
Computer system architectureComputer system architecture

ChaptChapt 4. Register transfer & 4. Register transfer &

MicrooperationsMicrooperations

KyuheonKim@khu.ac.krKyuheonKim@khu.ac.kr

RmRm: 416: 416

mailto:KyuheonKim@khu.ac.kr

REGI STER TRANSFER AND MI CROOPERATI ONSREGI STER TRANSFER AND MI CROOPERATI ONS

• Register Transfer Language

• Register Transfer

• Bus and Memory Transfers

• Arithmetic Microoperations

• Logic Microoperations

• Shift Microoperations

• Arithmetic Logic Shift Unit

SI MPLE DI GI TAL SYSTEMSSI MPLE DI GI TAL SYSTEMS

Combinational and sequential circuits (learned in Chapters 1 and 2)

can be used to create simple digital systems.

These are the low-level building blocks of a digital computer.

Simple digital systems are frequently characterized in terms of

the registers they contain, and

the operations that they perform.

the control that initiates the sequence of microoperations

Typically,

What operations are performed on the data in the registers

What information is passed between registers

MI CROOPERATI ONS (1)MI CROOPERATI ONS (1)

Register Transfer Language

The operations on the data in registers are called

microoperations.

The functions built into registers are examples of

microoperations

Shift

Load

Clear

I ncrement

…

MI CROOPERATI ON (2)MI CROOPERATI ON (2)

An elementary operation performed (during
one clock pulse), on the information stored
in one or more registers

R ← f(R, R)

f: shift, load, clear, increment, add, subtract, complement,

and, or, xor, …

ALU
(f)

Registers
(R)

1 clock cycle

Register Transfer Language

REGI STER TRANSFER LANGUAGEREGI STER TRANSFER LANGUAGE

Register Transfer Language

Rather than specifying a digital system in words, a specific

notation is used, register transfer language

For any function of the computer, the register transfer

language can be used to describe the (sequence of)

microoperations

Register transfer language

A symbolic language

A convenient tool for describing the internal organization of

digital computers

Can also be used to facilitate the design process of digital

systems.

DESI GNATI ON OF REGI STERSDESI GNATI ON OF REGI STERS

Register Transfer Language

Registers are designated by capital letters, sometimes followed

by numbers (e.g., A, R13, I R)

Often the names indicate function:

MAR - memory address register

PC - program counter

I R - instruction register

Registers and their contents can be viewed and represented in

various ways

A register can be viewed as a single entity:

Registers may also be represented showing the bits of data they

contain

MAR

DESI GNATI ON OF REGI STERSDESI GNATI ON OF REGI STERS

Register Transfer Language

R1
Register

Numbering of bits

Showing individual bits

Subfields

PC(H) PC(L)
15 8 7 0

- a register

- portion of a register

- a bit of a register

• Designation of a register

• Common ways of drawing the block diagram of a register

7 6 5 4 3 2 1 0

R2
15 0

REGI STER TRANSFERREGI STER TRANSFER

Register Transfer

Copying the contents of one register to another is a register

transfer

A register transfer is indicated as

R2 ← R1

I n this case the contents of register R2 are copied (loaded)

from register R1

A simultaneous transfer of all bits from the source R1 to the

destination register R2, during one clock pulse

Note that this is a non-destructive; i.e. the contents of R1 are

not altered by copying (loading) them to R2

REGI STER TRANSFERREGI STER TRANSFER

Register Transfer

A register transfer such as

R3 ← R5

I mplies that the digital system has

the data lines from the source register (R5) to the destination

register (R3)

Parallel load in the destination register (R3)

Control lines to perform the action

CONTROL FUNCTI ONSCONTROL FUNCTI ONS

Register Transfer

Often actions need to only occur if a certain condition is true

This is similar to an “if” statement in a programming language

I n digital systems, this is often done via a control signal, called a

control function

I f the signal is 1, the action takes place

This is represented as:

P: R2 ← R1

Which means “if P = 1, then load the contents of register R1 into

register R2”, i.e., if (P = 1) then (R2 ← R1)

HARDWARE I MPLEMENTATI ON OF CONTROLLED TRANSFERSHARDWARE I MPLEMENTATI ON OF CONTROLLED TRANSFERS

Implementation of controlled transfer

P: R2 ← R1

Block diagram

Timing diagram

Clock

Register Transfer

Transfer occurs here

R2

R1

Control
Circuit

LoadP

n

Clock

Load

t t+1

• The same clock controls the circuits that generate the control function
and the destination register

• Registers are assumed to use positive-edge-triggered flip-flops

SI MULTANEOUS OPERATI ONSSI MULTANEOUS OPERATI ONS

Register Transfer

I f two or more operations are to occur simultaneously,

they are separated with commas

P: R3 ← R5, MAR ← I R

Here, if the control function P = 1, load the contents

of R5 into R3, and at the same time (clock) , load the

contents of register I R into register MAR

BASI C SYMBOLS FOR REGI STER TRANSFERSBASI C SYMBOLS FOR REGI STER TRANSFERS

Capital letters Denotes a register MAR, R2

& numerals

Parentheses () Denotes a part of a register R2(0-7), R2(L)

Arrow ← Denotes transfer of information R2 ← R1

Colon : Denotes termination of control function P:

Comma , Separates two micro-operations A ← B, B ← A

Symbols Description Examples

Register Transfer

CONNECTI NG REGI STRSCONNECTI NG REGI STRS

Register Transfer

I n a digital system with many registers, it is impractical to

have data and control lines to directly allow each register to

be loaded with the contents of every possible other registers

To completely connect n registers n(n-1) lines

O(n2) cost

This is not a realistic approach to use in a large digital system

I nstead, take a different approach

Have one centralized set of circuits for data transfer – the

bus

Have control circuits to select which register is the source,

and which is the destination

BUS AND BUS TRANSFERBUS AND BUS TRANSFER

Bus is a path(of a group of wires) over which information is

transferred, from any of several sources to any of several destinations.

From a register to bus: BUS ← R

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

Register A Register B Register C Register D

B C D1 1 1

4 x1
MUX

B C D2 2 2

4 x1
MUX

B C D3 3 3

4 x1
MUX

B C D4 4 4

4 x1
MUX

4-line bus

x

y
select

0 0 0 0

Register A Register B Register C Register D

Bus lines

Bus and Memory Transfers

TRANSFER FROM BUS TO A DESTI NATI ON REGI STERTRANSFER FROM BUS TO A DESTI NATI ON REGI STER

Three-State Bus Buffers

Bus line with three-state buffers

Reg. R0 Reg. R1 Reg. R2 Reg. R3

Bus lines

2 x 4

Decoder

Load

D0 D1 D2 D3z

w
Select E (enable)

Output Y=A if C=1
High-impedence if C=0

Normal input A

Control input C

Select

Enable

0
1
2
3

S0

S1

A0

B0
C0

D0

Bus line for bit 0

Bus and Memory Transfers

BUS TRANSFER I N RTLBUS TRANSFER I N RTL

Bus and Memory Transfers

Depending on whether the bus is to be mentioned explicitly

or not, register transfer can be indicated as either

or

I n the former case the bus is implicit, but in the latter, it is

explicitly indicated

R2 ← R1

BUS ← R1, R2 ← BUS

MEMORY (RAM)MEMORY (RAM)

Bus and Memory Transfers

Memory (RAM) can be thought as a sequential circuits

containing some number of registers

These registers hold the words of memory

Each of the r registers is indicated by an address

These addresses range from 0 to r-1

Each register (word) can hold n bits of data

Assume the RAM contains r = 2k words. I t needs the

following

n data input lines

n data output lines

k address lines

A Read control line

A Write control line

data input lines

data output lines

n

n

k

address lines

Read

Write

RAM
unit

MEMORY TRANSFERMEMORY TRANSFER

Bus and Memory Transfers

Collectively, the memory is viewed at the register level as a

device, M.

Since it contains multiple locations, we must specify which

address in memory we will be using

This is done by indexing memory references

Memory is usually accessed in computer systems by putting

the desired address in a special register, the Memory Address

Register (MAR, or AR)

When memory is accessed, the contents of the MAR get sent

to the memory unit’s address lines

AR
Memory

unit

Read

Write

Data inData out

M

MEMORY READMEMORY READ

Bus and Memory Transfers

To read a value from a location in memory and load it into a

register, the register transfer language notation looks like

this:

This causes the following to occur

The contents of the MAR get sent to the memory address lines

A Read (= 1) gets sent to the memory unit

The contents of the specified address are put on the memory’s

output data lines

These get sent over the bus to be loaded into register R1

R1 ← M[MAR]

MEMORY WRI TEMEMORY WRI TE

Bus and Memory Transfers

To write a value from a register to a location in memory

looks like this in register transfer language:

This causes the following to occur

The contents of the MAR get sent to the memory address lines

A Write (= 1) gets sent to the memory unit

The values in register R1 get sent over the bus to the data input

lines of the memory

The values get loaded into the specified address in the memory

M[MAR] ← R1

SUMMARY OF R. TRANSFER MI CROOPERATI ONSSUMMARY OF R. TRANSFER MI CROOPERATI ONS

Bus and Memory Transfers

A ← B Transfer content of reg. B into reg. A

AR ← DR(AD) Transfer content of AD portion of reg. DR into reg. AR

A ← constant Transfer a binary constant into reg. A

ABUS ← R1, Transfer content of R1 into bus A and, at the same time,

R2 ← ABUS transfer content of bus A into R2

AR Address register

DR Data register

M[R] Memory word specified by reg. R

M Equivalent to M[AR]

DR ← M Memory read operation: transfers content of

memory word specified by AR into DR

M ← DR Memory write operation: transfers content of

DR into memory word specified by AR

MI CROOPERATI ONSMI CROOPERATI ONS

• Computer system microoperations are of four types:

- Register transfer microoperations

- Arithmetic microoperations

- Logic microoperations

- Shift microoperations

Arithmetic Microoperations

ARI THMETI C MI CROOPERATI ONSARI THMETI C MI CROOPERATI ONS

Summary of Typical Arithmetic Micro-Operations

R3 ← R1 + R2 Contents of R1 plus R2 transferred to R3

R3 ← R1 - R2 Contents of R1 minus R2 transferred to R3

R2 ← R2’ Complement the contents of R2

R2 ← R2’+ 1 2's complement the contents of R2 (negate)

R3 ← R1 + R2’+ 1 subtraction

R1 ← R1 + 1 Increment

R1 ← R1 - 1 Decrement

Arithmetic Microoperations

The basic arithmetic microoperations are
Addition
Subtraction
I ncrement
Decrement

The additional arithmetic microoperations are
Add with carry
Subtract with borrow
Transfer/ Load
etc. …

BI NARY ADDER / SUBTRACTOR / I NCREMENTERBI NARY ADDER / SUBTRACTOR / I NCREMENTER

FA

B0 A0

S0

C0FA

B1 A1

S1

C1FA

B2 A2

S2

C2FA

B3 A3

S3

C3

C4

Binary Adder-Subtractor

FA

B0 A0

S0

C0C1FA

B1 A1

S1

C2FA

B2 A2

S2

C3FA

B3 A3

S3C4

M

Binary Incrementer

HA

x y

C S

A0 1

S0

HA

x y

C S

A1

S1

HA

x y

C S

A2

S2

HA

x y

C S

A3

S3C4

Binary Adder

Arithmetic Microoperations

ARI THMETI C CI RCUI TARI THMETI C CI RCUI T

S1
S0
0
1
2
3

4x1
MUX

X0

Y0

C0

C1

D0FA

S1
S0
0
1
2
3

4x1
MUX

X1

Y1

C1

C2

D1FA

S1
S0
0
1
2
3

4x1
MUX

X2

Y2

C2

C3

D2FA

S1
S0
0
1
2
3

4x1
MUX

X3

Y3

C3

C4

D3FA

Cout

A0

B0

A1

B1

A2

B2

A3

B3

0 1

S0
S1
Cin

S1 S0 Cin Y Output Microoperation

0 0 0 B D = A + B Add

0 0 1 B D = A + B + 1 Add with carry

0 1 0 B’ D = A + B’ Subtract with borrow

0 1 1 B’ D = A + B’+ 1 Subtract

1 0 0 0 D = A Transfer A

1 0 1 0 D = A + 1 Increment A

1 1 0 1 D = A - 1 Decrement A

1 1 1 1 D = A Transfer A

Arithmetic Microoperations

LOGI C MI CROOPERATI ONSLOGI C MI CROOPERATI ONS

0 0 F = A ∧ B AND

0 1 F = A ∨ B OR

1 0 F = A ⊕ B XOR

1 1 F = A’ Complement

S1 S0 Output μ-operation

Function table

Logic Microoperations

B

A

S

S

F

1

0

i

i

i
0

1

2

3

4 X 1
MUX

Select

SHI FT MI CROOPERATI ONSSHI FT MI CROOPERATI ONS

Shift Microoperations

There are three types of shifts

Logical shift

Circular shift

Arithmetic shift

What differentiates them is the information that goes into

the serial input

Serial
input

• A right shift operation

• A left shift operation Serial
input

LOGI CAL SHI FTLOGI CAL SHI FT

Shift Microoperations

I n a logical shift the serial input to the shift is a 0.

A right logical shift operation:

A left logical shift operation:

I n a Register Transfer Language, the following notation is used

shl for a logical shift left

shr for a logical shift right

Examples:

R2 ← shr R2

R3 ← shl R3

0

0

CI RCULAR SHI FTCI RCULAR SHI FT

Shift Microoperations

I n a circular shift the serial input is the bit that is shifted out of
the other end of the register.

A right circular shift operation:

A left circular shift operation:

I n a RTL, the following notation is used
cil for a circular shift left
cir for a circular shift right
Examples:

R2 ← cir R2
R3 ← cil R3

ARI THMETI C SHI FTARI THMETI C SHI FT

Shift Microoperations

An arithmetic shift is meant for signed binary numbers (integer)

An arithmetic left shift multiplies a signed number by two

An arithmetic right shift divides a signed number by two

The main distinction of an arithmetic shift is that it must keep

the sign of the number the same as it performs the

multiplication or division

A right arithmetic shift operation:

A left arithmetic shift operation:
0

sign
bit

sign
bit

ARI THMETI C SHI FTARI THMETI C SHI FT

Shift Microoperations

An left arithmetic shift operation must be checked for the

overflow
0

V

sign
bit

Before the shift, if the leftmost two
bits differ, the shift will result in an
overflow

I n a RTL, the following notation is used
ashl for an arithmetic shift left
ashr for an arithmetic shift right
Examples:

R2 ← ashr R2
R3 ← ashl R3

HARDWARE I MPLEMENTATI ON OF SHI FT MI CROOPERATI ONSHARDWARE I MPLEMENTATI ON OF SHI FT MI CROOPERATI ONS

Shift Microoperations

S

0
1

H0MUX

S

0
1

H1MUX

S

0
1

H2MUX

S

0
1

H3MUX

Select
0 for shift right (down)
1 for shift left (up)Serial

input (IR)

A0

A1

A2

A3

Serial
input (IL)

ARI THMETI C LOGI C SHI FT UNI TARI THMETI C LOGI C SHI FT UNI T

S3 S2 S1 S0 Cin Operation Function
0 0 0 0 0 F = A Transfer A
0 0 0 0 1 F = A + 1 Increment A
0 0 0 1 0 F = A + B Addition
0 0 0 1 1 F = A + B + 1 Add with carry
0 0 1 0 0 F = A + B’ Subtract with borrow
0 0 1 0 1 F = A + B’+ 1 Subtraction
0 0 1 1 0 F = A - 1 Decrement A
0 0 1 1 1 F = A TransferA
0 1 0 0 X F = A ∧ B AND
0 1 0 1 X F = A ∨ B OR
0 1 1 0 X F = A ⊕ B XOR
0 1 1 1 X F = A’ Complement A
1 0 X X X F = shr A Shift right A into F
1 1 X X X F = shl A Shift left A into F

Shift Microoperations

Arithmetic
Circuit

Logic
Circuit

C

C 4 x 1
MUX

Select

0
1
2
3

F

S3
S2
S1
S0

B
A

i

A

D

A

E

shr
shl

i+1 i

i
i

i+1
i-1

i

i

	Computer system architecture�Chapt 4. Register transfer & Microoperations
	REGISTER TRANSFER AND MICROOPERATIONS
	SIMPLE DIGITAL SYSTEMS
	MICROOPERATIONS (1)
	MICROOPERATION (2)
	REGISTER TRANSFER LANGUAGE
	DESIGNATION OF REGISTERS
	DESIGNATION OF REGISTERS
	REGISTER TRANSFER
	REGISTER TRANSFER
	CONTROL FUNCTIONS
	HARDWARE IMPLEMENTATION OF CONTROLLED TRANSFERS
	SIMULTANEOUS OPERATIONS
	BASIC SYMBOLS FOR REGISTER TRANSFERS
	CONNECTING REGISTRS
	BUS AND BUS TRANSFER
	TRANSFER FROM BUS TO A DESTINATION REGISTER
	BUS TRANSFER IN RTL
	MEMORY (RAM)
	MEMORY TRANSFER
	MEMORY READ
	MEMORY WRITE
	SUMMARY OF R. TRANSFER MICROOPERATIONS
	MICROOPERATIONS
	ARITHMETIC MICROOPERATIONS
	BINARY ADDER / SUBTRACTOR / INCREMENTER
	ARITHMETIC CIRCUIT
	LOGIC MICROOPERATIONS
	SHIFT MICROOPERATIONS
	LOGICAL SHIFT
	CIRCULAR SHIFT
	ARITHMETIC SHIFT
	ARITHMETIC SHIFT
	HARDWARE IMPLEMENTATION OF SHIFT MICROOPERATIONS
	ARITHMETIC LOGIC SHIFT UNIT

