
JavaScript Functions, Objects, and
Arrays
Chapter 15

Dr. Charles Severance

To be used in assocition with the book:
PHP, MySql, and JavaScript by Robin Nixon

Unless otherwise noted, the content of this course material is licensed under a Creative
Commons Attribution 3.0 License.
http://creativecommons.org/licenses/by/3.0/.

Copyright 2011, 2012, Charles Severance

Definitions

• Class - a template - Dog

• Method or Message - A defined capability of a class - bark()

• Object or Instance - A particular instance of a class - Lassie

Terminology: Class

http://en.wikipedia.org/wiki/Object-oriented_programming

Defines the abstract characteristics of a thing (object), including the
thing's characteristics (its attributes, fields or properties) and the
thing's behaviors (the things it can do, or methods, operations or
features). One might say that a class is a blueprint or factory that

describes the nature of something. For example, the class Dog would
consist of traits shared by all dogs, such as breed and fur color

(characteristics), and the ability to bark and sit (behaviors).

Terminology: Class

http://en.wikipedia.org/wiki/Object-oriented_programming

A pattern (exemplar) of a class. The class of
Dog defines all possible dogs by listing the
characteristics and behaviors they can have;
the object Lassie is one particular dog, with
particular versions of the characteristics. A

Dog has fur; Lassie has brown-and-white fur.

Terminology: Instance

http://en.wikipedia.org/wiki/Object-oriented_programming

One can have an instance of a class or a particular object. The instance
is the actual object created at runtime. In programmer jargon, the

Lassie object is an instance of the Dog class. The set of values of the
attributes of a particular object is called its state. The object consists of

state and the behavior that's defined in the object's class.

Object and Instance are often used interchangeably.

Terminology: Method

http://en.wikipedia.org/wiki/Object-oriented_programming

An object's abilities. In language, methods are verbs. Lassie, being a
Dog, has the ability to bark. So bark() is one of Lassie's methods. She

may have other methods as well, for example sit() or eat() or walk() or
save_timmy(). Within the program, using a method usually affects only

one particular object; all Dogs can bark, but you need only one
particular dog to do the barking

Method and Message are often used interchangeably.

Objects in JavaScript

• An object groups data together along with functions needed
to manipulate it.

• A "class" is a template that defines the shape/structure for
the object

Objects in JavaScript

• The OO Pattern in JavaScript is a little different

• The function is indeed a store and reuse pattern

• The function keyword returns a value which is the function
itself - it makes a function!

A Sample Class

function PartyAnimal() {
 this.x = 0;
 this.party = function () {
 this.x = this.x + 1;
 console.log("So far "+this.x);
 }
}

an = new PartyAnimal();

an.party();
an.party();
an.party();

This is the template for
making PartyAnimal

objects.

Each PartyAnimal
object has a bit of data.

Each PartyAnimal object
has a bit of code.

Create a PartyAnimal
object.

Tell the object to
run the party()

code.
js01.htm

function PartyAnimal() {
 this.x = 0;
 this.party = function () {
 this.x = this.x + 1;
 console.log("So far "+this.x);
 }
}

an = new PartyAnimal();

an.party();
an.party();
an.party();

an
x:

party()

js01.htm

Object Life Cycle
http://en.wikipedia.org/wiki/Constructor_(computer_science)

Object Life Cycle

• Objects are created, used and discarded

• Constructors are implicit in JavaScript - natural

• A constructor in a class is a special block of statements
called when an object is created

• Destructors are not provided by JavaScript

http://en.wikipedia.org/wiki/Constructor_(computer_science)

function PartyAnimal() {
 this.x = 0;
 console.log("In the 'constructor'");
 this.party = function () {
 this.x = this.x + 1;
 console.log("So far "+this.x);
 }
}

an = new PartyAnimal();

an.party();
an.party();
an.party();

js03.htm

Many Instances

• We can create lots of objects - the class is the template for
the object

• We can store each distinct object in its own variable

• We call this having multiple instances of the same class

• Each instance has its own copy of the instance variables

function PartyAnimal(nam) {
 this.x = 0;
 this.name = nam;
 console.log("Built "+nam);
 this.party = function () {
 this.x = this.x + 1;
 console.log(nam+"="+this.x);
 }
}

s = new PartyAnimal("Sally");
s.party();

j = new PartyAnimal("Jim");
j.party();
s.party();

Constructors can have
additional parameters. These

can be used to setup
instance variables for the
particular instance of the

class (i.e. for the particular
obect).

js04.htm

function PartyAnimal(nam) {
 this.x = 0;
 this.name = nam;
 console.log("Built "+nam);
 this.party = function () {
 this.x = this.x + 1;
 console.log(nam+"="+this.x);
 }
}

s = new PartyAnimal("Sally");
s.party();

j = new PartyAnimal("Jim");
j.party();
s.party();

s
x:

name:

j
x:

name:

Definitions

• Class - a template - Dog

• Method or Message - A defined capability of a class - bark()

• Object or Instance - A particular instance of a class - Lassie

• Constructor - A method which is called when the instance /
object is created

Arrays

Arrays

• JavaScript supports both
linear arrays and
associative structures,
but the associative
structures are actually
objects

Linear Arrays

Array Constructor

Associative Arrays Objects

• JavaScript Associative Arrays are actually objects with
member variables

• They can be accessed with either associative array syntax or
object syntax

balls = {"golf": "Golf balls",

 "tennis": "Tennis balls",

 "ping": "Ping Pong balls"};

balls.soccer = "Soccer balls";

balls['lacross'] = "Lacross balls";

console.dir(balls);

js05.htm

balls = {"golf": "Golf balls",

 "tennis": "Tennis balls",

 "ping": "Ping Pong balls"};

balls.soccer = "Soccer balls";

balls.kick = function () {

 console.log('Boom!');

}

console.dir(balls);

balls.kick();

js06.htm

Control Structures Lite...

Control Structures

• We use curly braces for control structure and whitespace /
line ends do not matter

• If statements are as you would expect

• While loops are as you would expect

• Counted for loops are as you would expect

• In loops, break and continue are as you would expect

Definite Loops (for)

balls = {"golf": "Golf balls",

 "tennis": "Tennis balls",

 "ping": "Ping Pong balls"};

for (ball in balls) {

 console.log(ball+' = '+balls[ball]);

}

js07.htm

balls = {"golf": "Golf balls",

 "tennis": "Tennis balls",

 "ping": "Ping Pong balls"};

balls.kick = function () {

 console.log('Boom!');

}

for (ball in balls) {

 console.log(ball+' = '+balls[ball]);

}

balls = {"golf": "Golf balls",

 "tennis": "Tennis balls",

 "ping": "Ping Pong balls"};

balls.kick = function () {

 console.log('Boom!');

}

for (ball in balls) {

 val = balls[ball];

 if (typeof val != "string") continue;

 console.log(ball+' = '+balls[ball]);

}

js09.htm

Questions...

