispFunction

{

public LispObject op(LispObject [] args)

{ return args[0] instanceof Cons ? Minilisp.nil :

Minilisp.lispTrue;;

}

}

6.1. A LISP INTERPRETER 229

// (eq a b) is true if a and b are the same thing

class EqFn extends LispFunction

{

public LispObject op(LispObject [] args)

{ return args[0]==args[1] ? Minilisp.lispTrue :

Minilisp.nil;

}

}

// like ML "fun cons a b = a :: b;"

class ConsFn extends LispFunction

{

public LispObject op(LispObject [] args)

{ return new Cons(args[0], args[1]);

}

}

// (stop) exist from this Lisp.

class StopFn extends LispFunction

{

public LispObject op(LispObject [] args)

{ System.exit(0);

return null;

}

}

// The top-level class has a bunch of input

// and management code.

public class Minilisp

{

public static Symbol nil, lispTrue,

obList, lambda, cond, quote, defun;

static StreamTokenizer input;

static int inputType;

static boolean inputValid;

230 CHAPTER 6. A REPRESENTATIVE APPLICATION

static void initInput()

{ input = // Get stream & establish syntax

new StreamTokenizer(

new BufferedReader(

new InputStreamReader(System.in),

1));

input.eolIsSignificant(false);

input.ordinaryChar(’/’);

input.commentChar(’;’);

input.ordinaryChar(’\’’);

input.quoteChar(’\"’);

input.ordinaryChar(’.’); // disable floating point

input.lowerCaseMode(true);

inputValid = false;

}

// read a single parenthesised expression.

// Supports ’xx as a short-hand for (quote xx)

// which is what most Lisps do.

// Formal syntax:

// read => SYMBOL | NUMBER | STRING

// => ’ read

// => (tail

// tail =>)

// => . read)

// => read readtail

static LispObject read() throws IOException

{

LispObject r;

if (!inputValid)

{ inputType = input.nextToken();

inputValid = true;

}

switch (inputType)

{

case StreamTokenizer.TT_EOF:

throw new IOException("End of file");

case StreamTokenizer.TT_WORD:

r = Symbol.intern(input.sval, null, null);

inputValid = false;

return r;

6.1. A LISP INTERPRETER 231

case StreamTokenizer.TT_NUMBER:

r = new LispNumber((int)input.nval);

inputValid = false;

return r;

case ’\"’: // String

r = new LispString(input.sval);

inputValid = false;

return r;

case ’\’’:

inputValid = false;

r = read();

return new Cons(quote, new Cons(r, nil));

case ’(’:

inputValid = false;

return readTail();

case ’)’:

case ’.’:

inputValid = false;

return nil;

default:

r = Symbol.intern(

String.valueOf((char)inputType), null, null);

inputValid = false;

return r;

}

}

static LispObject readTail() throws IOException

{

LispObject r;

if (!inputValid)

{ inputType = input.nextToken();

inputValid = true;

}

switch (inputType)

{

case ’.’:

inputValid = false;

r = read();

if (!inputValid)

{ inputType = input.nextToken();

inputValid = true;

}

232 CHAPTER 6. A REPRESENTATIVE APPLICATION

if (inputType == ’)’) inputValid = false;

return r;

case StreamTokenizer.TT_EOF:

throw new IOException("End of file");

case ’)’:

inputValid = false;

return nil;

default:r = read();

return new Cons(r, readTail());

}

}

// set up fixed definitions

static void initSymbols()

{

obList = null;

nil = Symbol.intern("nil", null, null);

nil.plist = nil;

Symbol.intern("car", new CarFn(), null);

Symbol.intern("cdr", new CdrFn(), null);

Symbol.intern("cons", new ConsFn(), null);

Symbol.intern("atom", new AtomFn(), null);

Symbol.intern("eq", new EqFn(), null);

Symbol.intern("stop", new StopFn(), null);

lispTrue = Symbol.intern("t", null, null);

// lambda is ready for extension of this code

lambda = Symbol.intern("lambda", null, null);

cond = Symbol.intern("cond", null,

new CondSpecial());

quote = Symbol.intern("quote", null,

new QuoteSpecial());

defun = Symbol.intern("defun", null,

new DefunSpecial());

}

public static void main(String [] args)

{

initInput();

initSymbols();

System.out.println("Arthur’s Minilisp...");

6.1. A LISP INTERPRETER 233

try

{

// this is s READ-EVAL-PRINT loop

for (int i=1;;i++)

{ System.out.print(i + ": ");

// Ensure that the prompt gets displayed.

System.out.flush();

LispObject r = read();

LispObject v = r.eval(new NullEnvironment());

System.out.print("Value: ");

v.print();

System.out.println("");

}

}

catch (IOException e)

{ System.out.println("IO exception");

}

System.out.println("End of Lisp run. Thank you");

}

}

// End of Minilisp.java

6.1.1 Exercises

ML to Lisp

Find a Lisp 1.5 manual and/or study the Minilisp code, and then see how many

ML list-processing functions you can convert into Lisp and run on the Java imple-

mentation. You have already seen reverse, so the next thing to try is append. It

would probably be possible to coax the ML exercise on transitive closures through

Minilisp!

Add a few more functions

Show that you have understood what is going on in the Minilisp code by adding in

support for arithmetic, specifically functions to add, subtract, multiply and divide

numbers, and to compare them for inequality and “less-than”.

234 CHAPTER 6. A REPRESENTATIVE APPLICATION

Emacs Lisp

Now you have at least minimal exposure to Lisp, investigate the way it is used

in the emacs editor to allow users to create new language-specific editing modes,

indentation and colour conventions.

WeirdX

Visit the web-site http://www.jcraft.com/weirdx/ and fetch yourself a

copy of the source of the WeirdX X-windows server. It is around 25000 lines

of Java! Do not fetch or examine in any way the related but commercial product

called WiredX. Inspect the associated GNU public license carefully: it gives you

permission to work on the source but imposes an obligation to make the source

version of any adjustments available to the world at no cost. If you are happy with

the GNU rules2 investigate the behaviour of WeirdX and look for ways to

1. Identify and remove bugs;

2. Make it implement the latest X-windows specification more fully;

3. Enhance its performance;

4. Put a proper and copious number of comments into the code (!);

5. Ensure that it implements all possible facilities to reduce the security vul-

nerabilities that X-windows often opens up;

6. Make a careful comparison between the behaviour and capabilities of the

improved WeirdX and other commercial and free X servers. Create a nicely

structured wish-list for future enhancements.

As you make and test changes arrange to make your improvements available to

the the world: see http://sourceforge.net/projects/weirdx/. In case

you had not spotted, this is not a small exercise for an individual to attack lightly:

it is a substantial challenge that calls for a lot of study way beyond core Java and

if you decide to try it I suggest you form a small group to work in. Please let me

know of any progress.

2For an extended discussion of the GNU public license and “free” software in general, see

“The Cathedral and the Bazaar” by Eric Raymond[20]. Some of the explanation there makes very

good sense, some seems to me to be silly!

Chapter 7

What you do NOT know yet

These days anybody arranging a lecture course is expected to think in terms of

aims, objectives and learning outcomes. In particular it is deemed important to

consider carefully what will be known by students who have taken the course. I

want to take a contrary view: that what is most important to understand is what

you will not know just because you have attended this course and done all the

exercises. I view a recognition of ones limitations as vital both for any individual’s

personal integrity and as something that is essential if they are to be productive in

any work environment. So let me start with:

After one course you are not a Java expert. . .

To a large extent you only become an expert in any sort of programming after

you have built up a substantial body of experience working on both individual and

group projects. Most people can only gain the paranoia about bugs and documen-

tation that is really needed via personal involvement in projects that fail horribly!

Most people only gain a proper paranoid attitude to overall system design via per-

sonal involvement in projects that collapse through being inadequately specified,

ill-planned or where project management is not strong enough. The Computer Sci-

ence Tripos provides courses on Software Engineering that document examples of

software disasters and explain the state of the art in avoiding trouble. Despite this

most people view the horror stories as things that happen to “other people” until

it is too late.

Java is an object oriented language. Proper use of it involves obtaining full

leverage from the package, class and inheritance features it provides. This course

has taken the attitude that Object Oriented Design is something that can not be

fully appreciated until you are able to write a range of small programs comfort-

ably. So once you have mastered this material it will be proper to re-start Java

from the beginning concentrating on starting the design by planning a class hier-

archy. This has to include careful thought about private, protected etc class

235

236 CHAPTER 7. WHAT YOU DO NOT KNOW YET

members, and it can involve formal schemes to document structures.

I have explained what packages are, but not discussed the practicalities of

using lots of different packages for your own code. For small programs this is

OK, but larger scale work will put more pressure on this side of things.

The Java libraries that support windows have been introduced in a very sketchy

way here. That is because there is a huge amount to understand, and it would not

even start to fit in the time available within the Part IA course. All the issues

of getting pages laid out, controlling multiple windows, organising cut-and-paste

operations and so on take a lot of learning. The most that can be hoped is that this

course has given you a starting point to work from.

When a Java applet is run using a web browser it is subject to a variety of

security limitations. This is so that when some remote user loads a web page

that runs your Java code you can not then steal or destroy information on their

computer. There is an elaborate scheme involving signatures and permissions that

makes it possible for applets to be granted additional privilege, without giving

them total access. Such issues will be important for large-scale Java projects.

Network access and concurrency are both areas where a programmer needs

to absorb quite a lot of additional understanding before they can use Java (or any

other language) in a fully satisfactory manner. It is easy to end up with systems

that can either gum up in deadlock or have different threads create inconsistent

results, and proper recovery after one thread fails or one network link times out

is not at all easy to arrange. The operating systems threads later in the CST have

much to say about the issues and pitfalls involved. The way in which Java can

interface to databases may appear straightforward, but competent design of the

database itself needs specialist understanding.

While Java is a pretty respectable general purpose language there are plenty of

areas where simple use of pure Java will prove inadequate. Sometimes however

it will still make sense to implement either the bulk of a program or perhaps just

the user-interface in Java, with some other components in another language. This

raises issues of inter-language working, and serious design challenges in the area

of the inter-language interface.

During this course you have been encouraged to use javac as your Java com-

piler. For real projects it is almost certain that much more elaborate tools would

be used. These would include ones to manage a chain of versions of code, tools to

generate stylised code for some bits of a user interface, and a variety of debugging

and performance analysis packages.

Actually hardly any programmer, however experienced, will be a full expert

on all of the above matters. . .

. . . but at least you have taken the first step!

Chapter 8

Model Examination Questions

Some of these are ones I have invented, some have been submitted by members

of the class, while yet more are adjustments of previous examination questions

modified to fit into a Java context. They may not all be normalised for precision

of wording or difficulty, but should give you something to try your skills on. I

neither confirm nor deny the possibility that variants on some of these may appear

in this or a future year’s real examination paper. . .

Note also that for the Computer Science Part IA papers there can be full-sized

(ie around 30 mins) questions, half size (around 15 mins) and tiny (about 1 minute)

questions, and some of these fit or could readily be modified to fit several of these

categories.

8.1 Java vs ML

Compare and contrast Java with ML under the following headings

1. Primitive data types;

2. Support for arrays;

3. Support for lists and trees;

4. Functions applicable to several different data-types;

5. Complexity of syntax.

[4 marks per section]

237

238 CHAPTER 8. MODEL EXAMINATION QUESTIONS

8.2 Matrix Class

Design a Matrix class for doing operations on n×n matrices.

The class should include functions for performing matrix multiplication, ad-

dition, and multiplication by scalars (and all matrices may be supposed to have

elements that are type double).

To what extent should other classes have rights to modify individual matrix

elements? Justify your answer.

8.3 Hash Tables

Java allows you to declare arrays with any sort of content — for instance int,

double, String or Object, but the value used to index the array is restricted

to being an int. In some applications programmers want structures that behave

like arrays whose subscripts are of type String. One way of doing this is to

use a structure known as a hash table: Given an index value of type String an

integer is computed using a hash function. The Java method hashCode in class

String computes a suitable value. The int value computed depends only on the

contents of the String, but different strings can be expected to lead to integers

that are uniformly distributed across the whole range that integers cover. This

hash value is reduced modulo the size of a fixed ordinary array, this (almost) lets

the original String act as an index. The problem that arises is that it could be

that two different String values hash onto the same location in the array.

This concern can be overcome by making the entries in the array linked lists

of (key, value) pairs, so that the original index String will match one of the

key strings and then the associated value is what is stored with it. The method

equals(String s) in class String returns a boolean telling if one string is

equal to another. Storing into a hash table will involve adding a new (key, value)

pair to one of the lists.

Design appropriate data structures and classes for such a table in the case
where the values to be stored are themselves of type String. Use the following
method signatures in a class called HashTable:

void put(String key, String value) throws Duplicate;

String get(String key) throws Missing;

where you may assume that the exceptions have already been defined elsewhere.

Note: The Java class-libraries provide a class called HashMap that does all this

for you! The exercise here in coding it for yourself not something the ordinary

Java programmer ever needs to do!

8.4. COMPASS ROSE 239

8.4 Compass Rose

A Java program to draw compass

roses is needed. In the example

shown the line pointing North is 6

units long, that pointing South is 5,

East and West 4, NE, SE, SW and

NW 3 and NNE, ENE and so on 2

and the rest 1 unit. In general if the

line pointing North is n units long

there will be 2n−1 radial lines in all in

the complete rose. You may assume

that in your Java applet the method

paint will be called when an image

is to be displayed, and it gets passed

an argument of type Graphics. The

class Graphics has a method called

drawLine that draws a line from

one point to another given four inte-

ger arguments x1, y1, x2 and y2.

Write two versions of the com-

pass rose applet. The first should use

recursion on the length n of a line,

while the second should be iterative.

In the second case it may be useful

to write an auxiliary method that calculates the highest power of two that divides

exactly into a given number.

The length of the North line should be specified as a final variable in the

class.

8.5 Language Words

In the context of Java, and given that this whole question is supposed to last 30
minutes, explain the following:

• package

• class

• import

• public

240 CHAPTER 8. MODEL EXAMINATION QUESTIONS

• protected

• interface

• static

8.6 Exception abuse

Show how Java exceptions can be used in conjunction with a for loop

1. to simulate the effect of a break; statement;

2. to simulate the effect of a continue; statement.

8.7 Queues

A priority queue maintains a list of pairs, each consisting of a priority (an integer)

and a name (a String), sorted into increasing order of priority. Three operations

are required — one that just creates an empty queue, and then one called insert

that takes an integer and a string as its arguments and places them in the correct

position in the list. Finally a method next takes no arguments. It removes the

first pair from the list and returns its text string. It should throw an exception if

the queue is empty when it is called.

Give the definition of a Java class that implements the queue object.

8.8 Loops

Describe the features of Java for controlling the repeated execution of a block of

code.

Show how general uses of for, while and do could all be emulated using

only loops that start of while (true).

8.9 Snap

Two identical packs of ordinary playing cards (52 different cards per pack) are

shuffled and places face downwards on a table. Two players then play a game

of Snap. Each is allocated one pack, and in each turn in the game one card is

turned up. The two upturned cards (one in front of each player) are compared.

If the cards match a snap-turn is declared. A game ends when all 52 cards have

been compared. Being computer scientists rather than five year olds these players

8.10. PARTITIONS 241

just record snap-turns and do not pick up or otherwise disturb the cards when one

occurs!

Write a Java program which will simulate the game for the purposes of deter-

mining the probability of there being at least one snap-turn in a game. You may

assume the existence of a random number generator but must state the properties

of it that you rely on.

8.10 Partitions

Write a program in Java which, given two integer inputs j and k will output the
combinations of k things partitions into k groups. For instance if j = 5 and k = 3
the output would be

(5, 0, 0)

(4, 1, 0)

(3, 2, 0)

(3, 1, 1)

(2, 2, 1)

8.11 Laziness

A Java class as follows has been defined

abstract class NextFunction

{

public int next(int n);

}

class Lazy

{

int head;

Lazy tailOrNull;

NextFunction next;

public Lazy(int head, NextFunction next)

{ this.head = head;

this.tailOrNull = null;

this.next = next;

}

public int first() { return head; }

public Lazy tail()

{ if (tailOrNull != null) return tailOrNull;

tailOrNull = new Lazy(next(head), next);

242 CHAPTER 8. MODEL EXAMINATION QUESTIONS

return tailOrNull;

}

}

The idea is to use this to represent lazy lists. In fact the small trick in the

tail function that checks if the successor to a node has already been computed

makes this a good representation. Derive a sub-class from NextFunction that

overrides the next method with one that allows you to create a lazy list of inte-

gers (1,2,3,...). Write code that, when given a lazy list, will print the first n

integers in it.

Adapt the code so as to create a function that can accept a lazy list and generate

a new lazy list from it that holds values which are the squares of the ones in

the original list. Thus if passed my first lazy list as an argument this one would

generate (1,4,9,...).

8.12 Cryptarithmetic

Write a Java program which can solve cryptarithmetic puzzles in the format of the
sum of two words. For example given the input

SEND

+MORE

MONEY

the program would output

9567

+1085

10652

NB Each letter has to represent a different digit.

8.13 Bandits

In Snoresville in small-town America, there are N bandits, and only one sher-

iff, Sheriff Dozy, who likes to do the minimum amount of work possible. He

knows quite a lot about each of them, to the extent that he knows precisely which

bandits each bandit knows. Soon, $200,000 worth of gold will be deposited in

Snoresville’s main bank; a very tempting target for the local thieves. Dozy knows

that the defences and procedures are more than good enough to resist attack by

8.13. BANDITS 243

one bandit, and that they can even resist attack by N/3 bandits. He wonders if

some sub-set of the collection of local bandits will manage to gang together to

grab the gold.

1

01 N = 5

111

0101

10011

The friendship data for the bandits can be repre-

sented in the following way: A ‘1’ indicates a friend-

ship with another bandit. If one bandit is known

then he also knows of the bandit who knows him, i.e.

friendship is mutual. Each line ends with a ‘1’ because

each bandit knows himself, obviously. Explain why

the triangular table given is all that’s needed to detail

all the friendships, and show how it can be expanded

into a square to give the friendship data with a row for

each bandit. [2 marks]

Given a global data structure defined as an N by N matrix (int [][]gang),

filled initially with zeros, and where N is the largest number of bandits to consider,

give two Java procedures:

1. generate(): This should input from the keyboard an integer n, and a

floating-point p. Check that n is in the range 0 < n ≤ N, and that p is a valid

probability between 0 and 1. The procedure should then randomly generate

a triangular table as above, such that the probability of any of the points

being ‘1’ is p, except for each bandit with himself which should always be

‘1’.

2. square(): This should take the triangular table now in gang from the

generate function and transform it into a square table as discussed earlier. It

should then display the block in a tabular form. [6 marks]

3. A group of bandits is only possible when each bandit knows every other

bandit in the group. In the example given above, what is the group with

largest cardinality? [1 mark]

4. Examine the following pieces of code; the procedure compare and a frag-
ment of code to show how it is called.

Calling Fragment:

for (i=0;i<n;i++)

{ compare(i,gang[i]);

for(j=0;j<n;j++)

{ gang[i][j]=0;

gang[j][i]=0;

}

244 CHAPTER 8. MODEL EXAMINATION QUESTIONS

}

Main example

int maxgroup[N];

int max=0;

/*

* NOTE: current[N] is one array of the array of

* arrays gang[N][N]

*/

void compare(int i, int current[N])

{ for (int j=0; j<n; j++) current[j] &= gang[i][j];

for (int k=i+1; k<n; k++)

{ if (current[k]==1)

{ compare(k,current);

current[k]=0;

}

}

if (count(current)>max)

{ max=0;

for (int k=0; k<n; k++)

{ if (current[k]==1) maxgroup[max++]=k;

}

}

}

5. Explain in detail what the function compare does, and how it works, paying

special attention to the recursive nature of the procedure and the actions of

the calling fragment, and giving a function count which returns the number

of ‘1’s in the array current. [8 marks]

6. Outline a function main to bring all this together and for each N in the range

2 to 20 calculate an average, over 10 tries, of the cardinality, given p = 0.5,

and display the smallest N for which the cardinality is less than N/3. This

is the critical number of bandits for the gold safety, and for sheriff Dozy not

to lose his job. [3 marks]

8.14 Exception

Describe some circumstances where it is useful for functions to return errors as

exception, and some where it is not. Give an example of an algorithm which is

simplified by the use of exceptions.

8.15. FEATURES 245

8.15 Features

Write brief notes on four of the following aspects of Java. In some cases it may be

appropriate to compare what Java does in the situation with other programming

languages such as ML.

1. Using the same name for several different functions;

2. Data types where a single type has several variants;

3. Programs that live in several source files;

4. Inheritance and abstract classes;

5. The degree to which code will behave the same when run on different com-

puters.

8.16 More features

For five of the following Java features write a very short code fragment (it does not

have to be complete, and perhaps 2 or 3 lines will suffice in most of the cases) that

illustrates the syntax involved. In each case explain briefly what your example

achieves.

1. Declaration of constants;

2. Casts between class types;

3. The two styles of comment;

4. Catching an exception;

5. The switch statement, including a default label;

6. Summing all the BigInteger values that are in an array;

7. The class Object.

246 CHAPTER 8. MODEL EXAMINATION QUESTIONS

8.17 Debate

A grand debate is being planned by a society that has among its members a large

number of computer professionals and working programmers. Arthur will pro-

pose a motion “That this house considers ML to be a much better programming

language than Java”, while Larry will lead the opposition under the banner “Java

is the language for any programmer who seeks employment and hence who can

truly be referred to as working”. Organise the points in support of the two lan-

guages that each proponent will use to justify their position, and identify areas

where they are liable to find common ground.

You are not expected to reach a definite conclusion about which way the vote

will go at the end of the debate: your job is just to collect and organise the argu-

ments so that comparing and contrasting the merits of the two language becomes

easy.

8.18 Design

You have been invited to start a project to build a program that will check ML pro-

grams to see if they have missing punctuation marks or other mistakes, so that this

check can be performed before the ML code is forwarded for full execution. So

far all you know about what is wanted is the above. Without concerning yourself

with fine detail of how the checking will be implemented, identify and discuss:

1. questions you might want to ask the client organisation about its needs be-

fore deciding on any more details of your design;

2. choices or options available to you when making a detailed project plan;

3. ways of partitioning the whole job into a handful of separate modules that

could be implemented more or less independently;

4. plans for testing the code you write and determining whether, when notion-

ally finished, it has met its objectives.

8.19 Filter (Coffee?)

The structure of a binary tree containing integers at just some of its leaves could
have been given by the ML type T defined as follows

datatype T = X | N of int | D of T*T;

8.20. PARSE TREES 247

Define a Java class or set of classes that can be used to represent trees in the

same general form. Then add a method filter which uses an integer k and a

tree. Its job is to simplify trees by using the rule that and sub-node (type N in the

ML declaration) where the integer stored is k gets turned into an X leaf. Then any

node (X,t), or (t,X) [ie nodes of the ML type D where one of the sub-trees is

an X] get turned into just t.

Thus for instance if k = 0 the initial tree ((0,0),((2,0),3)) would sim-

plify to just (2,3)

8.20 Parse trees

What does it mean for a Java class to be abstract?
A Java program includes the following class declarations:

abstract Class Node

{

public int eval();

}

Class Num extends Node

{

int value;

public Num(int value) { this.value = value; }

...

}

Class Op extends Node

{

String sym;

Node left;

Node right;

public Op(String sym, Node left, Node right)

{ this.sym=sym; this.left=left; this.right=right; }

...

}

The objective of the programmer who wrote this was to be able to write assign-
ments such as

test = new Op("*", new Num(4),

new Op("-", new Num(7), new Num(2)));

The variable test is of type Node which can cover either of the two concrete

cases of Op (representing a dyadic operator together with its two operands) or Num

248 CHAPTER 8. MODEL EXAMINATION QUESTIONS

(a number). Thus the above assignment sets up a representation of the expression

4∗ (7−2).

The abstract class Node declares a method eval(). Fill in the dots in the

other two classes with code that overrides this so that calling the eval method on

a Node returns the value of the arithmetic expression is represents, supposing that

the only operators that will be used are plus, minus and times.

8.21 Big Addition

Java comes with a class BigInteger that represents potentially huge numbers.

Suppose it did not, or for some reason you were prohibited from using it but still

needed to work with large positive integers. To fit your needs you will define a

new class called Big that stores integers as arrays of byte values, where each byte

holds a single decimal digit from the number being used, with the least significant

digit held at position 0 in the array.

Write a definition of such a class including in it methods to create a big integer

from an int (provided that int is positive), to add two Big values together and

to convert from a big to a String ready for printing. You need not implement

any other methods unless they are needed by the ones mentioned here.

8.22 Lists in Java

A list in Java can be represented as a sequence of links. Each link is an object

containing one value in the list and a reference to the rest of the list following the

link. A null reference indicates the end of the list.

Write a Java class that can represent such lists, where the items stored in lists

are of type Object. Provide your implementation with two static public methods

that append lists. The first of these should be called append and should take two

arguments, its result should be the concatenation of the two lists and neither input

should be disturbed. The second should be called conc and should have the same

interface, but it should work by altering the final reference in the first list to point

it towards the second, and it should thus not need to use new at all.

8.23 Pound, Shillings and Ounces

The Imperial system for Sterling currency was based on the pound, shilling and
penny (plural pence). There were 12 pence in a shilling and 20 shillings in a
pound. A Java class that could store amounts in this format might be

8.24. DETAILS 249

class LSD

{

boolean negative;

int pounds;

int shillings;

int pence;

LSD(boolean m, int l, int s, int d)

{ ... }

...

Adjust or finish off the constructor so that it raises an exception of class

BadInput (which may be supposed to have been defined already) if the input is

invalid, ie unless the number of pence is from 0 to 11 and the number of shillings

from 0 to 19, and the specified number of pounds is positive.

Now you need to provide a toString method in the class that converts cur-

rency into textual form. The following table shows the desired effect when a

number of pence is first converted to LSD and then to a string:

0 ⇒ zero

1 ⇒ 1 penny

10 ⇒ 10 pence

60 ⇒ 5 shillings

80 ⇒ 6 shillings and 8 pence

252 ⇒ 1 pound and 1 shilling

479 ⇒ 1 pound, 19 shillings and 11 pence

1201 ⇒ 5 pounds and 1 penny

2400 ⇒ 10 pounds

-252 ⇒ minus 1 pounds and 1 shilling

Credit will be given for a clearly explained, concise and tidily presented solution.

Minor syntax or punctuation errors in the Java code will not count heavily against

you.

8.24 Details

Give a brief explanation of each of the following aspects of Java

1. The difference between >> and >>>;

2. The possibility that in some program the test (a == a) might return the

value false for some variable a;

3. The keywords final and finally;

250 CHAPTER 8. MODEL EXAMINATION QUESTIONS

4. The expression "three" + 3 and other expressions of a generally similar

nature;

5. The meaning of or errors in (whichever case is relevant!)

...

int [10] a;

for (int i=1; i<=10; ++i)

a[i] = 1-a[i];

...

8.25 Name visibility

A complete Java program may use the same name for several different methods or

variables. Java has a number of features that allow the user to prevent such re-use

of names from causing chaos. Describe there under the headings:

1. Scope rules within individual functions; [6]

2. Visibility of method names within classes, and the effects of inheritance; [8]

3. Avoiding ambiguity when referring to the names of classes. [6]

8.26 Several Small Tasks

Write fragments of Java definitions, declarations or code to achieve each of the

following effects. You are not expected to show the whole test of a complete

program — just the parts directly important for the task described, and you may

describe in words rather than Java syntax any supporting definitions or context that

you will want to rely on. Clarity of explanation will viewed as at least as important

as syntactic accuracy in the marking scheme. It is also understood that names of

methods from the standard Java class libraries are things that programmers check

in on-line documentation while writing code, so if you need to use any of these

you do not need to get their names or exact argument-format correct provided

that you (a) describe clearly what you are doing and (b) your use is correct at an

overview level:

1. Take a long argument called x and compute the long value obtained by

writing the 64 bits of x in the opposite order; [6]

8.27. SOME TINY QUESTIONS 251

2. Define a class that would be capable of representing simple linked lists,

where each list-node contains a string. You should show how to traverse

such lists, build them and how to reverse a list. In the case of the list revers-

ing code please provide two versions, one of which creates the reversed list

by changing pointers in the input list, and another which leaves the original

list undamaged and allocates fresh space for the reversed version; [8]

3. Cause a line to appear in a the window of an applet running from the bottom

left of the window towards the top right. Your line should remain visible if

the user obscures and then re-displays the window, but you can assume that

the size of the windows concerned will be fixed at 100 by 100 units. [6]

8.27 Some Tiny Questions

1. List the eight Java primitive data types.

2. What result will be printed if the following fragment of Java code is exe-

cuted? Why?

double d = 6.6;

try

{ d = 1.0 / 0.0;

}

finally

{ System.out.println("d = " + d);

}

252 CHAPTER 8. MODEL EXAMINATION QUESTIONS

Figure 8.1: Remember: programming is fun!

Chapter 9

Java 1.5 or 5.0 versus previous

versions

The Java course from 2005 onwards uses a version of Java (and its libraries) that

support a range of things that earlier release did not. The commentary about these

features here is not part of the examinable content of the course, but may help

those who want their code to be backwards compatible, and may help supervisors

understand how features new in 1.5 are relevant in an introductory Java course.

9.1 An enhanced for loop

New Java allows direct iteration over either arrays or collection types using syntax
along the lines of

for (Type s : arrayOrCollection) use(s)

With previous versions you would need

for (int i=0; i<array.length; i++) use(array[i])

for arrays, or the yet more clumsy

for (Iterator i=collection.iterator(); i.hasNext();)

{ Type s = (Type)i.next();

use(s);

}

There are special delicacies to watch with the use of nested iterations if you

use the old versions, and a strong interaction with the generics feature described

next.

253

254 CHAPTER 9. JAVA 1.5 OR 5.0 VERSUS PREVIOUS VERSIONS

9.2 Generics

Most of the examples that use collections in these notes decorate the type dec-

larations of the collections to show what they contain. For instance there could

be use of HashMap<String,String> for a HashMap that will only be used

with strings as both they keys and values it stores. With these decorations code

is naturally type-safe. Older Java does not support this. The result is that instead

all generic structures use the fall-back Object type. When data is retrieved from

then the Java type-checker does not know what sort of Object is being used, and

so casts, involving run-time checks, have to be used.

9.3 assert

The assert keyword came in with Java 1.4. For use with any earlier version of

Java you must remove them all. Please ensure that your code is fully debugged

first!

9.4 Static imports

If your new code includes a line such as import java.Math.PI and you then

use the constant PI in your code you will need to remove the import statement

and use the longer name Math.PI everywhere that you reference it.

9.5 Auto-boxing

With both collections and the printf facility listed later, you can use the built

in types (eg integers and reals, characters and booleans) without having to worry

too much about special consequences of them being primitive built-in types rather

than part of the Java class system. In older versions of Java this is not the case,

and you need to make much more explicit use of the wrapper classes Integer,

Double and so on. The effect is much messier code in places! The term “auto-

boxing” refers to the fact that these wrapper classes are still used, and use of a

constructor new Integer(1) is referred to as “boxing” the integer up.

9.6 Enumerations

In Java 1.5 you may have used enum to introduce a collection of distinct names,

and you may then have used these enumeration values in switch statements. Be-

9.7. PRINTF 255

fore Java 1.5 you could either use an explicit encoding as integers (which does

not protect you from type errors) or some more elaborate scheme that uses the

class system to protect details of the implementation. In any case the effect is

significantly more clumsy than the new scheme.

9.7 printf

When you look at many existing Java books and sample codes you will see print-
ing done using the idiom

System.out.println("The result is" + i);

where these notes have written something more like

System.out.printf(

"The result is %d (or %<x in hex)%n", i);

These notes have preferred the second if only because the format string item

%d makes explicit what type of item is being displayed, and so there is an extra

check on internal consistency in your code. Format conversions provide amazing

(and sometimes complicated) levels of refinement in controlling just how simple

information such as numbers are to be laid out. Replicating that control using

the facilities from previous Java releases is tedious and leads to fairly bulky and

unreadable mess.

9.8 Scanner

If you needed to split an input file into words or wanted to read in a simple column

of numbers you may have used Scanner. Beware because it is new and you

would need to do things by hand to if backwards compatibility was essential. In

big programs Scanner may not matter but I find it jolly handy in all sorts of small

examples.

9.9 Variable numbers of arguments for methods

The smallVarargs facility is something you should probably not often use di-

rectly in your own code, but it is exploited by printf and friends. The old way

of achieving a similar effect is to make your function accept an array of items, and

construct a new array to pass arguments in each call you make to it.

256 CHAPTER 9. JAVA 1.5 OR 5.0 VERSUS PREVIOUS VERSIONS

9.10 Annotations

Java 1.5 provides a general framework for adding annotations to your code in a

way that is expected to make it easy for program management tools to extract

them. This is a relative of the notation /** that inserts “document comments”

that javadoc can extract. The scheme is not mentioned in this course beyond

the fact that the new-style annotations are introduced by a name preceded by

an at-sign (@), and new styles of annotation can be declared using the keyword

@interface. Any code that has this syntax will need it removed for use with

earlier versions of Java. This will not change the behaviour of the code itself

in any way, but would have an effect on how it could interact with annotation-

processing tools (see the Java documentation for the command apt). For those

who want to investigate further it might be useful to note that the Java reflection

mechanisms can detect when a method defined in a class has been annotated. A

lot of the time you will not use annotations, but when you do they may be a huge

help and you would hate to go back to a system without them.

9.11 Enhanced concurrency control

For example ConcurrentHashMap, EnumSet.

Many of the above features interact together so that the savings of using them

combined are even greater than using them one at a time. A consequence of

that is that giving them up would be even more painful than you might at first

expect. I fully expect to see many of them becoming the standard idiom for Java

programmers in the very near-term future.

Bibliography

[1] Abramowitz and Stegun. Handbook of Mathematical Functions (with for-

mulas, graphs and mathematical tables). Dover, 1965.

[2] David Barnes and Michael Kölling. Objects First with Java: a Practical

Introduction using BlueJ. Prentice Hall/Pearson, 2 edition, 2005.

[3] Colin Bentley. Introducing SSADM 4+. NCC Blackwell, and also see

http://www.blackwellpublishers.co.uk/ssadmfil.htm, 1996.

[4] Jon Bentley. Programming Pearls. Addison-Wesley, 1986.

[5] Jon Bentley. MoreProgramming Pearls. Addison-Wesley, 1988.

[6] Judy Bishop. Java Gently. Addison Wesley, 3 edition, 2001.

[7] Fred Brookes. The Mythical Man Month. Addison Wesley, 2 edition, 1996.

[8] J. Cameron. JSP and JSD: The Jackson Approach to Software Development.

IEEE Computer Society Press, 1989.

[9] Leiserson Cormen and Rivest. An Introduction to Algorithms. MIT and

McGraw-Hill, 1990.

[10] E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.

[11] Bruce Eckel. Thinking in Java. Prentice Hall, 1998.

[12] Christopher Essex, Matt Davison, and Christian Schulsky. Numerical mon-

sters. SIGSAM Journal, 34(4):16–32, December 2000.

[13] John McCarthy et al. The Lisp 1.5 Programmer’s manual. MIT Press, 1965.

[14] M. H. Halstead. Elements of Software Science. Elsevier North Holland,

1977.

[15] Henry S Warren Jr. The Hacker’s Delight. Addison Wesley, 2003.

257

258 BIBLIOGRAPHY

[16] Brian W. Kernighan and Dennis M. Richie. The C programming language.

Prentice-Hall, 1978.

[17] Donald E. Knuth. Literate Programming. CSLI Lecture Notes and CUP,

1992.

[18] Steve Maguire. Writing Solid Code. Microsoft Press, 1993.

[19] C.A.R. Hoare O.-J. Dahl, E.W. Dijkstra. Structured Programming. Aca-

demic Press, 1972.

[20] Eric S Raymond. The Cathedral and the Bazaar. O’ Reilly, 1999.

[21] Guy Steele. Common Lisp the Language. Digital Press, 1990.

[22] X3J11. ANSI X3.159, ISO/IEC 9899:1990. American National Standards

Institute, International Standards Organisation, 1990.

