
Computer Architecture

MJ Rutter
mjr19@cam.ac.uk

Lent 2003

Bibliography

Computer Architecture, A Qualitative Approach, 3rd Ed.,

Hennessy, JL and Patterson, DA, pub. Morgan Kaufmann, £37.

Operating Systems, Internals & Design Principles, 3rd Ed.,

Stallings, W, pub. Prentice Hall, £30.

Both are thick (1000 pages and 800 pages respectively), detailed,

and quite technical. Both are pleasantly up-to-date.

Typeset by FoilTEX c©2003 MJ Rutter

1

Contents

History 3

The CPU 9

instructions . 16

performance measures . 32

integers . 39

Floating Point 51

Memory 76

technologies . 77

caches . 91

Memory Management 134

CPU Families 164

Video Hardware 180

Parallel Computers 189

multitasking . 189

parallel computers . 194

Permanent Storage 222

disk drives . 223

filing systems . 229

tape drives . 266

Practical Programming 269

libraries . 270

optimisation . 278

the pitfalls of F90 . 303

Index 312

2

History

3

History: to 1970

1951 Ferranti Mk I: first commercial computer

UNIVAC I: memory with parity

1953 EDSAC I ‘heavily used’ for science (Cambridge)

1954 Fortran I (IBM)

1955 Floating point in hardware (IBM 704)

1956 Hard disk drive prototype. 24” platters (IBM)

1961 Fortran IV

Pipelined CPU (IBM 7030)

1962 Hard disk drive with flying heads (IBM)

1963 CTSS: Timesharing (multitasking) OS

Virtual memory & paging (Ferranti Atlas)

1964 First BASIC

1967 ASCII (current version)

GE635 / Multics: SMP (General Elect)

1968 Cache in commercial computer (IBM 360/85)

Mouse demonstrated

Reduce: computer algebra

1969 ARPAnet: wide area network

Fully pipelined functional units (CDC 7600)

Out of order execution (IBM 360/91)

4

History: the 1970s

1970 First DRAM chip. 1Kbit. (Intel)

First floppy disk. 8” (IBM)

1971 UNIX appears within AT&T

Pascal

First email

1972 Fortran 66 standard published

First vector computer (CDC)

First TLB (IBM 370)

ASC: computer with ‘ECC’ memory (TI)

1973 First ‘Winchester’ disk (IBM)

1974 First DRAM with one transistor per bit

1975 UNIX appears outside AT&T

Ethernet appears (Xerox)

1976 Apple I launched. $666.66

Cray I

Z80 CPU (used in Sinclair ZX series) (Zilog)

51
4” floppy disk

1978 K&R C appears (AT&T)

TCP/IP

Intel 8086 processor

Laser printer (Xerox)

WordStar (early wordprocessor)

First VAX (11/780) and VMS (DEC)

1979 TEX

5

History: the 1980s

1980 Sinclair ZX80 £100 105 sold

Fortran 77 standard published

1981 Sinclair ZX81 £70 106 sold

31
2” floppy disk (Sony)

IBM PC & MS DOS version 1 $3,285

SMTP (current email standard) proposed

1982 Sinclair ZX Spectrum £175 48KB colour

Acorn BBC model B £400 32KB colour

Commodore64 $600 107 sold

Cray X-MP (first multiprocessor Cray)

Motorola 68000 (commodity 32 bit CPU)

1983 Internet defined to be TCP/IP only

Apple IIe $1,400

IBM XT, $7,545

Caltech Cosmic Cube: 64 node 8086/7 MPP

1984 Apple Macintosh $2,500. 128KB, 9” B&W screen

Sinclair QL £400. 128KB

IBM AT, $6,150. 256KB

CD ROM

1985 LATEX2.09

PostScript (Adobe)

Ethernet formally standardised

IEEE 748 formally standardised

Intel i386 (Intel’s first 32 bit CPU)

X10R1 (forerunner of X11) (MIT)

C++ 6

History: the RISCs

1986 MIPS R2000, RISC CPU (used by SGI and DEC)

SCSI formally standardised

1987 Intel i860 (Intel’s first RISC CPU)

Acorn Archimedes (ARM RISC) £800

SPARC I, RISC CPU (Sun)

Macintosh II $4,000. FPU and colour.

Multiflow Trace/200: VLIW

X11R1 (MIT)

1989 ANSI C

1990 PostScript Level 2

Power I: superscalar RISC (IBM)

MS Windows 3.0

1991 World Wide Web / HTTP

PVM

Tera starts developing MTA processor

1992 PCI

OpenGL

OS/2 2.0 (32 bit a year before NT) (IBM)

Alpha 21064: 64 bit superscalar RISC (DEC)

7

A Summary of History

The above timeline stops a decade before this talk will
first be given. Computing is not a fast-moving subject,
and little of consequence has happened in the past
decade.

By 1970 the concepts of disk drives, floating
point, memory paging, parity protection, multitasking,
caches, pipelining and out of order execution have
all appeared in commercial systems, and high-level
languages and wide area networking have been
developed.

The 1970s themselves add vector computers and
error correcting memory, and implicit with the vector
computers, RISC. The rest is just enhanced technology
rather than new concepts.

The 1980s see the first serious parallel computers, and
much marketing in a home computer boom.

8

The CPU

9

The Computer

10

Inside the Computer

card

memory

CPU

disks video

VDU

Bus

11

The Heart of the Computer

The CPU is the brains of the computer. Everything
else is subordinate to this source of intellect.

A typical modern CPU understands two main classes of
data: integer and floating point. Within those classes
it may understand some additional subclasses, such as
different precisions.

It can perform basic arithmetic operations and
comparisons, governed by a sequence of instructions,
or program.

It can also perform comparisons, the result of which
can change the execution path through the program.

Its sole language is machine code, and each family
of processors speaks a completely different variant of
machine code.

12

+, −
shift
logical

+, −
shift
logical

store

load/

store

load/

F
l
o
a
t
i
n
g

P
o
i
n
t

R
e
g
i
s
t
e
r
s

I
n
t
e
g
e
r

R
e
g
i
s
t
e
r
s

Fetch

+, −

*, /

Memory Controller

Schematic of Typical RISC CPU

Decode

and

Issue

13

What the bits do

• Memory: not part of the CPU. Used to store both
program and data.

• Instruction fetcher: fetches next machine code
instruction from memory.

• Instruction decoder: decodes instruction, and sends
relevant data on to. . .

• Functional unit: dedicated to performing single
operation

• Registers: store the input and output of the
functional units There are typically about 32 floating point registers,

and 32 integer registers.

Partly for historical reasons, there is a separation
between the integer and floating point parts of the
CPU.

On some CPUs the separation is so strong that the only way of transferring data between the

integer and floating point registers is via the memory. On some older CPUs (e.g. the Intel
386), the FPU (floating point unit) is optional and physically distinct.

14

Clock Watching

The best known part of a CPU is probably the
clock. The clock is simply an external signal used
for synchronisation. It is a square wave running at a
particular frequency.

Clocks are used within the CPU to keep the various
parts synchronised, and also on the data paths between
different components external to the CPU. Such data
paths are called buses, and are characterised by a width
(the number of wires (i.e. bits) in parallel) as well as
a clock speed. External buses are usually narrower and
slower than ones internal to the CPU.

Although sychronisation is important – every good
orchestra needs a good conductor – it is a means not
an end. A CPU may be designed to do a lot of work
in one clock cycle, or very little, and comparing clock
rates between different CPU designs is meaningless.

15

Typical instructions

Integer:

• arithmetic: +,−,∗,/,negate
• logical: and, or, not, xor
• bitwise: shift, rotate
• comparison
• load / store (copy between register and memory)

Floating point:

• arithmetic: +,−,∗,/,
√

,negate,modulus

• convert to/from integer
• comparison
• load / store (copy between register and memory)

Control:

• (conditional) branch (goto)

Most modern processors barely distinguish between integers used to represent numbers, and
integers used to track memory addresses (i.e. pointers).

16

A typical instruction

fadd f4,f5,f6

add the contents of floating point registers 4 and 5,
placing the result in register 6.

Execution sequence:

• fetch instruction from memory
• decode it
• collect required data (f4 and f5) and sent to

floating point addition unit
• wait for add to complete
• retrieve result and place in f6

Exact sequence varies from processor to processor.

Always a pipeline of operations which must be
performed sequentially.

The number of stages in the pipeline, or pipeline
depth, can be between about 5 and 15 depending on
the processor.

17

Making it go faster. . .

If each pipeline stage takes a single clock-cycle to
complete, the previous scheme would suggest that it
takes five clock cycles to execute a single instruction.

Clearly one can do better: in the absence of branch
instructions, the next instruction can always be both
fetched and decoded whilst the previous instruction is
executing. This shortens our example to three clock
cycles per instruction.

Fetch Decode Execute Return
Result

Fetch
Operands

Fetch Decode Execute Return
Result

Fetch
Operands

Time

second instruction

first instruction

18

. . . and faster. . .

Further improvements are governed by data
dependency. Consider:

fadd f4,f5,f6

fmul f6,f7,f4

(Add f4 and f5 placing the result in f6, then multiply
f6 and f7 placing the result back in f4.)

Clearly the add must finish (f6 must be calculated)
before the multiply can start. There is a data
dependency between the multiply and the add.

But consider

fadd f4,f5,f6

fmul f3,f7,f9

Now any degree of overlap between these two
instructions is permissible: they could even execute
simultaneously or in the reverse order and still give the
same result.

19

. . . and faster

We have now reached one instruction per cycle,
assuming data independency. The problem is now
decoding the instructions.

Unlike written English, there is no mark which
indicates the end of each machine-code word,
sodecodingmustbedonesequentially.

The solution is to fix the ‘word’ length. If all
instructions are four bytes long, then one knows
trivially where the next, or next-but-ten instruction
starts without decoding the intermediate ones.

Then multiple decoders can run in parallel, and
multiple instructions can be issued per clock cycle.
Such a processor is said to be superscalar, or n-
way superscalar if one wishes to specify how many
instructions can be issued per cycle.

20

Keep it simple

With short, simple instructions, it is easy for the
processor to schedule many overlapping instructions
at once.

If a single instruction both read and wrote data to
memory, and required the use of multiple functional
units, such scheduling would be much harder.

This is part of the CISC vs RISC debate.

CISC (Complex Instruction Set Computer) relies on a single instruction doing a lot of work:
maybe incrementing a pointer and loading data from memory and doing an arithmetic

operation.

RISC (Reduced Instruction Set Computer) relies on the instructions being very simple – the
above CISC example would certainly be three RISC instructions – and then letting the CPU

overlap them as much as possible.

21

The VLIW EPIC

As an alternative to the CPU determining which
instructions can be issued simultaneously in a dynamic
fashion as the code executes, VLIW computers rely on
the compiler to bundle the instructions appropriately,
thus simplifying the logic on the CPU.

A single instruction word for a VLIW machine contains
several independent instructions for different functional
units with no data dependencies. The instruction
decoder can simply take the bundle and issue them
simultaneously without significant further thought.

However, if the compiler cannot fill all the slots in one
word, the empty ones need to be filled with explicit
‘nop’ instructions. This can lead to large code sizes.

VLIW = Very Long Instruction Word
EPIC = Explicitly Parallel Instruction Code

nop = No OPeration

22

Within a functional unit

A functional unit may itself be pipelined. Considering
again floating-point addition, even in base 10 there are
three distinct stages to perform:

9.67 ∗ 105 + 4 ∗ 104

First the exponents are adjusted so that they are equal:

9.67 ∗ 105 + 0.4 ∗ 105

only then can the mantissas be added

10.01 ∗ 105

then one may have to readjust the exponent

1.001 ∗ 106

So floating point addition usually takes at least three
clock cycles. But the adder may be able to start a new
addition ever clock cycle, as these stages are distinct.

Such an adder would have a latency of three clock
cycles, but a repeat or issue rate of one clock cycle.

23

Breaking Dependencies

do i=1,n

sum=sum+a(i)

enddo

This would appear to require three cycles per iteration,
as the iteration sum=sum+a(i+1) cannot start until
sum=sum+a(i) has completed. However, consider

do i=1,n,3

s1=s1+a(i)

s2=s2+a(i+1)

s3=s3+a(i+2)

enddo

sum=s1+s2+s3

The three distinct partial sums have no
interdependency, so one add can be issued every cycle.

Do not do this by hand. This is a job for an optimising compiler, as you need to know a lot
about the particular processor you are using before you can tell how many paritial sums to use.

24

A Branch in the Pipe

So far we have assumed a linear sequence of
instructions. What happens if there is a branch?

double t=0.0; int i,n;

for (i=0;i<n;i++) t=t+x[i];

$17 contains n, # $16 contains x

fclr $f0

clr $1

ble $17,L$5

L$6:

ldt $f1, ($16)

addl $1, 1, $1

cmplt $1, $17, $3

lda $16, 8($16)

addt $f0, $f1, $f0

bne $3, L$6

L$5:

There will be a conditional jump or branch at the end
of the loop. If the processor simply fetches and decodes
the instructions following the branch, then when the
branch is taken, the pipeline is suddenly empty.

25

Assembler in More Detail

The above is Alpha assembler. The integer registers
$1, $3, $16 and $17 are used, and the floating point
registers $f0 and $f1. The instructions are of the
form ‘op a,b,c’ meaning ‘c=a op b’.

fclr $f0 Float CLeaR $f0

– place zero in $f0

clr $1 CLeaR $1

ble $17, L$5 Branch if Less than or Equal on

comparing $17 to (an implicit) zero

and jump to L$5 if less (i.e. skip loop)

L$6:

ldt $f1, ($16) LoaD $f1 with value value from

memory address $16

addl $1, 1, $1 $1=$1+1

cmplt $1, $17, $3 CoMPare $1 to $17

and place result in $3

lda $16, 8($16) LoaD Address

effectively $16=$16+8

addt $f0, $f1, $f0 $f0=$f0+$f1

bne $3,L$6 Branch Not Equal

– if counter 6=n, do another iteration

L$5:

26

Predictions

F O XD R

F O XD R

O X RF D

O X RF D

F O XD R

Time

ldt $f1

Iteration i

ldt $f1

bne

addt $f0

lda $16

cmplt $1

addl $1

ldt $f1 OF D Iteration i+1RX
With branch
prediction

Without branch prediction

X RF D

X RF D

O

O

With the simplistic pipeline model of page 18, the
loop will take 9 clock cycles per iteration if the CPU
predicts the branch and fetches the next instruction
appropriately. With no prediction, it will take 12 cycles.

A ‘real’ CPU has a pipeline depth much greater than the five slots shown here: usually ten to
twenty. The penalty for a mispredicted branch is therefore large.

Note the stalls in the pipeline based on data dependencies (shown with red arrows) or to

prevent the execution order changing. If the instruction fetch unit fetches one instruction
per cycle, stalls will cause a build-up in the number of in flight instructions. Eventually the

fetcher will pause to allow things to quieten down.

This is not the correct timing for any Alpha processor.

27

Speculation

In the above example, the CPU does not begin to
execute the instruction after the branch until it knows
whether the branch was taken: it merely fetches and
decodes it, and collects its operands. A further level
of sophistication allows the CPU to execute the next
instruction(s), provided it is able to throw away all
results and side-effects if the branch was mispredicted.

Such execution is called speculative execution. In the
above example, it would enable the ldt to finish one
cycle earlier, progressing to the point of writing to the
register before the result of the branch were known.

More advanced forms of speculation would permit the
write to the register to proceed, and would undo the
write should the branch have been mispredicted.

Errors caused by speculated instructions must be carefully discarded. It is no use if
if (x>0) x=sqrt(x)

causes a crash when the square root is executed speculatively with x=-1, nor if

if (i<1000) x=a(i)

causes a crash when i=2000 due to trying to access a(2000).

Almost all current processors are capable of some degree of speculation.

28

Predication

Most CPUs have the branch instruction as their only
conditional instruction, so that a code sequence such
as:

if (a<0) a=-a;

must be converted to

if (a>=0) goto L1;

a=-a;

L1:

This causes a large number of conditional branches with
the problems mentioned above. With full predication,
any instruction can be prefixed by a condition. This
avoids interrupting the progress of the instruction
fetching and decoding logic.

Many modern CPUs, including Alpha, can predicate on loads. Full predication is rare,
although the ARM CPU achieved it in 1987.

29

OOO!

F O XD R

F O XD R

O X RF D

O X RF D

F O XD R

F O XD R

F O XD R

ldt $f1

Iteration i

bne

addt $f0

lda $16

cmplt $1

addl $1

ldt $f1 Iteration i+1

Time

Previously the cmplt is delayed due to a dependency on
the addl immediately preceeding it. However, the next
instruction has no relevant dependencies. A processor
capable of out-of-order execution could execute the
lda before the cmplt.

The timing above assumes that the ldt of the next iteration can be executed speculatively
and OOO before the branch. Different CPUs are capable of differing amounts of speculation

and OOOE.

The EV6 Alpha does OOOE, the EV5 does not, nor does the UltraSPARC III. In this simple
case, the compiler erred in not changing the order itself. However, the compiler was told not

to optimise for this example.

30

Machine Code

Most RISC processors use a fixed instruction word of
four bytes – the smallest convenient power of two.

An instruction may need to specify up to three registers,
and, with 32 registers, 5 bits are needed to identify
each, or 15 bits for three. The remaining 17 bits are
plenty to specify the few dozen possible instructions.

Some instructions might need just two registers and an
integer constant provided within the instruction itself.
Many RISC processors allow for 16 bits of data to be
stored in this manner, for a subset of their instructions.

Branch instructions need just a single register, and
the destination is usually stored as an offset from the
current position. This will always be a multiple of four,
so the two lowest bits are not stored.

Unlike byte, which always means 8 bits, there is no precise definition of word. It usually
means 4 bytes, the length of an instruction, except when talking about the 8086, when it

means two bytes, or vector Crays, when it means eight bytes.

The IA32 instruction set, with its variable length, can place double precision floating point
values as data within a single instruction, and must store all bits of its branches.

Not all possible bit sequences will be valid instructions. If the instruction decoder hits an
invalid instruction, it objects. Under UNIX this results in the process receiving a SIGILL:
SIGnal ILLegal instruction. 31

Meaningless Indicators of Performance

• MHz: the silliest: some CPUs take 4 clock cycles
to perform one operation, others perform four
operations in one clock cycle. Only any use when
comparing otherwise identical CPUs.

• MIPS: Millions of Instructions Per Second.
Theoretical peak speed of decode/issue logic.

• MTOPS: Millions of Theoretical Operations Per
Second. Current favourite of the US Government.

• FLOPS: Floating Point Operations Per Second.
Theoretical peak issue rate for floating point
instructions. Loads and stores usually excluded.
Ratio of + to ∗ is usual fixed (often 1 : 1).

• MFLOPS, GFLOPS, TFLOPS: 106, 109, 1012

FLOPS.

As we shall see later, most of these are not worth the paper they are written on.

32

Meaningful Indicators of Performance

The only really good performance indicator is how long
a computer takes to run your code. Thus my fastest
computer is not necessarily your fastest computer.

Often one buys a computer before one writes the code
it has been bought for, so other ‘real-world’ metrics
are useful.

Unfortunately, there are not many good ones. Here is
a critique of the main contenders.

33

The Guilty Candidates: Linpack

Linpack 100x100

Solve 100x100 set of double precision linear equations
using fixed FORTRAN source. Pity it takes just 0.7 s
at 1 MFLOPS and uses under 100KB of memory. Only
relevant for pocket calculators.

Linpack 1000x1000 or nxn

Solve 1000x1000 (or nxn) set of double precision
linear equations by any means. Usually coded using a
blocking method, often in assembler. Is that relevant
to your style of coding? Achieving less than 50% of a
processor’s theoretical peak performance is unusual.

Number of operations: O(n3), memory usage O(n2).
n chosen by manufacturer to maximise performance, which is reported in MFLOPS.

34

SPEC

SPEC is a non-profit benchmarking organisation. It
has two CPU benchmarking suites, one concentrating
on integer performance, and one on floating point.
Each consists of around ten programs, and the mean
performance is reported.

Unfortunately, the benchmark suites need constant
revision to keep ahead of CPU developments. The first
was released in 1989, the second in 1992, the third in
1995. None of these use more than 8MB of data, so
fit in cache with many current computers. Hence a
fourth suite was released in 2000.

It is not possible to compare results from one suite with
those from another, and the source is not publically
available.

Until 2000, the floating point suite was entirely Fortran.

Two scores are reported, ‘base’, which permits two optimisation flags to the compiler, and
‘peak’ which allows any number of compiler flags. Changing the code is not permitted.

SPEC: Standard Performance Evaluation Corporation (www.spec.org)

35

The glimmers of hope

Linpack, the return

Taking the 100x100 Linpack source and rewriting
it to be 1000x1000 (or 2000x2000) does give a
half-reasonable benchmark. Most computers achieve
between 5 and 15% of their processor’s peak
performance on this code.

Streams

Streams (a public domain benchmark) does not
really measure CPU performance, but rather memory
performance. This is often rather more useful.

36

Various Results, SPEC

Processor MHz SpecInt SpecFP

Alpha 21364 1150 877 1482

Itanium 2 1000 807 1431

Alpha 21264 1250 928 1365

Power4 1450 935 1295

Pentium4 3066 1107 1091

Athlon 2250 933 843

UltraSPARC III Cu 1050 610 827

Itanium 800 379 701

MIPS R14000 600 500 529

Power3-II 450 346 433

Pentium III 1000 442 335

For each CPU, the best result (i.e. fastest motherboard / compiler

/ clock speed) as of 1/2/03 is given.

Note that the Pentium4, Athlon and Pentium III are the only CPUs to have higher SpecInt
scores than SpecFP.

37

Various Results, Streams and Linpack

Machine Year CPU/MHz Streams Linpack dgesv

Pentium4 2002 P4/2400 1850 241 2750

Pentium4 2002 P4/1800 1140 140 1980

PentiumIII 1999 PIII/650 343 47 454

XP1000 1999 21264/500 980 146 683

PW500au 1998 21164/500 233 42 590

AS500/500 1996 21164/500 170 32 505

The ‘Linpack’ column is for the 2000x2000 Fortran version, whereas the dgesv column is the
same problem using the vendor’s supplied maths library.

The faster P4 uses RAMBUS memory, the slower SDRAM. Similarly the two 21164 machines

have different memory subsystems, but identical processors.

38

Representing Integers

Computers store bits, each of which can represent
either a 0 or 1.

For historical reasons bits are processed in groups of
eight, called bytes. One byte is sufficient to store one
English character.

Most CPUs can handle integers of different sizes,
typically some of 1, 2, 4 and 8 bytes long.

For the purposes of example, we shall consider a half-
byte integer (i.e. four bits).

39

Being Positive

This is tediously simple:

Bits number
0000 0
0001 1
0010 2
0011 3
0100 4
.
1111 15

This is the obvious, and universal, representation for
positive integers: binary.

One more obvious point: 4 bits implies 24

combinations. Whatever we do, we can represent
only 16 different numbers with 4 bits.

40

Being Negative

There are many ways of being negative.

Sign-magnitude

Use first bit to represent sign, remaining bits to
represent magnitude.

Offset

Add a constant (e.g. 8) to everything.

One’s complement

Reverse all the bits to represent negative numbers.

Two’s complement

Reverse all the bits then add one to represent negative
numbers.

41

Chaos

Bits s-m off 1’s 2’s
0000 0 −8 0 0
0001 1 −7 1 1
0010 2 −6 2 2

0111 7 −1 7 7
1000 −0 0 −7 −8
1001 −1 1 −6 −7

1110 −6 6 −1 −2
1111 −7 7 −0 −1

Of these possibilities, two’s complement is almost
universally used.

Having only one representation for zero is usually an
advantage, and having zero being the bit pattern
‘000. . . ’ is also a good thing.

42

Adding up

Again, trivial:

0101 + 1001 = 1110

Otherwise known as

5 + 9 = 14

But note how this would read using the various
mappings for negative numbers:

• sign-mag: 5 + (−1) = −6

• offset: (−3) + 1 = 6

• 1’s: 5 + (−6) = −1

• 2’s: 5 + (−7) = −2

Clearly not all mappings are equal.

43

Overflow

5 + 12 = 1

maybe not, but

0101 + 1100 = 0001

as there is nowhere to store the first bit of the correct
answer of 10001. Integer arithmetic simply wraps

around on overflow.

Interpreting this with 1’s and 2’s complement gives:

• 1’s: 5 + (−3) = 1
• 2’s: 5 + (−4) = 1

This is why two’s complement is almost universal.
An adder which correctly adds unsigned integers will
correctly add two’s complement integers. A single
instruction can add bit sequences without needing to
know whether they are unsigned or two’s complement.

44

Ranges

bits unsigned 2’s comp.
8 0 to 255 −128 to 127
16 0 to 65535 −32768 to 32767
32 0 to 4294967295 −2147483648 to 2147483647
64 0 to 1.8 × 1019 −9 × 1018 to 9 × 1018

Uses:

• 8 bits: Latin character set
• 16 bits: Graphics co-ordinates
• 32 bits: General purpose
• 64 bits: General purpose

Note that if 32 bit integers are used to address bytes
in memory, then 4GB is the largest amount of memory
that can possibly be addressed.

Similarly 16 bits and 64KB, for those who remember
the BBC ‘B’, Sinclair Spectrum, Commodore64 and
similar.

45

Text

Worth a mention, as we have seen so much of it. . .

American English is the only language in the world, and
it uses under 90 characters. Readily represented using
7 bits, various extensions to 8 bits add odd European
accented characters, and £.

Most common mapping is ASCII.

0000000-0011111 control codes
0100000 space

0110000-0111001 0 to 9
1000001-1011010 A to Z
1100001-1111010 a to z

Punctuation fills in the gaps.

The contiguous blocks are pleasing, as is the single bit
distinguishing upper case from lower case.

Note that only seven bits, not eight, are used. The ‘control codes’ are special codes for new
line, carriage return, tab, backspace, new page, etc.

ASCII = American Standard Code for Information Interchange

Other main mapping is EBDIC, used (mainly) by old IBM mainframes.

46

Multiplying and Dividing

Multiplication is harder and (typically) slower than
addition. It also causes numbers to increase rapidly in
magnitude.

Some processors have expanding multiply instructions,
e.g. for multiplying two 16 bit numbers, and keeping
all 32 bits of the result. Other instructions simply
truncate the result to the size of the operands.

Some processors have no integer multiply instruction.
Examples include the old and simple, such as the Z80,
and the relatively modern RISC range PA-RISC (HP).

Division is yet more complex, and much rarer in code.
Hence even fewer processors support it. Alpha does
not.

47

Shifting and Rotating

All processors have both shift and rotate instructions.
Shift moves the bits along, filling in with zeros, whereas
rotate fills in with the bits shifted out of the other end
of the register. Illustrated for an 8 bit register.

0

rotate left

shift left

A left shift by n positions corresponds to ×2n.

A right shift by n positions corresponds to dividing by
2n with the remainder lost.

One can simulate multiplication from a combination of shifts, adds and comparisons.

48

Logical operations

The other class of operations that all processors can do
is bitwise logical operations. The common operations
are provided:

and or xor
0 0 0 0 0
0 1 0 1 1
1 0 0 1 1
1 1 1 1 0

These operations crop up surprisingly frequently. For instance:

x and 7 = 0 implies x is divisible by eight.

(x + 7) and −8 is smallest number ≥ x divisible by 8

(any letter) or 32 = corresponding lower case letter (ASCII)

(any letter) and 95 = corresponding upper case letter (ASCII)

xor is used for trivial encryption and for graphics cursors, because (a xor b) xor b ≡ a.

49

Typical functional unit speeds

Instruction Latency Issue rate
iadd/isub 1 1
and, or, etc. 1 1
shift, rotate 1 1
load/store 1-2 1
imul 3-15 3-15
fadd 3 1
fmul 2-3 1
fdiv 15-25 15-25
fsqrt 15-25 15-25

In general, most things 1 or 2 clock cycles, except
integer ×, and floating point ÷ and

√
.

‘Typical’ for processors such as DEC Alpha, MIPS R10000 and similar RISC processors.

Very recent processors tend to have longer fp latencies: 4 for fadd and fmul for the
UltraSPARC III, 5 and 7 respectively for the Pentium 4.

Those slow integer multiplies are more common that it would seem at first. Consider:

double precision x(1000),y(500,500)

The address of x(i) is the address of x(1) plus 8 ∗ (i − 1). That multiplication is just a

shift. However, y(i,j) is y(1,1) plus 8 ∗ ((i − 1) + (j − 1) ∗ 500). A lurking multiply!

C does things very differently, but not necessarily better.

50

Floating Point

51

Floating Point Numbers

Perhaps the most important area of scientific
computing, but probably not the most well understood.

Let us begin by revising our knowledge of base-10
‘scientific notation’ and assuming that every number
we write shall be written as a four digit signed mantissa
and a two digit signed exponent.

±0.XXXX ∗ 10±XX

e.g.
0.1000 ∗ 101

or
0.6626 ∗ 10−33

(As is conventional, the mantissa, M , is restricted to
0.1 ≤ M < 1.)

52

Representable numbers

Using this notation, we can represent at most four
million distinct numbers. Having merely six digits
which can range from 0 to 9, and two signs, there are
only 4,000,000 possible combinations.

The largest number we can represent is 0.9999 ∗ 1099,
the smallest 0.1000 ∗ 10−99, or 0.0001 ∗ 10−99 if we do
not mind having fewer than four digits of precision in
the mantissa.

53

Algebra

a + b = a 6⇒ b = 0

0.1000 ∗ 101 + 0.4000 ∗ 10−3 = 0.1000 ∗ 101

(a + b) + c 6= a + (b + c)

(0.1000 ∗ 101 + 0.4000 ∗ 10−3) + 0.4000 ∗ 10−3

= 0.1000 ∗ 101 + 0.4000 ∗ 10−3

= 0.1000 ∗ 101

0.1000 ∗ 101 + (0.4000 ∗ 10−3 + 0.4000 ∗ 10−3)

= 0.1000 ∗ 101 + 0.8000 ∗ 10−3

= 0.1001 ∗ 101

54

Algebra (2)

√
a2 6= |a|

√

(0.1000 ∗ 10−60)2 =
√

0.0000 ∗ 10−99 = 0

a/b 6= a × 1/b

0.6000 ∗ 101/0.7000 ∗ 101 = 0.8571

0.6000 ∗ 101 × (1/0.7 ∗ 101) = 0.6000 ∗ 101 × 0.1429

= 0.8574

55

Zeros, Underflows, and Denormals

Whereas 1−1 = 0 is indisputable, other zeros are more
doubtful.

0.1 ∗ 10−99/0.1 ∗ 1010 = 0 is an example of underflow.
The real answer is non-zero, but smaller than
the smallest representable number, so it is/must
be expressed as zero. A sign can be retained:
−0.1 ∗ 10−99/0.1 ∗ 1010 = −0.

0.1 ∗ 10−99/2 is more awkward. Should it be kept as
0.05 ∗ 10−99, which breaks the rule that the mantissa
must be greater than 0.1, and risks nonsense as
precision is slowly lost, or should it be set to zero?
The former is called gradual underflow, and results
in denormalised numbers. Flushing denormalised
numbers to zero is the other option.

Many processors cannot compute directly with denormalised numbers. As soon as the FPU
encounters one, it signals an error and a special software routine needs to tidy up the mess.

This can make computing with denormals hundreds of times slower than computing with
normalised numbers. Given that their use also implies a precision loss, flushing to zero is often

best.

56

Binary fractions

Follow trivially from decimal fractions:

0.625 = 2−1 + 2−3 = 0.1012

but note that some finite decimal fractions are not
finite binary fractions

0.210 = 0.0011001100110011 . . .2

(although any finite binary fraction is a finite decimal
fraction of the same number of digits)

nm is a common way of expressing ‘interpret n as a number in base m.’ Of course, m itself
is always base-10.

57

Computers and IEEE

IEEE 754 defines a way both of representing and
manipulating floating point numbers on a computer.
Its use is almost universal.

In a similar fashion to the above decimal format, it
defines a sign bit, a mantissa of fixed length, and an
exponent. Naturally everything is in base 2, and the
exponent is not signed, but rather it has a constant
offset added to it: 127 in the case of single precision.

IEEE requires that the simple arithemetic operators
return the nearest representable number to the true
result, and and consequently that a + b = b + a and
ab = ba.

Note that the IEEE mantissa is an example of sign-magnitude storage, and exponent offset.
Two’s compliment is not universal.

58

IEEE Example

As an example of a single precision number:

5
3

4
= 101.112 = 0.101112 ∗ 23

This is stored as a sign (0 for +), an 8 bit exponent
biased by 127, so 10000010 here, and then a 23 bit
mantissa. Because the first digit of a normalised
mantissa is always 1, that digit is not stored. This
leaves the sequence

01000001001110000000000000000000

So this bit sequence represents 53

4
when interpreted

as a single precision IEEE floating point number, or
1094189056 when interpreted as a 32 bit integer.

The above is perfectly valid, but very different, when interpreted as a real or an integer.
Nothing tags a value to make it clear that it is integer or floating point: a programmer must

keep track of what was stored where!

59

Nasty numbers

A few other ‘special’ numbers exit, for dealing with
overflows, underflows,

√
−1 and other problems. For

this reason, two of the possible exponent bit-sequences
(all ones and all zeros) are reserved.

For an overflow, the resulting ‘infinity’ is represented
by setting the sign bit appropriately, the mantissa equal
to zero, and the exponent equal to all ones.

Something which is ‘Not a (real) Number’, such as
0/0 or

√
−1, is represented similarly but the mantissa

is set non-zero. This is normally reported to the user
as ‘NaN’.

Zero is represented by setting all bits to zero. However
the sign bit may still be one, so +0 and −0 exist. For
denormalised numbers the exponent is zero, and all
bits of the mantissa are stored, for one no longer has
a leading one.

In comparisons, +0 and −0 compare as equal.

When reading rubbish bit sequences as doubles, one expects merely one in 2000 to appear as
a NaN.

60

Signals

Sometimes it is useful for a program to abort with an
error as soon as it suffers an overflow, or generates a
NaN. Less often it is useful for underflows to stop a
program.

By convention Fortran tends to stop on overflows and
NaNs, whereas C does not and expects the programmer
to cope.

If the code does stop, it will do so as a result of
receiving a signal from the floating point unit, and it
will complain SIGFPE: SIGnal Floating Point Exception.

Also by convention, integer overflow wraps round
silently. The conversion of a real to an integer when
the real is larger than the largest possible integer might
do almost anything. In Java it will simply return the
largest possible integer.

61

Ranges

Precision
Single Double

Bytes 4 8
Bits, total 32 64

Bits, exponent 8 11
Bits, mantissa 23 52
Largest value 1.7 ∗ 1038 9 ∗ 10307

Smallest non-zero 6 ∗ 10−39 1 ∗ 10−308

Decimal digits of precision c.7 c.15

Other representations result in different ranges. For instant, IBM 370 style encoding has a

range of around 1075 for both single and double precision.

IEEE is less precise about extended double precision formats. Intel uses an 80 bit format with
a 16 bit exponent, whereas many other vendors use a 128 bit format.

62

Rounding

Rounding errors have a habit of building up. With
IEEE’s round-to-nearest, a simplistic estimation of the
relative error is

2−25 ∗
√

n

after n single-precision operations. Other forms of
arithmetic can be much worse. IBM 370 style rounds
by truncation (i.e. towards zero). This is simple to
implement, but leads to relative errors building as

2−25 ∗ n

in its single-precision form. This can be disasterous.

IEEE also provides for rounding by truncation, but this is rarely used!

63

Backwards and Forwards

N
∑

n=1

1

n

Consider summing this series forwards (1..N) and
backwards (N..1) using single precision arithmetic.

N forwards backwards exact

100 5.187378 5.187377 5.187378
1000 7.485478 7.485472 7.485471

10000 9.787613 9.787604 9.787606
100000 12.09085 12.09015 12.09015

1000000 14.35736 14.39265 14.39273
10000000 15.40368 16.68603 16.69531

100000000 15.40368 18.80792 18.99790

The smallest number such that 15 + x 6= x is about 5 ∗ 10−7. Therefore, counting

forwards, the total stops growing after around two million terms.

This is better summed by doing a few hundred terms explicitly, then using a result such as

b
∑

n=a

1

n
≈ log

(

b + 0.5

a − 0.5

)

+
1

24

(

(b + 0.5)
−2

− (a − 0.5)
−2

)

+ O(a
−4

)

64

The Quadratic Formula

x =
−b ±

√
b2 − 4ac

2a

30x2 + 60.01x + 30.01 = 0

Roots are −1 and −1 1

3000
.

Single precision arithmetic and the above formula give
no roots!

number nearest representable single prec. no.
30 30.0000000000
30.01 30.0100002289. . .

60.01 60.0099983215. . .

Even with no further rounding errors, whereas 4 ∗ 30 ∗ 30.1 = 3601.2 and

60.012 = 3601.2001, 60.0099983215 . . .2 = 3601.199899

The following gives no roots when compiled with a K&R C compiler, and repeated roots with

ANSI C

void main(){

float a=30,b=60.01,c=30.01,d;

d=b*b-4*a*c;

printf("%18.15f\n",(double)d);

}

65

The Logistic Map

xn+1 = 4xn(1 − xn)

n single double correct
0 0.5200000 0.5200000 0.0520000
1 0.9984000 0.9984000 0.9984000
2 0.0063896 0.0063898 0.0063898
3 0.0253952 0.0253957 0.0253957
4 0.0990019 0.0990031 0.0990031
5 0.3567998 0.3568060 0.3568060

10 0.9957932 0.9957663 0.9957663

15 0.7649255 0.7592756 0.7592756

20 0.2214707 0.4172717 0.4172717

30 0.6300818 0.0775065 0.0775067

40 0.1077115 0.0162020 0.0161219

50 0.0002839 0.9009089 0.9999786
51 0.0011354 0.3570883 0.0000854

With just three operations per cycle, this series has even double precision producing rubbish
after just 150 elementary operations.

66

Making Life Complex

Processors deal with real numbers only. Many scientific
problems are based on complex numbers. This leads
to major problems.

Addition is simple

(a + ib) + (c + id) = (a + c) + (b + d)i

and subtraction is similar.

Multiplication is slightly tricky:

(a + ib) ∗ (c + id) = (ac − bd) + (bc + ad)i

What happens when ac− bd is less than the maximum
number we can represent, but ac is not?

What precision problems do we have if ac is
approximately equal to bd?

67

The Really Complex Problem

(a + ib)/(c + id) =
(ac + bd) + (bc − ad)i

c2 + d2

This definition is almost useless!

If N is the largest number we can represent, then the
above formula will produce zero when dividing by any
number x with |x| >

√
N .

Similarly, if N is the smallest representable number, it
produces infinity when dividing by any x with |x| <√

N .

This is not how languages like Fortran, which support
complex arithmetic, do division: they use a more
complicated algorithm which we shall quietly ignore.

68

Hard or Soft?

The simple operations, such as +, − and ∗ are
performed by dedicated pipelined pieces of hardware
which typically produce one result each clock cycle,
and take around four clock cycles to produce a given
result.

Slightly more complicated operations, such as / and√
may be done with microcode. Microcode is a tiny

program on the CPU itself which is executed when a
particular instruction, e.g. /, is received, and which
may use the other hardware units on the CPU multiple
times.

Yet more difficult operations, such as trig. functions
or logs, are usually done entirely with software in a
library. The library uses a collection of power series or
rational approximations to the function, and the CPU
needs evaluate only the basic arithmetic operations.

The IA32 range is unusual in having microcoded instructions for trig. functions and logs.

Even on the PentiumIII and Pentium4, a single such instruction can take over 200 clock cycles
to execute. RISC CPUs tend to avoid microcode.

69

Soft denormals

x=1d-20

y=1d-28

n=1e8

do i=1,n

x=x+y

enddo

This yields x=2E-20 in under half a second on a
466MHz EV6. If x and y are scaled by dividing by
2955 before the loop, and multiplied by the same factor
afterwards, the loop takes 470s.

The EV6 hardware cannot handle denormals, so
software emulation was used for each addition. Ditto
most other RISC CPUs.

With the default compiler flags, Alphas flush denormals to zero, and thus get an answer of
x=1E-20 in under a quarter of a second after scaling. Full IEEE compliance costs a factor of

two anyway, and over a factor of 2000 with denormals present.

70

Dividing slowly

The simplest way for a CPU designer to impliment
division is to use the long division process familiar
to all(?) school children. This requires only shifts,
subtractions and comparisons, but is horribly slow.
Each iteration of the algorithm yields one more bit of
the quotient, and there are 52 to find. . .

The Intel 486 used a variation of this technique, and
like all IA32 Intel processors it worked to 64 bits of
precision internally. It is not too surprising it took 73
clock cycles to do a division!

The Pentium used a more sophisticated variation, effectively doing the calculations in base 4
so that two bits of the quotient were produced at every step. This reduced the time to a

‘mere’ 38 clock cycles, or twice as slow as any serious CPU. The Pentium II is no better.

71

Conquering division

If one has a fast hardware multiplier, there is a better
way to do division: one can use a Newton-Raphson
like iterative algorithm.

a/b = a ∗ 1/b

xn+1 = 2 ∗ xn − b ∗ xn
2

and, for reasonable starting guesses, this series will
converge to 1/b. As an example with b = 6.

n xn

0 0.2
1 0.16
2 0.1664
3 0.16666624
4 0.1666666666655744

72

Division in more detail

Returning to our base-10 example, let us consider the
initial guess for the reciprocal.

0.XXXX ∗ 10XX

the important parts are the exponent and the first digit
of the mantissa:

0.A ∗ 10X

and the reciprocal is (approximately)

0.B ∗ 101−X

where B is chosen from a table such as

A B
1 7
2 4
3 3

4,5,6 2
7,8,9 1

e.g. given 0.6 ∗ 101, we guess 0.2 ∗ 100.

73

Converging

Applying the above iterative formula four times to any
guess is sufficient to converge to the four significant
figures we are using. As the convergence is exponential,
converging to 10 or 20 significant figures would not be
hard.

For simplicity, we can choose to iterate for a fixed
number of steps, rather than checking the convergence
ever.

Most processors use a similar lookup table and
convergent series combination. The bigger the table,
the fewer iterations are required. Division typically
takes around 20 clock cycles, enough time for about 4
iterations through the a loop like the above.

74

Square roots

A similar approach to that for division is taken
for square roots, and often reciprocal square roots
too. The latter operation is common in graphics
(normalising vectors), so a special instruction is often
supplied which is about twice as fast as doing the
square root and reciprocal separately. Again it takes
around 20 clock cycles to extract a square root.

And again it is possible to do it without multiplications, as shown by Intel whose Pentium
takes typically 70 cycles and 486 over 80 for a square root.

75

Memory

• Memory technologies

• Parity and ECC

• Going faster: wide bursts

• Going faster: caches

76

Memory Technologies

ROM Read Only Memory: contents set at fabrication
and unchangeable.

PROM Programable ROM: contents written once
electronically.

EPROM Erasable PROM: contents may be erased
using UV light, then written once.

EEPROM Electronically EPROM: contents may be
erased electronically a few hundred times.

RAM Random Access Memory: contents may be read
and changed with ‘equal’ ease.

DRAM Dynamic RAM: the cheap and common
flavour. Contents lost if power lost.

SRAM Static RAM: contents may be retained with a
few µW.

An EPROM with no UV window is equivalent to a PROM. A PROM once written is equivalent

to a ROM. SRAM with a battery is equivalent to EEPROM.

Most ‘ROMs’ are some form of EEPROM so they can have their contents upgraded without
physical replacement: also called Flash RAM, as the writing of an EEPROM is sometimes

called flashing.

77

RAM

A typical DRAM cell consists of a single capacitor and
field effect transistor. It stores a single bit, and has
barely changed since 1974.

The slow leak of charge onto or off the capacitor is
accounted for by refreshing the memory periodically
(thousands of times a second). The bits are simply
read, then written back. This refreshing is usually
done by circuitary on the motherboard, rather than the
memory module or the CPU.

Conversely SRAM has four or six transistors per bit,
and needs no refreshing.

SRAM comes in two flavours: that optimised for low-power data retention (pocket diaries),

and that optimised for speed (cache). DRAM’s requirement for refreshing leads to a very
much higher power consumption when idle than SRAM.

78

DRAM in Detail{
{

1

1

1

1

1

1 1 1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

0 0 0

0000

00 000

0 0 0 0 0

0000

0 0

0

0

0

000

0

0

00

0

0 0 0 0 01 1 1

0

0

CAS

Buffer

RAS

DRAM cells are arranged in (near-)square arrays. To
read, first a row is selected and copied to a buffer, from
which a column is selected, and the resulting single bit
becomes the output. This example is a 64 bit DRAM.

This chip would need 3 address lines (i.e. pins) allowing 3 bits of address data to be presented

at once, and a single data line. Also two pins for power, two for CAS and RAS, and one to
indicate whether a read or a write is required.

Of course a ‘real’ DRAM chip would contain several tens of million bits.

79

DRAM Read Timings

To read a single bit from a DRAM chip, the following
sequence takes place:

• Row placed on address lines, and Row Access Strobe
pin signalled.

• After a suitable delay, column placed on address
lines, and Column Access Strobe pin signalled.

• After another delay the one bit is ready for
collection.

• The DRAM chip will automatically write the row
back again, and will not accept a new row address
until it has done so.

The same address lines are used for both the row and
column access. This halves the number of addess lines
needed, and adds the RAS and CAS pins.

Reading a DRAM cell causes a significant drain in the charge on its capacitor, so it needs to

be refreshed before being read again.

80

More Speed!

The above procedure is tediously slow. However,
for reading consecutive addresses, one important
improvement can be made.

Having copied a whole row into the buffer (which is
usually SRAM), if another bit from the same row is
required, simply changing the column address whilst
signalling the CAS pin is sufficient. There is no need
to wait for the chip to write the row back, and then to
rerequest the same row. Thus Fast Page Mode (FPM)
DRAM.

Extended Data Out (EDO) is similar, but allows the
column address for the next read to be given whilst
the data from the previous read are being read.

81

DRAM Timings compared

Row Col.

Data

Row Col.

Data

Row Col.

Data

Col.

Data

Row Col.

Data

Col.

Data

Col.

Data

Col.

Col.

Data

Address

Data

Data

Address

Address

Data

Classic

EDO

Fast Page Mode

The first two lines show ‘classic’ DRAM, with both
row and column addresses being sent before each data
transfer. The next two lines show FPM, with the row
addresses being omitted after the first. Finally EDO
overlaps the column addresses with the data.

Time increases left to right in the above diagrams.

82

Measuring time

The three graphs show memory of identical latencies,
that is, time from the start of a new read to the data
being available.

They also have identical cycle times, that is, the time
from the start of one read, to the start of another
unrelated read.

They have very different bandwidths, that is, how
rapidly data streams out when requested sequentially.
A group of sequential reads is often called a burst.

Classic, FPM and EDO memory is sold on latency (50-
80ns typically), although the time between data items
in a burst is less than half the latency for EDO.

83

SDRAM

SDRAM is a major current memory technology. It is
advertised as being very fast: introduced at 66MHz
(15ns), soon moving to 100MHz (10ns) then 133MHz
(7.5ns). Much faster than that 60ns EDO stuff current
when SDRAM was first introduced?

Not really. ‘Headline’ SDRAM times are those between
data items in a burst, and EDO was already down to
25ns for this. SDRAM latencies are typically four to
five clock cycles, so 100MHz SDRAM has a similar
latency to 50ns EDO. SDRAM is optimised for bursts:
during a burst the CPU does not have to keep changing
the column address, the data are sent automatically.

As SDRAM is usually sold in modules which output
64 bits at once, PC100 SDRAM (100MHz) has a peak
bandwidth of 800MB/s.

The ‘S’ in SDRAM stands for synchronous: the bus has a clock and all signals on it are

synchronised to the clock pulses.

DDR-SDRAM is similar, except that data are transfered twice each clock-cycle, thus doubling

the bandwidth, and not touching the latency. It is rated on bandwidth, not clock speed, so
133MHz DDR-SDRAM calls itself 266MHz (sic) or PC2100.

84

RAMBUS

The RDRAM vs (DDR-)SDRAM debate is too complex
to be presented here, except to say that RAMBUS
provides yet another way of getting at a DRAM core
which is, in essence, very similar to that on a SDRAM
or EDO RAM chip.

RDRAM uses a very fast (400MHz or 533MHz) bus,
over which data is transfered twice each clock cycle.
The bad news is that the data bus is only 16 bits wide,
so PC800 RDRAM, which runs at 400MHz, has a peak
data rate of 1600MB/s. Intel’s Pentium4 chipsets
take RDRAM modules in pairs, to give a theoretical
3.2GB/s with PC800 parts.

RDRAM is not magic: its latency is still around 40ns.

The double data rate 533MHz bus RDRAM uses is fairly close to magic. The issues of path
length and termination become quite exciting, and it uses clock forwarding (different clock

pulses for data travelling in different directions), because Einstein has difficulty synchronising
things any other way. (The speed of light is just one foot per nanosecond in vacuum.)

85

Packaging it up

DRAM is usefully sold in small, plug-in modules:

30pin SIMMs: obsolete, bus width 8 or 9 bits,
capacity up to 16MB.

72pin SIMMs: obsolete, bus width 32 or 36 bits,
capacity up to 64MB, plain, FPM or EDO.

168pin DIMMs: bus width 64 or 72 bits, SDRAM.

184pin RIMMs: bus width 16 or 18 bits, RDRAM.

SIMM: Single In-line Memory Module (the contacts on each side of the module are equivalent)
DIMM: Dual In-line Memory Module (84 distinct contacts on each side for 168pin)

RIMM: Rambus In-line Memory Module

The SIMMs have just 12 address lines, limiting capacity to 224 words.

The individual chips on a SIMM used to supply one bit each, so there would be eight on an

8-bit SIMM. Later chips supplied several (e.g. four) bits each, but internally still had one bit
per array of cells. More recent DRAM chips have four or eight bits per cell.

Modules must be installed in groups sufficient to fill the width of the bus being used: four

30pin SIMMs for a 32 bit bus, two 72pin SIMMs for a 64 bit bus, etc.

DIMMs and RIMMs are capable of identifying themselves to the motherboard using a
protocol called Serial Presence Detect. This reveals capacity, speed and type, and allows the

motherboard to configure itself appropriately.

86

Modules in Pictures

30 pin SIMM 1MB, 70ns, parity. Two of the chips are identical supply four bits each, the

third supplies one bit to make up the nine.

72 pin SIMM 16MB, 60ns, EDO, 32 bit, four bits from each of eight chips.

168 pin DIMM 256MB, 133MHz, 64 bit. Eight more chips on the other side of the module.

184 pin RIMM 64MB, 16 bit, PC800. Note the metal heat-spreader to assist cooling.

Notches prevent misinsertion. The two-pound coin is 28mm in diameter.

Other forms of memory include 144 pin SO-DIMMs (Small Outline DIMM) used in laptops.

87

Speed Required

A typical CPU runs at, say, 750 MHz. It can
perform a double precision floating-point addition and
multiplication each clock-cycle, which is four pieces
of data in, and two out, so potentially six memory
references.

So a latency of about 0.2 ns, maybe 2 ns if latencies
can be overlapped, and a bandwidth of 36 GB/s, are
needed.

The fastest SDRAM chips currently available, 133MHz
DDR-SDRAM, have a latency of 40 ns, and a peak
bandwidth of 4GB/s if configured in a 128 bit bus.
Thus the bandwidth is disappointing, and the latency
dreadful.

And it gets worse: other necessary control chips
between the CPU and the RAM chips increase the
latency (by over a factor of two) and reduce the
bandwidth.

The lowest latency machine in TCM (2003) has a latency to main memory of 100ns.

88

More Conservative

Maybe somewhat less performance is actually needed.
Consider a dot product (a common operation). At
each step, two elements are loaded, a multiplication
and an addition done, and nothing stored, for the total
will be kept in a register.

In other words, two memory references, not six, so
‘only’ 12 GB/s of memory bandwidth needed.

However, those 667 MHz EV6 based Alphas in TCM
have an achievable memory bandwidth of about 1GB/s,
so a dot product will achieve a mere 125 MFLOPS, or
10% of the CPU’s theoretical MFLOPS rating.

Vector computers are somewhat different. The Hitachi S3600 which used to be in Cambridge

had a peak performance of 2 GFLOPS, but a memory bandwidth of over 12 GB/s.

89

Wider Still and Wider

One obvious bandwidth enhancer is to increase the
width of the memory bus. PCs have certainly done
this: 8086 and 286 used 16 bit memory buses, 386 and
486 used 32 bits and the Pentium and above 64 bits.
‘Real’ workstations tend to use 128 or even 256 bit
buses.

There is an obvious problem: a 256 bit bus does require
256 tracks leading to 256 different pins on the CPU,
and going beyond this gets really messy. Commodity
memory modules provide just 64 bits each, so they
must be added in fours for a 256 bit bus.

It also fails to address the latency issue.

Bus widths of things currently in TCM:
PentiumIII: 64 bit
Alpha (XP900): 128 bit

Alpha (XP1000): 256 bit

90

Caches: the Theory

The theory of caching is very simple. Put a small
amount of fast, expensive memory in a computer, and
arrange automatically for that memory to store the
data which are accessed frequently.

One can then define a cache hit rate, that is, the
number of memory accesses which go to the cache
divided by the total number of memory accesses. This
is usually expressed as a percentage.

One of the reasons for the expense of the fast SRAM
used in caches is that it requires around six transistors
per bit, not one.

The first paper to describe caches was published in 1965 by Maurice Wilkes (Cambridge).

The first commercial computer to use a cache was the IBM 360/85 in 1968.

91

Caches: the Problem

Main memory may be slow compared to a CPU, but
it is not that slow. Any cache control logic must be
very fast (and therefore very simple) or there will be
no improvement in speed.

cache

CPU

CPU
cache

controller

memory

memory

A badly designed cache controller can be worse than no cache at all.

92

The Anomalies

For a (particularly horrible) program, the following
run-times are observed:

Processor Speed Time
(MHz) (s)

Pentium 100 33.0
Pentium 90 22.4
Pentium 120 21.7 and 14.1
Pentium 133 12.7

21064 (EV4) 266 6.0
486DX2 66 3.5

Pentium MMX 166 1.1
21264 (EV5) 500 0.75
PentiumII 350 0.25

93

The Cache Controller

Conceptually this has a simple task:

• Intercept every memory request

• Determine whether cache holds requested data

• If so, read data from cache

• If not, read data from memory and place a copy in
the cache as it goes past.

However, the second bullet point must be done very
fast, and this leads to the compromises.

94

An aside: Hex

A quick lesson in hex (base-16 arithmetic) is due at
this point. Computers use base-2, but humans tend
not to like reading long base-2 numbers.

Humans also object to converting between base-2 and
base-10.

However, getting humans to work in base-16 and
convert between base-2 and base-16 is easier.

Hex uses the letters A to F to represent the ‘digits’ 10
to 15. As 24 = 16 conversion to and from binary is
done trivially using groups of four digits.

95

Converting to/from Hex

0101 1101 0010 1010 1111 0001 1100 0011

5 C 2 A F 1 B 3

So

010111010010101011110001110000112

= 5C2AF1B316 = 1546318259

As one hex digit is equivalent to four binary digits, two
hex digits are exactly sufficient for one byte.

Hex numbers are often prefixed with ‘0x’ to distinguish
them from base ten.

When forced to work in binary, it is usual to group the digits in fours as above, for easy
conversion into hex or bytes.

96

Our Computer

For the purposes of considering caches, let us consider
a computer with a 1MB address space and a 64KB
cache.

An address is therefore 20 bits long, or 5 hex digits.

Suppose we try to cache individual bytes. Each entry
in the cache must store not only the data, but also the
address in main memory it was taken from, called the
tag. That way, the cache controller can look through
all the tags and determine whether a particular byte is
in the cache or not.

So we have 65536 single byte entries, each with a
21

2
byte tag.

tag data

97

A Disaster

This is bad on two counts.

A waste of space

We have 64KB of cache storing useful data, and 160KB
storing tags.

A waste of time

We need to scan 65536 tags before we know whether
something is in the cache or not. This will take far too
long.

98

Lines

The solution to the space problem is not to track bytes,
but lines. Consider a cache which deals in units of
16 bytes.

64KB = 65536 * 1 byte

= 4096 * 16 bytes

We now need just 4096 tags.

Furthermore, each tag can be shorter. Consider a
random address:

0x23D17

This can be read as byte 7 of line 23D1. The cache
will either have all of line 23D1 and be able to return
byte number 7, or it will have none of it.

99

Getting better. . .

A waste of space?

We now have 64KB storing useful data, and 8KB
storing tags. Considerably better.

A waste of time

Scanning 4096 tags may be a 16-fold improvement,
but is still a disaster.

Causing trouble

Because the cache can store only full lines, if the
processor requests a single byte which the cache does
not hold, the cache then requests the full line from the
memory so that it can keep a copy of the line. Thus
the memory might have to supply 16× as much data
as before!

100

A Further Compromise

We have 4096 tags, potentially addressable as tag 0 to
tag 0xFFF.

On seeing an address, e.g. 0x23D17, we discard the
last 4 bits, and scan all 4096 tags for the number
0x23D1.

Why not always use line number 0x3D1 within the
cache for storing this bit of memory? The advantage
is clear: we need only look at one tag, and see if it
holds the line we want 0x23D1, or one of the other 15
it could hold: 0x03D1, 0x13D1, etc.

Indeed, the new-style tag need only hold that first
hex digit, we know the other digits! This reduces the
amount of tag memory to 2KB.

101

Direct Mapped Caches

We have just developed a direct mapped cache. Each
address in memory maps directly to a single location
in cache, and each location in cache maps to multiple
(here 16) locations in memory.

0xFFF

0x3D1

line no.

cache

address

memory

0x03D10

0x10000

0x13D10

0x20000

0x30000

0x40000

0x00000

0x23D10

0x33D10

2

tag data
0x000

102

Success?

• The overhead for storing tags is 3%. Quite acceptable, and

much better than 250%!

• Each ‘hit’ requires a tag to be looked up, a
comparison to be made, and then the data to be
fetched. Oh dear. This tag RAM had better be very fast.

• Each miss requires a tag to be looked up, a
comparison to fail, and then a whole line to be
fetched from main memory.

• The ‘decoding’ of an address into its various parts
is instantaneous.

The zero-effort address decoding is an important feature of all cache schemes.

line address within cache

0x2 3D1 7

byte within line

part to compare with tag

103

The Consequences of Compromise

At first glance we have done quite well. Any contiguous
64KB region of memory can be held in cache. (As long as

it starts on a cache line boundary)

E.g. The 64KB region from 0x23840 to 0x3383F would be held in cache lines 0x384 to

0xFFF then 0x000 to 0x383

Even better, widely separated pieces of memory can be
in cache simultaneously. E.g. 0x15674 in line 0x567

and 0xC4288 in line 0x428.

However, consider trying to cache the two bytes
0x03D11 and 0x23D19. This cannot be done: both
map to line 0x3D1 within the cache, but one requires
the memory area from 0x03D10 to be held there, the
other the area from 0x23D10.

Repeated accesses to these two bytes would cause
cache thrashing, as the cache repeatedly caches then
throws out the same two pieces of data.

104

Associativity

Rather than each line in memory being storable in just
one location in cache, why not make it two?

0x3D1

line no.

address

0xBD1

cache

memory

0x03D10

0x10000

0x13D10

0x20000

0x30000

0x40000

0x00000

0x23D10

0x33D10

tag data
0x000

0xFFF

Now we have a 2 way (set) associative cache.

An n-way associative cache has n possible places for storing each location in memory, needs
to read n tags to check whether something is in the cache, and needs log2 n extra tag bits

to keep track of things.

105

Victim Caches

Victim Caches, or Anti Thrashing Entries, are a cheap
way of increasing the effective associativity of a cache.
One extra cache line, complete with tag, is stored, and
it contains the last line expelled from the cache proper.

This line is checked for a ‘hit’ in parallel with the rest
of the cache, and if a hit occurs, it is moved back into
the main cache, and the line it replaces is moved into
the ATE.

Some caches have several ATEs, rather than just one.

double precision a(2048,2),x

do i=1,2048

x=x+a(i,1)*a(i,2)

enddo

Assume a 16K direct mapped cache with 32 byte lines. a(1,1) comes into cache, pulling

a(2-4,1) with it. Then a(1,2) displaces all these, at it must be stored in the same line, as
its address modulo 16K is the same. So a(2,1) is not found in cache when it is referenced.

With a single ATE, the cache hit rate jumps from 0% to 75%, the same that a 2-way set
associative cache would have for this algorithm.

106

Policies: Write Back vs Write Through

Should data written by the CPU modify merely the
cache if those data are currently held in cache, or
modify the memory too? The former, write back, can
be faster, but the latter, write through, is simpler.

With a write through cache, the definitive copy of data
is in the main memory. If something other than the
CPU (e.g. a disk controller or a second CPU) writes
directly to memory, the cache controller must snoop
this traffic, and, if it also has those data in its cache,
update (or invalidate) the cache line too.

Write back caches add two problems. Firstly, anything
else reading directly from main memory must have its
read intercepted if the cached data for that address
differ from the data in main memory.

Secondly, on ejecting an old line from the cache to
make room for a new one, if the old line has been
modified it must first be written back to memory.

Each cache line therefore has an extra bit in its tag,
which records whether the line is modified, or dirty.

107

Policies: Allocate on Write

If a cache is write-back, and a write occurs which is
a cache miss, should the cache line be filled? For the
corresponding read event, the answer would always be
‘yes’, otherwise the cache would never be used!

If the data just written are read again soon afterwards,
filling is beneficial, as it is if a write to the same line
is about to occur. However, caches which allocate on
writes perform badly on randomly scattered writes.

Each write of one word is converted into reading the
cache line from memory, modifying the word written
in cache and marking the whole line dirty. When the
line needs discarding, the whole line will be written to
memory. Thus writing one word has be turned into
two lines worth of memory traffic.

The PentiumPro allocates on writes, and the Pentium did not. Certain codes therefore ran
slower on the otherwise-faster PentiumPro.

A partial solution to this problem is to break a line into equal sub-blocks, each with its own
dirty bit. If only one sub-block has been modified, just that sub-block is written back to

memory when the line is discarded. This is useful even for caches which do not allocate on
writes.

108

Policies: LRU vs Random replacement

With an n-way associative cache, when caching a new
line, in which of the n possible locations in the cache
should it be placed? A randomly-chosen line can be
ejected, or the Least Recently Used.

LRU is easy for a 2-way associative cache: it is simply
not the most recently used, and a single bit shared
by the two ways can keep track of which was most
recently accessed.

For higher associativities, a pseudo-LRU algorithm is
often used: random, but excluding most recently used
line. This reduces book-keeping.

As should now be clear, not all caches are equal!

109

Write Buffers

It is usual for a CPU to provide a small number of
write buffers. These store data due to be written to
the main memory, but by performing the writes by
preference when the memory system is otherwise idle,
they can permit reads to continue without stalling the
CPU until the data are written.

Naturally all reads are checked against writes pending
in these buffers for consistency, otherwise a write
followed by an immediate read from the same address
would get the old data from memory, not the new data
which was overtaken whilst it was in the write buffer.

These buffers also collapse writes. Two 32-bit writes
to consecutive locations will be issued as a single
transaction on a 64-bit bus, if possible, etc.

A decent write buffer can produce a significant fraction of the gain of a write-back cache.
However, a write-back cache also needs a write buffer, so that writes caused by ejecting

modified cache lines can be delayed if necessary to reduce conflicts with reads.

110

Not All Data are Equal

If the cache controller is closely associated with the
CPU, it can distinguish memory requests from the
instruction fetcher from those from the load/store
units. Thus instructions and data can be cached
separately.

This almost universal Harvard Architecture prevents
poor data access patterns leaving both data and
program uncached.

The term ‘Harvard architecture’ comes from an early American computer which used physically
separate areas of main memory for storing data and instructions. No modern computer does
this.

111

A Hierarchy

The speed gap between main memory and the CPU
core is so great that there are usually multiple levels of
cache.

The first level, or primary cache, is small (typically
16KB to 128KB), physically attached to the CPU, and
runs as fast as possible.

The next level, or secondary cache, is larger (typically
256KB to 8MB), and usually placed separately on
the motherboard. In some systems it is completely
independent of the CPU.

Typical times in clock-cycles to serve a memory request
would be:

primary cache 1-3
secondary cache 5-25
main memory 30-300

Cf. functional unit speeds on page 50.

Intel tends to make small, fast caches, compared to RISC workstations which tend to have

larger, slower caches. Some machines have tertiary caches too.

112

Cache size

The logic core of a CPU is typically between 1 million
and 30 million transitors. A cache which runs as fast as
the CPU core, must be approximately the same size,
for the core will run as fast as possible, and bigger
things tend to be slower due to thermal problems,
electrical capacitance, and the finite speed of light.

As one bit in SRAM requires six transistors, and extra
bits for tag and parity will be needed, fifty transistors
per byte of cache is probably an underestimate. So a
256KB cache requires over 12 million transistors, and
a 1MB cache would be bigger than any CPU core.

Thus most CPUs have around 128KB of primary cache,
and also the tags for the secondary cache, on the same
die as the core. Much more, and it becomes mostly
cache.

The bulk of the secondary cache is normally physically
separate, and running at a half or a third of the speed
of the CPU to reduce power consumption.

One million transistors for an i486 core (1989). Around thirty million for an IBM Power4

(2002).

113

Line Size

Whenever the CPU wants a single byte which is not in
the cache, the cache controller will fetch a whole line.

This is good if the CPU then requests the following
item from memory: it is probably now in cache.

This is bad if the CPU is jumping randomly around:
the cache will cause unnecessary memory traffic.

As current DRAM is so much faster at consecutive
accesses than random accesses, filling a cache line
which is four or even eight times the width of the data
bus takes only about twice as long as filling one the
same size as the data bus.

For a fixed total size of cache, doubling the line size halves the number of tags required, and
reduces the tag length by one bit too. The UltraSPARC III Cu procesor has 16,384 tags for

its secondary cache, and a line size of 64, 256 or 512 bytes depending whether the cache is
1MB, 4MB or 8MB in size. The longer lines are broken into sub-blocks of 64 bytes with

independent ‘dirty’ and ‘valid’ bits.

114

Explicit Prefetching

One spin-off from caching is the possibility of
prefetching.

Many processors have an instruction which requests
that data be moved from main memory to primary
cache when it is next convenient.

If such an instruction is issued ahead of some data
being required by the CPU core, then the data may
have been moved to the primary cache by the time
the CPU core actually want them. If so, much faster
access results. If not, it doesn’t matter.

If the latency to main memory is 100 clock cycles, the
prefetch instruction ideally needs issuing 100 cycles in
advance, and many tens of prefetches might be busily
fetching simultaneously. Most current processors can
handle a couple of simultaneous prefetches. . .

115

Implicit Prefetching

Some memory controllers are capable of spotting
certain access patterns as a program runs, and
prefetching data automatically. Such prefetching is
often called streaming.

The degree to which patterns can be spotted varies.
Unit stride is easy, as is unit stride backwards. Spotting
different simultaneous streams is also essential, as a
simple dot product:

do i=1,n

d=d+a(i)*b(i)

enddo

leads to alternate unit-stride accesses for a and b.

IBM’s Power3 processor, and Intel’s Pentium 4 both
spot simple patterns in this way. Unlike software
prefetching, no support from the compiler is required,
and no instructions exist to make the code larger and
occupy the instuction decoder. However, streaming is
less flexible.

116

That Code

unsigned char* a;

for(j=0;j<10001;j++)

for(i=0;i<2048;i++)

a[i]+=a[i+8192]+a[i+16384]+a[i+24576];

Processor Primary Data Cache Time
Size Assoc (s)

Pentium 8KB 2 12.7 to 33.0
21064A (EV4) 16KB 1 6.0

486DX2 8KB 4 3.5
Pentium MMX 16KB 4 1.1
21164 (EV5) 8KB+96KB 1+3 0.75
Pentium II 16KB 4 0.25

The EV5 has a fast 96KB secondary cache in the CPU as well as the 8KB cache.

The above code can be cached in a 32KB direct mapped cache, 16KB 2 way associative, or
8KB 4 way associative.

117

Big and Free

Cache

I cache D cache

Secondary cache Secondary

controller controller

controller

Main memory

CPU

instr.
cache cache

data

118

Clock multiplying

If the CPU has to fetch all its data and instructions
from memory external to it, there is no point in the
CPU core running faster than that bus.

If the CPU includes a cache, then, for some code, no
external memory references will be needed. The CPU
is no longer limited by the speed of the external bus.

So one runs the CPU faster than the external bus.

CPU bus core ratio
486DX4 33 100 3
Pentium 66 200 3

Pentium III 133 1000 71

2

Pentium4 533 3066 53

4

21064 (EV4) 39 275 7
21164 (EV5) 83 500 6
21264 (EV6) 333 500 11

2

21264C (EV6.8) 500 1250 21

2

119

Limits to Clock Multiplying: Thermal

The heat produced by a CPU is proportional to its
clock speed. Cooling is a major limiting factor.

Once the CPU gets too hot, thermally excited carriers
begin to swamp the intrinsic carriers introduced by the
n and p doping. With the low band-gap of silicon, the
maximum junction temperature is around 90◦C, or just
50◦C above the air temperature which most computers
can allegedly survive.

Current techniques allow around 100W to be dissipated
from a chip with forced air cooling.

As far as power consumption is concerned, a chip looks like a capacitor which is charged,

then discharged, through a resistor at a frequency f . Each data line or storage cell acts as
a tiny capacitor, whose charge state changes every time its logic state changes. The power

consumption is thus fCV 2.

‘Shrinking’ a processor, by using more advanced fabrication techniques with smaller features,
reduces C and permits V to be reduced. Hence the 5V used for processor cores in the late

1980s has dropped to about 2V today (2002), and the feature size on the die has dropped
from 1µm to under 0.2µm over the same period.

120

Limits to Clock Multiplying: Cache

Misses

Unless the primary cache hit rate is well over 90%, it
is pointless considering multipliers of more than three.

If the hit rate is large, then the CPU core is effectively
decoupled from the rest of the motherboard. If low, it
will spend much time waiting for data to be provided
to it. Large, highly associative, write-back caches help
to reduce this problem

One way around this problem is to speed up the
secondary cache. One could put its controller and
maybe its tag RAM on the CPU module, and use a
separate bus to the external cache memory. That bus
might be wider or faster than the main memory bus.

The EV6 Alpha, UltraSPARC III, Pentium II and Power 3 all have their secondary cache
controllers on die, and a separate faster bus (i.e. with a lower multiplier) for cache traffic.

Which is faster, a 133MHz core with the external cache and other external features running

at 66MHz (or 33MHz), or a 150MHz core with the external cache and other external features
running at 60MHz (or 30MHz)? The 12% increase in core speed can be completely offset by

the 9% decrease in the speed of everything else. See the 133MHz and 150MHz Pentiums for
more details.

121

The Relevance of Theory

integer a(*),i,j

j=1

do i=1,n

j=a(j)

enddo

This code is mad. Every iteration depends on the
previous one, and significant optimisation is impossible.

However, the memory access pattern can be changed
dramatically by changing the contents of a. Setting
a(i)=i+1 and a(k)=1 will give consecutive accesses
repeating over the first k elements, whereas a(i)=i+2,
a(k-1)=2 and a(k)=1 will access alternate elements,
etc.

122

Classic caches

1

10

100

1000

1 4 16 64 256 1024 4096 16384 65536

T
im

e,
 n

s

Data set size, KB

Stride 1
Stride 2
Stride 4

Stride 16

With a 16 element (64 bytes) stride, we see access times of

8.7ns for primary cache, 33ns for secondary, and 202ns for main

memory. The cache sizes are clearly 64KB and 2MB.

With a 1 element (4 bytes) stride, the secondary cache and main

memory appear to be faster. This is because once a cache line has

been fetched from memory, the next 15 accesses will be primary

cache hits on the next elements of that line. The average should

be (15 ∗ 8.7 + 202)/16 = 20.7ns, and 21.6ns is observed.

The computer used for this was a 463MHz XP900. It has 64 byte cache lines.

123

Performance Enhancement

1

10

100

1000

1 4 16 64 256 1024 4096 16384 65536

T
im

e,
 n

s

Data set size, KB

Stride 1
Stride 2
Stride 4

Stride 16
Stride 32

This is a 2.4GHz Pentium4. A very fast 8KB primary cache is

clearly seen, and a 512KB secondary less clearly so. The surprise

is the speed of the main memory, and the factor of four difference

between its latency at a 64 byte and 128 byte stride.

The explaination is automatic hardware prefetching into the

secondary cache. For strides of up to 64 bytes inclusive, the

hardware notices the memory access pattern, even though it is

hidden at the software level, and starts fetching data in advance

automatically.

The actual main memory latency is disappointing: a 2.4GHz core and 400MHz RDRAM has
yielded 145ns, compared to 202ns with a 463MHz core and 77MHz SDRAM on the XP900.

The slowest Alpha currently in TCM (175MHz EV4) manages 292ns, the fastest computer
(for this) 100ns (a 933MHz Pentium III), the slowest 850ns (a 195MHz R10K).

124

But is it correct?

All forms of DRAM need refreshing as the charge
leaks of their capacitors. More sudden leaks, such
as those caused by ionisation events (cosmic rays
or natural radioactive decay), or insulation becoming
slightly marginal with age, must also be dealt with.

Increased miniturisation decreases the charge difference
between a stored ‘1’ and ‘0’, so modern chips are
intrinsically more susceptible than older chips.

If a bit in memory ‘flips’, the consequences for a
program could be disastrous. The program could
simply crash, as a jump instruction has its destination
changed to something random.

Worse, it could continue, but give a completely wrong
answer, as important data could have been changed.
The change could be a sign, an order of magnitude, or
merely a fraction of a percent: it could be wrong, but
not obviously wrong.

125

Parity: going for a crash

The simplest scheme for rescuing this situation is to
use a parity bit.

This is an extra bit of memory which stores a one
if an odd number of those bits which it is checking
is set to one, or zero otherwise. If a single bit flips
spontaneously, this parity bit will then disagree with
the parity of the stored value, and the error is detected.

The problem is what should one do next? The usual
answer is to cause the computer to halt immediately:
stopping is safer than continuing to calculate using a
program or data known to be corrupt.

A slightly more sophisticated response is to terminate
the process which caused the read which produced the
error. One cannot let the process continue feeding it
duff data, so killing it is the best option.

Most parity memory uses one parity bit for every 8 bits
of real data: a 12.5% overhead.

126

ECC to the rescue

A better scheme is to use an Error Correcting Code.
The standard scheme can correct for any single bit
error, and detect any two bit error and some three bit
errors. This contrasts with simple parity, which can
correct nothing, detects all single bit errors, and no two
bit errors. This standard level of ECC is sometimes
known as SECDED: Single Error Corrected, Double
Error Detected.

An ECC scheme is more expensive in terms of bits.
Whereas parity requires a single bit to protect an n bit
word, the usual ECC scheme requires 2 + log2 n. For
an 8 byte word, this overhead is again 12.5%.

127

The Hamming Code

Consider storing check bits in bit positions 2n, n ≥ 0,
and data in the other bit positions. Thus to store eight
data bits, one has the following arrangement:

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12

C1 C2 D1 C3 D2 D3 D4 C4 D5 D6 D7 D8

Then let C1 record the parity of those bit positions,
excluding itself, with a 1 at the end of the binary
representation of their position. In other words

C1 = B3 + B5 + B7 + B9 + B11

Similarly for C2 those bit positions with a 1 second
from the right of their binary representation.

C2 = B3 + B6 + B7 + B10 + B11

C3 = B5 + B6 + B7 + B12

C4 = B9 + B10 + B11 + B12

128

The Hamming Code (2)

Alternatively, consider this backwards:

B6 will be checked by C2 and C3 because 6 = 1102

with ones in the second and third places.

If, when we read a word from memory, and recalculate
the check bits, we discover that, say, C4 and C1

disagree with our calculation, we know that bit 10012

is in error.

Because a bit can exist in just two states, once we
know it is wrong, we can just invert it, and it must
then be correct.

129

Qui custodiet ipsos custodes?

The above analysis works for any single bit error. If
a check bit itself gets corrupted, it does not cause a
data bit to be ‘corrected’ erroneously, for the binary
representation of the bit position of the error will
contain a single one, and all those positions contain
check bits, not data. No-one needs to guard the
guards.

However, to ensure that all possible two bit errors are
detected, as well as all one bit errors corrected, a single
extra bit is added, which is simply records the parity of
all of the other bits.

Otherwise, most 2 bit errors would be ‘corrected’ by
converting them to 3 bit errors!

130

Wall to Wall ECC

Bit errors are most likely to occur in DRAM: there is
a lot of it, and the charge stored is tiny. They are
less likely to occur in SRAM (cache RAM) or registers,
however the consequences of errors occurring there
would be more devastating.

Almost all processors perform some form of error
checking and/or correcting on the contents of their
caches and registers.

Cheap and nasty systems designed for wordprocessing
and games tend not to bother for their main memory,
because of the price disadvantage: extra circuitry and
extra memory required to store the check bits.

Those computers with memory buses wider than 64 bits
have a proportionately lower overhead for ECC. An 8 bit
bus would need 5 correction bits, a 256 bit bus just 10.

131

The good, bad and ugly

Who does what?

Machine Error code
Intel 386, 486 8 bit parity

Pentium usually none
PentiumII none or ECC

Pentium4, SDRAM usually none
Pentium4, RDRAM none or ECC

Mac, 68k none
Mac, PPC none?
DEC Alpha ECC

Most workstations ECC

where ECC means one bit correction, two bit detection.

Considering that parity has been used since the 1950s,
and SECDED since the 1970s, this is poor.

132

Does it all matter?

TCM has 33 DEC Alphas which log single bit errors.
In October 1999, the following error rates were seen:

No errors 29 machines
One error 2 machines
Two errors 1 machine
42 errors 1 machine

Without ECC tcm29 would be noticeably unusable and
would have a memory chip replaced. Tcm28, with one
error every three weeks over October and November,
would have a memory chip replaced too.

In the absence of any error detection, tcm29 would
be unusable, and it would be unclear what needed
replacing. Tcm28 would not stand out, but might give
occasional erroneous results, and waste much time as
a result. This is the position of all of TCM’s non-
RDRAM PCs. . .

I have heard it said that a Canadian court ruled that a company was negligent in doing payroll

calculations on a machine with no parity checking, and required it to do all such calculations
twice.

133

Memory Management

134

Memory Management

An operating system ought to have a mechanism for
assigning memory to different processes on request.

It ought also have a mechanism for enforcing its
decisions: that is, for preventing processes using
memory which they have not been allocated.

We shall start by considering a simple and bad memory
management strategy: that used by MS DOS. It was
vaguely appropriate for the sort of personal computers
in use in the 1980’s, but has many deficiencies.

135

Memory, the DOS way

DOS’s use of memory typically looks as follows:

640K

0K

Free

Program 1

System

command.com

DOS provides functions for requesting a new block of
memory, or freeing or resizing an existing one.

In the above picture command.com cannot grow its
memory block: it is firmly surrounded.

136

Fragmentation

Suppose Program 1 loads another program, and exits
itself. This will leave a memory map looking as follows:

0K

640K

System

command.com

Free

Program 2

Free

Now the largest single free block of memory is much
smaller than the total free memory.

The 640K limit is really a 1088K limit, but as the video memory for graphics modes always
starts at 640K, the largest free block is always less than 640K. Sometimes some of the

memory between 640K and 1088K can be usefully reclaimed.

137

Anarchy

Under DOS, what happens if a program tries to access
memory marked as ‘free’, or owned by the system,
without attempting to reserve it for itself?

Nothing special: the access happens just as if the
memory had been correctly reserved.

Any program can overwrite any other program or the

operating system.

Intentionally or accidentally.

MacOS had a memory manager with just these properties too.

138

What went wrong?

Actually, very little. The memory management of DOS
or early versions of MacOS was about as good as one
could achieve on the processors then available (8086
and 68000 respectively).

To improve on the above, a little help from the
processor is required.

Clearly a program wishes to see a contiguous area of
memory: if a programmer requests a 1MB array, he
gets upset if the OS says “No, but you can have a 384K
array, two 256K arrays, and one 128K array instead.”

139

Virtual addressing

All memory references made by a program are
intercepted and have their addresses translated by the
CPU before they reach the real physical memory.

Real Memory

Program A

Program B

Program A

Program A

Program B

Program A

Virtual Memory

Fragmentation occurs in the real, physical memory, and
not in the virtual address space seen by the program.

The same virtual address in two different processes can refer to two different physical
addresses. The converse is rarer but also possible.

When OS/2, Windows9x or Linux runs two DOS applications simultaneously, each DOS

application sees an address range from 0K to 640K inhabited by just itself and a copy of DOS.
The corresponding physical addresses will be very different.

140

Address translation in more detail

Various shortcuts occur to make the above scheme
reasonable.

Firstly, a complete table of the mapping from every
virtual byte to every real byte would be rather big. For
a 32 bit machine, one would need four bytes to store
the real address corresponding to every virtual byte. . .

So the mapping is done on the granularity of pages
not bytes. A page is typically about 4KB and is
the smallest unit of memory the operating system can
allocate to a process.

The OS keeps a page table telling it for every virtual
page given to every process, where the real page
resides. Entries say things like ‘the page from 260K
to 264K in process 5’s address space is to be found
from 2040K to 2044K in physical memory, reading and
writing permitted.’

141

Not quite there

For a 32 bit machine with 4KB pages, the bottom
12 bits of an address are simply an offset into a page,
whilst the top 20 bits give the page number. These
20 bits are used as an index into the page table, which
will return the physical address of the page.

Each page table entry needs 20 bits for the physical
address, and maybe a few spare bits to mark such
things as invalid pages, and whether the page can be
read, written, or have code executed from it. So say
32 bits, or four bytes.

So for every 32 bit process one needs a 4MB page
table, so that every virtual address can be looked up
therein. Not quite: we need to do a little better, and
much better for 64 bit machines.

142

A Two Tier System

Each process has one page table directory, and at least
one page table. Each is one page long, and contains
1024 entries.

The first ten bits of an address are used as an index
into the page table directory. If no virtual address
with that starting sequence is valid, the directory will
indicate this, and a page fault will occur. Otherwise,
twenty bits indicating the position in physical memory
of the page table for the 1024 pages in that address
range will be found.

The next ten bits index this second page table. Again,
either an invalid address will be indicated, or twenty
bits corresponding to the physical address of the page
containing the virtual address being translated.

The final twelve bits are an index into that page.

UNIX tends to announce page faults with SIGSEGV, and terminates the process. This will
also happen on attempts to modify read-only pages. SEGV refers to SEGment Violation, as
historically pages have been grouped into segments. Windows has called them ‘Unrecoverable

Application Errors’ and a ‘General Protection Faults.’

143

A Two-Level Page Table

Physical Address

Directory
Table
Page

10 10 12

1220

Virtual Address

Tables
Page

A 32 bit virtual address with the top ten bits indexing a single page table directory, and thus
giving the address of a page containing the page table entries relevant for the next ten bits of
the virtual address. This then contains a twenty bit page number to give a 32 bit physical

address when combined with the final twelve bits of the virtual address. The page table will
also contain protection information.

Each process has its own virtual address space, and hence its own page tables, but half a

dozen pages of page table is sufficient for most small programs.

144

Beyond 32 Bits

This system does not scale well. For a 64 bit virtual
address, not only do the page table entries need around
64 bits, not 32, but one would need 226 entries in each
of the directory and page tables. Thus with a minimum
of two tables of 226 8 byte entries, each process would
have 1GB of page table.

One solution to this is that used by the Alpha processor
when running Tru64 UNIX. The page size is 8KB, so
can contain 1024 64 bit entries. The bottom 13 bits
are now the index with the page, and there are three
levels of page table, not two, each indexed by 10 bits
from the virtual address. This accounts for 43 bits of
virtual address, and that is all that there are. An Alpha
running Tru64 UNIX does not provide a 64 bit virtual
address space, but 43 bits (8TB) is enough for most
people.

IBM’s AIX uses an inverted page table, which is a completely different solution to this

problem.

145

Efficiency

This is still quite a disaster. Every memory reference
now requires two or three additional accesses to
perform the virtual to physical address translation.

Fortunately, the CPU understands pages sufficiently
well that it remembers where to find frequently-
referenced pages using a special cache called a TLB.
This means that it does not have to keep asking the
operating system where a page has been placed.

Just like any other cache, TLBs vary in size and
associativity, and separate instruction and data TLBs
may be used. A TLB rarely contains more than 1024
entries, often far fewer.

Even when a TLB miss occurs, it is rarely necessary to fetch a page table from main memory,
as the relevant tables are usually still in secondary cache, left there by a previous miss.

TLB = translation lookaside buffer
ITLB = instruction TLB, DTLB = data TLB if these are separate

146

TLBs at work

1

10

100

1000

1 4 16 64 256 1024 4096 16384 65536

T
im

e,
 n

s

Data set size, KB

Stride 1
Stride 2
Stride 4

Stride 16
Stride 8K

This is a repeat of the graph on page 123, but with an
8KB stride added. The XP900 uses 8KB pages, and
has a 128 entry DTLB. Once the data set is over 1MB,
the TLB is too small to hold its pages, and, with an
8KB stride, a TLB miss occurs on every access, taking
92ns in this case.

Given that three levels of page table must be accessed, it is clear that the relevant parts of
the page table were in cache: indeed, at least one part must have been in primary cache. A

mere 92ns is a best case TLB miss recovery time, and still represents 43 clock cycles, or 172
instruction issue opportunities.

147

More paging

Having suffering one level of translation from virtual
to physical addresses, it is conceptually easy to extend
the scheme slightly further. Suppose that the OS,
when asked to find a page, can go away, read it in
from disk to physical memory, and then tell the CPU
where it has put it. This is what all modern OSes do
(UNIX, OS/2, Win9x / NT, MacOS), and it merely
involves putting a little extra information in the page
table entry for that page.

If a piece of real memory has not been accessed
recently, and memory is in demand, that piece will
be paged out to disk, and reclaimed automatically (if
slowly) if it is needed again. Such a reclaiming is also
called a page fault, although in this case it is not fatal
to the program.

Rescuing a page from disk will take around 20ms, compared with under 200ns for hitting

main memory. If just one in 105 memory accesses involve a page-in, the code will run at half

speed, and the disk will be audibly ‘thrashing’.

The ps command reports not only how much virtual address space a program is using, but
how many of those pages are resident in physical memory.

The union of physical memory and the page area on disk is called virtual memory. Virtual

addressing is a prerequisite for virtual memory, but the terms are not identical.

148

Less paging

Certain pages should not be paged to disk. The page
tables themselves are an obvious example, as is much
of the kernel and parts of the disk cache.

Most OSes (including UNIX) have a concept of a
locked, that is, unpageable, page. Clearly all the
locked pages must fit into physical memory, so they
are considered to be a scarce resource. On UNIX only
the kernel or a process running with root privilege can
cause its pages to be locked.

Much I/O requires locked pages too. If a network card
or disk drive wishes to write some data into memory,
it is too dumb to care about virtual addressing, and
will write straight to a physical address. With locked
pages such pages are easily reserved.

Certain ’real time’ programs which do not want the long delays associated with recovering
pages from disk request that their pages are locked. Examples include CD writing software.

149

Swapping

The terms ‘swapping’ and ‘paging’ are often used
interchangably. More correctly paging refers to
discarding individual pages to the swap device, whereas
swapping refers to removing all the pages associated
with a single process to the swap device in one
operation. Once swapped in this fashion, a process
must necessarily be suspended.

Swapping is the older and simpler mechanism, and
works well on, a PC running several interactive
applications. Clearly just one application can interact
with the PC’s one user at once, so wholly removing
the other processes from memory is fine. It may take
several seconds to restart a swapped-out process.

Paging permits a single process to use more memory
than physically present. Swapping does not.

Whether paging or swapping, the area of disk used is
called the swap space.

The total amount of memory usable might be the size of the swap space, the size of

physical memory plus swap space, or greater than this, depending on the OS. The last case
is ‘impossible’: the OS claims to have more memory available than it does, overcommitting

swap space, and will behave badly if all programs try to use all the memory they have been
allocated. 150

Page sizes

A page is the smallest unit of memory allocation from
OS to process, and the smallest unit which can be
paged to disk. Large page sizes result in wasted
memory from allocations being rounded up, longer
disk page in and out times, and a coarser granularity
on which unused areas of memory can be detected and
paged out to disk.

Small page sizes result in more TLB misses, as the area
of virtual address space ‘covered’ by the TLB is simply
the number of TLB entries multiplied by the page size.

Large-scale scientific codes which allocate hundreds of
MB of memory benefit from much larger page sizes
than a mere 8KB. However, a typical UNIX system
has several dozen small processes running on it which
would not benefit from a page size of a few MB.

151

Mix and match

Many modern CPUs support multiple page sizes, such
as the Pentium which supports 4KB or 4MB, or the
UltraSPARC III which supports 8K, 64K, 512K and
4MB. The EV6 Alpha allows a single TLB entry to
refer to one, eight, 64 or 512 consecutive pages, thus
effectively increasing the page size.

However, this reintroduces fragmentation problems. If
a Pentium wants to allocate a 4MB page, or an Alpha
wants to allocate 512 consecutive 8KB pages, there
must be 4MB of contiguous free physical memory. This
problem cannot occur if all pages are the same size.

Thus operating system support for large pages is rarer
than hardware support. Solaris 9 (introduced 2002)
is one of the few OSes which supports different page
sizes for different processes.

Cambridge HPCF people will be familiar with these concepts. The S3600 vector Hitachi used
1MB pages for programs using the vector unit, and 4KB pages for others. The SR2201

parallel machine had three special TLB entries for user code, called Block TLBs, each of which
covered a 32MB page. The SR2201 did not page to disk, but could get its physical memory

too badly fragmented to use its BTLB. The S3600 paged from its main SRAM memory to a
‘disk’ of DRAM.

152

Alignment

To keep circuitary simple, a 64 bit bus cannot transfer
an arbitary 8 bytes, but eight bytes to/from an address
which is a multiple of eight. Similarly a 64 byte cache
line will start at an address which is a multiple of 64,
and a 4KB page will start on a 4KB boundary.

If data in memory are also naturally aligned, then a
single load/store will involve no more than one cache
line per cache, one TLB entry, and will not require
multiple bus transfers in the same direction. It will be
faster than a misaligned load/store.

Some processors permit the use of misaligned data,
at a performance cost. Others do not have hardware
support for misalignment, and will either be rescued by
software (at an enormous speed penalty), or will stop
the process with SIGBUS.

The IA32 range permits all alignments. The Alpha range does not, requiring 4 byte objects to
be aligned on 4 byte boundaries, 8 byte objects on 8 byte boundaries, etc.

153

‘Free’ memory

Memory is not free, indeed, in most computers it costs
more than the CPU or disk drives. . .

Memory which is idle is therefore a waste, and most
OSes use idle memory to increase the size of their disk
cache: just as a small amount of fast SRAM acts as a
cache for slower DRAM, so a small amount of DRAM
can act as a cache for a yet slower disk drive.

Most variants of UNIX (inc. Linux) and Win9x do this.

A small amount of memory (c. 100 pages) is typically
kept genuinely free for emergencies, whereas other
unused memory is available to the disk cache.

The UNIX command ‘vmstat’ shows how many pages are completely unused, as well as
information on paging activity.

154

The Digital UNIX Way

The scheme is used by Digital UNIX 4.0 to 5.1A is:

• at least 128 pages are ‘always’ kept free. Paging
will not occur whilst more memory than this is free.

• swapping will not occur whilst there are more than
74 pages free.

• if the disk cache is bigger than 20% of total memory,
it will be shrunk rather than paging a process.

• if the disk cache is using between 10% and 20% of
memory, it will fight processes on equal terms.

• if the disk cache is under 10%, it has priority over
other processes for memory.

A reasonable estimate of ‘free’ memory is thus those
pages actually unused, plus the amount by which the
disk cache is above 20% of total memory.

The 10% and 20% ‘watermarks’ are configurable. They have been changed to 5% and 10%
on TCM’s larger-memory Alphas. DEC offers no explicit guidance on reasonable values.

Digital UNIX becomes very unhappy if the disk cache is forced below the lower watermark.

The command ‘free’ (Linux, Digital UNIX (TCM only)) shows the current disk cache size.

155

Segments

A program uses memory for many different things. For
instance:

• The code itself

• Shared libraries

• Statically allocated uninitialised data

• Statically allocated initialised data

• Dynamically allocated data

• Temporary storage of arguments to function calls
and of local variables

These areas have different requirements.

156

What We Want

Code
Read only, executable, fixed size

Shared libraries
Read only, shared, executable, fixed size

Static data
Read-write, non-executable, fixed size

Dynamic data
Read-write, non-executable, variable size

Temporary data
Read-write, non-executable, frequently varying size

157

Stacks of Text?

These regions are given distinct address ranges and are
called segments. Each segment is managed differently
to give it the required properties. The common UNIX
names for the segments are:

Code text
Initialised static data data
Uninitialised static data bss
Dynamic data heap
Temporary data stack
Shared libraries shared text

An executable file must contain the first two, plus a
record of the size of the third. These three sizes are
reported by the ‘size’ command.

Often read-only data (constants) are placed in the text section, for this section will be
read-only.

158

What Went Where?

Determining which of the above data segments a piece
of data has been assigned to can be difficult. One
would strongly expect C’s malloc and F90’s allocate
to reserve space on the heap. Likewise small local
variables tend to end up on the stack.

Large local variables really ought not go on the stack:
it is optimised for the low-overhead allocation and
deletion needed for dealing with lots of small things,
but performs badly when a large object lands on it.
However compilers sometimes get it wrong.

UNIX limits the size of the stack segment and the
heap, which it ‘helpfully’ calls ‘data’ at this point. See
the ‘limit’ command (csh) or ‘ulimit’ (sh).

Because limit and ulimit are internal shell commands, they are documented in the shell
man pages (tcsh and bash in TCM), and do not have their own man pages.

159

Sharing

If multiple copies of the same program or library are
required in memory, it would be wasteful to store
multiple identical copies of their unmodifiable read-only
pages. Hence many OSes, including UNIX, keep just
one copy in memory, and have many virtual addresses
refering to the same physical address. A count is kept,
to avoid freeing the physical memory until no process
is using it any more!

UNIX does this for shared libraries and for executables.
Thus the memory required to run three copies of
Netscape is less than three times the memory required
to run one, even if the three are being run by different
users.

Two programs are considered identical by UNIX if they are on the same device and have the

same inode. See a the section on filesystems for a definition of an inode.

160

A UNIX Memory Map

reserved

shared text

kernel

reserved

stack
text

data
bss

heap

0xffff ffff ffff ffff

0xffff fc00 0000 0000

0x0000 0400 0000 0000

0x0000 03ff 8000 0000

0x0000 0001 4000 0000

0x0000 0001 2000 0000

0x0000 0000 0001 0000

0x0000 0000 0000 0000

N.B. This view is per process, not for the whole
machine.

This particular bizarre layout is based on that used by Digital UNIX 4.0. Note that this layout

imposes artificial limits, such as approx 4GB for the stack, and 512MB for the text segment.
Such limits tend to be much more severe when one is squeezing into a 32 bit address space,

rather than the 64 bit (43 bit usable) space here.

Shared data and mmap region omitted for simplicity.

161

Another UNIX Memory Map

kernel
0xffff ffff

0xc000 0000

0x4000 0000

stack

0x0000 0000

mmap

reserved

text

data
bss

heap

0x0804 8000

This is roughly the layout used by Linux 2.4 on 32 bit machines. Note the shorter addresses
than for Digital UNIX.

The mmap region deals with shared libraries and large objects allocated via malloc, whereas

smaller malloced objects are placed on the heap in the usual fashion. Note too that if one
uses mmap or shared libraries at all, the largest contiguous region is under 2GB.

Note in both cases the area around zero is reserved. This is so that null pointer dereferencing
will fail: ask a C programmer why this is important.

162

Memory Maps in Action

Under Linux, one simply needs to examine
/proc/[pid]/maps using less to see a snapshot of
the memory map for any process one owns. It also
clearly lists shared libraries in use, and some of the
open files.

Under Solaris one must use a program called pmap in
order to interpret the data in /proc.

With Digital UNIX less information is available, and
it is harder to extract. In TCM a utility called pmap

exists which will display some information in a similar
fashion to the Solaris program.

Files in /proc are not real files, in that they are not physically present on any disk

drive. Rather attempts to read from these ‘files’ are interpretted by the OS as requests for
information about processes or other aspects of the system.

163

CPU Families

164

CPU Families

CPUs tend to come in families, each successive
member of a family being binary compatible with
all preceding members: that is, being able to run any
machine code written for preceding members.

This means that later members of a family must have
the same registers and instructions as earlier members,
or, if not the same, a superset of them.

Each family will have its own assembly language, and
potentially different numbers of registers and even
types of instructions.

Whereas high-level languages, such as C and
FORTRAN, are portable between different CPU
families, the low-level assembler or machine code
certainly is not.

165

Common Families

8086 Intel 8086, 80286, and all IA32

IA32 Intel 386, 486, Pentium, PentiumII, PentiumIII,
Pentium4, Cyrix 586 and M1, AMD K6 and Athlon.

Motorola 68K 68000, 68020, 68030, 68040, 68060

Alpha 21064 (EV4), 21164 (EV5), 21264 (EV6)

Power Power, Power2, Power3, Power4

PowerPC 601, 603, 604, 620, 7400

MIPS64 R8000, R10000, R12000, R14000

SPARC SPARC I, SPARC II, SuperSPARC, Hyper-
SPARC, UltraSPARC, UltraSPARC II & III

All except the non-IA32 8086 line, the M68K line and the Alphas are still being developed,
with future members planned.

Some minor members have been omitted.

166

Inter-family differences: IA32 vs Alpha

IA32 Alpha
Integer Regs 8 x 32 bit 32 x 64 bit
F.P. Regs 8 x 80 bit 32 x 64 bit
Memory operands Yes No
Has trig functs Yes No
Instruction length 1 - c.14 bytes 4 bytes

There are many other differences, such as the Alpha
having integer and FP instructions of the form ‘a op b
→ c’ where a, b and c must be registers. IA32 uses
the form ‘a op b → a’ for integer operations, and a or
b may be references to data stored in memory.

The Alpha uses the naming convention $0 to $31 for its integer registers, and $f0 to $f31

for its floating point registers. The majority of these registers are equivalent. IA32 calls its
integer registers %eax, %ebx, %ecx, %edx, %edi, %esi, %ebp and %esp for odd historical

reasons. For IA32 there are many tedious restrictions concerning which instructions may act
on which registers.

Both have an additional register holding to the address of the current instruction: the

instruction pointer. A branch instruction simply modifies this special register. Both also
reserve one register for pointing to the end of the program’s stack: $30 for Alpha, and %esp

for IA32. Alpha has a register, $31, whose value is fixed at zero. IA32 does not.

167

More IA32 vs Alpha

double t=0.0; int i,n;

for (i=0;i<n;i++) t=t+x[i];

; %edx contains n # $17 contains n

; %ecx contains x # $16 contains x

fldz fclr $f0

xorl %eax,%eax clr $1

cmpl %edx,%eax

jge .L3 ble $17,L$5

.L5: L$6:

faddl (%ecx,%eax,8) ldt $f1, ($16)

incl %eax addl $1, 1, $1

cmpl %edx,%eax cmplt $1, $17, $3

jl .L5 lda $16, 8($16)

.L3: addt $f0, $f1, $f0

bne $3, L$6

L$5:

Both sides slightly abbreviated, but many differences are clear. Different mnemonics are used

(Float LoaD Zero vs Float CLeaR), and certainly different binary representations. IA32 has a
special instruction to increment (add one to) a register, Alpha does not. IA32 can move data

from memory directly to the FP adder without passing through a register, Alpha cannot. Etc.

168

The IA32 Family in Detail: the Ancestors

8086

Introduced 1978. 16 bit registers and data bus, 20 bit
address bus (1MB), four clock cycles to do simplest
instruction, separate FPU (8087). Integer registers
each usable as a pair of 8 bit registers (e.g. ax is ah

and al). Clock speeds 4 to 10MHz. 29,000 transitors.

80286

Introduced 1982. Address bus increased to 24 bits
(16MB), simple operations complete in three cycles,
separate FPU (80287). Clock speeds 8 to 12MHz.
134,000 transistors.

These things are antique, and firmly CISC. They have
many, many bizarre instructions, not least for dealing
with binary coded decimal (what? never mind. . .)
However, code written for one of these will still run on
a Pentium4 designed over two decades later.

Although the 8086 is the first ancestor as far as binary compatibility is concerned, that is, the

ability to run machine code written for one process on another, it is not a completely ‘clean’
design, and enjoys a degree of compatibility with the 8080, which is 4 years older.

169

IA32: the Start

80386

Introduced 1985. Registers extended to 32 bits, e.g. the ax

register is now the bottom half of the eax register, and two new

registers added. Data and address bus extended to 32 bits (4GB).

Virtual memory (paging etc.) with 32 entry 4-way associative

TLB, multitasking, device protection. Simple operations complete

in two cycles. Separate FPU (80387). Clock speeds 16 to

33MHz. Different modes of operation in order to keep full 8086

compatibility. This major increase of functionality has almost

everything a modern CPU has, and just 275,000 transistors.

i486

Introduced 1989. Almost no changes in functionality, but core

redesigned. Cache controller with an 8KB 4-way associative

write-through cache, two write buffers, and the FPU, placed on

the main CPU. Pipelined integer core does basic operations in

a single cycle. Bus can transfer a cache line (16 bytes) in five

cycles, compared to two cycles per 4 bytes for the 80386. Clock

speeds 20 to 50MHz. The i486DX2 and i486DX4 versions have

a 2:1 or 3:1 core:bus frequency ratio. Clock speeds 50MHz to

100MHz.

170

The Pentium: the last CISC

Pentium

Introduced 1993. Very few changes in functionality, but many

in implimentation. Again a redesigned core, now superscalar for

integer operations, with dual issue possible in some circumstances.

The FPU is pipelined for the first time, and is made much faster.

The cache is split as a 2-way associative 8KB instruction cache,

and similar write-back data cache. Branch prediction and 4MB

pages introduced. The data bus width is increased to 64 bits, and

runs at 60 or 66MHz. The core runs at an integer or half-integer

multiple of this, from 60MHz to 200MHz.

PentiumMMX

Adds Intel’s MultiMedia eXtensions, instructions which pack eight

8-bit, four 16-bit, two 32-bit or one 64-bit integer into a floating-

point register, and do simulateous adds / shifts / etc. on them.

Useful for some graphics work. Also has ’add with saturate’,

e.g. 200 + 180 = 255 for an 8-bit example. Branch prediction

improved, and caches made 4-way associative again and increased

to 16KB.

171

PentiumPro / Pentium II / Pentium III

Introduced 1995. Yet another redesigned core (often
called P6). The core is a superscalar RISC CPU, and
the CISC Intel instructions are converted to ‘micro-ops’
and passed on to the core, with one CISC instruction
potentially producing several µ-ops. The core can
overlap and reorder the simple µ-ops with greater ease
than it could the CISC IA32 instructions, and yet old
IA32 code runs happily.

The PPro does not support MMX, the PII (1997)
does, and the PIII (1999) also supports SSE. SSE adds
support for four single precision floats in one of eight
new SSE registers. Very important for certain 3D
effects, but not for science, as is single precision.

The PPro has the secondary cache on the CPU and
running at the same speed (150MHz to 200MHz).
The PII moves it off die, but keeps it on the physical
CPU module, and runs it at half CPU speed. It
also introduces 100MHz bus speeds for the faster PIIs.
Similarly faster PIIIs use 133MHz buses, and up to
1.2GHz cores.

172

Pentium4

Introduced 2001. Another redesign, again with a RISC
core and a conversion step. This time the instruction
cache is moved after the conversion logic, so the µ-
ops get cached. SSE2 introduced, which permits two
doubles in an SSE register. Useful at last!

Primary data cache only 8KB write through, combined
secondary cache 256KB initially, later 512KB. DTLB
64 entries. Automatic hardware prefetching. Xeon
models support multiprocessor designs.

Clock speeds are very high: 1.4GHz to 3GHz. However,
many latencies are longer than the PIII, and the pipeline
is longer so mispredicted branches are more costly.
Faster than a PIII, but not by as much as the increase
in clock speed would suggest, unlike every previous
family member which would outperform its immediate
predecessor even when run at the same clock speed.

Data bus, still 64 bit, run at 400MHz initially, 533MHz
later, giving much higher potential than the PIII.

173

Marketing gimmicks

8088 an 8086 slowed by an 8 bit data bus.

386SX an 80386 slowed by a 16 bit data bus and with
a 24 bit address bus.

486SX an i486 slowed by the removal of the FPU.

Celeron a PII, PIII or P4 slowed by reducing the
amount of secondary cache (or removing it altogether),
and reducing the bus speed. Hence all Celerons support
MMX, but only some SSE or SSE2.

The above are slightly cheaper to make than the
corresponding ‘real’ CPUs, and are sold at significantly
lower prices.

MMX MultiMedia eXtensions

SSE Streaming SIMD Extensions

174

IA64

Intel’s latest range of processors is called the IA64 range
(Itanium and Itanium2), and is not fully compatible
with IA32 code. It differs from IA32 in many ways:

• Integer registers are 64 bit

• There are 128 fp registers

• It uses VLIW (3 instructions per word)

• It has predicate bits

It is not really that new: almost everything it does had
already been done a decade ago.

The Itaniums have much larger secondary caches than
the IA32 range: 1.5MB for the Itanium, 3MB for the
Itanium2.

175

The Alpha Family

21064 (EV4)

The first Alpha, the 21064 or EV4, was introduced in 1992. It

was a fresh, new design with thirty-two 64 bit integer registers,

thirty-two 64 bit floating-point registers (supporting IEEE and

VAX formats), and a superscalar pipelined RISC architecture.

Supported paging and protection. Separate intruction and data

caches, each 8KB direct mapped write through. Twelve entry

ITLB, and 32 entry DTLB, both fully associative. Address bus

34 bit. Can issue two instructions per clock cycle, at most one

floating point. CPU speeds 100MHz to 266MHz. Data bus

128 bit, 33 to 40MHz.

21164 (EV5)

1995. Added a small, 96KB 3-way associative write-back

secondary cache, ITLB increased to 48 entry, DTLB to 64 entry.

Two integer pipelines, one FP add pipeline, one FP multiply

pipeline. Four way superscalar core, 40 bit address bus. The

21164A (EV5.6) added Alpha’s form of ‘MMX’ for dealing more

efficiently with small integer data. Core speeds 266MHz to

600MHz.

176

21264 (EV6)

1999. Primary caches now 64KB 2-way associative,
write back for data. Both TLBs 128 entry. Out-
of-order execution supproted by the core. Secondary
cache controller on the CPU core, supporting 2MB
to 16MB external direct mapped write-back caches.
Software prefetch added. Core speeds 500MHz to
1.25GHz. Data bus 64 bit 333MHz (500MHz later).

Although the theoretical peak speed of the EV5 and
EV6 is the same, the many enhancements on the EV6 –
bigger, better caches, OOOE, much higher bandwidth
to memory – ensure that the EV6 easily outperforms
the EV5.

Unfortunately the Alpha range got cancelled by Compaq for dubious political reasons. The
21364 (EV7) will probably arrive in 2003, at least two years late. It has the same core as the

EV6, but a faster secondary cache, a redesigned memory interface, and much of the logic
needed to create multiprocessor machines incorporated. The 21464 (EV8) has been cancelled.

It would have had a redesigned core supporting 4-way SMT.

177

How Many Bits?

Z80 8086 Pentium Alpha
Integer registers 8/16 8/16 8/16/32 64
FP registers - (80) 80 64
Address registers 16 16 16/32 43
Data Bus 8 16 64 64
Address Bus 16 20 36 41
Conventional answer 8 16 32 64

The question is ill-defined.

The answer used to be the largest integer operand size
for simple operations.

Today the answer is usually the size of the address
space.

A 16-bit computer can address 64KB, a 32-bit computer 4GB, and a truely 64-bit computer
16EB.

The ‘Alpha’ above is the EV6.

178

Families and Optimisation

Although code compiled for the 80386 will run on the
Pentium4, and code compiled for an EV4 Alpha will
run on an EV6, this is not ideal. Not only will all the
additions to the instruction set be ignored by such code,
the scheduling optimisations may be inappropriate.

Whereas the EV5 will issue an FP × and +
simultaneously if there are no data dependencies, the
EV4 cannot do so, so for it there is no point in trying
to pair × and +. Similarly, a 80386 or i486 will fail
to predict the branch at the end of a loop, and benefit
from ‘hiding’ the resulting pipeline drain by the latency
of a floating-point instruction, such tricks make no
sense for later models, which will predict the branch.

Of course, if one does use extensions to the instruction
set, backwards compatibility suffers. Code using Intel’s
MMX instructions will not run on an 80386, i486, plain
Pentium or a PentiumPro.

Code using the full EV6 instruction set will run on an EV4 under Digital UNIX: the missing

instructions are emulated in software provided by the OS. This happens extremely slowly.

179

Video Hardware

180

Video

A short section, but something ought to be said about
the main means of communication from computer to
human.

A computer monitor is a dumb cathode ray tube. The
signals it receives from the computer control fairly
directly the scanning of the three electron beams (red,
green and blue) across the screen.

The coloured phosphors that the electrons strike glow
for a few tens of milliseconds after they have been
energised. After that, the picture disappears.

The intensity of each gun is controlled in an analogue
fashion, so that a monitor can display an infinite range
of colours and brightnesses. The resolution of the
monitor is limited by the fineness of the grid of red,
green and blue phosphors. Monochrome monitors need
no such grid.

181

The video signal

The electron beams scan lines from left to right, going
from the top to the bottom of the screen. This results
in three characteristic frequencies.

• Vertical refresh: the rate at which the whole picture
is repeated.

• Horizontal scan rate: the rate at which individual
lines are produced.

• Dot rate: the rate at which pixels are passed.

Humans can perceive flicker if the vertical refresh rate is below about 65 Hz. Below around
72Hz humans do not notice flicker, but are still adversely affected by it.

pixel: PIcture ELement – the dots which make up an image.

182

Video hardware

The graphics card contains an area of memory which
stores the current screen image, and some circuitry to
scan through that memory producing the video signal,
via a digital to analogue converter which changes the
binary numbers stored in the memory to the analogue
levels required by the monitor.

The amount of memory required is governed by
the total number of pixels and the colour depth.
Monochrome displays require one bit per pixel, full
colour displays 24 bits per pixel to give 256 independent
levels for the red, green and blue guns.

Older displays use a palette: a look-up table with
typically 16 or 256 entries and which returns a 24 bit
colour value. Thus for each pixel one need store only
the four or eight bit palette index, not 24 bits.

The worst display considered vaguely acceptable these days, 1024x768 with 256 colours,

requires 768KB of memory. A trivial amount now, but an enormous amount a few years
ago. 1280x1024 in 24 bit requires 4MB, or slightly more if the pixels need aligning on 4-byte

boundaries.

Bandwidths are also high, as the video circuitary needs to read the whole display once for
every scan, so about 75 times per second.

183

TFT LCDs

A thin film transistor liquid crystal display is not at all
like a CRT. It works at a fixed resolution, with each
dot being addressable in a manner similar to a DRAM
chip. However, unlike a DRAM chip, each pixel stores
an analogue value to give different intensities.

The liquid crystal layer merely absorbs light, so a white
backlight shines through this layer, which has three
cells, one red, one green and one blue, for each pixel.
The response time of the liquid crystal is somewhat
slower than that of the CRT, and the decay time in
the absence of refresh is so long that the refresh flicker
is not usually apparent.

Given that the image is stored in RAM on the video card, converting this to an analogue
signal suitable for a CRT, and then reconverting this to a signal suitable for a RAM-like

device, is silly. It also works poorly: try displaying alternate black and white pixels (e.g. an
xterm scrollbar) on such a display – they will ‘crawl’ spontaneously. So one should use a

different form of signal between a graphics card and an LCD monitor, and this is what DVI is
(and the old SVGA (or 15 pin D-sub) connector isn’t).

184

Acceleration

Graphics adapters were ‘dumb’, the computer’s CPU
explicitly writing every pixel into their memory.

Then processing power appeared on the adapter itself
able to do simple operations, such as filling, copying
& scrolling rectangular regions. This 2D acceleration
made a large difference to graphics performance.

Without acceleration, to scroll a window the CPU
would have to copy the contents to a slightly different
location in the video memory, with each pixel moving
twice across the CPU’s bus.

With acceleration, the CPU sends a short instruction
to the graphics card, and then lets the graphics card
get on with the problem. The card will use its own
internal bus, which will be many times faster than the
host computer’s bus.

Thus the computer’s CPU and bus are freed immediately, and the graphics operation
completes several times faster.

On PCs, the original VGA and SVGA standards were unaccelerated. Chips such as the S3
and ATI’s Mach32 were early, and incompatible, examples of adding acceleration to the core
SVGA functionality.

185

Acceleration in pictures

Herewith a diagram of the data flow for an
unaccelerated and accelerated move or scroll operation.

video

processor

video

Before After

Data

Single command

diskdisk

CPU bus

PCI bus

PCI Bridge

CPU

controller
Disk

memory

PCI Bridge

CPU

controller
video

card
Disk

memory
card
video

When PC graphics cards call themselves ‘64 bit’ or ‘128 bit’ they are usually referring to the

width of the internal bus on the card. When they call themselves 8, 16 or 24 bit they are
referring to the colour depth . . .

If the memory on the video card is more than needed for storing the image, the extra can be
used to store frequently-needed objects which can then be quickly copied to the part which is

being displayed.

186

OpenGL

OpenGL is a development (1992) of an older,
propriatory, SGI graphics library. It provides for all
the primitive operations one might wish for in 3D
graphics: partial transparency, texture mapping, colour
interpolation, lighting effects, object lists with 3D co-
ordinates, rotations, etc. Its basic unit of operation
is the triangle. (Any polygon can constructed from
triangles, and triangles can (approximately) tile curved
surfaces.)

Although OpenGL could be converted to standard
bitmap by software, this was slow. SGI had video
cards which did most of the operations themselves
in hardware – 3D acceleration – but these were very
expensive (thousands of pounds).

However, towards the end of the 1990s OpenGL
suddenly took off as it did precisely what games
programmers needed, and the hardware had become
affordable.

187

Texture Mapping

Two identical polygons with a simple brick texture
mapped onto them. The left has a simple 2D texture
mapping, the right a simple 3D mapping.

OpenGL would cope with lighting effects as well as doing the simple geometric transform

required above.

A video card with hardware GL support has a processor optimised for the sort of single-precision
floating-point operations involved in 3D graphics. It will be highly RISC, highly pipelined, and

probably superscalar, and may well have better performance than the computer’s main CPU.
The processor on the graphics card is sometimes called the ‘GPU’ (Graphics PU), and needs

memory for storing textures and triangle co-ordinates as well as the image itself.

OpenGL has been adopted by Windows and MacOS, as well as the UNIX world.

A final speed enhancement on modern computers is the use of a dedicated bus for the video
card. This AGP (Advanced Graphics Port) bus is simpler than PCI (it can only cope with a
single device), faster than PCI, and is not shared with disk drive controllers etc.

188

Parallel Computers

189

Not Parallel: Multitasking

A single CPU can run only one program at once.
Multitasking is an illusion for the confusion of gullible
humans.

The processor runs one program for a timeslice,
typically 1 to 100ms, then switches to another. The
shorter the timeslice, the less humans will notice.

When the CPU performs a process switch, it must save
to memory all its registers and reload the set relevant
to the new process. This will take hundreds of clock
cycles. The restarted process will also find the caches
mostly, or entirely, storing data relevant to the previous
process.

The more registers a CPU has, the more expensive a process switch is, although the flushing
of caches, TLBs and branch prediction history is a significant hidden cost too. The longer the
timeslice, the less time is wasted switching.

190

Inequality

If the operating system knows a process is waiting
for input (disk, network, human), it will not give that
process any timeslices until input is ready for it. Such a
process will be marked as waiting rather than running.
The arrival of input might cause an immediate process
switch to be triggered, with the timeslice of whatever
process was running being interrupted. Thus fast
response to I/O events is achieved.

The part of the operating system responsible for
assigning priorities to processes is called the scheduler.
The priorities need not be equal.

The UNIX ps command shows processes waiting for input in a state of ‘wait’ or ‘sleep’. Only
those in a state of ‘run’ are actively competing for CPU cycles.

The load or load average is UNIX’s term for the number of proceses is the ‘run’ state averaged

over a short period. The uptime command reports three averages, over 1, 5 and 15 minutes
on most UNIXes, and 5s, 30s, and 1 minute on Tru64.

Under UNIX the nice and renice commands can be used to decrease the scheduling priority

of any process you own. The priority cannot be increased again, unless one is root. (If you
use tcsh or csh as your shell, nice is a shell built-in and is documented in the shell man
page. Otherwise, it is /usr/bin/nice and documented by man nice in the usual way.)

191

Co-operate or be Pre-empted

Early forms of MacOS and Windows used co-operative
multitasking. Each process was responsible for giving
back control to the scheduler, and would retain the
CPU until that point. Naughty or buggy programs
could thus prevent multitasking.

With pre-emptive multitasking, the process need know
nothing of multitasking, for it will be automatically
and unavoidably suspended at the end of its allotted
time. Thus UNIX, Win9x, WinNT, and most modern
OSes.

Pre-emptive multitasking needs support from the CPU. The 80386 was the first Intel processor
to support this, although all the 68000 range have been capable.

192

Privilege

Modern CPUs associate a privilege level with each
piece of code, and support at least two such levels.
The lower is forced to use virtual addressing, cannot
access any hardware directly (video, disk, ethernet
card, PCI bus, etc.), and cannot change scheduling
priorities. The higher can use physical addressing,
access all hardware, and do anything.

UNIX runs just the kernel at the higher level, with all
processes running at the lower. Whenever a process
accesses disk, video or network, or allocates memory, it
must send the request via the kernel. The kernel then
applies appropriate restrictions, restricting root slightly
less than other users.

The interface between the two privilege levels is
carefully designed to prevent a normal process being
able to run its own code with full privilege.

Early, cheap CPUs designed for single-user computers, e.g. the 8086 and Z80, did not support

this concept at all.

In any OS, the kernel should be as small as possible, for bugs in the kernel have the greatest
potential for mischieve.

193

Parallel Computers: the Concepts

Modern supercomputers are generally parallel
computers. That is, they have more than one CPU.
Usually 50-500 CPUs. The CPUs themselves are usually standard workstation processors,

hence ‘cheap.’

Some tasks are clearly suited to being done by a ‘farm’
of ‘workers’ working simultaneously, whilst others are
not. As two examples:

Integration of differential equation over very many
timesteps. Clearly one cannot start the 5,000th
timestep until the 4,999th has been finished. The
process is fundamentally serial.

Factorisation of a large number. The independent
trial factors from 2 to

√
n are readily distributed

amongst multiple processors.

A simple example of parallelisation has alrady been seen in the various ‘multimedia’

instructions. This is known as SIMD parallelism: Single Instruction Multiple Data. The
parallism discussed in this section is MIMD (Multiple. . .).

194

Scaling

How much faster does a code run when spread over
more CPUs?

no. of CPUs

Sp
ee

d

From top to bottom:
Linear scaling (rare!)
Amdahl’s Law (see below)
The Real World

Notice that the speed is not monotonic in the number of CPUs

195

Amdahl’s Law

Amdahl was a pioneer of supercomputing and an employee of IBM.

This law assume that a program splits neatly into an
unparallelisable part, and a completely parallelisable
part. It claims:

tn = ts + tp/n

The total run time on n processors is the time for the
serial part of the code, plus the time the parallel part
would take on a single processor divided by the number
of processors.

Consider ts = 0.2 and tp = 0.8. Then t1 = 1.0,
t32 = 0.225 and t∞ = 0.2.

On 32 processors the speedup is 4.5× and the efficiency
is just 14%.

196

Bigger is better

Suppose ts and tp scale differently with problem size.

Assume ts scales as N and tp as N3 and consider a
problem 4× as large as before. Now

ts = 0.8 and tp = 51.2 giving t1 = 52 and t32 = 2.4.

Now the speedup on 32 processors is 21×, and the
efficiency is now over 67%.

Supercomputers like big problems.

Conversely, workstations hate big problems, as their various caches become less effective and
their overall efficiency falls.

197

SMP: Bused Based

SMP (Symmetric Multi Processor, Shared Memory
Processor) describes a particular class of multi-CPU
computer.

The original, bus-based, SMP computer simply has
multiple CPUs attached to a single system bus.

CPU CPU CPU CPU

memory

The architecture is symmetric (all CPUs are
equivalent), and the memory is shared between them.

198

Two Heads are Better than One?

As in a conventional, single-CPU computer, the single
processor typically spends between 75 and 95% of its
time waiting for memory, trying to ‘feed’ two or more
CPUs from one memory bank is clearly crazy. The
memory was, and is, the bottleneck. The CPU was
not.

However the design is cheap, simple, still common, and
therefore worth exploring further.

SGI’s PowerChallenge, DEC’s TurboLaser and many dual processor machines (including
Intel’s) have this architecture. DEC’s DS20 and DS25, and Sun’s SunBlade 2000, do not.

199

Shared memory

As all processors access the same main memory, it
is easy for different parts of a program executing on
different processors to exchange data. One CPU can
write an array into memory, possibly from disk, possibly
as the result of a calculation, then all other CPUs can
read it with no further effort.

Programming is thus simple: all the data are in one
place, and there is merely the little matter of dividing
up the millions of instructions to be executed in a long
loop between the multiple eager processors – a job so
simple that the compiler can do it automatically.

Except it is not quite that simple.

200

Cache coherency

cachecache

memory

CPU CPU

Processor A reads a variable from memory. Later, it
reads the same variable, which it can now get directly
from its cache, without troubling the system bus.

Only it can’t. For what if processor B has modified
that variable, and processor A needs the new value?

If processor B has a write back cache, the new value
may not even have reached the main memory, with the
current value being held in processor B’s cache only.

201

Snoopy caches

The trivial solution is to abandon all caches.

An easy solution is to ban write-back caches, and
to ensure that each cache ‘snoops’ the traffic on the
system bus, and, if it sees a write to a line it is currently
caching, it must either update itself automatically, or
mark its copy as being invalid.

These solutions severely compromise one’s cache
architecture, and often lead to a SMP machine
generating more traffic to the main memory than a
uniprocessor machine would running the same code.
Thus a SMP machine can fail to reach the performance
of a single-processor workstation based on the same
CPU.

With either of these solutions, the definitive data are always those in the main memory.

Even single CPU workstations have a lesser version of this problem, as it is common for
the CPU and the disk controller to be able to read and write directly to the main memory.
However, with just two combatants, the problem is fairly easily resolved.

202

MESI solutions

A typical SMP has extra bits associated with each
cache line, which mark it as being on one of four
states:

• Modified (i.e. dirty)
• Exclusive (in no other cache)
• Shared (possibly in other caches too)
• Invalid

Modified implies exclusive, and a line must be exclusive
before it can be modified.

A line fill for a read starts by ensuring that no other
cache has the line modified, then loading the line
marked as ‘shared.’ A fill for a write must ensure than
any other cache with that line shared marks it invalid.
In either case any cache with it ‘modified’ (there can
be only one) writes it back to memory.

Thus a line can be:
In no caches

In one cache and marked as modified
In one or more caches and modified in none

203

Directory Entries vs Broadcasting

Two techniques are used for communicating with the
other cache controllers. One is simply that details of
all line fills are broadcast to all cache controllers, and
the fill does not progress until the other controllers
have had an opportunity to reveal that they held the
line.

This is a simple technique, but the broadcast coherency
traffic scales as the square of the number of caches,
so it does not perform well beyond about eight CPUs.

Alternatively, each line in main memory can have a
directory entry associated with it, which records which
caches have copies of the line. Then a fill need simply
check the directory, contact only those caches listed
(probably none), and proceed, updating the directory
as it does so.

204

MPP: Breaking the Memory Bottleneck

Rather than multiple processors sharing the same,
‘global’, memory area, each processor could have its
own private memory, and no global memory. Adding
processors adds more pools of private memory with
their separate buses, and the total memory bandwidth
increases in step with the number of processors. Such
a computer is called a distributed memory computer
or massively parallel processor

cache

I/Omemory

CPU cache

I/Omemory

CPU

Interconnect

memory I/O

cacheCPU

memory

CPU

I/O

cache

205

Breaking the Code

This arrangement is so far removed from the traditional
model of a computer, that traditional code does not
run on it. The programmer must be prepared to
think in terms of multiple processors working on his
program at once, each with its own private memory,
and any interprocessor communication being explicitly
requested.

Fortunately this is not nearly as hard as it might sound,
and there are standard programming models to assist.
Thus one can write code for a Cray T3E, using C or
FORTRAN with MPI, and be confident that it will run,
unmodified, on an IBM SP, a Beowulf cluster, or on a
machine not yet developed. One merely has to follow
the relevant standards and not be lured down the road
of vendor-specific extensions. . .

MPI (1994) and PVM (1991, now obsolete) standardised the programming model for MPPs.

Before PVM, each vendor had its own way of doing things.

206

Topologies

There are many different ways of connecting nodes
together, as ever governed by cost and practicality.

Two useful ways of characterising a network are the
‘diameter’, the maximum number of hops from one
node to another, and the bisectional bandwidth, the
bandwidth between two halves of the machine.

Bandwidth Diameter
Ring 2 N/2

2D Grid
√

N 2
√

N

2D Torus 2
√

N
√

N
Hypercube N/2 log2 N
Tree 2 2 log2 N
Fat tree N/2 2 log2 N
X-bar N/2 1
3D X-bar N/2 3

The Cray T3D is a 2D torus, the IBM SP2 a fat tree, the SGI Origin2000 a form of hypercube,

and the Hitachi SR2201 a 3D X-bar.

Ideally the network topology should not be apparent
to the user.

207

16 Nodes. . .

Hypercube

2D mesh

2D torus

Ring (1D torus)

Tree (log 2) Fat Tree (log 4)

208

Performance

Another important characteristic of the interconnect
is its raw performance, both bandwidth and latency.
These are most usefully measured using a standard
interface such as MPI, and not using the hardware
directly.

Ideally the time to transmit a packet is simply

latency + size / bandwidth

If size < latency × bandwidth, then the latency will
dominate.

Also ideally communication between a pair of nodes
is unaffected by any other communications happening
simultaneously between other nodes. Such a network
is called non-blocking.

Typical figures are 200 to 350 MB/s bandwidth and 10 to 30 µs latency. Clusters using
100MBit/s ethernet typically run at around 10 MB/s and 120 µs.

209

Parallelisation Overheads

Amdahl’s law assume that there are no overheads
associated with parallelisation. This is certainly a
gross approximation.

Consider the case where each node must exchange data
with every other node at some point in the program:
some sort of rearranging of an array spread over all the
nodes. E.g. an FFT

Each node must send n−1 messages of size a/n where
a is the size of the distributed array. Even assuming
that the nodes can do this simultaneously, the time
taken will be

(n − 1) ×
(

λ +
a

nσ

)

≈ nλ +
a

σ

where λ is the latency and σ the bandwidth.

210

Amdahl revisited

A better form of Amdahl’s law might be

tn = t′s + tp/n + cλn

where t′s > ts.

Now tn is no longer a monotonically decreasing
function, and its minimum value is governed by λ.

This form stresses that the quality of the interconnect
can be more important than the quality of the
processors.

Hence ‘cheap’ PC clusters work well up to about 16 nodes, and then their high latency

compared to ‘real’ MPPs starts to be significant.

211

Programming Example

Consider doing an enormous dot product between two
arrays previously set up. The SMP code might look as
follows:

! Let’s hope the compiler optimises

! this loop properly

t=0.0

do i=1,100000000

t=t+a(i)*b(i)

enddo

Easy to write, but little control over whether it is
effective!

To be fair, HPF (High Performance Fortran) and OpenMP (a set of directives to Fortran and

C) permit the programmer to tell an SMP compiler which sections of code to parallelise, and
how to break up arrays and loops. One day I might meet someone using such a language for

real research.

212

Programming, MPP

! Arrays already explicitly distributed

! Do the dot product for our bit

t_local=0.0

do i=1,nmax ! nmax approx 100000000/ncpus

t_local=t_local+a(i)*b(i)

enddo

! Condense results

call MPI_AllReduce(t_local,t,1, &

MPI_DOUBLE_PRECISION, MPI_SUM, &

MPI_COMM_WORLD)

(Those MPI calls are not half as bad as they look once one is used to them!)

All the variables are local to each node, and only the MPI call causes one (t) to contain the

sum of all the t local’s and to be set to the same value on all nodes. The programmer must
think in terms of multiple copies of the code running, one per node.

213

The Programming Differences

With MPP programming, the programmer explicitly
distributes the data across the nodes and divides up
the processing amongst the nodes. The programmer
can readily access the total number of CPUs and adjust
the distribution appropriately.

Data are moved between nodes by explicitly calling a
library such as MPI.

With SMP, the compiler tries to guess how best to split
the task up amongst its CPUs. It must do this without
a knowledge of the physical problem being modeled. It
cannot know which loops are long, and which short.

Artificial intelligence vs human intelligence usually
produces a clear victory for the latter!

214

SMP: The Return

Most modern SMP machines are not bus based.
Internally they are configured like MPPs, with the
memory physically distributed amongst the processors.
Much magic makes this distributed memory appear to
be global.

This (partially) addresses the poor memory bandwidth
of the bus based SMP machines.

However, there are problems. . .

And magic costs money, and, in this case tends to degrade performance over an MPP,
providing instead increased flexibility.

215

NUMA / cc-NUMA

memory I/O memory

CPU

I/O

I/Omemory

CPU

I/Omemory

CPU

CPU

Four nodes in a tree configuration giving three different
memory access times: on node, nearest neighbour and
next-nearest neighbour.

If caches are to be added, the lack of a single common
bus to snoop requires that a broadcast or directory
coherency protocol be used.

NUMA = Non Uniform Memory Access
cc-NUMA = Cache Coherent NUMA

216

The Consequences of NUMA

If a processor is mangling an array, it now matters
crucially that that array is stored in the memory on
that processor’s node, and not on memory the other
side of the machine. Getting this wrong can drop the
performance by a factor of three or more instantly.

Whereas with MPP all memory accesses are guaranteed
to be local, as one cannot access remote memory
except by explicit requests at the program level, with
SMP the compiler has many ways of getting things
wrong.

for(i=0;i<10000000;i++)

t+=x[i]*y[i];

Consider this on a two node NUMA machine. If the
code is split so that node A stores the first 5000000
elements of each array, and does the first half of the
loop, then optimal performance is obtained. If node A
stores the whole of x and node B the whole of y, then
much reduced performance will result.

217

Modern, small SMPs

A decent, modern, small SMP machine, such as
Compaq’s DS20 or ES40, IBM’s Sphinx, SGI’s
Octane or Sun’s SunBlade2000 uses a rather different
architecture.

X bar
switch

memorymemory

CPU CPU

In this two CPU example, there are two distinct memory
‘banks’ and two CPUs joined by a switch which will
let either CPU talk to either memory bank whilst the
other pair also talk simultaneously. This fails when
both CPUs wish to access data in the same memory
bank.

This sort of design works for up to 4 or maybe 8 CPUs. After that point the crossbar switch
becomes very expensive, and the chance that the CPUs are not fighting for the same memory

bank rather low.

218

Modern, large MPPs

The latest MPP designs (Hitachi SR8000, IBM SP3,
Compaq SC45) join SMP nodes like the above.

mem. mem. mem. mem.

Interconnect

mem. mem.

switch I/O

CPUCPU CPU CPU

I/Oswitch

mem. mem.

CPU

I/Oswitch

CPU CPU

I/Oswitch

CPU

Such a machine is awkward to program, as one has
both internode and intranode parallelism to address.

Modern, large SMPs are just the same. The Origin2000 has two CPUs per node, the
Origin3000, Compaq GS320 and SunFire15K have four.

219

Multithreading

Whether in a uni- or multi-processor computer, the
CPU is often used very inefficiently, with most of its
functional units idle waiting for memory to respond
or data dependencies to be resolved. It is rare for
a four-way superscalar CPU to be able to issue four
instructions simultaneously.

Conventional multitasking is not the answer. This
software-driven process-switching takes thousands of
clock cycles, so is useful for latencies caused by disk
drives, networks and humans.

However, there are rarely data dependencies between
processes, so in some sense multitasking is the answer.

A multithreading processor gains multiple banks of
registers, one per ‘thread’ (process) which will be run
simultaneously. These processes share access to the
functional units, caches, instruction decoding logic,
etc.

220

SMT

There are different ways of achieving multithreading.
Some change thread every clock-cycle, whereas
the more advanced Simultaneous MultiThreading
architecture allows instructions from different threads
to be issued in the same clock-cycle.

The extra logic on the CPU need to keep track of a
modest number of threads is very small, increasing the
CPU size by less than 10%. The gain is zero if the
computer is only ever running a single thread, but the
throughput can increase by over half when two threads
are run.

Two MultiThreading Architectures (MTAs) currently exist. One, developed by Tera (now
Cray), supports 128 threads per processor (prototype delivered 1998). The other, Intel’s

‘Pentium4 with Hyperthreading’ (2002), supports two threads per processor. The now-
cancelled EV8 Alpha was to support four-way SMT, but other MTAs are in development.

221

Permanent Storage

222

Disk Drives

Are remarkably boring, but worthy of mention because
people do rely on them rather a lot. . .

Remarkably standard, with just two interfaces
dominating the market for hard disks and CD ROMs:
SCSI at the expensive end, EIDE (aka UDMA) at the
cheap end.

SCSI: Small Computer Systems Interface, a general-purpose interface which can support

scanners and tape-drives, and, depending on the flavour of SCSI, several metres of external
cable. Each SCSI interface (or channel) can support seven devices.

EIDE: Enhanced Integrated Drive Electronics. Designed for internal disk drives only, with
short cable lengths and just two devices per channel.

223

Physical considerations

A single hard disk contains a spindle with multiple
platters. Each platter has two magnetic surfaces,
and at least one head ‘flying’ over each surface.
The heads do fly, using aerodynamic effects in a
dust-free atmosphere to maintain a very low altitude.
Head crashes (head touching surface) are catastrophic.
There is a special ‘landing zone’ at the edge of the
disk where the heads must settle when the disk stops
spinning.

The size of a drive is such that it fits into a standard
31

2
” drive bay, which is just 10cm wide and 1” tall for

the whole assembly.

Spin speeds were 3,600 rpm in the mid 1980s, and now
7,200 to 15,000 rpm. Capacity has grown over the
same period from typically 20MB to typically 60GB.

Drive bays are 1” tall, or 13
4” tall (half height), or 31

2” tall (full height). Their width is 10cm

(called ‘31
2 inch’) or 15cm (‘51

4 inch’), though the imperial width measurements refer to the

size of floppy disk taken by a drive which fits in given width. Laptops use yet smaller drives.

Although the heads move only radially, the air is dragged into tangential motion by the

spinning platters, and in this air stream the heads fly.

224

Data Storage and Access Times

Data are written in concentric tracks on each platter.
Each track is subdivided into sectors. An individual
sector typically records just 512 bytes.

For data to be read, the disk heads have to move into
position, and then wait for the correct piece of disk to
rotate past. The head seek time is typically around
7 ms, and the rotational latency is 3 ms at 10,000 rpm.

In other words, the bandwidth is about 20 times lower than main memory, but the latency is
over 30,000 times higher.

sector

track

platter

head

This disk has three platters and six heads. In reality the heads are much smaller than shown
above.

A modern (IBM) 36GB disk has 5 glass platters with a total of 10 heads. It records at 13,500
tracks per inch, and 260,000 bits per inch along the track. The raw error rate is about 1 in

1012 bits, reducing to 1 in 1014 after automatic correction. The sustained data transfer rate
from the physical disk is 15 to 30MB/s.

225

Floppy drives

The original floppy drives (8 inch and 53

4
inch) were

genuinely floppy. The current 31

2
inch variety are rigid,

and have the following specification:

Two sides, with one head per side
Eighty tracks per side, 135 tracks per inch
18 sectors per track
512 bytes per sector

Total unformatted capacity: 2×80×18×512 = 1440K.

The disk is spun at 360 rpm, and the heads are in
contact with the disk surface.

This specification has been static since the late 1980s, as has the bizarre, pre-EIDE interface
that most floppy drives use.

226

CD drives

There are many obvious differences between a CD
drive and a hard disk drive. A CD is physically 12cm
in diameter, and single-sided. The drive therefore fits
into the older 15cm wide bays.

The single head is optical, and is physically larger than
the tiny magnetic sensors used for hard drives. Thus
seek times are around ten times higher at 80ms.

The transfer rate for an audio CD player is 150KB/s,
and data drives are expressed as multiples of this, so a
40× drive is 6MB/s.

The data are written onto a single spiral track, starting
at the centre. The capacity is around 650MB.

227

Wot no files?

Disk drives do no more than store blocks of data.
The blocks are typically 512 bytes, and the commands
between the computer and disk drive look like:
Give me block number 43578
Write these 512 bytes to block 1473

A disk drive has no concept of a ‘file’.

Different operating systems conjure files out of disk
drives in different ways. We shall consider a couple in
detail.

228

File systems: the requirements

First let us consider what a file system needs.

• a concept of a ‘file’ as an ordered set of disk blocks.

• a way of refering to a file by a textual name.

• a way of keeping track of free space on the disk.

• a concept of subdirectories.

There are other things which would be useful too, as
shall be discussed.

The data which describes the files is called ‘metadata’,
as opposed to the plain data which the files contain.

229

An example: FAT16

As a first example, we shall consider FAT16, the
filesystem used by DOS.

The name means ‘File Allocation Table, 16 bit,’ and a
prominent feature is the FAT.

The disk is divided into fewer than 216 clusters, each
of which is then identified by a 16 bit number.

The FAT is a table with one 16 bit entry per cluster.
If the entry is 0, the cluster is unused, if 65535, the
cluster is the last in a file, and otherwise the FAT entry
contains the cluster number of the next cluster in the
file.

The limit of just under 65536 clusters per disk can make clusters quite large leading to poor
use of space. On a 1GB partition, the cluster size would be 16K, leading to an average of 8K

wasted per file.

On partitions of under 32MB, the cluster size is 512 bytes, or one block, the smallest possible
size.

230

Chains

FAT entry number value

0 1
1 2
2 65535
3 0
4 65535
5 8
6 65535
7 0
8 6

Here we see two free clusters (3 and 7) and three files
occupying clusters 0, 1 and 2, cluster 4, and clusters
5, 8 and 6. Such sequences of clusters in the FAT are
called ‘chains’.

So the FAT has already given us the concept of a file,
but not of a filename.

The metadata in the FAT are so important that DOS
stores the FAT twice at the beginning of a disk.

231

A directory

Immediately following the two copies of the FAT is the
root directory. Like every other directory, it contains a
32 byte entry per file, with the following information:

File name (8 bytes)
File extension (3 bytes)
File attributes (1 byte)
Last modified time (4 bytes)
Starting FAT entry (2 bytes)
File size (4 bytes)
Reserved (10 bytes)

The bits in the attribute byte indicate things such as
whether the entry is a file or a subdirectory, whether it
is read-only, whether it should be hidden from directory
listings, etc.

The root directory is of fixed length. No other directory is.

Every subdirectory contains at least two entries. One, called ‘..’, which describes its parent
directory, and one, called ‘.’, which describes itself.

232

Simple operations

File Deletion
The directory entry has the first byte zeroed, and the
corresponding FAT entries are marked free.

File Creation
An unused directory entry is found and used, and a
FAT chain of at least one block created.

File Renaming
Only the directory entry needs changing.

Appending to a file
The file length in the directory needs modifying, and
possibly a new cluster allocating and the FAT changing,
as well as writing the data.

etc.

233

Consistency

There are many ways in which a DOS filesystem
can become inconsistent. A consistent one has the
following properties:

• The two copies of the FAT are identical

• The FAT contains chains, but no loops.

• Every chain has precisely one directory entry
pointing at it.

• Every directory entry points to the beginning of a
chain.

• The filesizes in the directory entries are consistent
with the corresponding chain lengths.

The programs chkdsk and scandisk check these
consistency issues.

chkdsk = CHecKDiSK

234

The 1.4MB DOS Floppy

Having just 2880 sectors of 512 bytes, 16 bits per FAT
entry is excessive, so a FAT12 format is used. The
sectors are used as follows:

Sector no. Use
0 Boot sector and format description

1-9 FAT, 1st copy
10-18 FAT, 2nd copy
19-32 root directory

33-2879 data (1423.5K)

Hence the largest file one can store on a 1440K DOS-
formatted floppy is 1423.5K, and the root directory
can hold 224 entries.

If a 16 bit FAT had been used, then 2880 entries would require 5760 bytes or 12 sectors,

rather than just 9. An extra 3K would be lost.

Sector 0 contains information such as the size of the FAT (12 or 16 bit), the size of the root
directory, the cluster size, etc.

235

Other FATs

FAT32 was recently introduced, and makes the obvious
extension to the size of the FAT. Thus smaller cluster
sizes can be used on large disks.

VFAT is a FAT-like filesystem which supports long,
mixed case filenames. It does this by using several of
FAT’s directory entries for each file, keeping a FAT-
like one holding a ‘short’ file name, and marking the
additional ones as hidden files taking zero space so
that one rarely sees them listed. The resulting disk is
fully usable by a system which supports FAT but not
VFAT. VFAT does have the air of a nasty hack, rather
than a well-thought-out solution.

VFAT uses Unicode not ASCII to store filenames. This permits all sorts of exciting foreign
characters, at the expense of using two bytes per letter, not one.

236

The UNIX file system

Every UNIX vendor has one (or more) file systems of
his own. However, the traditional UNIX file system
(UFS) has the following features.

Unlike DOS, which splits its metadata between the
FAT and the directory entry, UNIX has three locations:
the block bitmap, the index node (inode) and the
directory entry.

The block bitmap simply contains one bit for each
cluster (block) on the disk, and marks whether the
cluster is free. One can have up to 224 or 232 clusters
typically.

The directory entry is also simple: a variable-length
field containing the name, and a field giving an index
into the inode table.

The original UNIX filesystem was even simpler, with fixed-length 16 byte directory entries
containing a 14 character name and a two byte i-node number.

Again every subdirectory contains explicit entries for ‘.’ and ‘..’ giving its own and its parent’s
inode number.

237

The inode table

The inode table follows the block bitmap at the
beginning of the disk. It is of fixed size, containing
a fixed number of fixed-length records (typically
128 bytes each), each describing one file. Each record
contains:

File length
File ownership (user and group)
File ‘creation’, modification and last access times
File access permissions
The number of directory entries pointing at this file
A list of the first ten clusters occupied by the file
Three pointers to clusters containing details of further
clusters used

Again, the block bitmap, inode table and directory
entries must all be consistent.

The file and group ownership records the numeric user id (typically 32 bits), not the eight
character textual user name.

The program fsck checks for consistency. fsck = File System CHeck.

238

Large files

Files smaller than 10 blocks have the complete list of
blocks used in their inode. Longer files use an entry
which points to a disk block filled with a list of the
next blocks used. If a block number is 4 bytes long,
and a block is 1K, this gives another 256 blocks.

For larger files, the inode has another entry pointing to
a block filled with entries pointing to blocks containing
the rest of the list! This adds another 65000 or so
blocks.

1

3

5

6

7

8

10

114

2

266

to

1035-1546

523-1034

267-522

9

65547-65802

In this example, one would need another level of indirection to support files larger than 64MB.

In practice, the block size is probably 4K, and this scheme will therefore work up to 4GB.

239

File types

So far we have seen two file types: ordinary files and
directories. UNIX also has two forms of link.

The first, the hard link, is not a new file type at all.
One merely has two directory entries pointing at the
same inode. As the inode stores the information about
file length and access times, there are no consistency
problems as there would be with FAT.

One can construct two directory entries pointing a the same chain within FAT, but if the file

is modified using one name, the file length stored under the other directory entry will not be
changed, and a mess results.

The link count in the inode keeps track of how many
directory entries point to that inode, and only when
deletion reduces the count to zero are the inode and
data blocks actually freed.

All directory entries pointing at the same inode are
equivalent, and must reside on the same filesystem.

Hard links to directories are not permitted.

240

Symbolic links

A symbolic, or soft, link is a new file type. The file
simply contains an indirection, saying ‘don’t look at
me, look over there instead.’

tcm30:/usr/sbin> ls -l /usr/sbin/sendmail

lrwxrwxrwx 1 root system 24 Sep 12 1998

sendmail -> /usr/local/exim/bin/exim

Any references to /usr/sbin/sendmail will be
redirected to /usr/local/exim/bin/exim. The l

at the beginning of the permissions bits indicates that
this is a symbolic link. The rest of the permissions are
ignored (the file is not world-writable!).

The file length, 24 bytes, is the number of characters
in the filename linked to. This name is stored as the
file ‘data’.

The link and the file linked to are quite distinguishable,
and need not be on the same filesystem.

UNIX will check for circular paths in symlinks.

241

More speed

Having to move the disk heads to the beginning of
the disk to fiddle with the FAT or inode table, then
out to the centre to deal with the real data, is clearly
inefficient.

All file systems except FAT deal with this in practice by
dividing the disk into zones, and placing the part of the
block bitmap etc. dealing with each zone within that
zone. Therefore the metadata is (probably) physically
close to the real data it describes.

Also, to avoid scanning large amounts of the inode
table when looking for a free entry, a bitmap showing
which entries in the inode table are free is often
maintained.

A zone could be called a group.

242

The ext2 floppy

Ext2 is a variant of the UNIX filesystem. When used
on a 1.44MB floppy, it arranges things in roughly the
following way, using blocks of 1KB.

Cluster no. Use
0 Unused
1 Superblock
2 Group descriptor
3 Free block bitmap
4 Free inode bitmap

5-49 Inode table (360 entries)
50 Root directory

51-1439 data (1389K)

The disk will be filled by a 1382K file, for seven blocks
are needed for storing the block list for such a file.

Ext2 is much more configurable than FAT16. One could reduce the total number of inodes to
32, giving a maximum file size of 1423K. The block size can also be changed, but 1K is the

minimum.

243

Fragmentation

For optimal speed, a file should be stored in a single set
of contiguous blocks. However, once files start being
deleted, the free space on a disk becomes fragmented,
and files subsequently written are in danger of being
fragmented too. The situation tends to get worse as
the disk gets fuller.

DOS’s allocation strategy is very poor: it always
allocates the first available free cluster whenever a
file needs to grow. It takes no account of which
clusters the file is currently occupying.

UFS has two weapons to control this. Firstly a more
intelligent block allocation algorithm which tries to
avoid excessive fragmentation. Secondly, it always
keeps 5% of the blocks free, which also tends to
reduce fragmentation.

These ‘reserved blocks’ can be used by root. It gives the OS the chance to clear up, or at
least die gracefully, if a user fills up an important disk, for the OS can still find free blocks if

it wants them.

244

FAT vs HFS vs Ext2

(HFS is the Apple filesystem used from the Mac+ to
MacOS 8.2)

FAT16 HFS ext2

Max filename length 8+3 31 255
Directory separator \ : /
Max no of clusters 216 216 232

Last modify time Yes Yes Yes
Creation time No Yes Yes
Last access time No No Yes
Creator (application) No Yes No
Owner (user) No No Yes
Max file size 2GB 2GB 2GB
Max disk size 2GB 2GB 16TB(?)

HFS has one odd feature: all files consist of two ‘forks’. The data fork is simply a stream of
bytes, like a normal file on any other system. The resource fork is a set of records rather like

a simple database. It often holds fonts, menu structures, preferences, icons and similar things.
File transfer between MacOS and the rest of the world is considerably complicated by this

unusual feature.

Ext2 does support filesizes of up to 264 bytes, but not all implimentations manage this. Linux
2.4 does.

245

Partitioning

One might wish to put several filesystems on the same
physical disk. Perhaps FAT16 and ext2 for a Windows
/ Linux dual boot computer, or perhaps two FAT16
filesystems because one has a 4GB disk.

This is done by breaking the disk into partitions. The
disk starts with a partition table, which describes the
number of partitions on the disk, and where they each
start and finish. The OS uses a partition as if it were a
complete independent disk, and thus the term ‘logical
disk’ is sometimes used.

Partitions cannot be resized or moved without
destroying the filesystem they contain unless much
magic is applied.

If one has a 1GB disk and wishes to run Windows95, one can choose a single partition with a

16K cluster size, or, maybe, two 512MB partitions each with an 8K cluster size and with the
advantage that the FAT for the second half of the disk is (probably) then stored in the middle

of the disk, physically closer to the data it describes. A poor man’s zoning is thus achieved.

The downside occurs when each partition has 20MB free and you wish to write a 30MB
file. . .

The partition table usually exists, even if it shows just one partition using the whole disk.

246

Still slow

Disk drives are mechanical devices, and thus are always
going to be much slower than solid-state devices such
as memory. Vaguely realistic performance data for
current (2000) machines would be:

Disk Memory

Latency 5-15 ms 100-200 ns
Bandwidth 10-30 MB/s 300-1000 MB/s

The latency for disk drives, caused by the time taken
to move the heads to the correct part of the disk, is
particularly poor.

Even if the disk heads do not need moving, just waiting for the disk to rotate to the correct
position takes a while. The typical half revolution at 10,000 rpm is 3 ms.

247

Caching

Using memory to store frequently-accessed files in a
cache makes a dramatic improvement to perceived disk
performance. Even caching just things like the block
bitmap, FAT and frequently-used directories can make
a marked difference to performance costing relatively
little memory.Such metadata are usually preferentially cached.

For more speed, write behind caching occurs. When
a program writes to a file, the data are written to
the memory cache only, and the program can continue
immediately. Later, the data are written out to the
disk at its slow speed whilst the program continues to
run.

Just like a write back memory cache, this form of write
back disk cache needs dirty bits to record which entry
need writing back to the disk.

Writing to disk does not over stress a modern CPU: if it has nothing else to do it will be idle
waiting for the disk to process the data for much of the time.

248

Write collapsing

Consider deleting fifty files from a FAT-based directory.
This results in the following operations:

do i=1,50

move heads to directory

read directory

write out directory with zero in 1st byte

of filename of file deleted

move heads to 1st FAT

read it

write out with relevant chain marked free

heads are now at second copy of FAT

fix that too

done

With two long head seeks per file, or one hundred in
total, this will take about a second.

249

Writes collapsed

Consider the alternative with a write-behind cache:

do i=1,50

read directory from cache

write out directory to cache with a zero

in 1st byte of filename of file deleted

read FAT from cache

write it back with relevant chain freed

ditto second FAT

done

move heads to directory

write modified directory from cache to disk

move heads to FAT

write modified FATs to disk

With just two head movements, this will be done in
well under a tenth of a second.

Intelligent caches will also reorder writes to minimise head movements.

250

Inconsistencies

A file system will be consistent before and after a file
is deleted, but not during the deletion: the directory
might be changed but the FATs not.

And clearly with a write-behind cache, the data on the
disk need not be the same the data in the cache.

Hence it is important to tell a computer to finish all
disk operations and to send all modified data from its
cache to the disk before turning it off. This is called
flushing the cache, or syncing the disks.

(‘Syncing’ abbreviates ‘synchronising’, so is similarly pronounced.)

Any filesystem which records last access times (such as UFS) will be frequently modifying

data on disk.

UNIX systems, and some versions of Windows, will detect if they have been turned off without
being shutdown properly, and check their disks for consistency when they are next turned on.
If they have been shutdown correctly, they don’t bother.

Though fsck and scandisk can often autorepair a filesystem to a consistent state, it is worth

pointing out that consistency and correctness are different: formatting a disk also reduces its
filesystem to a consistent state, but in a slightly unhelpful manner.

251

Journalling filesystems

Because checking filesystem consistency is painful on
large fileservers – it can often take over an hour –
various filesystems which never need a full consistency
check have been developed.

They all work by keeping a log, or journal, of operations
which they are about to do. Deleting a UNIX file might
be broken down as:

write to journal ‘I am about to remove this

directory entry, free this inode, and mark

these clusters as free.’

do the above

remove the journal entry

After a crash, the journal is scanned and those entries
which have not been completed are finished.

A journalling filesystem must flush the journal from cache to disk before attempting the

updates described by the journal.

Digital UNIX has AdvFS as a journalled filesystem, Irix has xfs, AIX has jfs, Linux has ext3,
and WinNT has NTFS.

252

Journal problems

Journalling produces a significant performance penalty,
as every write is turned into two: one to the journal,
and one to the real file. For this reason most journalled
filesystems only journal metadata.

Journalling metadata can ensure that the filesystem
remains consistent, and guards against the type of
errors which can cause whole directories to vanish.
The contents of files can still be corrupted by crashes.

Journalling data as well as metadata is a serious
performance penalty, and requires a much bigger area
for the journal. Many journalling filesystems do not
support data journalling at all.

The final problem with journalling is that hardware
errors or bugs in the OS can still cause a journalled
filesystem to become inconsistent. Because the
recovery tools for journalled filesystems are used less
frequently, they tend to be less tested and less effective.

Linux’ ext3 and Solaris’ UFS support journalling and still use the same layout as the older,

non-journalled, filesystem they are based on. Hence the old recovery tools are valid.

253

Remote files

It is often convenient to use files physically located
on a remote computer as though they were stored
locally. This UNIX, MacOS and Windows can all do,
and you do every time you use TCM’s computers, for
your UNIX home directory is physically on tcms, and
your NT home directory tcmp. Neither do you usually
touch directly.

That UNIX, MacOS and Windows use three completely
incompatible protocols for this will be no surprise.

In all cases there is a speed and reliability penalty to
pay compared to local disk access, but the increase in
convenience can be great.

Disk drives not only typically have a higher bandwidth than networks, but also a lower latency,
especially once the overheads of going through the networking protocols is considered.

On the other hand, it makes it possible to use a machine with no internal disk drive.

254

Remote trouble

File sharing can cause various forms of trouble.
Multiple computers might try to change the same
file at once. The network might die at an inopportune
moment. And then there is security.

NFS, the remote filesystem that UNIX uses, leaves the
task of imposing access restrictions on files to the client
computers. That is, TCM’s server exports everyone’s
home directory to all TCM’s machines. The individual
machines are responsible for keeping other users from
editing my files. This requires the client to run a secure
OS, and rules out NFS exporting to DOS, Win98 or
MacOS.

Under Windows, the server imposes the access controls
having determined which user is logged on to the client
machine.

255

Multiple filesystems

DOS, Windows and MacOS present each filesystem to
the user as a separate ‘disk drive.’ With DOS, they
are called friendly things like C:, D: and E:, whereas
MacOS pops up icons with configurable textual names.

UNIX does things rather differently. It presents a
single directory tree with a single root directory.
Different filesystems are then grafted on to that
tree. On a typical TCM Alpha, there are three
filesystems resident on local disks: /, /usr and
/temp. There are also several remote filesystems
including /u/tcms (where the home directories reside),
/var/spool/mail (where email is delivered), and
/usr/local/shared (where many applications are to
be found).

The joins between these filesystems are almost invisible
to the user, and programs like ‘mv’ automatically switch
between doing a rename if moving within a filesystem,
to a copy then delete if moving between filesystems.

‘df -k .’ will tell you where you really are.

256

Mounting filesystems

The process of ‘grafting on’ a filesystem under UNIX,
or mounting it, is always done explicitly (unlike DOS
which finds all local filesystems itself). If a filesystem is
mounted as being modifiable, it is immediately marked
as being ‘dirty.’

Unmounting, which will happen on shutdown or when
requested, causes all cached data referring to that
filesystem to be written out, and then the dirty bit
reset. A crash leaves the dirty bit set, and prompts
fsck to run.

With most UNIXes only root can mount or unmount.
TCM’s linux machines allow users to mount /cdrom

(where present) and /floppy. Remember to unmount
things before trying to eject them.

With CDs, being read-only, it hardly matters, but the eject button will not work until you do.
With floppies, being read-write, it does matter, and the eject button will work even if you

don’t.

257

Multiple programs

What happens when two programs try to manipulate
the same file? Chaos, often.

As an example, consider a password file, and suppose
two users change their entries ‘simultaneously.’ As
the entries need not be the same size as before, the
following might happen:

User A reads in password file, changes his entry in his
copy in memory, deletes the old file, and starts writing
out the new file.

Before A has finished, user B reads in the password
file, changes his entry in memory, deletes the old, and
writes out the new.

It is quite possible that A was part way through writing
out the file when B started reading it in, and that B hit
the end of file marker before A had finished writing out
the complete file. Hence B read a truncated version
of the file, changed his entry, and wrote out that
truncated version.

258

Locking

The above scenario is rather too probable. It is unlikely
that one can write out more than a few 10s of KB
before there is a strong chance that your process will
lose its scheduling slot to some other process.

UNIX tacked on the concept of file locking to its filing
systems. A ‘lock’ is a note to the kernel (nothing
is recorded on disk) to say that a process requests
exclusive access to a file. It will not be granted if
another process has already locked that file.

Because locking got tacked on later, it is a little
unreliable, with two different interfaces (flock and
fcntl), and a very poor reputation when applied to
remote filesystems over NFS.

As the lock is recorded in the kernel, should a process
holding a lock die, the lock is reliably cleared. This
does not happen as reliably over NFS, because the lock
is recorded in the kernel of the server, not in that of
the machine the process is running on.

Microsoft, trying to be positive, refers to ‘file sharing’ not ‘file locking.’

259

Dot locking

Another exciting form of locking is called ‘dot locking’.
In this scheme, if an application wishes to lock a file
called ‘foo’, it merely creates a file called ‘foo.lock’.

This has the advantage of requiring no support from
the kernel.

It has the disadvantages of requiring other applications
to understand the meaning of these .lock files, and
of lock files being left around should the application
crash or otherwise die unexpectedly.

260

Quotas

Another feature which got ‘tacked on’ later, but one
which might interest some of you. . .

Quota information is recorded on a per-disk basis,
usually in a file in the top directory of that disk. Every
time a file changes size, the quota information for the
relevant user is changed too. If the quota information
becomes out-of-step with the real disk usage, there is
nothing to correct it.

Except that on boot Digital UNIX machines tend to
recalculate all their quota information based on how
much data is really on the disks. This can cause
people’s disk usage as seen by the quota system to
jump suddenly when the fileserver is rebooted. . .

Quotas over NFS do not work very well: a write when
over quota returns an error and sets errno to 69. Few
applications report the cause back the the user in a
friendly fashion.

261

Mirrors

Another way of increasing reliability is for the OS to
maintain identical data on two separate disks. The
combination is treated as a single virtual disk, with
any attempt to write to a block modifying the relevant
block on both disks. If one physical disk fails, there is
no data loss.

The filing system accesses only the virtual disk, the
mirroring occuring one level lower than the filing
system. The filing system thus needs no modification.

Drawbacks include costing twice as much, being
slightly slower for writing, and, whereas shutting the
machine down properly will mark the mirrors as being
synchronised, not doing so will potentially leave the
mirrors different. This then needs to be checked and
corrected by reading every block from both disks: much
slower than a file system consistency check.

262

RAID

RAID introduces more ways of building virtual disks
out of physical disks. Three levels are commonly used.

Level 0 is simple concatenation: take n 72GB disks,
and treat as a single n × 72GB disk.

Level 1 is mirroring.

Level 5, which requires at least three physical disks, is
a mixture of mirroring and concatenation, where the
capacity for n disks is (n − 1)× that of one, and a
single disk failure produces no data loss.

RAID: Redundant Array of Inexpensive/Independent Disks.

Level 0 is very sensitive to failure: one disk fails, and all the data are lost. Level 5, which
uses parity blocks, can be quite slow for writing, as parity blocks will need updating, possibly

requiring additional reads. Rebuilding a level 5 RAID set after a power cut is also very slow.

263

CDs

A CD can contain any filing system, just as a normal
disk can. However, most CDs use the ISO9660 system.
This was developed as a ‘lowest common denominator’,
so filenames were limitted to MS DOS’s ‘8.3’ scheme,
and most exotic features were absent. VMS-style
version numbers were included though.

Extensions were quickly produced, and the ‘Rock
Ridge’ extensions are almost universal. They permit
long mixed case file names, symbolic links and UNIX-
style file ownership and permissions. The latter are
almost useless, for the numeric user ID is (necessarily)
used. I (mjr19) am 2719 on CUS, 264 in Physics,
10084 on the HPCF. . .

Microsoft just had to produce its own extensions, called
Joliet, incompatible with Rock Ridge but adding little
extra.

264

CD-Rs

Write-once CDs are awkward. As we now understand
writing a file to a disk involves the rewriting of a
directory sector and of the FAT or inode table. Thus
write-once media are useless.

There are three solutions:

• Prepare an image on a rewritable disk, then, when
complete, copy to the CD-R.

• As above, but do it all in memory.

• Use a completely different filesystem.

I regard the first solution as being the sanest: it is how
CDs in TCM are burnt.

Rewritable CDs (CD-RW) do not avoid this problem,
for a CD-RW is really a CD-R with an extra option of
‘erase whole disk’.

265

Tapes

No discussion of filing systems would be complete
without a word about tape drives.

A tape drive is not a disk drive.

That should be obvious: a disk drive might have a
head seek time of 8 ms, a tape drive is likely to have
one of over 30 s. It is simply not reasonable to treat a
tape drive as though it were a disk drive.

Tapes ideally store a single file each. Just data are
stored, with no metadata (name, length, owner etc).
The only metadata that a tape drive really understands
are the ‘end of file’ mark and ‘end of tape’ mark. Thus
it is possible to put several files on one tape, and then
index the result by hand with a pen.

There are schemes for using the first sector of a tape
to store a brief index, but unfortunately these schemes
appear to be far from completely universal.

266

Tape Technologies

There are two competing technologies used in tapes.
Linear and sepentine recording use tracks parallel to the
length of the tape, often laid down in multiple passes.
An example is DLT 8000, where the head records four
tracks at once across part of the width of a 1

2
” tape,

and then moves down slightly and reverses direction
for the next pass, finally building up 208 tracks.

The other method is helical scan, used by DAT tapes
and VHS video recorders. The tracks are oblique to
the length of the tape, and created by a spinning
cylindrical head. The requirement to wind the tape
partially around the head stretches the tape slightly,
and reduces reliability. Problems also arise if the angle
of the head changes, either over time or between drives.

Serpentine Helical

267

Current tapes

Currently (2003) all tape drives offer automatic data
compression as they record. They then ‘cheat’, by
quoting capacities and transfer rates assuming a 2:1
compression ratio. As data are often uncompressible,
the ‘raw’ uncompressed sizes are given here.

DAT: 4mm tape, helical scan. DDS4 gives 20GB per
tape and 3MB/s.

DLT: 1

2
” tape, serpentine. DLT 8000 is 40GB per tape

and 6MB/s.

LTO / S-DLT: Two competing 1

2
” serpentine

standards giving around 100GB per tape and 15MB/s.

AIT: 8mm helical scan, 100GB per tape 12MB/s.

DAT: Digital Audio Tape (DDS: Digital Data Storage)
DLT: Digital Linear Tape

LTO: Linear Tape Open, consortium of IBM, HP and Seagate.
S-DLT: Super DLT. Quantum.

AIT: Advanced Intelligent Tape. Sony.

Note it takes over 2 hours to read any of the above tapes in full.

268

Practical Programming

269

Programs, Libraries and OSes

The operating system has full control of all aspects
of the hardware. Anything which requires action from
the hardware – reading a file, writing to the screen,
allocating memory – must be handled by the OS.

The OS is both fair and friendly. It prevents other
people reading your files, and other processes writing
over your memory. It will also create the concept of a
file from the blocks on a disk, and a network connection
from the packets arriving at its network card.

Libraries are only friendly. They consist of simple,
unprivileged code which one can use in an identical
fashion to a subroutine of one’s own creation. They
exist to save reinventing the wheel too often.

Impossible

Program

Libraries

O/S

Hardware

270

Libraries (1)

Whereas programming languages provide standard
maths functions, CPUs do not. Very few CPUs can deal
with any transcendental functions, yet most languages
have some. A library provides for the shortfall, different
libraries for C, F77 and F90.

Similarly programming languages provide standard
ways of doing input and output, e.g. printf in C and
write in Fortran. The OS does not provide precisely
these functions, but a library exists to convert them into
whatever operation(s) are necessary to provide that
functionality from the OS. Indeed, most programming
languages provide no mechanism for calling the OS
directly.

Thus the same piece of Fortran or C can be compiled
and then run on different operating systems and CPU
with libraries providing the translation between the
features of the CPU and OS, and the features required
by the programming language.

271

Libraries (2)

The other common use for libraries is to solve the
more difficult maths problems: numerical integration,
matrix manipulation, FFTs, etc. Various collections of
routines exist: BLAS, LAPACK, NAG, etc. Using one
of these is usually simpler, quicker, and more reliable
than trying to code a similar algorithm oneself.

BLAS just deals with elementary vector and matrix
operations, with a matrix-matrix multiply being about
the most complicated. LAPACK contains algorithms
for eigen problems, and uses BLAS to do the
fundamental operations required. NAG includes much
more: PDEs, integration, pseudorandom numbers,
FFTs, minimisation, root finding. It also uses BLAS
for the fundamental operations.

Most vendors offer versions of BLAS and LAPACK, and maybe FFTs, optimised for their own

hardware. Alphas have cxml, IBMs have essl, Intel has mkl etc. A well-optimised BLAS
library helps LAPACK and NAG run faster.

BLAS: Basic Linear Algebra System

LAPACK: Linear Algebra PACKage
NAG: Numerical Algorithms Group (commercial, available for most platforms)

cxml: Compaq eXtended Maths Library (originally dxml (Digital))
essl: Engineering and Scientific Subroutine Library

mkl: Maths Kernel Library

272

Compiling and Linking

Compiling is the process of converting a high-level
language, such as C or Fortran, to the machine code
relevant for a particular processor. The output is
an object file, traditionally with the suffix .o. The
translation should be completely accurate, and give
the most efficient possible program. Most compilers
achieve the former, very few the latter.

The object file contains multiple sections: machine
code, initialised data, a list of functions called but not
present, and a list of functions provided.

Linking is the process of adding in the relevant
library routines to produce an executable program.
A statically-linked program is entirely self-contained,
and, when run, will call the OS directly as necessary.

273

Being dynamic

Dynamic linking is the alternative to static linking. In
this case most of the linking is done at run-time, not
compile time. It has several advantages.

The executables are smaller: they no longer need
contain copies of bits of libraries.
Libraries tuned for the processor the code is being run
on, rather than the processor the code was compiled
on, can easily be used.
Only one copy of any library needs to be in memory at
once, no matter how many programs are using it.
Updates to the libraries take immediate effect, without
the need for recompilation.

There are disadvantages too:

Equivalent libraries to those found by the compiler at
compile time need to be found at run time.
There is (usually) a (tiny) overhead every time a
dynamically linked function is called.

Windows 3.0 and later do dynamic linking, the libraries having the suffix .dll (Dynamic Link
Library). Most Unixes support dynamic linking, and use the suffix .so (Shared Object).

274

Calling Conventions

When calling any function the arguments must be
made available to the function, the CPU must branch
to the start of the function’s code, and, at the end,
the function must return its result(s), and execution
continue at the next instruction in the calling code.

The stack is the area of memory usually used for this.
One of the CPU’s registers, the stack pointer, always
points to the top of the stack, and on this stack
are placed, in order, the arguments to the subroutine,
followed by the address to return to when finished,
and then a branch to the routine occurs. The routine
reads its arguments from the stack, places its results
on the stack, reads the return address and jumps back,
having adjusted the stack pointer approriately. The
routine will also use the stack for storing any small
local variables it may wish to use.

There are obvious optimisations to this scheme: if only
one or two arguments are expected, why not leave
them in registers? Similarly for the return address.

275

Vagueness

The previous slide is deliberately vague. There is no
one way of transferring data to and from subroutines.
However, the caller and the callee must agree on what
to do!

UNIX is mostly written in C, and every UNIX comes
with a C library and has an associated compiler
(not always free though!). This defines the calling
convention for C for that flavour of UNIX.

It does not define it for C++ or Fortran, which need
calling features which C does not have. If the vendor
supplies C++ and Fortran compilers and libraries,
others will usually follow those conventions. If not,
chaos.

Hence Linux, which has many Fortran compilers which
cannot use each other’s libraries as the various compiler
writers have done things differently.

276

Name mangling

double modulus(double x){return(fabs(x));}

double modulus(double *x, int n){

int i;

double m;

for(i=0,m=0;i<n;i++) m+=x[i]*x[i];

return(sqrt(m));

}

Two functions with the same name, distinguishable
by argument type and number. Legal in C++, but
the compiler must generate unique names for these
functions so that the linker sees them as distinct. No
standard exists for this name mangling.

F90 achieves this function overloading in a subtly different fashion which avoids this issue.

Even plain F77 must do some name mangling: the UNIX linker is case-sensitive, and F77 is

not, so all names must be converted to a consistent case. They usually gain underscores too,
to avoid unexpected name clashes with functions in the system libraries.

277

Optimisation

Optimisation is the process of producing a machine
code representation of a program which will run as fast
as possible. It is a job shared by the compiler and
programmer.

The compiler uses the sort of highly artificial
intelligence that programs have. This involves following
simple rules without getting bored halfway through.

The human will be bored before he starts to program,
and will never have followed a rule in his life. However,
it is he who has the Creative Spirit.

This section discussed some of the techniques and
terminology used.

278

Loops

Loops are the only things worth optimising. A code
sequence which is executed just once will not take as
long to run as it took to write. A loop, which may
be executed many, many millions of times, is rather
different.

do i=1,n

x(i)=2*pi*i/k1

y(i)=2*pi*i/k2

enddo

Is the simple example we will consider first, and Fortran
will be used to demonstrate the sort of transforms the
compiler will make during the translation to machine
code.

279

Simple and automatic

CSE

do i=1,n

t1=2*pi*i

x(i)=t1/k1

y(i)=t1/k2

enddo

Common Subexpression Elimination. Rely on the
compiler to do this.

Invariant removal

t2=2*pi

do i=1,n

t1=t2*i

x(i)=t1/k1

y(i)=t1/k2

enddo

Rely on the compiler to do this.

280

Division to multiplication

t2=2*pi

t3=1/k1

t4=1/k2

do i=1,n

t1=t2*i

x(i)=t1*t3

y(i)=t1*t4

enddo

after which

t1=2*pi/k1

t2=2*pi/k2

do i=1,n

x(i)=i*t1

y(i)=i*t2

enddo

The compiler won’t do this by default, as it breaks
the IEEE standard subtly. However, there will be a
compiler flag to make this happen: find it and use it!

Conversion of x**2 to x*x will be automatic.

Remember multiplication is many times faster than division, and many many times faster than
logs and exponentiation.

281

Another example

y=0

do i=1,n

y=y+x(i)*x(i)

enddo

As machine code has no real concept of a loop, this
will need converting to a form such as

y=0

i=1

1 y=y+x(i)*x(i)

i=i+1

if (i<n) goto 1

At first glance the loop had one fp add, one fp multiply,
and one fp load. It also had one integer add, one
integer comparison and one conditional branch. Unless
the processor supports speculative loads, the loading of
x(i+1) cannot start until the comparison completes.

282

Unrolling

y=0

do i=1,n-mod(n,2),2

y=y+x(i)*x(i)+x(i+1)*x(i+1)

enddo

if (mod(n,2)==1) y=y+x(n)*x(n)

This now looks like

y=0

i=1

n2=n-mod(n,2)

1 y=y+x(i)*x(i)+x(i+1)*x(i+1)

i=i+2

if (i<n2) goto 1

if (mod(n,2)==1) y=y+x(n)*x(n)

The same ‘loop overhead’ of integer control
instructions now deals with two iterations, and a small
coda has been added to deal with odd loop counts.

Rely on the compiler to do this.

The compiler will happily unroll to greater depths (2 here, often 4 or 8 in practice), and may

be able to predict the optimum depth better than a human, because it is processor-specific.

283

Reduction

This dot-product loop has a nasty data dependency
on y: no add may start until the preceeding add has
completed. However, this can be improved:

t1=0 ; t2=0

do i=1,n-mod(n,2),2

t1=t1+x(i)*x(i)

t2=t2+x(i+1)*x(i+1)

enddo

y=t1+t2

if (mod(n,2)==1) y=y+x(n)*x(n)

There are no data dependencies between t1 and t2.
Again, rely on the compiler to do this.

This class of operations are called reduction operations for a 1-D object (a vector) is reduced

to a scalar. The same sort of transform works for the sum or product of the elements, and
finding the maximum or minimum element.

284

Prefetching

y=0

do i=1,n

prefetch_to_cache x(i+8)

y=y+x(i)*x(i)

enddo

As neither C nor Fortran has a prefetch instruction in
its standard, and not all CPUs support prefetching,
one must rely on the compiler for this.

This works better after unrolling too, as only one prefetch per cache line is required.

Determining how far ahead one should prefetch is awkward and processor-dependent.

It is possible to add directives to one’s code to assist a particular compiler to get prefetching
right: something for the desperate only.

285

Loop Elimination

do i=1,3

a(i)=0

endo

will be transformed to

a(1)=0

a(2)=0

a(3)=0

Note this can only happen if the iteration count is
small and known at compile time. Replacing ‘3’ by
‘n’ will cause the compiler to unroll the loop about 8
times, and will produce dire performance if n is always
3.

286

Loop Fusion

do i=1,n

x(i)=i

enddo

do i=1,n

y(i)=i

enddo

transforms trivially to

do i=1,n

x(i)=i

y(i)=i

enddo

eliminating loop overheads, and increasing scope for
CSE. Good compilers can cope with this, a few cannot.

Assuming x and y are real, the implicit conversion of i from integer to real is a common
operation which can be eliminated.

287

Strength reduction

double a(2000,2000)

do j=1,n

do i=1,n

a(i,j)=x(i)*y(j)

enddo

enddo

The problem here is finding where the element a(i,j)
is in memory. The answer is 8(i−1)+16000(j−1) bytes
beyond the first element of a: a hideously complicated
expression.

Just adding eight to a pointer every time i increments
in the inner loop is much faster, and called strength
reduction. Rely on the compiler again.

288

Inlining

function norm(x)

double precision norm,x(3)

norm=x(1)**2+x(2)**2+x(3)**2

end function

...

a=norm(b)

transforms to

a=b(1)**2+b(2)**2+b(3)**2

eliminating the overhead of the function call.

Often only possible if the function and caller are compiled simultaneously.

289

Instruction scheduling and loop

pipelining

A compiler ought to move instructions around, taking
care not to change the resulting effect, in order to
make best use of the CPU. It needs to ensure that
latencies are ‘hidden’ by moving instructions with data
dependencies on each other apart, and that as many
instructions as possible can be done at once. This
analysis is most simply applied to a single pass through
a piece of code, and is called code scheduling.

With a loop, it is unnecessary to produce a set of
instructions which do not do any processing of iteration
n+1 until all instructions relating to iteration n have
finished. It may be better to start iteration n+1 before
iteration n has fully completed. Such an optimisation
is called loop pipelining for obvious reasons..

Sun calls ‘loop pipelining’ ‘modulo scheduling’.

Consider a piece of code containing three integer adds and three fp adds, all independent.
Offered in that order to a CPU capable of one integer and one fp instruction per cycle, this
would probably take five cycles to issue. If reordered as 3×(integer add, fp add), it would

take just three cycles.

290

Debugging

The above optimisations should really never be done
manually. A decade ago it might have been necessary.
Now it has no beneficial effect, and makes code longer,
less readable, and harder for the compiler to optimise!

However, one should be aware of the above
optimisations, for they help to explain why line-
numbers and variables reported by debuggers may not
correspond closely to the original code. Compiling
with all optimisation off is occassionally useful when
debugging so that the above transformations do not
occur.

291

Loop interchange

The conversion of

do i=1,n

do j=1,n

a(i,j)=0

enddo

enddo

to

do j=1,n

do i=1,n

a(i,j)=0

enddo

enddo

is one loop transformation most compilers do get right.
There is still no excuse for writing the first version
though.

292

Matrix Multiplication

cij = aikbkj

do i=1,n

do j=1,n

t=0.

do k=1,n

t=t+a(i,k)*b(k,j)

enddo

c(i,j)=t

enddo

enddo

The number of FP operations is clearly 2n3.

Some timings, for a 463MHz (926MFLOPS peak) XP900:
n=2032 933s 18MFLOPS

n=2048 1348s 13MFLOPS

293

The problem

The inner loop contains one fp add, one fp multiply, one fp load

with unit stride (b), and one fp load with stride n (a). The arrays

are around 32MB each.

The 2MB secondary cache on the XP900 is direct mapped, with

32,768 lines of 64 bytes. Thus the lowest 8 bits of an address are

an offset within a line, and the next 15 bits are a tag index. The

DTLB has 128 entries each covering an 8K page.

For n=2032, every load for a is a cache and TLB miss for i=j=1.

For j=2, every load for a is a cache hit and a TLB miss: over

2000 TLB entries would be needed to cover the first column just

read. A cache hit because 2032 cache lines are sufficient, and the

cache has 32,768 lines.

For n=2048, the same analysis applies for the TLB. For the cache,

because the stride is 214 bytes, the bottom 14 bits of the address,

and hence the bottom 6 of the tag index, are the same for all k.

Thus only 512 different cache lines are being used, and one pass

of the loop would need 2048 if all are to remain in cache, so all

are cache misses.

294

Blocking

do i=1,n,2

do j=1,n

t1=0.

t2=0.

do k=1,n

t1=t1+a(i,k)*b(k,j)

t2=t2+a(i+1,k)*b(k,j)

enddo

c(i,j)=t1

c(i+1,j)=t2

enddo

enddo

Now two elements of a are used every time a cache line
of a is fetched. The number of cache misses is halved,
and the speed doubles. The obvious extension to use
eight elements (all of the 64 byte cache line) achieves
73MFLOPS for n=2048 and 98MFLOPS for n=2032.

Note that t1 to t8 will be stored in registers, not memory.

295

Loop transformations

The compiler used claims to be able to do some of
the above automatically. Specifying -O5 achieves this
(-fast is insufficient), and manages 164MFLOPS on
the original code.

However, specifying -O5 on the code after blocking by
hand by a factor of eight produces something which
runs about three times slower than not using -O5.

So with current compilers automatic loop
transformations are slightly dangerous: sometimes they
make code much faster, sometimes much slower. They
work best on very simple structures, but even then
they can make debugging awkward.

296

Laziness

call dgemm(’n’,’n’,n,n,n,1d0,a,n,b,n,0d0,c,n)

The dgemm routine is part of the BLAS library and can
evaluate

cij = αaikbkj + βcij

Although this is much more general than we require, it
achieves 800MFLOPS using the same operation count
as before.

The library may have special cases for α = 1 and β = 0. Even if not, there are only n2 of

these operations.

Compaq’s own cxml library gave 800MFLOPS. NAG’s BLAS gave just 120MFLOPS.

c=matmul(a,b) is tempting, and achieves just 13MFLOPS (Compaq Fortran V5.5-1877),
and used 32MB of stack, so one can guess how that is implimented. With -O5 too it achieves

385MFLOPS, so the optimisation flags affect intrinsics. Compaq’s compiler is quite bad in
this regard.

What was wrong with our 100MFLOPS code? The TLB miss on every cache line load of a

prevents any form of prefetching working for this array.

297

Practical Parallelism

Any parallel algorithm will involve passing messages
from one process to another. If both processes are
executing simultaneously on separate processors, this
can be very rapid. A process waiting for a message
should spin wait: constantly checking to see if the
message has arrived, and not yield its scheduling slot,
for the expected latency for a message is a few µs,
whereas a scheduling slot will be a few thousand µs.

If two processes are run on a single CPU, a process
waiting for a message should immediately yield its
scheduling slot, so that the process sending the
message gets some CPU time and can send it.

In either case, large messages will have to be broken
into smaller fragments as they are sent, the processes
effectively sharing a buffer, the first filling it, then
waiting until it has been emptied before it is able to
refill it.

298

The slowdown

0.01

0.1

1

10

100

1000

16 64 256 1024 4096 16384 65536 262144 1048576 4194304

T
hr

ou
gh

pu
t,

M
B

/s

Message size, bytes

No other process
One other process

Two other processes

Transfer rate for various sized packets using two MPI
processes on a dual processor machine.

With no other processes, the latency is about 3µs and the bandwidth 250MB/s. With one
other process, the latency is 24µs and the bandwidth 120MB/s. The point at which multiple

packets are needed for a single transfer (32KB) is clearly seen. With two other processes,
the latency is 5000µs and the bandwidth 40MB/s. The details depend greatly on how the

scheduler distributes processes amongst processors.

No-one who cares about latencies runs MPI with more than one process per processor!

Note that when running four serial processes on a dual processor machine, each will run twice

as slowly as they would if just two had been run. With parallel code, the slowdown could be a
factor of one thousand.

299

The Compilers

f90 -fast -o myprog myprog.f90 func.o -lnag

That is options, source file for main program, other
source files, other objects, libraries. Order does matter
(to different extents with different compilers), and
should not be done randomly.

Yet worse, random options whose function one cannot
explain and which were dropped from the compiler’s
documentation two major releases ago should not occur
at all!

The compile line is read from left to right. Trying

f90 -o myprog myprog.f90 func.o -lnag -fast

may well apply optimisation to nothing (i.e. the source files following -fast). Similarly

f90 -o myprog myprog.f90 func.o -lnag -lcxml

will probably use routines from NAG rather than cxml if both contain the same routine.

However,

f90 -o myprog -lcxml myprog.f90 func.o -lnag

may also favour NAG over cxml with some compilers.

300

Common compiler options

-lfoo and -L

-lfoo will look first for a shared library called libfoo.so, then a

static library called libfoo.a, using a particular search path. One

can add to the search path (-L${HOME}/lib or -L.) or specify a

library explicitly like an object file, e.g. /temp/libfoo.a.

-O, -On and -fast

Specify optimisation level, -O0 being no optimisation. What

happens at each level is compiler-dependent, and which level is

achieved by not specifying -O at all, or just -O with no explicit

level, is also compiler dependent. -fast requests fairly aggressive

optimisation, including some unsafe but probably safe options,

and probably tunes for specific processor used for the compile.

-c and -S

Compile to object file (-c) or assembler listing (-S): do not link.

-g

Include information about line numbers and variable names in .o

file. Allows a debugger to be more friendly, and may turn off

optimisation.

301

More compiler options

-C

Attempt to check array bounds on every array reference. Makes

code much slower, but can catch some bugs. Fortran only.

-r8

The -r8 option is entertaining: it promotes all single precision

variables, constants and functions to double precision. Its use is

unnecessary: code should not contain single precision arithmetic

unless it was written for a certain Cray compiler which has been

dead for years. So your code should give identical results whether

compiled with this flag or not.

Does it? If not, you have a lurking reference to single precision

arithmetic.

The rest

Options will exist for tuning for specific processors, warning about

unused variables, reducing (slightly) the accuracy of maths to

increase speed, aligning variables, etc. There is no standard for

these.

IBM’s equivalent of -r8 is -qautodbl=dbl4.

302

Fortran 90

Fortran 90 is the langauge for numerical computation.
However, it is not perfect. In the next few slides are
described some of its many imperfections.

Lest those using C, C++ and Mathematica feel they
can laugh at this point, nearly everything that follows
applies equally to C++ and Mathematica. The only
(almost completely) safe language is F77, but that has
other problems.

Most of F90’s problems stem from its friendly high-level
way of handling arrays and similar objects.

303

Slow arrays

a=b+c

Humans do not give such a simple statement a second
glace, quite forgetting that depending what those
variables are, that could be an element-wise addition
of arrays of several million elements. If so

do i=1,n

a(i)=b(i)+c(i)

enddo

would confuse humans less, even though the first form
is neater. Will both be treated equally by the compiler?
They should be, but many early F90 compilers produce
faster code for the second form.

304

Big surprises

a=b+c+d

really ought to be treated equivalently to

do i=1,n

a(i)=b(i)+c(i)+d(i)

enddo

if all are vectors. Many early compilers would instead
treat this as

temp_allocate(t(n))

do i=1,n

t(i)=b(i)+c(i)

enddo

do i=1,n

a(i)=t(i)+d(i)

enddo

This uses much more memory than the F77 form, and
is much slower.

305

Sure surprises

a=matmul(b,matmul(c,d))

will be treated as

temp_allocate(t(n,n))

t=matmul(c,d)

a=matmul(b,t)

which uses more memory than one may first expect.
And is the matmul the compiler uses as good as the
matmul in the BLAS library? Not if it is Compaq’s
compiler.

I don’t think Compaq is alone in being guilty of this stupidity. See IBM’s -qessl=yes

option. . .

Note that even a=matmul(a,b) needs a temporary array. The special case which does not is
a=matmul(b,c).

306

More sure surprises

allocate(a(n,n))

...

call wibble(a(1:m,1:m))

must be translated to

temp_allocate(t(m,m))

do i=1,m

do j=1,m

t(j,i)=a(j,i)

enddo

enddo

call wibble(t)

do i=1,m

do j=1,m

a(j,i)=t(j,i)

enddo

enddo

Array slicing and reshaping may be automatic, but it takes a lot
of time and memory.

The temporary array is unnecessary if m=n, or if the call is a(:,1:m), but early compilers will

use it anyway, being the simple approach which always works.

307

Type trouble

type electron

integer :: spin

real (kind(1d0)), dimension(3) :: x

end type electron

type(electron), allocatable :: e(:)

allocate (e(10000))

Good if one always wants the spin and position of the electron

together. However, counting the net spin of this array

s=0

do i=1,n

s=s+e(i)%spin

enddo

is now slow, as an electron will contain 4 bytes of spin, 4 bytes of

padding, and three 8 byte doubles, so using a separate spin array

so that memory access was unit stride again could be eight times

faster.

308

What is temp allocate?

Ideally, an allocate and deallocate if the object
is ‘large’, and placed on the stack otherwise, as stack
allocation is faster, but stacks are small and never
shrink. Ideally reused as well.

a=matmul(a,b)

c=matmul(c,d)

should look like

temp_allocate(t(n,n))

t=matmul(a,b)

a=t

temp_deallocate(t)

temp_allocate(t(m,m))

t=matmul(c,d)

c=t

temp_deallocate(t)

with further optimisation if m=n. Some early
F90 compilers would allocate all temporaries at the
beginning of a subroutine, use each once only, and
deallocate them at the end.

309

Precision

complex (kind(1d0)) :: c

real (kind(1d0)) :: a,b,pi

...

pi=3.1415926536

c=cmplx(a,b)

This should read

pi=3.1415926536d0

c=cmplx(a,b,kind(1d0))

for both a constant and the cmplx function default to
single precision.

Some compilers automatically correct the above errors.

Note also that π expressed to full double precision is not the above value: either use

real (kind(1d0)) :: pi

pi=4*atan(1d0)

or

real (kind(1d0)), parameter :: pi=3.141592653589793d0

(The latter has the advantage that one cannot accidently change the value of π in the

program, the former that it is less likely to be mistyped.)

c=(0.2d0,0.4d0) is sensible, as (,) produces a complex constant of the same precision as
the real constants in the brackets.

310

Precision again

real*8 x

real(8) :: y

The first is a ubiquitous F77 extension. The second is
a foolish misunderstanding: some compilers may use a
kind value of 8 to represent an 8 byte double precision
number, but nothing in the standard says they should
use eight rather than three (as a few do), or anything
else.

double precision x

real (kind(1d0)) :: y

is the correct F77 and F90 respectively.

integer, parameter :: dp=kind(1d0)

real (dp) :: y

is a common (and correct) F90 construction.

311

Other languages

So that I am not accused of bias,

http://www.tcm.phy.cam.ac.uk/~mjr/C/

discusses why C is even worse. . .

312

-r8, 302

/proc, 163
0x, 96
2D acceleration, 185

3D acceleration, 187

address lines, 79, 80

AGP, 188
alignment, 153

allocate, 159
allocate on write, 108

Alpha, 166–168, 176, 177
Amdahl’s law, 196, 211
and, 49

ASCII, 46
assembler, 26, 165

ATE, 106

bandwidth, 83

bandwidth, hard disk, 225
bandwidth, interconnect, 209

binary, 40
binary compatibility, 165

binary fractions, 57
bit flip, 125
BLAS, 272, 297

branch, 25, 29
branch prediction, 27

bss, 158
burst, 83

bus, 15
byte, 31, 39

C, 312
cache

associative, 105

direct mapped, 102
disk, 154, 155, 248

memory, 91, 92
primary, 112

secondary, 112

write back, 107, 108, 110

write through, 107

cache coherency

broadcast, 204, 216

directory, 204, 216

snoopy, 107, 202, 216

cache controller, 92, 94

cache hierarchy, 112

cache line, 99, 114

cache thrashing, 104

cc-NUMA, 216

CD drive, 227

CD-R, 265

CD-RW, 265

chkdsk, 234

CISC, 21

clock, 15, 84, 85

clock multiplying, 119

compilers, 300–302

complex arithmetic, 67, 68

cooling, 120

crossbar, 207, 218

CSE, 280

DAT, 267, 268

data dependency, 19

data segment, 158

DDR-SDRAM, 84

debugging, 291, 301, 302

denormals, 56, 70

DIMM, 86, 87

dirty bit, 107

dirty filesystem, 257

disk thrashing, 148

distributed memory computer, 205

division

floating point, 71–74

integer, 47

313

DLT, 267, 268

DOS, 135–138, 230

DRAM, 77, 78

DTLB, 146

DVI, 184

EBDIC, 46

ECC, 127

EDO, 81–83

EEPROM, 77

EIDE, 223

EPIC, 22

EPROM, 77

exponent, 52

ext2, 243, 245

F90, 303–311

families, CPU, 165

FAT, 230–236, 245

FAT12, 235

FAT32, 236

file locking, 259

floppy disk, 226

flushing, disk cache, 251

FPM, 81–83

fragmentation, disk, 244

fragmentation, memory, 137

fsck, 251, 257

function overloading, 277

functional unit, 14, 23

GL, see OpenGL

GPU, 188

Hamming code, 128

hard disk, 223–225

Harvard architecture, 111

heap, 158, 159

helical scan, 267

hex, 95, 96

HFS, 245

hit rate, 91, 106, 121

HPF, 212

hypercube, 207

hyperthreading, 221

IA32, 166–174

IA64, 175

IBM 370, 62, 63

IEEE 754, 58–60

in flight instructions, 27

infinity, 60

inlining, 289

inode, 237–240

instruction, 16

instruction decoder, 14, 20

instruction fetcher, 14

instruction pointer, 167

integers

negative, 41

positive, 40

ISO9660 filesystem, 264

issue rate, 23

ITLB, 146

joliet filesystem, 264

journalling filesystem, 252, 253

jump, see branch

kernel, 193

languages, high-level, 165

languages, low-level, 165

LAPACK, 272

latency, functional unit, 23

latency, hard disk, 225, 247

latency, interconnect, 209

latency, memory, 83

LCD, 184

libraries, 270–276

314

libraries, shared, 160

limit, 159

link, hard, 240

link, symbolic, 241

linking, 273, 277, 301

linking, dynamic, 274

linking, static, 273

Linpack, 34, 36

load, 191

locked pages, 149

logistic map, 66

loop

blocking, 295

coda, 283

elimination, 286

fusion, 287

interchange, 292

invariant removal, 280

pipelining, 290

reduction, 284

strength reduction, 288

transformations, 296

unrolling, 283

LRU, 109

machine code, 31

MacOS, 138, 245

malloc, 159, 162

mantissa, 52

memory map

Digital UNIX, 161

DOS, 136, 137

Linux, 162

memory refresh, 78

MESI, 203

metadata, 229, 253

MFLOPS, 32

micro-ops, 172

microcode, 69

MIPS, 32, 166

mirror, 262
MMX, 171
modulo scheduling, see loop pipelining

Motorola 68K, 166
mounting, 257

MPI, 206, 213, 214, 298, 299
MPP, 205

MTA, 221
MTOPS, 32

multitasking, 190
co-operative, 192
pre-emptive, 192

multithreading, 220, 221

NAG, 272

name mangling, 277
NaN, 60, 61

NFS, 255, 261
nice, 191

non-blocking, 209
nop, 22
null pointer dereferencing, 162

NUMA, 216, 217

offset, 41

OpenGL, 187, 188
OpenMP, 212

operating system, 148, 191, 193, 270
optimisation, 278–297

or, 49
out-of-order execution, 30, 177
overflow, 44, 60, 61

page, 141
page fault, 143, 148

page table, 141–145
paging, 148

palette, 183
parallel computers, 194

315

parity, 126

partition table, 246
Pentium4, 173
phosphor, 181

physical address, 140
pipeline, 17, 18, 23

pipeline depth, 17
pixel, 182

platter, 224, 225
Power, 166

power, 120
PowerPC, 166
predication, 29

prefetching, 115, 116, 285
priority, 191

privilege, 193
process switch, 190

ps, 191

quadratic formula, 65

quota, 261

RAID, 263

RAM, 77
RAMBUS, 85
ranges, IEEE 754, 62

ranges, integer, 45
RDRAM, 85

refresh rate, video, 182
register, 14, 31

renice, 191
RIMM, 86, 87
RISC, 21

Rock Ridge filesystem, 264
ROM, 77

root, 193
rotate, 48

rounding, 63

scaling, 196, 197, 211

scandisk, 234, 251

scheduler, 191

SCSI, 223

SDRAM, 84

SECDED, 127

sector, 225

seek time, 225

segment, 158

shared memory processor, 198

shift, 48

SIGBUS, 153

SIGFPE, 61

SIGILL, 31

sign-magnitude, 41

SIGSEGV, 143

SIMD, 194

SIMM, 86, 87

size, 158

SMP, 198

SMT, 221

SO-DIMM, 87

SPARC, 166

SPEC, 35, 37

speculative execution, 28

spin wait, 298

square root, 75

SRAM, 77, 78, 91

SSE, 172

SSE2, 173

stack, 158, 159

stalls, 27

streaming, 116

Streams, 36

sub-block, cache line, 108

sub-block, cache lnie, 114

superscalar, 20

swap space, 150

swapping, 150

316

syncing, 251

tag, 97–103, 105, 121
tapes, 266, 267
text segment, 158

texture, 188
TFT, 184

timeslice, 190
TLB, 146

topology, 207
track, 225

tree, 207
truncation, rounding by, 63
two’s complement, 41

UFS, 237–244
ulimit, 159

underflow, 56
uptime, 191

vector computers, 89
VFAT, 236
victim cache, 106

virtual address, 140
virtual disk, 262

virtual memory, 148
VLIW, 22

vmstat, 154
voltage, 120

word, 31

write behind cache, 248
write buffer, 110

write collapsing, 110
disk, 250

X-bar, see crossbar
xor, 49

zero, 42, 56, 60

317

