
1

Introduction to PHP5 with MySQL

Svein Nordbotten

Svein Nordbotten & Associates

Bergen 2009

2

Preface

This publication is an extract of text and illustrations from an online course offered at several

institutions in 2006-2008. The course curriculum was David Sklar: Learning PHP 5 O'Reilly. (2004) This

publication is referred to as Sklar in the course.

It is based on a set off applications which all are fully developed and explained.

Bergen 2009,

Svein Nordbotten

3

Contents
Preface .. 2

Session 1: Static web applications .. 6

Basics ... 6

Web applications .. 6

HTML - Hypertext Markup Language .. 7

HTML Format .. 8

Texts .. 8

Links .. 9

Images ... 10

Lists ... 11

Tables .. 12

Forms .. 12

Frames ... 14

CSS, JavaScript and XML .. 15

Session 2: Dynamic applications by PHP ... 16

Dynamic web sites .. 16

CGI and PERL ... 17

Applications Program Interfaces ... 18

PHP Language .. 18

Approach in this course .. 19

Simple example ... 19

Guessing example ... 21

Session 3: Dynamic application without database ... 24

Market research .. 24

System design ... 24

Market research .. 25

Market analysis ... 30

Session 4: Introducing the MySQL database... 33

4

Dynamic applications and databases .. 33

Creation of a reference database to you personal library. ... 33

Menu page .. 34

Listing the content of the database .. 37

Searching the database for a book reference. .. 39

Deleting rows in the database .. 44

Removing database ... 45

Session 5: Polling with MySQL database ... 47

Opinion polls ... 47

Application design ... 47

Database ... 48

Application menu .. 48

Creating records and a list of panel members .. 49

Processing, statistics and rotation .. 53

Session 6: File processing .. 58

Maintaining files.. 58

Fetching files ... 59

Uploading files .. 62

Session 7: Functions in PHP .. 65

Functions ... 65

Authorization and authentication ... 66

Authorization .. 70

PIN code assignment ... 70

Authentication .. 71

Function library ... 72

Logging .. 72

Logging function .. 73

Example environment ... 73

Parsing ... 75

Session 8: Information retrieval .. 79

General model... 79

Index module .. 80

5

Search module .. 84

Administrative module ... 87

Session 9: e-learning ... 91

Web courses .. 91

Course architecture... 91

Authorization and authentication ... 92

Registration and authorization ... 93

List of content ... 95

Sessions ... 96

Instructor's tools. .. 100

Concluding remarks .. 103

Session 10: Web shop ... 104

e-shops .. 104

Business promotion .. 104

Buying products .. 106

Purchasing products .. 112

A final remark .. 115

A bibliography for further studies ... 116

6

Session 1: Static web applications

Basics

This session is a short introduction to Hyper-Text Mark-up Language (HTML) for those not
acquainted with this language, and a fast repetition for those already experts in the language.

Web applications

The topic of this course is the design and implementation of web applications. In this context a
web application is a server-based system which can interact with the user and respond with
several interrelated pages for display at the user's computer.

We distinguish between 2 categories of applications, the static and the dynamic applications. An
application is denoted as static if the pages returned have an invariable content. In a static
application, i.e. the returned pages cannot be modified according to the individual characteristics
or behavior of the user. The user makes a request to a host at which the web server processes the
request and returns a web page to be displayed at the user's screen. Note that the web server can
retrieve a file stored at the host, e.g. a .jpg file, and use it for composing the web page. The basic
web server cannot, however, store or modify files submitted by the clients.

A dynamic application, on the other hand, can modify its responses by adding to the returned
page the name of the user, the number of times this particular user has visited the application
web site, her account data, course progress, etc. It requires a special program which are able to
additional processing, for example to process and save data sent by the user or on demand return
data stored in a data base to the user. The main objective of this course is to introduce you to the
art of developing dynamic web applications.

The Internet was initiated in the 1970's as a further development of the ARPANET. The World
Wide Web, WWW, was developed and introduced in 1989 by Tim Berners-Lee and Robert
Cailliau at the European Particle Physics Laboratory (CERN) as an Internet tool for
collaborative knowledge-sharing. It became in short time very popular. WWW comprises today
a large number of computers which make files available through Internet according to the
HyperText Transfer Protocol, HTTP. Today, it is estimated that more than 300 M people
worldwide are using the web.

The visible content of a web file is called a web document. If a web document is prepared
according to the HTTP protocol, it can be transferred from a host computer using appropriate
software to a requesting client by Internet. Most documents are prepared by means of the tag-
based language HyperText Markup Language, HTML, frequently supplemented with some
additional tools. If the requesting client has the necessary browser software installed, the file
received can be displayed and, if wanted, a new request can be generated, form exampled by
clicking a link in the displayed document.

A web site is usually a set of interrelated web-files hosted by a computer running a web server.
Design and implementation of a web site have several aspects:

7

 the topic of the site

 the layout of the pages sent from the site

 the functionality of the site

The topics of a web site are varying and depending on the owner's interests and mission. We
shall not in this course discuss which appropriate pages for web publication are, and which are
not. Examples of both interesting and less interesting pages are easily found at the net.

The layout of pages is a fascinating subject. All kinds of backgrounds colors and patterns, fonts
of different kinds and sizes, etc. are among the layout factors from which the designer can
choose. Some pages have animation and/or sound embedded, others include programs
transferred to and acting in the client computer. The layout of a page is an important subject
because it probably has a significant impact on how the receivers will perceive the page. So far,
the layout has to a large extent been determined by the latest hypes and layout rules. The
heuristic design rules offered have usually been based on personal opinions and limited empirical
facts. Large scale investigations of people's perception of alternative layouts are needed.
However, layout is neither the main subject of this course.

The subject of this course is the functionality required to change the web arena from basically
static to dynamic applications. The required functionality is the web site's ability to react on a
visitor's behavior over a shorter or longer time period expressed by a series of requests and
responses. It is called dynamic because the web pages returned to the client depend on the
visitor's previous interaction.

Most web sites are still static, i.e. each web page is presented in the same way independent of
client and time. Dynamic functionality means that the pages returned to the clients can be
adjusted to previous input from the individual client and/or time. Development of dynamic web
sites can be approached in many ways. In this course, we limit our discussion to the functionality
based on the scripting language PHP Language and on the PHP Application Engine. However,
before we embark on the dynamic aspects, we shall in this session briefly summarize the
HTML.

HTML - Hypertext Markup Language

HTML is developed from SGML Standard Generalized Markup Language which was
approved in 1986 as a standard for marking up documents so they can be stored and read by
computers. HTML includes only a smaller fraction of the features covered by SGML and was
aimed to be a convenient tool to express pages to be served to the users by WWW. The most
recent version of HTML is 4.01. An XML based version of HTML 4.01 is XHTML 1.0. In this
course we refer to the HTML 4.01 version. To serve these the HTML pages, web servers,
including the Apache servers, were developed. For the client side, a number of browsers were
introduced of which MS Internet Explorer and Netscape have been the dominating.

The remaining of this session is a short summary of the most basic parts of HTML needed for
this course. For more advanced use of HTML, readers are referred to more advanced literature.

8

HTML Format

To distinguish between the content of the computer file sent to the browser and the resulting
page displayed on the users screen, we shall in this course refer to the former as a HTML page
and the latter as a web display. The HTML language is governed by the use of a set of tags. A
tag is a string surrounded by < and > (e.g. <center>) the following text. In many cases, the tag
string is a single character (<p> : start of a new paragraph). Some tags are single such as the tag
used for comments (<!-- Comment -->) Other tags require a corresponding end tag which is the
tag string preceded by a / (</center> : end the centered text). These tags and the included text are
called tag blocks. Some tags can be nested. There may for example be several paragraphs within
a centered text. Many tags include attributes which can be required or optional (<font
face="New Century" size="2" color="blue">)

A complete HTML page consists of several parts. A typical basic structure may look like (line
numbering is included in this and other pages for convenient reference, and should not be
included in the page):

1. <!doctype html public "-//w3w//dtd html 4.0 transitional//en">

2. <html>

3. <head>

4. <title>

5. <!-- The title of the document may be typed here --></title>

6. </head>

7. <body>

8. <!-- The specific content of the page is typed in the body-block -->

9. </body>

10. </html>

Type this page and save it in your server with a filename, e.g. blank.htm. It can then be called
from a client, but since it still has not any content, it will be displayed as a blank screen by the
browser.

Note that this is the complete frame for an HTML page, it will also usually function with default
specifications with only <html> </html> surrounding your text.

Texts

Let us give the page some content:

1. <!doctype html public "-//w3w//dtd html 4.0 transitional//en">

2. <html>

3. <head>

4. <title>text</title>

5. </head>

6. <body>

7. <center>

9

8. <h2> About this session </h2></center>

9. <p> The purpose of this session is to introduce the course participants to the basic elements of HTML. It

is hoped that the introduction will make it possible for the participants to read the HTML pages used in

this course, and use the knowledge for preparing their own simple HTML pages in combination with the

PHP scripts. </p>

10. <center>

11. <p> Good luck! </p>

12. Greetings from

13. the author

14. </center>

15. </body>

16. </html>

This page is named text.htm in the example. It illustrates how you can mark headings (standard
tags are <h1>, <h2> and <h3>), color the text (16 different colors are predefined: red, blue,
green, blue, etc. and many more are available by code representation), paragraphs (<p>), line
shift (
) and center text (<center>).

Links

Hypertext is the trademark of HTML. We can easily develop a page which includes a link (using
the <a> and tags) to another document, for example the page discussed in the section
above. The <a> tag requires at least one attribute, href, the value of which is the name of the file
enclosed in double quotes to which the link refers.

1. <!doctype html public "-//w3w//dtd html 4.0 transitional//en">

2. <html>

3. <head>

4. <title>Link</title>

5. </head>

6. <body>

7. <center>

8. <h2> Link to the text page </h2></center>

9. <p> You may have links to several different destinations in one page. The one which is first clicked will

be activated. Click the following link to get to the text page:</p>

10. <p>Link to the text page </p>

11. </center>

12. </body>

13. </html>

Several links in sequence can be created to form a menu as in the menu to the HTML example
of this session.

10

Images

In the age of multi-media, many HTML pages have illustrations (Figure 1.1). A possibility to
include pictures in the pages is therefore required. We know from regular work with computers
that pictures can be saved in a number of different file formats of which the .gif and the .jpg are
used in connection with HTML.

Figure 1.1:A famous painting by Edvard Munch

We assume that we have an image of a well known painting by Edward Munch, the Scream,
saved in a file named munch.jpg in the same folder as we use for our HTML pages. We can
now write an HTML page which includes this image in the returned page for display.

1. <!doctype html public "-//w3w//dtd html 4.0 transitional//en">

2. <html>

3. <head>

4. <title>image.htm</title>

5. </head>

6. <body>

7. <center>

11

8. <h2>A Munch picture displayed</h2>

9. < p>You requested a page displaying a picture by Edvard Munch. Here it is:</p>

10.

11. </center

12. </body>

13. </html>

The tag used is which can have several attributes of which src refers to the file in which
the image is stored, is required. You can easily scale the picture by changing the attributes width
and height in the image tag. The metric unit used is pixels. The position of the picture within the
displayed page can be controlled by the attribute align with a number of possible alternative
values (left, middle, right, top, bottom, a. o.). Note that the scaling and the positioning
attributes are optional.

Lists

We have got used to the ability of modern word processor to prepare numbered and unnumbered
list. The HTML has included this ability by the tag pairs and .

The page in this example can serve as an illustration of this capability:

1. <!doctype html public "-//w3w//dtd html 4.0 transitional//en">

2. <html>

3. <head>

4. <title>list.htm</title>

5. </head>

6. <body>

7. <center>

8. <h2>Menu for the example options</h2>

9. <p >This example illustrate the basic features of HTML which are:</p>

10.

11. Blank page

12. Text page

13. Page with link

14. Page with picture

15. Page with table

16. Form page

17. Frame page

18.

19. </center>

20. </body>

21. </html>

The and tags delimit the individual elements, or lines, in the list. Note that in this page
we use the unnumbered tag. By changing the start and end tag to and , the
elements would be numbered consecutively from 1 and up.

12

Tables

The table tag, <table>, is very useful in several ways for presenting one- (a list) and two-
dimensional tables with or without borders. When you consider the display of the menu in the
previous example, it gives an unordered impression. Use of the table tag with associated tags can
make it more orderly. Consider the following page which presents the list as a one-dimensional
table:

1. <!doctype html public "-//w3w//dtd html 4.0 transitional//en">

2. <html>

3. <head>

4. <title>table.htm</title>

5. </head>

6. <body>

7. <center>

8. <h2>Menu for the example options</h2>

9. <p>This example illustrate the basic features of HTML which are:</p>

10. <table>

11. <tr><td>1. Blank page</td></tr>

12. <tr><td>2. Text page</td></tr>

13. <tr><td>3. Page with link</td></tr>

14. <tr><td>4. Page with picture</td></tr>

15. <tr><td>5. Page with table</td></tr>

16. <tr><td>6. Form page </td></tr>

17. <tr><td>7. numbered Frame page</td></tr>

18. </table>

19. </center>

20. </body>

21. </html>

22. </table>

In addition to the <table> tag, we use the tags <tr> and </tr> to delimit a table row, and the tags
<td> and </td> to mark an element in the row. In this example there is only one element per
row, usually there are several. In regular tables there is always one element per column in each
row. If the cell is empty it is marked by <td></td>.

In regular tables, there is usually also a header row with column names. The column names are
marked with the tags <th> and <(th>. Each of the table tags can include one or optional
attributes for defining size, alignment, fonts, border, etc. making the tags very flexible and
useful.

Forms

One of the most important properties of HTML is the <form> tag which permits sending data to
the server. This tag is the key to combining HTML and the PHP language to a tool for creating
dynamic applications. The <form> tag makes it possible to create pages for the user with
different types of input (radio buttons, check boxes, texts, files, etc) and send the input for further
processing by the server according to a specified program, for example a PHP script. Note that

13

HTML itself has no facility for processing data on the server. (There are extensions of HTML
which permit limited processing at the server).

We shall see a number of applications in the following sessions based on interaction between
HTML and PHP scripts. For illustration of the <form> tag in this session, a form will be
discussed and at the accepting server side a very simple PHP script will return a message
confirming the submitted information.

The HTML form page looks like this:

1. <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">

2. <html>

3. <head>

4. <title>form.htm</title>

5. </head>

6. <body>

7. <center>

8. <h2>A form for sending a file for processing</h2>

9. <p>This form can be used for sending a file for alternative processing, Action A or B, and assumes a

processing script at the server. In this example, the only action taken by the server is to return a

message acknowledging the received file and message.</p>

10. <form action="acknowledge.php" method="post">

11. <table>

12. <tr><td>Message:</td><td><input name="message" type="text"></td></tr>

13. <tr><td>File:</td><td><input name="testfile" type="file" enctype="multipart/form-data"></td></tr>

14. <tr><td>Action A:</td><td><input name="processing" type="radio" value="A"></td></tr>

15. <tr><td>Action B:</td><td><input name="processing" type="radio" value="B"></td></tr>

16. <tr><td></td><td><input name="" type="submit" value="Submit file"></td></tr>

17. </table>

18. </form>

19. You can either use any .htm or .doc file you have on your client.

20. </center>

21. </body>

22. </html>

The form tag appears on Line 10. In this form, 2 attributes are used, the action, which specify
the PHP script for processing the submitted information, and the method determining which
way the information should be transferred. Note that we must use the post method, why will be
explain in a later session. We also postpone the discussion of the PHP script, acknowledge.php,
to the next session.

The form type of content is determined by the <input> tags in Lines 12 -16. All input tags have
2 attributes in common, the name and the type of input. As long as the name is not yet used, it
can be chosen quite freely (avoid special characters and blanks). Available values of the type are
text, password, radio, checkbox, file, image, and submit. For type="file" there is also a third
attribute, enctype. For all types that are optional attributes which can determine the size of the
fields for giving answers.

14

Input tags of type="submit" are special. They do not require any name specified, but you can
text the submit button by means of the value attribute.

The form script can contain other tags than <input> as the <select> tag to create menus,
<textarea> for creating an area into which the user can provide a longer text, and others.

Frames

The last feature of HTML we want to cover in this introduction is the frames. We have in the
examples above developed a menu page from which we can select the special feature we want to
be demonstrated. However, after the first demonstration, we have to use the Back button to find
the menu again. We therefore need a way to divide the screen into 2 windows, one showing the
menu permanently and the other displaying the topic selected for demonstration.

The frame feature of HTML permit us to divide the screen into 2 or more windows, all visible
and active at the same time.This feature uses 2 tags, <frameset> and <frame>. The page below
generates the effect we want.

1. <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Frameset//EN"

"http://www.w3.org/TR/html4/frameset.dtd">

2. <html>

3. <head>

4. <title>frame.htm</title>

5. </head>

6. <frameset cols="20%,*" frameborder="yes" border="1" framespacing="0">

7. <frame src="table2.htm" name="leftFrame">

8. <frame src="blank.htm" name="mainFrame">

9. </frameset>

10. </html>

Note the difference in the <!doctype> tag from those used in previous HTML pages and that the
<body> tag is not included.

Lines 6 - 9 specify a frame set, because the <frameset> tag has 4 attributes, cols, with the value
"20%,*" divides the width of the client's screen in 2 windows by a vertical border assigning
20% of the screen to the left window and the rest to the right window, frame border and
border, specifying a visible border of size 1, and finally frame spacing which is set to 0.

Inside the frame set block there are 2 <frame> tags, one for each window. They have both 3
attributes which specify the src, i.e. the file to provide content to and the name of the respective
window. This page generates the 2 windows and their initial content (the right window is empty
because it is generated by blank.htm. To understand how the further content of the windows is
created, we need to look at a modified version of table.htm called table2.htm (only the part
within the <body> block is reproduced):

15

1. <center>

2. <h2>Menu for the example options</h2>

3. <p>This example illustrate the basic features of HTML which are:</p>

4. <table>

5. <tr><td>1. Blank page</td></tr>

6. <tr><td>2. Text page</td></tr>

7. <tr><td>3. Page with link</td></tr>

8. <tr><td>4. Page with picture</td></tr>

9. <tr><td>5. Page with table</td></tr>

10. <tr><td>6. Form page</td></tr>

11. </table>

12. </center>

The only difference from the original table.htm is the inclusion of the argument target with
value "mainFrame" in the <a> tags of Lines 5 -10. The target directs the browser to display the
link in the window named mainFrame, i.e. the right hand window.

CSS, JavaScript and XML

The tool case for preparing web documents contains a number of useful objects. Close to HTML
are Cascading Style Sheets (CSS), JavaScript and eXtensible Markup Language (XML).

CSS was developed for use with HTML and introduced in 1996, and is implemented in most
browsers.

http://nordbotten.net/phproot/courses/php_hsh/sessions/session2/images/image2_1.jpg

17

test at the end of the session, the system will respond by giving you access to the session. The
system must be able to compare your request with its clock time and with your recorded test
performance. If a student has not yet completed the required test, the host will return a message
that the test must be done before the student can proceed. This means that the system must be
able to keep track of your previous interactions.

Important characteristics of a dynamic web site are the ability to authenticate you, i.e. to verify
your identity, to record your performance history, to react on the time for the request, to keep
track of your interactions from you start a session and to its end, and sometimes even from
session to session. The dynamic web site can be summarized by Figure 2.2.

CGI and PERL

The first step toward dynamic web pages is the possibility for a remote client to request the
execution of a process at the host. Use of the FORM tags of HTML requires, for example, that
the server can perform a processing of the data submitted on the form. A program must exist for
this purpose at the host site, and the web server must be able to communicate with this. We shall
refer to such a program which supplements the HTML pages as a script.

The Common Gateway Interface, CGI, is a protocol specifying how certain scripts can
communicate with web servers. One of the most frequently used tools for creating such scripts is
the script language PERL. A PERL script stored in the host computer can be supplied with data
from a request, for example sent by a HTML FORM page. The script can be designed to
perform a variety of tasks such as save and retrieve data from a database, update a log, keep track
of visitors, run a course, etc. It can also be designed to perform its task and then leave the result
to the web server, which returns a web page generated by means of the script to the requesting
client. Programming languages such as C, C++, C# and JAVA can also be used for creating

http://nordbotten.net/phproot/courses/php_hsh/sessions/session2/images/image2_2.jpg

18

scripts. One reason for the popularity of PERL is that scripts programmed in PERL can be
ported from one operating system to another with no or little modification.

Applications Program Interfaces

A PERL-CGI application is time-consuming because PERL scripts must be loaded, executed

and unloaded each time they are used like interpretive programs, and do not offer the flexibility

which may be required.

To improve this situation, Application Servers were developed. An application server is a service
operating behind the web server. It processes script code, which the web server does not
understand, and returns the results to the web server for returning to the requesting client. The
applications server is a resource of permanently loaded executable programs, and is referred to as
an Applications Program Interface, API. The advantages of using an API compared with the
earlier interpretative programs are increased speed and flexibility because no loading and
interpretation is needed. The disadvantage is that the API programs must be implemented and
compiled separately for each type of operating system, and requires more memory space.

PHP Language

The well-known API tools include the ASP and ASP.NET from Microsoft, the open source
system PHP, iHTML from Inline Internet Systems, and ColdFusion MX from Macromedia. In
this course, we are leaving the comparisons between the tools to evaluators and sales people, and
concentrate on PHP because it is an open source tool, easily available and supported by a large
community of users. PHP was introduced in 1995 as Personal Home Pages. Since then, PHP has
been developed to a very powerful tool for treating dynamic web sites.

The language by which we design our scripts is the PHP Language. Files in which scripts are
saved are recognized by their extensions, .php. You are referred to the section Software to get
detailed instructions for installing necessary software on your own PC to be able to develop and
test your dynamic sites.

In the previous paragraph, the advantage of using a web API instead of an interpretive approach
was emphasized. PHP was introduced on the market in 1995. It started out as a scripting
language based on CGI. Later, the API was developed. The current version is PHP 5 which is a
powerful system with an embedded database system, SQLite. Be certain that you have the PHP
5 version installed.

PHP is widely used by individuals and enterprises among which there exist an active interchange
of software and experience.

http://nordbotten.net/phproot/courses/hsh/information/software/access.cfm

19

Approach in this course

Most courses and textbooks on programming and scripting languages start with the introduction
of the language syntax. We shall take another approach, learning by examples, i.e. in each
session we shall introduce a set of problems with their live solutions, and explain the syntax
required by the examples. In parallel with studying the examples and the text, the student should
read the relevant parts of the course textbook to make certain that (s)he will acquire the precise
details of the language syntax.

Simple example

Imagine an application requiring registration of some personal data from visitors and which
should be returned as confirmation of accepted data. This simple task cannot be done by use of
HTML only because the response must be adjusted to the submitted data. Figure 2.3 outlines
the application in a diagram. The diagram indicates how the communications between the user
and the host pass through the web server to the PHP scripts because the server cannot process the
in data but is needed to return the web pages to the user for display. To summarize the task:

1. Design a HTML form for acquiring the required data

2. Develop a PHP script for returning a confirmation of received data

The development of a HTML form, may result in a typical file as::

1. <html>

2. <head>

3. <title>Registration</title>

4. <meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">

5. </head>

6. <body>

7. < !-- index.htm -->

8. <center>

http://nordbotten.net/phproot/courses/php_hsh/sessions/session2/images/image2_3.jpg

http://nordbotten.net/phproot/courses/php_hsh/sessions/session2/images/image2_4.jpg

23

this script in the middle of an HTML expression is that we want to include the PHP variable
$_SESSION[randvalue] to be displayed for the client. Note that within double quotes, as in the
print argument, single quotes are not used around the array keys, e.g. in
$_SESSION[randvalue].

The form calls upon the second script, response.php, which follows.

1. <!-- response.php -->

2. <?php

3. $sum="0";

4. for ($count=1;$count<=$_SESSION['randval'];$count++) {

5. $sum=$sum + $count;

6. }

7. if ($sum == $_POST['guess']) {

8. echo "$_POST[name], your guess was correct!";

9. }

10. elseif ($sum > $_POST['guess']) {

11. echo "Sorry, $_POST[name], your guess $_POST[guess] is too low, the correct sum is

$sum";

12. }

13. else {

14. echo "Sorry, $_POST[name], your guess $_POST[guess] is too high, the correct sum is

$sum";

15. }

16. ?>

The Lines 3 - 5 compute the correct sum associated with the generated upper limit integer,
$_SESSION[randval] by looping trough a for loop with an index variable named $count which
is increased by 1 using the incremental operator ++, and for each loop the $sum is increased by
the current index number.

Lines 7 – 16 contain a test of the guess submitted, and return an answer to the client. Three
alternatives are possible: Line 8 will be sent as an HTML page to the client if the sum guessed is
correct, elseif the guess is less than the correct sum, Line 11 will be executed, and, finally, if the
guess is too high, Line 1 is used for response to the client.

The last script illustrates how PHP can solve dynamic tasks by using$_POST[] and
$_SESSION[] variables. Both these arrays contain global variables, i.e. variables which are
persistent during the client's session, an important requirement for dynamic application
development.

24

Session 3: Dynamic application without database

Market research

In this session, the introduction of PHP will be continued, and the scenario we shall use is online
collection of data for market research. The marketing problem concerns 2 products, A and B, and
we are interested in measuring the consumers' relative preferences for the two competing
products. However, we have a suspicion that the respondents may have a tendency to vote for the
product listed first. We want to randomize the sequence, i.e., AB and BA, to eliminate this effect.
The persistence of the preference is another question we want to study. For this reason, we want
the respondents to repeat their preference vote a certain time, e.g. a week, after the first vote. To
attract consumers to provide their votes of preference, those who complete the 2 votes are
eligible for participation in a lottery.

A file of responses must be built in which the 2 votes of the individual consumers can be
connected by mean of a unique identifier for comparing responses as well as a file with name
and addresses for those who are eligible for lottery participation.

Since this is a course focusing on design and development of dynamic web sites, the important
questions about how to obtain representative participants and how many, are ignored. Also the
questions about the evaluation of the reliability of the results are considered outside our scope in
this course.

System design

Figure 3.1 gives an overall idea about how we want to solve the task outlined above. There are 2

http://nordbotten.net/phproot/courses/php_hsh/sessions/session3/images/image3_1.jpg

25

application parts which are both connected to the same 2 data files The implementation will
consist of sets of .php, .htm and .txt files demonstrating how it is possible to mix different types
of files in the same application which will be presented and discussed in the following order:

Market_research:

 index.php

 prepare.php

 save.php

 form3.htm

 save3.php

Market_analysis:

 index.htm

 report.php

 report2.htm

Common text files:

 responses.txt

 addresses.txt

We use the convention introduced in the first session, and name the first file index.php which
give us the advantage that we can open the application by calling the folder in which all the files
reside. The files reflect the 3 sets of files, the user module, market_research, the administration
module, market_analysis, and the data files as outlined in Figure 3.1. In addition, some global
arrays of variables (i.e.,. $_POST[], $_SESSION[] and $_COOCKIE[]) exist for creating
persistency in the application.

The 2 .txt files do not exist initially. but is generated when the first data are collected.

Market research

Figure 3.2 gives a simplified picture of the Market Research part of the application. The index

http://nordbotten.net/phproot/courses/php_hsh/sessions/session3/images/image3_1.jpg
http://nordbotten.net/phproot/courses/php_hsh/sessions/session3/images/image3_2.jpg

26

page is used to send the users instructions about what to do. Since there are 3 questionnaires to
be completed by the participants in the research survey, we define a variable,
$_SESSION['marker'], in Line 4 to keep track of which questionnaire is the current. This
variable is an element of a global array used for making variable values persistent for access in
several scripts during a session. Line 3 test by means of a function isset() if
$_SESSION['marker'] has been defined, and if not define and set the variable to 1.

Next, observe that except for the 3 if statements, the remaining of this PHP script prepares 3
alternative HTML pages for display using the print() function. Line 6 prepares the first
common part of the HTML page to be returned to the client, while the Lines 7, 10 and 13 test
which questionnaire should be offered the user. Depending on the value of the marker
variable, Line 8, 11 or 14 is sent with a tag linking to the appropriate questionnaire. If you study
these print statements carefully, you may be surprised by noticing that there are no double quotes
around the files to which the A tags refer. Expressions already enclosed in the double quotes of a
PHP statements, should not contain any double quotes.

1. <!-- index.php -->

2. <?php

3. if(!isset($_SESSION['marker'])) {

4. $_SESSION['marker']=1;

5. }

6. print("<center><h2>Market research</h2></center>p>This is a market

research to investigate the public's preferences for Product A and Product B. If you respond and

complete two questionnaires, you will be eligible to participate in a lottery. The requirements

are:</p>");

7. if($_SESSION['marker']==1) {

8. print("Request, complete and submit questionnaire 1");

9. }

10. if($_SESSION['marker']==2) {

11. print("Request, complete and submit questionnaire 2");

12. }

13. if($_SESSION['marker']==3) {

27

14. print("Request, complete and submit questionnaire 3");

15. }

16. print(" <p>The 2 first questionnaires require you make a single click only before you submit your

response. The third questionnaire asks for you e-mail address for notification in case you become a

winner in the lottery.</p><p><i>The market research sets a time-limited cookie in your

browser.</i></p>");

17. ?>

index.php does not contain any other new PHP features, and we can proceed to the next script,
which is the prepare.php. The purpose of this script is to prepare the 3 different questionnaires
and keep track of which should be served.

Already the first line introduces an important new feature, i.e. the use of cookies. A cookie is a
small message sent from the server to the client browser providing the receiving client with a
unique identifier, a time- out specification and an identification of the server issuing the cookie.
Cookies are kept in a special list in the computer, and deleted when timed out.

Before a browser sends a request to a server, its list of cookies is checked for any cookies from
the server approached. If a relevant cookie is found, it is copied and attached to the request. The
server receiving a request and scans the request for cookies. When a cookie is detected, the
server has received a user identification.

In this way, it is possible to link items in a chain of interactions between the server and an
individual client. Since the server is issuing and distributing cookies, the anonymity of the client
can be maintained. In our application, we ask the client to answer our questions at 2 different
occasions. We can link the answers by means of a cookie without inquiring about the name or
other identification from the client assuming the client is using the same computer and is the only
user of the computer.

In Line 3 - 6, we ask if the requesting client has a cookie called user_id, and, if not, prepare in
Line 4 a cookie to be returned to the client with the response to its request. The name of the
cookie to be sent is user_id and its unique value is the exact time obtained by the PHP function
time() in Line 4, at the moment the cookie is set. In the function setcookie(), we specify the
name of this cookie, in our application user_id, the value of the cookie, and the lifetime of the
cookie. The value of the user_id must of course be unique. On way of obtaining such a value is
to use the time when the cookie was set. This time value is available from the function time() in
Line 4. This value is also used in the third argument in which a number of seconds are added to
determine when the cookie should be deleted. In our particular application, the second preference
form should be answered one week after the first at which the cookie is set and the timeout point
should be 8 days later.

It is important that only one cookie is set for each visitor, and for that reason a test is made in
Line 3 for the existence of the particular application cookie, $_COOKIE['user_id']. If it already
is set, Line 4 and 5 are not executed.

28

1. <!-- prepare.php -->

2. <?php

3. if(!isset($_COOKIE['user_id'])) {

4. $time=time();

5. setcookie('user_id',"$time", "$time" + 60);

6. }

7. rand();

8. $randval=rand(1,2);

9. $_SESSION['marker']++;

10. print("<center><h2>Preference for products</h2></center><p>Thank you for

visiting this page and expressing your opinion. Complete and submit this form. The second

questionnaire should be completed one week after the first.</p> <FORM ACTION=save.php

method=post>

11. <p>Please mark your preference by clicking a button. Comparing the 2 products A and B, I

prefer:</p>");

12. if($randval == "1") {

13. print("<p><INPUT TYPE=Radio NAME=preference VALUE=A> Product A</p>

14. <p><INPUT TYPE=Radio NAME=preference VALUE=B> Product B</p><INPUT YPE=hidden

NAME=form_type VALUE=1>");

15. }

16. else{

17. print("<p><INPUT TYPE=Radio NAME=preference VALUE=B> Product B</p>

18. <p><INPUT TYPE=Radio NAME=preference VALUE=A> Product A</p><INPUT TYPE=hidden

NAME=form_type VALUE=2>");

19. }

20. print("<p><INPUT TYPE=submit NAME=SUBMIT VALUE=Submit></p>

21. </FORM>");

22. ?>

The last point to be mentioned is the incremental operator ++ used in Line 9 well known from
other languages. This line is equivalent to the longer statement
$_SESSION['marker']=$_SESSION['marker'] + 1;. The questionnaires transformed to HTML form
in Line 10, 13 and 17 are served to the clients depending on the value of $_
SESSION['marker'] incremented in this way.

The returned responses from the clients are taken care of by the script save.php. The answers to
the questionnaires 1 and 2 are saved in response.txt. If the file does not exist, it is established by
the PHP function touch(). Before any file can be operated on, it must be opened by means of the
fopen() function which requires 2 arguments, the file name and the action. There are 2 write
action available, write from the beginning and append to the end of the file indicated by "w" an
"a", respectively. In Line 6 the response.txt is opened for append of data. The fopen() returns a
handle or reference, in this script called $f, and which is used in the file action function fwrite()
in Line 7.

1. <!-- save.php -->

2. <?php

3. if(! file_exists("response.txt")) {

4. touch("response.txt");

5. }

6. $f=fopen("response.txt","a");

29

7. fwrite($f,"User id: $_COOKIE[user_id], Form type: $_POST[form_type], Preference:

$_POST[preference]\n");

8. ?>

9. <center>

10. <p> Return to introduction.</p>

11. </center>

fwrite() is the PHP function used for writing to a file. It requires 2 arguments, the file handle
and a string of the items to be written to the file. In Line 7, the write function in this script, the
first argument is the file handler $f just established in the previous line, and a string of 3
name/value pairs for User_id, Form type and Preference, all with global variable values and
delimited by commas. These are the 3 items in which we are interested in. Note the end of line
symbol, \n, at the end of the string to get a line shift after each record.

In the example, you can return to complete questionnaire 2 immediately. In a real application in
which we would like to observe the preference change during a week, we would design some
kind of program which would remind the client about the second questionnaire in a week.

The registration of the participants of the lottery, implemented in form3.htm, is sent to the client
when both data collection forms have been returned is a simple form calling save2.php. It
returns the submitted name and email address by METHOD="post" in order to be easily
available by save2.php.

1. <!-- form3.htm -->

2. <center><h2>Your e-mail address</h2></center>

3. <p>If you are eligible for participating in the lottery, i.e. you have requested, completed and submitted

the two questionnaires, we need your e-mail address to notify you in case you become a winner in the

lottery.</p>

4. <form action="save2.php" method="post">

5. <table>

6. <tr><td>Your name:</td><td><input type="Text" name="myname"></td></tr>

7. <tr><td>e-mail address:</td><td><input type="Text" name="myemail"></td></tr>

8. <tr><td></td><td><input type="Submit" value="Submit"></td></tr>

9. </table>

10. </form>

The save2.php script is very similar to the already discussed save.php. It resets the marker to the
initial value 1 and thanks the client for his/her participation.

1. <!-- save2.php -->

2. <?php

3. if(! file_exists("address.txt")) {

4. touch("address.txt");

5. }

6. $a=fopen("address.txt","a");

7. fwrite($a,"user id: $_COOKIE[user_id], Name: $_POST[myname], Email address: $_POST[myemail]\n ");

8. $_SESSION['marker']=1;

30

9. ?>

10. <center>

11. <p> Thank you for your participation. You will be included in the

lottery.</p>

12. </center>

Market analysis

The scripts so far have been aimed at collecting the preferences of the participants of the market
research survey. However, we need also to have tools for retrieving the collected data for
analysis. The second part of the application in this session is named Market_analysis (In fact, it
is not an analysis, but a data retrieval): Figure 3.3 gives an overview of this part of the

application. It starts with a simple HTML page, index.htm, which offers 2 options. The first
activates the script report.php which prints the text file response.txt, the second starts
report2.php which prints the text file address.txt.

The index.htm is an ordinary HTML page which links the 2 alternative scripts, report.php and
report2.php.

1. <!-- index.htm -->

2. <html>

3. <head>

4. <title>index.htm</title>

http://nordbotten.net/phproot/courses/php_hsh/sessions/session3/images/image3_3.jpg

31

5. <meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">

6. </head>

7. <body>

8. <center>

9. <h3>Data results</h3>

10. <p>There are 2 results available from market research online data collection:</p>

11. table>

12. <tr><td>1. Results from the research</td></tr>

13. <tr><td>2. List of qualified contestants</td></tr>

14. </table>

15. </center>

16. </body>

17. </html>

The report.php script lists the data as recorded by save php. This time, we open the file for
reading by the parameter "r". By means of a while block, Line 4-7, using the function feof($r)
as the core of the condition, the file is read line by line until the end of file is appearing. Each
line is retrieved by the function fgets(), and sent for display.

1. <!-- report.php -->

2. <?php

3. $r=fopen('../market_research/response.txt', 'r');

4. while(!feof($r)) {

5. $line=fgets($r);

6. print("$line
");

7. }

8. print("<center>

9. <p> Return to menu.</p>

10. </center>");

11. ?>

The second script, report2.php, differs only in the specification of the file, address.txt, to be
read. The lines read by this script have the content as written by save2.php.

1. <!-- report2.php -->

2. <?php

3. $r=fopen('../market_research/address.txt', 'r');

4. while(!feof($r)) {

5. $line=fgets($r);

6. print("$line
");

7. }

8. print("<center>

9. <p> Return to menu.</p>

10. </center>");

11. ?>

This application is characterized by reading the records serially to the server during the
collection of data, and retrieving the results in the same order from the server after the collection
has been completed. In many applications data already saved are updated in a random order as

32

well as requested in a non-serial order. For such application, use of a database will usually be a
better solution and will be the topic of the next sessions.

33

Session 4: Introducing the MySQL database

Dynamic applications and databases

In previous sessions, we have studied examples of dynamic applications in which have made use
of session variables to adjust the pages returned to the client dynamically to data provided , and
use of files to store data permanently. The use of files can have serious drawbacks since reading
or updating a record may require that the whole file must be searched.

Using a database instead of a file or a set of files makes it possible to retrieve or update a single
record. A database has usually its own software, the Data Base Management System, which
operates on the data. The most popular database used in connection with PHP is MySQL,
which is another open source and free software. Commercial database software frequently used
with PHP is POSTGRESS, ORACLE and SyBASE. All these database systems require
separate installation.

MySQL must also be installed separately from PHP which has also to be configured to connect
and operate with MySQL. Assuming that you have successfully installed MySQL as indicated
in Information -> Software, the fundamentals of the use of the system will be introduced by
means of a very simple example in the next sections.

Creation of a reference database to you personal library.

Most people buy and collect books. The collection can contain books belonging to different
categories such as poetry, prose, fiction, science fiction, historic and contemporary
documentaries, information systems methodology, web applications, databases management
systems, theoretical and applied research, and many other genres. From time to time, we want to
return to a book(s). When we recall the author's name or the title of the book the search may be
easy. In some situations we may, however, only recall certain aspects discussed which make the
search more difficult. A book reference system can then be of great assistance. A model for a
book system is presented in Figure 4.1.

As an introductory example to databases, we shall create a MySQL database, named books,
which we can populate with the necessary data about each book in our personal library. We shall
need the following files for our web application:

 HTM page with example menu

 HTM page recording data about a book

 PHP script for creating the database, and adding data recorded for a book

 HTML page for requesting a list of rows from the database

 PHP script for retrieving the rows and responding to the request

 HTML page for requesting data about a book(s)

 PHP script for retrieving the requested data from the database, and sending it to for display to

the client

http://nordbotten.net/phproot/courses/php_hsh/sessions/session4/images/image4_1.jpg

34

 HTML page to modify or delete a record(s) in the database

 PHP script for executing the modification/deletion

 Figure 4.1: Adding records

The application is fully functional, but you should consider making your personal modifications
to the design before you start recording data for your personal library.

Menu page

The index.htm is a very simple HTML page displaying a menu with links to the different parts
of the reference system::

1. <!-- index.htm -->

2. <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

3. "http://www.w3.org/TR/html4/loose.dtd">

4. <html>

5. <head>

6. <meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">

7. <title>Untitled Document</title></head>

8. <body>

9. <center>

10. <h2>Menu for the book database</h2>

11. <p>The following menu lists the alternatives available for the database books. </p>

12. <table>

13. <tr><td>Insert book data to a to database row.</td></tr>

14. <tr><td>List all rows in the book database.</td></tr>

15. <tr><td>Search for a row of data in the database.</td></tr>

16. <tr><td>Update a row in the database.</td></tr>

17. <tr><td>Delete a row from the database.</td></tr>

18. <tr><td>Remove database content.</td></tr>

19. </table>

20. </center>

21. </body>

22. </html>

35

To obtain a nice visual impression, the links are embedded in a table.You can see the menu in
Figure 4.2. No further explanation of this form should be required at this stage.

 Figure 4.2: List of book references

Creating and populating a database

Let us start studying the creation of a bibliographic database. There are international standards
and protocols for the content required for professional bibliographic databases. In this example,
we shall ignore the standards and only specify elements needed in a database for private use. It
must obviously contain such data as the name of the author(s), the book title, the publisher's
name, when printed, and the number of pages.

We may also want to be able to make a rough distinction about the categories of books. You are
free to establish your own codes for categories, evaluation and locations of the books. The
add.htm is the HTML pages used for submitting the recorded data to the server.

1. <!-- add.htm -->

2. <center><h3>Adding records to database</h3>

3. <p>This form is used to add a reference to a new book in the database. The database will be

automatically established the first time this system is used. </p>

4. <p>You are free to develop your own categories, evaluation and location codes.The location code can

be a combination of text and a number, for example Bookshelf_a_33. </p>

5. <form action="add.php" method="post">

6. <table>

7. <tr><td>Name(s) of author(s) : </td><td><input name="author" type="text"></td></tr>

8. <tr><td>Title of book : </td><td><input name="title" type="text"></td></tr>

9. <tr><td>Publisher: </td><td><input name="publisher" type="text"></td></tr>

10. <tr><td>Year of publication : </td><td><input name="year" type="text"></td></tr>

11. <tr><td>Number of pages: </td><td><input name="pages" type="text"></td></tr>

12. <tr><td>Category: </td><td><input name="category" type="text"></td></tr>

13. <tr><td>Date read : </td><td><input name="dateread" type="text"></td></tr>

14. <tr><td>Evaluation: </td><td><input name="evaluation" type="text"></td></tr>

15. <tr><td>Book location : </td><td><input name="location" type="text"></td></tr>

16. <tr><td>Submit reference t:</td><td><input name="" type="submit"

value="Submit"></td></tr></table></form>

17. <p>Return to menu.</p>

18. </center>

The 9 named values in the form block Line 7- 15 are submitted to the server for processing by
means of the add.php script. See Figure 4.3.

http://nordbotten.net/phproot/courses/php_hsh/sessions/session4/images/image4_2.jpg
http://nordbotten.net/phproot/courses/php_hsh/sessions/session4/images/image4_3.jpg

36

 Figure 4.3: Search for a book reference

The add.php is our first step into the world of MySQL. Let us first select a name, books, for our
database, and booktable as the name of the single table in this simple database.

1. <!-- add.php -->

2. <?php

3. print("<center>");

4. $link=my_sql("localhost","root","password");
5. if(!$link) die("<h3>You must install MySQL</h3>");

6. $db_selected=mysql_select_db("books", $link);

7. if (!$db_selected) {

8. mysql_query("CREATE DATABASE books",$link);

9. mysql_select_db("books", $link);

10. mysql_query("CREATE TABLE booktable(id INT AUTO_INCREMENT, author VARCHAR(30), title

VARCHAR(30), publisher VARCHAR(30), year VARCHAR(30), pages VARCHAR(30), catagory

VARCHAR(30), dateread VARCHAR(30), evaluation VARCHAR(30), location VARCHAR(30))", $link);

11. }

12. mysql_query("INSERT INTO booktable(author,title, publisher, year, pages, category, dateread,

evaluation, location)

VALUES('$_POST[author]','$_POST[title]','$_POST[publisher]','$_POST[year]','$_POST[pages]',

'$_POST[category]','$_POST[dateread]','$_POST[evaluation]','$_POST[location]')", $link);

13. mysql_close($link);

14. print("");

15. print ("<h3>The book record has been inserted . </h3>");

16. print("<p></p>");

17. print("Return to menu.");

18. print("</center>");

19. ?>

The first mysql statement in Line 4 establishes the necessary connection between PHP and
MySQL and returns a reference, $link, which should be referred to in most mysql statements.
The function requires 3 arguments: localhost, a user name root, and the password you submitted
when you configured MySQL. In the remaining of this course you must always substitute

'password in this function with your private MySQL password!

37

If a connection cannot be established, we use the PHP function die() to inform the user and
break the processing. The purpose of function mysql_select_db() in Line 6 is to select/open the
database (there may be several in your MySQL!) we want to work with. The success of the
selection is tested in the next line and if the database in our context cannot be selected, we
assume that it does not exist. By means of a mysql_query() function, the database is created by
an SQL statement and a reference to the connection in Line 8. The mysql_select_db() must be
repeated and now we can expect that it is successful. Line 10 is another use of the mysql()
function by which we create a table, booktable, in our database. Note that in a parenthesis of the
specified table name, the name and type of each table column follow according to the SQL
conventions.

The first column is for the variable id. This variable type is special, INT
AUTO_INCREMENT, which means that each row inserted will be numbered consecutively.
All the other 9 variables are of type VARCHAR(30). Many other possibilities exist. The number
of pages could for instance be specified as INT. VARCHAR(30) specifies character strings of
varying length up to 30 characters. We are now ready to start inserting data into the database.

In the mysql_query() function in Line 12 , the 9 variable values received from the client are
added to the booktable by means of an SQL INSERT statement. Several aspects of this function
should be noted. First, the variable id introduced in Line 10, should not to be specified because
it is automatically inserted. Second, it is very important that the SQL syntax is correct. In
particular, remember to enclose all values of type VARCHAR and other string types in single
quotes, and do NOT use single quotes within the $_POST[] because the INSERT statement
itself is enclosed by double quotes. Third, be also certain that the elements in booktable(..)
matches the values in VALUES(..).

The last remark about this script is that as a general rule in an interactive application, if a
connection between PHP and MySQL has been established, a mysql_close() function should be
activated before entering a new page.

Listing the content of the database

The request for a list of all rows in the database does not require any additional data, and list.php
can be called directly from the menu, index.htm.

1. <!-- list.php -->

2. <?php

3. print("<center>");

4. $link=mysql_connect("localhost","root","password");
5. if ($link) die("<h3><font color=red)You must install MySQL.</h3>");
6. $db_selected=mysql_select_db("book", $link);

7. if (!$db_selected) {

8. print("<h3>Database does not exist.</h3>")

9. else {

10. $r = mysql_query("SELECT * FROM booktable", $link);

38

11. if (!$r) {

12. print("<h3>Booktable does not exist</h3>");

13. }

14. else {

15. print("<h2>List of panel members</h2>

16. <table border>

17. <tr><Th>Id<Th>Author</Th><Th>Title</Th><Th>Publisher</Th><Th>Year</Th><Th>Pages</Th><Th

>Category</Th><Th>Date read></Th><Th>Evaluation</Th><Th>Location</Th></tr>");

18. while ($row = mysql_fetch_array($r)) {

19. print("<tr><td>$row[0]</td><td>$row[1]</td><td>$row[2]</td><td>$row[3]</td><td>$row[4]</td><t

d>$row[5]</td><td> $row[6] </td><td>$row[7]</td><td>$row[8]</td><td>$row[9]</td>");

20. }

21. }

22. print("</table>");

23. }

24. mysql_close($link);

25. print("<p></p>");

26. print("Return to menu.");

27. print('</center>');

28. ?>

As in the previous script, the MySQL must be connected and the database books selected. Then
in Line 10 a mysql_query() function is called with an embedded SQL SELECT statement as
argument. The * indicates that all table rows are wanted. The result of this selection is referred to
by the reference/handle $r which is tested for the existence of rows. If there are rows in the
table, they are processed one by one in the PHP while statement in Line 18. As long as there are
any rows left in $r, mysql_fetch_array() will fetch on row separately and assign it to array
$row[] to be presented to the user in the table specified in Lines 15-22. Note that the first
element of an array is 0. Figure 4.4 illustrates a very short list.

Figure 4.4: Correct required attributes

http://nordbotten.net/phproot/courses/php_hsh/sessions/session4/images/image4_4.jpg

39

Searching the database for a book reference.

In a large collection of books, it can be difficult to decide which book is relevant for a particular
situation and perhaps also find its physical location. We need a search function. The link to
searching of the menu in index.htm points to search.htm:

1. <!-- search.htm -->

2. <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

"http://www.w3.org/TR/html4/loose.dtd">

3. <<html>

4. <head>

5. <meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">

6. <title>Untitled Document</title>

7. </head>

8. <body>

9. <center>

10. <h2>Search for a reference to a book.</h2>

11. <p>By specifying author, title, publisher, publishing year, category, and keywords the application can

retrieve relevant book reference(s) if any.</p>

12. <form action="search.php" method="post">

13. <table>

14. <tr><td>Name(s) of author(s) : </td><td><input name="author" type="text"

value="unspecified"></td></tr>

15. <tr><td>Title of book : </td><td><input name="title" type="text" value="unspecified"></td></tr>

16. <tr><td>Publisher: </td><td><input name="publisher" type="text" value="unspecified"></td></tr>

17. <tr><td>Year of publication : </td><td><input name="year" type="text"

value="unspecified"></td></tr>

18. <tr><td>Number of pages: </td><td><input name="pages" type="text" value="unspecified"></td></tr>

19. <tr><td>Category: </td><td><input name="category" type="text" value="unspecified"></td></tr>

20. <tr><td>Date read : </td><td><input name="dateread" type="text" value="unspecified"></td></tr>

21. <tr><td>Evaluation: </td><td><input name="evaluation" type="text" value="unspecified"></td></tr>

22. <tr><td>Book location : </td><td><input name="location" type="text" value="unspecified"></td></tr>

23. <tr><td>Submit search criteria:</td><td><input name="" type="submit"

value="Submit"></td></tr></table>

24. </form>

25. <p>Return to menu.</p>

26. </center>

27. </body>

28. </html>

The search.htm is an ordinary HTML form page, but we specify the default string value
unspecified for each variable. The default value(s) must be changed to the value associated with
the book(s) searched. If for example web applications is used as category for books in this field,
and we want to localize books published in 2005 in our library, Year of publication should be
changed to 2005, and Category to web applications. Or, if we search books of Sklar, David, we
substitute unspecified with Sklar, David in the author box. Since the probability for any saved
value should match this string it works in our application. See the search form in Figure 4.5

http://nordbotten.net/phproot/courses/php_hsh/sessions/session4/images/image4_5.jpg

40

Figure 4.5: Search for a reference to a book

When the request is submitted, it calls for search.php to process the re guest.

1. <!-- search.php -->

2. <?php

3. print("<center>");

4. $link=mysql_connect("localhost","root","password");

5. if (!$link) die("<h3>You must install MySQL. </h3>");

6. if (!mysql_select_db("books") die("Database books does not exist.");

7. print("<h3>List of requested rows.</h3>

8. <table border>

9. <tr><Th>Id<Th>Author<Th>Title<Th>Publisher<Th>Year<Th>Pages<Th>Category<Th>Date

read<Th>Evaluation<Th>Location</tr>");

10. $r=mysql_query("SELECT * FROM booktable WHERE ((author='$_POST[author]') | (title='$_POST[title]')

| (publisher ='$_POST[publisher]') | (year='$_POST[year]') | (pages='$_POST[pages]') |

(category='$_POST[category]') | (dateread='$_POST[dateread]') | (evaluation='$_POST[evaluation]') |

(location='$_POST[location]'))", $link);

11. while ($row=mysql_fetch_array($r)){

12. print("<tr><td> $row[0] <td> $row[1] <td> $row[2] <td> $row[3] <td> $row[4] <td> $row[5] <td>

$row[6] <td> $row[7] <td> $row[8] <td> $row[9]");

13. }

14. print("</table>");

15. mysql_close($link);

16. print("<p></p>");

17. print("Return to menu.");

18. print('</center>');

19. ?>

The mysql_query() in Line 10, includes a WHERE clause with a composite OR condition (the
symbol used for OR is |). Note that if we had used another logical operator as AND the trick
using unspecified as default value in the form would not have worked. We use again the while()
function to transfer the results referenced by $r to an array $row[] for presenting the results in a
table for the user. The search result is illustrated by Figure 4.6.

http://nordbotten.net/phproot/courses/php_hsh/sessions/session4/images/image4_6.jpg

41

Figure 4.6: List of requested rows

Updating book references in the database

In our book reference library, there may be a need for changing or updating a row because of
typos, incorrect data, revaluation of the referenced book, etc. Our solution to this task requires 1
HTM page and 2 PHP scripts.

The update.htm is an ordinary page which requires that you have the id of the row reference. See

Figure 4.7.

 Figure 4.7: Update a row in the book database

1. <!-- update.htm -->

2. <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

"http://www.w3.org/TR/html4/loose.dtd">

3. <html>

4. <head>

5. <meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">

6. <title>Untitled Document</title>

7. </head>

8. <center>

9. <h2>Update a row in the book database</h2>

10. <p>Note the Id number of the row you want to to update and type it in the box:

11. <form action="update1.php" method="post">

12. <input name="id" type="text"><input name="" type="submit" value="Submit"> <p></p>

13. </form>

14. <p>Return to menu.</p>

15. </center>

16. <body>

17. </body>

http://nordbotten.net/phproot/courses/php_hsh/sessions/session4/images/image4_7.jpg

42

18. </html>

There is nothing new in this page, and we note that Lines 12-13 call for processing of a row

corresponding to the submitted id value by the script update1.php:

1. <!-- update1.php -->

2. <?php

3. print("<center>");

4. $link=mysql_connect("localhost","root","password");

5. if(!$link) die("<h3> You must install MySQL. </h3>)";

6. $db_selected=mysql_select_db("books");

7. if(!$db_selected) die(<h3>Databas booksdoes not exist.</h3>);

8. $id=$_POST['id'];

9. $r=mysql_query("SELECT * FROM booktable WHERE id='$id'", $link);

10. while($row=mysql_fetch_array($r)) {

11. $author=$row[1];

12. $title=$row[2];

13. $publisher=$row[3];

14. $year=$row[4];

15. $pages=$row[5];

16. $category=$row[6];

17. $dateread=$row[7];

18. $evaluation=$row[8];

19. $location=$row[9];

20. }

21. print("<h2><p>Correct the required attributes.</h2></p>");

22. print("<form action=update2.php method=post>

23. <table>

24. <tr><td>Row Id: </td><td><input name=id type=text value=$id></td></tr>

25. <tr><td>Name(s) of author(s) : </td><td><input name=author type=text value=$author></td></tr>

26. <tr><td>Title of book : </td><td><input name=title type=text value=$title></td></tr>

27. <tr><td>Publisher: </td><td><input name=publisher type=text value=$publisher></td></tr>

28. <tr><td>Year of publication : </td><td><input name=year type=text value=$year></td></tr>

29. <tr><td>Number of pages: </td><td><input name=pages type=text value=pages></td></tr>

30. <tr><td>Category: </td><td><input name=category type=text value=$category></td></tr>

31. <tr><td>Date read : </td><td><input name=dateread type=text value=$dateread></td></tr>

32. <tr><td>Evaluation: </td><td><input name=evaluation type=text value=$evaluation></td></tr>

33. <tr><td>Book location : </td><td><input name=location type=text value=$location></td></tr>

34. <tr><td>Submit data:</td><td><input type=submit value=Submit></td></tr>

35. </table></form><p></p>");

36. print("Return to menu.");

37. print("</center>");

38. ?>

The aim of this first update script is to return a form to the user with all current data of row $id to
the client for inspection, correction and submittal to the server. Lines 9-20 retrieve the data from
the database and establish local variables to be used for creating the form. Because the form must
be sent in HTML format to the client, the long print() function in Lines 22- 35 is used to send
the HTML tags within double quotes. PHP automatically equips the contents of these HTML
tags with required quotes, and we must therefore remove all quotes in the tags.

43

According to the specifications, a form is displayed at the user's screen with all current variable
values. The user can change or leave the values. The form is submitted for processing by
update2.php:

1. <!-- update2.php -->

2. <?php

3. print("<center>");

4. $link=mysql_connect("localhost","root","password");

5. if (!$link) die("<h3> You must install MySQL.</h3>")

6. $db_selected=mysql_select_db("books";

7. if (!$db_selected) die("<h3>Database books does not exist.</h3>");

8. $n=mysql_query("SELECT * FROM booktable", $link);

9. if [mysql_nun_rows($n) == 0) die("<h3>Table is empty.</h3>");

10. mysql_query("UPDATE booktable

11. SET

12. id='$_POST[id]',

13. author='$_POST[author]',

14. title='$_POST[title]',

15. publisher='$_POST[publisher]',

16. year='$_POST[year]',

17. pages='$_POST[pages]',

18. category='$_POST[category]',

19. dateread='$_POST[dateread]',

20. evaluation='$_POST[evaluation]',

21. location='$_POST[location]'

22. WHERE id='$_POST[id]'", $link);

23. mysql_close($link);

24. print ("<h3> Data for book with Id $_POST[id] has been updated.</h3>");

25. print("Return to menu.");

26. print("</center>");

27. ?>

This script is similar to add.php but uses a mysql_query() with the SQL UPDATE statement in
Lines 10-22 to change an existing row instead of the INSERT statement of add.php which adds
a new row to the database. It uses SET with subsequent variable-value pairs for updating values
in the row specified by the WHERE clause. As for the INSERT statement, it is very important
that all values are enclosed by single quotes if they were defined as strings in the CREATE
TABLE statement. Figure 4.8 illustrates the page with data which can be updated before
submitted.

http://nordbotten.net/phproot/courses/php_hsh/sessions/session4/images/image4_8.jpg

44

 Figure 4.8: Correct the required attributes

Deleting rows in the database

Just as we need operations for adding and updating a row, an operation for deleting a row is
wanted. Before we can start the operation, the $id of the row to be deleted must be found. It can
be obtained by the list option. delete.htm is an HTML page for specifying the $id of a row
wanted to be deleted.

1. <!-- delete.htm -->

2. <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

"http://www.w3.org/TR/html4/loose.dtd">

3. <html>

4. <head>

5. <meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">

6. <title>Untitled Document</title>

7. </head>

8. <center>

9. <h2>Delete a row in the book database</h2>

10. <p>Note the Id number of the row you want to to delete and type it in the box:

11. <form action="delete.php" method="post">

12. <input name="id" type="text"><input name="" type="submit" value="Submit"> <p></p>

13. </form>

14. <p>Return to menu.</p>

15. ></center>

16. <body>

45

17. </body>

18. </html>

Figure 4.9: Delete a row in the book database

The page is simple (See Figure 4.9) and sends an $id with a request for processing by the
delete.php scipt:

1. <!-- delete.php -->

2. <?php

3. print("<center>");

4. $link=mysql_connect("localhost","root","password");

5. if (!$link) die("<h3>You must install MySQL.</h3>"

6. $db_selected=mysql_select_db("books", $link);

7. if (!$db_selected) die("<h3>Database books does not exist.</h3>");

8. $r=mysql_query("DELETE FROM booktable WHERE id=='$_POST[id]'", $link);

9. if (!r) {

10. print("<h3>The row does not exist.</h3>");

11. }

12. else {

13. print("<h2>Row $_POST[id] has been removed from database books.</h2>");

14. }

15. print("<p></p>Return to menu.");

16. print("</center>");

17. mysql_close($link);

18. ?>

In an mysql_query() of Line 8, the SQL DELETE statement controls the deletion of the row
specified in its WHERE clause.

Removing database

It is also possible to instruct the server to remove the database books. The HTML page
remove.htm used is simple:

1. <!-- remove.htm -->

2. <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

http://nordbotten.net/phproot/courses/php_hsh/sessions/session4/images/image4_9.jpg

46

3. "http://www.w3.org/TR/html4/loose.dtd">

4. <html>

5. <head>

6. <meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">

7. <title>Untitled Document</title>

8. </head>

9. <center>
10. <h2>Remove the database books </h2>
11. <p>Note that all book references in your database will be lost by executing this

operation.</p>
12. <form action="remove.php" method="post">

13. Remove all content:<input name="" type="submit" value="Submit"> <p></p>

14. </form>

15. <p>Return to menu.</p>

16. </center>

17. <body>

18. </body>

19. </html>

The page is shown in Figure 4.10, and requires no explanations. It calls upon an even shorter
remove.php script.

 Figure 4.10: Remove database content

1. <!-- remove.php -->

2. <?php

3. print("<center>");

4. $link=mysql_connect("localhost","root","password") die("<h3>You are not

connected to MySQL. </h3>");

5. $db_selected=mysql_select_db($link) die ("<h3>Database books does not

exist. </h3>");

6. $r=mysql_query("DROP DATABASE books"; $link);

7. print("<h2>Database content has been removed.</h2>");

8. print("<p></p>Return to menu.</center>");

9. mysql_close($link);

10. ?>

This script introduces another new SQL statement, DROP TABLE, which only requires the
name of the table.

http://nordbotten.net/phproot/courses/php_hsh/sessions/session4/images/image4_10.jpg

47

 Session 5: Polling with MySQL database

Opinion polls

In session 2, we studied a market research example which did not require any data base backup.
In this session we shall consider a similar scenario: a polling organization the aim of which is to
collect the public opinion about the preferences for 5 political parties (or product brands) A, B,
C, D, and E.

The organization uses a panel with a fixed number of members as basis for its services. A file
with separate records for each panel members is kept in a database. Each Monday a list of panel
members with their contact addresses is retrieved and used by interviewers who in telephone
interviews asking panel members which party the member would have voted for if there had
been a public vote, or in case of products which product they would have purchased, that
Monday. The answers are subsequently saved in the database for retrieval, computation and
publication of statistics to subscribing clients each Wednesday. The panel members can be
stratified by age and area in which they live.

Use of a panel gives usually more precise estimates of the political time fluctuations than a
random sample would do. However, to avoid that the panel becomes obsolete or the members
worn out, the panel is made rotating, i.e. it is slowly renewed. Each Friday, the n oldest members
of the panel are removed while n new members are inserted in the panel. It is assumed that the
organization at any point of time must have the possibility to update the information about panel
members who have moved, changed telephone numbers, etc.

It is desired that the management of the panel members and their answers can be implemented as
a web application because the staff of the organization works from different locations.

Application design

The overall composition of the application design is outlined in Figure 5.1.We can distinguish

http://nordbotten.net/phproot/courses/php_hsh/sessions/session5/images/image5_1.jpg

48

between a database and a set of processes working with the database which is typical for many
dynamic web applications.

The application is a mixture of 4 HTML and 6 PHP scripts interacting with a database.

Database

We could apply the database manager developed in the previous session to set up a database for
the present application. Creation of a database as preparation for this application is, however, not
necessary because it will automatically be created the first time the application is run.

Application menu

The first and obvious task is to create an opening page with a menu by which the user can select
the action wanted. A simple HTML page will provide the service needed. The following
index.htm file is the implementation used in our example:

1. <!--- index.htm --->

2. <center>

3. <h2>Opinion polls</h2>

4. <p>The Opinion polls system is initialized with a sample of panel members.

Each Monday a List of panel members to be interviewed is generated. The

data for panel members can be updated if necessary. After the

interviews, the votes are recorded recorded. The table is the basis for

computing statistics for the week. At the end of the week, the first panel

member on the list is deleted, and a new member <font

color="Red">added at the end of the list.</p>

49

5. <table>

6. <tr><td>Initialize table of panel members</td></tr>

7. <tr><td>List panel members for interviews</td></tr>

8. <tr><td>Update data for panel member</td></tr>

9. <tr><td>Record interview votes</td></tr>

10. <tr><td>Compute statistics for the week</td></tr>

11. <tr><td>Delete first and add new panel member</td></tr>

12. </table>

13. </center>

The page has a simple and ordinary structure using a href tags for providing the links to the 5
different services included in the system. A table tag with associate tr and td tags are used to
give the page an orderly appearance.

Creating records and a list of panel members

The polling of opinions requires a sample of persons to interview. If this had been a course in
sample surveys, we would have spent considerable time on the problem how to get a
representative sample of the voting population. In this course, we assume that the statisticians
have completed their job, and that a list of names, etc. exists. A facility for recording these data
in the database is now needed. It is implemented by an HTML and a PHP files.

The first file is named form.htm. It includes in Line 4 a FORM tag with METHOD="post"
and referring to file add.php. The METHOD="post" is important because we use it to create
global variables. The FORM block includes input boxes for Family Name, FirstName,
Telephone, Age, and Area.

1. <!--- form.htm --->

2. <center>

3. <h2>Form to be used for adding new members to the interview panel</h2>

4. <form action="add.php" method="post">

5. <table>

6. <tr><td>Family name:</td><td><input type="text" name="FamilyName"></td></tr>

7. <tr><td>First name:</td><td><input type="text" name="FirstName"></td></tr>

8. <tr><td>Telephone no:</td><td><input type="text" name="Telephone"></td></tr>

9. <tr><td>Age(18-100):</td><td><input type="text" name="Age"></td></tr>

10. <tr><td>Area (1-10):</td><td><input type="text" name="Area"></td></tr>

11. <tr><td></td><td><input type="submit" name="NewMember" value="Submit new panel

member"></td></tr>

12. </table>

13. </form>

14. </center>

Figure 5.2 displays the form for including a new member into the panel.

http://nordbotten.net/phproot/courses/php_hsh/sessions/session5/images/image5_2.jpg

http://nordbotten.net/phproot/courses/php_hsh/sessions/session5/images/image5_3.jpg

http://nordbotten.net/phproot/courses/php_hsh/sessions/session5/images/image5_4.jpg

http://nordbotten.net/phproot/courses/php_hsh/sessions/session5/images/image5_5.jpg

http://nordbotten.net/phproot/courses/php_hsh/sessions/session6/images/image6_1.jpg

http://nordbotten.net/phproot/courses/php_hsh/sessions/session6/images/image6_2.jpg

http://nordbotten.net/phproot/courses/php_hsh/sessions/session6/images/image6_3.jpg
http://nordbotten.net/phproot/courses/php_hsh/sessions/session6/images/image6_4.jpg

http://nordbotten.net/phproot/courses/php_hsh/sessions/session6/images/image6_5.jpg

http://nordbotten.net/phproot/courses/php_hsh/sessions/session7/images/image7_1.jpg

http://nordbotten.net/phproot/courses/php_hsh/sessions/session7/images/image7_2.jpg

http://nordbotten.net/phproot/courses/php_hsh/sessions/session7/images/image7_3.jpg

http://nordbotten.net/phproot/courses/php_hsh/sessions/session7/images/image7_4.jpg

http://nordbotten.net/phproot/courses/php_hsh/sessions/session7/images/image7_5.jpg
http://nordbotten.net/phproot/courses/php_hsh/sessions/session7/images/image7_6.jpg

http://nordbotten.net/phproot/courses/php_hsh/sessions/session7/images/image7_7.jpg

78

$frequency_list, else it increments the value of the row in which $word is recorded by the ++
operator and Line 27makes the variable $word ready for starting a new word.

When the text is processed, the compiled frequency list is returned to the calling
application.php as an array and displayed for the client.

This function is added to the file my_functions.php.

79

Session 8: Information retrieval

General model

As an introduction to use of MySQL in Session 4, we studied an application to keep track of our
private library. It had 2 deficiencies:

o the application required that a classification for each book was provided for
recording, and

o the book itself was not electronically available for reading.

Search engines are becoming tools for obtaining information as well on the internet as on local
nets. In this session we shall investigate some of the basic problems and solutions connected with
systems developed for searching and retrieval of data. There exist a great variety of systems and
we have to limit ourselves to a simple system which stores text files and permits users to search
for a wanted file(s) based on the content of the file. In Figure 8.1, the general layout for our

Figure 8.1: Retrieval system

model is shown. As common for all applications discussed in this course, we assume that the
system is hosted by a remote server, and that all communication with the system on the net. In
principle, there are 3 interfaces to the system:

http://nordbotten.net/phproot/courses/php_hsh/sessions/session8/images/image8_1.jpg

80

1. Feeding the system with text files to be indexed and stored,

2. Searching for references to and retrieval of text files,

3. Administrating the system

Each interface is served by a separate module which we shall discuss in the following sections.

Index module

In the most primitive version, we need a possibility to submit text files to the system, and our
first step will be to create an .htm form page for uploading a named text file. We have already
studied several uploading examples.

1. <!-- index.htm -->

2. <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

3. "http://www.w3.org/TR/html4/loose.dtd">

4. <html>

5. <head>

6. <meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">

7. <title>Untitled Document</title>

8. </head>

9. <body>

10. <center>

11. <h2>Uploading a text file</h2>

12. <p>This form is for uploading text files to the search and retrieval system. You need to specify 2 names

associated with the file, the local name of the file at your computer, and the name to be carried by the

file in the system. The latter should ber as descriptive as possible.</p>

13. <form action="descriptor.php" method="post" enctype="multipart/form-data">

14. <input type="hidden" name="MAX_FILE_SIZE" value="50000">

15. <table>

16. <tr><td>Local file name:</td><td><input name="local_file" type="file"></td></tr>

17. <tr><td>Name in the system:</td><td><input name="system_file" type="text"></td></tr>

18. <tr><td></td><td><input type="submit" value="Submit"></td></tr>

19. </table>

20. </form>

21. </center>

22. </body>

23. </html>

The form permits to specify a document file (.txt, .php. .doc, etc.) on the client computer and
request it uploaded to the server naming it with another name if wanted. The file server name
should be a name describing the file and have the extension .htm if the files normally will be
read from the screen. We are now well acquainted with uploading of files, and there are no
special tricks hidden in this page. Note that the page is calling descriptor.php and that you must
remember to include the important hidden input in Line 14. The displayed form is shown in
Figure 8.2.

http://nordbotten.net/phproot/courses/php_hsh/sessions/session8/images/image8_2.jpg

81

Figure 8.2: Uploading a text file

The form calls the descriptor. php script for processing of the uploaded file. The purpose of this
script is twofold:

1. Analyze the content of the file, derive descriptors and save the result in an appropriate way.

2. Store the complete file file for future retrieval

descriptor.php starts by including the library file my_functions.php because we shall make use
of the function parser.php developed in the last session. Lines 4-11 connects to MySQL, select
the database ir if it exists or creates the database ir and table descriptors if they do not exist.
Note the use of the function die() with argument mysql_error() demonstrated in Line 10. If, for
some reason, the table descriptors cannot be created, this function can be informative during the
creation and debugging of the script.

1. <!-- descriptor.php -->
2. <?php
3. include('../../../my_functions.php');

4. $link=mysql_connect("localhost",'root','password');
5. if (!$link) die("<center><h3>Install MySQL. </h3></center>");
6. $db_selected= mysql_select_db("ir", $link);
7. if (!$db_selected) {
8. mysql_query("CREATE DATABASE ir",$link) or die("<center><h3>Cannot create
database ir. </h3></center>");
9. mysql_select_db("ir", $link);
10. mysql_query("CREATE TABLE descriptors(id INT NOT NULL AUTO_INCREMENT, PRIMARY
KEY(id), word VARCHAR(20), document_words VARCHAR(6), descriptor_frequency VARCHAR(6),
document_ref VARCHAR(40))", $link)
or die("<center><h3>Cannot create table Descriptors.</h3></center>
".mysql_error($link));
11. }

12. $document_ref="../documents/$_POST[system_file]";
13. move_uploaded_file($_FILES['local_file']['tmp_name'], $document_ref);
14. $c=file_get_contents($document_ref);

15. print("<h2>Indexing summary:</h2>");
16. $size=strlen($c);
17. print("Document size: $size characters
");

18. $frequency_list=array();

82

19. $rx="/[a-zA-Z]/";
20. $frequency_list=parser($c,$rx);

21. arsort($frequency_list);

22. $rows=0;
23. $document_words=0;

24. foreach($frequency_list as $key => $value) {
25. $document_words=$document_words+$value;
26. }

27. $rows=count($frequency_list);

28. print("Number of words: $document_words
");
29 print("Number of unique words: $rows
");

30. $stop_list=array();
31. $stop_list=unserialize(file_get_contents('../AdminModule/stop_list.txt'));

32. $descriptor_list=array();
33. $number=1;
34. foreach($frequency_list as $key => $value) {
35. if (strlen($key) >2) {
36. $stop_marker=0;
37. foreach($stop_list as $key_stop => $value_stop) {
38. if ($key == $value_stop) {
39. $stop_marker=1;
40. }
41. }

42. $percent=100*$value/$document_words;
43. if (($stop_marker == 0) && ($percent >= 0.1)) {
44. $descriptor_list[$key]=$percent;
45. $number++;
46. }

47. }
48. }

49. print("<h3>List of selected descriptors </h3>");
50. print("<table>");
51. print("<tr><th>Descriptor</th><th> Pct. of words</th></tr>");
52. foreach($descriptor_list as $key => $value) {
53. print("<tr><td>$key</td><td>$value</td></tr>");
54. }
55. print("</table>");

56. foreach($descriptor_list as $key => $value) {
57. $descriptor_frequency= $value*$document_words/100;
58. mysql_query("INSERT INTO descriptors(word, document_words, descriptor_frequency, document_ref)
VALUES('$key', '$document_words', '$descriptor_frequency', '$document_ref')",$link) or die("Nothing
INSERTED.
".mysql_error($link));
59. }

60. ?>

83

Lines 11-13 upload the specified file from the client to the server and save it in the directory
documents, and create a string copy, $c, for further analysis. In Line 20, the function parser.php
is used for decomposing the text string $c into an array, $frequency_list, applying the regular
expression /[a-zA-Z]/.

The frequency_list contains all unique words appearing in the document with this frequency.
You can see an example in Figure 8.3. A number of the most frequent words, such as pronouns,

Figure 8.3: Indexing summary

prepositions, conjunctions, etc., are not useful descriptors for a document. For that reason it is
efficient to create a so-called stop word list containing words we want to remove from the
frequency list. Line 31 assumes that such a list, stop_list.txt, has been created and stored in the
AdminModule directory. This file is a serialized form of an array of all stop words. The file has
been serialized by the built-in function serialize() to a form which is convenient for storing in a
file. The file must therefore be retrieved and converted back to an array, stop_list, by a function
unserialize(). In Lines 32-41, an array of descriptors is created from the frequency_list by
removing all words with 1 or 2 characters, and using the stop_word array.

http://nordbotten.net/phproot/courses/php_hsh/sessions/session8/images/image8_3.jpg

84

At the other end of the word frequency distribution, we have the words with a rare occurrence. If
a word counts for, say, less than 0.1 % of all words of a paper, the probability is usually low that
the word is significant for the content of the document. A second removal is therefore carried out
in Lines 42-46 in which only words occurring with relative frequency >= 0.1 % are kept in the
descriptor_list array. Finally, in the block of Lines 49-59, the selected descriptors are displayed
and inserted in the database for use in future searches. Each descriptor within each document is
recorded in a separate row with data on the document's total number of words, the descriptor's
frequency and a link to the document.

Search module

Our purpose with the system is to identify those documents in the collection containing a content
in which we are interested. We specify our interest in a request created by a set of keywords
which we hope will match the descriptors of wanted documents. In the form HTML page
search.htm the user can specify her/his keyword(s). Separate multiple keywords with the symbol
','.

1. <!-- search.htm -->

2. <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

"http://www.w3.org/TR/html4/loose.dtd">

3. <html>

4. <head>

5. <meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">

6. <title></title>

7. </head>

8. <center>

9. <h2>Search for documents</h2></center>

10, <p>This form let you search for documents in your collection based on document descriptors - frequently
appearing appearing terms in the documents. The words have been extracted from the documents by full-text
parsing and selected according to the frequencies of appearance. Non-informative words such as pronouns,
conjunctions prepositions as well as very general words for describing time such as day, night, month, etc. are
not suitable descriptors.</p>
11. <p>In requests for professional documents, you should therefore use words from the professional
vocabulary such as file, database, system, program, web, etc. You can use a single search word, for examples
'internet', or you can form a search string like word, word, word3. </p>
12. <center>
13. <form action="search.php" method="post">
14. <table>
15. <tr><td>Search string:</td><td><input name="search_string" type="text " size="50"></td></tr>
<tr><td></td><td><input type="submit" value="Submit"></td></tr>

16. </table>

17. </form>

18. </center>

85

19. <body>
20. </body>
21. </html>

The form page (Figure 8.4)calls the script search.php for retrieving links to documents with

Figure 8.4: Search for documents

matching descriptors. Note that the existence of tables in an existing database can be tested by an
SQL statement as shown in Line 7. After connecting to and opening the database ir, the script
converts the search string read from the form to an array, search array, by means of a new PHP
function in Line 10. The statement $a=explode($b,$c) divides the string $c into sub strings
based on the separator $b and stores the sub strings in array $a. In Lines 13-23, the array is read
and a search condition string of the form (('word1') OR ('$word2') OR ('$word3')) is formed.
This procedure is required for use in the following SQL SELECT statement for retrieving
matching records in the database.

1. <?php
2. $link=mysql_connect("localhost",'root','password');
3. if (!$link)
4. die("<center><h3>Install MySQL. </h3></center>");

5. $db_selected= mysql_select_db("ir", $link); 6. if (!$db_selected) {die("<center><h3><font
color=red>Database ir does not exist.</h3></center>");}

7. if (!$t=mysql_query("SHOW TABLES FROM ir", $link)) {die("<center><h3>Table does
not exist.
8. </h3></center>");}

9. $search_array=array();
10. $search_array=explode(",",$_POST['search_string']);

11. $search_condition="";
12. $keyword="";

13. foreach($search_array as $keyword) {
14. if($search_condition == "") {
15. $keyword=trim($keyword);
16. $search_condition="((word ='$keyword')";
17. }

http://nordbotten.net/phproot/courses/php_hsh/sessions/session8/images/image8_4.jpg

86

18. else {
19. $keyword=trim($keyword);
20. $search_condition=$search_condition." OR (word ='".$keyword."')";
21. }

22 }

23 $search_condition=$search_condition.")";

24. print("<p><center>Your query condition: $search_condition</p>");

25. $r=mysql_query("Select * FROM descriptors WHERE $search_condition", $link);
27. $row = mysql_fetch_array($r);

28. if (!isset($row[0])) {
29. die("<h3>No match with search condition in database.</h3>");
}

30. print("<table BORDER>");
31. print("<caption><h3>Documents retrieved</h3></caption>");
32. print("<tr><th>Document link</th><th>Document score</th></tr>");

33. $previous=array();
34. $first_row=1;

35. while ($row = mysql_fetch_array($r)) {

36. if ($first_row == 1) {

37. $previous[0]=$row[0];
38. $previous[1]=$row[1];
39. $previous[2]=$row[2];
40. $previous[3]=$row[3];
41. $previous[4]=$row[4];
42. $first_row=0;
43. }
44. else {

45. if ($row[4] == $previous[4]) {

46. $row[3]=$previous[3] +$row[3];

47. $previous[0]=$row[0];
48. $previous[1]=$row[1];
49. $previous[2]=$row[2];
50. $previous[3]=$row[3];
51. $previous[4]=$row[4];
52. }
53. else {

54. print("<tr><td>$previous[4]</td><td align=center>$previous[3]</td><tr>");

55. $previous[0]=$row[0];
56. $previous[1]=$row[1];
57. $previous[2]=$row[2];

87

58. $previous[3]=$row[3];
59. $previous[4]=$row[4];
60. }
61. }
62. }
63. print("<tr><td>$previous[4]</td><td align=center>$previous[3]</td><tr>");
64. print("<p></p>");
65. print("</table>");

66. print("<p>Document score is the sum of the frequencies of all search words in each
document</p>");
67. print("</center>");
68. mysql_close($link);
69. ?>

From Line 35 the script is devoted to the task of computing and associating scores with the
individual relevant documents. The scores are here computed as the sum of the frequencies of all
keywords in the respective documents. There are many other possibilities for computing scores,
and before attaching to much weight to the scores the concept used should be fully understood.

A search result page is displayed in Figure 8.5.

Figure 8.5: Search results

Administrative module

The most common error beginners commit when constructing a web application is to forget that
the application needs to be managed, maintained and updated. The content of the database ir of
the current application will from time to time for example need to be in inspected. The list of
stop word will certainly need to be adjusted by adding new insignificant words, and removing
meaningful words. Sometimes, a need for orderly removing the database with tables can also
appear. An administrative module should be able to take care of these and other tasks needed for
keeping the application running.

Some possible options are outlined in menu.htm:

http://nordbotten.net/phproot/courses/php_hsh/sessions/session8/images/image8_5.jpg

88

1. <!-- menu.htm -->

2. <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

3. "http://www.w3.org/TR/html4/loose.dtd">

4. <html>

5. <head>

6. <meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">

7. <title></title>

8. </head>

9. <center>

10. <h3>Administrative menu for search engine.</h3>

11. <table>

12. <tr align="left" ><td >Inspect database content</td></tr>

13. <tr align="left"><td>Display stopwords</td></tr>

14. <tr align="left"><td>Add stop word</td></tr>

15. <tr align="left"><td>Remove stop word</td></tr>

16. <tr align="left"><td>Remove database and tables</td></tr>

17. </table>

18. </center>

19. <body>

20. </body>

21. </html>

The form itself is trivia (Figure 8.6). In this example, we shall limit ourselves to consider a single
script: After initializing the database, it can be useful to study its content. The script inspect.php
displays the content of the database by descriptors in alphabetical order.

Figure 8.6: Administrative menu for search engine

1. <!-- inspect.php -->

2. <?php

3. $link=mysql_connect("localhost",'root','maximus');

4. if (!$link) die("<center><h3>Install MySQL. </h3></center>");

5. $db_selected= mysql_select_db("ir", $link);

6. if (!$db_selected) die("<center><h3>Database ir does not exist.</h3></center>");

http://nordbotten.net/phproot/courses/php_hsh/sessions/session8/images/image8_6.jpg

89

7. $t=mysql_query("SHOW TABLES FROM ir", $link);

8. if (!$t) die("<center><h3>Table Descriptors does not exist.</h3></center>");

9. print("<center>");

10. print("<h3>Database content</h3>"); //

11. print("<table Border>"); //

12. print("<tr><th>Word</th><th>Document words</th><th>Descriptor

frequency</th> <th>Document reference</th></tr>");

13. $r=mysql_query("SELECT * FROM descriptors ORDER by word asc", $link) or die("Nothing SELECTED");

14. while ($row = mysql_fetch_array($r)) {

15. $word=$row[1];

16. $document_words=$row[2];

17. $descriptor_frequency=$row[3];

18. $document_ref=$row[4];

19. print("<tr><td>$word</td><td>$document_words</td>

<td>$descriptor_frequency</td><td>$document_ref</td> </tr>");

20. }

21. print("</table>");

22. print("</center>");

23. mysql_close($link);

24. ?>

In Line 9 all document descriptors in alphabetic order and referred to by the handle $r. Once
again, we use mysql_fetch_array() to get access to the content of the columns in each individual
row. Refer to the SQL CREATE TABLE in descriptors.php for the numbering of the columns
with the first, row[0], containing the id.

You will find illustrations of the all recorded descriptor list in Figure 8.7, and the beginning of

http://nordbotten.net/phproot/courses/php_hsh/sessions/session8/images/image8_7.jpg

90

Figure 8.7: Database content

A stop word list is illustrated in Figure 8.8.

Figure 8.8: List of stop words

http://nordbotten.net/phproot/courses/php_hsh/sessions/session8/images/image8_8.jpg

91

Session 9: e-learning

Web courses

In this session, implementation of web courses using PHP is discussed. As a student of this
course, you should be particularly well armed with good ideas from your personal experience. It
is impossible to go through a complete course in detail. The course you are attending contains for
example more about 1000 files of different types organized in a structure with about 180 folders.
In this session, we concentrate on discussing a few essential problems common for most Web
courses.

As an application example and with reference to Session 8, a hypothetical web course on
Information Retrieval is used. We assume that the following list can be used as a guide for our
discussion:

 Course architecture

 Authorization and authentication

 Texts

 Illustrations

 Literature

 Evaluation

You find a link to the implementation of the example at the end of the session. You can either
register yourself getting your own PIN code, or you can behave as already registered with e-mail
"dummy@dummy" and PIN code "0".

Course architecture

Development of a web course, like any IT system, is an art. There are no absolute, proven rules
for what is the right or the best approach. The more complex the objectives are, the more
elaborated course structure will be required. In this example application, a folder with a flat
organization of all needed files will be considered acceptable. All the files for the example are in
a single folder (with the exception of a database located outside the directly accessible area and
referred to as irCourse.

Security considerations are important only in connection with course design. We use the course
application as a case for for using the functions authorization and authentication of users already
discussed in Session7. Along the road, we shall also make comments to other forms of security.
In Figure 9.1, the overall organization for the example course is depicted. The figure indicates

http://nordbotten.net/phproot/courses/php_hsh/sessions/session9/images/image9_1.jpg

92

Figure 9.1: Course organization

that topics we are particularly interested in discussing are authorization, authentication and
progress control.

Authorization and authentication

In this example we use the functions developed in Session 7 and accessible in the library
mysql_functions.php.

The first page we need is the index.htm which opens our example course scenario. It is a
variation of the file we have used previously and starts by a introductory text to already admitted,
and to new, applying students. If the caller is new, he/she is in Line 4 asked to go on for
registration, while already registered students can proceed to the login as specified in the form
specified in Lines 8-13 .

Consider the login alternative first. The login process requires that the student types his/her
username/e-mail address and personal PIN code which she/he received when registered. The
login alternative is recognized by sending the hidden variable with name login and value "1".

The index.htm page is quite ordinary and looks like this:

1 <!--- index.cfm --->

2. <center>

93

3. <h1> Login</h1>

4. <p>

Thank you for your interest in this course. Access to the course is restricted to registered visitors only.<i>If you

already are registered</i>, please go directly to the login.</p>

5.<p ><i>If you are new and want to become a registered user</i>, we need some information from you, and

you will need a personal identity number (PIN). Please continue with the registration</p>

6. <table><

7. <tr><td>Login with your</td></tr>

8. <FORM ACTION="validation.php" method="post">

9. <tr><td>Your username:</td> <td><input name="username" type="text" size="20"></td> </tr>

10. <tr><td>Your PIN code:</td><td> <INPUT TYPE="password" name ="submitted_pin" SIZE="20"></td></tr>

11. <input name="login" type="hidden" value="1">

12. <tr><td>Click the button:</td> <td><INPUT TYPE="SUBMIT" NAME="response" VALUE="Submit"></td></tr>

13. </FORM>

14. </table>

</center>

Note that this example applies a more strict authentication policy than that followed by PHP
with MySQL!

Registration and authorization

If the student replies that he wants to register, the registration.htm script is called:

1. <!--- registration.cfm --->

2. <html>

3. <head>

4. <title>applications</title>

5. </head>

6. <center>

7. <h1>Registration</h1>

8. <p>In order to recognize and serve the different requirements of our visitors, each visitor needs her/his own

username and PIN code.
 Please, complete and submit the form Your username and PIN code will be

returned to you.</p>

9. <FORM ACTION="validation.php" method="post">

10. <table>

11. <tr><td>Your first name:</td> <td><input name="firstname" type="text" SIZE="20"></td> </tr>

12. <tr><td>Your last name:</td> <td><input name="lastname" type="text" SIZE="20"></td> </tr>

13. <tr><td>Your user name:</td><td> <INPUT TYPE="text" name ="username" SIZE="20"></td></tr>

14. <input name="registration" type="hidden" value="1">

94

15. <tr><td>Click the button:</td> <td><INPUT TYPE="SUBMIT" NAME="response"

VALUE="Submit"></td>></tr>

17. </table>

18. </FORM>

19. </center>

20. </body>

21. </html>

The PIN could either be self-composed, i.e. the person who request registration provides his/her
own password, or it system assigned. Self-composed PINs have the advantages that they may be
easier for the owners to remember, and they can by special techniques (hashing) be kept secret
also for the system staff. Compared with the system assigned PIN's, the disadvantages of self-
composed PINs are they may be easy to guess, and they cannot easily serve as internal
identifiers. In this example, the registration form does not offer self-composed PINs indicating
that we have chosen to use system assigned identifiers. The registration alternative is recognized
by the attached hidden variable with name registration and value "1".

Both index.htm and registration.htm call the script validation.php for processing. This script
is a variation of the script funtioncalls.php used for introducing the functions authentication()
and authorization() in Session 7. The version we use in this example is shown below.

1. <!-- validation.php -->

2. <?php

3. //Open connection/database/table

4. $link=mysql_connect("localhost", "root","maximus");

5. $db="irCourse";

6. $db_selected=mysql_select_db($db, $link);

7. if(!$db_selected) {

8. mysql_query("CREATE DATABASE $db", $link);

9. mysql_select_db($db, $link);

10. mysql_query("CREATE TABLE Users(firstname VARCHAR(20), lastname VARCHAR(20), email VARCHAR(20),

PIN VARCHAR(10))",

$link);

11. }

12.//Function calls

13. include "mysql_functions.php";

14.if (isset($_POST['login'])){

15. $approved=authentication($db, $_POST['username'], $_POST['submitted_pin']);

16. if ($approved[0]=="yes") {

17. $_SESSION['PIN']=$_POST['submitted_pin'];

18. print("<h3><center>$approved[1], you are logged in.

19. Please continue</center></h3>");

20. }

21. else {

22. print("<p><center>Your PIN code was invalid</center></p>");

23. }

95

24. }

25. if(isset($_POST['registration'])) {

26. $reg=authorization($db,$_POST['firstname'],$_POST['lastname'], $_POST['username']);

27. print("<center>You have been successfully authorized to access the site.

28. Your username is: $reg[0], and your PIN is: $reg[1].<p></p>");

29. print("Return to Login.</center> ");

30. }

31. mysql_close($link);

32. ?>

The script starts by connection to MySQL, selecting database irCourse and checking the
existence of the database in Lines 4-11. Our library of functions is included in Line 13.
Remember to insert the relative path if the library is residing in another directory!

In Line 14 and Line 25, the data received are identified either as login data or registration data,
and the respective function is called. If the case is login and the authentication is successful, a
message is returned to the student with a link to content.htm which can be activated. If the case
is registration, a message with the username and the PIN code are returned including also a link
to the login page, index.htm. Note that we define a new internal variable $_SESSION['PIN'] in
Line 17 for future use.

List of content

After a positive authentication page is processed, content.php is called. The first question is why
this is a php script and not an htm page. The answer is that we want to record all visitors to this
page by making use of the function logging.php in the library musql_functions.php. Lines 2-6
take care of this task.

1. <!-- content.php -->

2. <?php

3. include("mysql_functions.php");

4. logging($_SESSION['PIN']);

5. ?>

6. <h2>Information Retrieval Course</h2>

7. <h1>Content:</h1>

8.

9. session: Introduction

10. session: Description and query language

11, session: Document indexing

12. session: File organization

13. session: Search operation

14 session: Evaluation

15 <p></p>

16. References

17. Figures

18.

96

The remaining part of this page is rather trivial and requires no further comments. From the list
of contents, there are links to the different parts of the course. .(Figure 9.2).

Figure 9.2: Content of an Information Retrieval Course

Sessions

As illustration, only a few components are implemented in this example and listed below. We
use again the same trick as above and declare each completed session file as a php script, and
continue to log visits to the sessions. In addition, we have a requirement that it should not be
permitted to bypass the authentication for entry to the course.

To be able to satisfy the last requirement, we first define a new function:

1. function logged_in($PIN) {

2. if(!isset($PIN)) {

3. exit("<center><h1>You can access this application only after logging in.</h1></center

>");

4. }

5. }

We call this function with logged_in($_SESSION['PIN']). Obviously, if the client has not went
through the authorization procedure, the variable $_SESSION['PIN'] cannot be set and the
system will provide a warning message and exit the application.

Session 1 can look like this:

1. <!--session1.php -->
2. <?php
3. include("mysql_functions.php");
4. logged_in($_SESSION['PIN']);

http://nordbotten.net/phproot/courses/php_hsh/sessions/session9/images/image9_2.jpg

97

5. logging($_SESSION['PIN']);
6. ?>

7. <h1>A COURSE IN INFORMATION RETRIEVAL</h1>

8. <h2>Session 1:Introduction</h2>

9. <p>The topic information retrieval concerns the structure, analysis, implementation, search and
dissemination of documents representing information.The purpose of an information retrieval system is to
satisfy needs for information in a best possible way. </p>

10. <p>A typical modern information retrieval system is implemented in a host computer which can be
accessed on internet from client computers. It is implemented with 2 sets of software, the client software and
the server software.</p>

11. <p>The required client server is the basic software for working with the internet, while the server
requires the general software to provide services on internet as well as specialized software for the
information retrieval application. </p>

12. <p>The information retrieval application is build with a collection of documents as in an ordinary library
or files as with a provider of electronic document representations as the core. To help the user to identify the
documents in which he/she is interested, a set of files with meta data for the documents are developed and
frequently organized in a database. In some applications, but far from all, even the electronic documents
themselves can be included in the database.</p>

13. <p>To interact with the system, the user must use a query language which has been adjusted to the type
of meta data in the database. The user must be able to describe the general properties of the unknown
documents he/she wants to identify. On the other side, the retrieval system must be able to interprete the
requests, communicate with the user for more details if necessary, and search in the system for the documents
wanted. Figure 1 gives an overview of a retrieval system.</p>

14. <p>Depending on the users knowledge about the system, the components of the query language, the meta
data for the documents included in the collection, and the composition of documents, the retrieval process
may be more or less successful. To be able to compare one retrieval system application with a second,
measures of performance are needed. For information retrieval, 2 measures, recall and precision, have been
widely used.</p>

15. <p>If A is the subset of the documents which are relevant for a certain task expressed the query by Q, and
B is the retrieved documents, the ratio (A AND B)/A is called the recall of the retrieval system for the query
Q. The precision of the expressed Q for the same task is the ratio (A AND B)/B. Since the evaluation of the
recall in principle assumes that the set of relevant documents in the collection is known (if it is known, no
retrieval problem exists), the set A has to be estimated. Precision, on the other hand, requires no knowledge
outside the retrieved set B.</p>

16. <h3>Literature</h3>
17. <p>Return to the Content.</p>

Note that the links to other sessions, literature, figures, etc. are included as in a usual HTML
tags.. Figure 9.3 shows a part of the session.

http://nordbotten.net/phproot/courses/php_hsh/sessions/session9/images/image9_3.jpg

98

Figure 9.3: The start of Session 1

There are several opinions about how to control the progress of students through a course
depending on the author's experience and beliefs. One hypothesis is that students should not
progress too fast through the sessions. Times, at which each session is opened, are implemented
for Sessions 2-6 in this example. We shall return to how the variables
$_SESSION['opening_time_2'], $_SESSION['opening_time_3'] and
$_SESSION['opening_time_6'] are set at the end of this session.

Alternative hypotheses are that the learning from the current session should be tested before a
student is permitted to advance to the next, or that deadlines and closing dates for the sessions
constitute a positive learning pressure. A number of interesting hypotheses can be tested in
connection with course progress regulation.

The time access control is expressed in Lines 4-9 in the following 3 php scripts.

1. <!-- session2.php -->

2. <?php

3. if (isset($_SESSION['opening_time_02'])) {

4. if ($time() < $_SESSION['opening_time_2']) {

5. print("<center><h3>Session not yet open</h3><p>");

6. print("Return to Contents.</p></center>");

7. exit();

8. }

9. }

10. include("mysql_functions.php");

11. logged_in($_SESSION['PIN']);

12. logging($_SESSION['PIN']);

13. ?>

14. <h1>A COURSE IN INFORMATION RETRIEVAL</h1>

15. <h2>Session 2: Description and query language</h2>

16.<p> No text uploaded. </p>

http://nordbotten.net/phproot/courses/php_hsh/sessions/session9/text/content.php

99

Line 3 test if an opening time has been set (for setting opening times, see below), and in Lines 4-
7, a test is done whether the opening time has occurred or not.

The next 2 scripts follow the same procedure:

1. <!-- session3.php -->

2. <?php

3. if (isset($_SESSION['opening_time_02'])) {

4. if ($time() < $_SESSION['opening_time_3']) {

5. print("<center><h3>Session not yet open</h3><p>");

6. print("Return to Contents</p> </center>");

7. exit();

8. }

9. }

10. include("mysql_functions.php");

11. logged_in($_SESSION['PIN']);

12. logging($_SESSION['PIN']);

13. ?>

14. <h1>A COURSE IN INFORMATION RETRIEVAL</h1>

15. <h2>Session 3: Document indexing</h2>

16.<p> No text uploaded. </p>

The next session text example is Session 6:

1. <!-- evaluation.php -->
2. <?php
3. if (isset($_SESSION['opening_time_02'])) {
4. if ($time() < $_SESSION['opening_time_6']) {
5. print("<center><h3>Session not yet open</h3><p>");
6. print("Return to Contents.</p></center>");
7. exit();
8. }
9. }
10. include("mysql_functions.php");
11. logged_in($_SESSION['PIN']);
12. logging($_SESSION['PIN']);
13. ?>

14. <h1>A COURSE IN INFORMATION RETRIEVAL</h1>

15. <h2>Session 6:Evaluation</h2>

16. <p>A retrieval system can be evaluated bases on a number of criteria including its effectiveness to provide
a satisfactory output, operational, maintenance and capital costs. In this session, we focus on the effectiveness
of the system with particular reference to the 2 central concepts: recall and retrieval.</p>

17. <p>Figure 2 presents the relations among the different document sets and the

http://nordbotten.net/phproot/courses/php_hsh/sessions/session9/text/content.php
http://nordbotten.net/phproot/courses/php_hsh/sessions/session9/text/content.php

100

2 measures. Evaluating a retrieval system with these measures requires an experiment which can be outlined
by the following steps:</p>

18.
19. Delimit the collection for the experiment
20. Define a set of retrieval queries representative for the use of the collection
21. Draw a random sample of the collection documents
22. Let experts decide how many documents in the sample are relevant for the different queries
23. Estimate the total number of items in the collection relevant for the different queries
24. Run the queries and let experts decide how many relevant items are found in each query
25. Compute recall and precision measures based on the estimated totals and the relevant documentsfrom
the queries
26.

27. <h3>Literature</h3>

28. Return to the content.

Instructor's tools

The course implementation is now as complete as planed with one exception. Still, the question
about how to set the opening times has to be discussed. As pointed out in several occasion, in
general an application is not complete without a tool box for the administrator. This should of
course not be accessible for the users.

In create another directory, tools, in the examples directory in which we can enter a menu.htm,
(Figure 9.4) with 2 links to list_students.php and set_openings.htm . The menu is so simple

Figure 9.4: Tools for the instructor

that we don't have to waste time on the form. Instead we take a short time to look at the list.php

1.<?php
2. $link=mysql_connect("localhost", "root","maximus");
3. $db="irCourse";
4. $db_selected=mysql_select_db($db, $link);

5.if(!$db_selected) {
6. mysql_query("CREATE DATABASE $db", $link);
7. mysql_select_db($db, $link);

http://nordbotten.net/phproot/courses/php_hsh/sessions/session9/images/image9_4.jpg

101

8. mysql_query("CREATE TABLE Users(firstname VARCHAR(20), lastname VARCHAR(20), email
VARCHAR(20), PIN VARCHAR(10))",$link);
9. }

10. print("<center><h2>Registered students. </h2>");
11. $r= mysql_query("Select * FROM Users", $link);
12. print("<table border>");
13. print("<tr><th>First name</th><th>Last name</th><th>User name</th><th>PIN</th></tr>");
14. while ($row=mysql_fetch_array($r)) {
print("<tr><td>$row[0]</td><td>$row[1]</td><td>$row[2]</td><td>$row[3]</td></tr>");
15. }
16. ?>

There is nothing new in this script, but note that the handle $r provided by the mysql_query() in
Line 11 is used in the following while loop to extract each row as an array of column values for
printing. (See Figure 9.5).

Figure 9.5: Registered students

The second tool we want for the tool case is a capability to set opening times for each session
maybe spaced a week apart. We need a form page of the type:

1. <!-- set_time.htm -->
2. <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
3. "http://www.w3.org/TR/html4/loose.dtd">
4. <html>
5. <head>
6. <title>Untitled Document</title>
7. <meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
8. </head>

9. <center>
10. <h2>Opening time for course sessions.</h2>
11. <p>The opening of time for each session can be set by the following form. The time specified is the server
time. </p>
12. <table>
13. <form action="set_time.php" method="post">
14. <tr><td>Session:</td> <td><input name="session" type="text" value="00" size="4"

http://nordbotten.net/phproot/courses/php_hsh/sessions/session9/images/image9_5.jpg

102

maxlength="2"></td></tr>
15. <tr><td>Hour:</td> <td><input name="hour" type="text" value="00" size="4"
maxlength="2"></td></tr>
16. <tr><td>Minute:</td><td><input name="minute" type="text" value="00" size="4"
maxlength="2"></td></tr>
17. <tr><td>Second:</td><td><input name="second" type="text" value="00" size="4"
maxlength="2"></td></tr>
18. <tr><td>Month:</td><td><input name="month" type="text" value="00" size="4"
maxlength="2"></td></tr>
19. <tr><td>Day of month:</td><td><input name="day" type="text" value="00" size="4"
maxlength="2"></td></tr><tr>
20. </tr><td>Year:</td><td><input name="year" type="text" value="2006" size="4"
maxlength="4"></td>
21. <tr><td>Submit:</td> <td><input type="submit" value="Submit"></td></tr>
22. </form>
23. </table>
24. </center>

25. <body>
26. </body>
27. </html>

The form has pre-set width and values for each time component. If you want the system to make
the session accessible at the beginning of each 24 hour day, the hour, minute and second can be
left with default values. Type always "0" in a vacant space to the left of a single digit. (Figure
9.6).

Figure 9.6: Table for specifying when a session should open

The form calls set_time.php which introduces a few interesting time related function.

1. <!-- set_time.php -->

2. <?php

3. $ts=mktime($_POST['hour'],$_POST['minute'],$_POST['second'],$_POST['month'],

$_POST['day'],$_POST['year']);

4. $ct=time();

5. $s=$_POST['session'];

http://nordbotten.net/phproot/courses/php_hsh/sessions/session9/images/image9_6.jpg
http://nordbotten.net/phproot/courses/php_hsh/sessions/session9/images/image9_6.jpg

103

6. $_SESSION['opening_time_'.$s]=$ts;

7. print("<center>");

8. print("<h3>You have set the timestamp $ts for Session $s.</br>

The timestamp for when set was $ct. </h3>");

9. print("</center>");

10. ?>

The mktime() function in Line 3 converts the 6 time-related form variables to a timestamp, i.e. a
unique value corresponding to the number of seconds since the beginning of 1970, to the
specified point of time. Another function, time(), fetches the data from the clock of the server,
and gives the timestamp for the point of time it was executed. These 2 function make it possible
to set up a condition which is satisfied at the time specified in mktime() relative to the server
time.

The opening times set in this example will only last for your session. Other students will not
experience the opening times you have set, neither will you next time you enter the example. To
make the opening times permanent, they must be saved in a file or a database, and retrieved at
the beginning of the application.

Concluding remarks

We have in this session studied some challenges connected with implementation of a web
course. The dynamics required are mainly associated with the authentication of students and the
use of the course. There is several obvious research tasks associated with web courses. Web
courses can be an excellent choice for implementing some topics and a bad for other. Which and
why? Who are the students benefiting from a web course? Which are efficient authentication
variables for a course? Is authentication really necessary and why?

Most courses have a number of structural attributes in common. It is possible to develop course
generators, which permit the author to select his/her preferred structure and of course content.
The PHP 5 with MySQL course was developed by means of a generator.

104

Session 10: Web shop

e-shops

One of the most popular and talked about web applications is e-shops, e-business or e-commerce.
Complete commercial systems are available to buy from the shelf, new web shops have emerged
and many have disappeared. Great expectations obviously exist for the future of web shops.
These applications also demonstrate a number of web application aspects.

In this session we discuss and demonstrate some of the basic principles for a web shop. The
example is a web shop, which are selling the web scripts we have introduced in this course. As
all the other examples, our web shop application is not complete, and can be improved in many
ways.

The essential scripts of the application are discussed below. Some trivial pages used in this
example as conditions.htm, shipping.htm, support.htm and about.htm are illustrated in
figures, but are not discussed below. It is recommended that you make yourself acquainted with
the example before you start studying the scripts in detail.

Business promotion

Operating a web shop requires product promotion, i.e. dissemination of information about the
products offered, prices, sales conditions, shipping, information about the company and its
addresses. In addition to distribution of information by huge lists of e-mail addresses and
advertisements, a web shop must have a home page with links to required information and
provide the possibility to order/buy products online. In our example, Software Shop has a home
page generated by the page index.htm. This homepage, Figure 10.1, will serve as an
introduction to this application.

Figure 10.1: Main page for Software Shop

http://nordbotten.net/phproot/courses/php_hsh/sessions/session10/images/image10_1.jpg

http://nordbotten.net/phproot/courses/php_hsh/sessions/session10/images/image10_2.jpg

http://nordbotten.net/phproot/courses/php_hsh/sessions/session10/images/figure3.cfm

http://nordbotten.net/phproot/courses/php_hsh/sessions/session10/images/image10_4.jpg

http://nordbotten.net/phproot/courses/php_hsh/sessions/session10/images/image10_4.jpg
http://nordbotten.net/phproot/courses/php_hsh/sessions/session10/images/image10_5.jpg

http://nordbotten.net/phproot/courses/php_hsh/sessions/session10/images/image10_6.jpg

http://nordbotten.net/phproot/courses/php_hsh/sessions/session10/images/image10_7.jpg

http://nordbotten.net/phproot/courses/php_hsh/sessions/session10/images/image10_8.jpg

