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At the beginning of the course, we explore some basic database concepts and adopt terminology. We give an overview

of the most important data models. First we give brief remarks on historical network and hierarchical data models, and

then we continue to investigate entity-relationship and relational data model. Only most important facts about entity-

relationship model, together with some examples will be covered. The relational data model will be presented in much

more detail, but we concentrate on exploring possibilities for its practical usage. Important remarks about theoretical

background of the relational model are covered later in the text. We continue with the most important constructions of

the Structured Query Language.

In the advanced level course, we concentrate on the theoretical background of the relational model, explore it in some

detail, and explain implications these concepts make to the usage of the relational model in practice. Among other

topics, we explore functional dependencies in detail. Next, we give some pointers on update anomalies and the need to

introduce normal (canonical) forms to relational database theory. We describe normal forms from first to third, including

the Boyce-Codd normal form that belongs somewhere between the third and the fourth. We also give pointers about

other normal forms. At the end we introduce two algorithms for relational database normalization - decomposition and

synthesis.

1. Introduction

Databases today are essential to every business. Whenever you visit a major Web site Google, Yahoo!, Ama-

zon.com, or thousands of smaller sites that provide information there is a database behind the scenes serving

up the information you request. Corporations maintain all their important records in databases. Databases are

likewise found at the core of many scientific investigations. They represent the data gathered by astronomers,

by investigators of the human genome, and by biochemists exploring properties of proteins, among many other

scientific activities. The power of databases comes from a body of knowledge and technology that has developed

over several decades and is embodied in specialized software called a database management system, or DBMS.

A DBMS is a powerful tool for creating and managing large amounts of data efficiently and allowing it to persist

over long periods of time, safely. These systems are among the most complex types of software available.

In essence a database is nothing more than a collection of information that exists over a long period of time. The

term database also refers to a collection of data that is managed by a DBMS. The DBMS is expected to allow users

to:

• create new databases and specify their schemas,

• query the data and modify the data,

• support the storage of very large amounts of data,
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• enable durability, the recovery of the database in the face of failures and

• control access to data from many users at once, without allowing unexpected interactions among users and

without actions on the data to be performed partially but not completely.

The early DBMS’s required the programmer to visualize data much as it was stored. These database systems used

several different data models for describing the structure of the information in a database. Two most important

models were ”hierarchical” or tree-based model and the graph-based ”network” model. A problem with these early

models and systems was that they did not support high-level query languages. That is why there was considerable

effort needed to write such programs, even for very simple queries.

Following a famous paper written by Codd [3] in 1970, database systems changed significantly. Codd proposed

that database systems should present the user with a view of data organized as tables called relations. Behind the

scenes, there might be a complex data structure that allowed rapid response to a variety of queries. But, unlike the

programmers for earlier database systems, the programmer of a relational system would not be concerned with the

storage structure. Queries could be expressed in a very high-level language, which greatly increased the efficiency

of database programmers.

By 1990, relational database systems were the norm. Yet the database field continues to evolve, and new issues and

approaches to the management of data surface regularly. Object-oriented features have infiltrated the relational

model. Some of the largest databases are organized rather differently from those using relational methodology.

1.1. Overview of a Database Management System

In Fig. 1 we see an outline of a complete DBMS. Single boxes represent system components, while double boxes

represent in-memory data structures. The solid lines indicate control and data flow, while dashed lines indicate

data flow only. Since the diagram is complicated, we shall consider the details in several stages. First, at the top,

we suggest that there are two distinct sources of commands to the DBMS:

1. Conventional users and application programs that ask for data or modify data.

2. A database administrator: a person or persons responsible for the structure or schema of the database.

1.1.1. Query Processing

The second kind of command is the simpler to process, and we show its trail beginning at the upper right side of

Fig. 1. For example, the database administrator, or DBA, for a university registrar’s database might decide that

there should be a table or relation with columns for a student, a course the student has taken, and a grade for that

student in that course. The DBA might also decide that the only allowable grades are A, B, C, D, and F. This

structure and constraint information is all part of the schema of the database. It is shown in Fig. 1 as entered

by the DBA, who needs special authority to execute schema-altering commands, since these can have profound

effects on the database. These schema-altering data-definition language (DDL) commands are parsed by a DDL

processor and passed to the execution engine, which then goes through the index/file/record manager to alter the

meta data, that is, the schema information for the database.

The great majority of interactions with the DBMS follow the path on the left side of Fig. 1. A user or an application

program initiates some action, using the data-manipulation language (DML). This command does not affect the

schema of the database, but may affect the content of the database or will extract data from the database.

The query is parsed and optimized by a query compiler. The resulting query plan, or sequence of actions the DBMS

will perform to answer the query, is passed to the execution engine. The execution engine issues a sequence of

requests for small pieces of data, typically records or tuples of a relation, to a resource manager that knows about

data files (holding relations), the format and size of records in those files, and index files, which help find elements

of data files quickly.
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Figure 1: DBMS components.
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The requests for data are passed to the buffer manager. The buffer manager’s task is to bring appropriate portions

of the data from secondary storage (disk) where it is kept permanently, to the main-memory buffers. Normally, the

page or ”disk block” is the unit of transfer between buffers and disk.

The buffer manager communicates with a storage manager to get data from disk. The storage manager might in-

volve operating-system commands, but more typically, the DBMS issues commands directly to the disk controller.

Queries and other DML actions are grouped into transactions, which are units that must be executed atomically

and in isolation from one another. Any query or modification action can be a transaction by itself. In addition, the

execution of transactions must be durable, meaning that the effect of any completed transaction must be preserved

even if the system fails in some way right after completion of the transaction.

1.1.2. Storage and Buffer Management

The data of a database normally resides in secondary storage - a magnetic disk, for example. However, to perform

any useful operation on data, that data must be in main memory. It is the job of the storage manager to control the

placement of data on disk and its movement between disk and main memory. For efficiency purposes, DBMS’s

normally control storage on the disk directly, at least under some circumstances. The storage manager keeps track

of the location of files on the disk and obtains the block or blocks containing a file on request from the buffer

manager.

The buffer manager is responsible for partitioning the available main memory into buffers, which are page-sized

regions into which disk blocks can be transferred. Thus, all DBMS components that need information from the

disk will interact with the buffers and the buffer manager, either directly or through the execution engine. The

kinds of information that various components may need include: data, meta data, log records, statistics, indexes,

etc.

1.1.3. Transaction Processing

It is normal to group one or more database operations into a transaction, which is a unit of work that must be

executed atomically and in apparent isolation from other transactions. In addition, a DBMS offers the guarantee of

durability: that the work of a completed transaction will never be lost. The transaction manager therefore accepts

transaction commands from an application, which tell the transaction manager when transactions begin and end,

as well as information about the expectations of the application.

The transaction processor performs the following tasks:

1. Logging: In order to assure durability, every change in the database is logged separately on disk.

2. Concurrency control: The concurrency-control manager must assure that the individual actions of multiple

transactions are executed in such an order that the net effect is the same as if the transactions had in fact

executed in their entirety, one-at-a-time.

3. Deadlock resolution: As transactions compete for resources through the locks that the scheduler grants,

they can get into a situation where none can proceed because each needs something another transaction has.

The transaction manager has the responsibility to intervene and cancel (”rollback” or ”abort”) one or more

transactions to let the others proceed.

Properly implemented transactions are commonly said to meet the ”ACID test”, where:

• ”A” stands for ”atomicity,” the all-or-nothing execution of transactions.

• ”C,” stands for ”consistency.” That is, all databases have consistency constraints, or expectations about

relationships among data elements.

• ”I” stands for ”isolation,” the fact that each transaction must appear to be executed as if no other transaction

is executing at the same time.
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• ”D” stands for ”durability,” the condition that the effect on the database of a transaction must never be lost,

once the transaction has completed.

1.1.4. The Query Processor

The portion of the DBMS that most affects the performance that the user sees is the query processor. In Fig. 1 the

query processor is represented by two components - the query compiler and the execution engine.

The query compiler, which translates the query into an internal form called a query plan. The latter is a sequence

of operations to be performed on the data. The query compiler consists of three major units:

1. A query parser, which builds a tree structure from the textual form of the query.

2. A query pre processor, which performs semantic checks on the query and performing some tree transforma-

tions to turn the parse tree into a tree of algebraic operators representing the initial query plan.

3. A query optimizer, which transforms the initial query plan into the best available sequence of operations on

the actual data.

The execution engine, which has the responsibility for executing each of the steps in the chosen query plan. The

execution engine interacts with most of the other components of the DBMS, either directly or through the buffers.

It must get the data from the database into buffers in order to manipulate that data. It needs to interact with the

scheduler to avoid accessing data that is locked, and with the log manager to make sure that all database changes

are properly logged.

2. Data models

The notion of a ”data model” is one of the most fundamental in the study of database systems. In this brief

summary of the concept, we define some basic terminology and mention the most important data models.

A data model is a notation for describing data or information. The description generally consists of three parts:

1. Structure of the data. The data structures used to implement data in the computer are sometimes referred

to as a physical data model. In the database world, data models are at a somewhat higher level than data

structures, and are sometimes referred to as a conceptual model to emphasize the difference in level.

2. Operations on the data. In database data models, there is usually a limited set of operations that can be

performed. We are generally allowed to perform a limited set of queries (operations that retrieve infor-

mation) and modifications (operations that change the database). By limiting operations, it is possible for

programmers to describe database operations at a very high level, yet have the database management system

implement the operations efficiently.

3. Constraints on the data. Database data models usually have a way to describe limitations on what the data

can be. These constraints can range from the simple (e.g., ”a day of the week is an integer between 1 and 7”

or ”a movie has at most one title”) to some very complex forms of limitations.

Here we give an overview of the two most important data models - the entity-relationship and the relational model.

2.1. Entity-relationship model

Entity-relationship diagrams were first proposed as a means of quickly obtaining, with minimum effort, a good

sense of the structure of a database [14]. They are used to plan and design a database and to model a system’s data.



6 S. Škrbić

Figure 2: A relationship between two entities is shown by drawing a line between them.

An entity-relationship diagram is an excellent tool for planning and designing a database, particularly when used

in conjunction with data normalization. The entity-relationship model starts with the entities, data normalization

starts with the attributes, and the two tools tend to verify each other. The entity-relationship model’s entities,

attributes, and relationships map smoothly to a physical database.

During the systems analysis phase, an entity-relationship diagram gives the analyst a clear, high-level view of the

data. Used in conjunction with data flow diagrams, an entity-relationship model gives the analyst an alternative

logical view of the system. If a great deal is known about the data but not much about the processes, an entity-

relationship diagram is an excellent starting point for modeling the system.

An entity-relationship model is data driven. The model implies processes but does not clarify the processes.

Non-technical people find entity-relationship models difficult to understand and the nature of a relationship (one,

many) confusing, and numerous notational variations sometimes make it difficult for even an experienced person

to quickly grasp a particular diagram.

Before creating an entity-relationship diagram, the analyst must have at least a preliminary sense of the system’s

logical entities, attributes, and data structures. The necessary information is obtained during the information gath-

ering and problem definition stage. Entity-relationship diagrams are important tools in the structured requirements

methodology and in database design. They are often used in conjunction with data flow diagrams and data nor-

malization.

2.1.1. Concepts

Entity-relationship diagrams are used to plan and design a database and to model a system’s data. An entity is an

object (a person, group, place, thing, or activity) about which data are stored. A relationship links two entities and

is shown by drawing a line between them (Fig. 2).

Logically, a relationship can be stated in the form of a sentence with a verb linking the two entities. For example:

sales transactions are composed of products, or products make up sales transactions.

The act of creating such sentences is a good test of the relationship’s validity. In cases where the relationship is

unclear, the sentence might be written alongside the relationship line as shown in Fig. 2. A given relationship can

be mandatory (shown by a solid line) or optional (a broken line).
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Figure 3: One-to-one relationship.

Figure 4: One-to-many relationship.

2.1.2. Relationships

For a variety of reasons, some relationships are more stable and easier to maintain than others. (A detailed discus-

sion of the underlying database theory is beyond the scope of this course.) Cardinality, a measure of the related

entities’ relative number of occurrences, is an important predictor of the strength of the relationship.

In a one-to-one relationship, each occurrence of entity A is associated with one and only one occurrence of entity

B, and each occurrence of entity B is associated with one and only one occurrence of entity A (Fig. 3).

For example, imagine that an instructor maintains examination grades for each student in his or her class. There

are two entities in this example: Students and Exams. For each Student there is one and only one Exam, and for

each Exam there is one and only one Student.

Graphically, a one-to-one relationship is described by drawing short crossing lines at both ends of the line that links

the two entities (Fig. 3). However, some practitioners simply show the relationship line with no embellishment,

and other symbols are used as well.

In a one-to-many relationship, each occurrence of entity A is associated with one or more occurrences of entity B,

but each occurrence of entity B is associated with only one occurrence of entity A (Fig. 4).

For example, a student’s grade in most courses is based on numerous grade factors (such as exams, papers, and

projects). A given Student has several different Grade factors, but a given Grade factor is associated with one and

only one Student.

Graphically, a one-to-many relationship is shown by drawing a short crossing line (or no extra marking) at the

’one-end’ and a small triangle (sometimes called a crow’s foot) at the ’many-end’ of the relationship line (Fig. 4).

Some practitioners use other symbols, however.

In a many-to-many relationship, each occurrence of entity A is associated with one or more occurrences of entity

B, and each occurrence of entity B is associated with one or more occurrences of entity A (Fig. 5). For example,

a student’s end-of-term Grade report can list several Courses, and a given Course can appear on many students’

Grade reports.

Graphically, a many-to-many relationship is shown by drawing a crow’s foot at both ends of the relationship line

(Fig. 5). Again, some practitioners use other symbols.

Here we focus on one-to-one, one-to-many, and many-to-many relationships, other types of relationships are

possible. Sometimes entities are mutually exclusive, with A linked to either B or C, but not both. In a mutually

inclusive relationship, if A is linked to B it must also be linked to C. Zero cardinality implies that an occurrence of
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Figure 5: Many-to-many relationship.

Figure 6: A many-to-many relationship can often be converted to two one-to-many relationships.

A means no occurrence of B. Cross-links and loops can exist, too. A recursive relationship is shown by drawing a

semicircle from the entity back to itself.

For a variety of reasons, one-to-many relationships tend to be the most stable. Consequently, a primary objec-

tive of entity-relationship modeling is to convert one-to-one and many-to-many relationships into one-to-many

relationships.

One-to-one relationships can often be merged. Generally, entities that share a one-to-one relationship are really the

same entity and should be merged unless there is a good reason to keep them separate. Note that not all one-to-one

relationships can be merged, however. For example, imagine a relationship between athletes and drug tests. There

is one Drug test per Athlete and one Athlete per Drug test, so the relationship is clearly one-to-one. In this case,

however, because merging the entities would probably violate security requirements (and possibly the law), there

is a good logical reason to maintain separate entities.

Many-to-many relationships can cause maintenance problems. For example, Fig. 6 shows a many-to-many rela-

tionship between Inventory and Supplier. Each product in Inventory can have more than one Supplier, and each

Supplier can carry more than one product. If a list of suppliers were stored in Inventory, adding or deleting a

supplier might mean updating several Inventory occurrences. Likewise, listing products in Supplier could mean

changing several Supplier occurrences if a single product were added or deleted.

One solution is to create a new entity that has a one-to-many relationship with both original entities. For example,

imagine a new entity called Item ordered (Fig. 6). Given such a design, a given product in Inventory can appear

on several active Items ordered, but each Item ordered is for one and only one product. Likewise, a given supplier

can appear on several active Items ordered, but each Item ordered lists one and only supplier. Note that a given

Item ordered links a specific product in Inventory with a specific occurrence of Supplier. The many-to-many

relationship has been converted to two one-to-many relationships.

2.1.3. ER diagrams

Assume a preliminary analysis of a retail sales application suggests four primary entities: customer, sales, inven-

tory, and supplier. The Sales, Customer, and Inventory entities are related as follows. Customer initiates Sales.

Sales are drawn from Inventory.

The first relationship is one-to-many (Fig. 7); a given Customer can have many Sales transactions, but a given Sale

is associated with one and only one Customer. However, the second relationship is many-to-many because a given

Sale can include several products from Inventory and a given product in Inventory can appear in many Sales.
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Figure 7: Customer, Sales and Inventory.

Figure 8: Resolving the many-to-many relationship calls for a new entity.

To resolve the many-to-many relationship, create a new entity, Item sold, that has a one-to-many relationship with

both Sales and Inventory (Fig. 8). A given Sales transaction can list many Items sold, but a given Item sold is

associated with one and only one Sales transaction. A given product in Inventory can appear in many Items sold,

but a given Item sold lists one and only one product. (Think of an Item sold as one line in a list of products

purchased on a sales invoice.)

There is one possible source of confusion about the Inventory entity that might need clarification. A specific 19-

inch color television set is an example of a single occurrence of that entity, but Inventory might hold numerous

virtually identical television sets. For inventory control purposes, tracking television sets (a class of occurrences)

is probably good enough. However, the Customer purchases a specific television set (identified, perhaps, by

concatenating the serial number to the stock number). Thus a given Item sold lists one and only one occurrence of

Inventory.

The relationship between Inventory and Supplier (Fig. 9) is many-to-many because a given product can have many

suppliers and a given supplier can supply many different products. Many-to-many relationships must be resolved,

so add a new entity called Item ordered to the model, yielding two one-to-many relationships.

Figure 9: Creating a new entity called item ordered.
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Figure 10: The finished entity-relationship model.

Title Year Length Genre

Die Hard: With a Vengeance 1995 131 action

Pulp Fiction 1994 154 crime

King Kong 2005 187 adventure

Table 1: The relation Movies.

Finally, the Inventory entity is related to both Item sold and Item ordered, so combine the two partial diagrams to

form a single entity-relationship model (Fig. 10).

2.2. Relational Model

The relational model gives us a single way to represent data: as a two-dimensional table called a relation. Table

1 is an example of a relation, which we shall call Movies. The rows each represent a movie, and the columns

each represent a property of movies. We shall introduce the most important terminology regarding relations, and

illustrate them with the Movies relation.

2.2.1. Attributes

The columns of a relation are named by attributes. In table 1 the attributes are title, year, length, and genre.

Attributes appear at the tops of the columns. Usually, an attribute describes the meaning of entries in the column

below. For instance, the column with attribute length holds the length, in minutes, of each movie.
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2.2.2. Schemas

The name of a relation and the set of attributes for a relation is called the schema for that relation. We show the

schema for the relation with the relation name followed by a parenthesized list of its attributes. Thus, the schema

for relation Movies is

Movies(title, year, length, genre).

We shall generally follow the convention that relation names begin with a capital letter, and attribute names begin

with a lower-case letter. The attributes in a relation schema are a set, not a list. However, in order to talk about

relations we often must specify a ”standard” order for the attributes. Thus, whenever we introduce a relation

schema with a list of attributes, as above, we shall take this ordering to be the standard order whenever we display

the relation or any of its rows.

In the relational model, a database consists of one or more relations. The set of schemas for the relations of a

database is called a relational database schema, or just a database schema.

2.2.3. Tuples

The rows of a relation, other than the header row containing the attribute names, are called tuples. A tuple has

one component for each attribute of the relation. For instance, the first of the three tuples in table 1 has the

four components Die Hard: With a Vengeance, 1995, 131, action for attributes title, year, length, and genre,

respectively. When we wish to write a tuple in isolation, not as part of a relation, we normally use commas to

separate components, and we use parentheses to surround the tuple. For example,

(DieHard : With aV engeance, 1995, 131, action)

is the first tuple of table 1. Notice that when a tuple appears in isolation, the attributes do not appear, so some

indication of the relation to which the tuple belongs must be given. We shall always use the order in which the

attributes were listed in the relation schema.

2.2.4. Domains

The relational model requires that each component of each tuple be atomic; that is, it must be of some elementary

type such as integer or string. It is not permitted for a value to be a record structure, set, list, array, or any other

type that reasonably can have its values broken into smaller components. It is further assumed that associated

with each attribute of a relation is a domain, that is, a particular elementary type. The components of any tuple

of the relation must have, in each component, a value that belongs to the domain of the corresponding column.

For example, tuples of the Movies relation of table 1 must have a first component that is a string, second and third

components that are integers, and a fourth component whose value is a string.

It is possible to include the domain, or data type, for each attribute in a relation schema. We shall do so by

appending a colon and a type after attributes. For example, we could represent the schema for the Movies relation

as:

Movies(title : string, year : integer, length : integer, genre : string).

2.2.5. Representations of a Relation

Relations are sets of tuples, not lists of tuples. Thus the order in which the tuples of a relation are presented is

immaterial. For example, we can list the three tuples of table 1 in any of their six possible orders, and the relation

is ”the same” as in table 1. Moreover, we can reorder the attributes of the relation as we choose, without changing
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Year Genre Title Length

1995 action Die Hard: With a Vengeance 131

1994 crime Pulp Fiction 154

2005 adventure King Kong 187

Table 2: Different representation of the relation Movies.

the relation. However, when we reorder the relation schema, we must be careful to remember that the attributes

are column headers. Thus, when we change the order of the attributes, we also change the order of their columns.

When the columns move, the components of tuples change their order as well. The result is that each tuple has its

components permuted in the same way as the attributes are permuted.

For example, table 2 shows one of the many relations that could be obtained from relation shown at table 1 by

permuting rows and columns. These two relations are considered as different presentations of the same relation.

2.2.6. Relation Instances

A relation about movies is not static; rather, relations change over time. We expect to insert tuples for new movies,

as these appear. We also expect changes to existing tuples if we get revised or corrected information about a movie,

and perhaps deletion of tuples for movies that are expelled from the database for some reason.

It is less common for the schema of a relation to change. However, there are situations where we might want to

add or delete attributes. Schema changes, while possible in commercial database systems, can be very expensive,

because each of perhaps millions of tuples needs to be rewritten to add or delete components. Also, if we add

an attribute, it may be difficult or even impossible to generate appropriate values for the new component in the

existing tuples.

We shall call a set of tuples for a given relation an instance of that relation. For example, the three tuples shown

in table 1 form an instance of relation Movies. Presumably, the relation Movies has changed over time and will

continue to change over time. For instance, in 2004, Movies did not contain the tuple for King Kong. However, a

conventional database system maintains only one version of any relation: the set of tuples that are in the relation

”now”. This instance of the relation is called the current instance. Databases that maintain historical versions of

data as it existed in past times are called temporal databases.

2.2.7. Keys of Relations

There are many constraints on relations that the relational model allows us to place on database schemas. The

most fundamental type of constraints are the key constraints. A set of attributes forms a key for a relation if we do

not allow two tuples in a relation instance to have the same values in all the attributes of the key.

For example, we can declare that the relation Movies has a key consisting of the two attributes title and year. That

is, we do not believe there could ever be two movies that had both the same title and the same year. Notice that

title by itself does not form a key, since sometimes ”remakes” of a movie appear. For example, there are at least

three movies named King Kong, each made in a different year.

We indicate the attribute or attributes that form a key for a relation by underlining the key attribute(s). For instance,

the Movies relation could have its schema written as:

Movies(title, year, length, genre).

While we might be sure that title and year can serve as a key for Movies, many real-world databases use artificial

keys, doubting that it is safe to make any assumption about the values of attributes outside their control. For

example, companies generally assign employee ID’s to all employees, and these ID’s are carefully chosen to be

unique numbers. One purpose of these ID’s is to make sure that in the company database each employee can be
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distinguished from all others, even if there are several employees with the same name. Thus, the employee-ID

attribute can serve as a key for a relation about employees.

In US corporations, it is normal for every employee to have a Social-Security number. If the database has an

attribute that is the Social-Security number, then this attribute can also serve as a key for employees. There is

nothing wrong with there being several choices of key, as there would be for employees having both employee

ID’s and Social-Security numbers. These keys are then called equivalent keys, and one of them has to be chosen

and used. The chosen key is called the primary key of a relation.

2.2.8. Functional Dependencies

First, we need to define the notion of r-value. If we have a set of attributes R = {Ai|i = 1, . . . , k}, an r-value,

denoted by t[R] is a function that maps every attribute from R into a value from one record. Essentially, an r-value

is a tuple, but it can also be only a part of a tuple too.

Functional dependency is a type of constraint that generalizes the notion of key constraint. It is defined on the set

of relations and allows expression of inter relational constraints.

Expression of type f : X → Y , where X and Y are sets of attributes, is called a functional dependency. It can

be read that X functionally determines Y, and that Y functionally depends on X. I means that every element of

the domain of the attribute X is mapped to element from domain of Y. Another words, if a value for the set of

attributes X is given, then it uniquely determines a value for the set of attributes Y.

Formally, if a relation r over a set of attributes U is given, and X,Y ⊆ U , then a set of tuples of relation r satisfies

a functional dependency f : X → Y if for every two tuples u and v in r the following holds:

u[X] = v[X] =⇒ u[Y ] = v[Y ].

Functional dependencies are used to express constraints that could not be expressed by key constraints, especially

inter-relation constraints.

Closure of a set of functional dependencies F , denoted by F+ is a set of all functional dependencies from F and

those that can be derived from F using rules of inference. One set of rules of inference are Armstrong’s axioms

[1]. Let us assume that a set of functional dependencies F is defined over a set of attributes U , and that X , Y , Z
and W are subsets of U . Then the Armstrong’s axioms are the following

1. Reflexivity: if Y ⊆ X , then X → Y ,

2. Augmentation: if if X → Y and Z ⊆ W , then XW → Y Z,

3. Pseudo transitivity: if X → Y and YW → Z, then XW → Z.

Now we can give an alternative definition of a key constraint. A set of attributes X ⊆ R is a key of a relation

consisting of the set of attributes R and a set of functional dependencies F if and only if the following holds:

1. X → Y ⊆ F+,

2. (∀Y ⊂ X)(Y → R /∈ F+).

2.2.9. Referential integrity

The most important inter-relational constraint is a referential integrity. It is used to create links between tables.

Informally, for referential integrity to hold, any field in a table that is declared a foreign key can contain only

values from a parent table’s primary key. For instance, deleting a record that contains a value referred to by a

foreign key in another table would break referential integrity.
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PId LastName FirstName Address City

1 Smith John 5th Avenue 10 New York

2 Barnes Kate King’s Avenue 23 London

3 Brown Neil Pitt Street 20 London

Table 3: Example database table.

For example, let us expand our movies database model with another table that represents movie directors. We can

add a table that has three attributes - personal ID, first name and last name. Personal ID is a primary key. Now

we can make a link between table Movies and Directors by adding the attribute personal ID under name director

to the Movies table and demanding that this attribute has only values that already exist in the Directors table. This

type of constraint is called referential integrity. Attribute director is called a foreign key. Our database could then

be specified like this:

Movies(title, year, length, genre, director),

Directors(personal ID, first name, last name),

In addition, functional dependency personal ID → director has to hold. Moreover, there is a separate notation

for referential integrity constraint. In this case, we would write:

Movies[director] ⊆ Directors[personal ID].

It should be noted that a foreign key can contain more than one attribute if the primary key that it is drawn from

contains more than one attribute.

Formal definition is a bit more complex. Let r1 and r2 be two relations containing a set of attributes R1 and

R2 respectively. Let A1, . . . , An ∈ R1 and B1, . . . , Bn ∈ R2, and let B1, . . . , Bn be the key of relation r2.

Referential integrity r1[A1, . . . , An] ⊆ r2[B1, . . . , Bn] holds if and only if for every tuple t1 from r1 exists a tuple

t2 from r2 so that t1[Ak] = t2[Bk] for every k = {1, . . . , n}.

3. SQL

SQL is a standard language for accessing and manipulating databases. SQL stands for Structured Query Language.

It lets you access and manipulate databases. Although SQL is an ANSI (American National Standards Institute)

standard, there are many different versions of the SQL language. SQL can:

• execute queries against a database,

• retrieve data from a database,

• insert, update and delete records in a database,

• create new databases and tables. . .

Below is an example of a table called ”Persons”. The table contains three records (one for each person) and five

columns: PId, LastName, FirstName, Address and City.

Most of the actions we need to perform on a database are done with SQL statements. The following SQL statement

will select all the records in the ”Persons” table:

SELECT ∗ FROM P e r s o n s
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LastName FirstName

Smith John

Barnes Kate

Brown Neil

Table 4: Result-set.

SQL is not case sensitive. Some database systems require a semicolon at the end of each SQL statement. Semi-

colon is the standard way to separate each SQL statement in database systems that allow more than one SQL

statement to be executed in the same call to the server. SQL can be divided into two parts: The Data Manipulation

Language (DML) and the Data Definition Language (DDL).

Here is a list of query and update commands form the DML part of SQL:

• SELECT - extracts data from a database,

• UPDATE - updates data in a database,

• DELETE - deletes data from a database,

• INSERT INTO - inserts new data into a database.

The DDL part of SQL permits database tables to be created or deleted. It also define indexes (keys), specify links

between tables, and impose constraints between tables. The most important DDL statements in SQL are:

• CREATE DATABASE - creates a new database,

• ALTER DATABASE - modifies a database,

• CREATE TABLE - creates a new table,

• ALTER TABLE - modifies a table,

• DROP TABLE - deletes a table,

• CREATE INDEX - creates an index (search key),

• DROP INDEX - deletes an index.

The SELECT statement is used to select data from a database. The result is stored in a result table, called the

result-set. SQL SELECT statement has the following basic syntax:

SELECT column name ( s )

FROM t a b l e n a m e

Suppose we want to select the content of the columns named ”LastName” and ”FirstName” from the table 3. We

use the following SELECT statement:

SELECT LastName , F i r s tName FROM P e r s o n s

The result-set is shown at table 4:

If we use:

SELECT ∗ FROM P e r s o n s
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City

New York

London

Table 5: Result-set.

PId LastName FirstName Address City

2 Barnes Kate King’s Avenue 23 London

3 Brown Neil Pitt Street 20 London

Table 6: Result-set.

we will select all the columns from the ”Persons” table. The result-set will look just like the table 3.

In a table, some of the columns may contain duplicate values. This is not a problem, however, sometimes you

will want to list only the different (distinct) values in a table. The DISTINCT keyword can be used to return only

distinct (different) values. For example, if we want to select only the distinct values from the column named ”City”

from the table 3, we use the following SELECT statement:

SELECT DISTINCT C i t y FROM P e r s o n s

The result-set is shown at table 5.

The WHERE clause is used to extract only those records that fulfill a specified criterion. It has the following

syntax:

SELECT column name ( s )

FROM t a b l e n a m e

WHERE column name o p e r a t o r v a l u e

If we want to select only the persons living in the city ”London” from the table 3, we use the following SELECT

statement:

SELECT ∗ FROM P e r s o n s

WHERE C i t y = ’ London ’

The result-set is shown at table 6.

SQL uses single quotes around text values. Most database systems will also accept double quotes. Although,

numeric values should not be enclosed in quotes. For text values:

This is correct:

SELECT ∗ FROM P e r s o n s WHERE Fi r s tName = ’ John ’

This is wrong:

SELECT ∗ FROM P e r s o n s WHERE Fi r s tName =John

For numeric values: This is correct:

SELECT ∗ FROM P e r s o n s WHERE Year =1965

This is wrong:

SELECT ∗ FROM P e r s o n s WHERE Year = ’1965 ’

Table 7 shows operators that can be used with the WHERE clause.
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Operator Description

= Equal

<> Not equal

> Greater than

< Less than

>= Greater than or equal

<= Less than or equal

BETWEEN Between an inclusive range

LIKE Search for a pattern

IN Belongs to a set

Table 7: WHERE operators.

PId LastName FirstName Address City

1 Smith John 5th Avenue 10 New York

3 Brown Neil Pitt Street 20 London

Table 8: Result-set.

The AND and OR operators are used to filter records based on more than one condition. The AND operator

displays a record if both the first condition and the second condition is true. The OR operator displays a record if

either the first condition or the second condition is true. If we wish to select only the persons with the first name

equal to ”John” AND the last name equal to ”Smith”, we use the following SELECT statement:

SELECT ∗ FROM P e r s o n s

WHERE Fi r s tName = ’ John ’ AND LastName = ’ Smith ’

The result-set will contain only one record - (1, Smith, John, 5th Avenue 10, New York).

Similarly, if we want to select only the persons with the first name equal to ”John” OR the first name equal to

”Neil”, we use the following SELECT statement:

SELECT ∗ FROM P e r s o n s

WHERE Fi r s tName = ’ John ’ OR Fi r s tName = ’ Nei l ’

The result-set is shown at table 8.

One can also combine AND and OR and use parenthesis to form complex expressions. In addition, operator NOT

can be used to form any kind of logic expression.

The ORDER BY keyword is used to sort the result-set by specified columns. It sorts the records in ascending order

by default, but if we want to sort the records in a descending order, we can use the DESC keyword. If we wish to

select all the persons from the table 3 and to sort the persons by their last name, we use the following SELECT

statement:

SELECT ∗ FROM P e r s o n s

ORDER BY LastName DESC

The result-set is shown at table 9.

The INSERT INTO statement is used to insert new records in a table. It is possible to write the INSERT INTO

statement in two forms. The first form doesn’t specify the column names where the data will be inserted, only

their values:

INSERT INTO t a b l e n a m e

VALUES ( va lue1 , va lue2 , va lue3 , . . . )

The second form specifies both the column names and the values to be inserted:
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PId LastName FirstName Address City

1 Smith John 5th Avenue 10 New York

3 Brown Neil Pitt Street 20 London

2 Barnes Kate King’s Avenue 23 London

Table 9: Result-set.

PId LastName FirstName Address City

1 Smith John 5th Avenue 10 New York

2 Barnes Kate King’s Avenue 23 London

3 Brown Neil Pitt Street 20 London

4 Jackson Peter Agnes Drive 17 Glasgow

Table 10: Example database table with added row.

INSERT INTO t a b l e n a m e ( column1 , column2 , column3 , . . . )

VALUES ( va lue1 , va lue2 , va lue3 , . . . )

For example, if we use the following SQL statement:

INSERT INTO P e r s o n s

VALUES ( 4 , ’ Jackson ’ , ’ P e t e r ’ , ’ Agnes Dr ive 17 ’ , ’ Glasgow ’ )

The ”Persons” table will have another row, as shown at table 10:

The UPDATE statement is used to update existing records in a table. It has the following syntax:

UPDATE t a b l e n a m e

SET column1= va lue , column2= va lue2 , . . .

WHERE c o n d i t i o n

We should first notice the WHERE clause in the UPDATE syntax. The WHERE clause specifies which record or

records should be updated. If we omit the WHERE clause, all records will be updated! For example, if we wish

to update the person Peter Jackson with alternate address, we can use the following SQL statement:

UPDATE P e r s o n s

SET Address = ’ Alb ion S t r e e t 67 ’

WHERE LastName = ’ Jackson ’ AND Fi r s tName = ’ P e t e r ’

After the execution of this statement, content of the ”Persons” table is shown at table 11.

The DELETE statement is used to delete rows in a table. It has the following syntax:

DELETE FROM t a b l e n a m e

WHERE c o n d i t i o n

Similarly as with the UPDATE statement, the WHERE clause specifies which record or records should be deleted.

Again, if it is omitted all records will be deleted! For example, consider the following DELETE statement:

PId LastName FirstName Address City

1 Smith John 5th Avenue 10 New York

2 Barnes Kate King’s Avenue 23 London

3 Brown Neil Pitt Street 20 London

4 Jackson Peter Albion Street 67 Glasgow

Table 11: Example database table after updates.
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DELETE FROM P e r s o n s

WHERE LastName = ’ Jackson ’ AND Fi r s tName = ’ P e t e r ’

Clearly, after the execution, the fourth record will be deleted. So, the content of the “Persons” table will be the

same as it was at the start, shown at table 3.

4. Normalization

Normalization is a design technique that is widely used as a guide in designing relational databases. It is essentially

a two step process that puts data into tabular form by removing repeating groups and then removes duplicates from

relational tables.

Normalization theory is based on the concepts of normal forms. A database is said to be in a particular normal

form if it satisfied a certain set of constraints. There are currently at least eight normal forms that have been

defined. In this section, we will cover the first three normal forms that were defined by the creator of the relational

model, E. F. Codd [4]. Codd and Raymond Boyce defined the Boyce-Codd Normal Form (BCNF) in 1974 [5].

Higher normal forms like fourth [8], fifth [9] and domain/key normal form [10] were defined by other theorists in

subsequent years. The most recent is the Sixth normal form (6NF) introduced by Chris Date, Hugh Darwen, and

Nikos Lorentzos in 2002 [6].

4.1. Basic Concepts

The goal of normalization is to create a set of relational tables that are free of redundant data and that can be

consistently and correctly modified. This means that all tables in a relational database should be in the third

normal form (3NF). A relational table is in 3NF if and only if all non-key columns are:

1. mutually independent and

2. fully dependent on the primary key.

Mutual independence means that no non-key column is dependent upon any combination of the other columns.

The first two normal forms are intermediate steps to achieve the goal of having all tables in 3NF. In order to better

understand the 2NF and higher forms, it is necessary to understand the concepts of functional dependencies and

lossless decomposition.

The concept of functional dependencies is the basis for the first three normal forms. As explained earlier, a column,

Y, of the relational table R is said to be functionally dependent upon column X of R if and only if each value of X

in R is associated with precisely one value of Y at any given time. X and Y may be composite. Saying that column

Y is functionally dependent upon X is the same as saying the values of column X identify the values of column Y.

If column X is a primary key, then all columns in the relational table R must be functionally dependent upon X.

Full functional dependence applies to tables with composite keys. Column Y in relational table R is fully functional

on X of R if it is functionally dependent on X and not functionally dependent upon any subset of X. Full functional

dependence means that when a primary key is composite, made of two or more columns, then the other columns

must be identified by the entire key and not just some of the columns that make up the key.

Simply stated, normalization is the process of removing redundant data from relational tables by decomposing

(splitting) a relational table into smaller tables by projection. The goal is to have only primary keys on the left

hand side of a functional dependency. In order to be correct, decomposition must be lossless. That is, the new

tables can be recombined by a natural join to recreate the original table without creating any spurious or redundant

data.

Here is some sample data used to illustrate the process of normalization. A company obtains parts from a number

of suppliers. Each supplier is located in one city. A city can have more than one supplier located there and each
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s# status city p# qty

s1 20 London p1 300

s1 20 London p2 200

s1 20 London p3 400

s1 20 London p4 200

s1 20 London p5 100

s1 20 London p6 100

s2 10 Paris p1 300

s2 10 Paris p2 400

s3 10 Paris p2 200

s4 20 London p2 200

s4 20 London p4 300

s4 20 London p5 400

Table 12: Table in 1NF.

city has a status code associated with it. Each supplier may provide many parts. The company creates a simple

relational table to store this information that can be expressed in relational notation as:

FIRST (s#, status, city, p#, qty),

where:

• s# is a supplier identifcation number,

• status is a status code assigned to city,

• city is a name of city where supplier is located,

• p# is a part number of part supplied and

• qty is a quantity of parts supplied to date.

In order to uniquely associate quantity supplied (qty) with part (p#) and supplier (s#), a composite primary key

composed of s# and p# is used.

4.2. First Normal Form

A relational table, by definition, is in first normal form. All values of the columns are atomic. That is, they contain

no repeating values. Table 12 shows the table FIRST in 1NF.

Although the table FIRST is in 1NF it contains redundant data. For example, information about the supplier’s

location and the location’s status have to be repeated for every part supplied. Redundancy causes what are called

update anomalies. Update anomalies are problems that arise when information is inserted, deleted, or updated.

For example, the following anomalies could occur in FIRST:

1. INSERT. The fact that a certain supplier (s5) is located in a particular city (Athens) cannot be added until

they supplied a part.

2. DELETE. If a row is deleted, then not only is the information about quantity and part lost but also informa-

tion about the supplier.

3. UPDATE. If supplier s1 moved from London to New York, then six rows would have to be updated with

this new information.
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s# status city

s1 20 London

s2 10 Paris

s3 10 Paris

s4 20 London

s5 30 Athens

Table 13: SUPPLIER table.

4.3. Second Normal Form

The definition of second normal form states that only tables with composite primary keys can be in 1NF but not in

2NF.

A relational table is in second normal form 2NF if it is in 1NF and every non-key column is fully dependent upon

the primary key. That is, every non-key column must be dependent upon the entire primary key. FIRST is in 1NF

but not in 2NF because status and city are functionally dependent only on the column s# of the composite key (s#,

p#). This can be illustrated by listing the functional dependencies in the table:

s# → (city, status),

city → status,

(s#, p#) → qty.

If we wanted to transform the table FIRST from 1NF to 2NF we could:

1. Identify any determinants other than the composite key, and the columns they determine.

2. Create and name a new table for each determinant and the unique columns it determines.

3. Move the determined columns from the original table to the new table.

4. The determinate becomes the primary key of the new table.

5. Delete the columns we just moved from the original table except for the determinate which will serve as a

foreign key.

The original table may be renamed to maintain semantic meaning. To transform FIRST into 2NF we move the

columns s#, status, and city to a new table called SUPPLIER. The column s# becomes the primary key of this new

table. The results are shown at tables 13 and 14.

Tables in 2NF but not in 3NF still contain modification anomalies. In the example of SUPPLIER, they are:

1. INSERT. The fact that a particular city has a certain status (Rome has a status of 50) cannot be inserted until

there is a supplier in the city.

2. DELETE. Deleting any row in SUPPLIER destroys the status information about the city as well as the

association between supplier and city.

4.4. Third Normal Form

The third normal form requires that all columns in a database are dependent only upon the primary key. A more

formal definition is:
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s# p# qty

s1 p1 300

s1 p2 200

s1 p3 400

s1 p4 200

s1 p5 100

s1 p6 100

s2 p1 300

s2 p2 400

s3 p2 200

s4 p2 200

s4 p4 300

s4 p5 400

Table 14: PARTS table.

A database is in the third normal form (3NF) if it is already in 2NF and every non-key column is non transitively

dependent upon its primary key. In other words, all non-key attributes are functionally dependent only upon the

primary key.

Table PARTS is already in 3NF. The non-key column, qty, is fully dependent upon the primary key (s#, p#).

SUPPLIER is in 2NF but not in 3NF because it contains a transitive dependency. A transitive dependency occurs

when a non-key column that is a determinant of the primary key is the determinate of other columns. The concept

of a transitive dependency can be illustrated by showing the functional dependencies in SUPPLIER:

SUPPLIER.s# → SUPPLIER.status,

SUPPLIER.s# → SUPPLIER.city,

SUPPLIER.city → SUPPLIER.status.

Note that SUPPLIER.status is determined both by the primary key s# and the non-key column city. The process

of transforming a table into 3NF is the following:

1. Identify any determinants, other than primary key, and the columns they determine.

2. Create and name a new table for each determinant and the unique columns it determines.

3. Move the determined columns from the original table to the new table.

4. The determinate becomes the primary key of the new table.

5. Delete the columns you just moved from the original table except for the determinate which will serve as a

foreign key.

The original table may be renamed to maintain semantic meaning.

To transform SUPPLIER into 3NF, we create a new table called CITY STATUS and move the columns city and

status into it. Status is deleted from the original table, city is left behind to serve as a foreign key to CITY STATUS,

and the original table is renamed to SUPPLIER CITY to reflect its semantic meaning. The results of putting the

original table into 3NF has created three tables. These can be represented as:

PARTS(s#, p#, qty)

SUPPLIER CITY (s#, city)

CITY STATUS(city, status)

PARTS[s#] ⊆ SUPPLIER CITY [s#]

SUPPLIER CITY [s#] ⊆ CITY STATUS[city].
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court start time end time rate type

1 09:30 10:30 SAVER

1 11:00 12:00 SAVER

1 14:00 15:30 STANDARD

2 10:00 11:30 PREMIUM-B

2 11:30 13:30 PREMIUM-B

2 15:00 16:30 PREMIUM-A

Table 15: Today’s court bookings table.

The advantages to having relational tables in 3NF is that it eliminates redundant data which in turn saves space

and reduces manipulation anomalies. For example, the improvements to our sample database are:

1. INSERT. Facts about the status of a city, Rome has a status of 50, can be added even though there is not

supplier in that city. Likewise, facts about new suppliers can be added even though they have not yet supplied

parts.

2. DELETE. Information about parts supplied can be deleted without destroying information about a supplier

or a city.

3. UPDATE. Changing the location of a supplier or the status of a city requires modifying only one row.

4.5. Boyce-Codd Normal Form

The Boyce-Codd normal form is a slightly stronger version of the third normal form. A table is in Boyce-Codd

normal form if and only if for every one of its nontrivial dependencies X → Y , X is a superkey - that is, X is

either a candidate key or a superset thereof. BCNF was developed in 1974 by Raymond Boyce and Edgar Codd to

address certain types of anomaly not dealt with by 3NF as originally defined [5].

Only in rare cases does a 3NF table not meet the requirements of BCNF. A 3NF table which does not have multiple

overlapping candidate keys is guaranteed to be in BCNF [16]. Depending on what its functional dependencies are,

a 3NF table with two or more overlapping candidate keys may or may not be in BCNF. An example of a 3NF table

that does not meet BCNF is shown in table 15.

Each row in the table represents a court booking at a tennis club that has one hard court (Court 1) and one grass

court (Court 2). A booking is defined by its court and the period for which the court is reserved. Additionally,

each booking has a rate type associated with it. There are four distinct rate types:

• SAVER, for Court 1 bookings made by members,

• STANDARD, for Court 1 bookings made by non-members,

• PREMIUM-A, for Court 2 bookings made by members and

• PREMIUM-B, for Court 2 bookings made by non-members.

The table’s candidate keys are: {court, start time}, court, end time}, {rate type, start time}, {rate type, end time}.

Recall that 2NF prohibits partial functional dependencies of non-prime attributes on candidate keys, and that

3NF prohibits transitive functional dependencies of non-prime attributes on candidate keys. In the Today’s Court

Bookings table, there are no non-prime attributes: that is, all attributes belong to candidate keys. Therefore the

table adheres to both 2NF and 3NF. The table does not adhere to BCNF. This is because of the dependency

rate type → court, in which the determining attribute (rate type) is neither a candidate key nor a superset of a

candidate key.
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4.6. Normalization algorithms

There are two basic methods for normalization - decomposition and synthesis. There are many variations to these

methods, but the ideas are the same. Decomposition method is based on progressive decomposition of database

schema consisting of all attributes in a database in accordance to constraint given by functional dependencies.

Decomposition progresses until a database in desired normal form is obtained. The best normal form that is

guaranteed by the algorithm is the Boyce-Codd normal form.

The synthesis method, on the other hand, is based on a completely different approach. It is realized by using

functional dependencies only. The input is again, a set of all attributes of a database, together with a set of func-

tional dependencies. The output is a database at least in third normal form. Tables are synthesized from functional

dependencies. The basic idea is based on reduction and elimination of redundant functional dependencies from

the initial set.

Detailed description of these algorithms is way beyond the scope of this text. That information can be found in,

for instance [13, 2]. It is important to note that the decomposition method guarantees better normal form than

the synthesis method. It guarantees that the resulting database will be in the Boyce-Codd normal form, while

the synthesis algorithm takes us only to the third normal form, in the worst case. This is an advantage of the

decomposition method. On the other hand, the decomposition method does not guarantee the conservation of

initial set of functional dependencies. It is possible that some nontrivial functional dependencies are lost in the

process. Important data about the database structure can be lost with them. On the other hand, the synthesis

method guarantees the conservation of the initial set of functional dependencies. There is another important

advantage of the synthesis method. Its complexity is polynomial, while the complexity of the decomposition

method is exponential. This gives the synthesis method decisive advantage in the case of large databases.

The fact that the method of synthesis does not necessarily gives a database in BCNF has small significance for

practical usage. In practice, databases in 3NF and not in BCNF are rare. On the other hand, conservation of initial

set of functional dependencies is important because it guarantees that the resulting database content will be in

accordance to constraints in the real world expressed by functional dependencies.

Normalization is an important step in database design methodology. However, manual use of normalization al-

gorithms can be conducted only with small and simple databases. Automatization of these methods is the only

solution. Since the method of synthesis has polynomial complexity, in difference to exponential complexity of the

method of decomposition, it is generally a better choice.
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