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Abstract

This course covers the issues of creating real-time 3D games on platforms
ranging from home game consoles up to high-performance image generators
used in theme parks. Topics include the hardware architectures of various
game platforms, visual simulation tricks, 3D modeling, real-time character ani-
mation, game prototyping and programming. The authors draw examples from
the development of actual games, tools and game development environments.

The course has two components. The first part covers the graphics and pro-
gramming techniques available to make the best use of graphics technology for
high-quality, real-time renderings. The topics include hardware and software
architectures, graphics optimization, database tuning and other tricks of the
trade. The visual simulation roots of many of these hardware and software
techniques is also covered.

In the second part, developers discuss the use of those techniques as one com-
ponent in creating interactive 3D experiences, whether for home game con-
soles or for location-based entertainment or theme park installations. The
topics covered include tools and methods for content generation, software
frameworks, and animation systems.
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In the beginning there was the Drive In

And Walt said, “Let there be a Park.”

And lo, there was Pirates of the Caribbean

Thus did Walt beget the Experience Industry

And Walt saw that it was Good...

- Michael Krantz Figure [Kranz94]

1   Introduction

The use of real-time 3D computer graphics in interactive entertainment has
grown dramatically recently. These entertainment applications include better
arcade games, 3D-capable home game consoles, more sophisticated multi-
player games for location-based entertainment (LBE) centers, virtual actors on
TV driven by puppeteers with motion capture devices, and even virtual interac-
tive theatres where the “player” can assume the role of a character in a story
and alter the course of the plot.

This chapter of the course notes tries to provide a general background into the
elements that go into creating a real-time 3D graphics entertainment applica-
tion and the basic performance levels required to meet human factors require-
ments. Subsequent chapters fill in the details of content generation,
programming and graphics techniques that can be used to meet those perfor-
mance requirements across platforms ranging from home $250 game consoles
to image generators for multiplayer LBEs costing $100,000 and above.
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2   What’s New?

The initial wave of real-time, 3D graphics for is hitting the entertainment mar-
ket at many different levels. At the high end, theme park based systems, such
as Epcot Center’s Aladdin VR experience which opened last summer, are run-
ning on high-end graphics workstations. Such systems can support a quality of
content that approaches the production values of TV or film with complex
scenes covered with hand-painted imagery and complex characters animated in
real-time. The same set of underlying graphics capabilities that make this pos-
sible, most notably texture mapping, high polygonal complexity and 3D char-
acter animation can be seen moving into less expensive systems produced for
location-based entertainment use such as Magic Edge, W Industries, Iwerks
and Virtual World Entertainment. With the latest generation of arcade
machines and home game consoles like the Sega Saturn, 3DO Multiplayer,
Atari Jaguar and, of course, the Nintendo Ultra64, many of these same capabil-
ities are beginning to appear in the home.

With most LBE sites, many arcade and home games taking on a “virtual” mon-
iker, entertainment is often called the “killer-app” for virtual reality. Alterna-
tively, one could say that the same improvements in technology that enable VR
are also enabling new applications of computer graphics in entertainment,
some which are immersive in the VR sense and some of which are not.

Whatever one’s perspective, the technological forces behind this movement
can be seen by looking back at 3D computer graphics over the last decade. Two
developments are key: the evolution of graphics hardware and the creative
skills to use 3D computer graphics effectively.

Hardware Evolution

One could divide relevant CG applications into areas with different perfor-
mance and cost requirements.

• computer generated imagery (CGI) for film and broadcast.
very high image quality → low frame rate @ high cost.

• modeling, animation production, MCAD and data visualization.
medium frame rates → low image quality @ medium cost.

• 2D video games.
low cost, high frame rates → low image quality

• visual simulators.
high frame rate, medium image quality → high cost

The equation that has constrained high and medium quality rendering to the
realm of frame-by-frame CGI is very roughly:
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cost ∝  frame rate X image quality (EQ 1)

Based on their requirements, applications find different sets of tradeoffs
between cost, image quality and frame rate attractive as shown in Figure 1

Until very recently, realistic 3D graphics has fallen into two camps. One could
produce imagery with sufficiently high quality to meet Hollywood standards,
but with rendering times measured in minutes per frame. Or using high-end
visual simulation equipment, you could produce marginally realistic graphics
at 12 to 60 frames per second, but at costs per display channel in the $200,000
to $1,000,000 range.

On the technical side, what’s changing is the continuing improvement in the
price performance of computers and graphics hardware. This decreases the
proportionality constant every year and moves the cost curves back towards
the origin for a particular combination of quality and frame rate. For example,
a system suitable for visual simulation system that might have cost $200,000
per channel might now cost 1/10th or 1/20th of that. The result is that real-time
3D graphics becomes practical for more uses in entertainment systems all the
way from 3D texture mapped video games to high-quality theme park attrac-
tions.

Frames Per Second

Im
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e 
Q

u
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it
y

Cost

Film

CGI

VideoGames

Visual
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Modeling

FIGURE 1. Frame Rate versus Image Quality versus Cost
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So that now it’s becoming possible to have:

high frame rate and high image quality @ low cost

Creative Skills

“Movies did not flourish until the engineers lost control to artists”

 -Paul Heckel [Heck91]

In addition to the technical developments, the second enabling element is the
formation of creative talent with the knowledge and expertise to produce con-
tent for this new medium. The production of a top-notch entertainment experi-
ence requires a large set of skills. The team often consists of:

• story/game designers

• CGI animators and modelers

• visual simulator developers

The creation of compelling 3D scenery and characters draws heavily on expe-
rience that is found primarily among traditional animators and those working
in the industry built around non-real-time computer generated imagery for film
and video. These people have the ability to create compelling scenery and
bring characters to life. In moving to the domain of real-time graphics, the
main challenge is how to live within a limited budget of geometry and texture
imagery without destroying the visual effect.

The integration of the many technical elements into a real-time system requires
experience from the visual simulation industry which is familiar with the pro-
gramming and integration of real-time processors, texture-mapped graphics
hardware, sound systems, displays, motion platforms, input devices, etc.

Frame Rate

(frames/sec) Application Quality Cost

frame-by-frame

.001 - 1 fps

Film CGI

Video CGI

very high

high

very high

high

interactive

5-10 fps

modeling tools

motion capture

data visualization

low

low

low

medium

medium

medium

real-time

15-60fps

visual simulations

video games

LBE

broadcast

medium

low

medium

high

medium

low

medium

high

TABLE 1. Applications grouped by frame rate requirements
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The Result:

This merging of new technologies and new talent is facilitating the production
of a new form of entertainment, perhaps even a new medium on a par with film
or video. For lack of a better term, I’ll refer to it using Krantz’s: “realies”.
While overall realism and character quality are still somewhat limited, the
interactivity and immersivity alone make it qualitatively different from the
media which spawned it. It’s characteristics are:

• more realistic than video games

• more story and character than video games

• more interactive than ride films

• more immersive and first-person than film or TV

3   Platform Hardware and Software

Constructing a complete entertainment system requires many pieces including
hardware, software and database. Usually these fall into two sets. The platform
components are the low-level building blocks which are not highly specific to
any particular game or experience. On top of this platform lie layers of increas-
ing specificity. The next layer might be a software run-time manager that could
control the system for a particular class of game experiences. The final layer
then would be the content which is specific to a particular game: characters, 3D
geometric models, scenery, game logic, behaviors, animations, AI for autono-
mous characters, in short the game application and its associated content.

Each of these functions requires a hardware component and a software compo-
nent to provide a useful interface for driving it. Together they provide a com-
mon set of capabilities which can be used for running many different games,
much as a movie projector provides a platform for the showing of films. Figure

Realistic Interactive Immersive

Detailed

Character

Video Games No Yes No No

Ride Films Yes No Yes Yes

Film & TV Yes No No Yes

3D “Realies” Yes Yes Yes Yes

TABLE 2. Characteristics of various entertainment media.



Platform Hardware and Software

1-6 SIGGRAPH ’96 Course  —  Designing Real-Time 3D Graphics for Entertainment

2 shows a common set of hardware elements.At the lowest level, the platform
can be divided into six areas:as shown in Table 3.

Hardware

In entertainment systems, image quality and frame rate are not goals in them-
selves. It’s not about how many antialiased, textured, bump mapped, polygons
per second you can draw, or about how many sound sources, diffusers and
reflectors your 3D spatial sound system can render. Entertainment systems,
whether in a home, arcade or theme park, need to achieve sufficient fun per
dollar to pay for themselves either directly or as an attraction.

“Super Mario didn’t sell millions of copies because the mushrooms were

texture mapped” - Tom Garland, SGI

But it takes certain capabilities to make something compelling and fun. And
the standards go up every year. Pong was quite a hit in 1972. But if some neo-

Function Hardware Example Software Example

general processing workstation CPU(s) UnixTM

visual graphics subsystem

CRTs

head-mounted displays

IRIS PerformerTM

audio MIDI synthesizer audio drivers

motion motion platform dynamics model

motion drivers

input joysticks

trackers

device drivers

output LED displays

real bells & whistles

TABLE 3. Low-level run-time functions and hardware/software examples

FIGURE 2. Common Hardware Components

Display

Audio

SubsystemNetwork

Motion

Platform
Computer(s)

Graphics

Subsystem

Input

Devices
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Bushnell were to install a game with similar graphics quality in an arcade
today, would he have problems with it shorting out from filling up too fast with
quarters? Probably not. And theme park standards must be even higher to war-
rant the longer distances and greater expense. So there is an as yet unsated
thirst for quality which is unlikely to be met until real-time rendering can
approach the production quality of CGI for film and video. And judging by the
visual quality which current graphics hardware can achieve at real-time rates
of 20-30 fps, we’ve still got a ways to go before we have graphics power to
spare.

The table below lists a number of factors which contribute to the quality of the
experience and the hardware involved.

Often, the graphics subsystem is the single most expensive component.

While seeking quality to support richer content and distinguish themselves,
developers of entertainment systems are also very sensitive to cost per player.
Revenues for these systems typically range from the 25cents/play of arcade
video games to the dollar/minute or more charged by many location-based
entertainment installations. Total system costs can range roughly from $10,000
to perhaps as high as $100,000 per player. In many of these systems, the com-
puting and graphics hardware are the largest factors in cost.

Unless many players share a single display, as in a large motion cab with a pro-
jection screen, these price constraints lie well below the cost per visual channel
of traditional visual simulation image generators and are even a stretch for
many workstation-based graphics subsystems.

Thus, developers are caught between their hunger for visual quality and a thin
wallet, but are constrained by. Nothing except an infinite budget can eliminate
the constraint imposed by (EQ 1). Every additional polygon costs something in
the bottom line. But careful attention to the design of the visual database and
implementation of the run-time system can be used to maximize the visual

Capability Enabling Hardware

visual complexity GFX, displays

frame rate GFX

character animation CPU + GFX

motion realism motion platform

audio fidelity synthesizers, spatializers,

speakers

player environment pod, auxiliary displays, input

devices

collision detection CPU

TABLE 4. Capabilities and the associated hardware which enables (and limits) them
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impact and frame rate at a particular cost, effectively reducing the proportion-
ality constant in the equation and improving cost/performance.

Architectural Design

Once the performance and content requirements of the system have been deter-
mined. The architecture of the hardware system should be designed with three
main things in mind:

• processing power - how much does a particular subsystem require?

• bandwidth - how much data needs to get in and out of each subsystem

• latency - what sort of delays are allowable in data generation and transfer

Graphics Hardware

Most graphics hardware capable of rendering reasonably high scene complex-
ity at high frame rates scan convert polygons for rendering, rather than using
ray tracing or volume rendering techniques. Architectures in this domain
include like RealityEngine [Akeley93] or LEO [Deeri93].

While the fundamental tradeoff is between frame rate, visual complexity and
cost, the details of a particular graphics architecture are often important to
gaining maximum performance from it. Chapter 9 of these course notes, a
reprint of [Akeley89], provides a good introduction to this class of graphics
hardware. Depending on the graphics architecture used, one may be limited in
the number or size of polygons that can be rendered, the number of pixels that
can be drawn, the amount of data transferred between the host and graphics
subsystem. Methods for optimizing rendering to these constraints are described
in Chapter 4. Some techniques such as texture mapping (discussed in Chapter
2) can dramatically increase the perceived visual complexity without increas-
ing the polygonal complexity of the database.

Host to Graphics Connection

Traditionally one of the largest consumers of bandwidth has been the connec-
tion between the visual database and the graphics subsystem. For this reason,
many systems, such as the image generators used in visual simulation, have
had the database reside in the graphics subsystem itself. This has advantages in
that it allows hardware specific optimization of rendering and requires a much
lower bandwidth between the host computer and the graphics subsystem (com-
mands such as “move object #15 North 10 meters”). But such optimizations
(e.g. binary space partitioning) often place restrictions on the dynamism of the
data and because the rendering engine owns the database, any new features,
such as character animation, must be coded directly in the rendering hardware
rather than in the friendlier host development environment.
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Most workstation and many PC graphics systems take a different approach and
have the rendering traversal and sometimes the first stages of the rendering
performed on the host CPU. This allows more flexibility in rendering, but
requires a much larger bandwidth between the host CPU and the graphics sub-
system, since every polygon vertex, normal and color must be transferred each
frame.

Software

This platform layer consists of the core run-time functionality that could be
used by many different games. This level of software should provide a high-
performance layer which isolates the game developer from the details of the
underlying hardware. Typically, it comes in the form of a toolkits or software
libraries layered on top of an operating system.

Real-Time OS?

One approach to achieving real-time performance is to assemble a custom
hardware dedicated and perfectly tuned to the task as with VIDEOPLACE
which Myron Krueger has developed over the last 18 years. He meticulously
“timed software modules with a logic analyzer” to be certain about the perfor-
mance characteristics [Krueg90]. This is the level of certainty we desire, and
predictability and high performance must be designed into the hardware and
software platform. But developing a fully custom OS or even utilizing one of
the standard “real-time” kernels available for embedded systems requires a
very substantial amount of work. The development of hardware graphics driv-
ers in itself would be prohibitive for many projects which are deployed in
small numbers.

The fast CPUs, good development environment, flexibility and graphics per-
formance of UNIX workstations makes it an attractive OS for high end game
systems. One can prototype, develop, code, model, paint and debug all on the
same or similar systems. But is it good for deployment? UNIX has a bad repu-
tation for scheduling and interrupt latency.

In order to achieve consistent and predictable performance on a workstation,
one needs to insure that the desired application processing is not interrupted by
daemon or ancillary interrupt driven kernel activity. Multiprocessing worksta-
tions can provide this functionality by allowing processors to be restricted to
certain tasks so that applications and real-time device drivers have guaranteed
response times. The REACT extensions to Silicon Graphics’ IRIX operating
system supports these features.

Other issues in trying to achieve constant frame rates and constant latencies lie
in the application domain. Frequently gaming systems are so complex that it
may not be feasible to exhaustively simulate all contingencies. To prevent the
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system from failing under stress, the platform software should also provide
mechanisms for monitoring performance and respond gracefully when over-
loaded preferably without dropping its frame rate. Most often this involves
decoupling various processing tasks and being able to provide extrapolated
values when actual information is delayed.

Synchronization and Communication

Sometimes the most cost effective solution requires having a single powerful
computer driving the experiences of multiple players. For example, a high-end,
multiprocessing workstation could drive six game pods playing the same or
different games as shown in the left side of Figure 3. In this case, synchroniz-
ing the different players is a trivial matter of communication through shared
memory.

But when multiple systems need to be networked to connect players into a
common game or environment, as shown in the right side of Figure 3, synchro-
nization is required to ensure that the

global state (e.g. locations and conditions of players) for the game is the same
for everyone. This becomes complicated when the network connecting the sys-
tems has high latencies, and is particularly a problem for fast-paced games in
which objects are moving rapidly. Maintaining accurate information about
player location requires all systems to have an accurately synchronized notion
of time and a method for extrapolating position information. and correcting for
extrapolation issues such as the paper [Sing94] reprinted in Chapter 10.The
accuracy of synchronization in multiplayer simulation is largely a function of
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network bandwidth and latency. Depending on requirements and budget, solu-
tions range from relatively high-latency connections such as modems over
telephone lines to low-latency reflective shared-memory systems such as
SCRAMNet (as used in the CAVE [Cruz93]).

When multiple machines drive the same display (e.g. panoramic, multiprojec-
tor display), very fine synchronization is required. Typically this is done
through synchronizing the video clock and buffer swap mechanisms of the dif-
ferent systems rather than through a standard network.

Domain Specific Software

For example, on the graphics side, one might use a toolkit such as IRIS Per-
former to provide a graphics and database processing, as well as a framework
for multiprocessing. But a complete system requires comparable low-level
software for handling input devices, networking, audio, dynamics, collision
response, and so on. Some higher-level platform software covers more than
one of these areas (e.g. Paradigm Simulation’s Vega and Division’s dVS), but
currently no single solution covers the entire set of needs listed above. Conse-
quently, a number of different software suppliers and a fair amount of custom
coding are often used.

4   Artistic Content

The other major component is the content of a particular game, which in the
projector analogy corresponds to what’s on the film being projected. In many
ways, producing a game is like producing a film. First and foremost comes the
concept, plot, characters, scenarios and game activity. Jordan Weisman, the
creator of Virtual Worlds Entertainment, designed role playing board games
for many years before venturing into location-based entertainment. Game
designers have much more experience to draw on today than when Chris
Crawford developed Excalibur at Atari a decade ago, but his comments on the
state of the art still sound true, especially as advances continue to change the
design medium and range of possible content.

Computer games constitute a new and as yet poorly developed art form

that holds great promise for both designers and players.

-Chris Crawford [Craw84]

For the most part, these issues lie outside the graphics and engineering focus of
this course. Some aspects of the design process are covered in later chapters in
this course. Crawford’s book [Craw84] and section in Laurel’s book [Laurel90]
give many practical insights for designing computer games. [Laurel91] and
[Thom81] also provide essential background material. In his review of PC,
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CD-ROM and video game technology[Morr94], Morrison also briefly
describes the design considerations in the making of several current games.
Moses Ma, the designer of Spectre VR, a 3D simulation game for PC and Mac-
intosh, sums up his ideas on game design as follows:

Moses’ Ten Commandments of Game Design

1. High Concept: A story that’s hot, original, obvious, leading edge on
technology, emotional

2. Barriers: Non-limiting, challenging — like flying through closing barn
doors. “Difficult landings”, try thread the needle, barriers must move
and change

3. Evolving Enemies: Interesting characterizations, show inner conflict!
The enemy keeps you from getting what you want. Interaction on 3 lev-
els: world, personal, inner.

4. Dazzling Graphics: I mean really... Is it breathtaking? Is there a consis-
tent cinematic image system? Does it have a look?

5. Emotion producing sound.

6. Action well-timed and rising/falling action and boredom detection - 20
minute episodes — sweat drenching — opening hook, conflict, crisis,
resolution.

7. Tight registration of feedback: Both collision detection, joystick and
visual meter feedback.

8. Positive Monitoring in Learning Curve: Use a flight log on data disk,
easy to learn / a challenge to master.

9. Infinite Replayability: Create data disk format/ flightlog - levels of
skill.

10. Make the gaming simulation world real, authentic (not cliche). Interest-
ing characterizations! Know the world, details count.

Implementation

After moving from concept to detailed design, next comes the implementation.
As with a film, sets must be constructed and populated with characters. This
requires the modeling of geometry, the generation of imagery for texturing and
the specification of the data necessary to animate the characters. Because this
medium is new, there is a relative scarcity of production tools.

Component Examples

visual database geometry, texture, animated models

audio database samples, data for synthesis

behavioral models animation control, collision response, AI players



Artistic Content

James Helman  —  Architecture and Performance of Entertainment Systems 1-13

Geometric Data

Typically the geometric database is constructed with a 3D modeling tool. The
desired output is a collection of polygons suitable for real-time rendering.
Commercial modeling tools currently tend to fall into two categories, modelers
with origins in visual simulation and those with origins in non-real-time com-
puter animation. Visual simulation modelers tend to focus on supporting the
construction of objects polygon by polygon or through terrain height fields,
combined with lofting, rotation and extrusion. These methods of construction
are appropriate for real-time systems since polygon count must be minimized
to achieve reasonable frame rates. Such modelers also provide real-time fea-
tures such as level-of-detail switching and precomputed animation sequences
as discussed in Chapter 2.

Modelers used for producing frame-by-frame animations usually have a richer
set of surface construction tools, but often lack real-time concepts such as
ranges for level of detail switching and prerendered animation sequences.
Higher level primitives such as spheres, cylinders and NURBS are powerful
but can be dangerous for real-time systems. While they make the construction
of multiple levels of detail much easier, they also make it easy to generate far
to many polygons for real-time rendering.

Image Data

Image data can be produced by many different means: photographs of objects
or hand paintings, use of computer paint tools, procedural generation, etc.
When game is based on an existing property such as a film or TV show, much
of the image material may already exist. This image data is then mapped onto
geometry, usually using the same tools that were used to generate the geome-
try.

Animation & Motion

Introducing dynamism is the great challenge in designing content for real-time
systems. A deserted scene in which nothing moves or changes probably won’t
make a good game. Defining paths for object to move through a scene is quite
straightforward as is specifying jointed articulation of static elements such as
the motion of a crane or the wheels on a car. But complex animations require

motion platform motion models

user interface interface models

game logic scenario handling

application overall control, story, coordination, continuity

Component Examples

visual database geometry, texture, animated models



Artistic Content

1-14 SIGGRAPH ’96 Course  —  Designing Real-Time 3D Graphics for Entertainment

more than this. Traditionally in visual simulation, such animations have been
modeled as flip-card sequences of preanimated models. Flip-card animation
sequences eliminate the run-time computational load of complex animations.
The next step up is to use geometric morphing to interpolate between steps in
the sequence. One is still limited to the prerendered sequencing, but at least the
motion can be smooth and existing animation packages can generate the
sequences of models.

Total animation of a character requires both articulation and geometric mor-
phing as discussed briefly in Chapter 2. Depending on the type of animation,
some combination of key frame animation, live motion capture, goal-directed
motion [Badl91] and dynamics modeling can be used. Since deGraf and Wahr-
man showed “Mike the Talking Head” at SIGGRAPH ‘88, a growing amount
of work has been done on generating character animations at interactive frame
rates. But the computational and graphics requirements make this difficult, and
commercial tools for translating animations into forms suitable for real-time
rendering remain scarce.

Some types of geometry and imagery are well-suited for procedural generation
and animation [Ebert92][Prus90]. Extensive procedural generation of geome-
try (e.g. fractals, plants) and texture images is rarely done at run time because
the large computational burden required. With a few notable exceptions such
as Pixel-Planes 5 [Fuchs89], most graphics hardware systems do not accelerate
procedural texture generation.

So, most procedural animation used in real-time systems takes much simpler
forms such as defining a mathematical model for the motion of waves. Such
models usually end up being defined in application code rather than in the data-
base partially for efficiency, but mainly due to lack of tools and database for-
mats to support them.

Special Effects

“Nintendo informed Jaleco that the exploding hamster had to be deleted

in future cartridges.” - David Sheff [Sheff93]

The creation of special effects whether sparkling pixie dust or something more
visceral, often falls outside the capabilities of standard modelers. Often some
combination of modeling and procedural generation at run-time are used. The
run-time capabilities available for use include flip-card animation of textures
and geometric models, morphing, texture coordinate animation and simple par-
ticle systems.
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5   The Director

The tar pit of software engineering will continue to be sticky for a long

time to come. - Fred Brooks [Brook82]

We’ve covered two obvious elements: artistic content and the platform for
showing it on. Using the film analogy, on one side we have the actors, the set
and the script and on the other we have the projector, or at least a motor, bulb
and lens. Unfortunately, the technology for making a “realie” is nowhere near
as well developed as film or video. Each developer must put together their own
system for bridging the gap between the artistic content and the platform. Sev-
eral years or more may elapse before any standard solutions are settled on.
Until then, one of the major challenges of assembling a system is writing this
software director in a way that it can be reused for different experiences.

This “Director” software is the run-time engine that coordinates all activity. On
one side the director is soaking up information from all of the input devices,
and following the script, tells the camera operator how to shoot, the audio sys-
tem what to say to the player, the characters how to move.

One problem is the script. It appears to have no simple representation. It covers
a large range of activities: gaming logic, autonomous characters, complex ani-
mations, scenery shifts, scenario tuning based on player’s responses, collision
response, etc. How can one hope to embody something so ill-defined? Soft-
ware, of course. It’s the programmability of our machines that makes rapid
progress possible even in the face of problems on the scale of trying to create
virtual theatres and gaming worlds.

The topic of “Director” software and other elements of game construction are
covered in Chapters 5-7.

6   Conclusions

Never mistake a clear view for a short distance. - Paul Saffo [Saff90]

The current situation as far as tools for creating content, hardware for produc-
ing the sound, motion and graphics, and the software for integrating the con-
tent to the hardware indicates that this industry is still in its infancy. Modeling
and animation tools do not yet fully reflect the requirements for producing
scenery and characters that can be rendered in real-time. With large gains every
year, graphics hardware is now able to produce much more compelling scenes
than were available to the first developers of computer games. But it still falls
far short of being able to unable to render everything that our artists would like
to at the real-time frame rates required for interactive gaming and theatre. And
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while software platforms are improving along with the hardware, there are as
yet no standard or fully reusable run-time “projection” systems.

No doubt the available tools and software will improve as the market and our
understanding of the problem improve. Until then, those wishing to create such
games or experiences have a lot work to do ranging from building their own
sets, cameras, and even projectors.

As with other entertainment media, the most important element lies in the
design of compelling and feasible concept. Beyond that, the largest problem is
trying to squeeze the execution of that concept into the 15 to 50 milliseconds
we have to think about and render each frame.

Graphics is currently one of the most expensive elements in the run-time sys-
tem, and nothing can save developers from the quality vs. frame rate vs. cost
tradeoff embodied in (EQ 1). But if the entire game design process from mod-
eling and animation to the run-time software proceeds knowing that every
polygon, every character animation and every special effect costs something in
the bottom cost/performance line, we can at least shift the balance in favor of
more visual impact. This becomes more important as the producers of these
new entertainment systems seek to distinguish themselves. Chapters 2-4 of
these notes discuss various software and modeling methods for use in this
effort.
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Appendix A.

Performance Requirements

and

Human Factors

A 1   Visual Perception

Of all the sensory information we need to provide, the visual component is cer-
tainly the most important in producing the illusion of a virtual environment.
The ideal would be to provide simulated input with fidelity which matched or
exceeded the limits of human visual perception in all aspects. Fortunately, in
practice, this is not a prerequisite for producing a usable virtual environment.
But in designing a system, we need to always keep the capabilities of the
human visual system in mind because the limitations of technology will force
many tradeoffs to be made for the foreseeable future.

The human visual system is complex and even basic perceptual thresholds defy
simple characterization, usually depending on a variety of factors. The follow-
ing briefly discusses some of the perceptual limits and how they have been
addressed in traditional simulators.

Visual Acuity

Spatial resolution limits can be measured in many ways and depend strongly
on many factors including brightness, color, contrast, off-axis eccentricity,
length of exposure and retinal illumination.

Visual acuity is commonly measured in terms of the angle subtended at the
eye. For reasonably bright objects, on-axis, the limit is around 1 minute of arc.
This corresponds roughly to a 20/20 result in a standard vision test, which indi-
cates the ability to recognize letters which subtend 5 minutes of arc. Sensitivity
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to spatial frequencies is measured by the contrast required to perceive vertical
bars and is largest at around 5 cycles/degree [Buse92]. This indicates that reso-
lutions of around 5 minutes of arc are required to get into the region of peak
sensitivity, a limit important for creating sharp edges.

Acuity falls off rapidly as the object moves outside the central 2 degree region.
At 10 degree of off-axis eccentricity, acuity drops to around 10 arcmin.

For comparison, a first generation LCD-based head-mounted display (HMD)
with around 185 RGB triads across an 75 degrees field of view per eye
[Robi91] yields a resolution of around 24 arcmins, or around 20/480 vision. To
make resolution matters worse, typically optical blurring was often employed
to help fuse the red, green and blue pixels [Teit90].

Even a “high-resolution” display with 1280 pixels across a narrower 60
degrees field of view per eye achieves only around 3 arcmins.

Standards set for visual simulators are valuable guideposts because they
embody years of experience. In this case, the standard for out-the window
commercial flight simulators (Level C) set by the Federal Aviation Administra-
tion (FAA) requires 3 arcmin resolution [FAA89].

Temporal Resolution

Peak sensitivity to temporally modulated illumination occurs around 10Hz to
25Hz, with the frequency increasing with luminance. The frequency at which
modulation is no longer perceptible, the critical flicker fusion frequency, varies
from 15Hz up to around 50Hz for high illumination levels [Wysz82]. On CRT
displays, which fill a large field of view and have non-sinusoidal temporal pro-
files, some individuals still perceive flicker at the common 60Hz refresh rate,
which has lead workstation manufacturers to introduce video formats in the
66Hz to 76Hz range. Bright displays with large fields of view can require
refresh rates of 85Hz or more [Padm92].

Luminance

Including dark adaptation the eye has a dynamic range of around 7 orders of
magnitude, far greater than any current display device. The eye is sensitive to
ratios of intensities rather than absolute differences, and at high illuminations
the eye can detect differences in luminance as small as 1% [Wysz82]. Thus a
CRT with a dynamic range of around 100 can display no more than log100/
log1.01 = 463 perceptible levels.

For reference, Padmos indicates that contrast ratios of 10:1 to 25:1 are suffi-
cient. The FAA standard for commercial flight simulators requires a 5:1 con-
trast ratio for scenery and 25:1 for light points [FAA89].
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Color

The human eye can perceive light in the range of 400nm to 700nm in wave-
length. Fortunately for the creators of simulated environments, the human eye
can’t perceive the exact spectrum of light emanating from an object. According
to the tristimulus theory, our perception of color starts in three different types
of receptors on the retina. Each type of color receptor has a different spectral
response with a single dominant peak. The resulting three-dimensional color
space can be mapped in many ways.

The CIE chromaticity space factors out luminous energy to yield a two-dimen-
sional color gamut which serves as a benchmark tristimulus based color gener-
ation. Most reproduction methods whether printing inks, film layers or
phosphors used in CRTs, only cover a portion of the color gamut [Fole90].

But the tristimulus-based color gamut is not the final word. Colors are per-
ceived differently depending on their context, for example we perceive an
apple to have the same color even under a variety of illuminations. This same
adaptation that allows colors to “look right” under varying illumination also
tends to cause limited color ranges to appear richer than we would expect from
the tristimulus theory. Land in his retinex theory [Land83] showed that stimu-
lation by a combination of only two spectral sources can give the impression of
a surprisingly wide range of colors. This could be relevant some displays such
as the two-color version of the BOOM [McDo90].

Stereopsis and Depth

The limit of stereo vision typically occurs for a binocular disparity of 12 arcsec
which translates into perceiving the depth ordering of objects separated by
0.1cm at a distance of 1m, 9cm at 10m, and 56cm at 25m [Buse92].

When looking at computer-generated imagery, the eyes’ focus (accommoda-
tion) and vergence often do not match as they must focus at the screen or the
image plane defined by the optics of an HMD but converge at an angle dictated
by the rendered images. And without proper calibration or in a monoscopic
system such as a dome, neither focus nor convergence may reflect the actual
position of the virtual object relative to the viewer. This causes errors in
accommodation (defocus) and vergence (fixation disparity) [Hung94]. Of even
greater concern in systems intended for public use is the possibility that oculo-
motor problems can persist after participation in a virtual environment as a
form of simulator sickness.

Out-the-window simulators often use collimated optics to place the images at
infinity thereby making convergence and focus match closely for distant scen-
ery.
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Many users of stereoscopic systems have trouble fusing stereo images, perhaps
because of these inconsistencies. Computer graphics applications which do not
need to accurately depict the scale of depth can artificially adjust the parallax
to allow more comfortable viewing [Hibb91].

But for virtual environments requiring close-up manipulation of objects and
especially for those requiring accurate registration of virtual objects with the
real world, the false depth cues generated by this intentional decalibration are
unacceptable. The best that can be done is to calibrate and consider all vari-
ables affecting stereo viewing [Deer92] and carefully choose the size, overlap
and image distance of the system to match the task and operating distance.

The blurring of objects due to depth-of-field effects poses another challenge.
Depth of field can be rendered using multi-pass techniques [Haeb90]. But even
if methods for measuring or inferring eye accommodation existed, the 2X to
4X performance penalties for simulating depth of field are probably unaccept-
able. Real-time holography solves this particular problem, but brings a few too
many of its own.

Field of View

Each eye has approximately a 150 degrees horizontal field of view (60 degrees
towards the nose and 90 degrees to the side) and 120 degrees vertically (50
degrees up and 80 degrees down) [Buse92]. The FAA standard for commercial
out-the-window flight simulators (Level C) requires 75 degrees horizontal and
30 degrees vertical fields of view [FAA89].

It’s important to remember that visual acuity limited to only a few degrees
around the axis of gaze direction. Whether in a head-mounted display or a pro-
jection system, vast amounts of rendering power are wasted drawing high reso-
lution imagery where you can’t see it, because you’re looking at something
two or more degrees away.

Binocular overlap when focused at infinity is approximately 120 degrees.
Overlap varies substantially among different HMDs binocular with some sup-
porting variable overlaps. With the relatively small fields of view (40 degrees
to 60 degrees of HMDs used in simulation), large overlaps of more than 50%
have been found useful. Because of other problems such as blending of bright-
ness at the borders of overlap, one report found that 100% overlap produced
best performance on a visual search task [Edga91].

Motion

Motion of bright objects can be perceived down to 0.3 min arc/sec [Buse92]. In
out-the-window simulators, the maximum displacement of an object per
update which gives an impression of continuous motion is 15 arcmin
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[Padm92]. If carried directly over to HMD usage, a head slew rate in excess of
180 degrees/sec translates into an unattainable 720 Hz. At such high motion
rates, temporal antialiasing, i.e. motion blur, could help simulate the temporal
averaging of the visual system, but the appropriateness of motion blur for an
object also depends on whether the gaze is fixed on the moving object.

Motion of the visual field causes a sense of motion even without corresponding
physical body motion. For example, in a simulator without a motion platform
the participant gets an impression of self-motion from the motion of objects on
the screen.

For rotations, this visually-induced motion varies depending on the axis and
the physical orientation of the subject, presumably because of conditioning by
gravity. The sense of rotation occurs for roll, pitch and yaw, with sense of yaw
being the strongest and roll the weakest [Howa87]. At very high rates of
change in yaw, the sense of motion begins to saturate at 60 degrees/sec
[Mooi87].

This visually-induced sense of motion is tied to field of view becoming “effec-
tive” at around 60 degrees and most effective at 180 degrees[Mooi87].

This sense of motion is accompanied by a perception of a change in orienta-
tion, even in the absence of a physical change in orientation. A sense of change
in orientation occurs in the opposite direction of the rotation of the visual
image and can range up to 45 degrees [Howa87].

A 2   Temporal Artifacts In Simulated Displays

Field-Sequential Artifacts

Ideally, each pixel should be accurate for the moment it is scanned out on the
display device including motion blur (temporal antialiasing) for the period
between screen refreshes. In practice this is not feasible and would also unreal-
istically blur moving objects which the gaze is fixed on. For most applications,
the performance penalties for doing full scene motion blur outweigh the bene-
fit, and brute force per-pixel temporal alignment is several orders of magnitude
more costly. The bottom line is that relatively few applications can even update
the screen at the display refresh rate, let alone worry about these higher quality
issues.

Repeating Frames

Most displays run at 60Hz or higher field refresh rates to prevent flicker, but
many visual simulations run at lower update rates. This means that a single
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image may be scanned out several times before being changed. The sense of
motion at the lower update rate is not as smooth, especially when imagery is
moving rapidly. In addition, the repetition of a frame means that the image is
temporally inaccurate for motion. Real moving objects do not stay in one place
for a couple frame times and then move. The result is that when one fixates on
a moving object, it appears to split into multiple copies along the direction of
motion with the number of ghosts equaling the refresh rate divided by the
update rate. So a simulation running at 20Hz update on a display refreshing at
60Hz, the object will appear tripled as shown in Figure 1. On large objects
such as horizon silhouette, the effect manifests itself as multiple edges.

Motion blur would mitigate this effect, but poses other problems. In practice,
smooth motion and the absence of ghosting are best achieved by an update rate
which equals the display refresh rate.

Interlacing

One way to make the update rate equal the refresh rate is to interlace the video
so that even and odd line fields are drawn at 60Hz. The graphics hardware can
then render the scene with at 30Hz. This suffers from problems similar to those
above. But in this case, the temporal inaccuracy for motion causes combed
ghosting with edges breaking up into combs due to the interlacing.

Another option is to render with half-resolution at 60Hz (just the even or odd
field lines). This has some advantages since rendering latency is decreased by
1/60th sec, motion is smoother and combed ghosting is reduced. As this
requires rendering all the geometry in the scene twice, it is only possible for

Refresh Rate = Update Rate

Motion

Refresh Rate = 3 * Update Rate

Motion

FIGURE 1. Multiple image artifact when fixating on moving object.
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scenes which are strongly limited by pixel fill rates. But many highly-textured
databases with simple geometry falls into this category.

Sequential Stereo

Most common CRT-based stereo viewing systems operate by sequentially pre-
senting left and right eye images. For moving objects the common approach of
rendering both the left and right eye with the same positions for moving
objects is temporally incorrect and produces visual artifacts, including errone-
ous stereo depth cuing in low refresh rate systems. Lipton reports that the arti-
facts which are noticeable at 30 fields/sec/eye are not perceptible at updates of
60 fields/sec/eye[Lipt91].

Sequential Color

Color monitors typically have lower contrast than monochrome monitors
because of the shadow mask. Shadow masks also make the manufacture of
small, high-resolution color CRTs extremely difficult. Thus a system which
uses a monochrome monitor to sequentially displaying each color channel with
an accompanying change in color by a shutter has advantages for use in head-
mounted displays over low-contrast LCD displays. However, the sequential
display of color also generates artifacts. For example, a monochrome monitor
may be driven at a field rate of 180Hz thus creating a full RGB image at 60Hz.
But if the frame buffer is only updated at a rate of 60Hz, the positions of mov-
ing objects will only be correct for one of the three color scans. This leads to an
effect similar to poorly registered color printing plates, especially when the eye
is tracking an object of high contrast. Updating the frame buffer at 180Hz
might alleviate this somewhat, but few if any graphics platforms are configured
to drive visuals at this rate, and a factor of three increase in the required render-
ing is likely to be unacceptable.

Frame Rate Variations

The aforementioned discussions assume a constant frame rate. Varying frame
rates pose a number of additional perceptual and practical issues. Fixed frame
rates are required in the design of most visual simulators.

A varying frame rate tends to distract the user from the task at hand, particu-
larly tasks involving manipulation of the world or accurate perception of
velocities. In particular when going from 60Hz update to 30Hz update, the fac-
tor of two is quite noticeable in the quality of motion. Frame rate changes can
also false training, if for example a trainee relied on a change in frame rate as
an indication of some otherwise hidden feature, such as a large installation hid-
den behind a hill.
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Unanticipated frame rate variations also cause temporal inaccuracies, because
the frame does not appear at the time for which it was planned and all visual
latencies through the system change as well.

A 3   Latency

Latency is the time measured from the setting of an input until the correspond-
ing output is manifested. Many factors contribute to latency: input devices,
software architecture, rendering time, motion response. Different portions of a
system may have different latencies, e.g. the response of the visuals to changes
in eye point might differ from the collision response which might in turn differ
from the response of the motion system. Any path from an input to an output in
Figure 2 could take a different amount of time.

For the rendering portion of the system, the latency is typically taken as the
time after some value, such as the eyepoint, is set until the last pixel of the cor-
responding frame is scanned out by the display device.

Typical Simulator Latencies

Reports from a flight training system indicate that the user-perceived quality of
the simulation degrades steadily for total latencies over 100ms [Beck92]. Other
studies have indicated that latencies below 100ms have little effect [Card90].
According to Padmos, in out-the-window simulators, latencies typically range

FIGURE 2. Sources of latency in a hypothetical virtual environment system.
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from 40-80ms for driving simulators to 100-150ms for low-maneuverability
flight simulation [Padm92]. The FAA latency requirement for commercial
flight simulators (Level C) is 150ms [FAA89].

Latencies in the 200-350ms range significantly decrease human response rates
at measured by transfer functions in the frequency domain [Hess83]. As is well
known from aircraft control theory, this can lead to over-compensation and
oscillations induced by the operator.

A 4   Simulator Sickness

The term simulator sickness refers to a variety of maladies that result from the
use of simulators, both with and without real body motion. The prevalence of
simulator sickness in out-the-window simulators indicates that it could seri-
ously impact the usage of VEs. If the first virtual environments to enter main-
stream use make users sick, it could damage their acceptance into real-world
use.

Virtual Environments vs. Simulators

Virtual environments share many attributes with traditional simulators:

• A visually-induced sense of motion either without corresponding physi-
cal accelerations or imperfectly simulated by a motion platform.

• Latencies between events or actions and the manifestation of their results
whether visual, auditory or physical.

• Displays with wide fields of view.

• Visual artifacts from inadequate temporal and spatial aliasing.

• Visual artifacts due to inadequate frame rates.

• Display resolutions which at best barely meet human resolution limits.

While most virtual environments may not involve the sort of gut-wrenching
maneuvers which fighter pilots go through, VEs offer other challenges not
common in traditional visual simulation:

• The slew rates for HMD use are substantially larger than those encoun-
tered on most out-the-window visual simulators.

• In HMDs, fixating while turning the head poses latency and update chal-
lenges greater than in out-the-window simulation.

• Head-tracked displays are subject to errors in 6 degree-of-freedom track-
ers.
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Many virtual environments involve viewing objects up close. In the real world,
such viewing is accompanied by focus distance and depth-of-field effects
which are difficult to simulate. Out-the-window applications can often closely
simulate the optical configuration of physical world by using collimated optics
to place the imagery at infinity.

Proposed uses of virtual environments span many diverse population groups.
Unlike pilots these groups are unlikely to have become accommodated through
extensive simulator usage and have not gone through a winnowing process
which strongly selected for resistance to motion sickness.

Simulator sickness is surprisingly common with 20% to 40% of fighter pilots
using simulators suffering ill effects. Some simulators have incidence rates of
up to 87% [Mone91b].

This despite the facts that:

• Fighter pilots are a population group highly selected for resistance to
motion sickness, and are better accommodated to simulator use than the
general public.

• The simulators have stringent human factors requirements

• Most simulators are out-the-window, i.e. CRT, projection or dome based,
so the visuals need only track the vehicle motion, and not rapid head
motion.

Symptoms

While nausea is a significant and perhaps most obvious feature of motion and
simulator sickness, it is not the only or even the principal symptom [Kenn90].
Symptoms include visuomotor dysfunctions (e.g. eyestrain, blurred vision, dif-
ficulty focusing), mental disorientation (e.g. difficulty concentrating, confu-
sion, apathy) and nausea (e.g. stomach awareness, nausea, vomiting).
Drowsiness, fatigue, eyestrain and headache are among the more common
symptoms [Kenn87]. In pilot training, one of the main concerns is the persis-
tence of some of these effects for many hours, requiring a recovery period
before the pilot is ready for actual flight.

Causes

The lack of much formal research in HMD visually induced motion sickness
means we must mostly extrapolate from military and commercial simulators
both with and without real body motion.

It’s generally agreed that simulator sickness has two prerequisites, a function-
ing vestibular system and a sense of motion [Hett92]. The vestibular system is
the set of canals, tubes and sacs in the inner ear give us our sense of orientation
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and acceleration. Individuals without functioning vestibular systems do not
exhibit simulator sickness either with or without real body motion [Eben92].

One hypothesis is that simulator sickness arises from a mismatch between
visual motion cues and the vestibular system. This would commonly occur
when visual motion does not match physical motion either because no motion
platform is used or because the motion platform lags the visuals and cannot
match all the accelerations and orientations. In virtual environments, simulator
sickness can be expected both in motion based systems (e.g. game pods) and
physically static ones (e.g. HMD user seated in a chair).

Wired for Cookie Tossing

Why did this unfortunate response to simulated experience develop? Evolu-
tionarily, it’s postulated that in nature the disruption and inconsistency of per-
ceptions which trigger simulator sickness would likely be the side effect of
ingesting poisons, and so vomiting is a useful response [Mone91a].

Contributing Factors

Since a sense of visual motion is required for simulator sickness, it’s reason-
able to expect that many features which make a virtual environment convinc-
ing will contribute to simulator sickness. This is born out by studies which
have found that bright imagery is more likely to induce sickness than night
time scenes, and that wide fields of view cause more problems than narrow
ones. Also domes projection systems seem to elicit fewer symptoms than CRT
based systems. In motion systems, roll in the 0.2Hz region is particularly nau-
seogenic.

One author proposes a set of workarounds for pilots using simulators
[Mone91b]. Some of these bits of wisdom are paraphrased here for application
to virtual environments:

• Don’t suggest to users that they will get sick or let them see someone else
vomiting. It’s contagious.

• Don’t go into a VE when your are hung over or have an upset stomach.

• Adaptation is the best fix. Do the VE every day.

• Don’t do the real thing the same day you do it in a VE.

• Get set before turning the VE on.

• Set the VE up for night flying.

• Don’t roll or pitch too much.

• Don’t move your head too much.

• Turn off the VE before getting out.
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Until further research is done, we won’t know how much additional problems
are caused by inadequate resolution, frame rate and latency in HMDs or to
what extent BOOM mounted displays [McDo90] are affected. The initial
response to the CAVE [Cruz93] do not indicate that surround scene projection
systems with standing observers are particularly prone to inducing simulator
sickness.

But since problems occur even in visual simulators with good visual quality
and no head tracking issues, e.g. dome projection systems, we will always be
confronted with the prospect of simulator sickness in some types of virtual
environments, particularly those with large visually induced motions.

A 5   Conclusions

The human factors requirements of head-mounted displays are in many ways
harder to meet than those for traditional out-the-window visual simulation.
Many virtual environments today are far from meeting even the standards for
traditional out-the-window simulators, which themselves still suffer from
many human factors problems. So as virtual environments become more con-
vincing to our senses, it’s reasonable to expect that the problems arising from
lags and inconsistencies in the sensory input provided by virtual environments
will cause significant problems in their use in the real world, particularly in
fast-paced applications such as games and entertainment.

While we have some rough guidelines to work with, much more research and
actual experience are needed before we will know how to design systems that
will not potentially render a significant fraction of their users sick or disori-
ented. Until that time, careful attention to the design and extensive testing are a
prerequisite to the fielding of any virtual environment.
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1   Introduction

Interactive computer graphic simulation of virtual environments has been busi-
ness-as-usual in the visual simulation industry since the 1960’s. The use of
real-time image generation for military aircraft and armor training, commercial
pilot training, and astronaut training is so pervasive that finding persons skilled
in these activities who have not been trained in simulators would be problem-
atic. As costs of simulation systems have declined, the number of applications
using these techniques has increased, assisting in training people to drive auto-
mobiles and trucks, to pilot ships, to operate cargo and construction cranes, to
serve as railroad engineers, to perform surgical procedures, and to perform
other tasks where skill development is important and especially where the
unavoidable student mistake can prove fatal.

Significant advances have been made in the design of hardware and software
systems that provide simulation as well as in the understanding of human per-
ceptions that govern the sense of realness and thus training effectiveness that
such systems can provide. Computer graphics systems are beginning to be used
in interactive entertainment applications where many, if not all, of the lessons
learned from visual simulation apply. This section of the SIGGRAPH ‘96
course “Designing Real-Time Graphics for Entertainment” surveys many of
the key insights developed by real-time graphics pioneers as they developed
the first visual simulation applications and suggests how these innovations can
be incorporated in the design and implementation of current and future enter-
tainment projects.
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Preliminaries

Responding to the fact that the efforts of real-time image generation systems
are directed at human observers, the first subject to understand is human physi-
ology as it controls and defines observer perceptions. This is a deep and richly
researched topic of which much is known (and of which much remains to be
discovered). Human perceptions of motion, the spatial perception of sound,
and the nature of our visual system all mandate requirements that interactive
systems must meet to be truly interactive and enable a sense of realness. These
topics are discussed in companion sessions of this course.

Overview

This paper outlines and reports on the major techniques used in visual simula-
tion systems. These techniques are collected into six major groups, each of
which covers several related topics. The groupings and their topics are:

• The importance of low-latency in image generation, which includes
issues of frame rate and latency, both real and perceived. Latency can not
be avoided, but its effects if identified and understood can be minimized
not only by attention to hardware design and software structure, but also
through subtle interactions of viewpoint control and graphics system fea-
tures.

• The need for consistent frame rates and approaches that enable them. The
goal of a fixed frame rate is central to visual simulation. Achieving this
goal is very difficult since the very nature of the problem implies using a
fixed graphics resource to view images of varying complexity. Designing
for constant frame rates demands concessions in both hardware, data-
base, and application design that must be understood if the goal is to be
met.

• The sense of realness and training effectiveness that rich scene content
provides. Since complex, detailed, and realistic images are nearly always
desired by the same customers who want high update rates and low sys-
tem cost, providing interesting and natural scenes is largely a matter of
tricks and half-way measures since a naive implementation would be pro-
hibitively expensive in terms of machine resources.

• The significance and importance of texture mapping in realistic visual
simulation and entertainment applications cannot be overstated. Texture
processing is arguably the single most important incremental capability
of real-time image generation systems. The presence and sophistication
of texture processing continues to define the “major” and “minor”
leagues of visual simulation technology.
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• The difficulty and complexity of database construction for visual simula-
tion systems. One of the key notions of image generation systems is the
fact that they are programmed largely by their databases. This program-
ming includes the design and specification of several autonomous actions
for later playback by the visual system.

• The advent of real-time character animation capability in entertainment
systems is based on features and capabilities originally developed for
high-end flight simulation applications. Creation of compelling entertain-
ment experiences hinges on the ability to introduce engaging synthetic
characters. This capability is just now beginning to be introduced and the
issues surrounding its use are discussed.

Analysis

In addition to reviewing the lessons learned from the last 30 years of visual
simulation, this paper also identifies how these lessons are being applied in
several major visual simulation based entertainment projects and observes the
influence that the entertainment market is exerting on the visual simulation
industry.

2   Low-Latency Image Generation

The issue of latency is critical to comfortable perception of moving images
under interactive control. Our human experience of such simple actions as
looking to our left or right is that the image we see moves smoothly and
instantly in reaction to our own motion. Sadly, this is rarely the case in simu-
lated visual environments. In fact, the usual response to head movement or
other control input is a discrete series of frames that represent point-sampled
images generated at fixed time intervals. Even worse, the image resulting from
a movement often is not presented until several frame intervals have elapsed,
creating a very unnatural latency due to technical issues involved in generating
and displaying the images.

A common human reaction to these unnatural images is a nausea commonly
known as simulator sickness. The comprehensive surveys by Kennedy and
coworkers [Kenn90][Kenn92] summarize more than thirty reports on simulator
sickness and conclude that transport delay is a major factor, particularly with
regard to motion of the simulated horizon.

In visual simulation the terms “latency” and “transport delay” refer to the same
thing—the time elapsed between stimulus and response. Confusion can enter
the picture because there are several important latencies in visual simulation
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and often it’s not clear which one is being discussed, that is, which stimulus
and which response.

The most general measure is the total latency, which measures the time
between user input (such as a pilot moving a control) and the display of a new
image computed using that input. An example would be a sudden roll after
smooth level flight. How long does it take for a tilted horizon to appear?

The total time required is the sum of latencies of components within the pro-
cessing path of the simulation system. The basic component latencies include:

1. Input device measurement and reporting latency

2. Vehicle dynamics computation latency

3. Image generation computation latency

4. Video display system scan-out latency

This is the latency that matters to the user of the system, since the overall
latency is what controls the sense of realness the system can provide.

Despite the utility of a total system measure, vendors of subsystems can only
provide latency measures for their component. The exception to this is the
image generation system, since the video latency is implied by the video output
format of the image generation hardware. The combined image generation
computation latency and display system latency measure is known as the
visual latency.

Questions of latency in visual simulation applications usually refer to either
total latency or visual latency. The application developer will select the scope
(in the sense of the tasks enumerated above) of the application, and then the
latency will be decided by the choice of image generation mode, frame rate,
and video output format, as shown below.

Calculating Latency

To calculate the visual latency in visual simulation applications we must define
the stimulus and response to be used to define the interval.

The proper stimulus for the visual system measurement is the end of applica-
tion processing, since it is the point in time at which control is handed to the
visual system for the computation of the next image. The computational
expense which precedes this point is application time: time spent in input
device measurement, in intersection processing, and in vehicle dynamics com-
putation. This time is important and contributes to total latency, but must be
counted separately.

The response typically considered to terminate the latency calculation in visual
simulation is the point in time at which the last pixel of the first field of the new
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image is displayed. Understanding this requires a brief review of video output
terminology.

A complete video image is known as a frame, and a frame is composed of one
or more fields. The two most common video formats used by visual simulation
applications are the 60 Hertz non-interlaced display typical of computer work-
stations and the 30 Hertz frame, 60 Hertz field, interlaced NTSC video timing
used by broadcast television.

In the non-interlaced case, there is one field per frame, so raster display lines
are scanned sequentially from top to bottom. This means that at a 60 Hz frame
rate, each frame (which in this case is synonymic with a field) requires 1/60th
second to display. In this situation the “last pixel of the first field” metric out-
lined above will be reached 1/60th second after the start of the display of a
frame. Presuming that one field is sufficient for all drawing, the actual visual
latency in this case is 16.67 msec for image generation and 16.67 msec for
video display, which is 33.33 msec in total, as is indicated in Figure 1.

FIGURE 1.

Experience shows that other circumstances such as graphics hardware structure
or software multiprocessing implementations may lengthen the graphics stage
of this pipeline beyond one field thereby raising the total latency.

Interlaced displays are different in that they make two passes through the
image, displaying the even-numbered scan-lines on one trip and the odd-num-
bered lines on the other. Each of these passes is known as a field, and since
there are two fields per frame, the field rate is twice the frame rate. In the
NTSC example, the frame rate is 30 Hz, but the field rate is 60 Hz, so the “last
pixel of the first field” event will also occur 1/60th second after the start of the
display of a frame. Presuming that one frame (twice as long as in the previous
example) is sufficient for image generation, the latency in this case is 33.33
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msec for this task and 16.67 msec for the video display of the first field. Com-
bining these two time intervals results in 50 msecs of total visual latency.

FIGURE 2.

Note that each frame in Figure 2 consists of two fields and that the display of
the two fields is shown as individual events on the Video timeline, where ‘V’
represents video scan-out and ‘F’ indicates field 0 or 1. Notice also that the
visual latencies are shown at the bottom of the diagrams of both Figure 1 and
Figure 2.They measure the time elapsed between the end of application pro-
cessing and the time when the last pixel of the first field of the new image is
displayed. This is the true visual latency.

The proceeding discussion describes the factors that define the actual visual
latency of an image generation system. The actual total latency is defined by
simple extension of these arguments to include the other sources of latency
present in the system. Common sources of latency include:

1. Input devices such as head trackers, gloves, and joysticks

2. Communication between input devices and the simulation computer

3. Operating system delivery of input data to the simulation processes

4. Algorithmic complexity of vehicle simulation after input processing

5. Communication between simulation process and graphics hardware

6. Processing time within the graphics hardware

7. Video scan out of computed images

Minimizing the total latency (and thus the visual system latency as well) is a
worthy goal, but can be expensive to attain since it usually means allocating
more hardware resources to the task.

Frame

Field

Application 0 Application 1 Application 2 Application 3

Graphics 0 Graphics 1 Graphics 2

Visual Latency 0

Time

V0F0 V0F1 V1F0 V1F1

Visual Latency 1
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Perceived Latency

In many situations the perceived latency can be much less than the actual
latency. This is because the human perception of latency can be reduced by
anticipating the control inputs that the user is about to make. This means that
reducing perceived latency is largely a matter of accurate prediction.

As an extreme example, a program capable of precognition could start drawing
images at just the right time so that the human observer would never perceive
more than one video field of latency no matter how far in advance (minutes or
hours) the rendering had been begun. Writing such clairvoyant programs can
be difficult.

Fortunately, these extreme measures are not required in practice since actual
latencies tend to be short by human standards. Actual visual latencies as
defined above range from 33.3 to 50 msec in current lowest-latency systems
and human motor skills define upper limits on how much motion can be
achieved in such short intervals. Testing of military pilots has shown that max-
imum rates of head motion are approximately 100 degrees per second, which
reduces to a 3 to 5 degree change during best-case latency intervals for worst-
case viewpoint motions.

Using well-known techniques of prediction, extrapolation, and filtering
[Kalm61] based on rates and acceleration, the position of joysticks, head track-
ing systems, and other inputs sampled at the start of the latency interval can be
estimated forward in time to the instant when the frame will be displayed. If
the difference between the predicted and actual control effect is slight, the per-
ception will be one of reduced latency.

Researchers have shown that prediction alone can not resolve all latency and
perception problems. The results of Cardullo and Yorke [Cardul90] suggest
that even with comprehensive approaches such as the McFarland position pre-
diction method [McFarl88], actual system latencies greater than 100 to 120
msec can be insurmountable.

For the prediction approach to be most effective, changes to several simulation
components must be extrapolated, including the observer’s eyepoint and gaze
direction and the position and orientation of any moving objects within the
scene. Implementors of systems with rotation extrapolation have found quater-
nion interpolation to be the primary mechanism for robust solutions.

Two other approaches to reducing perceived latency that work well are based
on the notion of making changes to image parameters during the course of ren-
dering and display. These changes are interjected into the drawing pipeline
between the culling and drawing stages in the first approach, and between the
drawing and video stages in the second. These methods are not appropriate in
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all environments since they require a very tight coupling between user process-
ing and graphics processing.

The first approach uses eyepoint and gaze direction prediction to guess where
the user will be looking as outlined above. Rather than culling the database to
the minimal viewing frustum however, an expanded viewing volume which is
a few degrees larger in horizontal and vertical view extent is used. As men-
tioned above, the viewer is not expected to be able to look more than 5 degrees
further in any direction in typical situations. This would enlarge a nominal 50
degree horizontal FOV into a 60 degree wide culling volume. Then, after the
database is culled to this enlarged volume and just before the drawing task is
begun, a presumably more accurate view specification is obtained from more
recent inputs available during cull processing. Use of the more accurate view
prediction will reduce the perceived visual latency. This is a very effective
approach on systems where updated viewing information becomes available
during the culling interval, where applications can introduce last-moment view
information after culling is complete, and where the extra culling and drawing
expense incurred by the expanded frustum is affordable.

A second method that relies on a video output hardware feature to reduce the
perceived latency is described by Riner and Browder in [Riner92]. In this
approach, which can be used along with the previous one, the image rendered
into a frame buffer slightly larger than that which will be displayed. For exam-
ple, when producing 1280x1024 images, a 1300x1044 image might be ren-
dered. This would be an image that is ten pixels larger on all four sides.

An example of this is shown in the left portion of Figure 3, where the heavy
box represents the total rendered area and the centered inner box represents the
expected view and display area. The viewing specification used to produce this
situation is computed such that the inner 1280x1024 portion to be exactly that
which would be viewed under normal circumstances. In other words, the inner
area of the larger image contains the same pixels as would be rendered nor-
mally, while the border area represents image regions just slightly “off screen”.

After this larger image has been rendered and before the video scan-out com-
mences, the view information is again sampled and extrapolated, and a deter-
mination made about the up-down and left-right extent of the positional error
contained in the rendered image. These offsets are used to specify a video pan-
ning of the frame buffer which repositions the display surface within the win-
dow in an attempt to correct for prediction error.

The right portion of Figure 3 completes the example of this processing. In that
figure, the updated eyepoint information has indicated that the image region
above and to the right of the expected display area should be displayed. The
video output component of the graphics hardware is then adjusted to cause the
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display of this sub-region on the display surface. This image-space panning
operation must be performed incrementally for each video field that intervenes
between the computation of images from new eyepoints.

FIGURE 3.

This two-dimensional panning process introduces parallax errors into the
image but can be used sparingly to provide an additional and quite effective
technique for reduction of perceived latency.

3   Consistent Frame Rates

Interactive graphics applications, and immersive virtual environments in par-
ticular, are especially dependent on a consistent frame rate for observer accep-
tance. Human perceptions are attuned to continuous update from natural scenes
but seem tolerant of discrete images presented at rates above 20 frames per
second in many cases. Tolerant that is, when the frame rate is consistent. When
latency grows large or frame rates waver the result is certain: the headaches
and nausea of simulator sickness.

The attainment of a constant frame rate for a constant scene is easy. What’s
hard is maintaining a constant frame rate when scene content and complexity
vary wildly, as is often the case. Several approaches have been used in image
generation systems to ensure or at least attempt the enforcement of a constant,
programmer-selected, frame rate.

The first and most basic method is to only draw scenes of such complexity as
can be safely viewed from any location at the chosen frame rate. This conser-
vative approach is much like always driving in low-gear just in case a hill were
to be encountered. Implementing it simply means identifying and planning for
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the worst case situation of graphics load. Although this may be reasonable in
some cases, in general it’s unacceptably wasteful of system resources. This is
particularly so in applications where the observer can view a database from
different heights, with different fields of view, or where independent moving
vehicles might converge unexpectedly. If a database is sparse enough so that
viewing it from high altitudes achieves the goal frame rate, it is certain to be
nearly featureless when viewed from ground level.

A second approach is to discard (cull) database objects that are positioned
completely outside the frustum of vision. This requires a pass through the
visual database to compare scene geometry (or simpler bounding volumes that
represent collections of geometry) with the current frame’s viewing volume.
Any objects completely outside the frustum can be safely discarded. When this
approach is used with databases that have a recursive spatial partitioning and
hierarchical bounding volumes at each level, the culling process becomes trac-
table even for large databases and is a necessary first step in limiting scene
complexity. A hierarchical, grid, or cellular culling mechanism is the basis of
view processing in nearly-all real-time visual simulation systems. A recent
implementation of this approach is detailed in [SGI94].

When simple view-volume culling as outlined above is insufficient to keep
scene complexity constant, it may be necessary to compute a potential visibil-
ity for each object during the culling process by taking into consideration other
objects within the scene that may potentially occult the test object [Airey90]
[Teller91]. High performance image generation systems have used comparable
occlusion culling tests to reduce the polygon filling complexity of real-time
scenes. Approaches have included half-space tests based on eyepoint position
and hardware depth sorting and front-to-back rendering combined with tests
for fully-covered pixels.

Additional methods can be used to adjust the graphic complexity (and thus the
processing time requirements) of those database portions that pass the culling
test. Several software-oriented approaches to this task have been found to be
effective and are outlined in a later section on level of detail selection.

Approaches to fixed frame rates that are based on hardware features have been
used as well. One method is based on the use of special video monitors that can
adjust video line timing on a per-frame basis. This allows frames to be ren-
dered with slightly varying frame rates and provides an additional measure of
safety in meeting the desired frame rate. The expense of CRT display systems
with this capability suggests that solutions appropriate for entertainment appli-
cations must be sought elsewhere.

The most certain (and certainly the most Draconian) of the hardware-based
fixed frame rate measures is the absolute frame rate nature of one vintage
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image generator. This machine used a double buffered frame buffer that auton-
omously swapped buffers at the programmed frame rate without regard to the
state of rendering based in interrupts from a real-time clock. Even when poly-
gons that had passed the culling test remained to be drawn or if the current
polygon had only partially been rendered, the machine would swap buffers at
the end of the designated frame interval and begin display of whatever image
was in the frame buffer. This situation would likely include at least one par-
tially rendered polygon.

A clever approach was taken by the designers of this system to mitigate the
effect of these incomplete scenes. The machine operated in an interlaced video
display mode and the frame buffers consequently held only a single field. Tak-
ing advantage of this the order of polygon filling toggled for each field gener-
ated: it was top-to-bottom on one field and bottom-to-top in the next. This
allowed raster interlace display artifacts and human visual system integration
of sequential fields to partially hide the incomplete polygons.

4   Rich Scene Content

Level of Detail Selection

All graphics systems have finite capabilities that affect the number and type of
geometric primitives that can be displayed per frame at a specified frame rate.
Because of these limitations, maximizing visual cues while minimizing scene
complexity is the fundamental science of database construction for real-time
simulation. The concept of level of detail selection is one of the most beneficial
tools available for managing database complexity for the purpose of improving
display performance.

Object Level of Detail

The basic premise of LOD processing arises from the observation that objects
that seem small because they are located at a great distance from the observer’s
eyepoint or that are barely discernible because atmospheric conditions are
reducing visibility, don’t require much polygonal complexity. Alternately,
these same objects might require many polygons and textures to appear equally
correct when viewed at close range, in clear air, or when using a narrow field of
view. Combining these two observations into a general approach, we note that
each model in databases can be built as a set of alternate representations, each
of which is designed to be viewed at a certain distance or screen-space size.

For example, consider an automobile model and imagine a parking lot packed
with rows and rows of exactly the same car model. If you were to stand in the
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middle of the parking lot and examine the car closest to you, you would be able
to see many small features such as rear-view mirrors, raised letters on the tires,
door handles, and license plates. Turning your attention to the very last row of
cars off in the distance you would recognize the car from its general shape, but
would not be able to see any of these small details. (Or else you imagined a
much smaller lot than the author.) That this would be the case follows easily
from the fixed resolving power of the human retina. Sampling theory suggests
the same dichotomy applies to computer graphics because the rendered size of
polygons viewed in perspective decreases with range and as the polygon size
becomes small compared to the fixed pixel spacing, the polygons no longer
contribute to the scene.

It should be clear that the complexity of a car model designed for viewing at a
two to three foot range might be vastly different than that for cars on highways
when viewed from aircraft. In this latter case a five polygon box of the appro-
priate color would be sufficient while in the former there is almost no limit to
the number of polygons that could be gainfully employed. What may be less
clear is that an entire spectrum of cars could be defined, each designed for
viewing at intermediate distances between these two extremes.

Control

Having produced multiple versions of an object and specified the ranges or
other criteria used to select which version of an object to display in each cir-
cumstance, the LOD process is ready to begin. The entire ensemble is treated
as a single object and translated or rotated as desired. During the culling phase
of frame processing, the distance from the eyepoint to the object is computed
and used to select which version of the model should be viewed. As the eye-
point approaches an ever less distant car, each of the versions would be dis-
played in turn: the simplest, then the one slightly more detailed, and so on until
at close range, the most detailed version would be selected for viewing.

Distance is one of several criteria that can be used to select an appropriate level
of detail when rendering an object. Early efforts used the area of a screen
aligned bounding box about an object to determine the LOD. This approach
has been largely abandoned based on experience with object variation due to
rotation (but not completely, see [Wern94] for a recent revival). The difficulty
with this method arises when a slender object, such as a pencil or runway,
rotates on the screen. The area of a screen aligned bounding box can vary tre-
mendously and this causes the LOD chosen for the object to waver unaccept-
ably. Better results are obtained when the distance to the object’s centroid is
used. Factors commonly used to adjust the LOD distance include field of view,
image resolution in pixels, the optical accuracy of the display system, atmo-
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spheric effects of haze and fog, and specific offset or scale factors used to influ-
ence LOD selection for load management.

This decision process causes the available polygon budget to be spent wisely in
that it assures that each polygon drawn contributes significantly to the richness
of the scene. Much like culling, level of detail processing is a basic and central
feature of high-performance real-time visual simulation systems.

Popping

The level of detail selection approach described above is not without fault,
however. The problem occurs at the point of transition between one version
and its neighbor. Since the transition happens abruptly between two frames,
there is a visual “popping” from one version to the next. Unfortunately, this
type of step discontinuity in visual images is one that the human visual system
is keenly adept at discerning. Several mechanisms have been developed to
avoid this distracting popping artifact, including fading and morphing.

Fading

Much more subtle than the distracting popping approach is to perform the tran-
sition from one version to its neighbor over a distance range rather than at a
single point. The transition is done by drawing both versions during the transi-
tion zone, using complementary transparency to make the switch nearly unde-
tectable.

For example, if the higher LOD car model is to be drawn at ranges out to 100
meters, and the lower LOD model at greater ranges, we might define a 20
meter transition range and specify that the blending or fading of the images of
each model be a function of the relative distance within the transition ranges.
The complementary fading produced by this example is shown in Figure 4.

FIGURE 4.

It is important to note that each model is itself drawn as opaque and the result-
ing images are subsequently blended according to the schedule shown above.
Drawing the actual higher or lower LOD versions as partially transparent does

Distance High LOD Low LOD

90 Meters 100% Opaque 0% Opaque

95 Meters 75% Opaque 25% Opaque

100 Meters 50% Opaque 50% Opaque

105 Meters 25% Opaque 75% Opaque

110 Meters 0% Opaque 100% Opaque
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not work since self-occlusion relationships within the models must be main-
tained. In the automobile example given above, drawing the higher LOD ver-
sion as 75% opaque (and thus 25% transparent) would allow the tires to be
seen through the hood of the car, destroying image integrity.

Using just three intermediate blend levels as shown above is not enough to pro-
vide a smooth transition. Typical real-time image generation systems provide
between 8 and 33 levels of complementary blending and users have found this
sufficient for most applications.

Intermediate distance is not the only mechanism for these transitions. One
other popular transition technique is time based. In this model the switch points
are identified as ranges as previously described, but the process of LOD transi-
tion is implemented over a selectable transition time. Such time-based range-

triggered transitions can be very important when an object may stay at a fixed
distance from the eyepoint for extended intervals, as is common on the down-
wind, base, and final approach legs of aircraft landings—in each case the con-
trol tower and terminal area are usually at a similar distance from the pilot and
the sustained fade expense can be prohibitive.

As alluded to in the previous paragraph, the primary weakness of the fade-
LOD transition approach is that it requires two models to be drawn during the
transition interval. This increases the processing complexity of the scene and
can also prove awkward when picking or intersection calculations are per-
formed on a model in transition.

Terrain Level of Detail

The presumption made in the previous discussion of discrete level of detail
selection is the notion that the entire model should transition at the same time.
It’s quite reasonable that features of an automobile such as door handles could
transition out of the scene at the same time even though the passenger door
might be slightly more distant than the driver’s door. It is much less clear that
this would be workable for very large objects such as an aircraft carrier or a
space station, and it’s clearly not acceptable for objects that span a huge extent,
such as a terrain surface.

Attempts to handle large-extent objects with the discrete LOD tools focus on
breaking the big object into myriad small objects and treating each small object
independently. This works in some cases but often fails at the junction between
two or more independent objects where cracks or seams exist when different
detail levels apply to the objects. Some terrain processing systems have
attempted to provide a hierarchy of crack filling geometry that is enabled based
on the LOD selections of two neighboring terrain patches. This “digital grout”
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becomes untenable when more than a few patches share a common vertex, and
like it’s bathroom brethren, is often unsightly in appearance.

An alternate approach that is currently in vogue in the real-time visual simula-
tion community [Cos90][Ferg90] treats terrain as a single connected surface.
In many ways, this system is like the well known and widely implemented
fractal terrain notion seen in the film “Vol Libre” and described by Fournier,
Fussell, and Carpenter in [Fourn82].

The essence of their approach is that a triangle representing terrain is judged to
be either sufficiently accurate or else is recursively subdivided. The general
manner of subdivision is to introduce a vertex at the midpoint of each side of
the original triangle. Connecting these new vertices to make a triangle leads to
the subdivision of the original triangle into four triangles. After subdivision,
the algorithm perturbs the vertex elevations. If the four resulting triangles are
not yet sufficiently fine, the subdivision process is applied to each one in turn.

This subdivision process can be applied to terrain level of detail needs by mak-
ing slight modifications to the implementation outlined above. The first change
is to replace the random vertex elevation process with a simpler sampling of
the terrain surface. Secondly, an interpolation mechanism is used to move from
one level of tessellation to the next during LOD transition zones. Here’s how
it’s done. The triangle labeled ‘A’ in Figure 5 below represents the triangle
before the LOD evolution process is begun.

FIGURE 5.

As before, when the eyepoint moves close enough that an LOD transition is
required, a transition phase is entered. This time, however, no blending is used.
First the single triangle is replaced with four triangles. This is indicated by step
‘B’ of Figure 5. These four triangles are a simple tessellation of the original.
Since the newly introduced vertices are in the plane of the original triangle and

A B C
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share all material properties, the observer sees no change in the image at the
instant where the three new vertices are introduced. Since there is no visual
change, the replacement can be performed instantly without introducing visual
artifacts or incurring the expense of rendering two versions of the terrain.

As the eyepoint moves closer to these polygons, the elevations of the three new
vertices are interpolated from their starting place in the plane of the lower-
LOD triangle to their final destinations as sampled from the true terrain sur-
face. This is indicated in step ‘C’ of Figure 5 where the four heavy triangles are
the fully interpolated locations of the triangles introduced in step ‘B’. The vec-
tors show the direction of interpolation and the thin triangles are for reference.
They show the locations of the three edge midpoint vertices before the eleva-
tions were interpolated.

If the eyepoint moves even closer to one of the four new triangles, this interpo-
lated subdivision process can be continued in that triangle as well. This subdi-
vision also requires a companion subdivision of at least one neighboring cell to
avoid ‘T-vertices’, which suggests that the tessellation is actually an edge oper-
ation. If these same three steps are applied to the lower-left triangle in step ‘C’
of Figure 5 to produce an even more accurate terrain surface in the area near
the lower-left vertex, the results will be as shown in Figure 6.

FIGURE 6.

Notice that in addition to the major recursive subdivision and interpolation of
the lower-left triangle, a minor subdivision and interpolation of the central tri-
angle was required as well. When the central triangle of a four-triangle must be
subdivided this minor subdivision and interpolation operation is required at all
three neighboring triangles. Although the management of this system can be
complicated, the efficiency and accuracy of terrain so represented is widely
thought excellent enough to justify the effort.

A B C
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Arbitrary Morphing

Terrain level of detail by layered interpolation is a restricted form of the more
general notion of object morphing. Morphing of models such as the car in a
previous example can simply involve scaling a small detail to a single point
and then removing it from the scene. Morphing is possible even when the
topology of neighboring pairs do not match. The paper by Kent, Carlson, and
Parent [Kent92] introduces and surveys the subject. Both models and terrain
can have vertex, normal, color, and appearance information interpolated
between two or more representations. Several benefits accrue when this
approach is used. The advantages include: reduced graphics complexity since
blending is not used, constant intersection truth for collision and similar tasks,
and monotonic database complexity that makes system load management
much simpler. The computational resources required to perform general inter-
polation of this nature to large portions of a scene at interactive frame rates are
just now becoming available. Further examples and details of this mechanism
are provided in a later section of this paper that deals with character animation.

System Load Management

Level of detail selection can be biased at will. That is, transitions can be made
to occur either closer or further from the eyepoint than is specified by the level
of detail parameters encoded in the database. This is a very powerful opportu-
nity provided by level of detail processing, since it enables the construction of
a closed-loop control system for maintaining a specified frame rate.

In it’s simplest form, the control system measures the time required to generate
a frame and compares this value with the chosen frame interval. As the frame
time begins to approach the frame interval the level of detail selection bias is
increased to encourage earlier than usual level of detail transitions. When the
rendering time returns to a desired level, the bias factor can be returned to nor-
mal or perhaps even set to allow higher than expected visual quality. This type
of closed-loop feedback system is shown in Figure 7.

FIGURE 7.
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The IRIS Performer real-time visual simulation system developed by the
author and coworkers [SGI94] implements load management with a propor-
tional-control feedback scheme as shown above. In this system, the desired
frame time (such as 1/30th second) as well as the actual frame time of previous
frames are used as input to a stress computation function that computes a new
level of detail range scale factor based on selectable stress control parameters.
Our experience has shown that designers of stress filter functions must use
great care [Lathi74] to design a quickly reacting and well damped control-sys-
tem.

Further extensions and elaborations of this concept have been explored. A
recent paper by Funkhouser and Sequin [Funk93] explores an alternate level of
detail selection mechanism designed to minimize variations in image rendering
time.

Billboard Objects

Many of the objects in databases can be considered to have one or more axes of
symmetry. Trees, for example, tend to look nearly the same from all horizontal
directions of view. An effective approach to drawing such objects with less
graphic complexity is to place a texture image of the object onto a single poly-
gon and then rotate the polygon during simulation to face the observer. These
self-orienting objects are commonly called billboards even though the phrase
“sandwich board” is much more accurate. The images in Figure 8 show how
this rotation keeps the billboard geometry perpendicular to the viewing direc-
tion.

FIGURE 8.

There are a number of implementation choices for billboards. For example,
they can be made to always face the eyepoint, to always align with the observ-
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er’s gaze direction, or to align to an arbitrary vector. Also, since the billboard
rotates, there is the question of what axis to rotate about. The answer for trees
is simple since gravity works to keep tree trunks remarkably vertical. Since
trees are such common billboard objects, some systems in fact allow only a
vertical axis of rotation.

It is also feasible and useful to allow the billboard image to rotate about two
axes rather than one. When this is done, it’s possible to achieve the effect of a
screen-aligned two-dimensional image that varies in size as a function of
range. An additional billboard complexity adds automatic scaling as a function
of range to the dual axis of rotation system, and is able to achieve the bit-blt

sprite effect that forms the mainstay of low-cost graphic games, but does so at
a surprisingly significant computational expense.

When combined with texture, the billboard approach is effective in enabling
the simulation of trees in high-performance applications. The image in Figure
9 is from a real-time simulation that contains 709 billboard trees, each of
which is rotated to face the eyepoint every frame. Notice how real the trees
look, particularly in the middle to far distance ranges where billboards are best
utilized.

The image in Figure 10 shows the same scene with texturing disabled. The
rotation of billboard objects to face the viewpoint can be easily detected in the
tree polygon located at the lower right third of the image.

FIGURE 9.
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Animation Sequences

Often animated events in simulation environments have a sequence of stages
that follow each other without variation. Where this is the case it’s possible to
define this behavior in the database during database construction and allow the
behavior to be implemented by the real-time visual system without interven-
tion by the application process.

An example of this would be illuminated traffic signals in a driving simulator
database. There are three mutually exclusive states of the signal, one where the
green lamp is illuminated, one with the amber, and one with the red. The dura-
tion of each state is known and can be recorded in the database. Having speci-
fied these intervals during the database construction process, simulations can
be performed without requiring the simulation application to cycle the traffic
signal from one state to the next. The traffic signals in Figure 9 were modeled
in just this way using commercial database modeling tools. The rate of their
advance is completely specified in the database as a function of time and they
maintain their duty cycle without regard to the update rate of the visual system.
If the operation of these lights is adjusted in the database then any application
that views them will provide the adjusted operation automatically.

Early image generators were stand-alone subsystems with somewhat low com-
munication rates with their host computer. Latency and bandwidth consider-
ations of interactions with these side-car systems led to the notion of an active

FIGURE 10.
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database. The action in an active database is simply the specification of behav-
iors to be performed by the image generation system—behaviors that can pro-
ceed without application intervention.

The simplest type of animation sequence is known as a geometry movie. It is a
sequence of exclusive objects that are selected for display based on elapsed
time from a trigger event, whose advance is tied to frames rather than time, or
where advancement is based on specific events within the database. It is useful
to provide for cyclic looping and bidirectional shuttling of these sequences as
well as comprehensive positioning, rate, and repeat count specification.

When the evaluation of objects within the sequence is more general than
selecting geometry, a much more powerful mechanism results. Typical image
generators allow the construction of hierarchical animation sequences. Recent
real-time image generation software architectures [SGI94] have expanded on
this concept considerably, allowing user-coded animation functions with arbi-
trary capability to be invoked in addition to providing full support for simple
predefined animation sequences.

Antialiasing

The advent of antialiased image generation in visual simulation was a signifi-
cant milestone in terms of image quality. The difference, though subtle in some
cases, has very significant effects on the sense of realness and the suitability of
simulators for training. Military simulators often center on the goal of detect-
ing and recognizing small objects on the horizon. Aliased graphics systems
produce a “sparkle” or “twinkle” effect when drawing small objects. This arti-
fact is completely unacceptable in these training applications since the student
will come to subconsciously expect such effects to announce the arrival of an
opponent and this unfulfilled expectation can prove fatal. Situations where
false cues are delivered to students often result in such negative training. This
is especially true in aircraft landing situations where dark nighttime landings
and bright runway edge and end illumination lights are commonplace. Such
scenes, with slow perceived motion of single-pixel white points on a nearly
black background can serve to test the quality of any filtering technique.

To review briefly, the idea is for image pixels to represent an average or other
convolution of the image fragments within a pixel’s area rather than simply be
a sample taken at the pixel’s center. This idea is easily stated but difficult to
implement with high performance. Only recently have workstation-class sys-
tems been able to provide antialiasing along with the other expected features
such as Z-buffering at full speed. In contrast to the newness of this feature in
lower-cost systems, traditional image generators have provided high-quality
antialiasing since the 1970’s—in fact the 1981 SIGGRAPH video review con-
tains an excellent example of antialiased real-time image generation in a flight
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simulation context. Several approaches to hardware antialiasing of polygons
have been used in real-time systems. These fall into three broad classes and
each is described in the following sections.

The original approach was the coverage mask method. It’s similar to the well
known A-buffer method introduced a few years later by Carpenter in [Carp84].
The coverage mask method is the one used by the image generation system
featured in the video review mentioned above.

Each pixel in coverage mask systems has an associated coverage mask that is
set to zero before rendering. The frame buffer is also reset to black at the
beginning of each frame. Each bit in the coverage mask corresponds to a sam-
ple point within its associated pixel. Traversal logic in the system assures that
polygons are drawn in front to back order. As each pixel of each polygon is
rendered into the frame buffer, the polygon is tested against the pixel’s sample
points and a pixel coverage mask is computed. Comparing the new fragment’s
coverage mask with the existing coverage mask, and then counting the number
of newly-covered sub-pixels touched provides a weighting factor indicating
the incremental contribution that new polygon makes to the pixel. The polygon
color is scaled by this value and the result is added to the frame buffer. When
all polygons have been drawn, the frame buffer contents represent the box-fil-
tered color contributions of all visible polygons incident to each pixel.

This approach produces excellent images and has proven amenable to efficient
hardware implementations. Most of the classic real-time image generators used
this method, and modern variations are still being developed. See [Schill91]
for a recent example of a quality-sensitive approach and implementation.

The severe limitation of this approach is the rigid requirement to render all
geometry within a scene in a strict front to back order. Although techniques
such as cluster priority [Green74], binary space partitioning trees [Fuchs80],
and polyhedral priority meshes make ordered database traversal tractable for
static databases, handling complicated dynamic databases with large numbers
of articulating moving objects is a surprisingly difficult task. Failure to recog-
nize the difficulties implicit in the effort has been the bane of several well-
intended simulator development projects.

The effort required to build large and realistic databases with these prioritiza-
tion techniques can also add considerably to the cost and time required to build
a complete visual simulation system. It is these complexities, rather than any
perceived weakness in image quality, that have generally ended the develop-
ment of new general-purpose systems based on the coverage mask approach.

The second approach is termed supersampling or multisampling [Crow81]. In
this system, each pixel is considered to be composed of multiple subpixels,
much like the sample points used in the coverage mask method. Unlike that
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method, though, there is a complete set of pixel information stored for each of
the several subpixels. This information includes color and transparency, and
most importantly, includes a Z-buffer value as well. Providing multiple inde-
pendent Z-buffered subpixels (the so-called sub-pixel Z-buffer) per image pixel
allows opaque polygons to be drawn in an arbitrary order since the subpixel Z-
comparison will implement proper visibility testing. Converting the multiple
color values that exist within a pixel into a single result can either be done as
each fragment is rendered into the mutisample buffer or after all polygons have
been rendered. For best visual result, transparent polygons are rendered after
all opaque polygons have been drawn. As described in [Akeley93] the multi-
sampling approach is the basis of recent designs from visual simulation hard-
ware vendors.

A third class of real-time antialiasing approaches is based on accumulation in
the context of non-overlapping polygons. A simple example can be imagined
in the rendering phase of a system that uses some form of “cookie cutter”
approach to determining object visibility where subdivision assures that the
output polygons do not overlap in screen space. This means that simple area-
weighted color accumulation will render nicely sampled images. A version of
this non-overlapping accumulation approach has been implemented in hard-
ware, and its comparative advantages and limitations is described in [Gish91].

5   Texture Mapping

The most powerful incremental feature of image generation systems beyond
the initial capability to draw geometry is texture mapping, the ability to apply
textures to surfaces. These textures consist of synthetic or photographic images
that are applied to geometric primitives in order to modify their surface appear-
ance, reflectance, or shading properties. This process was developed by Cat-
mull [Cat84] and elaborated by Blinn and Newell [Blinn76] and is now widely
known and explored within the computer graphics community.

Texture mapping capability has been implemented by real-time image genera-
tion systems for more than a decade. These systems have achieved a diverse
range of effects via texture mapping, many of which are described below.

Surface Appearance

The most obvious use of texture mapping is to generate the image of surface
details on geometric objects. Examples of teapots, donuts, and other objects
having the surface appearance of tile, wood, bricks, or flowers can be seen in
any of the SIGGRAPH proceedings since Catmull’s germinative publication.
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One valuable and widely used addition to these texture processing features is
the concept of transparency as a per-texture-element attribute. An example of
this has already been seen in Figure 9 where each tree is simply a photograph
of a tree mapped to a flat rectangle. Figure 11 shows one of the three tree tex-
ture maps used in Figure 9 more clearly.

FIGURE 11.

The areas “outside” the tree but within the rectangle are parts of the texture
image that are marked as being fully transparent. Portions of the billboards
used as the geometry for this tree texture are not drawn at all, as can be seen by
comparing Figure 9 and Figure 10.

Environment Mapping

In their 1976 paper, Blinn and Newell [Blinn76] also suggested that textures
could be used to simulate reflections by using the viewing vector and the
geometry’s surface normal to compute each screen pixel’s index into the tex-
ture image. The texture image used for this process, the environment map, con-
tains a suitably encoded image of the environment to be reflected. This idea
was elaborated by Greene in [Greene86]. Recent results by Voorhies and Foran
[Voor94] show that the encoding step may not be necessary in future systems.

The fist step in the creation of an environment map is shown in Figure 12. This
image was formed by concatenating six independent images taken in the “IRIS
Performer Town” database shown in Figure 9. The six views are along both the
positive and negative directions of the principal axes.
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FIGURE 12.

The next step is to convert the images into the encoded form expected by the
computation mentioned previously, as shown in Figure 13.

FIGURE 13.

The final step is to use the encoded texture to modify the surface appearance of
a geometric object to simulate reflection. This can be seen in Figure 14 where
the image of the Performer Town intersection from Figure 12 has been envi-
ronment mapped onto a model of a recreational vehicle using the texture map
shown in Figure 13.
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FIGURE 14.

Sophisticated Shading

The environment mapping technique can be used to implement lighting equa-
tions by noting the fact that the environment map image represents the image
seen in each direction from a chosen point. If this image is interpreted as the
illumination reflected from an incident light source as a function of angle, then
the intensities rather than the colors of the environment map can be used to
scale the colors of objects in the database in order to implement complex light-
ing models with high performance. This method can been used to provide elab-
orate lighting environments in systems where per-pixel shading calculations
would not otherwise be available.

Projective Texture

Texture mapping can also be used to project images such as aircraft landing
lights and vehicle headlights into images. These projective texture techniques,
when combined with the ability to use Z-buffer contents to texture images,
allows the generation of real-time images with true 3D cast shadows. This is
essentially the Shadow-buffer technique described by Lance Williams [Will78]
as modified to meet the limitations of real-time image generation. These cast
shadows provide a superior simulation environment than more widely known
methods for rapid shadow generation, such as that described by Blinn in
[Blinn88].
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6   Character Animation

Betweening

The previous discussion of level of detail described a methodology for contin-
uous terrain level of detail processing based on interpolation between two ele-
vations for vertices, a process also known as betweening. Real-time image
generation hardware capable of the interpolation of vertex position, colors,
normal vectors, and texture coordinates between two versions of a model now
exists in the form of multiple processor computer graphic workstations. In
addition to this hardware, existence of both the software to drive these systems
[SGI94] and the database development tools needed to specify the targets and
their associations [Cos92] makes the betweening process a practical one not
just for terrain level of detail, but for general model morphing as well.

Generalized Betweening

Simple pair-wise betweening is not sufficient to give animated characters life-
like emotional expressions and behavior. What is needed is the ability to model
multiple expressions in an orthogonal manner and then combine them with
arbitrary weighting factors during real-time simulation.

The idea of using these techniques in the context of human facial animation are
well described by Parke [Parke72]. One current approach to implementing
Parke’s method is to build a geometric model of an expressionless face, and
then to distort this neutral model into an independent target for each desired
expression. Examples would include faces with frowns and smiles, faces with
eye gestures, and faces with eyebrow movement. Subtracting the neutral face
from the smile face gives a set of smile displacement vectors [Parke75] and
increases efficiency by allowing removal of null displacements.Completing
this process for each of the other gestures yields the input needed by a the real-
time system: a base or neutral model and a collection of displacement vector
sets.

In actual use, the data is processed in a straightforward manner. The weights of
each source model (or corresponding displacement vector set) are specified
before each frame is begun [Parke82]. For example a particular setting might
be “62% grin and 87% arched eyebrows” for a clownish physiognomy. The
algorithmic implication is simply a weighted linear combination of the indi-
cated vectors with the base model.

The processing steps outlined above are made more complicated in practice by
the performance-inspired need to execute the operations in a multiprocessing
environment. Parallel processing is needed because users of this technology:

• need to perform hundreds to thousands of interpolations per character;
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• desire several characters in animation simultaneously;

• prefer animation update rates of 30 or 60 Hertz; and,

• generate multiple independent displays from a single system.

Taken together, these demands can require more than 30 MFLOPS, even when
only vertex coordinates are interpolated. When colors, normals, and texture
coordinates are also interpolated, and especially when shared vertex normals
are recomputed, the computational complexity is correspondingly increased.
The computational demands can be reduced when the rate of betweening is
less than the image update rate. The quality of the interpolated result can often
be improved by applying a non-linear interpolation operation such as the eased
cosine curves and splines found useful in other applications of computer ani-
mation. The deeper implementation details of these and related issues are
described in [Rohlf94] and in other sections of this course.

Skeleton Animation

A successful concept in computer-assisted 2D animation systems is the notion
of skeleton animation as defined and described by Burtnyk and Wein [Burt71]
for increased fidelity interpolation of key-frame drawings. The nature of this
method is to interpolate a defining skeleton and then position artwork relative
to interpolated skeleton. In essence, the skeleton defines a “deformation” of the
original 2D plane, and the original image is transformed by this mapping to
create the interpolated image.

This process can be extended directly into the three-dimensional domain of
real-time computer image generation systems and used for character animation
in entertainment applications. Early research in this area was performed by
Fetter [Fetter82], whose “Fourth Man” can be quite human in his movements.
In this context, the skeleton is a hierarchical 3D graph of nested transforma-
tions. The vertices or control points of the character’s geometric definition are
associated with one of the coordinate reference frames defined by the composi-
tion of skeleton transformation elements. These matrices are updated during
real-time simulation and the corresponding vertices are then transformed.

An example of these ideas used in a real-time application can be seen in the
serpentine neck of the simulated pteranadon of Figure 15. It was animated
using a version of the skeleton animation technique with a spline curve defin-
ing the creatures spine and with the vertices defining the creature’s skin defined
in planes tangent to that spline. The application was developed by Greystone
Technology and Angel Studios using the software described in [Rohlf94] as a
SIGGRAPH 1993 exhibit-hall presentation.
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FIGURE 15.

Total Animation

These two techniques—generalized betweening and skeleton animation—can
be used in conjunction to create advanced entertainment applications with life-
like animated characters. One order of application of the two methods is to first
perform a generalized betweening operation that builds a character with the
desired pre-planned animation aspects, such as eye or mouth motion and then
to set the matrices or other transformation operators of the skeleton transfor-
mation operation to represent hierarchical motions such as those of arms or
legs. The result of these animation operations is a freshly posed character ready
for display. It is expected that total animation techniques will soon become
ubiquitous with visual simulation in entertainment applications.

7   Database Construction

One difficulty that visual simulation pioneers have noted but been unable to
completely resolve is the complexity of database construction. Special tools
have been built to address this need. Tools that allow interactive design of
geometry, easy editing and placement of texture images, flexible file-based
instancing, and many other operations. Special-purpose tools also exist to aid
in the design of roadways, instrument panels, and terrain surfaces. Even with
this support, however, the process is often more arduous than expected.
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The reward of building complex databases that accurately and efficiently repre-
sent the desired virtual environment is great, however, since the value of real-
time image generation systems is essentially the datasets that are explored
using them. As Chu Hsi said in [Chu]:

The Ultimate Reality may be likened to a mirror, which, before anything is reflected upon,

is simply vacuous, …but as for its function, what is most vacuous in it can be made to show

signs of all that is lovely and of all that is homely in the world.

While Chu’s “Ultimate Reality” was certainly not a forward reference to any
buzz-words of our century, the idea of graphics systems as mirrors seems apt
and underscores the importance of database modeling.

Summary

The lessons learned in the last 30 years of high-end visual simulation are easily
seen to be directly applicable to entertainment graphics systems now being
developed. The major insights include:

• The importance of low latency and high frame rates;

• The necessity of consistent image update rates;

• The role of level of detail modeling, billboards, and animation sequences
to enhance scene detail and fidelity;

• The use of closed-loop control systems to maintain desired frame rates;

• The visual enhancements provided by antialiasing and texture mapping;

• The combination of generalized betweening and skeleton animation to
meet the demand for animated characters in entertainment systems; and,

• That database construction is hard.

These visual simulation techniques are now available in workstation environ-
ments through a combination of advanced graphics hardware systems [Ake-
ley93] and visual simulation oriented control software [SGI94]. These systems
are widely used in entertainment development projects; applications using
these techniques are underway for use in home, arcade, location-based, and
destination theme park venues.

The sophisticated requirements of these entertainment systems are causing
technologies from classic image generation systems to be propagated to very
low cost systems. The size of the entertainment market and the advanced tech-
niques it desires are forcing the development of new architectures and technol-
ogies for the visual simulation products of the future.
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1   Introduction

Real-time entertainment applications are very sensitive to image quality, per-
formance, and system cost. Graphics workstations provide full product lines
with a full range of price points and performance options. At the high end,
they provide many traditional Image Generator features such as real-time
texture mapping and full scene antialiasing. They can also support many
channels, or players, per workstation to offset the cost of getting the high-end
features. At the low end, they have entry prices and performance that are
often competitive with PCs. Graphics workstations can provide a very pow-
erful, flexible solution with a rich development environment. Additionally,
because of binary compatibility across product lines and standards in graph-
ics APIs, graphics workstations offer the possibility of portability of both
applications and databases to different and future architectures. However,
this power and flexibility increases the complexity for achieving the full
quoted performance from such a machine. This paper presents a strategy for
performance for developing and tuning real-time graphics applications on
graphics workstations.

The following topics are covered:

• typical application requirements for graphics workstations

• multi-processing issues for graphics subsytems

• graphics workstation pipelines and performance trade-offs

• strategies for diagnosing pipeline bottlenecks
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• database structure for traversal

• designing and tuning a real-time application

• run-time diagnostics and load-management strategies

• tools for debugging graphics performance

Developing a designed-for-performance application requires understanding
the potential performance problems, identifying which factors are limiting
performance, and then making the trade-offs to achieve maximum frame
rate with the highest quality scene content.

2   Background

Tuning both application and database is an essential part of the develop-
ment process on a graphics workstation. Traditionally, both high-end image
generators and low-end PC graphics platforms have been very restrictive in
the type of application that can be supported and the scene content that can
be rendered at a given rate. Graphics workstations offer:

• a wide range of graphics subsystems tightly coupled with today’s fastest CPUs,

• high-bandwidth connections between the main CPU and the graphics subsystem

(1.2GBytes/sec for the Silicon Graphics RealityEngine system bus),

• scalable (binary compatible) product lines and graphics standards for portability

to different architectures, and hopefully future architectures,

• native, optimized, standard rendering libraries, such as OpenGL,

• the flexibility of being able to make performance trade-offs to optimize perfor-

mance, maximize scene content, and minimize cost — careful tuning can yield

tremendous results resulting in a flexible, low cost solution with high scene con-

tent,

• sophisticated development environments.

The down-side of these features is that the tuning process is not only essen-
tial, it can be complex. Tuning an application to be performance-portable to
different architectures is additionally complex. Unfortunately, tuning is one
of those tasks that is often put off until the point of crisis.

Top 10 rationalizations for tuning avoidance:
10. The machine specifications should take into account a “real” application, so tun-

ing should not be necessary.

9. We can worry about performance after implementation.

8.  If we design correctly, we won’t have to tune.

7. We will tune after we fix all of the bugs

(also known as: The next release will be the performance version)

6. CPUs are going to be faster by the time we release so we don’t have to tune our

code.

5. We will always be limited by “that other thing” so tuning won’t help.

Why Tune?
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4. The compiler should produce good code so we don’t have to

3. We have this guru who will do all of the performance tuning for us.

2. The demo looks pretty fast.

1. Tuning will destroy our beautiful code.

An understanding of tuning issues and methods should hopefully make the
above rationalizations unnecessary.

Tune early. Tune often.

Getting Started: Assessing Requirements and Predicting Perfor-

mance

The first step, both in designing a real-time application and tuning an exist-
ing application, is to assess the requirements for image quality and predict
the time required to produce that image quality. If there is a large gap
between these calculations, trade-offs may have to be made in the applica-
tion to balance scene content with performance to produce the most com-
pelling result.

One of the most important parameters in the effectiveness of a simulated
environment is frame rate — the rate at which new images are presented.
The faster new frames can be displayed, the smoother and more compelling
the animation will be. Constraints on the frame-rate can determine how
much time there is to produce a scene.i

Entertainment applications typically require a frame rate of at least 20
frames per second (fps.), and more commonly 30fps. High-end simulation
applications, such as flight trainers, will accept nothing less than 60fps. If,
for example, we allow two milliseconds (msecs.) of initial overhead to start
frame processing, one msec. for screen clear or background, and two
msecs. for a window of safety, a 60pfs. application has, optimistically,
about 11 msecs. to process a frame and a 30fps. application has 28 msecs.

Another important requirement for Visual Simulation and Entertainment
applications is minimizing rendering latency — the time from when a user
event occurs, such as change of view, to the time when the last pixel for the
corresponding frame is displayed on the screen. Minimizing latency is also
very important for the basic interactivity of non-real time applications.

The basic graphics elements that contribute to the time to render a frame
are:

i.  There are also additional requirements associated with frame-rate, such as low variability of
frame rates and the handling of overload conditions when frame rates are missed. These issues are
discussed later in Section 9.

A Typical Frame
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screen clear (color and z-buffer clear or reset),

amount of data transferred to the graphics subsystem,

selected attributes for geometry, such as lighting, texturing, atmospheric effects and

number of different attribute sets,

viewing transformations of geometry,

the number of pixels produced for the frame (resolution multiplied by depth complex-

ity),

video refresh to output final image from framebuffer memory.

An estimation of expected performance should take into account all of
these frame components, plus possible overhead due to interactions
between components. An estimation of the time in milliseconds required to
render a frame will then translate into an expected frame rate.

Screen clear time is like a fixed tax on the time to render a scene and for
rapid frame rates, may be a measurable percentage of the frame interval.
Because of this, most architectures have some sort of screen clear optimi-
zation. For example, the Silicon Graphics RealityEngineTM has a special
screen clear that is well under one millisecond for a full high-resolution
framebuffer (1280x1024). Video-refresh also add to the total frame time
and is discussed in Section 4.

The size and contents of full databases vary tremendously among different
applications. However, for context, we can guess at reasonable hypotheti-
cal scene content, given the high frame rates required for real-time graphi-
cal applications and current capabilities of graphics workstations.

The number of polygons possible in a 60fps. or 30fps. scene is affected by
the many factors discussed in this paper, but needless to say, it can be quite
different than the peak polygon transform rate of a machine. Current graph-
ics workstations can manage somewhere between 1500 and 5000 triangles
at 60pfs. and 7000-10,000 triangles at 30fps. Typical attributes specified
for triangles include some combination of normals, colors, texture coordi-
nates, and associated textures. For entertainment applications, the amount
of dynamic objects and geometry changing on a per-frame basis is proba-
bly relatively high. For handling general dynamic coordinate systems of
moving objects, matrix transforms are most convenient. Such objects usu-
ally also have relatively high detail (50-100 polygons). These numbers
imply that we can easily imagine having half to a full megabyte of just geo-
metric graphics data per frame.

Depth-complexity is the number of times, on average, that a given pixel is
written. A depth-complexity of one means that every pixel on the screen is
touched one time. This is a resolution-independent way of measuring the
fill requirements of an application. Visual simulation applications tend to
have depth-complexity between two and three for high-altitude applica-
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tions, and depth-complexity between three and five for ground-based appli-
cations. Depth-complexity can be reduced through aggressive database
optimizations, discussed in Section 7. Resolutions for visual simulation
applications also vary widely. For entertainment, VGA(640x480) resolu-
tion is common. A 60fps. application at VGA resolution with depth-com-
plexity five will require a fill rate of 100 million pixels per second
(MPixels/sec.). In a single frame, there may can easily be one-two million
pixels that must be processed.

The published specs of the machine can be used to make a rough estimate
of predicted frame rate for the expected scene content. However, this pre-
diction will probably be very optimistic. Performance prediction is covered
in detail in Section 5. An understanding of the graphics architecture
enables more realistic calculations.

The type of system resources available and their organization has a tremen-
dous effect on the application architecture. Architecture issues for graphics
subsystems are discussed in detail in Section 3 andSection 4.

On traditional image-generators, the main application is actually running
on a remote host with a low-bandwidth network connection between the
application running on the main CPU and the graphics subsystem. The full
graphics database resides in the graphics subsystem. Tuning applications
on these machines is a matter of tuning the database to match set perfor-
mance specifications. At the other extreme, we have PCs. Until recently,
almost all of the graphics processing for PCs has traditionally been done by
the host CPU and there has been little or no dedicated graphics hardware.
Recently, there have been many new developments in this area with dedi-
cated graphics cards developed by independent vendors for general PC
buses. Some of these cards have memories for textures and even resident
databases.

Graphics workstations fall between these two extremes. They traditionally
have separate processors that make up a dedicated graphics sub-
system.They may also have multiple host CPUs. Some workstations, such
as Silicon Graphics, have a tightly coupling between the CPU and graphics
subsystems with system software, compilers, and libraries. However, there
are also independent vendors, such as EvansSutherland, Division, and
Kubota, producing both high and low end graphics boards for general
workstations.

The growing acceptance and popularity of standards for 3D graphics APIs,
such as OpenGLTM, is making it possible to develop applications that are
portable between vastly different architectures. Performance, however, is
typically not portable between architectures so an application may still
require significant tuning (rewriting) to run reasonable on the different

Graphics

Architectures
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platforms. In some cases, the standard API library may have to be bypassed
altogether if it is not the fastest method of rendering on the target machine.
For the Silicon Graphics product line, this has been solved with a software
application layer that is specifically targeted at real-time 3D graphics appli-
cations and gives peak performance across the product line [Rohlf94].
Writing/tuning rendering software is discussed in Section 5.

A common thread is that multiprocessing of some form has been a key
component of the high-performance graphics platforms and is working its
way down to the low-end platforms.

3   Multi-Processing for High-Performance Graphics

A significant part of designing and tuning an application is determining the
best way to utilize the system processing resources and determining if
additional system resources will benefit performance. Any tuning strategy
requires an understanding of how the different components in a system
interact to affect performance. There are many elements to system perfor-
mance beyond the guiding frames-per-second:

Throughput — maximizing frame rates is equivalent to maximizing throughput: pro-

ducing the most output possible per unit of time.

Bandwidth — The major datapaths through the system must have sufficient bandwidth

or entire parts of a system may be under-utilized. The connections of greatest

concern would be 1) that between the host computer and the graphics subsystem,

2) the paths of access to database memory and 3) disk access for the application

and the graphics subsystem. It is particularly important that bandwidth specs not

assume tiny datasets that will not scale to a real application.

Processor utilization — Will the system get good utilization of the available hardware

or will some processors be sitting idle while others are overloading (will you get

what you paid for). Good processor utilization is essential for a system to realize

its potential throughput. Achieving this in a dynamic environment requires load

balancing mechanisms.

Scalability — If performance is a problem, will the system support the addition of

extra processors to improve throughput, and will improved performance scale

with the addition of new processors. Additionally, as new processors are added,

will load-balancing enable a real application to see the improved performance, or

will it only show up in benchmarks.

Latency — What is the maximum interval of time from when a user initiated an input

and the moment the final pixel of the corresponding new frame is presented. Low

latency is critical to interactive real-time entertainment applications.

Synchronization overhead — how much overhead is incurred when tasks communicate

information. This is particularly an issue for the very dynamic database of an

interactive, real-time entertainment application: both the main application and

the graphics subsystem need efficient access to the current state of the database.
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These measures of performance can be applied to both the system as a
whole, and to individual subsystems.

Methods of Multiprocessing

Because graphics applications have many very different tasks that must be
executed every frame, they are well suited to division among multiple
tasks, and multiple processors if available. Multiprocessing can also be
used to achieve better utilization and throughput of a single processor.

The partitioning and ordering of the separate tasks has direct consequences
on the performance of the system. A task may be executed in a pipelined,
or in a concurrent fashion. Pipelining uses an assembly-line model where a
task is decomposed into stages of operations that can be performed sequen-
tially. Each stage is a separate processor working on a separate part of a
frame and passing it to the next stage in the line. Concurrent processing has
multiple tasks simultaneously working on different parts of the same input,
producing a single result.

FIGURE 1. Pipelined vs. Parallel Processors

Both the host and graphics subsystems may employ both pipelining and
parallelism as a way of using multiple processors to achieve higher perfor-
mance. The general theoretical multiprocessing issues apply to both graph-
ics applications and graphics subsystems. Additionally, there are
complexities that arise with the use of special purpose processors, and from
the great demands of graphics applications.

Many graphics tasks are easily decomposed into pipelined architectures.
Typically, there is a main graphics pipeline, with parallelism within stages
of the pipeline. Individual pipeline stages may themselves be sub-pipe-
lines, or have parallel concurrent processors. Additionally, there may be
multiple parallel graphics pipelines working concurrently.

Pipelined systems need minimal synchronization because each task is
working on its own data for a different frame, or part of a frame, in an
ordered fashion so synchronization is implicit. Longer pipelines have
increased throughput — producing new results in quick succession because
the task has been broken up into many trivial stages that all execute
quickly. However, each stage in a pipeline will add latency to the system
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because the total amount of time through the pipeline is the number of
stages multiplied by the step time, which is the speed of the slowest stage.
While every step produces a new output, the total amount of time to pro-
duce a single output may get longer. The addition of a new pipeline stage
will presumably decrease the step time, but probably not enough to avoid
overall increased latency.

Pipelined systems will always run at the speed of the slowest stage, and no
faster. The limiting stage in a pipelined system is appropriately called a
bottleneck.

Pipeline tuning amounts to determining which stage in the pipeline is the
bottleneck and reducing the work-load of that stage. This can be quite diffi-
cult in a graphics application because through the course of rendering a
frame, the bottleneck changes dynamically. Furthermore, one cannot sim-
ply take a snapshot of the system to see where the overriding bottleneck is.
Finally, improving the performance of the bottleneck stage can actually
reduce total throughput if the another bottleneck results elsewhere. Bottle-
neck tuning methods are discussed in Section 5.

Tune the slowest stage of the pipeline.

Concurrent architectures do not suffer from the throughput vs. latency
trade-off because each of the tasks will directly produce part of the output.
However, synchronization and load-balancing are major issues. If proces-
sors are assigned to separate tasks that can be run in parallel, then there is
the chance that some tasks will take very little time to complete and those
processors will be idle. If a single task is distributed over several proces-
sors, then there is the overhead of starting them off and recombining the
output results. However, the latter has a better chance of producing an eas-
ily-scalable system because repetitive tasks, such as transforming vertices
of polygons, can be distributed among multiple concurrent processors.
Concurrent parallel architectures are also easier to tune because it is quite
apparent who is finishing last.

The processor organization in the system also needs to be considered.
There are two types of processor execution organization: SIMD or MIMD.
SIMD (single instruction multiple data) processors operate in lock-step
where all processors in the block are executing the same code. These pro-
cessors are ideal for the concurrent distributed-task model and require less
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overhead at the start and end of the task because of the inherent constraints
they place on the task distribution. SIMD processors are common in graph-
ics subsystems. However, MIMD (multiple instruction multiple data) do
better on complex tasks that have many decision points because they can
each branch independently. As with pipelined architectures, the slowest
processor will limit the rate of final output.

In actual implementation, graphics architectures are a creative mix of pipe-
lining and concurrency. There may be parallel pipelines with the major
pipeline stages implemented as blocks of parallel processors.

FIGURE 2. Parallel Pipeline

Individual processors may then employ significant sub-pipelining within
the individual chips. Systems may be made scalable by allowing the ability
to add parallel blocks.

4   Performance Issues in Graphics Pipelines

This section briefly reviews the basic rendering processes in the context of
presenting the basic computational requirements. Additionally, ways in
which the rendering task can be partitioned for implementation in hardware
and corresponding performance trade-offs are also discussed. Tuning an
application to a graphics pipeline is discussed in detail in Section 5.

The task of rendering three-dimensional graphics primitives is very
demanding in terms of memory accesses, integer, and floating-point calcu-
lations. There are impressive software rendering packages that handle three
dimensional texture-mapped geometry and can generate on the order of
1MPixels/sec on current CPUs. However, the task of rendering graphics
primitives is very naturally suited to distribution among separate, special-
ized pipelined processors. Many of the computations that must be per-
formed are also very repetitive, and so can take advantage of parallelism in
a pipeline. This use of special-purpose processors to implement the render-
ing process is based on some basic assumptions about the requirements of a
typical target application. The result can be orders of magnitude increases
in rendering performance.
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The Rendering Pipeline

The rendering process naturally lends itself to a simple pipeline abstrac-
tion. The rendering pipeline can generally be thought of as having three
main stages:

FIGURE 3. The Rendering Pipeline

Each of these stages may be implemented as a separate subsystem. These
different stages are all working on different sequential pieces of rendering
primitives for the current frame. A more detailed picture of the rendering
pipeline is shown in Figure 4. An understanding of the computations that
occur at each stage in the rendering process is important for understanding
a given implementation and the performance trade-offs made in that imple-
mentation. The following is an overview of the basic rendering pipeline,
the computational requirements of each stage, and the performance issues
that arise in each stagei[Foley90,Akeley93,Harrell93,Akeley89].

FIGURE 4. The Detailed Stages of the Rendering Pipeline

i.  See [Foley90], Chapter 18, for a detailed discussion of this topic.
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The CPU Subsystem (Host)

At the top of the graphics pipeline is the main real-time application running
on the host. If the host is the limiting stage of the pipeline, the rest of the
graphics pipeline will be idle.

The graphics pipeline might really be software running on the host CPU. In
which case, the most time consuming operation is likely to be the process-
ing of the millions of pixels that must be rendered. For the rest of this dis-
cussion, we assume that there is some dedicated graphics hardware for the
graphics subsystem.

FIGURE 5. Host-Graphics Organizations

The application may itself be multiprocessed and running on one or more
CPUs. The host and the graphics pipeline may be tightly connected, shar-
ing a high speed system bus, and possibly even access to host memory.
Such buses currently run at several hundred MBytes/sec, up to 1.2GBytes/
sec. However, in many high-end visual simulation systems, the host is
actually a remote computer that drives the graphics subsystem over a net-
work (SCRAMnet, 100 Mbits/sec, or even ethernet at 10Mbits/sec).The
first stage of the rendering pipeline is traversal of the database and sending
the current rendering data on to the rest of the graphics pipeline. In theory,
the entire rendering database, or scene graph, must be traversed in some
fashion for every frame because both scene content and viewer position are
dynamic. Because of this, there are three major parts of the database tra-
versal stage: processing to determine current viewing parameters (usually
part of the main application), determining which parts of the scene graph
are contained within the viewing frustum (culling), and the actual drawing
traversal that issues rendering commands for the visible parts of the data-
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base. These components form a traversal pipeline of three stages: Applica-
tion, Cull, and Draw:

FIGURE 6. Application Traversal Process Pipeline

Possibilities for the application processes are discussed further in Figure 6.
This section will be focussing on the drawing traversal stage of the applica-
tion.

Some graphics architectures impose special requirements on the drawing
traversal task, such as requiring that the geometry be presented in sorted
order from front to back, or requiring that data be presented in large, spe-
cially formatted chunks as display lists.

There are three main types of database drawing traversal:

immediate mode,

display list mode,

retained data.

Immediate Mode Drawing Traversal

In the first two, the rendering database lives in main memory. For immedi-
ate mode rendering, the database is actually shared with the main applica-
tion on the host, as shown in Figure 7. The application is responsible for
traversing the database and sending geometry directly to the graphics pipe-
line. This mode is the most memory efficient and flexible for dynamic
geometry. However, the application is directly responsible for the low-level
communication with the graphics subsystem.

FIGURE 7. Architecture with Shared Database
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Display List Traversal

In display-list mode, pieces of the database are compiled into static chunks
that can then be sent to the graphics pipe. In this case, the display list is a
separate copy of the database that can be stored in main memory in an opti-
mized form for feeding the rest of the pipeline. The database traversal task
is to hand the correct chunks to the graphics pipeline. These display lists
can usually be edited, or re-created easily for some additional performance
cost. For both of these types of drawing traversals, it is essential that the
application be using the fastest possible API for communication with the
graphics subsystem. An inefficient host-graphics interface for such opera-
tions as issuing polygons and vertices could leave the rest of the graphics
pipeline starved for data.

Use only the fastest interface and routines when communicating with the

graphics pipeline.

There is potentially a significant amount of data that must be transferred to
the graphics pipeline every frame. If we consider just a 5K triangle frame,
that corresponds to

(5000 tris) * (3 vertices/tri * (8 floats/vertex) * (4bytes/float)) = 480KBytes

→ 28.8 MBytes/sec for a 60fps. update rate.

for just the raw geometric data. The size of geometric data can be reduced
through the use of primitives that share vertices, such as triangle strips, or
through the use of high-level primitives, such as surfaces, that are
expanded in the graphics pipeline (this is discussed further in Section 7). In
addition to geometric data, there may also be image data, such as texture
maps. It is unlikely that the data for even a single frame will fit a CPU
cache so it is important to know the rates that this data can be pulled out of
main memory. It is also desirable to not have the CPU be tied up transfer-
ring this data, but to have some mechanism whereby the graphics sub-
system can pull data directly out of main memory, thereby freeing up the
CPU to do other computation. For highly interactive and dynamic applica-
tions, it is important to have good performance on transfers of small
amounts of data to the graphics subsystems since many small objects may
be changing on a per-frame basis.
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FIGURE 8. Architecture with Retained Data

Retained Database Traversal

If the database, and display list, is stored in the graphics pipeline itself, as
shown in Figure 8, separate from main memory, it is a retained display list.
Retained display lists are traversed only by the graphics pipeline and are
required if there is very low bandwidth between the host and the graphics
subsystem. The application only sends small database edits and updates
(such as the new viewing parameters and a few matrices) to the graphics
pipe on a per-frame basis. Pieces of the database may be paged directly off
local disks (also at about 10MBytes/sec.). Retained mode offers less much
flexibility and power over editing the database, but also can remove the
possible bandwidth bottleneck at the head of the graphics pipeline.

The use of retained databases can enable additional processing of the total
database by the graphics subsystem. For example, partitioning the database
may be done order to implement sophisticated optimization and rendering
techniques. One common example is the separation of static from moving
objects for the implementation of algorithms requiring sorting. The cost
may be additional loss of power and control over the database due to limi-
tations on database construction, such as the number of moving objects
allowed in a frame.

Graphics Subsystems

The second two stages of the rendering pipeline, Figure 3, are commonly
called The Geometry Subsystem and The Raster Subsystem, respectively.
The geometry subsystem operates on the geometric primitives (surfaces,
polygons, lines, points). The actual operations are usually per-vertex opera-
tions. The basic set of operations and estimated computational complexity
includes [Foley90]: modeling transformation of the vertices and normals
from eye-space to world space, per-vertex lighting calculations, viewing
projection, clipping, and mapping to screen coordinates. Of these, the light-
ing calculations are the most costly. A minimal lighting model typically
includes emissive, ambient diffuse, and specular illumination for infinite
lights and viewer. The basic equation that must be evaluated for each color
component (R, G, and B) is [OpenGL93]:
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RGBemissive_mat +

RGBambient_model*RGBambient_mat +

RGBambient_mat*RGBambient_light +

RGBdiffuse_mat*RGBdiffuse_light * (light_vector. normal)

Specular illumination adds an additional term (exponent can be approxi-
mated with table lookup):

RGBspecular_light*RGBspecular_mat*(half_angle. normal)shininess

Much of this computation must be re-computed for additional lights. Dis-
tance attenuation, local viewing models and local lights add significant
computation.

A trivial accept/reject clipping step can be inserted before lighting calcula-
tions to save expensive lighting calculations on geometry outside the view-
ing frustum. However, if an application can do a coarse cull of the database
during traversal, a trivial reject test may be more overhead than benefit.
Examples of other potential operations that may be computed at this stage
include primitive-based antialiasing and occlusion detection.

This block of floating-point operations is an ideal case for both sub-pipelin-
ing and block parallelism. For parallelism, knowledge about following
issues can help application tuning:

MIMD vs. SIMD,

how streams of primitives are distributed to the processors,

is the output of these processors remain separate in parallel streams for the next major

stage, or re-combined into a single output stream for re-distribution.

The first issue, MIMD vs. SIMD, affects how a pipeline handles changes in
the primitive stream. Such changes might include alterations in primitive
type, state changes, such as the enabling or disabling of lighting, and the
occurrence of a triangle that needs to be clipped to the viewing frustum.
SIMD processors have less overhead in their setup for changes. However,
since all of the processors must be executing the same code, changes in the
stream can significantly degrade processor utilization, particularly for
highly parallel SIMD systems. MIMD processors are flexible in their
acceptance of varied input, but can be more somewhat more complex to
setup for given operations, which will include the processing state changes.
This overhead can also degrade processor utilization. However adding
more processors can be added to balance the cost of this overhead.

The distribution of primitives to processors can happen in several ways. An
obvious scheme is to dole out some fixed number of primitives to proces-
sors. This scheme also makes it possible to easily re-combine the data for
another distribution scheme for the next major stage in the pipeline. MIMD
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processors could also receive entire pieces of general display lists, as might
be done for parallel traversal of a retained database.

The application can affect the load-balancing of this stage by optimizing
the database structure for the distribution mechanism, and controlling
changes in the primitive stream.

Order rendering to benefit the most expensive pipeline stage.

After these floating point operations to light and transform geometry, there
are fixed-point operations to calculate slopes for the polygon edges and
additional slopes for z, colors, and possibly texture coordinates. These cal-
culations are simple in comparison to the floating point operations. The
more significant characteristic here is the explosion of vertex data into
pixel data and how that data is distributed to downstream raster processors.

There is an explosion of both data and processing that is required to raster-
ize a polygon as individual pixels. Typically, these operations include
depth comparison, gouraud shading, color blending, logical operations,
texture mapping and possibly antialiasing. These operations require access-
ing of various memories, both reading for inputs to comparisons and the
blending and texturing operations, and writing of the updated depth and
color information and status bits for logical operations. In fact, the memory
accesses can be more of a performance burden than the simple operations
being computed. Of course, this is not true if complex per-pixel shading
algorithms, such as Phong Shading, are in use. For antialiasing methods
using super-sampling, some of these operations (such as z-buffering) may
have to be done for each sub-sample. For interpolation of pixel values for
antialiasing, each pixel may also have to visit the memory of its neighbors.
Texture interpolation for smoothing the effects of minification and magnifi-
cation can also cause many memory accesses for each pixel. An architec-
ture might choose to keep some memory local to the pixel processor, in
which case, fill operations that only access local processor memory would
probably be faster.

FIGURE 9. Pixel Operations do many Memory Accesses
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The vast number of pixel operations that must be done would swamp sin-
gle-processor architectures, but are ideal for wide parallelism. The Silicon
Graphics RealityEngineTM has 80 Image Processors on just one of up two
four raster subsystem boards. The following is a simplified example of how
parallelism can be achieved in the Raster Subsystem. The screen is subdi-
vided into areas for some number of rasterizing engines that take polygons
and produce pixels. Each rasterizer has a number of pixel processors that
are each responsible for a sub-area of its parent rasterizing engine and
writes directly into framebuffer memory. Thus, the Raster Subsystem may
have concurrent sub-pipelines.

FIGURE 10. Parallelism in the Raster Subsystem

In some architectures, such as the Silicon Graphics VGX™, the rasterizers
get interleaved vertical spans on the screen and the pixel processors get
interleaved pixels within those spans. The Silicon Graphics Reality-
EngineTM uses a similar scheme, but with more complex interleaving for
better load balancing and many more pixel processors[Akeley93].

Certain operations that can cause an abort of the writing to a pixel, such as
a failed z-buffer test, can be used short-circuit further more expensive pixel
operations. If the application can draw front to back, or draw large front
polygons first, a speedup might be realized.

Depending on the distribution strategy, MIMD processors in this stage
might show more benefit from such short-circuit operations. The distribu-
tion strategy typically employs an interleaved partitioning of the frame-
buffer. This optimizes memory accesses and promotes good processor
utilization. The possible down side is that most processors will need to see
most primitives. The complexity in figuring out which primitive go to
which processors may cause processors to receive input for which they do
no work. Because of this overhead, small polygons can have less efficient
fill characteristics.
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The bottleneck of a pipeline may not be one of the actual stages, but in fact
one of the buses connecting two stages, or logic associated with it. There
may be logic for parsing the data as it is comes off the bus, or distributing
the data among multiple downstream receivers. Any connection that must
handle a data explosion, such as the connection between the Geometry and
Raster subsystems, is a potential bottleneck. The only way to reduce these
bottlenecks is to reduce the amount of raw data that must flow through it,
or to send data that requires less processing. The most important connec-
tion is the one that connects the graphics pipeline to the host because if that
connection is a bottleneck, the entire graphics pipeline will be under-uti-
lized.

The use of FIFO buffers between pipeline stages provides necessary pad-
ding that protects a pipeline from the affects of small bottlenecks and
smooths the flow of data through the pipeline. Large FIFOs at the front of
the pipeline and between each of the major stages can effectively prevent a
pipeline from backing up through upstream stages and sitting idle while
new data is still waiting at the top to be presented. This is useful important
for fill-intensive applications which tend to bottleneck the very last stages
in the pipeline. However, once a FIFO fills, the upstream stage will back
up.

Fill the pipeline from back to front.

The final stage in the frame interval is the time spent waiting for the video
scan-out to complete for the new frame to be displayed. This period, called
a field, is the time from the first pixel on the screen until the last pixel on
the screen is scanned out to video. For a 60Hz video refresh rate, the time
could be as much as 16.7msecs. Graphics workstations typically use a dou-
ble-buffered framebuffer so that for an extra field of latency, the system can
achieve frame-rates equal to the scan-out rate. A double-buffered system
will toggle between two framebuffers, outputting the contents of one
framebuffer while the other is receiving rendering results. The frame-
buffers cannot be swapped until the previous video refresh has completed.
This will force the frame rate of the application to run at a integer multiple
of the video refresh rate. In the worst case, if the rendering for one frame
completed just after a new video refresh was started, the application could
theoretically have to wait for the entire refresh period, waiting for an avail-
able framebuffer to receive rendering for the next frame.

A double-buffered application will always have a frame rate that is an

integer multiple of the video refresh rate.

Bus Bandwidth

Video Refresh
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The time for video refresh is also the lower bound on possible latency for
the application. The typical double-buffered application will have a mini-
mum of two fields of latency: one for drawing the next frame while the cur-
rent one is being scanned, and then a second field for the frame to be
scanned. This assumes that the frame rate of the application is equal to the
field rate of the video. In reality, a double-buffered application will have a
latency that is at least

2 * N * field_time

where N is the number of fields per application frame.

One obvious way to reduce rendering latency is to reduce the frame time to
draw the scene. Another method is to allow certain external inputs, namely
viewer position, into later stages of the graphics pipeline. An interesting
method to address both of these problems is presented in [Regan94]. A ren-
dering architecture is proposed that handles viewer orientation after render-
ing to reduce both reduce latency and drawing. The architecture renders a
full encapsulating view around the viewer’s position. The viewer orienta-
tion is sampled after rendering by a separate pipeline that runs at video
refresh rate to produce the output RGB stream for video. Additionally, only
objects that are moving need to be redrawn as the viewer changes his orien-
tation. Changes in viewer position could also be tolerated by setting a max-
imum tolerable error in object positions and sizes. Complex objects could
even be updated at a slower rate than the application frame rate since their
previous renderings still update correctly with viewer orientation.

These principles of sampling viewer position as late as possible, and
decoupling of object rendering rate from viewer update rate can also be
applied to applications.

It is always fascinating to see the creative ways in which basic concepts
can be applied to produce vastly different architectures. The following are
brief examples of a few different past and current graphics architectures
with different price/performance characteristics.

Apollo DN10000[Voorhies89] — A complete graphics workstation. RISC concepts

were applied to produce a RISC graphics-capable CPU that could be combined in

a multiprocessor configuration. All traversal and geometry processing are done

on the CPU(s).

SGI Extreme[Harrell93] — desktop workstation with 500K triangles/sec and

80MPixels gouraud-zbuffered. The geometry subsystem is 8 SIMD parallel pro-

cessors, raster subsystem is 2 parallel processing blocks. Hyper-pipelining in the

raster subsystem is used to increase performance of pixel generation. Texture-

mapping done in software on the host.

Silicon Graphics high-end graphics workstations — three generations of graphics

pipelines native to a multiprocessor host:

Dealing with

Latency

Graphics

Architectures
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GTX[Akeley89] — has a highly parallel Geometry Subsystem with five stages, and a

raster subsystem that includes parallelized stages for scan-conversion and pixel

processing.

VGX[Akeley90] — achieves high polygon rates (first workstation to do 1 Million tri-

angles) with a simpler 3-stage geometry subsystem where two of the stages use

four SIMD processors each. Data was combined at the output of the geometry

subsystem for re-distribution to the raster subsytems which were MIMD, paral-

lelized and extendable. Texture mapping is supported at reduced fill rates. VGX-

Skywriter supported multiple graphics pipelines in one (large) box that could act

as independent parallel pipelines, or could be used together as frame-interleaved

pipelines to effectively double throughput (but with additional latency).

RealityEngine[Akeley93] — has a simpler geometry subsystem that is 12 MIMD pro-

cessors wide and has an even more extendable raster subsystem. Up to three

independent pipelines may exist in a single box. High polygon rates (1.2M, 1.8M

on RE2) were in balance with high fill rates for complex fill algorithms, including

tri-linear texture mapping and real-time full-scene antialiasing. Also supports

per-window stereo.

Kubota Denali(93) — scalable graphics subsystem that sits on the main DEC Alpha

system bus. Has main stages of 3-stage Geometry Transformation Module and

Framebuffer Module(SIMD); both are extendable for greater performance. Has

low to high end configurations with 200K and 1.2M triangles/sec, respectively,

and supports texture mapping at reduced fill rates.

Sun Leo[Deering93] — desktop workstation capable of 210K 100 pixel triangles/sec.

Geometry subsystem uses four parallel custom floating point processors and the

raster subsystem uses five parallel processors. Leo is VRAM-access limited, and

thus fill-limited, even for 100 pixel triangles. Supports per-window stereo.

Evans & Sutherland Image Generators — use a remote networked host and retained

database traversal. They have special support for many visual-simulation fea-

tures, including special terrain traversal and rendering algorithms with dynamic

Level of Detail (LOD), landing lights, and various atmospheric affects. The

ESIG4000(high-end) has special support for the placement of LOD geometry on

LOD terrain and distortion correction for projection onto curved display surfaces.

Restrictions on databases include: the databases must be built with special mod-

eling tools and use separating-plane construction for peak performance and an

associated limited number of moving models allowed and animated forms of

dynamic objects.

PixelPlanes[Fuchs89] explores the use of massively parallel processors for the render-

ing task. A MIMD array of geometry processors sorts polygons into screen-based

region buffers (128x128 pixels) and SIMD pixel processors apply pixel-based

rendering algorithms, such as Phong shading. These sophisticated shading calcu-

lations are deferred until an end-of-frame point, after zbuffering, so they only

have to be done once per pixel and are not affected by depth-complexity. All

geometry processing must be done before the deferred shading pass. Screen-

based allocation does not provide good load-balancing.

PixelFlow[Molnar93] improves this load balancing. It is an image composition archi-

tecture where rendering of primitives is distributed over an extendable, massively

parallel array of complete renderers — each able to draw to the entire frame-

buffer, but still rasterizes in 128x128 pixel patches. As in PixelPlanes, deferred
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shading is applied after the renderer images are composited. PixelFlow can run in

either a retained database mode, or in an immediate mode where it is hosted by a

parallel computer with processors directly connected to the renderers.

5   Optimizing Performance of a Graphics Pipeline

This section discusses tuning an application for a graphics pipeline. The
Law of Diminishing Returns definitely applies here: for an application
designed with performance in mind, it is typically fairly easy to achieve
about 60% of expected optimal performance. A bit of work can get you to
75% or 80% and then it starts to get more difficult. A major reason for this
is the pure complexity of having so many parameters interacting which fur-
ther affects performance behavior. The key is in identifying and isolating
the current problems. The goal is a balanced pipeline where no one stage is
an overwhelming bottleneck.

FIGURE 11. A Balanced Pipeline

The focus of this section is the development of the following basic tuning
strategy:

1. Design for performance

2. Estimate expected performance

3. Measure and evaluate current performance

4. Isolate performance problems

5. Balance operations

6. Repeat

Design For Performance

The full system pipeline should be kept in mind when designing the appli-
cation. Graphics features should be chosen to balance the pipeline and
careful estimations of expected performance for target databases should be
made during the design phase as well as the tuning phase.

Combinations of rendering features should be chosen to produce a bal-
anced pipeline. An advantage of graphics workstations is the power to
make trade-offs to maximize both performance and scene quality for a
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given application. If, for example, a complex lighting feature is required
that will bottleneck the geometry subsystem, then possibly a more interest-
ing fill algorithm could be used to both require less polygons being lit and
achieve overall higher scene quality.

Beware of features that use multi-pass algorithms because pipelines are
usually balanced with one pass through each stage. There are many sophis-
ticated multi-pass algorithms incorporating such techniques as texture-
mapping, Phong-shading, accumulation antialiasing, and other special
effects, that produce high-quality images. Such features should be used
sparingly and their performance impact should be well understood.

The application should also be designed with multiprocessing in mind
since this is very hard to add after-the-fact. Large tasks that can be run on
separate processors (preferably with minimal synchronization and sharing
of data) should be identified. For ease of debugging, portability, and tuning
(discussed further in Section 8) the application should support both a single
process mode, and a mode where all tasks are forced into separate pro-
cesses.

Design with multiprocessing in mind.

The tasks also need to be able to non-invasively monitor their own perfor-
mance, and need to be designed so that they will support measurements
and experiments that will need to be done later for tuning. The rendering
task (discussed later in this section) must send data to the graphics pipeline
in a form that will maximize pipeline efficiency. Overhead in renderer
operations should be carefully measured and amortized over on-going
drawing operations.

Estimating Performance for a Pipeline

Making careful performance estimations greatly enhances your under-
standing of the system architecture. If the target machine (or similar
machine) is available, then this should be done in tandem with the analysis
of current application performance and the comparison to small bench-
marks until the measurements and estimations agree.

As should not be surprising by this time, estimating performance of an
application for a pipeline is much more than looking at peak quoted num-
bers for a machine and polygon totals for a database. The following are
basic steps for estimating performance:

1. Define the contents of a worst-case frame, including number of polygons and

their types, number of graphics modes and changes, and average polygon sizes

2. Identify the major stages of the graphics pipeline

Designing Tasks
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3. For each major stage, identify the parts of the frame that are significant for

that stage

4. Estimate the time that these frame components will spend in each stage of

the pipeline (if possible, verify with small benchmarks)

5. Sum the maximum stage times computed in (4) for a very pessimistic esti-

mation

6. When the drawing order can be predicted (such as for screen clear which

may be expensive in the fill stage and will always come first) more optimis-

tic estimations can be made by assuming that time spent in upstream stages

for later drawing will be concurrent with the downstream work, and thus

gotten for free.

First, consider the geometry subsystem: the significant operations might be
triangles (with better rates for meshed triangles), lighting operations, clip-
ping operations, mode changes, and matrix transformations. Given this
information, one can compile the following type of information:

• Triangles: percentage of triangles in meshes of different lengths

• Graphics modes: percentage of the triangles that are lit

• Mode changes: number of texture changes per frame

• Viewing Matrix transformations: number per frame

• Clipping: percentage of triangles that are trivial accept, are trivial reject, and

those that intersect the viewing frustum

Given the scene characteristics, one should first write small benchmarks to
get geometry subsystem performance statistics on individual components.
Then, write an additional benchmark that mimics the geometry characteris-
tics of a frame to evaluate the interactions of those components.

We then similarly examine the raster subsystem. We first need to know the
relevant frame information:

• Depth complexity of the frame and target resolution

• Number of triangles in different fill modes and a few typical sizes

• Number of raster mode changes

• Time for screen clear

Again, if possible, benchmarks should be written to verify the fill rates of
polygons and the cost of raster mode changes. From these estimates, one
can make a best guess about the amount of time that will be spent in the
raster subsystem.

We can now make coarse-grained and fine-grained estimations of frame
time. An extremely pessimistic approach would be to simply add the bot-
tleneck times for the geometry subsystem and the raster subsystem. How-
ever, if there is a sufficient FIFO between the geometry and raster
subsystems, much of the operations in the geometry subsystem should
overlap with the raster operations. Assuming this, a more optimistic
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coarse-grained estimation would be to sum the amount of time spend in the
raster subsystem and the amount of time beyond that required by the geom-
etry subsystem. A fine-grain approach would be to consider the bottlenecks
for different types of drawing. Identify the parts of the scene that are likely
to be fill-limited and those that are likely to be transform-limited. Then
sum the bottleneck times for each.

Measuring Performance and Writing Benchmarks

Being able to make good performance measurements and write good
benchmarks is essential to getting that last 20% of performance. To achieve
good timing measurements, do the following:

1. Take measurements on a quiet system. Graphics workstations have fancy devel-

opment environments so care must be taken that background processes, such as a

graphical clock ticking off seconds, or a graphical performance monitor, etc., are

not disrupting timing.

2. Use a high-resolution clock and make measurements over a period of time

that is at least 100x the clock resolution.

3. If there are only very low resolution timers (less than 1millisecond) then to

accurately time a frame, pick a static frame (freeze matrix transformations),

run in single-buffered mode, and time the repeated drawing of that frame.

4. Make sure that the benchmark frame is repeatable so that you can return to

this exact frame to compare the affects of changes.

5. Make sure that pipeline FIFOs are empty before starting timing and then

before checking the time at the end of drawing. When using OpenGL, one

should call glFinish() before checking the clock.

6. Verify that you can rerun the test and get consistent timings.

A generally good technique for writing benchmarks is to always start with
one that can achieve a known peak performance point for the machine. If
you are writing a benchmark that will do drawing of triangles, start with
one that can achieve the peak triangle transform rate. This way, if a bench-
mark seems to be giving confusing results, you can simplify it to reproduce
the known result and then slowly add back in the pieces to understand their
effect.

Verify a known benchmark on a quiet system.

When writing benchmarks, separate the timings for operations in an indi-
vidual stage from benchmarks that time interactions in several stages. For
example, to benchmark the time polygons will spend in the geometry sub-
system, make sure that the polygons are not actually being limited by the
raster subsystem. One simple trick for this is to draw the polygons as 1-
pixel polygons. Another might be to enable some mode that will cause a
very fast rejection of polygon or pixels after the geometry subsystem.
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However, it is important to write both benchmarks that time individual
operations in each stage, and those that mimic interactions that you expect
to happen in your application.

Finding the Bottlenecks

Over the course of drawing a frame, there will likely be many different bot-
tlenecks. If you first clear the screen and draw background polygons, you
will start out fill-limited. Then, as other drawing happens, the bottleneck
will move up and down the pipeline (hopefully not residing at the host).
Without special tools, bottlenecks can be found only by creative experi-
mentation. The basic strategy is to isolate the most overwhelming bottle-
neck for a frame and then try to minimize it without creating a worse one
elsewhere.

Isolate the bottleneck stage of the pipeline.

One way to isolate bottlenecks is by eliminating work at specific stages of
the pipeline and then check to see if there is a significant improvement in
performance. To test for a geometry subsystem bottleneck, you might force
off lighting calculations, or normalization of vertex normals. To test for a
fill bottleneck, disable complex fill modes (z-buffering, gouraud shading,
texturing), or simply shrink the window size. However, beware of second-
ary affects that can confuse the results. For example, if the application
adjusts what it draws based on the smaller window, the results from just
shrinking the window without disabling that functionality will be meaning-
less. Some stages are simply very hard to isolate. One such example is the
clipping stage. However, if the application is culling the database to the
frustum, you can test for an extreme clipping bottleneck by simply pushing
out the viewing frustum to include all of the geometry.

6   Tuning the Application

Applications usually plan on pushing graphics past their limits. If the ren-
dering traversal is part of the application, then this traversal must be opti-
mized so that it keeps the graphics subsystem busy. On a multiprocessing
system, other operations for scene management formatting of data can be
moved out of the renderer and into other processes, preferably running on
other CPUs. Finally, a key part of real-time rendering is load management,
providing a graceful response to overloading the graphics subsystem,
which is discussed later in Section 8.
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Tuning the Renderer

There is no escape from writing efficient code in the renderer. Immediate
mode drawing loops are the most important parts since code in those loops
are executed thousands of times per frame. For peak performance from
these loops, one should do the following:

• Minimize the loop overhead and decision logic in the polygon loops. Unroll per-

vertex code and duplicate code, as opposed to using per-vertex if-tests.

• Use a flat data structure for the draw traversal - you want to minimize the number

of memory pages you need to touch in a given loop.

• Disassemble code to examine loop overhead (and to check that the compiler is

doing what you expect).

Display list rendering requires less optimization because it does not require
the tight loops for rendering individual polygons. However, this is at the
cost of more memory usage for storing the display list and less flexibility in
being able to edit the geometry in the list for dynamic objects. The extra
memory required by display lists can be quite significant because there can
be no vertex sharing in display lists. This can restrict the number of objects
you can hold in memory and will also slow the time to page in new objects
if the graphics display lists must be re-created. Additionally, display lists
may need to be of a certain minimum size to be handled efficiently by the
system. If there are many small moving objects in the scene, the result will
be many small display lists. If you have the choice, given the option
between immediate mode rendering and database paging, you might
choose to use at least some immediate mode, particularly for dynamic
objects.

Don’t let the host be the bottleneck

IRIS PerformerTM, a Silicon Graphics toolkit for developing real-time
graphics applications, uses a fairly aggressive technique for achieving
high-performance immediate-mode rendering. Data structures for geome-
try enforce the use of efficient drawing primitives. Geometry is grouped
into sets by type and attribute bindings (use of per-vertex or per-polygon
colors, normals, and texture coordinates). For each combination of primi-
tive and attribute binding, there is a specialized routine with a tight loop to
draw the geometry in that set. The result is several hundred such routines
but the use of macros makes the code easy to generate and maintain. IRIS
Performer also provides an optimized display list mode that is actually an
immediate mode display list and shares the application copy of data instead
of copying off a separate, uneditable copy. This is discussed in [Rohlf94],
and [PFPG94]. Host rendering optimization techniques 24are also dis-
cussed in detail in [GLPTT92].

Efficient Coding
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Multiprocessing can be used to allow the renderer to devote its time issuing
graphics calls while other tasks, such as scene and load management can be
placed into other processes. There are several large tasks that are obvious
candidates for such course-grained multiprocessing:

the real-time application — processes inputs from IO, calculates new viewing parame-

ters, positional parameters for objects, and parameters for dynamic geometry,

scene management — culling out parts of the scene graph that are not in the viewing

frustum, calculating LOD information, generating a display list for the rendering

traversal,

dynamic editing of geometric data,

IO handling — polling external devices, database paging,

intersection traversals for collision detection,

complex simulations for various vehicles.

A combination of pipelining and parallelism can be used to get the right
throughput/latency trade-off for your application and the target machine.
IRIS PerformerTM provides a process pipeline:

FIGURE 12. IRIS Performer Process Pipeline

This process pipeline, described in [Rohlf94], is re-configurable to allow:

a pipeline where the cull and draw are parallel processes (app->cull/draw),

a model where the cull and draw are performed by a single process that culls and ren-

ders simultaneously (app->cull_draw),

a minimal-latency model where all tasks are performed by a single process

(app_cull_draw).

Multiprocessing also allows additional tasks to be done that will make the
rendering task more efficient, such as:

generating a per-frame, optimized display list for the rendering task so that the drawing

traversal does not need to traverse the original database,

sorting geometry by mode to minimize mode changes,

host backface removal (and removal of backfaced objects) to save additional host

bandwidth,

flattening of dynamic transformations over objects of only one or two polygons.

It is important to identify which tasks must be real-time, and which can run
asynchronously and extend beyond frame boundaries. Real-time tasks are
those that must happen within a fixed interval of time, and severe conse-
quences will result if the task extends beyond its frame. The main applica-
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tion, cull, and draw tasks are all real-time tasks. However, it might not be
so traumatic if, for example, some of the collision results are a frame late.
The polling of external control devices should probably be done in a sepa-
rate, asynchronous process — if those results are late, extrapolation from
previous results is probably better than waiting. Real-time tasks are dis-
cussed further in Section 8.

A real-time process should not poll an external device.

7   Database Tuning

Tuning databases is as important (and often just as much work) as tuning
the application. The database hierarchy needs to be structured to optimize
the major traversal tasks. Information cached in the database hierarchy can
reduce the number of dynamic operations that must be done by traversals.
Finally, the modeling of the database geometry should be done with an
understanding of the performance characteristics of the graphics pipeline.

Spatial Hierarchy Balanced with Scene Complexity

The major real-time database traversals are the cull and collision traversals.
Both benefit by having a database that is spatially organized, or is coherent
in world space. These traversals eliminate parts of the scene graph based on
bounding geometry. If a database hierarchy is organized by grouping spa-
tially near objects, then entire sub-trees can be easily eliminated by the
bounding geometry of a root node. If most nodes have bounding geometry
that covers much of the database, then an excessive amount of the database
will have to be traversed.

FIGURE 13. Scene-graph with Spatial Hierarchy
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It is additionally helpful to have a hierarchy based on square areas so that
simple bounding geometry, such as bounding spheres, can be used to opti-
mize the traversal test.

The amount of hierarchy put in the database should balance the traversal
cost of nodes with the number of children under them. A node with few
children will be able to eliminate much of the database in one step. How-
ever, a deep hierarchy might be expensive to maintain as objects change
and information must be propagated up the tree.

Database Instancing

Instancing in a database is where multiple parents reference a single
instanced child which allows you to make performance/memory trade-offs.

FIGURE 14. Instanced Node

Instancing saves memory but prevents a traversal from caching traversal
information in the child and also prevents you from flattening inherited
matrix transformations. To avoid these problems, IRIS PerformerTM pro-
vides a compromise of cloning where nodes are copied but actual geometry
is shared.

Balancing the Traversals

The amount of geometry stored under a leaf node will affect all of the tra-
versals, but there is a performance trade-off between the spatial traversals
and the drawing task. Leaf nodes with small numbers of polygons will pro-
vide a much more accurate culling of objects to the viewing frustum, thus
generating fewer objects that must be drawn. This will make less work for
the rendering task; however, the culling process will have to do more work
per polygon to evaluate bounding geometry. If the collision traversal needs
to compute intersections with actual geometry, then a similar trade-off
exists: fewer polygons under a leaf node means fewer expensive polygon
intersections to compute.

Modeling to the Graphics Pipeline

The modeling of the database will directly affect the rendering perfor-
mance of the resulting application and so needs to match the performance
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characteristics of the graphics pipeline and make trade-offs with the data-
base traversals. Graphics pipelines that support connected primitives, such
as triangle meshes, will benefit from having long meshes in the database.
However, the length of the meshes will affect the resulting database hierar-
chy and long strips through the database will not cull well with simple
bounding geometry.

Objects can be modeled with an understanding of inherent bottlenecks in
the graphics pipelines. Pipelines that are severely fill-limited will benefit
from having objects modeled with cut polygons and more vertices and
fewer overlapping parts which will decrease depth complexity.

FIGURE 15. Modeling with cut polygons vs. overlapping polygons

Pipelines that are easily geometry or host limited will benefit from model-
ing with fewer polygons.

There are a couple of other modeling tricks that can reduce database com-
plexity. One is to use textured polygons to simulate complex geometry. It is
especially useful if the graphics subsystem supports the use of alpha tex-

tures where a channel of the texture marks the transparency of the object.
Texture can be made as cut-outs for things like fences and trees. Textures
are also useful for simulating particles, such as smoke. Textured polygons
as single-polygon billboards are additionally useful. Billboards are poly-
gons that are fixed at a point and rotated about an axis, or about a point, so
that the polygon always faces the viewer. Billboards are useful for symmet-
ric objects just as light posts and trees, and also for volume objects such as
smoke. Billboards can also be used for distant objects to save geometry.
However, the managing of billboard transformations can be expensive and
impact both of the cull and draw processes.

3D Database modeling techniques like these have been in use for a long
time in Visual Simulation applications.

8   Real-Time On a Workstation

Graphics workstations are attractive development platforms because they
have rich and user-friendly development environments. They are not tradi-
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tionally known for their real-time environments. However, extensions can
be made to the basic operating system to support a real-time mode, as was
done with the Silicon Graphics REACTTM extensions to IRIXTM. The
REACT extensions are really ways to push UNIX aside for real-time oper-
ation. It guarantees interrupt response time on a properly configured system
and enables the user to have control of the scheduling of specified proces-
sors and therefore be exempt from all UNIX overhead. REACT also
includes a real-time frame scheduler that can be used on the real-time pro-
cessors. Finally, REACT offers time-stamps on system and user operations
for real-time system performance feedback.

Running an application in performance-mode might be quite different from
running it in development mode. Most obviously, a real-time application
needs fast timers to be able to monitor its performance for load-manage-
ment, as well as having accurate time-based animations and events. A real-
time application also needs to be guaranteed worst case behavior for basic
system functions such as interrupt response time. It also needs to have con-
trol over how it is scheduled with other processes on the system, and how
its memory is managed. In addition, the main application needs to synchro-
nize frame boundaries of various tasks with the graphics subsystem.

Put the system and application in real-time mode for real-time perfor-

mance.

Managing System Resources for Real-Time

One type of organization is to put the rendering process on its own proces-
sor, isolated from other system activity and synchronization with other
tasks. This is the organization used in IRIS PerformerTM[Rolf94]. To do
this, the rendering process should also have its own copy of data to mini-
mize synchronization and conflict over pages with other processors. On a
general-purpose workstation, one CPU will need to be running basic sys-
tem tasks and the scheduler. Additionally, a distinction should be made
between tasks that must be real-time (happen reliably at fixed intervals),
and those processes that may extend past frame boundaries in generating
new results. Non-real-time tasks can be given lower priorities and share
processors, perhaps even the system CPU.

Real-Time Graphics

Getting steady, real-time frame rates from the graphics subsystem can be a
challenge on any system. One problem is handling overload conditions in
the graphics subsystem. Another is the synchronization of multiple graph-
ics systems.
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 High-end image generators have frame control built into the graphics sub-
system so that they can simply halting drawing at the end of a frame time.
This can produce an unattractive result, but perhaps one that is less disturb-
ing than a wild frame rate. Getting a graphics subsystem to stop based on a
command sent from the host and placed in a long FIFO can be a problem.
If the graphics subsystem does not have its own mechanism for managing
frame rate control (as currently only high-end image-generators do) then
the host will have to do it. This means leaving generous margins of safety
to account for dynamic changes in graphics load and tuning the database to
put an upper bound on worst-case scenes. However, some method of load
management will also be required.

Load management for graphics is a nice way of saying “draw less.” One
convenient way to do this is by applying a scaling factor to the levels of

detail (LODs) of the database, using lower LODs when the system is over-
loaded and higher LODs when it is under-utilized. A hysteresis band can be
applied to avoid thrashing between high and low levels of detail. This is the
mechanism used by IRIS PerformerTM[Rohlf94]. This technique alone is
quite effective at reducing load in the geometry subsystem because object
levels of detail are usually modeled with fewer vertices and polygons. The
raster subsystem will see some load reduction if lower levels of detail use
simpler fill algorithms, however, they will probably still require writing the
same number of pixels. If the system supports it, variable screen resolution
is one way to address fill limitation — though this is traditionally only
available on high-end image generators. Another trick is to aggressively
scale down LODs as a function of distance so that distant objects are not
drawn. A fog band makes this less noticeable. However, since they will be
small, they may not account for very many pixels. LOD management based
on performance prediction of objects in various stage of the graphics pipe-
line[Funk93] can aid in choosing appropriate levels of detail. Since the
computation for load management might be somewhat expensive (calculat-
ing distances, averages over previous frames, etc.) it is best done in some
process other than the rendering process.

Entertainment applications typically have multiple viewpoints that must be
rendered and may require multiple graphics systems. If it is desired that
these channels display synchronously, then the graphics output must be
synchronized, as well as the host applications driving them. There is typi-
cally some mechanism to synchronize multiple video signals. However,
double-buffered machines must swap buffers during the same video refresh
period. This can be done reasonably well from the front end via a high-
speed network such as SCRAMnet, as was done in the CAVE environ-
ment[CN93], or with special external signals, as is done on the Reality-
EngineTM.

Load Management

Multiple Machines
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9   Tuning Tools

The proper tuning tools are necessary to simply evaluate an application’s
performance, let alone tune it. This section describes both diagnostics that
you might build into your application, and some tools that the author has
found to be useful in the past.

Graphics Tuning Tools

A couple of standard tools for debugging and tuning graphics applications
found to be useful on Silicon Graphics machines are GLdebug and GLprof,
described in detail in [GLPTT92]. GLdebug is a tracing tool that allows you
to trace the graphics calls of an application. This is quite useful because
most performance bugs, such as sending down redundant normals or draw-
ing things twice, have no obvious visual cue. The tool can also generate C
code that can be used (with some massaging) to write a benchmark for the
scene. GLprof is a graphics execution proffer that collects statistics for a
scene and can also simulate the graphics pipeline and display pipeline bot-
tlenecks (host, transform, geometry, scan-conversion, and fill) over the
course of a frame. The GLprof statistics include counts for triangles in dif-
ferent modes, mode changes, matrix transformations, and also the number
of polygons of different sizes in different fill modes.

System Tuning Tools

Some of the tools in the standard UNIX environment are also very useful.
prof, a general profiler which does run-time sampling of program execu-
tion, allows you to find hot spots of execution.

Silicon Graphics provides some additional tools to help with system and
real-time tuning. pixie is an extension to prof and does basic block count-
ing and supports simulation of different target CPUs. par is a useful system
tool that allows you to trace system and scheduling activity. Silicon Graph-
ics machines also have a general system monitoring tool, osview, that
allows you to externally monitor detailed system activity, including CPU
load, CPU time spent in user code, interrupts, and the OS, virtual memory
operations, graphics system operations, system calls, network activity, and
more.

For more detailed performance monitoring of individual applications, Sili-
con Graphics provides a product called WorkShop that is part of the
CASEVisionTM tools which is a full environment for sophisticated multi-
process debugging or tuning[CASE94]. For monitoring of real-time perfor-
mance of multiprocessed applications, there is the WindView™ for IRIX
product based on the WindView™ product from WindRiver. WindView
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works with IRIX REACT to monitor use of synchronization primitives,
context switching, waiting on system resources, and tracks user-defined
events with time-stamps. The results are displayed in a clear graphical
form. Additionally, there is the Performance Co-Pilot™ product from Sili-
con Graphics that can be used for full-system real-time performance analy-
sis and tuning.

Real-Time Diagnostics

The most valuable tools may be the ones you write yourself as it is terribly
difficult for outside tools to non-invasively evaluate a real-time application.
Real-time diagnostics built into the application are useful for debugging,
tuning, and even load-management. There are four main types of statistics:
system statistics, process timing statistics, statistics on traversal operations,
and statistics on frame geometry.

Applications should be self-profiling in real-time.

System statistics include host processor load, graphics utilization, time
spent in system code, virtual memory operations, etc. The operating system
should allow you to enable monitoring and periodic querying of these types
of statistics.

Process time-stamps are taken by the processes themselves at the start and
end of important operations. It is tremendously useful to keep time-stamps
over several frames and then display the results as timing bars relative to
frame boundaries. This allows one to monitor the timing behavior of differ-
ent processes in real-time as the system runs. By examining the timing his-
tory, one can keep track of the average time each task takes for a frame, and
can also detect if any task ever extends past a frame boundary. The stan-
dard deviation of task times will show the stability of the system. Process
timing statistics from IRIS PerformerTM are shown in Figure 16. Geometry
statistics can keep track of the number of polygons in a frame, the ratio of
polygons to leaf nodes in the database, frequency of mode changes, and
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average triangle mesh lengths. IRIS PerformerTM displays a histogram of
tmesh lengths, shown in the statistics above in Figure 16.

FIGURE 16. Process and Database Statistics

Traversal and geometry statistics do not need to be real-time, and may
actually slow traversal operations. Therefore, they should only be enabled
selectively while tuning the traversals and database. Traversal statistics can
keep track of the number of different types of nodes traversed, the number
of different types of operations performed, and perhaps statistics on their
results. The culling traversal should keep track of the number of nodes tra-
versed vs. the number that are trivially rejected as being completely outside
the viewing frustum. A high number of trivial rejections means that the
database is not spatially well organized because the travsersal should not
have to examine many of those nodes.

Additionally, IRIS PerformerTM supports the display of depth complexity,
where the scene is painted according to how many times pixels are
touched.The painted framebuffer is then read back to the host for analysis
of depth complexity. This display is comfortably interactive on a VGXTM or
RealityEngineTM due to special hardware support for logical operations and
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stenciling. Thus, you can actually drive through your database and examine
depth complexity in real-time.

FIGURE 17. Pixel Depth Complexity Profile

10   Conclusion

Graphics workstations offer a wide array of options for balancing cost, per-
formance, and image quality. Rich development environments plus real-
time image-generator features like texture mapping and full scene anti-
aliasing make graphics workstations attractive platforms for both the
development and deployment of entertainment applications. Understanding
the target graphics architecture and designing for performance will enable
you to get the scene quality and performance you paid for.
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Abstract

This paper describes the new breed of consumer class 3D graphics accelerators
now becoming available on the PC platform to accelerate mainstream, or per-
vasive 3D applications from games to web browsers. Aimed at game develop-
ers, this paper highlights the typical feature sets and performance
characteristics of these new accelerators and discusses some of the issues
involved in fully exploiting them. This paper will also be of interest to anyone
wanting to come up to speed on this new class of accelerator.

1   Introductioni

This year, 1996, sees the arrival of a new class of PC video accelerator; the
consumer class 3D and multimedia accelerator. While 3D acceleration has
been available for some time on PC’s, it has generally been targeted at the pro-
fessional CAD and simulation markets.

The latest generation of low cost 3D accelerators are being aimed at the enter-
tainment and pervasive multimedia markets on PC’s and are being enabled by
strong 3D API support under Windows95 from Direct3D[DirectX] and
OpenGL[OGL1/2]. One of the significant motivations for this market has been

i.  All trademarks acknowledged.
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to enable ‘console class’ games on the PC. The latest game consoles, e.g. the
Sony PlayStation and Nintendo64 all have dedicated 3D acceleration hard-
ware, and with the advent of PC based 3D accelerators the PC is now able to
deliver the performance necessary performance to create similarly compelling
3D experiences.

This tutorial attempts to describe, in some detail, the architecture, features and
performance of a typical system and some of the keys to fully exploiting it. In
this discussion I’m remaining API neutral and concentrating on generic 3D
accelerator features and system functionality, parts of which are not always
supported by all API’s. Taking this approach can give a better insight into the
technology, leading to better use of the higher level API’s.

After reading this paper you should have a clear understanding of what con-
sumer class 3D hardware acceleration on the PC is capable of, and have a feel
for the trade-offs involved in fully exploiting the features and performance of
these systems.

2   Hardware: Overview

The Geometry Pipe

At the risk of treading well worn ground, the standard 3D graphics geometry
pipe [Foley90], consists of the following stages:

• Database Traversal - Deciding what objects to display in the current
scene.

• Modelling Transforms - Placing the objects in the scene.

• Lighting - Lighting and coloring objects appropriate to the environment.

• View Transforms - Placing the virtual camera in the scene.

• View Volume Clipping - Restricting the primitives to the current view.

• Homogeneous Division - Mapping the scene onto the 2D viewing plane.

• Primitive Assembly - Constructing the rendered primitives.

• Setup Calculations - Evaluation of the parameters required for rasteriza-
tion.

• Rasterization (Scan Conversion) - Painting the pixels on the screen.

Consumer level PC 3D accelerators target the lower end of the pipeline, as this
tends to be where the main system bottlenecks occur:
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• Primitive Assembly - This is the process of constructing primitives from
a stream of vertices processed by the higher levels of the geometry pipe.
Full support for primitive assembly is essential in hardware accelerators
which perform setup calculations because it allows advantage to be taken
of meshed primitives such as triangle strips and fans which share vertex
data. Shared vertex data in meshed primitives is an effective way to
reduce the amount of data required to draw primitives, and thus reduce
bus traffic - which, as shown later, can be a bottleneck in some rendering
situations. Backface culling and screen clipping can also be implemented
at this stage where necessary.

• Setup Calculation - This stage calculates the parameters required by the
rasterizer to interpolate color and texture values over a primitive. As well
as being a computationally intensive task it handles conversions from
floating point to fixed point representation.

• Rasterization - This is the stage at which pixels are generated, and effects
such as shading, texturing and fogging are applied.

Alternative Architectures

A number of different approaches to providing cost effective 3D on the PC are
possible. This section identifies the three main areas of technology currently
seen.

Cost Engineered Workstation Technology

This class of system has its heritage in workstation 3D graphics. It is typified
by having a rich and mature 3D feature set, broad API support and fully inte-
grated GUI and video playback capabilities, it is typified by 3Dlabs’ PERME-
DIA [PERMEDIA] and GLINT Delta[Delta] class accelerators.

Novel New Techniques

These systems use novel methods to reduce the cost of providing 3D or add
extra functionality and quality. Whilst offering impressive proprietary 3D solu-
tions they tend to have eclectic feature sets and often limited support for stan-
dard API’s and 2D.

2D GUI Transitional (FreeD)

These systems offer limited 3D functionality bolted-on to an existing 2D chip.
These often suffer from patchy 3D API support and fail to perform better then
fast software 3D solutions. They do however deliver good 2D GUI perfor-
mance.

The rest of this document describes the features and performance of consumer
class accelerators based on the first group identified above, those based around
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architectures found in the workstation world. Because these systems have
broad API support, are based on sound architectures, and have a well known
pedigree, they are likely to become the most widely adopted.

3   Hardware: Performance

This section is intended to give a feel for the performance levels achievable
from consumer class PC acceleration and the performance characteristics of
these systems. First common terms used in real-time graphics to measure the
complexity of a scene are described, along with the key performance figures
quoted by hardware vendors. Finally the performance characteristics of these
systems are discussed.

To give this section a grounding in reality, performance figures quoted are from
the 3Dlabs PERMEDIA chipi.

Performance: Metrics

Three standard measures of graphical complexity are encountered in real-time
programming:

• Scene Complexity, which refers to the number of polygons wholly or
partially visible in the viewing volume per frame. This number is typi-
cally significantly lower than the total number of polygons in the data-
base.

• Depth Complexity, referring to the number times a pixel is drawn per
frame. This is very dependent on the type of game and figures can range
from less than 1.0 to greater than 5.0.

• Pixel Complexity, a measure of the number of graphical effects applied to
a pixel. Unlike depth complexity and scene complexity this is a qualita-
tive measure. A pixel with high complexity would be one with depth test-
ing, blending, texturing and fogging applied, whereas a flat shaded non
depth buffered pixel would have a low pixel complexity.

These metrics allow meaningful estimates of system performance to be made,
as well as comparisons between different systems to be performed reliably.

i.  PERMEDIA performance figures are based on chip.   While every care has been taken in the prepara-
tion of performance figures in this document, 3Dlabs accepts no liability for any consequences of their
use. 3Dlabs products are under continual improvement and 3Dlabs reserve the right to change specifica-
tions without notice. Contact 3Dlabs for the most current information.
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Performance: Figures

Performance figures fall into two areas; fill rates and primitive throughput.
Primitive throughput limits the number of primitives the system can handle in
unit time, and is typically measured in thousands of triangles per second ktps.
Fill rate describes the maximum rate at which pixels can be drawn with various
pixel complexities, typically measured in millions of pixels per second, com-
monly referred to simply as MPixels.

Primitive Throughput

Primitive throughput is sensitive to both pixel complexity and host perfor-
mance.

The following figures assume an infinitely powerful host to perform the setup
calculations.

TABLE 1. PERMEDIA Primitive Throughput Rates 25 and 50 Pixel Triangles

These figures can give a good idea of the peak performance levels achievable,
they are however not a sound basis to make good estimates of game perfor-
mance. Game level benchmarks, as described on page  3-7, give a much better
feel for realistic performance by taking into account possible asynchronous
processing between the host and accelerator as well as other host loading,
including geometry, lighting and game mechanics.

Primitive throughput is sensitive to host performance so running benchmarks
on a range of hosts systems can highlight areas which may later become bottle-
necks.

Pixel Fill Rates

Pixel fill rates are typically very sensitive to pixel complexity but relatively
insensitive to host performance. Fill rates of interest are:

• Flat shaded, non depth buffered. This is the lowest pixel complexity and
is of interest to see the fastest fill rate an accelerator can achieve. In sys-
tems with VRAM, SGRAM etc., this figure can be very high when block
filling is used. In some systems additional per-pixel effects can be applied
while maintaining very high fill rates, for example stipple testing. This

a.  Screen resolution 640x480, 16bpp, 16bit depth.

Primitive Typea 25 Pixel Triangles (ktps) 50 Pixel (ktps)

Gouraud 600 350

Gouraud, Depth 350 250

Gouraud, Texture 500 300

Gouraud, Texture, Depth 300 200
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type of information is critical to getting the most out of an accelerator,
and can be sometimes be gleaned from documentation, sometimes from
benchmarking.

• Gouraud shaded, non depth buffered. This should be tested in Ramp and
RGB color modes which can give an interesting insight into the architec-
ture of the chip.

• Textured, non depth buffered. This figure is sensitive to various texture
options enabled, as well as the properties of the actual mapping (i.e. if the
texture is being minified or magnified, if perspective correction is
enabled, etc.). It is sometimes quoted in MTexels rather than MPixels to
emphasise that it’s a texture mapping rate. For games which do not use
depth buffering this is the key fill rate figure.

• Textured, depth buffered (pass and fail). Two figures are of interest in the
case of depth buffered rendering, the rate at which pixels are plotted
when the depth test passes (entailing a read and write of the depth buffer)
and secondly, the rate at which pixels can be rejected when failing the
depth test. Often a system is designed to perform the depth test before
other potentially expensive operations such as texture mapping, so the
depth fail performance can be significantly higher than the depth pass
performancei. If this is the case the game can be structured to take advan-
tage of it as described in “Early Depth Testing” on page 3-21

TABLE 2. PERMEDIA Fill Rate Figures

Using these figures it’s possible to make ballpark estimates of performance
levels achievable on an accelerator. The following table uses these figures to

i.  Some systems can perform deferred shading, that is, only doing full pixel processing for pixels which
are known to be visible. This is the equivalent of depth buffered rendering in strictly front to back order,
as described in  “Depth Buffered Hidden Surface Removal” on page 3-21.

a. Screen resolution 640x480, 16bpp, 16bit depth.

Pixel Complexitya Pixel Fill Rate (MPixels) Notes

Flat Shaded, No Depth 1600 Block Fill

Flat Shaded, No Depth 50 No Block Fill

Gouraud Shaded, No Depth 25 Single Interpolant (8bpp)

Gouraud Shaded, No Depth 25 RGB Interpolants

Texture, No Depth 25 Fastest Texture Mode

Texture, Depth (Win) 16.6 Depth Read and Write

Texture, Depth (Lose) 25 Depth Read
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show frame rates for a pixel fill rate of 25MPixels for a number of screen reso-
lutions and depth complexities.

TABLE 3. Frame Rate and Depth Complexity for 25MPixel Fill Rate

This is a relatively crude estimate, ignoring everything except fill rate, how-
ever these figures can be useful at the feasibility stage of a project to identify
target screen resolutions.

Game Level Benchmarks

In an ideal world turning on extra features on an accelerator would have no
impact on performance - however this is rarely the case in practice! Trade-offs
between cost and performance must be made during the implementation of any
feature, for example many effects can be implemented in a serial or parallel
manner, serial often being cost effective, parallel providing highest perfor-
mance. This type of trade-off can lead to unexpected performance hiccups
when some combinations of features are used, making performance predicting
difficult.

As soon as possible in a project’s development game level benchmarks should
be used to measure performance. These should include realistic databases and
non graphics related CPU loading, game mechanics, sound, user input etc.,
and, critically, be repeatable. At this stage benchmark figures can become
game specific and qualitative, measured in monsters per second or simply
“Wow this plays well”. As soon as this type of benchmark is available it allows
database designers and modellers to get real feedback and start to tune the sys-
tem. It also allows potential system bottlenecks to be identified early.

Performance: Hardware vs. Software

Although well designed 3D hardware typically gives significant improvements
in graphics performance over software, in some cases the improvements can be
much less and occasionally fast software can go faster than hardware.

a.  Assuming zero cost double buffering.

Screen Resolution Depth Complexity Frame Ratea (Hz)

320x240 1.5 217

320s240 2.5 130

512s384 1.5 84

512s384 2.5 50

640x400 1.5 65

640x400 2.5 40

640x480 1.5 54

640x480 2.5 32
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There is an overhead involved in passing data to the accelerator and perfor-
mance for small primitives can be very sensitive to the amount of data needed
by the hardware to describe the primitive. If, for example, a primitive only
covers a few pixels, and a dozen parameters must be passed to the hardware to
describe the primitive, then it can be slower to pass the parameters to the hard-
ware than for a software rasterizer to render them. If this is sustained for a large
number of primitives in a scene then the hardware is being poorly utilised.

Figure 1 (below) shows performance curves of Pixels per Triangle vs. Fill Rate
for software, and hardware (with and without setup processing).

FIGURE 1. Hardware vs. Software Fill Rates

This curve identifies the area in which software can render pixels faster than
hardware (without triangle setup) because less pixels are being plotted than
data being transferred to the accelerator to describe the primitive. Hardware
with setup processing requires less data to describe a primitive, and removes a
significant amount of processing (slope calculations and floating to fixed con-
version) and will usually beat software in all cases.
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Figure 2 shows for small triangles the primitive throughput is sensitive to the
amount of data transferred to the accelerator, even though the fill rates are
identical.

FIGURE 2. Fill Rate And Pixel Complexity

The slope of the curve is sensitive to the amount of data needed to draw the
primitive:

• Texture (Copy Mode) requires two interpolantsi for the texture coordi-
nates (or three for perspective correct).

• Gouraud (RGB) requires three interpolants, one for each color compo-
nent.

• Texture (Modulate) requires five interpolants, two texture coordinates,
three color components

This graph gives a feel for the characteristic primitive throughput of a typical
accelerator. As the triangle size gets larger the fill rate approaches the maxi-
mum. For small primitives however the gradient of the curve is high and per-
formance varies greatly for small changes in polygon size and pixel
complexity.

i.  Interpolants are the values interpolated over a primitive, and include, color, depth, fog, texture, etc. To
interpolate a value over the primitive 3 different values are required per interpolant, delta (or gradient)
values in the x direction and along the edge of the primitive, and a start value. This is in addition to the
data required to describe the geometry of the primitive itself, typically in the order of 20 words of data are
required to render an RGB depth buffered triangle in a system without setup support.

0

5

10

15

20

25

30

… … … … … …

Pixels per triangle

T
ex

tu
re

 m
ap

pe
d 

fi
ll 

ra
te

 (1
6-

bi
t M

pi
xe

Texture Copy Mode

Gouraud Shaded

Texture Modulate



Hardware: Features

4-10 SIGGRAPH ’96 Course  —  Designing Real-Time 3D Graphics for Entertainment

In figures 1 and 2 you should always aim to work in the area of the curves were
the highest fill rate is achieved. If your database lies on the first part of the
curve you are not fully utilizing the hardware, and performance becomes
erratic because small changes in primitive size and complexity can result in
large changes in performance.

The moral of the story is that you must leverage work onto the accelerator to
fully exploit its performance and quality improvements. This means that you
should be biased towards using large polygons (trying to sustain peak fill rates)
and adding complexity to a scenes via per-pixel effects (such as fogging) rather
than adding geometry. This is less true for systems which support setup in
hardware.

4   Hardware: Features

This section describes some of the features found on a typical accelerator along
with some discussion of the performance issues involved in using them.

Color Modes

Ramp Mode (Color Index) Rendering

Ramp mode rendering uses a single color interpolant in conjunction with a
fixed palette, typically with 256 entries (8 bit). Ramp mode rendering is com-
putationally efficient but suffers from a number of limitations:

• High quality effects such as filtering and fogging are difficult to perform
with a fixed palette. Great care has to be taken in constructing palettes to
allow these effects to work properly.

• The limited number of palette entries can soon become exhausted when
many textures are required in conjunction with lighting, fogging, etc.

One advantage of ramp mode rendering over RGB rendering is that because
the palette is constructed by hand, it can be optimised to suit the game. Con-
verting an optimised 256 entry palette into equivalent 8 bit RGB colors gener-
ally looses color fidelity. Typically a 16 bit RGB mode must be used to
maintain color fidelity - thus doubling the required frame buffer memory.

Note also, that Direct3D supports accelerated rendering in RGB color space
only - ramp mode rendering is performed in software.

RGB Mode Rendering

Support for RGB is one of the big advances in quality enabled by hardware
accelerated 3D. Rendering in RGB color space makes performing operations
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on color values a well defined and simple operation - at the cost of additional
computational load (three color components instead of one). Most accelerators
will handle the three color components in parallel at no per-pixel cost - this
should be verified through benchmarking though.

RGB color depths supported are typically 8bit (3bits red, 3bits green and 2bits
blue), and 16bit (5bits red, 6bits green and 5bits blue). Dithering is essential
for RGB rendering at low color resolutions and should be available at no cost.

Performance Considerations: The extra color interpolants required for RGB

rendering can cause extra host and accelerator loading. For example gouraud

shading in RGB mode requires three interpolants, in ramp mode it requires

only one. Flat shading requires no color interpolants and can often be per-

formed at very high speed (see Table 2).

Texture Mapping

High performance texture mapping is a key enabler to allow console class
games on PC’s. The following sections describe the kind of features available
and performance considerations to bear in mind when using them.

Texture Formats

Textures can generally be supplied in a variety of formats to allow trade-offs to
be made between color fidelity and memory usage. RGB textures should be
available in 8, 16 and 24 bit formats.

Palette Textures (Compressed Textures)

Palette textures add a level of indirection into the process of mapping texel val-
ues to RGB colors. Rather than a texel representing a color, it represents an
index into a palette of colors. Two benefits arise from this indirection. Firstly it
achieves a degree of memory compression, and secondly, the indexed colors
are typically of high color resolution.

Supported table sizes typically include 2,4,8,16 and 256 entries, 16 entry (4
bit) has been found in practice to offer the best compromise between compres-
sion and fidelity for many textures.

Eight bit palette textures provide an excellent mechanism for porting games
based on ramp mode rendering to an RGB system. The texture palette is set to
the ramp palette and the frame buffer is set to RGB mode. This allows rapid
porting of an existing game and allows hardware features such as fogging and
filtering to be added trivially. Significantly, it also means that the original art-
work can be used

Performance Considerations: Because palette textures have a small memory

foot print they can have a very good cacheing behaviour. Check if the texture
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palette is stored in memory or locally on the hardware. The latter is the most

efficient.

Application Modes

Texture application modes define how texels read from the texture map are
transformed into pixel colors (after any palette indirection). Typical modes
either simply replace the pixel color with the texel color (copy mode) or com-
bine (modulate) the texel color with the pixel color, which can originate from
flat or gouraud shading:

Copy Mode: C(r,g,b)= T(r,g,b)

Modulate Mode: C(r,g,b) = P(r,g,b) * T(r,g,b)

C(r,g,b) is the pixel color after texture application.

T(r,g,b) is the texel color

P(r,g,b) is the pixel color before texture application

Performance Considerations: The primitive throughput and fill rates of these

combinations should be measured (in conjunction with any other effects that

are required, e.g. fogging). The fill rates can be sensitive to particular combi-

nations of modes, and the primitive rate is sensitive to the number of interpo-

lants required, especially if the texture is being modulated with a base polygon

color, see Figure 2. Typically copy mode texturing will, in practice, be faster

than modulate because modulate requires additional color information.

Using pre-lit textures can be a simple way to add environmental effects to a
scene while using copy mode textures.

Wrapping Modes

The behavior of a texture at it’s boundaries is defined by texture wrap modes.
Three modes are typically supported; repeat, mirror and clamp. Repeat and
mirror modes allow textures to be tiled across large areas, clamp mode, as it’s
name implies, causes a texture to be clamped on a surface without any repeat.
Wrap modes are typically controllable independently in each dimension.

Repeat and mirror modes are effective ways to add texturing to a scene without
excessive use of texture memory.

Bi-Linear Filtering

Software rasterizers typically point-sample textures, that is, the nearest texel to
the texture sample location is selected for display. Texture filtering attempts to
produce a higher quality image by performing a weighted average of four adja-
cent texels. The additional texture accesses required to perform texture filtering
make it difficult to implement efficiently in software. It is however amenable to
hardware acceleration.
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The visual effect of bi-linear texture filtering is to reduce the pixelated effect
visible on higher magnified point sampled textures.

Performance Considerations: The performance of filtering operations can be

sensitive to the ratio of texel size to pixel size, i.e., if the texture is minified or

magnified. Magnification can make effective use of textures caches whereas

minification can reduce cache efficiency. If this is the case then filtering can be

enabled/disabled based on the zoom factor.

Mip-Mapping

Mip-mapping performs level of detail (LOD) management of textures based on
the ratio of the projected areas of screen pixels and texels. This serves to
reduce sampling errors and improve visual quality. Several copies of the tex-
ture are stored at different resolutions and in the texel selection process texels
are selected from the map which produces the least distortion in the texel/pixel
mapping. This map selection can be made on a per primitive or per-pixel basis.

Mip-mapping has a number of different texel selection possibilities:

• Nearest map, Nearest texel; in this mode the mip-map nearest to the
required resolution is selected and the nearest texel to the required sam-
ple point is selected.

• Nearest map, Linear texel; in this case the nearest map is picked and a bi-
linear filtering operation is used to generate a texture color.

• Linear map, Nearest texel; the two nearest mip-maps are selected, texels
are selected from each map without filtering are combined in as a linear
combination.

• Linear map, Linear texel; the works, linear on and between maps, com-
monly referred to as tri-linear filtering.

These are roughly in order of increasing costi.

Performance Considerations: The additional lower resolution maps required

for mip-mapping can use up precious texture memory (33% extra texture mem-

ory is required). An extra interpolant, the LOD parameter must also be calcu-

lated and interpolated in order to select the appropriate map. Often when

texture memory is scarce a reasonable approximation to mip-mapping can be

performed in the game domain. This typically uses two textures (a high resolu-

tion texture and low resolution, low frequency texture) with map selection

i.  Most accelerators use ‘inverse’ texture mapping, that is texture coordinates are interpolated in screen
space and the mapping ‘back’ to texture space is performed to locate the appropriate texel in the texture
map. Some systems use ‘forward’ mapping, that is, the texture is parsed in texture space and the corre-
sponding pixels in screen space are located.   Mip mapping can actually increase the performance of for-
ward texture mapping which can be dependent on the size the texture being rendered.
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being performed on the host on a per primitive basis. This technique gives

many of the benefits of mip-mapping without requiring explicit mip-mapping

support.

Perspective Correction

Perspective correction enables rasterized parameters to be interpolated linearly
in screen space (i.e. cheaply) even though the mapping from 3D space to
screen space is a non-linear one. Although this distortion is present in all inter-
polated parameters (e.g. color components, fog, etc.) it is most noticeable on
texture mapped primitives which can contain high frequencies.

Perspective correction adds most value for large polygons near the eye which
suffer the most distortion, often a small percentage of polygons in a typical
scene.

Two techniques commonly used to implement perspective correction are a per
pixel correction, or a subdivision technique (which can be performed at the
primitive or scan-line level). It is useful to consider the two techniques in more
detail (see [Wolberg90] and [Heckbert91] for a thorough discussion).

The main burden of this technique is seen at the per-pixel stage which adds an
extra interpolant and a division per pixel. However, additional host loading is
also seen because two additional multiplies are required per vertex and one
interpolant per primitive.

An alternative technique to remove the perspective distortion by subdividing
primitives until the distortion is reduced to a tolerable level (i.e. a linear
approximation is adequate). One advantage of this technique is that it can be
implemented on a system which does not support per-pixel perspective correc-
tion, or in a system where per-pixel correction is too expensive.

Performance Considerations: Although perspective correct texturing may be

available with no impact to fill rate, the per primitive overhead can be signifi-

cant. The optimum use of perspective correction depends on a specific circum-

stances, e.g. if you are fill or geometry limited. Generally small primitives are

the most inefficient to renderer perspective correct, and gain the least by it, and

correction should be disabled for these primitives if possible. Perspective cor-

rection is also an appropriate candidate for LOD management.

Local Textures

Local texture storage refers to textures which are stored in the same address
space as the frame and depth buffers. This type of storage makes resource allo-
cation straightforward and allows trade-offs between screen, texture and
depths resolutions to be made easily. However, it also allows a number of

Rational Interpolation

Primitive Subdivision
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effects which are difficult to achieve with other memory architectures, includ-
ing:

• Antialiasing: Full scene antialiasing can be performed by rendering a
scene at a high resolution and then using texture filtering to average into
a lower resolution display buffer.

• Rendered textures: In a similar vein, textures can be created through ren-
dering operations. For example, a reflection in a mirror can be created by
rendering the scene to create the mirror view, then using this image as a
texture to apply to the polygons representing the mirror. Although this is
possible without support for local textures, the overhead of copying the
rendered image into texture memory can make the scheme impractical
for real-time use.

• Scaled rendering: By rendering at a lower resolution than the final dis-
play and zooming to it via a texture operation, back buffer memory can
be saved, at the cost of a more expensive buffer swap operation.

Depth Buffering

Depth buffering is an essential feature required to support pervasive 3D appli-
cations and is becoming more important in the game world as the complexity
of game environments increasesi. Direct3D is optimized for depth buffered
rendering.

Depth buffering tests a pixels depth value against the current value in the depth
buffer. If the tests passes, the value in the depth buffer is updated with the pix-
els depth value, if the test fails, the pixel is discarded and the depth buffer is
left unchanged. The sense of the test is controlled by the depth test function.
The depth test function is typically one of the following; Never, Less, Equal,
Less or Equal, Greater, Greater or Equal, Not Equal, or Always. Although the
number of depth functions may seem excessive, they can be used to great
effect, as described in “Depth Buffered Hidden Surface Removal” on page 3-
21.

A depth buffer of 16 bits is sufficient for most games. Deeper buffers mean
additional input precision is required to fully utilize them and this is generally
not justified in the consumer market. Although depth buffering makes hidden
surface removal a trivial operation, it comes at the price of extra memory
usage, a 16bit depth buffer at a 640x480 resolution takes 0.6MB of memory (or
alternatively eighteen 256x256 four bit index textures) - see Table 4 below.

i.  Id Software’s Quake uses depth buffering.
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The section “Hidden Surface Removal” on page 3-21 discusses some of the
issues involved in hidden surface removal and compares depth buffered ren-
dering and depth priority (sorted) rendering.

Performance Considerations: Depth buffering requires an additional interpo-

lant to be calculated and transferred to the accelerator as well as the memory

required for the buffer itself. The depth buffer must also be cleared before

starting to render a new frame (this can be avoided in some circumstances, see

“Buffer Clearing” on page 3-22) and this must be factored into depth com-

plexity calculations. If clearing the depth buffer is required it can often be hid-

den under other activities such as waiting for frame blank during double

buffering, however this may not always be possible. Triple buffering attempts

to do useful work during this potentially idle period and is described in “Dou-

ble and Triple Buffering” on page 3-27.

Special Effects

One key requirement to exploiting rasterization acceleration is to leverage as
much work as possible onto the accelerator. This is made practical when high
quality per-pixel effects are available in hardware. To this end ‘special effects’
can be the key to fully exploiting hardware acceleration, by allowing scene
complexity to be replaced by pixel complexity.

Fogging

Fogging is the process of blending a pixel color with an arbitrary user supplied
color to model atmospheric and special effects. In high quality systems the fog
will be added in a linear interpolation operation on a per-pixel basis:

C(r,g,b) = f*P(r,g,b) + (1-f) F(r,g,b)

C(r,g,b) is the pixel color after fog application

P(r,g,b) is the pixel color after fog application

F(r,g,b) is the fogging color

f is the fog index

The fog index value is sometimes linked to the depth value, but is most flexibly
supplied as an extra interpolant.

An example of the aggressive use of fog would be to clear the background of
the scene to the fog color (using a high fill rate mode) and setting the far clip-
ping plane to coincide with the fog color and render a scene with a depth com-
plexity of less than 1.0. Pulling the far clipping plane forward in this scenario,
while keeping it coincident with the fogging color, is an effective way to
reduce scene complexity by leveraging work onto the hardware.
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Fogging can also serve to reduce the ‘popping’ sometimes associated with
level of detail management ( “Level of Detail Management” on page 3-24.)
changes by performing transitions in partially fogged regions.

Performance Considerations: Benchmarks for fogged fill rates are essential to

see if fogging can be utilised to full effect, ideally adding fogging to a scene

should have no impact on the fill rate.

Transparency

Transparency can be accomplished using a screen-door technique or through a
blending operation.

Screen-door transparency works by rejecting a percentage of the pixels in a
primitive. The degree of transparency being the ratio of retained to rejected
pixels. The rejection is based on a user supplied pattern (or a fixed internally
generated pattern) and is fixed relative to window coordinates. This means that
with appropriately designed patterns transparency can be achieved without the
need to sort polygons.

Performance Considerations: Because the pixel rejection can take place high

in the pixel processing path it can significantly effect fill rates - it can be useful

to measure the fill rate when all pixels are being rejected to get an idea of the

win. In some systems stipple testing can be combined with very fast flat shaded

performance to allow shadows and transparent effects to be achieved at very

high speeds.

Blended transparency produces higher quality results than screen door trans-
parency but requires the transparent objects to be rendered in back to front
order (even when depth buffering is enabled), as well as requiring a read from
the frame buffer. It works by combining a new pixel color with the value
already in the frame buffer. A typical blend operation is of the formi:

C(r,g,b)=P(r,g,b) * P(a) + D(r,g,b) * (1 - P(a))

C(r,g,b) is the pixel color after blending

P(r,g,b) is the pixel color before blending

P(a) is the pixel alpha(transparency) value

D(r,g,b) is the destination pixel color

Performance Considerations: Because blended transparency requires a read

from the frame buffer to calculate the new blended color it can have a signifi-

cant impact on performance. The blend operation uses requires similar arith-

i.  OpenGL supports a much larger range of blending functions, however many rely on the frame buffer
storing alpha values and this is not commonly the case for low cost solutions.

Screen Door Transparency

(Stipple Testing)

Blended Transparency
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metic to fogging and the same hardware elements are often used to perform

these operations, thus resulting in a performance hit if blending and fogging

are enabled simultaneously.

Lighting Effects

Lighting effects can add significant visual cues to a scene, but are often diffi-
cult to apply using the standard texture modulation mode. To assist the lighting
of textured surfaces some hardware supports additional lighting parameters to
be interpolated with a primitive and combined with the pixel color after texture
application (but before the application of fog).

The most common effect supported is the application of a white specular high-
light to a surface. This is simply an addition operation:

C(r,g,b) = P(r,g,b) + S(m)

C(r,g,b) is the pixel color before specular lighting, but after texture application

P(r,g,b) is the lighting effect after specular lighting

S(m) is the specular index (white light)

Performance Considerations: For a white light a single interpolant is required

whereas colored lights require three interpolants. Texture mapping with a sin-

gle channel of specular lighting is an effective way to add environmental

effects to a scene without the need to interpolate both color and texture chan-

nels.

Video Support

Supporting video is essential for general multimedia acceleration, but this can
also be used to great effect in games for video textures, etc.

YUV Color Space Conversion

The basic support for video is to treat YUV as a native color format and pro-
vide YUV to RGB conversion. If the YUV conversion is fully integrated in the
3D functionality of the chip-set then it can be subject to all the common pixel
processing operations, for example video textures can be depth buffered and
specularly lit.

Chroma Testing

Chroma testing is a pixel rejection test which works by comparing a pixel color
with a reference value, and accepting or rejecting the pixel based on the out-
come of the test. The test is performed independently on all color channels
(RGB and A) and a tolerance is provided for eachi.

i.  Chroma testing using RGBA and tolerance is a superset of the OpenGL Alpha Test.
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Chroma testing can be effective for ‘blue screen’ composition of video foot-
age, but as part of the standard pixel processing path can be utilised to great
effect for cut-out textures and 3D sprites.

Miscellaneous

The following are miscellaneous features which can be of use.

Sub-pixel Accurate Rendering

Sub-pixel accurate rendering is essential to allow the seamless application of
textures to polygon meshes. This process calculates parameter information to a
high precision and samples all parameters at the centre of screen pixels. This
ensures that no stitch marks are created at the join of polygons and that the
shading of primitives is of a consistent high quality.

Performance Considerations: Sub-pixel correction can add an additional load

on the host, and is potentially a candidate for quality/speed trade-offs.

2D Clipping

Generally clipping to the 3D view volume is performed in software as part of
the geometry pipeline, however 2D clipping is often supported in hardware.
Two levels of support are typically available; primitive level and pixel level.
Primitive level clipping modifies primitives to avoid off screen pixels being
generated. Pixel level clipping allows off screen pixels which have been gener-
ated in the rasterizer to be efficiently discarded.

Performance Considerations: For primitives with a large number of pixels off

screen it may be quicker to clip yourself than to use a per pixel clipping

scheme, for small primitives it may be quicker to let the hardware do the rejec-

tion.

Extent Checking

Some accelerators feature the ability, at no cost, to record the rasterized area
over an arbitrary number of primitives. This functionality is especially useful if
it takes into account depth testing (and any other pixel rejection tests). This can
be the basis for implementing depth visibility testing as described in  “Depth
Visibility Testing” on page 3-22.. In the more simple case it can be used to
minimise the area of the screen repaired during clearing and copying (includ-
ing buffer swapping).

Stencil Testing

Stencil testing allows rendering to be limited to a region defined by the stencil
buffer contents, a reference value, and the current stencil test function. This is
most commonly used to mask out arbitrary shaped regions during rendering,
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typically to protect a non-interactive part of the display, for example, a control
panel.

See [OGL1/2] for a thorough discussion of stencil testing along with applica-
tions.

Performance Considerations: The stencil buffer is often packed into the same

area of memory as the depth buffer, in which case, when used in conjunction

with depth buffering, each additional bit of stencil buffer means one less bit of

depth. Generally a one bit stencil buffer is the most useful, leaving fifteen bits

of depth.

High Resolution Timer

Access to a high resolution, low cost timer, can be useful to allow accurate syn-
chronisation of game events. By synchronising this timer with the vertical
refresh period it can be used to aid implementation of a constant frame rate
system.

DMA Mastering

DMA mastering enables the graphics system to suck data out of system mem-
ory leaving the host to do other work. This is a key technique to enable overlap
of work between the host CPU and the graphics system. DMA works best
when the system can batch work up into a series of buffers with roughly equal
graphics loading and operate a scheme which automatically sends buffers to be
processed while freeing exhausted buffers (see below).

Performance Considerations: The memory required for DMA operations is

special in that it must be physically contiguous, which ‘vanilla’ virtual memory

may not be. This requirement often means that data must be copied into a DMA

buffer before a DMA operation can take place. In some cases the cost of this

copy operation can outweigh the benefits of DMA.

Interrupt Services

Interrupt services can be used to increase the overlap of work between the host
and graphics system. The following two interrupt services are most useful:

• DMA Complete: This interrupt signifies that a DMA operation mastered
by the graphics system is complete and another can be started. This is
best implemented by keeping DMA buffers in a circular list simply add-
ing and re-filling buffers as required. To get the best out of this system
the game must try to load the buffers with roughly equivalent amounts of
work to get a reasonable overlap.
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• Vertical Retrace: This interrupt is generated when the vertical blank
period begins and operations can be performed in the front buffer without
being visible. Ideally this interrupt should be able to be placed on an arbi-
trary line of the display, this can be tuned so that the cost of actually ser-
vicing the interrupt can be taken into account. As well as being used to
indicate when to swap buffers in a double buffered system, the interrupt
is useful to the game because it indicates that rendering into the back
buffer can now commence.

5   Hardware: System Issues

This section describes some high level issues which should be considered
when porting or designing games for 3D accelerators. Some of these issues are
naturally specific to particular accelerators, however they are typical of the
considerations which need to be made to get peak performance out of a system.

Hidden Surface Removal

Two methods of hidden surface removal are typically available; hardware
depth buffering and depth priority rendering. The decision to use one or the
other depends on the game and the accelerator.

Depth Buffered Hidden Surface Removal

Depth buffering fits into the philosophy of leveraging work onto the accelera-
tor, however, the use of a depth buffer is probably one of the most significant
decisions in architecting a game and needs careful consideration. The cost of
depth buffering in terms of memory usage is shown in Table 4, and in terms of
fill rates it is seen in Table 2. This section attempts to describe some of the
advantages and disadvantages of depth buffering. See also [Akeley] for some
interesting uses of the depth buffer and a discussion of depth precision.

Depth testing can often be done early in the pixel processing path, this can
avoid costly per-pixel effects (high quality filtering, fogging etc.) being applied
to a pixel which will fail the depth test. This means that the depth pass fill rate
in Table 2 is effectively a worst case figure, in practice the fill rate will be
somewhere between the pass and fail rates. Careful design can maximise the
number of depth fails in a scene to increase performance, as described in the
next section.

In some cases depth testing cannot be performed early. This situation occurs if
a pixel rejection operation takes place based on the result of per-pixel opera-
tions, e.g., chroma or fog testing. In this case, if the pixel were rejected after
the depth test was performed it would leave the incorrect value in the depth

Early Depth Testing
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buffer. This emphasises the need to measure fill rates for the exact set of primi-
tives and modes used in the final game to avoid any unexpected dips in perfor-
mance.

One advantage of depth buffered rendering is that objects can be rendered in
any order. This can be exploited in a number of ways:

• Depth priority rendering requires objects in a scene to be rendered in
back to front order. That is, the objects closest to the viewer, potentially
the most important in a scene, are rendered last. If the game is trying to
maintain a constant frame rate by adjusting the graphic load in a scene
then the most important objects in a scene may be forced to have lowest
detail while objects in the background have high detail. Using a depth
buffer means that objects can be rendered in order of visual importance,
with foreground objects rendered first. Using this technique objects in the
background can have detail lowered or be skipped completely to main-
tain a constant frame rate without large visual anomalies.

• Advantage can be taken of early depth testing by rendering objects in
roughly front to back order to maximise the number of depth failures.

• If objects contain expensive state changes then rendering order can be
based on grouping primitives with like state together. For example, if
changing textures is an expensive operation then all the primitives which
share the same texture can be batched and rendered together.

In depth buffered games which update each pixel in every frame the cost of
clearing the depth buffer can be avoided. This involves sacrificing one bit of
depth buffer precision to effectively split the depth buffer in two halves. Alter-
nate frames are rendered into each half of the buffer, and by manipulating the
depth test function and the mapping of depth coordinates to depth values, it can
be guaranteed that each pixel rendered in a new frame always win the depth
test when being compared to values from the previous frame. Thus eliminating
the need to clear the buffer each frame.

This technique is described more fully in[Bigos96].

Often the depth priority of certain elements in a scene is known intrinsically,
for example, “the sky can never obscure the ground”, however these elements
must have correct depth values in the depth buffer to be able to interact with
other more complex elements in the scene. In this scenario the rendering of the
sky can be accelerated by rendering it first and unconditionally writing depth
values into the buffer, thus avoiding a read of the depth buffer (this is done by
setting the depth test function to always, which indicates that no depth read is
required).

Not all objects in a scene need be depth buffered. If for example a complex
object always appears in the foreground of a scene and it can be efficiently ren-

Arbitrary Rendering Order

Buffer Clearing

Unconditional Depth

Updates

Partially Depth Buffering
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dered with a depth priority algorithm such as a BSP tree then no depth buffer-
ing is required. If other objects do interact with this object then it may be
efficient to use a BSP tree to enable strict front to back rendering (as described
above) to fill the depth buffer with correct values with the optimum number of
depth failures.

Depth visibility testing leverages additional viewing volume culling onto the
accelerator. During the culling stage when a bounding volume is found to lie
within the viewing volume the bounding box itself is rasterized into the depth
buffer, keeping track of depth pass/fail results while disabling writes to the
depth buffer. If all the depth tests fail, then no object contained in the bounding
volume can be visible on screen and the bounding box can be rejected. This
technique is described more fully in [Greene93] and [DirectX].

This technique is most effective in scenes with a high depth complexity.

Support for this requires extent checking, as described in  “Extent Checking”
on page 3-19., and the ability to perform depth tests, but disable updates of the
depth buffer (usually available via some form of write mask).

It is possible to perform a two pass rendering operation which produces depth
buffered scenes without the need for a depth buffer. This technique works by
temporarily using the color buffer as a depth buffer. In the first pass the scene is
rendered as normal but the pixel colors are discarded and the frame buffer is
treated as the depth buffer. In the second pass the scene is rendered and the
depth test is used to see if the current pixel has the same depth value as the
value in the depth buffer, if it’s the same, then this pixel is the closest to the
viewer and the color value is placed into the buffer, if the depth value is differ-
ent the color is discarded. One bit of depth and frame buffer resolution is lost in
this scheme to keep track of whether, in the second pass, the buffer contains
depth or color values.

The two-pass nature of this technique means its performance suffers when
compared to having a dedicated depth buffer. The technique also only provides
a ‘less than or equal’ type test, which means that co-planar polygons may not
be treated consistently.

The complexity of hidden surface removal in highly dynamic and complex
environments can be difficult and costly using a depth priority algorithm.

Consider an animated figure with many articulated joints, constructing and
managing the rendering of such a figure can be very difficult using a sorting
algorithm. However depth testing makes the job trivial by allowing simple ball
joints to be used, which makes modelling trivial.

Depth Visibility Testing

Depth Buffering Without a

Depth Buffer

Dynamic and Complex

Environments
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Depth Priority Hidden Surface Removal

With the long list of benefits in using a depth buffer, why would anyone choose
not to use one? Memory, memory and memory! Fill rate, fill rate, fill rate!

Memory Architectures

The most common architecture is one which uses a shared memory space for
frame buffer, local buffer and texture buffer. The following table gives an idea
of the trade-offs involved in selecting screen resolution and depth in a system
with 2MB of installed memory (a base level system) for some common screen
resolutions.

TABLE 4. Memory Allocations on a 2MB System

Clearly depth buffering at high resolutions can significantly impact the texture
memory available.

Hi-Level Optimization

This section briefly describes some techniques to improve graphics perfor-
mance. A more in-depth examination of some of these issues is found in
[Rohlf94].

Primitive Selection

Primitive selection can have a significant impact on performance, benchmark-
ing should be used to ascertain the most efficient primitive to use. Generally
meshed primitives (triangle and quad strips), are the most effective and can
reduce the amount of data sent to the accelerator. Even on systems which sup-
port triangles as the base rendering primitive it’s worth experimenting, some-

a.  Number in parenthesis represent the number of 256x256 four bit index
textures would fit in the free texture space, assuming that the texture palette
is stored on chip.

Screen

Resolution

Colour

Resolution

 (bpp) Buffering

Depth

Buffering

(16bpp)

Texture

Space

(Kb)a

512x384 8 Double No 1700 (48)

512x384 8 Double Yes 1310 (37

512x384 16 Double No 1310 (37)

512x384 16 Double Yes 917 (26)

640x400 16 Double No 1073 (30)

640x400 16 Double Yes 561 (16)

640x480 16 Double No 868 (25)

640x480 16 Double Yes 250 (7)
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times a system can take advantage of the connectivity of the two triangles
forming a quad to reduce the amount of data transferred to the system.

Level of Detail Management

This is a standard technique for trading the visual quality of an object against
its rendering cost based on some ‘importance’ criteria, usually the projected
area of the object on the screen, or its distance from the eye. This technique is
nearly always effective, but be sure to measure the system performance for the
different LOD’s, especially if they contain mode changes. Some state changes
can adversely impact performance causing a ‘fast’ LOD to give little or no
benefiti.

Using LOD management to implement constant frame rate updates is
described in [Funkhouser93].

Remember LOD is also applicable to collision detection and other non graphic
related operations which can be degraded gracefully based on some impor-
tance criteria.

View Volume Culling

View volume culling is another standard technique to reduce the number of
primitives processed in the geometry pipe. This technique will almost always
pay dividends, however some care has to be taken in database design for it to
work most effectively. Consider a rectangular mesh of polygons used to repre-
sent a terrain; this is best represented as a set of smaller rectangular sections for
culling, as opposed to say a series of horizontal/vertical strips whose culling
efficiency will be highly dependent on the viewing direction.

See also “Depth Visibility Testing” on page 3-22..

Model Hierarchies

Effective use of hierarchical descriptions of a database can lead to very effi-
cient culling strategies, allowing large amounts of data to be removed from a
database very quickly.

Database Design

Database design can have a significant effect on performance. Typically the
database designer often has the option of adding visual interest and complexity
to scene by increasing the polygon count or by adding more per pixel effects

i.   An example of this was seen in a system which reduced a polygon model of suspension bridge to a
line model at a low LOD. The environment was fogged but fogged lines had not been optimized, result-
ing in this LOD running slower than a more complex polygon based one!



Hardware: System Issues

4-26 SIGGRAPH ’96 Course  —  Designing Real-Time 3D Graphics for Entertainment

(fog, texture etc.). The former technique tends to reduce the size of polygons in
a scene, the latter tends to increase the size.

Consider building a model of a road with line markings. Possible methods are:

• Use non textured polygons for the road, adding line details by layering
additional polygons onto the base polygon.

• As above but tile the polygons to reduce depth complexity and co-planar
polygons (which can cause problems with both depth buffered and sort-
ing hidden surface algorithms).

• Use textures polygons with a line markings added as texture details.

The first technique has a low pixel complexity but high depth complexity and
may require state changes to change the color of the primitives. The second
technique reduces the depth complexity but increases scene complexity. The
final technique reduces the scene and depth complexities while increasing the
pixel complexity. The most appropriate choice is dependent on the particular
circumstances, however this is a good example of the trade-offs required to
engineer a high quality real-time database. To make the correct decision you
must know if you are likely to be geometry bound or pixel bound, and the real
system performance of the different pixel complexities.

State Shadowing

In large object oriented and modularly structured applications redundant mode
switching is often encountered. This is a result of creating self contained rou-
tines which save and restore state to provide a clean interface to other modules.
A good way to find out if this is a problem is to create a trace of state calls
made and parameters and check for repeated redundant calls. Adding a thin
layer to code to shadow state changes and remove unnecessary ones can some-
times be a big win.

Benchmarking state changes can also be illuminating.

Texture Map Management

Current hardware typically has a fixed amount of local texture memory and
textures must be loaded into this memory before they can be used. A game
may have many more textures than is possible to store in the local texture
memory simultaneously - thus the game programmer is responsible for ensur-
ing all the textures required for a particular frame are present when needed.

Techniques to help manage this include:
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• Ensuring that you use the optimum texture format for a particular texture.
This generally means selecting the shallowest texel format (to reduce
memory) that is aesthetically possible. Generally this means using palette
textures.

• Scale the textures to fit into memory (use the hardware to do this when
possible to get filtering etc.). Color resolution as well as texture dimen-
sions can be scaled.

• Ensure you’re taking advantage of mirroring and repeating modes to get
best memory usage.

Inevitably it may become necessary to download textures to the accelerator in
real-time, ideally using DMA.

Double and Triple Buffering

Hardware double buffering can be implemented in a number of ways, the most
common are described below. Most of these buffer swapping operations should
be done by rigging the appropriate operation to the vertical retrace period inter-
rupt to avoid polling and maximise the overlap of work between the accelera-
tor and the host.

Copy Double Buffering

Copy double buffering involves physically copying the pixels from the back
buffer into the front buffer. One case when this technique can be used to effect
is when the back buffer has a different dimension to the front buffer and the
copy is actually performed as a texturing operation including scaling and filter-
ing.

The cost of this technique is high so it should generally be avoided unless the
scaling and filtering operations out weigh the cost.

Full Screen Double and Triple Buffering

Full screen double buffering (page flipping) is the lowest cost solution, but as
it’s name implies can only be used when the full screen is being swapped. The
technique works by simply telling the RAMDAC to display a different area of
memory, and so happens instantaneously.

When very high, consistent frame rates are required, one way to achieve this is
to use triple buffering. Triple buffering uses the additional buffer to allow ren-
dering to begin on a the next frame before the previous frame has been dis-
played in the front buffer. This removes the need to wait for the swap buffers to
take place before starting to render the next frame thus maximising the avail-
able rendering time, while minimising the chance of being quantised by the
vertical blank periodi.
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Color Space Double Buffering

Color space double buffering works by defining each pixel to have a front and
back component. An example of this is a 24 bit RGB pixel with the top half
allocated to one buffer and the lower half to the other buffer. The RAMDAC is
programmed to use either the top or bottom halves to from. The hardware sim-
ply has to be able to write into the appropriate nibble without destroying the
other nibble (during retrace period).

Per-Pixel Double Buffering

Per-pixel double buffering works in a similar way to color space double buffer-
ing except that control of which part of a pixel to display is based on (as it’s
name implies) a per pixel basis.

Setting and resetting the control bit is generally performed using a block fill
operation in conjunction with a write-mask, thus it can be achieved at very
high speed.

Because this technique works on a per-pixel basis it can be used to provide
some interesting effects. Consider implementing a fighting type game with a
high quality rendered background which is panned around in the ‘back’ buffer,
while combatants are rendered directly into the ‘front’ buffer setting the buffer
display bit as they are rendered. The pixel depth of this scenario can be less
than 1.0 and the system can run at very high frame rates (60-70Hz). This effec-
tively uses the control bit to provide overlay like functionality.

Tuning Tips

These are a few tips which can be of use when tuning graphics performance, in
addition to standard techniques, such as profiling:

• NOP out all the 3D calls to see how fast the system runs, this provides an
upper limit of possible performance and helps identify host bottlenecks.

• Run in single buffer mode to see the cost of buffer swapping and if any
vertical blank quantization is occurring.

• Run in wire frame mode to get a feel for the geometry processing in a
scene when the fill rate is minimal.

i.  Remember that in a system which synchronizes buffer swaps with the vertical blanking period you will
always run a multiples of the blanking rate, e.g. at a 60Hz blanking rate possible frame rates are: 60,
30,20, 15, 12 etc.
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• Calculate the depth complexity by calculating the screen area of all prim-
itives (this can be done in OpenGL using feedback) and dividing by the
screen resolution. At this stage you can also produce a histogram of the
polygon sizes which can be useful to get a feel for accelerator utilization
as shown in Figure 1.

• Always try to reconcile actual performance with theoretical performance.

6   Conclusions

Fully exploiting hardware acceleration is a significant challenge. The strengths
and weaknesses of hardware accelerators must be borne in mind when porting
and architecting games to run on them. Generally more than a simple port from
an existing software 3D renderer is required to extract maximum performance
from a 3D accelerated system. It is essential to leverage as much work as pos-
sible onto the accelerator, this means the feature set and performance of the
system must be understood intimately. The trade-offs and costs of each feature
must be considered in terms of accelerator and host loading and how to balance
the two - benchmarking achievable system performance is essential.
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1   Abstract

Stages in the development of a console game, from concept, prototyping to
product. Working within speed and memory constraints. How differences
between platforms impact program structure and tuning. Elements of game
design and playability.

2   Introduction

In the home, video games have until two years ago been limited to sprite ani-
mations or very crude 3D. New more powerful game platforms, such as 3DO,
Playstation, Ultra64, Saturn or personal computers (Mac or PC) have raised the
level of performance and the available storage space. These platforms now
allow real-time 3D texture mapping, involving computer graphics technology
reserved until recently to high end graphic workstations.

Game developers on consumer platforms, however, have to struggle with hard-
ware under much stronger economic constraints than graphic workstations.
Options such as adding rendering hardware or memory do not exist. In order to
compete in a market driven largely by a gee-whiz audience demanding the
highest performance and coolest looking games on any given platform, devel-
opers have to find ways to use the available hardware in the most efficient way,
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under very difficult conditions (lack of stable hardware or OS, primitive tools,
Christmas, ...).

Beyond the problems attached to implementing a specific project on a specific
platform, game developers are also faced with a growing choice of target plat-
forms and skyrocketing development costs. Those new constraints, added to
the volatile demands of a hit oriented business invite flexible game designs that
can be prototyped and developed independently from the target platform(s).

There is no magic solution to designing hit video games, when in doubt, make
it fun and make it look cool!

3   Shockwave: a case study

Shockwave is a 3D textured mapped action flight simulator for 3DO. It
shipped in June 94 and has since sold more than 200 000. It has since then been
ported to Playstation, Saturn, Mac and Windows95. A sequel shipped in
Christmas 95 for 3DO.

.

FIGURE 1. Shockwave
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Original concept

When offered a new platform, game producers are faced with an alternative.
Moving an old property to the new platform or developing an original that
takes better advantage of the new platform. In June 92, it appeared that the sus-
pected performance of 3DO would allow better textured mapped 3D than ever
possible before on a home console. A dream had been floating around Elec-
tronic Arts for a while: people wanted a game in which they would be able to
fly over the bay area and see their house. That was it for an early design. Sev-
eral attempts had been already made.

We realized quickly that the memory requirements for textures was way
beyond 1 Mb of memory 3DO had at that time. In order to represent a house
with one pixel, the resolution of the texture map had to be such that a pixel
would represent about 20m x 20m. 1 Mb of RAM could hold a square of tex-
ture of approximately 20 Km x 20 Km in 8 bits/pixel representation. That
translates in the horizon (how far one can see) being 10 Km away. A CD-ROM
is of course a large storage device, but even though we could theoretically store
a 200 Km * 300 Km texture on the 660 Mb CD there are 2 limitations to how
you can use it: bandwidth and seek time. On such CD players, bandwidth is
300 Kb/s and seek time depends on how much the head has to travel and on the
error rate but varies between 1/10 second and 1 second. The classical caching
alternative if of course inappropriate with the limited amount of RAM. The
CD-ROM bottleneck in effect would limit the freedom of motion of the player
way below what is commonly accepted in a flight simulator. 3 Mb in the ship-
ping 3DO is far greater but does not change the nature of the problem as tex-
ture is not the only thing we need to fetch, 3D objects, elevations, sounds... and
all sorts of other things that make a game share RAM, and disc access with ter-
rain textures.

This early exploration was indeed important as it focused us on the real core of
the design, which we kept until the end. What the producer really wanted was
not necessarily to see his house, what he wanted was a 3D flight simulator that
would be as intense as possible (lots of things to shoot at), as photo realistic as
possible (fully texture-mapped) and featuring the highest-quality video.

Early hardware

Unlike PCs or workstations, backward compatibility is not a design goal in
game consoles. To some extent, the opposite is true, manufacturers need to dif-
ferentiate as much as possible their new hardware from their old one in order to
push consumers into buying more software. Furthermore, more and more com-
panies compete by introducing constantly new platforms. On the flip side, as
software becomes more complex and most importantly, as the volume of art-
work becomes enormous, development time increases! The consequence of
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those two opposing trends is that development rarely happens on a stable, solid
platform. On the contrary, tools are usually very crude, documentation non-
existent, benchmarks are projections, and development systems are hard to get.
Game development very often involve pioneering.

ShockWave was pipelined with the development of 3DO, and some of our big-
gest limitations came from having to work with hardware, OS and tools under
development:

Hardware put us on a roller coaster: RAM went from 1 Mb to 2 and then 3 in
the shipping product, OS memory requirements went up from 200 Kb to some
800 Kb and back down to 660 Kb, math hardware was introduced, CPU speed
was supposed to double from 12.5 MHz to 25 but never did, hardware went
through at least 5 revisions, etc. The operating system and libraries were on a
class of their own: every revision brought changes to the interfaces, had its set
of bug fixes and new bugs. Tools went from very crude to quite good, but in
that respect, we were in a very good positions, thanks to our own internal tools
group. After all this pioneering, developing for 3DO now is relatively easy, but
on 3DO’s second generation hardware, M2, tools are still primitive...

Maybe the most critical aspect of game development is art creation, and opti-
mization in that area requires understanding in depth the capabilities of the
hardware. It took us 2 years to fully understand all we could do with the differ-
ent graphic formats and options. More importantly, it took two years to educate
the artists and to provide them with tools that would allow them to take advan-
tage of those formats.

The main challenge for graphic artists is to produce artwork that looks really
cool, takes up very little memory, and renders very fast. (for audio artists, that
translates into: sounds really good, takes up very little memory and takes as
few DSP cycles as possible). On 3DO, the choice of graphic formats supported
by the hardware is pretty large: it includes 1, 2, 4, 6 and 8 bit palette represen-
tation, 8 and 16 bit direct RGB. Each mode has its own limitations and specific
capabilities: for example, 8 bit palette mode really only uses a 5 bit color pal-
ette, the remaining 3 bits in the source are used to refer to shaded versions of
the 32 palette entries. Each entry in the palette (to 15 bit color representation)
can use one of 2 (you would not want to waste the 16th bit) mode of frame
buffer operation (additive, transparent, translucent, opaque...). Another very
tricky aspect is translucency: each cel can in most cases have two levels of
translucency. Going beyond those 2 levels in order to simulate a real alpha
channel requires associating several overlaid cels.

This choice of graphic formats is very confusing as those formats are direct
reflections of what the hardware can work with, and as in general, this hard-
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ware is irregular due to processor design optimizations. Developing the right
tools is critical to producing quality artwork in large quantities.

The only solution to developing on such early hardware is to have a flexible
design, one that can move down to accommodate lower performance than
expected or move up when things get better. Video game console hardware is
always available early, and hardware designers are late for Christmas too...

Limitations and implementation tradeoffs

When any aspect of a game seems at one point to be less demanding than what
the hardware can do, a cool new feature is on its way to fill that void... For that
reason, the development of a game often hits every possible limit the game
console offers: available memory, CD-ROM real estate, CD-ROM bandwidth
and seek time, rendering speed, audio channels, ...

Memory

The two major technical limitations ShockWave hit were RAM and CD-ROM
access. The main reason was that in order to achieve our goal of intense photo
realistic rendering, we needed to work with lots of high resolution textures to
load new images often. Our trade off turned out to be: freedom of movement
vs. intensity and quality of action. We could either give the player a complete
freedom of motion, but then we could not really script missions precisely, and
we would have to provide for potentially very long seeks, or we could make
the motion completely linear, and just playback a stream of video in the back-
ground with overlaid 3D objects

FIGURE 2. Trade off control vs. quality

ShockWave, after several iterations, fell somewhere in between. It provides 3D
freedom of motion within a wide path. The world in which the game takes
place is a wide band of terrain that allows some amount of flying backwards.
This design allowed us to create an engine that would use the available mem-
ory as efficiently as possible by reducing the amount of cache, and would
spend the least time seeking on the CD-ROM as all the data could be pre laid
out in order. Precisely, all data for a ShockWave mission comes from a single
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file, and the player controls the rate at which this file is read (and at which
obsolete pieces of data are disposed of).

FIGURE 3. Linear flight path

The two major technical limitations were in this case overcome by a design
change. By limiting the freedom of the player to a path, we were able to elimi-
nate seek and to optimize RAM usage

Performance

Performance is obviously critical to game play quality. The two main compo-
nents are latency (how much delay there is between joypad input and feed-
back) and frame rate (how often is the screen refreshed). The first part of the
equation has a straightforward solution: read the player’s input very often and
give some feedback as soon as possible. In ShockWave, our decision was to
synchronize the control model on vertical blanks (VBL). Every VBL, the main
rendering and simulation task is interrupted to allow reading the joypad, modi-
fying the control model accordingly, and giving the player some audio feed-
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back. This architecture limits latency to 1 VBL, which is quite acceptable for
the human race. The second part, frame rate, is more complex as there is a
tradeoff between complexity of each scene (rendering and simulation) and
frame rendering time. Our experience has shown that above 20 frames per sec-
ond, the quality of gameplay is very good. At 15 fpsi, there is a slight degrada-
tion, and below, one can sense the choppiness of motion. An additional issue is
variability: depending on the player’s direction, more or less objects are visi-
ble, and depending on the mission layout, more or less objects have to be sim-
ulated.

We had then to decide whether the frame rate would be constant or variable,
and whether the simulation would be frame rate dependent or not. We decided
to go for a variable frame rate because even though we always wanted to main-
tain more than 15 fps, we knew some situations would require more rendering
than others, and in order to accommodate those worst cases without dropping
objectsii, we would have to limit the constant frame rate to unacceptable levels.
Simulation quality, on its side, only shows in the game play through rendering.
As long as behaviors are frame rate independent, a variable frame rate simula-
tion does not cause any perceivable artifacts. On the contrary, this variability
makes the integration of acceleration into speed and then speed into position
slightly chaotic, and gives a welcome unpredictability to some of the objects’
behaviorsiii. A fixed simulation rate below rendering rate would look quite
strange, and above rendering speed, would increase the time it takes to simu-
late every frame without bringing any perceptible advantages.

For all those reasons, we decided to have a main simulation and rendering loop
that would take a short (generally less than 4 or 5) but variable number of
VBLs to execute. This also provided for a smooth PAL conversion (adding a
6th VBL every count of 5), and greatly simplifies porting to other platforms.

i.  In order to avoid flickering, video games often use double buffering, swapping the two
frames during a vertical blank. On NTSC, a vertical blank happens every 1/60th of a second.
Rendering a frame during less time yields 60 frames per second (fps), rendering in 2 VBLs
gives 30fps, and so on 15, 12, 10... For PAL, those frame rates become 50, 25, 16.6, 12.5, 10...

ii.  Because we use the painter’s algorithm (to render 3D objects from most distant to closest),
the worst cases would force us not to render some of the closest, most visible objects, which is
quite unacceptable when the player is typically trying to destroy those same objects.

iii.  Chaos can be good, but should not introduce discontinuity. One cheap and effective way to
reintroduce continuity without adding much overhead is to filter those chaotic variables, for
example with a simple filter such as  (U is the filtered value, I the chaotic
value) Un

3Un 1– In+

4
---------------------------=
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3.4.Optimizations in rendering and simulation

What shortcuts can we find to raise the intensity and quality of action without
reducing frame rate, with as little design implication as possible... The follow-
ing four examples are shortcuts we took:

Bend game design to hardware

A typical problem faced by flight simulator is objects or terrain popping into
view. Haze is a good meteorological solution to that problem: blending ground
and objects with the sky, in the distance limits how far into the 3D database the
rendering engine has to reach. Control over translucency on 3DO allowed us to
perform similar functions but proved to be extremely costly in rendering time
as the graphic engine needs to read the current frame buffer in order to blend it
with each pixel being written. Another feature of 3DO’s cel engine allows us,
in some modes, to mix any cel with gray (0 to 31). Rendering a grayed cel does
not take any longer than normal cels as it does not require transferring more
data over the bus. We wished hard that the sky would be gray instead of blue,
so that we could use this graying mechanism instead of the translucency. We
made it so! The script introduced adequately a poison gas (gray as could be)
that the aliens had used to put humans into shock (hence the title of the game).
This 3DO specific optimization allowed us to cut rendering time of the terrain
with haze almost in half, but it was only possible by adapting game design to
technical specifications.

Shortcut 3D

In typical Orwellian style, the original game design mentioned walking tripods
which would create havoc in human cities. Tripod legs were quite costly: we
needed at least 3 quadsi per section, 2 sections per leg, and at least 3 legs. That
amounted to 18 quads for little surface on the screen. Furthermore, these 3
sided legs looked quite boxy and their apparent width would change a lot
depending on the viewing angle. We introduced a new sort of face in our 3D
format: cylindrical faces. Each section of a leg would be rendered by one of
those faces. Each requires 2 anchor points (the joints), 2 diameters (to allow
legs that change width from end to end) and 2 colors (ambient and diffuse).
With this information, we compute a sort of specialized billboard which
approximates the projection of a long narrow cylinder on the screen (the ends
are of course incorrectly straight). The texture we use for this face is a sub por-
tion of a regular gradient texture between the ambient and diffuse color.

i.  3DO only renders rectangular textures into 2D quadrilaterals.
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FIGURE 4. Cylindrical textures

Compute the minimum required accuracy

A very common function in a simulation is distance calculation, in 2D or 3D.
Over time, lots of approximations have been invented in order to avoid the
costly square root function call. The rule for using one approximation vs.
another is to use the fastest one (less than 1 pixel error after projection on the
screen...). Again, some of the non-linearity in some of those approximations
(manhattan, infinite norm...) introduces some spicy chaos to behaviors. The
problem comes when calculating object matrices for example, when a good
accuracy is needed to renormalize vectors, in order to avoid having uncon-
trolled squash and stretch...We figured that we needed about 8 bits of accuracy
(the screen is 320 wide) in our transformations matrices to avoid visible arti-
facts.

So we wrote a little distance calculation function that uses a small 2D look up
table (512 entries) to give approximately 5% accuracy, and then corrects the
error by using an linear (and power of 2) approximation of the circle’s slope for
the particular look-up table entry.

That error correction (5% accuracy on the error) reduces the overall error to
less than 0.25%, and takes about 30 cycles, which was satisfactory for our pur-
pose.

Section Used

Destination Polygon

Anchor

Diameter
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FIGURE 5. Distance approximation.

Preprocess the data

3DO’s rendering hardware uses a forwardi non filtered texture mapping. This
presents us with several problems:

• Rendering speed is not only related to destination size, but also to source
size (this entire source is parsed, even if it has to be rendered in a single
pixel)

• Low res textures stretched to fill a large surface look blocky, or pixellated

• High res textures rendered in a small surface look aliased, especially in
motion as each frame will be rendered using different pixels sampled
somewhat randomly from the same source

• Geometry is projected properly but textures are rendered in 2D space.
This leads to some annoying inconsistencies, especially with large close
objects or with the ground.

We came to the classical conclusion that in order to limit aliasing, pixellation,
and to optimize rendering time, it was better to use textures that would be pro-
jected in a surface roughly similar to their sizes. In other words, we wanted to
have a pixel to texel ratio as close to 1 as possible. In a 3D environment, this
means using mipmaps instead of bitmaps.

i.  A forward texture mapping as on 3DO parses texels and figures what quadrilateral in frame
buffer has to be filled with that texel’s color.

1

0.5

0 0.5 1

look-up table
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FIGURE 6. Terrain mipmaps

To compensate for the absence of filtering, and to reduce aliasing on highly
compressed textures, we also low-pass filtered the lower resolution versions of
our textures. The price to pay for a better rendering quality and increased speed
is memory, but the surface of the textures drops with the square of resolution,
and therefore the added memory requirement turns out to be only around 30%.

This solution does not address the texture distortion issue, but it introduces one
of the most efficient ways to reduce rendering time in a 3D application: vari-
able level of detail (LOD).

Level of detail

In a game, the only engineering that counts is one that affects the player’s
experience. Translated into 3D, this tells us not to worry too much about very
distant or invisible things, but instead to focus the console’s resources on the
same things the player does: large and close objects.

We redirect resources from distant objects to close ones by degrading the qual-
ity of representation of distant objects. This degradation is achieved by both
simplifying the geometry and lowering the texture’s resolution. In ShockWave,
costly objects (many faces, large textures...) come in two flavors, a low-res and
a high-res. Each object is tested in order to determine the most appropriate
transition distance. When rendering an object, its distance to the camera is
compared to the transition distance in order to decide which version to use.
When frame rate drops, that distance is lowered progressively in order to pre-
serve gameplay at the cost of rendering quality.

Beyond rendering, lots of other operations take time, and the LOD approach
can be applied to those as well. In ShockWave, z-sorting and detection colli-
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sion are degraded in the distance. The terrain geometry serves as a basis for a
bucket sort used to order the objects and compute collisions. As the terrain ren-
derer is multi-resolution (levels of geometry and texture resolution), the quality
of object sorting and collision detection drops with the distance to camera.

FIGURE 7. Terrain recursion

Conclusion

We took some shortcuts but left many more out. Most shortcuts, though, fall
from the same general philosophy: game play is the most important, and there
is not just a single correct solution. What makes game software architecture
both so interesting and so challenging is the freedom it gives from classical
math or physics.

4   Game console issues

New game consoles show up on the market at an alarming rate, and choosing
the right one is a difficult challenge. A successful property is often followed by
sequels, but is most importantly ported to as many other platforms as possible.
This multi-platform environment poses at least two problems: choosing an ini-
tial platform, reducing the cost and risk of porting.
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4.1.Classes of consumer game platform

There is a multitude of game platforms on the market (even more are extinct)
but they can generally be organized in three major classes.

16 bit consoles

This class of machines is represented in large parts by Super Nintendo (SNES)
and Sega Genesis. These machines handle sprite manipulation through special-
ized processors. They generally have a 16 bit general purpose CPU and a few
hundred kilobytes of memory.

The strength of these machines is in 2D animation: they handle scrolling
planes very efficiently, and render sprite display lists with no cost on the CPU.
Those machines are generally ROM based which provides a fast access to all
game data.

Sound is very primitive (some simple FM synthesis), colors are few and pro-
cessing power is low. The only relative strength of these machines is in scroll-
ing planes: most newer machines (except Sega Saturn) handle only polygon
texturing, and this makes scrolling an expensive operation in bus bandwidth.

The installed base of 16 bit machines is huge (> 100 million), but it has
become very much a hit only business, only top 5 games sell well. This con-
centration of business has driven most smaller developers to newer platforms
and only the biggest companies continue to sequel their games on 16 bit
machines.

There is disagreement as to when exactly those machines will disappear, but
they are rapidly moving out of the picture.

Home computers

Sales of home computers have exploded in recent years. A large portion of
those support CD-ROMs and audio synthesis: they are often referred to as mul-
timedia personal computers. This large installed base (more than 20 million
new multimedia home computers in 95) is attractive to game developers, espe-
cially since there is no license fee associated to shipping a Mac or PC game.

Game consoles of one type rarely come in different flavors: all SNES games
work on all SNES machines (whether Nintendo or a third party edits it). Per-
sonal computers, on the other side, come from many vendors, and even Macin-
toshes have clones now. This variety poses a compatibility problem.
Educational or ‘multimedia’ titles often have limited technical requirements,
and run on most multimedia personal computers. Action games, on the other
side, are more performance oriented and can only run at acceptable frame rates
on faster machines with appropriate graphic and audio subsystems.
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The difficulty is to define a set of technical requirements that does not limit the
market too much while allowing the game to push the envelope of what cus-
tomers expect from their computers. For example, most 3D games on PCs
today require a pentium processor or a PowerPC. 3D games that could still run
on a 286 processor would look very poor compared to the state of the art,
would not have any technological appeal, and most probably would not sell.
On the opposite, shipping today a P6 only game would not make sense as the
installed base is still very small.

Almost every subsystem in a PC comes in different flavors: CPU (speed, type),
CD-ROM (bandwidth, seek, DMA), audio board (sample playback, FM syn-
thesis, ...), bus (ISA, EISA, PCI, local bus), OS (DOS, OS/2, Win3.1,
Windows95), memory size, screen (VGA, SVGA, 8 or 16 bits...), display
accelerator (2D, 3D, texture mapping). Specifying a minimal set of require-
ments is a difficult art. Still, one has to make bets, and trust the biggest players,
such as Intel or Microsoft. They claim a typical system for Christmas 96 will
run Win95, have a Pentium 90, 8 or 16Mb of RAM, quad speed CD-ROM, 16
bit audio board, PCI display board), support for 8 and 16 bit display up to
800*600 pixels.

This specification has to be very clear to the customer, but it is only the first
part of the problem. Even more important are testing and installation. A uni-
versal installer is almost impossible to achieve as the variety of systems is so
large, and as new devices are introduced almost every day. The only solution is
to support the market leaders (SoundBlaster, ...) and make sure a large enough
share of customers will be able to install and use the game. As a matter of facts,
most PC games are updated rapidly after the first release, sometimes to fix
bugs, but more often to support systems the initial product left out.

When a game is installed on a customer system, it has to assess what the sys-
tem is capable of. Most DOS products go straight into a setup screen in which
the customer is supposed to input his system’s setup (IRQ, DMA, Joystick...).
This sort of interface is very repulsive to most new users, and in order to keep
the returns to a minimum, more elegant solutions should be used. On Macs, the
system provides information to the application through a standard API and
Windows95 has finally a similar database on system installation. These infor-
mations allow a game to run, but they do not directly give performance related
information. Such information is necessary to scale rendering quality and
frame-rate in order to provide the player with the best possible experience.
Most often, the best approach is to benchmark the system at run-time, by ren-
dering some test cases, and to degrade quality, bit depth, or screen resolution
for the frame rate to be acceptable (between 15 and 30 fps). This automatic
setup should of course be overridable by the player.
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The most notable change in PC game landscape will come from 3D accelera-
tors. A growing number of board manufacturers are announcing or shipping
3D acceleration boards and they all have different features, performance, inter-
face... and once again game developers are faced with the issue of selecting an
API, defining a specification, etc. directX on Windows 95 is now the defacto
standard for games on PC and direct3D, the 3D graphics component of
directX, will probably be a very common interface to 3D accelerators. In 97,
we should expect very few DOS games.

32 and 64 bit consoles

All these machines are successors to SNES and Genesis. They have introduced
much more powerful CPUs (RISC based) and typically use CD-ROMs as stor-
age media instead of more costly cartridges. Along with the main CPU, they
have specialized coprocessors to handle 3D math, audio, and rendering into a
16 bit frame buffer. 3DO and Jaguar shipped first, and were followed by Saturn
and Playstation. Ultra64 and M2 are to come next.

However similar, these consoles have major architectural differences. Each
one has a number of very specific optimizations: Playstation has a 2D frame
buffer in which textures and frame buffers have to be stored, Saturn has an
array of processors, memory banks, buses... Those architectural differences
often put specific limitations on resource allocation: for example as to how
many textures can be used at a time, how many audio samples, etc. Each limi-
tation has to be worked around specifically in the case of a port.

Other critical differences include features (Gouraud shading, MIDI music,
alpha channels, CD-ROM streaming) and also tools (compilers, libraries,
debuggers, graphic and audio editors), but very often, the most complex prob-
lems when porting from a console to another arise because of platform short-
cuts. For example, texture mapping on Playstation is linear triangle based, and
this approximate texture mapping introduces unacceptable distortions on quads
that looked fine on 3DO. Math computation on Playstation are 4.12 accuracy
instead of 16.16, which is not enough in many situations. Saturn is an even
more complex console, and many developers predict it will take years to get
the most out of the 7 or so processors it contains.

The best thing about those proprietary consoles is that a game is always a
breeze to install for the gamer, and is guaranteed to work. The worst thing is
that such proprietary designs are generally very irregular and sometimes plain
weird. The challenge is to make games that take advantage of each platform,
and are easy to port. Part of the solution lies in knowing early in the design
which specifications are fundamental for the game to work, and which are for
eye candy. This way, it is possible to implement the same core game on all con-
soles, and scale the different implementations on the eye candy part.
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Choice of target

Of these 3 classes, as cartridge sales for 16 bit game consoles are declining
fast, 32 bit game consoles and personal computers are really to be preferred as
targets for new games, especially if these involve real-time 3D computer
graphics. However, PC gamers and console gamers are two very different
crowds, and for most purposes can be considered independently. PC gamers
generally favor realistic simulations, strategy games, and reflection games
while console gamers prefer action, racing and fighting games.

A necessary step: prototyping

It is very hard to predict the success of a new game concept and it is very hard
to predict the success of a game platform. There is no magical formula for
building successful games, or for predicting which console will prevail. Never-
theless, it is possible to reduce the risk first by evaluating game design as early
as possible, potentially before implementation, and second by delaying the
choice of a target platform, until the market is better understood. Prototyping a
game on a high level system, abstracted from most gruesome implementation
and optimization details, seems like an elegant solution. The risk is in ignoring
fundamental limitations, such as memory space, CD-ROM bandwidth, render-
ing speed, etc. and in ending up designing unimplementable games. The only
way to avoid such pitfalls is to initially decide on a set of specifications (for
example: 2 Mb DRAM, CD-ROM, triangle based texture mapping, MIDI
sound, 320x240 16 bit frame buffer), and then to perform reality checks on
critical aspects: memory map, number of polygons per frame, complexity of
calculations,... along the way.

Beyond reducing the risks, validating a game design on a workstation also
improves productivity, by giving artists a shorter turnaround time when visual-
izing their work, and by allowing tuning of behaviors, physics, and gameplay
in a powerful, comfortable and stable programming environment.

5   Conclusions

Computer graphics in video games are reaching new levels of performance
with accelerated 3D and texture mapping. To improve even more the quality of
graphics and frame rate, many classical computer graphic shortcuts can be
taken, but new ones also have to be invented. In particular, as correctness is not
an objective in video games, all compromises are valid as long as they improve
gameplay.

Focusing on gameplay also encourages developing functional prototypes
before tuning to the metal. This abstraction, if safe guarded by a good under-
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standing of game platform capability, reduces some of the risk associated with
game development and helps shorten production cycles.

Gameplay is a very important key both to find powerful optimizations, and to
simplify game development across multiple platforms.
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Abstract

Within the last year technical advances in hardware and software have dropped
the price of 3D graphics and opened the entertainment market to technology
previously available only to high-end simulation. Companies approach this
new technology from two directions. Game companies struggle with technical
issues while simulation companies try to tackle game content and game play.
As with software and hardware, database engineers must learn new tricks and
construction techniques that apply to this developing market.

The technical issues of database design created by low end 3D entertainment
are much the same as those of high end simulation. Concepts such as frame
rate, LOD, culling, and transformation rate are common to both worlds. Data-
base engineers from the high end market are very familiar with these problems
and their impact on database design. Game developers must learn the tricks of
the 3D trade and the artists who were currently limited to 2D content must now
learn 3D and learn all the associated performance considerations.

These course notes will address the technical issues of database design as well
as the subjective nature of content and appearance. The technical problems
covered range from understanding hardware specs and their impact on the
database to optimizing geometry and textures for culling, drawing, and query.
The artistic aspects include how to best use polygons for maximum effect,
database consistency, and the art of simulating reality.
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1   Types of Databases

Geospecific vs. Geotypical

“Geospecific” describes a database that has been modeled to correlate at some
level to a `real’ of terrain. There are several methods of creating geospecific
databases. These databases are used primarily for military applications, how-
ever Microsoft Flight Simulator and a few other games have built real-world
cities and terrain. Geospecific databases can be generated from data sources
such as DTED and DFAD automatically, although the resulting database is
generally less than ideal.

“Geotypical” databases do not represent an actual area of the world but are
built to give the impression of a type of terrain. Geotypical databases are much
more common than geospecific. A database modeler has a higher level of con-
trol and can, ironically, generate a more believable reality when they are not
restricted to reproducing a real place. To be able to build a successful geotypi-
cal database the modeler must have a well developed creative sense.

Synthetic vs. Hand-Modeled

Synthetic databases may be created with various programs that involve a high
level of interactivity between the user and the resulting database. Parameters
entered by the modeler control fusion of data sources, polygon densities, and
phototexture application. Emphasis in methods of this type is placed on a
front-end user interface which carefully controls the resulting database. The
ability to twiddle some parameters and pass elevation and cultural data to a
program that spits out a perfect database is attractive. Many attempts have been
made to write a program that does this with varying degrees of failure. Soft-
ware that makes use of fractal equations is also frequently used to generate
synthetic databases. Striking geometrical representations often result from
these equations, though care must be taken to assure that the resulting geome-
try has the characteristics desired. Synthetic databases have the advantage of
not requiring large amounts of memory to store pre-rendered geometry but
leave the resulting database at the whim of a random number generator. Fur-
thermore, while synthetic databases allow for unlimited terrain, the quality and
performance will ultimately suffer.

Hand-modeled databases give the modeler the most control over database con-
tent and structure while providing the greatest freedom for creativity. This is
the most labor intensive construction technique, but is necessary when the run-
time environment is limited and the database determines the speed and realism
of a game. Hand modeling a database will be the focus of these course notes.



What’s in a Database

Wes Hoffman  —  Database Design for Visual Simulation and Entertainment 6-3

2   What’s in a Database

Terrain

Most databases for games and military applications use some sort of geometri-
cal environment through which to navigate. For these purposes, such environ-
ments will be referred to as terrain. Terrain typically consists of all ground
planes, large and small area features (i.e., forests, oceans, roads), and anything
else which will remain static in a given application.

Models and Cultural Features

Models and cultural features include everything in a database from factories to
animated eggs on skis. They generally are modeled to a high degree of detail
from which subsequently lower levels of detail are derived to control overall
scene density. Models allow the modeler to instance an object throughout a
database.

Textures

Textures are rectangular arrays of RGB data (texels) that can be applied to the
surface of geometry to create the illusion of detail. Textures may be derived
from photographs, synthesized from programs, created using paint packages,
or virtually anything else which will output an image which may be mapped to
a polygon.

Materials

In addition to texture, some hardware platforms support the rendering of spe-
cialized material properties in real time. A polygon may be given the attributes
of a desired material which will control its appearance with regard to lighting.
Common material properties include transparency and lighting properties.
Lighting properties include the materials ambient, diffuse, emissive, and spec-
ular reflectivity.

Application Information

All geometry in a database may include information which helps an applica-
tion control the scene. This information is embedded in the database and pro-
cessed by the game to improve or control aspects of the database not related to
appearance. Typical information includes bounding boxes, values for control-
ling scene content in overload conditions, surface codes which may be queried
to aid in special types of collision detection, or motion constraints that control
the animation of an object.
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3   Generating Database Specifications

Hardware Limits

The first step to building a real-time 3D database is to understand the limits of
the target hardware. The performance numbers for graphics hardware make
statements about polygons per second, pixels per second, and CPU speed. The
Sony PlayStation quotes 500,000 polygons per second, the Sega Saturn
900,000, and an Silicon Graphics ONYX benchmarks over a million polygons
per second. These numbers are useless when generating a database design.
First one must define a polygon as a triangle; polygon limits do not refer to
anything other than triangles. Second, rendering a polygon is a combination of
two unique graphics steps. The vertices of a polygon must be transformed into
screen space, and the resulting surface must be filled. One can increase the
number of polygons drawn by optimizing meshing or caching (depending on
the hardware). It is generally a good idea to run benchmark test to determine
what sort of geometry and scene density the target hardware can handle.

To generate a database specification one must know not only the realistic poly-
gon throughput of the target hardware, but the desired framerate, field-of-view
(FOV) and viewing distance (far clip) of the application. A high speed flight
simulation requires a larger far clip, larger overall database, and medium to
low terrain detail. By contrast, a ground based simulation with a slow, rum-
bling tank would use a smaller far clip, greater detail, and a smaller database.
By defining your type of application, you necessarily define the parameters of
your viewing frustum from which follow the calculations required to maximize
the performance of your hardware.

Scene Complexity and Polygon Budget

A common term used in simulation is scene complexity, which refers to the
number of visible polygons. Scene complexity is related directly to the trans-
form and fill characteristics of the specific hardware. Most applications have
specific scene and depth complexity requirements. When you begin designing
your database you should be able to compute an approximate number of terrain
surfaces and models that can be seen in a single frame based on the desired
scene complexity.:In the following example the polygon budget for a typical
helicopter is calculated. A total polygon budget of 7000 polygons at 30 frames/
second (Hz) is assumed. The first step is to break a scene down into its individ-
ual elements. This example helicopter simulation will require the following
features:

1. dynamic models (planes, tanks, etc.)
2 static models (house, trees, etc.)
3. special effects (rotor blades, missile trails)
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4. instrumentation
5. terrain

Each of these scene elements requires polygons and must be include in the
final calculations. The number of polygons used by dynamic and static models
must be calculated based on the number of objects in a scene and the current
level-of-detail (LOD):

Static and Dynamic Polygon Counts

Special effects and instrumentation will be allocated 1000 polygons, leaving
2300 polygons for the terrain. The next step is to compute the polygon density
of the terrain given the remaining polygons. Figure 1 demonstrates how to cal-
culate terrain density and budget polygons based on a 50 degree FOV and 5km
far clip.:

By precomputing the number of surfaces you can use to create each area and
model you can begin to get an idea of what you will be able to represent with
the number of available polygons. By knowing the characteristic geometry of
your viewing frustum and the maximum number of vertices your hardware can
transform into 3D space, you can calculate LODs with ranges based on average
densities for models and terrain at each level of detail.

4   Making a Database Perform

The process of optimizing a database has many variables. The database must
take advantage or not only the hardware but also the software driving the simu-
lation. Obviously the frame rate of a simulation is a combination of hardware,
software, and database. Understanding how the hardware/software works,
enables the database engineer to “tune” a database during its construction so
that the simulation software can function efficiently. There are three basic
functions that a 3D simulation must perform: drawing, culling, and collision
detection. As discussed below the requirements of these functions unfortu-
nately contradict each other.

polygons vertices # visible total polys

LOD0 100 200 4 400

LOD1 75 126 20 750

LOD2 30 15 40 1200

LOD3 5 10 70 350

TOTAL 2700
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Optimizing for Drawing

The render speed of the target hardware is the most obvious feature to opti-
mize. The graphics performance issue a database must address are transforma-
tion and fill rate. A more subtle, but no less important, hardware restriction is
graphics mode switching.

Because hardware can only transform so many vertices a second, limiting the
number of transformations that occur is the first place to start. As mentioned
previously, polygon performance is not a reliable benchmark; the number of
vertices used by the polygons is much more accurate. There are rendering algo-
rithms available that attempt to reduce vertex transformation while maintain-
ing polygon counts, namely tri-mesh strips or fans. By including as many
polygons as possible in a strip one can achieve substantially more polygons

1km

1km

FIGURE 1. Field Of View Extent

A = Field-of-View 50 degrees

B = far plane 5 km

C= avail polys for terrain 2300 polys/frame

km2/frame = tan(A/2)*B*B = 11.66

avg polys/km2 = C/(tan(A/2)*B*B)= 197.3

5km

50 degrees
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while not increasing vertex count. The modeler should be aware of this feature
since the methods use to construct geometry and apply texture will dramati-
cally effect the mesh efficiency of the run-time database. For a vertex to be
include in a mesh it must share all the aspects of the other vertices in the mesh
and the polygons they creates must have the same texture. material, and draw
mode. A vertex consists of the x,y,z position, and optional u,v texture coordi-
nates, normals, or colors. If any of this data is not shared by two polys at a
common edge the mesh must break. Sharing as much vertex data as possible
can increase the polygons they create by over 200%. In the following figure a
simple patch of a terrain polygons are combined to achieve the best rendering
performance by minimize the number of vertices and mode switching:

The second major limiting factor of hardware is fill rate. This is a more difficult
feature to optimize since the depth complexity (the average number of times
each pixels is written into) of a database varies eyepoint position. However the
database designer can make conscious decisions when building geometry that
can reduce depth complexity and optimize fill. An example of this is the con-
struction of lower LODs. The modeler knows the object will occupy a small
number of pixels so it may be more advantageous to concentrate on mesh effi-
ciency or reducing mode changes.

A hidden hardware limitation is graphics mode switching. This include switch-
ing texture, materials, draw modes (backface/frontface), and transparency. In
order to reduce mode changing it is best to group like polygons by mode.
Reducing graphics mode switching is a problem best solved by the application
software, however the database designer should consider this bottleneck since
the minimum number of texture, materials, and draw modes used is defined by
the models they create.

polygons meshes vertices

mode

switches

32 7 46 2
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Optimizing for Culling and Intersection

A critical component of real-time simulation is efficient culling. Efficient cull-
ing requires the application software to reduce the entire database to only those
polygons visible in a single frame. However, because of the optimization meth-
ods used for drawing, polygons become grouped into meshes that can extend
outside the visible FOV. An efficient culling and query database should be spa-
tially grouped (similar to a quad tree). This enables the software to quickly
determine which groups can be seen. To increase the complexity of the prob-
lem, the modeler must also consider the query (or collision) aspects of the
database. The following figure shows the previous patch of terrain optimized
for culling.

Optimal culling configuration

For most simulation the same polygons used to represent the visual database
are used mathematically to determine terrain intersection and object collision.
If the smallest primitive in a database is a mesh, then the intersection testing
can only reduce the possible target geometry to that in the mesh. At this point,
CPU-intensive algorithms must take over and check each triangle in the mesh
for a possible intersection. Obviously, the more vertices in a strip the more sur-
faces must be checked. The best database for culling and intersection would

polygons meshes vertices

mode

switches

32 10 52 9
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not contain meshes at all but individual surfaces. Here is the same terrain patch
optimized for intersection and collision testing:

Optimal intersection configuration

This paradox would seem to imply the necessity of two databases, one for
drawing / culling, and one for intersections. The conflicting goals of culling
and drawing is the most frustrating problem a database engineer must conquer.

The Proper Balance

A well trained database engineer should understand the algorithms used to
draw, cull, and perform intersections with their database. Too much emphasis
on optimizing the databases draw time will more than likely hurt the applica-
tion’s culling and query operation. Every vertex and texture added will impact
all aspects of the game. For this reason the best constructed databases strike a
proper balance between the performance restrictions of each software and
hardware function.

5   Making a Database Attractive

As technology improves, more techniques and possibilities are available to the
real-time database artist. Games are now three dimensional with all the trap-
pings of high end simulation. Suddenly the prospect of making a database that

polygons meshes vertices

mode

switches

32 16 64 16



Making a Database Attractive

6-10 SIGGRAPH ’96 Course  —  Designing Real-Time 3D Graphics for Entertainment

closely resembles reality is realized and the database artist must struggle to
understand all the options now at their fingertips

The Impressionist Nature of Modeling

Building a successful database is much like creating a impressionist painting.
The resemblance to the object being modeled is implied. The talent behind a
believable database lies in the database artist’s ability to capture the essence of
a building through minimal polygons and textures. If you put your eye close to
the canvas of a Monet or a Van Gogh painting you lose the realism you had
when you viewed the painting from a distance. The same is true of polygons
and textures. The polygons and textures in a database must be built to be
viewed from a reasonable distance. This approach solves 99% of the problem
since the odds of one viewing a house or a tree from a distance are much
greater than the chance that the eyepoint will end up glued to the objects sur-
face. The bulk of the artist’s efforts should be concentrated around the big pic-
ture approach, though some effort should be paid to subtle detail. The more
detailed an object, the closer the eyepoint can approach before the impression
is lost. In short, don’t model the bricks, model the wall.

Consistency

The most important visual aspect of a database is consistency of style and
detail throughout a scene. For example, a database may use only intensity tex-
ture and color, the viewer will accept these liberties as realistic only if the
entire database in modeled to he same level of realism. If a photo-realistic
house is put in the same database, the illusion is shattered. The consistency of
style is refers to this relationship between all visual aspects within a scene.
Slight style difference between one database artist and another may also ruin
the illusion of reality.

To generate consistent detail throughout a database a modeler must select a
level of realism that fits within their polygon budget and stick to it. If one starts
with too much detail they will run out of polygons before they run out of data-
base to draw; suddenly the rest of the database becomes surprisingly simple.
Conversely, if too little detail is created the database will not be as realistic as it
could given the polygon budget.

Imitating Nature by Grouping

In all high end simulation the goal it to simulate reality as close as possible.
Unfortunately, reality rarely cooperates with the designs of the database mod-
eler. In reality objects are grouped together, there is no even distribution of fea-
tures, so maintaining uniform scene density becomes almost impossible. One
of the talents of the real-time database artist is dispensing database density
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consistently but allowing for natural concentrations of data without dead space.
The spacing and density of data groupings should depend on the field-of-view
and far clipping plane of the game eyepoint. The following figure the grid rep-
resents a terrain grid, the dots are concentrations of detail, and the FOV is the
triangle. The grouping on the left provides evenly spaced areas of detail to
avoid overload conditions. The grouping on the right my cause frame rate
problems due to the concentration of detail in the center of the terrain:

efficient and inefficient grouping of detail

6   Putting It All Together

A successful database is a combination of art and science. The quest for real-
ism is a constant struggle between appearance and performance. A skilled real-
time database engineer must understand all the technical issues as well as their
impact on the imagery they can create. The bottom line of database modeling
is the ability to use polygon, vertices, and textures effectively. There are two
concepts a professional modeler must understand in order to get the most
visual impact from a limited amount of data:

Avoid hard to model features

Some terrain or model features translate better to polygons and textures that
others. Luckily, much of the world fits well into this medium. There are large
amounts of replication and flat surfaces in features such as roads, warehouses,
farm land, office buildings, and so forth. These are much easier to create realis-
tically than features such as industrial sites, trees, coastline, or rivers. While
building a realistic tree may be a modeling challenge, do not wastes the poly-
gons and textures if the tree is not a critical element in the application. Save
your graphics for what is important.

Don’t over-model

The tendency to over-model a feature is hard to avoid. Over modeling refers to
the process of putting to much detail in an object than will ever be seen. An
object may have twice the polygon count necessary to represent it effectively
or a texture may be double the size it will ever be seen. Additionally LOD
switch ranges are easy to correct when the switch is too close, making it
noticeable, but not if the switch range is too far. The database modeler will
never know if a feature has too much detail, since there are no visual cues to
signal a problem. A database may fit within all the specifications originally
proposed, but because so much detail was wasted on unnecessary information
the database is lacking in precious visual information.
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Making an efficient database that takes advantage of all the hardware’s perfor-
mance and making it visually appealing are the job of the database engineer/
artist. The ability to balance all the conflicting requirements of database design
and created an environment that allows the software to push the edge of the
hardware limitations is the art of the profession.
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1    Introduction

Until very recently, the use of three-dimensional graphics in computer and
video games has been limited entirely to what could be done in software. At
SIGGRAPH ‘96, we see the introduction of a variety of products which claim
to bring dazzling, eye-popping real-time 3D graphics into the home.

As pixel counts and poly-per-second specifications fly to and fro, game devel-
opers are presented with the task of creating entertaining content which will
survive the hardware and API battles. This part of the course will attempt to
introduce a few of the major issues, and present one possible battle-proven
solution.

2   Competition

No matter how beautifully it is rendered, reflected, shadowed, or shaded, a
whirling teapot-ahedron is not sufficient to motivate most game players to
spend five hundred dollars on a new display board. Manufacturers of graphics
accelerators, armed with this knowledge and some really nice teapots, have
been courting computer game developers for months, asking them to produce
special versions of their games that derive some advantage from the hardware.

One primary problem with the situation so far has been the following: If the
developer modifies an existing game, designed to run entirely in software, then
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the market expansion due to hardware acceleration (the number of people who
would buy the game because of this feature) is extremely small. Most of the
early adopters of these 3D boards are likely to already own fast computers, on
which the original game needs no acceleration. If, on the other hand, the devel-
oper goes full out in support of the hardware, writing a game which is not play-
able without it, the developer risks a staggeringly low sales figure for the game,
reliant entirely on the hardware’s performance.

Simply put, it takes roughly twelve to eighteen months to develop a good com-
puter game (or even a bad one). Graphics accelerator manufacturers need great
games on their hardware in order to have game players widely adopt it. Game
companies need to know that a graphics accelerator has been widely adopted in
order to commit the time to develop great games for it.

3   Software-Only Rendering

There are plenty of 3D games available for most computers and game
machines. In the absence of graphics acceleration hardware, game program-
mers have drawn on creative methods for years, producing all-software meth-
ods of rendering real-time 3D games.

In order to keep adequate speed, game-specific shortcuts are taken, as in the
following categories:

Flight Simulators

Flight engines are very good at drawing a horizon and some airplanes, with
extremely limited transform and sorting needs, and no hierarchies.

Dungeon-wall Engines

Using specialized trapezoid-drawing routines, the texture-mapped world con-
sists of vertical walls and horizontal floors, with bitmap-based character graph-
ics.

Sprite Zoomers

Flat bitmaps are scaled up as they scream towards the camera.

In addition to these and other de-generalized graphics techniques, faster com-
puters and more clever programming techniques have led to rapid recent
improvements in software-based 3D engines. There are, however, strict limits
on what can currently be done in software. To crank out 200,000 textured, z-
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buffered polygons per second into a buffer bigger than 320x200 pixels, the
CPU is going to need some help.

4   Hardware Assistance

The only display hardware commonly found on desktop computers is a pixel
buffer. Cartridge-based game machines usually add sprites and scrolling bit-
planes, to help draw rapidly-moving game characters.

Hardware-assisted 3D texture engines were placed into the hands of game
developers just a few years ago, and are only now making a debut in the con-
sumer arena.

1992 SGI and E&S Supercomputers (RealityEngine, ESIG 2000)

1995 Consoles (Sony, Sega, Nintendo, 3DO)

1996 Desktop Accelerators for Mac & PC

5   Division of Hardware Types

Truth in advertising

“3 billion pixels per second”

“500,000 lit, texture-mapped triangles per second”

“Phong shading”

As flashy terms and figures are tossed around by hardware manufacturers, it is
extremely important for developers to keep in mind that there are many differ-
ent types of 3D graphics accelerators. The following is a list of some of the
most fundamental divisions, which have a large impact on the development
process, and the maximum performance which can actually be obtained.

Major Division 1: Type of acceleration

The most basic question to ask a piece of graphics acceleration hardware is
“Exactly what do you accelerate?” The answers vary widely, and have a direct
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impact on many aspects of development. They can, however, typically be
divided into three distinct types, as follows:

Type 1: 2D Polygon Rasterization

Although this is currently the most common type of “3D graphics” board, there
is really no 3D involved. This hardware gets polygons in screen coordinates,
usually pre-clipped, and renders them to the screen. This type of board will
often boast extremely high polygon counts, under the assumption that you have
written magic software which can transform, light, and clip polygons as fast as
the board can spit them out.

Advantages:

Inexpensive

Common

More app control & flexibility

Disadvantages:

Speed

Bus traffic

Complete lack of lighting or other 3D facilities

Most of the work is still done in software

Type 2: Transformation Stack-Based Renderers

GL Programmers are familiar with type 2 engines, as most SGI machines fall
into this category. The graphics hardware contains a model matrix stack, a
viewing matrix stack, and some rendering attributes. It is then handed poly-
gons, vertex by vertex, in world coordinates.

Screen
Rasterize

2D Polys or
Edge Lists

3D World
Coord Polys

World Database
Hierarchy

TransformTraverse

Software Hardware
Type 1 Graphics Accelerator
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Advantages:

Speed

Transform assist in hardware

Light, fog, etc. may be in hardware

Disadvantages:

More expensive

Slightly less app control & flexibility

Type 3: Fully Independent Database Rendering

As a superset of Type 2 above, this type adds the ability to traverse a display
tree on its own, rather than having the CPU hand over one polygon at a time.
Matrix pushes and pops, as well as display state changes, are stored in a form
which the traversal engine can accept. This model follows SGI’s Performer
paradigm.

Screen
Rasterize

2D Polys or
Edge Lists

3D World
Coord Polys

World Database
Hierarchy

TransformTraverse

Software Hardware
Type 2 Graphics Accelerator

Screen
Rasterize

2D Polys or
Edge Lists

3D World
Coord Polys

World Database
Hierarchy

TransformTraverse

Software Hardware
Type 3 Graphics Accelerator
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Advantages:

Speed! Speed! Speed!

Extremely light bus traffic

Parallel operation

Disadvantages:

More expensive

Least app control & flexibility

Major division 2: Occlusion handling

(not collision handling)

An extremely large amount of the complexity of a 3D game involved occlusion
handling. Most software-only engines must use pre-sorting, octants, or BSP
trees (provided the world holds still). However...

Z-buffered versus everything else

An increasing number of graphics acceleration products are introducing z-buff-
ering in hardware. The development time and CPU time saved by efficient use
of z-buffers will come back in the form of better, faster, more creative games.
It’s worth it.

Major division 3: Floating point

It’s there, but is it in the pipeline, or just on the CPU? Few to none of the con-
sumer products currently available have 32-bit floating point support in the
rendering hardware. This simply means that polygon vertices and transforma-
tion matrices must be converted to the hardware’s native fixed-point format in
order to be useful.

The only real floating-point issue, then, is how happy the CPU is about per-
forming object logic in floats.

Major division 4: Texture filtering

 This may seem like a minor point, but it’s not. The ability of a graphics engine
to perform filtering of oversized texels has formed a razor-sharp dividing line
between platforms.
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This feature is entirely dependent on the hardware, as it cannot be done in soft-
ware. A machine which has the ability to filter and blur upscaled textures also
inherits the advantage of cleaner mip-mapping, resulting in less pop-and-
flicker (an artifact which has become a trademark of software-based texture
engines).

6   Graphics API Advantages and Caveats

In the increasing mayhem of 3D graphics acceleration, a little standardization
is a good thing. If the API (Application Programmers’ Interface) is sound and
functional as a means to access the hardware, then it is certainly better than
forcing the developer to learn the hardware’s intimate secrets. Example soft-
ware, written to the API, is typically easy to read, and shows that the hardware
company is serious about its speed and generality claims.

The other common use for graphics API’s is to fill in the gaps left by the hard-
ware. Referring to the hardware acceleration types above, a type 1 board can
become more generally useful when some software is added to perform light-
ing, transformation, and clipping, effectively transforming the whole package
into a type 2 system, with the 3D stage existing in software.

Doubtless, some developers will go around the API, on the grounds that it is
too thick, or that they can implement it better themselves. In many cases, if the
API software people have done their job, this assumption will be wrong. The
people whose jobs center around making the API as efficient as possible are
well motivated by the competition.

SGI’s Performer

A solid example of a well implemented API currently in use is Performer from
SGI. Performer takes a RealityEngine (or other type 2 SGI machine) and trans-
forms it into a type 3 machine. The group at SGI responsible for this software
took a good look at the set of things that real-time simulations have in common
with one another, and wrote a solid, canonical implementation which runs as
efficiently as possible on each SGI hardware configuration.

Companies need to find their emphasis

Some API’s currently available have grown from being methods of accessing
one piece of hardware into proposals for cross-platform standards. The previ-
ous year’s API wars have seen companies attempting to “sell” their API’s to
companies for large sums of money, on the idea that the API will be opera-
tional on all new platforms as they come out.
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The primary problem with this is that the hardware companies which origi-
nated these API’s in the first place are not set up to serve as a Ministry of Stan-
dards, and will be unready and unable to help all of the developers who have
adopted their methods, especially on competing hardware.

Why some API’s won’t work on some machines

Consider a not-so-hypothetical type 3 API which not only allows the program-
mers access to the vertex, polygon, and matrix data, but requires them to
manipulate it directly. The API has a “native” database format, which it knows
how to traverse. This native format was probably derived from the format that
its original graphics accelerator needed.

A problem occurs when the API is moved over to a real type 3 accelerator. This
graphics engine absolutely needs the database in its native format, or it will be
unable to traverse and draw. It is unlikely that the ported API will be re-con-
verting the entire database from its own copy frame by frame, so the unsus-
pecting developer must rewrite volumes of code in order to make the game
work on the new platform. Sort of defeats the purpose of using a “cross-plat-
form” API in the first place.

7   A Cross-Platform Development Approach

Designing for a Type 3 System

So, how does one construct a game which will survive the transition to various
hardware platforms? One extremely stable method of doing this is by design-
ing and implementing the game for a type 3 system in the first place.

Components: Data Structures

Scene Tree

Platform Specific

This is the equivalent of a Performer tree. It contains geometry, transforma-
tion matrices, switches, and rendering attributes.

Attribute Lattice

Platform Independent

Attribute lattices contain a “stickman” connectedness diagram of the
world. They are used for AI navigation, visibility culling, collision han-
dling, fog, ambient sound, and a variety of other spatially determined world
characteristics.
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Object Data

Platform Independent

Every object in the game, from spaceship to timer to teapot, needs state
information. Using a type 3 API abstraction, this data can be nearly 100%
cross-platform.

Keyframe/Motion Data

Platform Independent

Camera Structs

Platform Independent

Sound/Music Data

Platform Independent

Components: Software Modules

World Manager

Platform Specific

The World Manager is, among other things, the game’s interface to any
given type 3 API. It is responsible for knowing the native data structures
and processes, so that the individual objects don’t have to.

Object Code

Platform Independent

Every object in the game has program code to govern its behavior. Using a
type 3 API abstraction, this code can be nearly 100% cross-platform.

Keyframe/Motion Manager

Platform Independent

Camera/Handoff Manager

Platform Independent

Sound/Music Manager

Platform Specific
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8   Conclusion

In order to assure portability among 3D graphics accelerators, a game should
be written for type 3 acceleration, only dipping below for special effects which
will not travel among platforms. When it is brought to a type 1 of 2 machine, a
layer of interface software should be written, if it does not exist already, to
bring the “effective” platform back up to a type 3.

While this does restrict some operations, it by no means requires content of a
game to be “watered down” to the lowest common denominator. On the con-
trary, it will allow full usage of each of the target platforms, without the neces-
sity to fundamentally re-engineer the game.

They key point which sums up all of this chapter’s lessons is the following:
When writing a game for more than one platform, take some time to develop a
razor-sharp definition of what data will and will not travel across platforms,
and hold to it.
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1   Background

GUFtm is a backwards compatible data exchange format developed at Walt
Disney Imagineering. GUF is the second generation of the VR Studio’s in-
house file format, EGG. EGG was used in the production of the Aladdin Vir-
tual Reality attraction at EPCOT.

Disney’s application required that they support features not found in any com-
mon exchange file format, namely vertex morphing, skeletal (vertex level -vs-
polygon level transforms) and animation channels for animating these features.

GUF incorporates all of these features and is designed with extensibility and
backwards compatibility in mind.

Disney is making the GUF technology available for consideration as a stan-
dard. In “legalese”, these are the terms:

Use of GUFtm technology by recipient shall not grant to Disney any
rights in recipients intellectual properties or other business assets; the
grant of use by Disney shall not grant to recipient any rights to the
name Disney in any form or any fanciful characters of Disney. Dis-
ney retains all rights in and to the trademark GUF and it may not be
used without prior written consent from The Walt Disney Company.

There is a GUF mailing list! To join, send a message to:

 guf-request@disney.com

GUF, (GUF) and EGG are trademarks of the The Walt Disney Company.
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2   Description:

GUF is primarily designed as a backwards compatible exchange format. Ide-
ally, exchange formats should possess clear semantics and be simple to parse.
To the extent possible tools, should continue to operate in predictable ways,
even when applications introduce new objects. “GUF level 0” is primarily for
the exchange of DATA OBJECTS, not procedural information.

In designing GUF we had the following goals:

Easy to parse
SINGLE PASS parsing and object construction (** Network/stream

friendly )
Extensible ( Self describing )
Backwards compatible

GUF consists of rules for constructing legal GUF “forms”, primitive data types
and a set of primitive forms.

GUF is not an object system, it is primarily a syntax. Secondarily, it is a base
set of well known (and non-controversial) forms like “(polygon...)”, “(vertex
...)” etc. which can be further specialized by your applications.

3   Key Concepts

There is only one tree in the parser, the “form tree”.  This tree which informs
the parser which forms (constructors) can be substituted for others.  The
parser’s form tree is constructed at run time by “def-form”.  Type checking is
assumed to be performed by the primitive constructors.

Pseudo BNF:

<ident> := [legalchars]+

<slot-id> := <ident>=;; ie: x= , color=

<string> := “.*” ;; including newline

<int> := [-][0-9]+

<real> := [-][0-9]\.[0-9] ;; ie: .9 1.9 1.

<form> := ( <ident> <arglist> )

<slot/value> := <slot-id> <prim>; ; ie: key= 12

|= <slot-id> <form> ;; ie: key= (* 3.1415.)

<arg> := <form>

|= <prim>
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|= <slot/value>

<arglist> := <arg>

|= <arglist> <arg>

<symbol> := ‘<ident>

<prim> := <string>

|= <int>

|= <real>

|= <symbol>

|= <bool>

<bool> := “#t”

|= “#f”

<comment>: = ;; .* ;; ignore to EOL

legalchars = alpha “~!@#$%^&*-_+=<>?/”;; legal symbol chars

4   Primitive/Special Forms

;; storing and retrieving values

    (set!  <ident> <arg>) -> <obj>

    (set!! <ident> <arg>) -> <obj>

    <ident> -> <obj>

    ;; Form definition

    (def-form <symbol>

    [ is=  <symbol>] ;; “parent form”

    [ has= ‘( ... )] ;; defaults

    [ <symbol> ]* ) ;; (additional) field names

-> <::undefined::>

    (guf <arglist>) -or- -> <arglist>

    ‘( <arglist ) -> <arglist>
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<obj> above is the result of “evaluating” arg. Primitives are “self” evaluating”,
for example 12.34 evaluates to 12.34, ‘foo evaluates to ‘foo, identifiers evalu-
ate to whatever they have been set to, etc.

Note:

The simple version of (ref ...) can only reference previously defined values.
See below for explanation of forward reference behavior.

====================

In normal forms, arguments are evaluated first, from RIGHT -> LEFT. This
rule extends to the form name as well.  Forms evaluate to a typed value.

Forms that function primarily through side-effects, may evaluate to “<::unde-
fined::>”, if they do, they will be ignored, and not passed to the enclosing form.

Objects returned by forms are assumed to support a minimal API consisting of
a default constructor, and a slot assignment function. Also, besides returning
values, forms are also required to return the <type> of the value (or return
objects which support dynamic type-id) in order to allow enclosing forms to
perform type checking.

A naked identifier evaluates to the value bound to it via set! or set!!, assuming
it has already been bound.

Optionally, arbitrary topologies can be reconstructed if we add a general pur-
pose forward reference mechanism.  One simple (parser level) method for
doing this would be to extend the identifier evaluation function as follows.  If
the identifier being referenced has not been bound yet, the parser creates a “fix-
up structure” and places it in a work-list. The fix-up structure contains: a refer-
ence to the current object being initialized, the slotname that would be have
been paired with the returned value (if it had been bound) and the identifier
itself. This is something like scheme’s (letrec ...).

Example of forward and circular reference:

(set! poot

(group name = “some-group” poot)))

There are two distinct types of “set” statements, (set! ...) and (set!!...). The first
form of set creates bindings with lexical scope the second creates TOP-LEVEL
bindings (or parser global) scope.
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5   Issues/Features

Binary GUF

BINARY GUF is semanticly equivalent to ASCII GUF. The only difference is
that the data stream is pre-tokenized and that primitives (ie: <real>s) are sent in
their binary form. There is NO GLOBAL TOKEN enumeration. Each applica-
tion can generate it’s own token/symbol pairs and even add to it on the fly, the
only constraint is that prior to sending pre-tokenized data that the sending
application dump it’s symbol to the receiver. Ask me about SYMBOLS!

Setting DEFAULTS

We can _easily_ associate default arguments (slot-name/value pairs) per form.
It may be useful to be able to modify the defaults in the middle of the data
stream as a way of expressing shared state. We’ve added a special form called
“form-has”; it looks like (form-has <formname> ‘(.... )).

(form-has polygon

  ‘( color= red double-sided= #t ) )

which is 100% equivalent to:

(form-has polygon

  (guf color= red double-sided= #t ) )

after which all polygons IN THE CURRENT SCOPE will default to being two
sided and red when constructed. Please note that this capability is supplied by
the parser alone, no modification to the underlying object system is required.

In fact, this fits nicely in def-form:

(set! red (rgba 1. 0. 0. 1.))

(def-form redpoly

is= polygon

has=    ‘( color= red double-sided= #t )

)

The (form-has ...) function follows lexical scoping rules. This means that defi-
nitions at the top-level are GLOBAL defaults and internal defaults disappear
when their enclosing scope is left. Since GUF evaluates in a standard order
(left -> right) we can nest defaults and get predictable (and desirable!) behav-
ior.
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;; constrain Z

(def-form vtx3 is= guf ‘x ‘y ‘z)

(def-form xy-vtx is= vtx3 has= ‘( z= 5. ))

(vtx-pool

(xy-vtx 1. 1.) ;; -> 1. 1. 5.

(xy-vtx 2. 2.) ;; -> 2. 2. 5.

(form-has xy-vtx ‘( z= 3. ))

(xy-vtx 3. 3.) ;; -> 3. 3. 3.

 (def-form x-vtx is= xy-vtx has= ‘( y= 4.))

 (x-vtx 4. ) ;; -> 4. 4. 3.

)

(vtx-pool

 (xy-vtx 1. 1.) ;; -> 1. 1. 5.

)

6  Example #1 - Backwards compatibility

test-file.guf

//

// The following is an example of how GUF supports backwards com-
patibility

//

// definitions

//

(def-form rgb

  is= guf

  ‘r ‘g ‘b ) ;; base form

(def-form rgba ;; “derived from rgb”

  is= rgb

  ‘a

  has= ‘( a= 1.0 );; default alpha is 1.

  )

// etc...
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(circle

 color = (rgba 1. a = .5);; translucent red circle

 )

Assumptions:

A system which does support rgb but not type rgba when fed “test-file.guf”
would do the following:

Enter circle form

Create a default circle and assign to obj

note that the next value should be assigned to the slot-name “color”

Enter rgba form

since this parser doesn’t support rgba it punts and

uses the “rgb” form.

Create a default rgb and assign to obj

obj.set_slot w/ slotname=”r”,type=<real>,val=1.

    /* the red field is set to 1. */

obj.set_slot w/ slontame=”a”,type=<real>,val=.5

    /* rgb ignores this information */

exit rgba form

obj.set_slot w/ slotname=”color”,type=<rgb>,val=(rgb 1. 0. 0.)

Exit circle form

The constructors themselves should type check prior prior to setting the slots.

Obviously - the best we can do in this situation is be “wrong in a good way”.
The idea is that, in many cases behavior like the above may be good enough to
get the job at hand done.

   ================

   ===== NOTE =====

   ================

This is currently under revision! Your comments are actively pursued!

Please mail all comments to: scott@disney.com or call at 818-544-6790.

Lexically guf is identical to scheme.
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7   Sample GUF File:

stickman.guf

;; stickman.guf (GUF v.9)

;; Info--

;; Source File: stickman-morph

;; Created on:  Mon Feb 20 23:21:51 1995

;;         by:  alias2guf -vfmw Stickman stickman-

morph

;; Pathalias--

;; stick:“/fat/people/aladdin/user_data/test/pix/”

;;

(dart

 name= “Stickman”

 (dcs #t)

 ;; Base of skined object

 (skel-morph

  (set! Polyset#2

(m-vtxPool

 (m-vtx 0.449956 16.337658 -13.723756 )

 (m-vtx 0.987580  16.305292 -13.427006 )

 (m-vtx 1.204791  16.282518 -11.054466 )

 (m-vtx 0.082079 16.345008 -10.489552 )

 (m-vtx 0.951188 15.675961 -13.429715 )

 (m-vtx 1.168399 15.653186 -11.057175 )

 (m-vtx 0.045687 15.715676 -10.492261 )

 (m-vtx -1.169168 15.785950 -10.497708 )

 (m-vtx -1.132776 16.415281 -10.494999 )

 (m-vtx 0.413564 15.708327 -13.726465 )

 (m-vtx -0.801291 15.778600 -13.731912 )

 (m-vtx -0.764899 16.407932 -13.729203 )

 ))

  (set! Polyset#3

(m-vtxPool

 (m-vtx 0.086105 16.388311 10.518361

(m-uv 0.000000 0.450000

      (d-uv  6 1.0 0.0 )

      (d-uv  7 0.0 1.0 )

      )

)

 (m-vtx 1.209545 16.333132 11.082589

(m-uv 0.000000 0.650000

      (d-uv  6 1.0 0.0 )

      (d-uv  7 0.0 1.0 )

      )

)

 (m-vtx 0.994807 16.376303 13.455070

(m-uv 1.000000 0.650000

      (d-uv  6 1.0 0.0 )

      (d-uv  7 0.0 1.0 )

      )

(d-xyz 4 1.348694 0.000000 0.529844 )

)

 (m-vtx 0.457432 16.410153 13.752105

(m-uv 1.000000 0.450000

      (d-uv  6 1.0 0.0 )

      (d-uv  7 0.0 1.0 )

      )

(d-xyz 4 1.348694 0.000000 0.529844 )

)

 (m-vtx 1.174476 15.703774 11.090867

(m-uv 0.000000 0.850000

      (d-uv  6 1.0 0.0 )

      (d-uv  7 0.0 1.0 )

      )

)

 (m-vtx 0.959738 15.746945 13.463348

(m-uv 1.000000 0.850000

      (d-uv  6 1.0 0.0 )

      (d-uv  7 0.0 1.0 )

      )

(d-xyz 4 1.348694 0.000000 0.529844 )

)

 (m-vtx -1.128888 16.456094 10.524504

(m-uv 0.000000 0.250000

      (d-uv  6 1.0 0.0 )

      (d-uv  7 0.0 1.0 )

      )

)

 (m-vtx -1.163957 15.826735 10.532782

(m-uv 0.000000 1.250000

      (d-uv  6 1.0 0.0 )
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      (d-uv  7 0.0 1.0 )

      )

)

 (m-vtx 0.051036 15.758953 10.526639

(m-uv 0.000000 1.050000

      (d-uv  6 1.0 0.0 )

      (d-uv  7 0.0 1.0 )

      )

)

 (m-vtx -0.792630 15.848578 13.766526

(m-uv 1.000000 1.250000

      (d-uv  6 1.0 0.0 )

      (d-uv  7 0.0 1.0 )

      )

(d-xyz 4 -1.204191 0.000000 0.000000 )

)

 (m-vtx 0.422363 15.780795 13.760383

(m-uv 1.000000 1.050000

      (d-uv  6 1.0 0.0 )

      (d-uv  7 0.0 1.0 )

      )

(d-xyz 4 1.348694 0.000000 0.529844 )

)

 (m-vtx -0.757561 16.477936 13.758248

(m-uv 1.000000 0.250000

      (d-uv  6 1.0 0.0 )

      (d-uv  7 0.0 1.0 )

      )

(d-xyz 4 -1.204191 0.000000 0.000000 )

)

 )

)

  (set! Polyset

(m-vtxPool

 (m-vtx -1.000000 9.015649 -0.008487

(m-uv 0.248649 0.418305

      (d-uv  5 0.0 1.0 )

      )

)

 (m-vtx -1.000000 9.015649 -2.017877

(m-uv 0.073227 0.418305

      (d-uv  5 0.0 1.0 )

      )

)

 (m-vtx -1.000000 11.015649 -2.017877

(m-uv 0.073227 0.503675

      (d-uv  5 0.0 1.0 )

      )

)

 (m-vtx -1.000000 11.015649 -0.008487

(m-uv 0.248649 0.503675

      (d-uv  5 0.0 1.0 )

      )

)

 (m-vtx 1.000000 9.015649 -2.017877

(m-uv 0.926773 0.418305

      (d-uv  5 0.0 1.0 )

      )

)

 (m-vtx 1.000000 11.015649 -2.017877

(m-uv 0.926773 0.503675

      (d-uv  5 0.0 1.0 )

      )

)

 (m-vtx -1.000000 4.517996 2.601173

(m-uv 0.441587 0.226323

      (d-uv  5 0.0 1.0 )

      )

)

 (m-vtx -1.000000 0.020343 2.601173

(m-uv 0.441587 0.034341

      (d-uv  5 0.0 1.0 )

      )

)

 (m-vtx -1.000000 0.020343 0.591784

(m-uv 0.335045 0.034341

      (d-uv  5 0.0 1.0 )

      )

)

 (m-vtx -1.000000 4.517996 0.591784

(m-uv 0.335045 0.226323

      (d-uv  5 0.0 1.0 )

      )

)

 (m-vtx -1.000000 4.527383 -0.508713

(m-uv 0.175103 0.226724

      (d-uv  5 0.0 1.0 )

      )

)

 (m-vtx -1.000000 0.039117 -0.508713

(m-uv 0.175103 0.035142

      (d-uv  5 0.0 1.0 )

      )

)

 (m-vtx -1.000000 0.039117 -2.518102

(m-uv 0.060165 0.035142

      (d-uv  5 0.0 1.0 )

      )

)

 (m-vtx -1.000000 4.527383 -2.518102

(m-uv 0.060165 0.226724

      (d-uv  5 0.0 1.0 )

      )

)

 (m-vtx 1.000000 9.015649 2.000903

(m-uv 0.573763 0.418305

      (d-uv  5 0.0 1.0 )

      )

)

 (m-vtx 1.000000 11.015649 2.000903
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(m-uv 0.573763 0.503675

      (d-uv  5 0.0 1.0 )

      )

)

 (m-vtx 1.000000 11.015649 -0.008487

(m-uv 0.751351 0.503675

      (d-uv  5 0.0 1.0 )

      )

)

 (m-vtx 1.000000 9.015649 -0.008487

(m-uv 0.751351 0.418305

      (d-uv  5 0.0 1.0 )

      )

)

 (m-vtx -1.000000 11.015649 2.000903

(m-uv 0.426237 0.503675

      (d-uv  5 0.0 1.0 )

      )

)

 (m-vtx -1.000000 9.015649 2.000903

(m-uv 0.426237 0.418305

      (d-uv  5 0.0 1.0 )

      )

)

 (m-vtx 1.000000 0.020343 2.601173

(m-uv 0.558413 0.034341

      (d-uv  5 0.0 1.0 )

      )

)

 (m-vtx 1.000000 0.020343 0.591784

(m-uv 0.664955 0.034341

      (d-uv  5 0.0 1.0 )

      )

)

 (m-vtx 1.000000 4.517996 2.601173

(m-uv 0.558413 0.226323

      (d-uv  5 0.0 1.0 )

      )

)

 (m-vtx 1.000000 4.517996 0.591784

(m-uv 0.664955 0.226323

      (d-uv  5 0.0 1.0 )

      )

)

 (m-vtx 1.000000 0.039117 -0.508713

(m-uv 0.824897 0.035142

      (d-uv  5 0.0 1.0 )

      )

)

 (m-vtx 1.000000 0.039117 -2.518102

(m-uv 0.939835 0.035142

      (d-uv  5 0.0 1.0 )

      )

)

 (m-vtx 1.000000 4.527383 -0.508713

(m-uv 0.824897 0.226724

      (d-uv  5 0.0 1.0 )

      )

)

 (m-vtx 1.000000 4.527383 -2.518102

(m-uv 0.939835 0.226724

      (d-uv  5 0.0 1.0 )

      )

)

 (m-vtx -1.000000 12.015649 -1.999097

(m-uv 0.077435 0.540680

      (d-uv  5 0.0 1.0 )

      )

)

 (m-vtx -1.000000 17.015649 -1.999097

(m-uv 0.086231 0.756044

      (d-uv  5 0.0 1.0 )

      )

)

 (m-vtx -1.000000 17.015649 2.000903

(m-uv 0.413832 0.756044

      (d-uv  5 0.0 1.0 )

      )

)

 (m-vtx -1.000000 12.015649 2.000903

(m-uv 0.422624 0.540680

      (d-uv  5 0.0 1.0 )

      )

)

 (m-vtx -1.000000 17.409076 -1.233409

(m-uv 0.125572 0.772754

      (d-uv  5 0.0 1.0 )

      )

)

 (m-vtx -1.000000 17.869200 -1.233409

(m-uv 0.128446 0.792297

      (d-uv  5 0.0 1.0 )

      )

)

 (m-vtx -1.000000 17.869200 1.167193

(m-uv 0.367174 0.792297

      (d-uv  5 0.0 1.0 )

      )

)

 (m-vtx -1.000000 17.409076 1.167193

(m-uv 0.370040 0.772754

      (d-uv  5 0.0 1.0 )

      )

)

 (m-vtx 1.000000 12.015649 2.000903

(m-uv 0.568979 0.551676

      (d-uv  5 0.0 1.0 )

      )
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)

 (m-vtx 1.000000 11.015649 2.000903

(m-uv 0.573763 0.503675

      (d-uv  5 0.0 1.0 )

      )

)

 (m-vtx -1.000000 11.015649 2.000903

(m-uv 0.426237 0.503675

      (d-uv  5 0.0 1.0 )

      )

)

 (m-vtx -1.000000 17.015649 2.996205

(m-uv 0.439223 0.756044

      (d-uv  5 0.0 1.0 )

      )

)

 (m-vtx -1.000000 17.015649 3.991508

(m-uv 0.453402 0.756044

      (d-uv  5 0.0 1.0 )

      )

)

 (m-vtx -1.000000 15.017003 3.991508

(m-uv 0.460753 0.671154

      (d-uv  5 0.0 1.0 )

      )

)

 (m-vtx -1.000000 15.017003 2.996205

(m-uv 0.448505 0.671154

      (d-uv  5 0.0 1.0 )

      )

)

 (m-vtx 1.000000 12.015649 -1.999097

(m-uv 0.930966 0.551676

      (d-uv  5 0.0 1.0 )

      )

)

 (m-vtx 1.000000 11.015649 -1.999097

(m-uv 0.926179 0.503675

      (d-uv  5 0.0 1.0 )

      )

)

 (m-vtx 1.000000 17.015649 2.000903

(m-uv 0.559633 0.764523

      (d-uv  5 0.0 1.0 )

      )

)

 (m-vtx 1.000000 17.015649 -1.999097

(m-uv 0.940318 0.764523

      (d-uv  5 0.0 1.0 )

      )

)

 (m-vtx -1.000000 11.015649 -1.999097

(m-uv 0.073821 0.503675

      (d-uv  5 0.0 1.0 )

      )

)

 (m-vtx 1.000000 15.017003 -2.985010

(m-uv 0.949254 0.679632

      (d-uv  5 0.0 1.0 )

      )

)

 (m-vtx 1.000000 15.017003 -3.970923

(m-uv 0.961288 0.679632

      (d-uv  5 0.0 1.0 )

      )

)

 (m-vtx -1.000000 15.017003 -3.970923

(m-uv 0.039442 0.671154

      (d-uv  5 0.0 1.0 )

      )

)

 (m-vtx -1.000000 15.017003 -2.985010

(m-uv 0.051675 0.671154

      (d-uv  5 0.0 1.0 )

      )

)

 (m-vtx 1.000000 15.416910 -6.979815

(m-uv 0.978567 0.696618

      (d-uv  5 0.0 1.0 )

      )

)

 (m-vtx 1.000000 15.416910 -9.988708

(m-uv 0.984977 0.696618

      (d-uv  5 0.0 1.0 )

      )

(d-xyz 2 0.871974 -1.027684 0.000000 )

)

 (m-vtx -1.000000 15.416910 -9.988708

(m-uv 0.016581 0.688139

      (d-uv  5 0.0 1.0 )

      )

(d-xyz 2 -1.121110 -0.778548 0.000000 )

)

 (m-vtx -1.000000 15.416910 -6.979815

(m-uv 0.023640 0.688139

      (d-uv  5 0.0 1.0 )

      )

)

 (m-vtx -1.000000 17.015649 -2.985010

(m-uv 0.060983 0.756044

      (d-uv  5 0.0 1.0 )

      )

)

 (m-vtx -1.000000 17.015649 -3.970923

(m-uv 0.046826 0.756044

      (d-uv  5 0.0 1.0 )

      )

)

 (m-vtx 1.000000 17.015649 -2.985010

(m-uv 0.958979 0.764523
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      (d-uv  5 0.0 1.0 )

      )

)

 (m-vtx 1.000000 17.015649 -3.970923

(m-uv 0.968865 0.764523

      (d-uv  5 0.0 1.0 )

      )

)

 (m-vtx -1.000000 17.015649 6.996196

(m-uv 0.472893 0.756044

      (d-uv  5 0.0 1.0 )

      )

)

 (m-vtx -1.000000 17.015649 10.000883

(m-uv 0.480943 0.756044

      (d-uv  5 0.0 1.0 )

      )

)

 (m-vtx -1.000000 15.416910 10.000883

(m-uv 0.483439 0.688139

      (d-uv  5 0.0 1.0 )

      )

)

 (m-vtx -1.000000 15.416910 6.996196

(m-uv 0.476414 0.688139

      (d-uv  5 0.0 1.0 )

      )

)

 (m-vtx 1.000000 15.017003 2.996205

(m-uv 0.550569 0.679632

      (d-uv  5 0.0 1.0 )

      )

)

 (m-vtx 1.000000 15.017003 3.991508

(m-uv 0.538520 0.679632

      (d-uv  5 0.0 1.0 )

      )

)

 (m-vtx 1.000000 17.015649 2.996205

(m-uv 0.540875 0.764523

      (d-uv  5 0.0 1.0 )

      )

)

 (m-vtx 1.000000 17.015649 3.991508

(m-uv 0.530978 0.764523

      (d-uv  5 0.0 1.0 )

      )

)

 (m-vtx -1.000000 18.323315 -1.497176

(m-uv 0.115785 0.811585

      (d-uv  5 0.0 1.0 )

      )

(d-xyz 1 0.000000 0.131757 -2.004587 )

)

 (m-vtx -1.000000 21.081348 -1.497176

(m-uv 0.130630 0.928730

      (d-uv  5 0.0 1.0 )

      )

(d-xyz 1 0.000000 2.908063 1.364625 )

(d-xyz 3 0.000000 1.661971 0.000000 )

)

 (m-vtx -1.000000 21.081348 1.416799

(m-uv 0.365000 0.928730

      (d-uv  5 0.0 1.0 )

      )

(d-xyz 1 0.000000 2.908063 -1.374036 )

(d-xyz 3 0.000000 1.661971 0.000000 )

)

 (m-vtx -1.000000 18.323315 1.416799

(m-uv 0.379842 0.811585

      (d-uv  5 0.0 1.0 )

      )

(d-xyz 1 0.000000 0.197635 2.136344 )

)

 (m-vtx 1.000000 17.409076 1.167193

(m-uv 0.590686 0.781233

      (d-uv  5 0.0 1.0 )

      )

)

 (m-vtx 1.000000 17.869200 1.167193

(m-uv 0.586189 0.800776

      (d-uv  5 0.0 1.0 )

      )

)

 (m-vtx 1.000000 17.409076 -1.233409

(m-uv 0.913256 0.781233

      (d-uv  5 0.0 1.0 )

      )

)

 (m-vtx 1.000000 17.869200 -1.233409

(m-uv 0.917639 0.800776

      (d-uv  5 0.0 1.0 )

      )

)

 (m-vtx 1.000000 21.081348 -1.497176

(m-uv 0.960134 0.937209

      (d-uv  5 0.0 1.0 )

      )

(d-xyz 1 0.000000 2.908063 1.364625 )

)

 (m-vtx 1.000000 21.081348 1.416799

(m-uv 0.542027 0.937209

      (d-uv  5 0.0 1.0 )

      )

(d-xyz 1 0.000000 2.908063 -1.374036 )

)

 (m-vtx 1.000000 18.323315 1.416799

(m-uv 0.569106 0.820064
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      (d-uv  5 0.0 1.0 )

      )

(d-xyz 1 0.000000 0.197635 2.136344 )

)

 (m-vtx 1.000000 18.323315 -1.497176

(m-uv 0.934186 0.820064

      (d-uv  5 0.0 1.0 )

      )

(d-xyz 1 0.000000 0.131757 -2.004587 )

)

 (m-vtx 1.000000 17.015649 -9.988708

(m-uv 0.987488 0.764523

      (d-uv  5 0.0 1.0 )

      )

(d-xyz 2 1.058826 0.903116 0.000000 )

)

 (m-vtx -1.000000 17.015649 -9.988708

(m-uv 0.019080 0.756044

      (d-uv  5 0.0 1.0 )

      )

(d-xyz 2 -0.903116 1.121110 0.000000 )

)

 (m-vtx -1.000000 17.015649 -6.979815

(m-uv 0.027169 0.756044

      (d-uv  5 0.0 1.0 )

      )

)

 (m-vtx 1.000000 17.015649 -6.979815

(m-uv 0.982133 0.764523

      (d-uv  5 0.0 1.0 )

      )

)

 (m-vtx 1.000000 17.015649 10.000883

(m-uv 0.512497 0.764523

      (d-uv  5 0.0 1.0 )

      )

)

 (m-vtx 1.000000 15.416910 10.000883

(m-uv 0.515005 0.696618

      (d-uv  5 0.0 1.0 )

      )

)

 (m-vtx 1.000000 15.416910 6.996196

(m-uv 0.521383 0.696618

      (d-uv  5 0.0 1.0 )

      )

)

 (m-vtx 1.000000 17.015649 6.996196

(m-uv 0.517826 0.764523

      (d-uv  5 0.0 1.0 )

      )

)

 )

)

  ;;

  ;; Skeleton Data

  ;;

  (joint

   name= “RootJoint”

   (transform

    matrix= (mat4x4

     1.000000 0.000000 0.000000 0.000000

     0.000000 1.000000 0.000000 0.000000

     0.000000 0.000000 1.000000 0.000000

     0.000000 0.000000 0.000000 1.000000

     )

    )

   (joint

    name= “spine1”

    (transform

     matrix= (mat4x4

      1.000000 0.000000 0.000000 0.000000

      0.000000 1.000000 0.000000 0.000000

      0.000000 0.000000 1.000000 0.000000

      0.000000 10.019320 -0.043357 1.000000

      )

     )

    (m-vtxRef

     1 3 4 6 16 17 18 19 38 39 45

     48

     pool= Polyset

     )

    (joint

     name= “rhip”

     (transform

      matrix= (mat4x4

       1.000000 0.000000 0.000000 0.000000

       0.000000 1.000000 0.000000 0.000000

       0.000000 0.000000 1.000000 0.000000

       0.000000 -0.031612 1.043555 1.000000

       )

      )

     (m-vtxRef

      15 20

      pool= Polyset

      )

     (joint

      name= “rknee”

      (transform

       matrix= (mat4x4

1.000000 0.000000 0.000000 0.000000

0.000000 1.000000 0.000000 0.000000

0.000000 0.000000 1.000000 0.000000

0.000000 -4.994824 0.537589 1.000000

)

       )

      (m-vtxRef

       7 8 9 10 21 22 23 24
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       pool= Polyset

       )

      )

     )

    (joint

     name= “lhip”

     (transform

      matrix= (mat4x4

       1.000000 0.000000 0.000000 0.000000

       0.000000 1.000000 0.000000 0.000000

       0.000000 0.000000 1.000000 0.000000

       0.000000 -0.063225 -0.917064 1.000000

       )

      )

     (m-vtxRef

      2 5

      pool= Polyset

      )

     (joint

      name= “lknee”

      (transform

       matrix= (mat4x4

1.000000 0.000000 0.000000 0.000000

0.000000 1.000000 0.000000 0.000000

0.000000 0.000000 1.000000 0.000000

0.000000 -4.931599 -0.505966 1.000000

)

       )

      (m-vtxRef

       11 12 13 14 25 26 27 28

       pool= Polyset

       )

      )

     )

    (joint

     name= “spine2”

     (transform

      matrix= (mat4x4

       1.000000 0.000000 0.000000 0.000000

       0.000000 1.000000 0.000000 0.000000

       0.000000 0.000000 1.000000 0.000000

       0.000000 1.485803 0.063246 1.000000

       )

      )

     (m-vtxRef

      29 30 31 32 33 36 37 44 46 47 73

      75

      pool= Polyset

      )

     (joint

      name= “spine3”

      (transform

       matrix= (mat4x4

1.000000 0.000000 0.000000 0.000000

0.000000 1.000000 0.000000 0.000000

0.000000 0.000000 1.000000 0.000000

0.491367 5.050761 -0.031623 1.000000

)

       )

      (m-vtxRef

       34 35 74 76

       pool= Polyset

       )

      (joint

       name= “rshoulder”

       (transform

matrix= (mat4x4

 1.000000 0.000000 0.000000 0.000000

 0.000000 1.000000 0.000000 0.000000

 0.000000 0.000000 1.000000 0.000000

 -0.000938 -0.031601 2.466585 1.000000

 )

)

       (m-vtxRef

40 41 42 43 65 66 67 68

pool= Polyset

)

       (joint

name= “relbow”

(transform

 matrix= (mat4x4

  1.000000 0.000000 0.000000 0.000000

  0.000000 1.000000 0.000000 0.000000

  0.000000 0.000000 1.000000 0.000000

  0.000000 0.000000 3.541763 1.000000

  )

 )

(m-vtxRef

 1 2 3 4 5 6 7 8 9 10 11

 12

 pool= Polyset#3

 )

(m-vtxRef

 61 62 63 64 85 86 87 88

 pool= Polyset

 )

)

       )

      (joint

       name= “lshoulder”

       (transform

matrix= (mat4x4

 1.000000 0.000000 0.000000 0.000000

 0.000000 1.000000 0.000000 0.000000

 0.000000 0.000000 1.000000 0.000000

 -0.000938 -0.031601 -2.434962 1.000000

 )

)
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       (m-vtxRef

49 50 51 52 57 58 59 60

pool= Polyset

)

       (joint

name= “lelbow”

(transform

 matrix= (mat4x4

  1.000000 0.000000 0.000000 0.000000

  0.000000 1.000000 0.000000 0.000000

  0.000000 0.000000 1.000000 0.000000

  0.000938 0.031601 -3.573386 1.000000

  )

 )

(m-vtxRef

 1 2 3 4 5 6 7 8 9 10 11

 12

 pool= Polyset#2

 )

(m-vtxRef

 53 54 55 56 81 82 83 84

 pool= Polyset

 )

)

       )

      (joint

       name= “neck”

       (transform

matrix= (mat4x4

 1.000000 0.000000 0.000000 0.000000

 0.000000 1.000000 0.000000 0.000000

 0.000000 0.000000 1.000000 0.000000

 0.042202 1.421949 0.000000 1.000000

 )

)

       (m-vtxRef

69 70 71 72 77 78 79 80

pool= Polyset

)

       )

      )

     )

    )

   )

  ;;

  ;; Polygons

  ;;

  (p-group

   name= “Polyset#2”

   (ct-poly

    (rgba 0.903194 0.762680 0.458617 1.000000 )

    (m-vtxRef 4 3 2 1 pool= Polyset#2 )

    )

   (ct-poly

    (rgba 0.903194 0.762680 0.458617 1.000000 )

    (m-vtxRef 3 6 5 2 pool= Polyset#2 )

    )

   (ct-poly

    (rgba 0.903194 0.762680 0.458617 1.000000 )

    (m-vtxRef 9 8 7 4 pool= Polyset#2 )

    )

   (ct-poly

    (rgba 0.903194 0.762680 0.458617 1.000000 )

    (m-vtxRef 4 7 6 3 pool= Polyset#2 )

    )

   (ct-poly

    (rgba 0.903194 0.762680 0.458617 1.000000 )

    (m-vtxRef 8 11 10 7 pool= Polyset#2 )

    )

   (ct-poly

    (rgba 0.903194 0.762680 0.458617 1.000000 )

    (m-vtxRef 7 10 5 6 pool= Polyset#2 )

    )

   (ct-poly

    (rgba 0.903194 0.762680 0.458617 1.000000 )

    (m-vtxRef 12 1 10 11 pool= Polyset#2 )

    )

   (ct-poly

    (rgba 0.903194 0.762680 0.458617 1.000000 )

    (m-vtxRef 1 2 5 10 pool= Polyset#2 )

    )

   (ct-poly

    (rgba 0.903194 0.762680 0.458617 1.000000 )

    (m-vtxRef 9 4 1 12 pool= Polyset#2 )

    )

   )

  (p-group

   name= “Polyset#3”

   (ct-poly

    (rgba 1.000000 1.000000 1.000000 1.000000 )

    (txt “stick:urn1.rgb”)

    (m-vtxRef 4 3 2 1 pool= Polyset#3 )

    )

   (ct-poly

    (rgba 1.000000 1.000000 1.000000 1.000000 )

    (txt “stick:urn1.rgb”)

    (m-vtxRef 3 6 5 2 pool= Polyset#3 )

    )

   (ct-poly

    (rgba 1.000000 1.000000 1.000000 1.000000 )

    (txt “stick:urn1.rgb”)

    (m-vtxRef 1 9 8 7 pool= Polyset#3 )

    )

   (ct-poly

    (rgba 1.000000 1.000000 1.000000 1.000000 )

    (txt “stick:urn1.rgb”)

    (m-vtxRef 2 5 9 1 pool= Polyset#3 )

    )
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   (ct-poly

    (rgba 1.000000 1.000000 1.000000 1.000000 )

    (txt “stick:urn1.rgb”)

    (m-vtxRef 9 11 10 8 pool= Polyset#3 )

    )

   (ct-poly

    (rgba 1.000000 1.000000 1.000000 1.000000 )

    (txt “stick:urn1.rgb”)

    (m-vtxRef 5 6 11 9 pool= Polyset#3 )

    )

   (ct-poly

    (rgba 1.000000 1.000000 1.000000 1.000000 )

    (txt “stick:urn1.rgb”)

    (m-vtxRef 10 11 4 12 pool= Polyset#3 )

    )

   (ct-poly

    (rgba 1.000000 1.000000 1.000000 1.000000 )

    (txt “stick:urn1.rgb”)

    (m-vtxRef 11 6 3 4 pool= Polyset#3 )

    )

   (ct-poly

    (rgba 1.000000 1.000000 1.000000 1.000000 )

    (txt “stick:urn1.rgb”)

    (m-vtxRef 12 4 1 7 pool= Polyset#3 )

    )

   )

  (p-group

   name= “Polyset”

   (ct-poly

    (rgba 1.000000 1.000000 1.000000 1.000000 )

    (txt “stick:640X480.rgb”)

    (m-vtxRef 4 3 2 1 pool= Polyset )

    )

   (ct-poly

    (rgba 1.000000 1.000000 1.000000 1.000000 )

    (txt “stick:640X480.rgb”)

    (m-vtxRef 3 6 5 2 pool= Polyset )

    )

   (ct-poly

    (rgba 1.000000 1.000000 1.000000 1.000000 )

    (txt “stick:640X480.rgb”)

    (m-vtxRef 10 9 8 7 pool= Polyset )

    )

   (ct-poly

    (rgba 1.000000 1.000000 1.000000 1.000000 )

    (txt “stick:640X480.rgb”)

    (m-vtxRef 14 13 12 11 pool= Polyset )

    )

   (ct-poly

    (rgba 1.000000 1.000000 1.000000 1.000000 )

    (txt “stick:640X480.rgb”)

    (m-vtxRef 18 17 16 15 pool= Polyset )

    )

   (ct-poly

    (rgba 1.000000 1.000000 1.000000 1.000000 )

    (txt “stick:640X480.rgb”)

    (m-vtxRef 5 6 17 18 pool= Polyset )

    )

   (ct-poly

    (rgba 1.000000 1.000000 1.000000 1.000000 )

    (txt “stick:640X480.rgb”)

    (m-vtxRef 16 17 6 3 4 19 pool= Polyset )

    )

   (ct-poly

    (rgba 1.000000 1.000000 1.000000 1.000000 )

    (txt “stick:640X480.rgb”)

    (m-vtxRef 2 14 11 1 pool= Polyset )

    )

   (ct-poly

    (rgba 1.000000 1.000000 1.000000 1.000000 )

    (txt “stick:640X480.rgb”)

    (m-vtxRef 19 4 1 20 pool= Polyset )

    )

   (ct-poly

    (rgba 1.000000 1.000000 1.000000 1.000000 )

    (txt “stick:640X480.rgb”)

    (m-vtxRef 9 22 21 8 pool= Polyset )

    )

   (ct-poly

    (rgba 1.000000 1.000000 1.000000 1.000000 )

    (txt “stick:640X480.rgb”)

    (m-vtxRef 7 23 15 20 pool= Polyset )

    )

   (ct-poly

    (rgba 1.000000 1.000000 1.000000 1.000000 )

    (txt “stick:640X480.rgb”)

    (m-vtxRef 8 21 23 7 pool= Polyset )

    )

   (ct-poly

    (rgba 1.000000 1.000000 1.000000 1.000000 )

    (txt “stick:640X480.rgb”)

    (m-vtxRef 23 24 18 15 pool= Polyset )

    )

   (ct-poly

    (rgba 1.000000 1.000000 1.000000 1.000000 )

    (txt “stick:640X480.rgb”)

    (m-vtxRef 21 22 24 23 pool= Polyset )

    )

   (ct-poly

    (rgba 1.000000 1.000000 1.000000 1.000000 )

    (txt “stick:640X480.rgb”)

    (m-vtxRef 18 24 10 1 pool= Polyset )

    )

   (ct-poly

    (rgba 1.000000 1.000000 1.000000 1.000000 )

    (txt “stick:640X480.rgb”)

    (m-vtxRef 24 22 9 10 pool= Polyset )

    )
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   (ct-poly

    (rgba 1.000000 1.000000 1.000000 1.000000 )

    (txt “stick:640X480.rgb”)

    (m-vtxRef 1 10 7 20 pool= Polyset )

    )

   (ct-poly

    (rgba 1.000000 1.000000 1.000000 1.000000 )

    (txt “stick:640X480.rgb”)

    (m-vtxRef 13 26 25 12 pool= Polyset )

    )

   (ct-poly

    (rgba 1.000000 1.000000 1.000000 1.000000 )

    (txt “stick:640X480.rgb”)

    (m-vtxRef 11 27 18 1 pool= Polyset )

    )

   (ct-poly

    (rgba 1.000000 1.000000 1.000000 1.000000 )

    (txt “stick:640X480.rgb”)

    (m-vtxRef 12 25 27 11 pool= Polyset )

    )

   (ct-poly

    (rgba 1.000000 1.000000 1.000000 1.000000 )

    (txt “stick:640X480.rgb”)

    (m-vtxRef 27 28 5 18 pool= Polyset )

    )

   (ct-poly

    (rgba 1.000000 1.000000 1.000000 1.000000 )

    (txt “stick:640X480.rgb”)

    (m-vtxRef 25 26 28 27 pool= Polyset )

    )

   (ct-poly

    (rgba 1.000000 1.000000 1.000000 1.000000 )

    (txt “stick:640X480.rgb”)

    (m-vtxRef 5 28 14 2 pool= Polyset )

    )

   (ct-poly

    (rgba 1.000000 1.000000 1.000000 1.000000 )

    (txt “stick:640X480.rgb”)

    (m-vtxRef 28 26 13 14 pool= Polyset )

    )

   (ct-poly

    (rgba 1.000000 1.000000 1.000000 1.000000 )

    (txt “stick:640X480.rgb”)

    (m-vtxRef 32 31 30 29 pool= Polyset )

    )

   (ct-poly

    (rgba 1.000000 1.000000 1.000000 1.000000 )

    (txt “stick:640X480.rgb”)

    (m-vtxRef 36 35 34 33 pool= Polyset )

    )

   (ct-poly

    (rgba 1.000000 1.000000 1.000000 1.000000 )

    (txt “stick:640X480.rgb”)

    (m-vtxRef 39 38 37 32 pool= Polyset )

    )

   (ct-poly

    (rgba 1.000000 1.000000 1.000000 1.000000 )

    (txt “stick:640X480.rgb”)

    (m-vtxRef 43 42 41 40 pool= Polyset )

    )

   (ct-poly

    (rgba 1.000000 1.000000 1.000000 1.000000 )

    (txt “stick:640X480.rgb”)

    (m-vtxRef 38 45 44 37 pool= Polyset )

    )

   (ct-poly

    (rgba 1.000000 1.000000 1.000000 1.000000 )

    (txt “stick:640X480.rgb”)

    (m-vtxRef 37 44 47 46 pool= Polyset )

    )

   (ct-poly

    (rgba 1.000000 1.000000 1.000000 1.000000 )

    (txt “stick:640X480.rgb”)

    (m-vtxRef 48 29 44 45 pool= Polyset )

    )

   (ct-poly

    (rgba 1.000000 1.000000 1.000000 1.000000 )

    (txt “stick:640X480.rgb”)

    (m-vtxRef 52 51 50 49 pool= Polyset )

    )

   (ct-poly

    (rgba 1.000000 1.000000 1.000000 1.000000 )

    (txt “stick:640X480.rgb”)

    (m-vtxRef 39 32 29 48 pool= Polyset )

    )

   (ct-poly

    (rgba 1.000000 1.000000 1.000000 1.000000 )

    (txt “stick:640X480.rgb”)

    (m-vtxRef 56 55 54 53 pool= Polyset )

    )

   (ct-poly

    (rgba 1.000000 1.000000 1.000000 1.000000 )

    (txt “stick:640X480.rgb”)

    (m-vtxRef 29 30 57 52 pool= Polyset )

    )

   (ct-poly

    (rgba 1.000000 1.000000 1.000000 1.000000 )

    (txt “stick:640X480.rgb”)

    (m-vtxRef 52 57 58 51 pool= Polyset )

    )

   (ct-poly

    (rgba 1.000000 1.000000 1.000000 1.000000 )

    (txt “stick:640X480.rgb”)

    (m-vtxRef 30 47 59 57 pool= Polyset )

    )

   (ct-poly

    (rgba 1.000000 1.000000 1.000000 1.000000 )

    (txt “stick:640X480.rgb”)

    (m-vtxRef 57 59 60 58 pool= Polyset )

    )
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   (ct-poly

    (rgba 1.000000 1.000000 1.000000 1.000000 )

    (txt “stick:640X480.rgb”)

    (m-vtxRef 44 49 59 47 pool= Polyset )

    )

   (ct-poly

    (rgba 1.000000 1.000000 1.000000 1.000000 )

    (txt “stick:640X480.rgb”)

    (m-vtxRef 49 50 60 59 pool= Polyset )

    )

   (ct-poly

    (rgba 1.000000 1.000000 1.000000 1.000000 )

    (txt “stick:640X480.rgb”)

    (m-vtxRef 29 52 49 44 pool= Polyset )

    )

   (ct-poly

    (rgba 1.000000 1.000000 1.000000 1.000000 )

    (txt “stick:640X480.rgb”)

    (m-vtxRef 64 63 62 61 pool= Polyset )

    )

   (ct-poly

    (rgba 1.000000 1.000000 1.000000 1.000000 )

    (txt “stick:640X480.rgb”)

    (m-vtxRef 32 37 65 43 pool= Polyset )

    )

   (ct-poly

    (rgba 1.000000 1.000000 1.000000 1.000000 )

    (txt “stick:640X480.rgb”)

    (m-vtxRef 43 65 66 42 pool= Polyset )

    )

   (ct-poly

    (rgba 1.000000 1.000000 1.000000 1.000000 )

    (txt “stick:640X480.rgb”)

    (m-vtxRef 37 46 67 65 pool= Polyset )

    )

   (ct-poly

    (rgba 1.000000 1.000000 1.000000 1.000000 )

    (txt “stick:640X480.rgb”)

    (m-vtxRef 65 67 68 66 pool= Polyset )

    )

   (ct-poly

    (rgba 1.000000 1.000000 1.000000 1.000000 )

    (txt “stick:640X480.rgb”)

    (m-vtxRef 31 40 67 46 pool= Polyset )

    )

   (ct-poly

    (rgba 1.000000 1.000000 1.000000 1.000000 )

    (txt “stick:640X480.rgb”)

    (m-vtxRef 40 41 68 67 pool= Polyset )

    )

   (ct-poly

    (rgba 1.000000 1.000000 1.000000 1.000000 )

    (txt “stick:640X480.rgb”)

    (m-vtxRef 32 43 40 31 pool= Polyset )

    )

   (ct-poly

    (rgba 1.000000 1.000000 1.000000 1.000000 )

    (txt “stick:640X480.rgb”)

    (m-vtxRef 72 71 70 69 pool= Polyset )

    )

   (ct-poly

    (rgba 1.000000 1.000000 1.000000 1.000000 )

    (txt “stick:640X480.rgb”)

    (m-vtxRef 31 46 73 36 pool= Polyset )

    )

   (ct-poly

    (rgba 1.000000 1.000000 1.000000 1.000000 )

    (txt “stick:640X480.rgb”)

    (m-vtxRef 36 73 74 35 pool= Polyset )

    )

   (ct-poly

    (rgba 1.000000 1.000000 1.000000 1.000000 )

    (txt “stick:640X480.rgb”)

    (m-vtxRef 46 47 75 73 pool= Polyset )

    )

   (ct-poly

    (rgba 1.000000 1.000000 1.000000 1.000000 )

    (txt “stick:640X480.rgb”)

    (m-vtxRef 73 75 76 74 pool= Polyset )

    )

   (ct-poly

    (rgba 1.000000 1.000000 1.000000 1.000000 )

    (txt “stick:640X480.rgb”)

    (m-vtxRef 30 33 75 47 pool= Polyset )

    )

   (ct-poly

    (rgba 1.000000 1.000000 1.000000 1.000000 )

    (txt “stick:640X480.rgb”)

    (m-vtxRef 33 34 76 75 pool= Polyset )

    )

   (ct-poly

    (rgba 1.000000 1.000000 1.000000 1.000000 )

    (txt “stick:640X480.rgb”)

    (m-vtxRef 31 36 33 30 pool= Polyset )

    )

   (ct-poly

    (rgba 1.000000 1.000000 1.000000 1.000000 )

    (txt “stick:640X480.rgb”)

    (m-vtxRef 71 78 77 70 pool= Polyset )

    )

   (ct-poly

    (rgba 1.000000 1.000000 1.000000 1.000000 )

    (txt “stick:640X480.rgb”)

    (m-vtxRef 35 74 79 72 pool= Polyset )

    )

   (ct-poly

    (rgba 1.000000 1.000000 1.000000 1.000000 )

    (txt “stick:640X480.rgb”)



Sample GUF File: stickman.guf

Scott Watson  —  GUF: Grand Unified File-Format 8-19

    (m-vtxRef 72 79 78 71 pool= Polyset )

    )

   (ct-poly

    (rgba 1.000000 1.000000 1.000000 1.000000 )

    (txt “stick:640X480.rgb”)

    (m-vtxRef 74 76 80 79 pool= Polyset )

    )

   (ct-poly

    (rgba 1.000000 1.000000 1.000000 1.000000 )

    (txt “stick:640X480.rgb”)

    (m-vtxRef 79 80 77 78 pool= Polyset )

    )

   (ct-poly

    (rgba 1.000000 1.000000 1.000000 1.000000 )

    (txt “stick:640X480.rgb”)

    (m-vtxRef 34 69 80 76 pool= Polyset )

    )

   (ct-poly

    (rgba 1.000000 1.000000 1.000000 1.000000 )

    (txt “stick:640X480.rgb”)

    (m-vtxRef 69 70 77 80 pool= Polyset )

    )

   (ct-poly

    (rgba 1.000000 1.000000 1.000000 1.000000 )

    (txt “stick:640X480.rgb”)

    (m-vtxRef 35 72 69 34 pool= Polyset )

    )

   (ct-poly

    (rgba 1.000000 1.000000 1.000000 1.000000 )

    (txt “stick:640X480.rgb”)

    (m-vtxRef 55 82 81 54 pool= Polyset )

    )

   (ct-poly

    (rgba 1.000000 1.000000 1.000000 1.000000 )

    (txt “stick:640X480.rgb”)

    (m-vtxRef 51 58 83 56 pool= Polyset )

    )

   (ct-poly

    (rgba 1.000000 1.000000 1.000000 1.000000 )

    (txt “stick:640X480.rgb”)

    (m-vtxRef 56 83 82 55 pool= Polyset )

    )

   (ct-poly

    (rgba 1.000000 1.000000 1.000000 1.000000 )

    (txt “stick:640X480.rgb”)

    (m-vtxRef 58 60 84 83 pool= Polyset )

    )

   (ct-poly

    (rgba 1.000000 1.000000 1.000000 1.000000 )

    (txt “stick:640X480.rgb”)

    (m-vtxRef 83 84 81 82 pool= Polyset )

    )

   (ct-poly

    (rgba 1.000000 1.000000 1.000000 1.000000 )

    (txt “stick:640X480.rgb”)

    (m-vtxRef 50 53 84 60 pool= Polyset )

    )

   (ct-poly

    (rgba 1.000000 1.000000 1.000000 1.000000 )

    (txt “stick:640X480.rgb”)

    (m-vtxRef 53 54 81 84 pool= Polyset )

    )

   (ct-poly

    (rgba 1.000000 1.000000 1.000000 1.000000 )

    (txt “stick:640X480.rgb”)

    (m-vtxRef 51 56 53 50 pool= Polyset )

    )

   (ct-poly

    (rgba 1.000000 1.000000 1.000000 1.000000 )

    (txt “stick:640X480.rgb”)

    (m-vtxRef 63 86 85 62 pool= Polyset )

    )

   (ct-poly

    (rgba 1.000000 1.000000 1.000000 1.000000 )

    (txt “stick:640X480.rgb”)

    (m-vtxRef 42 66 87 64 pool= Polyset )

    )

   (ct-poly

    (rgba 1.000000 1.000000 1.000000 1.000000 )

    (txt “stick:640X480.rgb”)

    (m-vtxRef 64 87 86 63 pool= Polyset )

    )

   (ct-poly

    (rgba 1.000000 1.000000 1.000000 1.000000 )

    (txt “stick:640X480.rgb”)

    (m-vtxRef 66 68 88 87 pool= Polyset )

    )

   (ct-poly

    (rgba 1.000000 1.000000 1.000000 1.000000 )

    (txt “stick:640X480.rgb”)

    (m-vtxRef 87 88 85 86 pool= Polyset )

    )

   (ct-poly

    (rgba 1.000000 1.000000 1.000000 1.000000 )

    (txt “stick:640X480.rgb”)

    (m-vtxRef 41 61 88 68 pool= Polyset )

    )

   (ct-poly

    (rgba 1.000000 1.000000 1.000000 1.000000 )

    (txt “stick:640X480.rgb”)

    (m-vtxRef 61 62 85 88 pool= Polyset )

    )

   (ct-poly

    (rgba 1.000000 1.000000 1.000000 1.000000 )

    (txt “stick:640X480.rgb”)

    (m-vtxRef 42 64 61 41 pool= Polyset )

    )

   )

  )

 )
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;;

;; Run-time structure

;;

;;> (ls stickman)

;;Stickman: <DCS>

;;   RootJoint: <DCS>

;;      spine1: <DCS>

;;         rhip: <DCS>

;;            rknee: <DCS>

;;         lhip: <DCS>

;;            lknee: <DCS>

;;         spine2: <DCS>

;;            spine3: <DCS>

;;               rshoulder: <DCS>

;;                  relbow: <DCS>

;;               lshoulder: <DCS>

;;                  lelbow: <DCS>

;;               neck: <DCS>

;;   Polyset:  <Morph>

;;   Polyset#3:  <Morph>

;;

8   Sample GUF File:

stickman-chan.gif

This file animates the stickman using
varying weights for geometric morphs
and transformations.

;; stickman-chan.guf (GUF v.9)

;; Info--

;; Source File: stickman-morph

;; Created on:  Wed Feb 22 13:15:41 1995

;;         by:  alias2egg -A 8 35 -r 24 -vfmwx Stick-

man stickman-morph

;;

(table

 name= “stickman-morph”

 ;;

 ;; This animation nominally runs at 24 hz

 ;;

 (form-has s$-anim ‘( fps= 24 ) )

 (bundle

  name=“Stickman”

  (table morph

 4= (s$anim

     fps= 60

     0.929005 0.910140 0.889054 0.865745

0.840214

     0.812459 0.782481 0.750278 0.715851

0.679198

     0.640320 0.599216 0.555885 0.510327

0.462541

     0.412527 0.360285 0.305813 0.249112

0.190180

     0.129018 0.065625 0.000000 0.065625

0.129018

     0.190180 0.249112 0.305813

     )

 2= (s$anim

     0.278591 0.326998 0.372684 0.413925

0.448999

     0.476185 0.493759 0.500000 0.495704

0.483407

     0.464000 0.438370 0.407407 0.372000

0.333037

     0.291407 0.248000 0.203704 0.159407

0.116000

     0.074370 0.035407 0.000000 -0.035407 -

0.074370

     -0.116000 -0.159407 -0.203704

     )

 1= (s$anim

     fps= 60

     0.352000 0.425250 0.500000 0.574750

0.648000

     0.718250 0.784000 0.843750 0.896000

0.939250

     0.972000 0.992750 1.000000 0.994400

0.979200

     0.956800 0.929600 0.900000 0.870400

0.843200

     0.820800 0.805600 0.800000 0.805600

0.820800

     0.843200 0.870400 0.900000

     )

 3= (s$anim

     0.846949 0.940728 1.000000 0.973396

0.900964

     0.793772 0.662891 0.519389 0.374336

0.238802

     0.123855 0.040564 0.000000 0.010974

0.068345

     0.162133 0.282358 0.419040 0.562198

0.701854

     0.828026 0.930734 1.000000 1.011866

0.959000

     0.856353 0.718878 0.561528

     )

 ;; testpattern v_offset

 5= (s$anim
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     0.000000

     )

 ;; purpleurn u_offset

 6= (s$anim

     0.000000

     )

 ;; purpleurn v_offset

 7= (s$anim

     0.250000

     )

 )

  (table

   name= “RootJoint”

   (table

    name= “spine1”

    xform= (xfm$anim-s$

    order= “sphrt”

    p= (s$anim 0.000000 )

    h= (s$anim

-5.000000 -5.000000 -5.000000 -5.000000 -

5.000000

-5.000000 -5.000000 -5.000000 -5.000000 -

5.000000

-5.000000 -5.000000 -5.000000 -5.000000 -

5.000000

-4.607822 -3.783414 -2.942845 -2.043612 -

1.089536

-0.107509 0.952867 2.041862 2.640695

3.175418

3.721582 4.275097 4.830310

)

    r= (s$anim 0.000000 )

    x= (s$anim

0.248904 0.302465 0.360530 0.422953 0.489590

0.560295 0.634921 0.713325 0.795361 0.880883

0.969746 1.061805 1.156913 1.254927 1.355700

1.459087 1.564943 1.673122 1.783480 1.895869

2.010146 2.126165 2.243781 2.362848 2.483220

2.604753 2.727300 2.850718

)

    y= (s$anim

9.976032 9.966717 9.956618 9.945763 9.934174

9.921877 9.908898 9.895263 9.880996 9.866122

9.850668 9.834658 9.818117 9.801071 9.783545

9.765565 9.747155 9.728342 9.709149 9.689603

9.669729 9.649551 9.629097 9.608390 9.587456

9.566319 9.545007 9.523542

)

    z= (s$anim -0.043357 )

    )

    (table

     name= “rhip”

     xform= (xfm$anim-s$

     order= “sphrt”

     p= (s$anim

 -1.523597 -1.542782 -1.559485 -1.573052 -

1.596908

 -1.620063 -1.637997 -1.661881 -1.679385 -

1.706109

 -1.730555 -1.756496 -1.780765 -1.806791 -

1.833449

 -1.661993 -1.289203 -0.911182 -0.514315 -

0.098536

 0.318942 0.755956 1.189645 1.379995 1.526316

 1.659842 1.776088 1.878180

 )

     h= (s$anim 0.000000 )

     r= (s$anim

 -18.343496 -18.359762 -18.364038 -18.349073 -

18.326811

 -18.281366 -18.216114 -18.130636 -18.021236 -

17.887325

 -17.724611 -17.532825 -17.314930 -17.059496 -

16.766092

 -16.502930 -16.357655 -16.139011 -15.895080 -

15.612192

 -15.277560 -14.914935 -14.496670 -13.896578 -

13.219555

 -12.477647 -11.668720 -10.770175

 )

     x= (s$anim 0.000000 )

     y= (s$anim -0.031612 )

     z= (s$anim 1.043555 )

     )

     (table

      name= “rknee”

      xform= (xfm$anim-s$

      order= “sphrt”

      p= (s$anim 0.000000 )

      h= (s$anim 0.000000 )

      r= (s$anim

  -32.304001 -32.272007 -32.245796 -32.232113

-32.218952

  -32.225239 -32.240345 -32.271233 -32.317402

-32.375412

  -32.454475 -32.552692 -32.672127 -32.816460

-32.985798

  -33.179615 -33.244534 -33.393238 -33.546055

-33.711102

  -33.923157 -34.121185 -34.363049 -34.757530

-35.209526

  -35.703876 -36.237640 -36.861679

  )

      x= (s$anim 0.000000 )

      y= (s$anim -4.994824 )

      z= (s$anim 0.537589 )

      )

      )

     )

    (table
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     name= “lhip”

     xform= (xfm$anim-s$

     order= “sphrt”

     p= (s$anim

 7.617012 7.619936 7.623580 7.631106 7.632080

 7.634013 7.639951 7.642865 7.648116 7.651617

 7.655164 7.658770 7.660182 7.661975 7.663314

 7.641713 7.596849 7.571074 7.559945 7.566250

 7.591846 7.638159 7.706904 7.801176 7.909174

 8.031247 8.167560 8.318274

 )

     h= (s$anim 0.000000 )

     r= (s$anim

 28.332661 28.069313 27.782797 27.436253

27.128870

 26.776413 26.391304 25.986361 25.555332

25.100582

 24.619764 24.117092 23.594872 23.043789

22.465258

 21.968834 21.623940 21.239628 20.863728

20.485325

 20.096973 19.725706 19.349688 18.801037

18.225519

 17.640720 17.050995 16.449024

 )

     x= (s$anim 0.000000 )

     y= (s$anim -0.063225 )

     z= (s$anim -0.917064 )

     )

     (table

      name= “lknee”

      xform= (xfm$anim-s$

      order= “sphrt”

      p= (s$anim 0.000000 )

      h= (s$anim 0.000000 )

      r= (s$anim

  -49.170937 -49.274048 -49.381676 -49.492794

-49.597561

  -49.719643 -49.833103 -49.941154 -50.045387

-50.145561

  -50.236568 -50.319210 -50.388172 -50.442451

-50.483807

  -50.487072 -50.549500 -50.554752 -50.562351

-50.564911

  -50.535816 -50.522396 -50.485184 -50.416153

-50.334702

  -50.242012 -50.145077 -50.015690

  )

      x= (s$anim 0.000000 )

      y= (s$anim -4.931599 )

      z= (s$anim -0.505966 )

      )

      )

     )

    (table

     name= “spine2”

     xform= (xfm$anim-s$

     order= “sphrt”

     p= (s$anim 0.000000 )

     h= (s$anim

 -4.739519 -4.571962 -4.388557 -4.276102 -

4.154028

 -3.953095 -3.727014 -3.492117 -3.236127 -

2.960482

 -2.666229 -2.359208 -2.043515 -1.705087 -

1.344553

 -1.356505 -1.782538 -2.206850 -2.676051 -

3.188410

 -3.716250 -4.313536 -4.928152 -5.000000 -

5.000000

 -5.000000 -5.000000 -5.000000

 )

     r= (s$anim -5.000000 )

     x= (s$anim 0.000000 )

     y= (s$anim 1.485803 )

     z= (s$anim 0.063246 )

     )

     (table

      name= “spine3”

      xform= (xfm$anim-s$

      order= “sphrt”

      p= (s$anim -5.000000 )

      h= (s$anim -5.000000 )

      r= (s$anim

  -3.732379 -3.336253 -2.944697 -4.464797 -

5.000000

  )

      x= (s$anim 0.491367 )

      y= (s$anim 5.050761 )

      z= (s$anim -0.031623 )

      )

      (table

       name= “rshoulder”

       xform= (xfm$anim-s$

       order= “sphrt”

       p= (s$anim 35.000000 )

       h= (s$anim 10.000000 )

       r= (s$anim

   -15.034025 -15.331027 -15.610883 -14.040801

-13.397036

   -13.230670 -13.039773 -12.818527 -12.571033

-12.281788

   -11.961925 -11.594760 -11.196093 -10.743291

-10.237941

   -9.699205 -9.123150 -8.477436 -7.769794 -

6.989098

   -6.121908 -5.174033 -4.126870 -2.968911 -

1.696448



Sample GUF File: stickman-chan.gif

Scott Watson  —  GUF: Grand Unified File-Format 8-23

   -0.291246 1.255142 2.940875

   )

       x= (s$anim -0.000938 )

       y= (s$anim -0.031601 )

       z= (s$anim 2.466585 )

       )

       (table

name= “relbow”

xform= (xfm$anim-s$

order= “sphrt”

p= (s$anim 0.000000 )

h= (s$anim

    78.859573 78.808548 78.781532 78.851692

78.881157

    78.877037 78.864265 78.858955 78.850548

78.826508

    78.811569 78.791504 78.777191 78.749817

78.722496

    78.665100 78.633308 78.557358 78.477692

78.383987

    78.261909 78.126579 77.959740 77.739990

77.493706

    77.199074 76.862633 76.469879

    )

r= (s$anim 0.000000 )

x= (s$anim 0.000000 )

y= (s$anim 0.000000 )

z= (s$anim 3.541763 )

)

)

       )

      (table

       name= “lshoulder”

       xform= (xfm$anim-s$

       order= “sphrt”

       p= (s$anim -35.000000 )

       h= (s$anim -10.000000 )

       r= (s$anim

   -11.403259 -12.118526 -12.854723 -11.558334

-11.320373

   -11.679234 -12.087089 -12.488034 -12.916216

-13.378163

   -13.848054 -14.333160 -14.825439 -15.336758

-15.866801

   -16.409222 -16.929785 -17.469416 -18.024492

-18.590534

   -19.165464 -19.752264 -20.348715 -20.941864

-21.539541

   -22.148142 -22.768255 -23.382957

   )

       x= (s$anim -0.000938 )

       y= (s$anim -0.031601 )

       z= (s$anim -2.434962 )

       )

       (table

name= “lelbow”

xform= (xfm$anim-s$

order= “sphrt”

p= (s$anim 0.000000 )

h= (s$anim

    -51.151478 -51.393791 -51.666893 -

51.775043 -51.983051

    -52.233376 -52.539711 -52.829578 -53.135273

-53.486210

    -53.819321 -54.186211 -54.539146 -54.904430

-55.277077

    -55.677170 -56.011391 -56.368813 -56.732471

-57.094101

    -57.447613 -57.801929 -58.148254 -

58.527699 -58.896053

    -59.262192 -59.622498 -59.953053

    )

r= (s$anim 0.000000 )

x= (s$anim 0.000938 )

y= (s$anim 0.031601 )

z= (s$anim -3.573386 )

)

)

       )

      (table

       name= “neck”

       xform= (xfm$anim-s$

       order= “sphrt”

       p= (s$anim

   -4.594393 -4.363284 -4.070470 -3.635263 -

3.286030

   -2.952685 -2.740646 -2.421130 -2.108602 -

1.920341

   -1.647288 -1.376064 -1.177094 -0.960684 -

0.764448

   -0.550226 -0.055481 0.313736 0.681619

1.043723

   1.334680 1.662633 1.934788 2.031734

2.089536

   2.087597 2.037874 1.985049

   )

       h= (s$anim -20.000000 )

       r= (s$anim

   -20.000000 -20.000000 -20.000000 -16.776329

-15.049335

   -13.994863 -12.834098 -11.659429 -10.433983

-9.127547

   -7.814590 -6.483043 -5.089135 -3.696455 -

2.289534

   -0.875278 0.393568 1.706650 2.995140

4.255712

   5.505949 6.700747 7.869171 9.043299

10.184815

   11.292832 12.374558 13.365005

   )
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       x= (s$anim 0.042202 )

       y= (s$anim 1.421949 )

       z= (s$anim 0.000000 )

       )

       )

      )

     )

    )

   )

  )

 )

;;

;; Run-time structure

;;

;;> (lsr stick-bundle)

;;stick-bundle

;;  RootJoint

;;    spine1

;;      lhip

;;        lknee

;;      rhip

;;        rknee

;;      spine2

;;        spine3

;;          rshoulder

;;            relbow

;;          neck

;;          lshoulder

;;            lelbow

;;  morph

>
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Course Concept

The ever expanding universe of computer graphics and processing technology
has spawned extraordinary new markets in real-time interactive experiences.
As the promise of virtual reality begins to come true, many realize that new
skills are required to take advantage of these emerging technologies. At this
point in the evolution of the field groups of artists and scientists are required to
generate compelling virtual experiences. The structure of these groups is
unique, and its collaborative success depends on the careful integration of
computer technology and creative content.

1   Introduction

Human beings, among all the animals, possess a most unique form of con-
sciousness. Information about the world is provided by our senses in the form
of perceptions. These perceptions are integrated into concepts by our higher
brain functions to produce the phenomenon of human thought and conscious-
ness. These faculties serve not only to guide us through reality, but also enable
us to recombine concepts into new ones, using retained information to form the
building blocks for new ideas. The expression of these ideas, and the actions
and feelings resulting from them, is essential to the evolution of human com-
munication and knowledge.
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Language is a vital form of communication, requiring the systematic use of our
conceptual faculties. Written language offers a very efficient way of storing
and transferring knowledge. A few specific marks on a page can convey com-
plex thoughts and emotions that completely consume the reader. This ability to
transport the mind to another time and context is as unique as the desire itself.
All of the world’s art forms are the re-creation of some aspect of reality accord-
ing to the artist’s internal view of the world.

The advent of photography, film and recorded sound allowed an unprecedented
new range of expression. Reality could be recorded, then edited and rearranged
to present a synthetic but very believable series of events. Theater and cinema
are really very early forms of virtual reality. The audience sits in a darkened
room where, for a while, they are mentally transported to another dimension.
The written word hasn’t been the same since.

Film and television, however powerful, are generally confined to the bounds of
“real” reality. Various special effects are used to represent ideas and events that
are intangible or impossible. The advent of three dimensional computer graph-
ics set an undeniable precedence in the ability to portray fantastic yet realistic
forms. Finally one could travel to the ends of the galaxy or peruse the invisible
workings of the molecule. This is a medium where imagination can take form,
and project the appearance and authority of truly existing. But traditional com-
puter animation is still a passive experience. Viewers watch and listen while
their bodies lay motionless. Thoughts and feelings can be evoked in this way,
but a true virtual reality experience involves full interaction.

With the advent of virtual reality we are now poised to create experiences that
completely immerse the senses -- all of them. Sight, sound, touch, smell and
even taste can be manipulated synthetically to produce a transcendental effect
close to dream-like. This new real-time interactive technology should prove to
be a very dramatic form of expression. Entwined in media hyperbole,
enshrined by computer age philosophers, and dreaded by suspicious techno-
phobes, virtual reality promises to change the way everything from science to
art is expressed and perceived. The open question for this potent new medium
is the same basic question for all forms of expression -- what content shall this
form express? It is a crucial question to ask.

To this point complex computer graphics has required the skills of numerous
scientists and programmers. Elaborate computer generated scenes involve
painstaking communication to the computer at a very low level. For this reason
(coupled with the speed of the available hardware) significant synthetic imag-
ery is rarely seen, and then usually only for brief moments of graphic specta-
cle. The reputation of computer graphics’ visual impact and style has
overshadowed concerns about its creative content and thematic substance.
Until recently, the medium has been the message.
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This view is changing. Computers offer a unique opportunity for the creative
and technical side of human nature to collaborate. New advances in hardware
performance and object-oriented programming are giving us a first glimpse at
the shores of a new moldable frontier. We can shape our new worlds any way
we want. The shape we choose will reflect on us and our values.

This course will attempt to show the importance of taking a Renaissance
approach to the development of real-time interactive experiences; integrating
the skills of not only scientists, technicians, and engineers but also writers,
designers, and artists. After establishing a brief historical context we will
examine a model for developing, creating, and producing compelling virtual
content.

2   Historical Background

Much of the initial development of 3D computer graphic science, back in the
mid 1960’s, was for real-time military flight simulators. The cost of training
fighter pilots in real planes far exceeded the cost of developing a synthetic
approach. The esoteric nature of this new technology gained popularity in the
sciences where the field of Scientific Visualization emerged. Complex intangi-
ble phenomena could be made visible to the naked eye. Since the computa-
tional cost of real-time simulation was high, computer animation technology
developed enabling high-resolution, frame by frame output of lengthy visual-
izations.

The photo-realistic appearance of this visual technology was soon apparent to
the commercial community. By the late 1970’s broadcast ID’s, corporate logos,
and the occasional commercial and film effect debuted a new art form to large
audiences. By the late 1980’s, computer graphics was not only a familiar work-
horse of the broadcast television market, but was finally embraced by the cin-
ema as a viable tool. Concurrently millions of people were exposed to
interactive experiences through personal computers and cartridge based video
games.

Since that time the entertainment market has become a major force in the
development of graphics technology, including virtual reality. The popularity
of books by authors like William Gibson and science fiction films like “The
Lawnmower Man” have helped fuel a growing VR fever. Largely fiction until
now, the potential of virtual reality is about to be actualized. The gaming
industry has already embraced it. The venture capital community, which
waited out the initial media storm, is beginning to investigate the economic
potential of the fledgling technology. The growth curve of development and
interest appears to be exponential.
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3   New Opportunities

Film and Television. These new computer technologies are creating opportuni-
ties in film and television. Automated animation techniques will make long-
form computer generated projects feasible. We have all seen the recent big
screen computer graphics achievements in films like “Jurassic Park”. Faster
hardware and increased software control will soon give computer generated
effects longer and longer screen times, and more significant characters will be
digitally generated. There are already at least three fully computer generated
films in production, and several weekly TV series are using extensive digital
scenery in many shots. In the near future many shows will be entirely produced
on the computer, including all characters and action. The real revolution will
come when these shows are produced in real-time.

Video Arcades. Traditional video arcades are going to make a most dramatic
change in the near future. New 3D interactive rides and experiences will soon
replace most of the now popular 2D sprite games. Affordable motion-base
units, high resolution head mounted displays, and a wide range of 3D real-time
interactive games will change the small standing room only video parlors into
large interactive gaming centers. Many owners are teaming up with mall and
theater operators to widen the appeal of their locations. The large video game
companies are using these arcades as test beds for new approaches to 3D gam-
ing.

Consumer Platforms. Current consumer video game profits surpass those of
feature film box-office intake; it topped $15 billion in 1994. The market for the
new real-time 3D products will easily surpass that. The teenaged gamers of 10
years ago have grown up--and they’re still playing games. Only their tastes
have matured. All of the major consumer game are currently manufacturing
new 32-bit platforms that boast 3D capability. Some have collaborated with
real-time hardware makers to produce the next generation machines. Develop-
ers are rushing to learn the new skills required to exploit the new medium. The
fruits of their labors are already becoming abundantly apparent on games store
shelves.

Location Based Entertainment. Dynamic location-based-entertainment (LBE)
events are slowly displacing costly amusement park iron rides. Eventually, net-
worked full-immersion simulation centers will replace most traditional central-
ized theme parks and arcades. The real-time software experiences can be
updated and changed frequently, giving a much longer appeal to the locations.
Because most of the motion-base systems are relatively small, as compared
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with roller-coasters, simulation centers can be set up almost anywhere. If fact,
many portable systems exist. Advanced versions may soon radically change
the shape of county fairs and sports events. From Las Vegas casinos and big
theme parks, to shopping malls and ocean cruise lines, operators are finding
that virtual reality is drawing more than just teenage interest. The market’s
demographic age range is rapidly widening.

4   New Technology Developments

Computer Hardware. New developments in hardware are already raising the
standards and expectations for computer generated images and experiences.
Personal computer manufacturers are consistently doubling chip speeds each
year. Some PCs, with add-on processing hardware, are approaching the perfor-
mance of some high-end workstations -- at a fraction of the cost. Game compa-
nies are about to release new 32 and 64-bit hardware with moderate 3D
capacity, around 500-1500 un-antialiased un-textured polygons per frame. The
cost is somewhere between $200 to $500. The high-end manufacturers are also
quickly raising performance. Some real-time image generator hardware is cur-
rently capable of generating elaborate real-time interactive scenarios -- about
3000-5000 anti-aliased textured polygons per frame running at 60 Hz. In 1994
these machines used to cost between $100,000 to $250,000. In 1995 that same
power is available in the $25,000 to $50,000 range.

Input Devices. A wide range of new input devices are allowing for unprece-
dented data capture. From 3D laser scanners and 3 space digitizing devices, to
full body motion capture systems and facial expression sensing units, data
from the real world can be captured and used to develop the new digital “un-
real” estate.

Output Devices. Like input devices, output devices are multiplying in com-
plexity and interactive function. There are many potential uses of reliable high
resolution head mounted displays. From training simulators and medical appli-
cations, to CAD workstations and real-time consumer gaming platforms, these
new output devices allow the user full immersion. New light weight designs do
away with screens altogether and project images directly onto the retina of the
eye. Also, varieties of motion base units and force feedback devices are multi-
plying in number, providing convincing synchronized physical responses to
virtual events.

Networks. Probably one of the most significant developments in the advent of
real-time interactivity is the establishment of large scale fiber-optic networks.
Many international governments and private companies are committed to
developing a fiber-optic infrastructure. With its superior speed and band-width
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it will surely uncork the bottle on sophisticated real-time interaction and com-
munication.

Applications. Simulation and Artificial Intelligence sciences are maturing rap-
idly. Complex physical dynamics and kinematics software libraries are grow-
ing. The ability to compute the effects of gravity and wind, and the behavior of
fabric and skin is opening the door on elaborate dynamic forms, all running in
real-time. Real-time particle systems make commonplace the creation of
believable flocks of birds, smoke and dust, and meandering bubbles. New
developments in automating distinct human and animal motion and behavior
are promising to populate virtual reality with believable counterparts.

5   The Necessary Skills

For obvious reasons the successful control of this new medium requires a wide
range of specialized skills. Knowledge of content, form, reality and “virtuality”
must be extensive. Creative groups must have experience creating novel con-
cepts and fiction, designing varieties of detailed artwork, building elaborate 3D
models and environments, and creating evocative character expression and
behavior. Programmers need to be familiar with everything from real-time 3D
simulation and complex physical dynamics, to intricate multi-player interactiv-
ity and numerous device interfaces and networks. The learning curve for these
skills is understandably long, but when combined, they can be used to assem-
ble expansive synthetic worlds and experiences unlike the general public has
ever imagined. Within the next few years, nearly everyone will have experi-
enced them first hand.

Certain companies already possess many of the necessary talents and can take
advantage of this window of opportunity. And many of them have begun to
make remarkable inroads. Looking for commercial applications of military
technology, the defense industry simulation companies are beginning to
explore the entertainment market and develop 3D interactive concepts. They
are very familiar with 3D graphics and real-time simulation, but have some
things to learn about the creative requirements of entertainment. The large
video game companies are also upgrading their technical skills. They are
familiar with creating content and 2D artwork for loads of interactive enter-
tainment on small computers, but the tasks involved in dealing with large
quantities of dynamic 3D data, behavior and technology are a new discipline.

There is another type of company well poised to take advantage of this new
technology -- the traditional high-end computer graphics facilities. The more
experienced studios have had to rely on strong in-house software development
teams to produce work of any lasting significance. Their software departments
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are having to constantly invent more efficient techniques of dealing with high-
resolution data and complex scene descriptions. High commercial production
values have instilled their creative departments with consistent yet flexible tal-
ents, and many are large enough to produce intricate, fully digital, long-form
projects.

But, market pressures are tough. The large capital investment in equipment
required along with the expensive talents of the individuals needed, make the
task almost prohibitive. High resolution computer graphics production is
mostly service work. Companies rarely have any equity interest in the projects
they produce; a marginal income and a good reputation are signs of success. If
these types of organizations can make the leap to developing their own content,
many may enjoy fiscal success as well.

Aside from the necessity of getting the creative team to develop proprietary
content, it is essential for the software department to make some critical
changes as well. They must build a robust library of diverse simulation soft-
ware. In general, real-time and physical dynamics programming is a natural
progression toward speeding up and automating otherwise painstaking anima-
tion production. But it adds the complexity of generating and keeping track of
dynamic interactions between entities in the virtual world. This leap into
object-oriented real-time programming and artificial intelligence is essential to
be competitive in the new interactive markets.

6   Real-Time Content Production

With few exceptions, the production of real-time content follows a similar pat-
tern as the production of more conventional 3D computer graphics. A funda-
mental difference at this early stage of the industry is the necessity for in-house
development of the creative content as well as the necessary 3D real-time tech-
niques. Companies must not only invent the technology, but because of its
unique nature, they must also invent creative applications for it. Because of the
high expenses, projects tend to be driven by commercial demands. In general,
most production companies are hired to solve someone else’s creative prob-
lems. Initiating an original idea for a virtual experience, a real-time game, or an
interactive fiction is a new concept for many otherwise experienced production
groups.

So, who will develop these creative properties? How will they do it?. The fol-
lowing sections outline a production model for real-time virtual environments
and interactive content. The background for this information comes from my
experience as Chief Operating Officer and Head of Production for Angel Stu-
dios of Carlsbad, California. Beat know for its work on “The Lawnmower



Human Resource Breakdown

9-8 SIGGRAPH ’96 Course  —  Designing Real-Time 3D Graphics for Entertainment

Man:, and Peter Gabriel’s “Kiss that Frog” Music Video, Angels Studios is
now exclusively developing content for 3D real-time interactive entertainment.

7   Human Resource Breakdown

The most vital asset of any organization is the synergy created by its individu-
als. Getting the entire team to collaborate effectively is the key to creating con-
tent of lasting quality. The following is a list of the major team members
involved in interactive content production. Some organizations may use differ-
ent titles for individuals who perform similar functions.

Although they will not be covered here, every production team has a capable
group of colleagues supporting the other aspects of development. The vital
importance of everyone from the sales, marketing, and public relations groups,
to the business administrators, operations managers and production assistants
should not be overlooked. All are critical to the successful creation of a quality
real-time interactive product.

The Management Team

Producer. The Producer is the overseer and integrator of all aspects of a
project. From initial bids and final budgets, to personnel and resource schedul-
ing, the Producer serves as the tip of the production pyramid. They are the
bridge between the creative, the production, and the software teams. If devel-
oping content for an outside client, the Producer is also the liaison for all inter-
actions with the customer. When developing content in-house they serve as a
link between the content distributor and the production department. The Pro-
ducer also plays a major role in selecting the team members for any given
project, and in generating a complete and realistic schedule for the allocation
of resources and the timely execution of the work. As companies get larger and
the projects increase in number and scope, the Producer may have several
Assistant Producers working with them to distribute the work. The Producer is
one of the most vital members of any successful development team.

Creative Director. Working closely with the Producer and other Project Direc-
tors, the Creative Director manages the creative team and helps define a consis-
tent aesthetic approach for each interactive project. From concept formation
and content selection, through progressive refinements and final interactive
testing, the Creative Director is the aesthetic cornerstone of the interactive pro-
duction studio.

Production Director. The Production Director supervises all in-house produc-
tion. Responsibilities include deciding which production approach to take,
ensuring standards and specifications for each part of a project, and coping
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with the inevitable unexpected production dilemma. They work closely with
creative and software teams throughout a project, assuring the smooth progress
of each stage. Production Directors need to be experienced Technical Directors
themselves to supervise the overlapping production of diverse projects.

Software Director. The Software Director defines the entire direction of the
company’s programming technology. Real-time applications are pushing the
limits of available computer technology, and pioneering virtual experiences
require revolutionary software techniques to progress. The Software Director
determines what aspects of an application to emphasize for each project, and
which programmers should preform what tasks.

The Creative Team

Game Designer. Since most current real-time development revolves around
interactive entertainment, another essential team member is the Game
Designer. Serving as the creative team leader, the Game Designer usually
comes up with the initial creative concept. All aspects of game design, from
concept and game-logic, to artwork and game-play, come under the guiding
hand of the Game Designer. Generally creating the fiction for the experience,
they work closely with the Art Director and Production Artists to outline and
design the project.

Art Director. Once the concept has been outlined the Art Director steps in to
visualize the idea. Concept sketches are produced and the creative team uses
them to stimulate further dialogue and development. They are responsible for
all of the project’s aesthetic concerns, from start to finish, and ensure continu-
ity and consistency for all artwork. A talented Art Director can make an inter-
active experience both visually exciting and creatively compelling.

Production Artist. Once a project is in production there is generally much art-
work to be generated. Included in the Production Artist’s duties are everything
from complete maps of virtual worlds and object construction drafts, to model
sculptures and artwork for texture maps. Supervised by the Game Designer and
the Art Director, the Production Artist brings to full life all of the previous con-
ceptual work, and provides the production material for the look and feel of the
real-time experience.

The Production Team

Technical Director. The Technical Director must integrate all of the different
aspects of a production team’s effort into a cohesive whole ready for the pro-
posed application. From organizing models and setting up pre-computed
sequences, to tuning the application and managing varieties of data, the TD
organizes, produces and refines the project. The Software team members work
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closely with the Technical Director to make sure real-time experiences are as
engaging and attractive as traditional passive events, like television and film.

Modeler. All virtual worlds require extensive model building. Modelers take
design concept sketches and storyboards, and create 3D digital models using a
variety of sophisticated construction tools. Some objects are static and fairly
straightforward to make. Others, like detailed dynamic characters and elabo-
rate animated devices, require similar talents as that of an architect or sculptor.
Making models for real-time applications requires creating well proportioned
low detail objects. Making 50,000 polygons look good isn’t difficult. Making
500 look good is.

Sound Designer. A most important aspect of any real-time experience is a con-
vincing sound design. The Sound Designer uses a wide range of tools to create
interactive theme music, sampled voice-overs, and holophonicly placed sound
effects. Otherwise well done projects may fail because of poor sound design. A
good Sound Designer’s work tends to integrate the entire project, completing
the effect, and permitting the audience to truly immerse themselves.

The Software Team

Application Programmer. Each application tends to build off an existing
library of solutions. Since each project is also unique the Application program-
mer is in charge of developing and maintaining the structure and content of
each real-time program. He or she integrates the efforts of the rest of the soft-
ware and production teams, and assembles a single piece of executable code
that comprises the entire interactive experience.

Simulation Programmer. So essential for a convincing simulation, the Simula-
tion and Dynamics Programmer is the physics and behavior expert on the team.
This person needs to have strong skills in physics, mathematics and dynamics
and be able to combine these disciplines effectively. Real-time inverse and for-
ward kinematics, particle dynamics, collision detection, and character automa-
tion are all concerns of the Simulation Programmer.

Interface Programmer. The final success of the project is assured if the human
interface is intuitive and effortless. The work of all the other team members
can be lost if the interaction interface is clumsy and complex. From on-screen
information and selection menus, to sequence scheduling and user input pro-
cessing, the Interface Programmer is responsible for maintaining the quality of
the interaction between man and machine.

Device Programmer. All interactive experiences require interfacing with
numerous devices and accessories. From joysticks, data-gloves, and digital
audio equipment, to head mounted displays, body trackers, and 6 degree-of-
freedom motion bases, the Device Programmer is an invaluable player in inte-
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grating physical devices with the interactive application and producing the vir-
tual reality effect. Since interactivity between users is an essential component
of VR, the Device Programmer also handles all networking tasks.

8   The Software Application

Equally as important as the development the creative content is the develop-
ment of the technical content. Advanced computer programming talent is nec-
essary to exploit the creative potential of powerful new computers. The
software application, more than ever, executes control over the description and
behavior of a virtual scene. Since virtual worlds by their nature need to have
autonomous aspects, the software used in building and managing these real-
time environments must have a sophistication well beyond that which is cur-
rently commercially available. Developing robust in-house software code and
libraries is essential for breaking new ground and limits.

For the now traditional method of producing computer graphics there are a
number of fairly complete third party software solutions available. Offering a
high level of scene management and control with numerous sophisticated
effects and procedures, these programs make the creation of high resolution
imagery more accessible than ever before. But many of the computationally
expensive software techniques in these packages are not well suited to high
speed real-time software requirements. It will be a number of years before we
see complete and integrated off-the-shelf real-time packages.

The following is a specification outline for Angel Studios Advanced Real-
Time Simulation software (ARTS). It is by no means all inclusive, but it is a
good presentation of the main features and techniques necessary for the pro-
duction of real-time interactive content. Its content represents thousands of
man hours of experimentation and exploration. Angel Studios believes it is a
minimum specification for dealing with the complex problems associated with
creating real-time interactive content.

Angel Studios Arts

ARTS is a collection of high performance tools for developing state-of-the-art,
real-time, 3D interactive experiences. The system is built on a highly opti-
mized library of C++ programs, which form the basis of a complete simulation
package.

Main Features. ARTS is written entirely in optimized C++, it is designed and
implemented to take advantage of today’s high speed graphics platforms.
ARTS supports a variety of hardware, from 32-bit home systems and PCs to
high performance graphics engines. It has transparent support for commercial
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photo-realistic rendering packages, as well as a complete compliment of gen-
eral data processing tools, along with low level vector, matrix and math opera-
tions.

Scene Management. ARTS features a hierarchical scene description structure.
It supports dynamic load management, multiple cameras and lights, custom
and automatic culling, and level of detail features. ARTS takes advantage of
new multi-processing technology for simulation, drawing, culling, and custom
applications. It supports multiple viewports and hardware pipelines. A neces-
sity for gaming scenarios and large production environments, ARTS has built-
in distributed networking capabilities.

Graphics Features. Along with supporting a variety of rendering packages and
techniques, ARTS has real-time options for generating radiosity lighting
effects, edge on fading to simulate gaseous objects, and multi-pass rendering
for high quality shading and special effects like real-time bump maps. It also
features optimized display list processing for non-linear deformations and n-
dimensional shape interpolation.

Dynamics Simulation. One of the most important features of any real-time
system is how well it deals with physical dynamics of objects and entities in a
virtual environment. ARTS is well equipped for this, with optimized forward
and inverse kinematics (with integrated motion capture), hierarchical collision
detection using surface geometry and/or primitives, and real-time non-linear
spring-mass networks. It also supports multiple dynamic particle systems
which can interact with global forces and other objects, efficient height above
terrain and range finding, and eye path collision avoidance.

Behavioral Simulation. Populating virtual worlds with intelligent agents and
entities is critical in developing compelling interactive experiences. Using an
extensible object-oriented approach ARTS provides controls for creating vari-
eties of autonomous friends and foes. In support of photo-realistic animations
ARTS allows for imported keyframe data from third party animation packages,
as well as a variety of motion capture systems, like the Polhemus Fast-Track
and Ascension’s Flock-of-Birds.

Database Generation. ARTS construction tools offers a full functioned point,
line, polygon, and patch database editor, as well as an interface for object from
third party products. The extensible nature of the ARTS environment allows
for dynamic integration of newly developed advanced or specific modeling
tools, with a generic graphical user interface builder. In this way, new software
techniques can be integrated and released to the entire studio in a matter of
minutes. ARTS also provides an extensive library of floating point image pro-
cessing tools for image manipulation and texture generation and management.
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Audio Features. ARTS recognizes the importance of sound in the virtual
world, and it supports a full MIDI standard. 3D placement of localized sounds,
ambient sounds, and virtual microphones, all help drive the illusion home.
ARTS offers an efficient tool kit of digital sound editing and imaging tools, and
is configurable to support a variety of hardware/software audio interfaces.

Hardware Interface. It is essential in this new field to be able to import and
export data from a variety of input and output devices. Two to six degree of
freedom motion bases, stereoscopic and head mounted displays, and full body
motion tracking systems are supported with a customizable networked input
event queue.

Extension Packages. Because of the extensible nature of the object oriented
approach used in ARTS a number of specialized extension packages can be
developed within the ARTS environment. Certainly a generic library of objects
and environments is a must for efficient production, as well as a feature based
environment generator. Many applications require extensive vehicle dynamics
with elaborate weapons and explosion handling capabilities. Software libraries
for synthetic actors and crowds can be added along with feature based expres-
sion editors with automated lip-sync support. All of these features can be used
for high resolution photo-realistic animation production systems. Even effi-
cient security encryption, production management and tracking can be inte-
grated into the ARTS system.

These specifications and suggestions are an example of what is required to pro-
duce truly compelling interactive content. If the user is to get deeply involved
in a simulation of a virtual world that depiction must be complete, consistent,
and coherent. Advanced programming techniques must be used if one is to
achieve a willing suspension of disbelief.

9   Conclusion

The preceding sections have attempted to demonstrate the full range of disci-
plines and techniques necessary to create compelling interactive content. A
dynamic balance between strong creative and technical teams, a thriving
research and development effort, and a genuine enthusiasm for the work, are
the ingredients most likely to produce an engaging product.

For now the task is still fairly complicated and the industry is still in its
infancy. As these techniques and procedures become more refined the depic-
tion of more lush and fleshed out worlds will be possible. Not until the look
and feel of the interactive experience is at least as good as the cover art for the
product, and the content has the depth and appeal of some of our best art forms,
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will true real-time interactive experiences fulfill the complete promise of vir-
tual reality.

One day it may be possible for a creative designer, writer and director to sit
together in a special room and develop interactive experiences merely by dis-
cussing and describing the content to a very sophisticated computer. Their
words and ideas would be interpreted and turned into representations in real-
time, as well as any changes and modifications they might have. A virtual real-
ity “black box” of this kind would let the human designer operate at a high
level, much like a film director currently directs actors. The idea of the “Holo-
Deck” on the Starship Enterprise, in the Star Trek TV series, may not be so far
fetched.

Most of the opportunities we have discussed pertain mostly to leisure and
entertainment. That is only temporary. High costs have limited this technol-
ogy’s wide application to areas of high visibility and profit. As the price/per-
formance ratio of the equipment and techniques involved improves, we will
see more and more educational, medical and industrial uses developing. This is
only the beginning in a new era of expression and communication.

No matter what the application, the development of real-time interactive tech-
nology will always require the combined efforts of artists and scientists. Dur-
ing the Renaissance, a driving curiosity about nature and a benevolent respect
for the human mind created a fertile environment for new technological inven-
tions and creative ideas. Many of those artistic developments and technological
innovations are still admired today because of their universal appeal and their
timeless qualities. Today, the emerging field of real-time interactive entertain-
ment may be the surprising catalyst to once again make both the arts and sci-
ences accessible, exciting, and meaningful to everyone.
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FIGURE 1. Orbit Defenders: mother ship exterior with control overly.

10   Figures

The images in this section are from two projects. Orbit Defenders and the Pter-
anadon demonstration ride. Angel produced Orbit Defenders using a Ball 944
Image Generator using ARTSTM. The Pteranadon was produced in conjunction
with GreyStone Technology on an Onyx RealityEngine using IRIS Performer.

Copyright 1993 Angel Studios
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FIGURE 2. Orbit Defenders: exterior battle sequence.

Copyright 1993 Angel Studios
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FIGURE 3. Orbit Defenders: interior intruder robot confrontation.

Copyright 1993 Angel Studios
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FIGURE 4. Orbit Defenders: computer room with defensive droids.

Copyright 1993 Angel Studios
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FIGURE 5. Orbit Defenders: interior corridor maze section.

Copyright 1993 Angel Studios



Figures

9-20 SIGGRAPH ’96 Course  —  Designing Real-Time 3D Graphics for Entertainment

FIGURE 6. Orbit Defenders: maze airlocks with control overlay.

Copyright 1993 Angel Studios
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FIGURE 7. Plan view of the Pteranadon canyon environment.

Copyright 1993 Angel Studios and GreyStone Technology
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FIGURE 8. Pteranadon flying a low pass over animated leviathan.

Copyright 1993 Angel Studios and GreyStone Technology
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FIGURE 9. Pteranadon approaching castle with rope bridge in foreground.

Copyright 1993 Angel Studios and GreyStone Technology
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Abstract

This paper describes the design and implementation of IRIS Per-
former, a toolkit for visual simulation, virtual reality, and other
real-time 3D graphics applications. The principal design goal is to
allow application developers to more easily obtain maximal perfor-
mance from 3D graphics workstations which feature multiple
CPUs and support an immediate-mode rendering library. To this
end, the toolkit combines a low-level library for high-performance
rendering with a high-level library that implements pipelined, par-
allel traversals of a hierarchical scene graph. While discussing the
toolkit architecture, the paper illuminates and addresses perfor-
mance issues fundamental to immediate-mode graphics and
coarse-grained, pipelined multiprocessing. Graphics optimizations
focus on efficient data transfer to the graphics subsystem, reduction
of mode settings, and restricting state inheritance. The toolkit’s
multiprocessing features solve the problems of how to partition
work among multiple processes, how to synchronize these pro-
cesses, and how to manage data in a pipelined, multiprocessing
environment. The paper also discusses support for intersection
detection, fixed-frame rates, run-time profiling and special effects
such as geometric morphing.

Keywords: Real-time graphics, multiprocessing, visual simulation,
virtual reality, interactive 3D graphics

CR Categories and Subject Descriptors: I.3.2 Graphics Systems;
I.3.3 Picture/Image Generation; I.3.4 Graphics Utilities, Applica-
tion Packages, Graphics Packages; I.3.7 Three-Dimensional
Graphics and Realism

1 Introduction

Recently, multipurpose workstations have attained graphics perfor-
mance levels that have customarily been the province of expensive,
special-purpose image generators (IGs). Consequently, many
visual simulation applications are migrating from IGs to graphics
workstations. Additionally, the decrease in the cost/performance
ratio of current-generation workstations has opened the door to
non-traditional visual simulation applications such as virtual real-
ity and location-based entertainment. These applications are often
very cost-sensitive and so demand every drop of speed from the
machine.

1.1 Motivation

In our experience, application developers often have problems
extracting graphics performance due to inexperience with the sys-
tem and ignorance of the “new set of rules”, some of them quite
arcane, which must be followed for peak performance on each new
graphics platform. Also, applications often forgo multiprocessing
simply because the development of a multiprocessed application
proves too difficult or time-consuming. The resulting single-
threaded applications sequentially process all tasks, leaving an
expensive graphics subsystem idle while the application carries out
non-graphics processing.

Existing general purpose 3D libraries and toolkits tend to address
different problems. Immediate-mode rendering libraries such as
OpenGL[9], Starbase[6], and XGL provide an efficient interface to
hardware, but leave the definition of geometry, scene content and
multiple eye points to the application. Object-oriented toolkits such
as PHIGS+[13], HOOPS, Doré[7] and IRIS Inventor[12] provide
scene structures based on display lists and objects, but for most
efficient rendering they retain an internal copy of the geometric
data. Since applications often need access to the original data for
other purposes, a second inaccessible copy inside the toolkit can
substantially increase memory usage. In addition, when the appli-
cation dynamically changes geometry, the retained data must be
edited or rewritten. Depending on the toolkit, this can increase pro-
gram complexity, degrade performance, or both.

Most importantly, none of the aforementioned toolkits addresses
multiprocessing. And from our experience, retrofitting a retained-
database toolkit with efficient multiprocessing support and parallel
traversals proves difficult at best.

In addition to demanding maximum performance, visual simula-
tion and virtual reality applications have real-time requirements
and must run at fixed frame rates to avoid the distractions and arti-
facts caused by frame rate variations. To achieve reasonable per-
formance, these applications require efficient database culling to
the viewing frustum, scene complexity management through level-
of-detail switching, intersection testing, and run-time profiling for
application and database tuning. Toolkits written specifically for
visual simulation such as VisionWorks[10] and GVS[8] partially
address many of these issues, but neither offers a fully multipro-
cessed solution.

1.2 Purpose

The fundamental design goal of the toolkit is to provide a software
development layer that delivers the greatest possible performance
from the graphics workstation, freeing the application developer to
concentrate on other matters. We achieve this primarily through:

• Graphics optimizations

• Multiprocessing

Another goal is to simplify the development of virtual reality and
visual simulation applications by providing intrinsic support for
common graphics and database operations such as multiple views,
level-of-detail switching, morphing, intersection testing, picking,
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Graphics

John Rohlf and James Helman
Silicon Graphics Computer Systems*

*2011 N. Shoreline Blvd., Mountain View, CA 94043 USA
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and run-time profiling. However, the toolkit does not provide direct
support for I/O devices, audio, or motion systems since these are
not directly related to the core functions of a rendering platform or
a multiprocessing framework. Some applications, such as the fly-
through system shown in Figure 17, have added their own device
support to IRIS Performer, as have developers of toolkits for par-
ticular application domains, e.g. dVS[5] and WorldToolkit[8].

The graphics optimizations and multiprocessing features of the
toolkit are targeted for workstations which support immediate-
mode graphics and small-scale, symmetric, shared memory multi-
processing.

1.3 Overview

The toolkit’s core consists of two libraries: libpf and libpr. libpr

consists primarily of optimized graphics primitives as well as inter-
section, shared memory, and other basic functions. libpf is built on
top of libpr and adds database hierarchy, multiprocessing, and
real-time features. This arrangement is illustrated in Figure 1
below:

Figure 1. Library Layering

The two-library approach allows developers to choose which layer
they wish to program to and also avoids “black box” limitations to
flexibility by allowing an application which uses libpf to access the
underlying libpr primitives. An application is also free to access
the immediate-mode graphics library and operating system directly
for customized rendering or control.

In keeping with our bottom-up design methodology, we discuss
libpr first, then follow with libpf and finish with a description of
run-time profiling utilities which facilitate performance tuning.

2 libpr - Efficient Rendering

The libpr library provides the high-performance foundation for
IRIS Performer. Its specialized graphics primitives are designed to
squeeze the highest level of performance from the graphics pipe-
line by efficiently managing geometry and graphics state for imme-
diate-mode rendering. In addition, libpr supports intersection and
shared memory utilities that facilitate a multiprocessed visual
application.

2.1 pfGeoSet - Efficient Geometry Primitive

In our experience, the data structures used to represent geometry
and the code which transfers that data to the graphics hardware
very often make or break an immediate-mode graphics application.
Scattered memory organizations can result in poor cache behavior
and inefficient rendering loops can starve a fast graphics pipeline.

Immediate Mode vs. Display List Mode

The pfGeoSet’s purpose is to achieve maximum immediate-mode
performance for 3D geometry. In immediate mode, the host CPU
must feed the graphics subsystem with primitive, vertex, and
attribute commands. An alternative to immediate mode is display
list mode which compiles a list of commands into a data structure
that can be very efficiently transferred to the graphics subsystem.

Operating System, Graphics Library

libpr

libpf

application

However, display list mode has some significant disadvantages that
immediate mode does not have:

• A display list is a closed data structure. Geometry data must be
duplicated at substantial memory penalty for database queries
like intersections which require read access.

• Display lists are costly to compile. This generally requires that
geometry be static. Techniques requiring vertex manipulation
such as animation do not lend themselves to display list mode.

pfGeoSets utilize application-supplied arrays for attributes such as
coordinates and colors, consequently avoiding these disadvan-
tages. Applications are free to modify these arrays for dynamic
effects without experiencing degraded rendering performance.

A pfGeoSet is a collection of geometric primitives of a single type
defined by its:

• primitive type: points, lines, line strips, triangles, quads, or tri-
angle strips

• attribute lists: coordinates, colors, normals, texture coordinates

• attribute bindings: per-vertex, per-primitive, overall, off.

Figure 2 illustrates a pfGeoSet consisting of two triangles with a
per-primitive color binding: the first is red and the second is blue.

Figure 2. pfGeoSet Structure

On high-end machines in particular, care must be taken to ensure
that immediate-mode data transfer is efficient or else the graphics
hardware will be starved. pfGeoSets guarantee efficient data trans-
fer by enforcing an a priori grouping of geometry by type that
facilitates the use of customized, extremely tight rendering loops.
Since all primitives within a pfGeoSet are homogeneous, a single,
well-tuned rendering routine that is tailored to the specific pfGeo-
Set type can quickly transfer the primitives with a minimum of
overhead. For example, if a pfGeoSet is a collection of triangles
which have colors defined per-primitive (i.e., one color per trian-
gle), its corresponding rendering routine doesn’t waste precious if-
tests determining whether or not a color should be sent down with
each vertex. Over 700 of these specialized rendering routines exist
(macro-generated) to handle all combinations of primitive types
and attribute bindings, and all are indirectly accessed through the
single pfDrawGSet() routine.

pfGeoSet Construction

Developers may find pfGeoSet construction messy and may some-
times generate pfGeoSets with sub-optimal performance, e.g.,
pfGeoSets with a small number of primitives may suffer from
excessive setup overhead when transferring them to the graphics
subsystem. Or an application may fail to use triangle meshes where
possible. Connecting triangles together into a mesh can signifi-
cantly reduce the amount of data transfer from the CPU to the
graphics subsystem as well as the amount of processing required in
the graphics hardware. Unfortunately, most databases do not utilize
triangle meshing and automatic meshing algorithms are complex.
To avoid these pitfalls, the pfuBuilder utility functions provide
convenient meshing and performance-oriented construction of
pfGeoSets. The application simply feeds independent, potentially
concave polygons to a pfuBuilder which returns sorted, meshed,

primitiveType = TRIS
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numPrimitives = 2
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normalBinding = off
texCoordBinding = off
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(2.0,0.0,2.0)
(0.0,0.0,2.0)

(1., 0., 0., 1.)
(0., 0., 1., 1.)

(R,G,B,A)

pfGeoSet (0.0,1.0,2.0)
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and optimized pfGeoSets on request.

2.2 Efficient Graphics State Management

Unlike geometry, graphics state commands do not modify the
frame buffer; they do not “draw” anything, but instead configure
the graphics hardware with a particular mode (e.g. shading model)
or attribute (e.g. texture) that modifies the appearance of geometry.
Like geometry, efficient management of graphics state is required
for optimal graphics performance.

In libpr there are 3 ways to set graphics state, each of which offers
significant performance advantages:

• Immediate mode

• Display list mode

• Encapsulated mode

In general, applications use immediate mode to set global state
such as enabling fog and use encapsulated mode to specify the
appearance of geometry at database creation time. Display list
mode is primarily intended for use by the libpf library to accom-
modate multiprocessing.

2.2.1 pfState - Immediate Mode

The state management provided by the pfState object is useful for
avoiding redundant mode changes. A pfState object maintains all
current and previous graphics state in a state stack. The set of man-
aged graphics state is that which can be modified through libpr

routines and is a subset of that provided by the graphics library.
Graphics state is partitioned into:

• Modes such as backface culling, gouraud shading, wireframe
on/off

• Attributes such as texture, material parameters

Modes are generally simple integer values that are set by single
commands such as pfShadeModel() while attributes are objects
like pfTexture that encapsulate many graphics characteristics.
Modes are “set” and attributes are “applied” by their immediate-
mode routines: pfShadeModel() and pfApplyTex() for example.

By shadowing the state of the graphics hardware, a pfState can
eliminate costly mode changes. For example, if the current shading
model is FLAT then a subsequent attempt at setting a FLAT shad-
ing model should be intercepted before being sent to the graphics
hardware. Avoiding mode changes is especially useful for parallel-
ized geometry engines which become essentially single-threaded
during a mode change because mode changes must be broadcast to
all engines. Redundant mode changes become particularly preva-
lent if the database is sorted by mode (See Section 3.1.3).

2.2.2 pfDispList - Display List Mode

The primary purpose of the pfDispList is to capture an entire
frame’s worth of data for use in multiprocessing. It captures and
buffers libpr rendering commands such as pfShadeModel() and
pfApplyTex(). As will be discussed in Section 3.2.2, two processes
can communicate via a pfDispList to increase throughput. One
producer process fills the pfDispList and a consumer process
draws it by traversing it and sending appropriate commands to the
graphics subsystem. Throughput is enhanced because the producer
process off-loads expensive database processing from the time-
critical consumer process which performs immediate-mode render-
ing. A pfDispList may be configured as a FIFO or ring buffer for
concurrent producer/consumer configurations.

A pfDispList is different from a typical display list in that it cap-
tures only references to libpr objects and does not contain individ-
ual vertex or primitive commands; instead the libpr objects
themselves contain and transfer these commands. Consequently a
pfDispList can be quickly built and traversed. Additionally, a
pfDispList is somewhat editable (it may be reused and appended

to) and can also contain references to function callbacks for user-
defined rendering.

2.2.3 pfGeoState - Encapsulated Mode

The pfGeoState object provides the primary mechanism for speci-
fying graphics state in an IRIS Performer application. It encapsu-
lates all state modes and attributes managed by libpr. For example,
a pfGeoState may be configured to enable lighting and reference a
wood pfTexture and a shiny pfMaterial. Then after it is applied to
the graphics subsystem, subsequent geometry will have the appear-
ance of a finished wood surface. A pfGeoState can be attached to a
pfGeoSet so that together they define geometry with a specific
appearance.

The pfGeoState has some special features that either directly or
indirectly enhance rendering performance:

Locally Set vs. Globally Inherited State

It is possible to specify every libpr mode and attribute of a pfGeo-
State, in which case the pfGeoState becomes a true graphics con-
text that fully defines the appearance of geometry. However, a full
graphics context is fairly expensive to evaluate and is almost never
required. The key observation is that many state settings apply to
most geometry in the database. For example: fog, lighting model,
light sources and lighting enable flag are often applied to the entire
scene since they are global effects by nature. Conversely, attributes
such as materials and textures are likely to change often within a
database. pfGeoStates support these two kinds of state by distin-
guishing between globally inherited and locally set state respec-
tively. By globally inheriting state, a pfGeoState can reduce the
amount of state it sets, i.e.- it becomes sparse. A sparse pfGeoState
is more efficiently managed because fewer pieces of state need be
examined. State is inherited simply by not specifying it. However,
an important point discussed below is that state is never inherited
between pfGeoStates. As an important result, pfGeoState render-
ing becomes order-independent.

Order Independence

In many immediate-mode graphics libraries, geometry inherits pre-
viously set graphics modes. As a result,  rendering is order-depen-
dent; graphics state and geometry must be organized in a specific
order to produce the desired appearance. Order dependence is
undesirable for high-level database manipulations such as view
culling and sorting which frequently modify rendering order.

To ensure order independence, the application must either com-
pletely specify the graphics state of all geometry or it must be
aware of the current graphics state and change state when neces-
sary. The former solution seriously compromises performance if
the graphics context is non-trivial and the latter is a bookkeeping
nightmare.

pfGeoStates guarantee order independence for rendering as a direct
consequence of not inheriting state from each other. When applied,
a pfGeoState implicitly saves and restores state so that its state
modifications are insulated from other pfGeoStates. Furthermore,
if a global state element is modified by a pfGeoState, it will be
restored for those pfGeoStates which inherit that element.

Lazy Push/Pop

If a pfGeoState explicitly pushed and popped all graphics state,
significant performance would be lost due to unnecessary mode
setting. Instead, a pfGeoState pushes only those global state ele-
ments that it needs to change and pops only those global state ele-
ments that it needs to inherit and that were changed by a
previously-applied pfGeoState. Lazy popping eliminates useless
mode changes since a mode is not restored if a pfGeoState is going
to change it anyway.
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2.3 Multiprocessing Support

The libpr library is designed to fully support, but not require, a
multiprocessing environment. To this end, libpr provides mecha-
nisms for creating and maintaining shared data.

2.3.1 Shared Memory

libpr provides mechanisms for sharing memory between related
(forked from the same image) and unrelated processes. Allocations
are reference counted to support operations such as deletion in a
multiprocessed environment (See Section 3.2.3).

2.3.2 pfMultibuffer - Multibuffered Arrays

When a process needs to modify a piece of data for consumption
by other processes, data must be passed or multiple copies (buff-
ers) must be maintained. To facilitate this, libpr provides multipro-
cessing constructs such as queues and multibuffered memory. The
pfMultibuffer object provides data synchronization and data exclu-
sion for multi-stage software pipelines by managing multiple cop-
ies of a single data array. pfMultibuffer is particularly useful for
dynamic and morphing geometry. A global index for each process
indicates the currently active pfMultibuffer buffer, e.g., process A
may be working on buffer0 while process B is simultaneously
working on buffer2. By changing the global index, processes can
“pass” work to each other, simulating a processing pipeline. Since
buffers are recycled rather than copied, the mechanism is efficient
regardless of the amount of data which changes and independent of
the number of consuming processes. When the contents of a
pfMultibuffer stop changing, the most recent version is copied into
each buffered instance so the application does not need to write
every pfMultibuffer every frame.

2.4 Database Intersection

Most applications require intersection testing for purposes such as
picking and collision detection. Since the target of these tests is
often the visual data already represented in pfGeoSets, libpr pro-
vides the ability to intersect line segments against the polygons
inside a pfGeoSet, thereby avoiding expensive duplication of the
database. We chose line segments as the first primitive to imple-
ment because the tests are fast and they provide the most natural
expression of common queries such as picking, line-of-sight visi-
bility, and terrain following. Many simple collision detection
mechanisms can be implemented by intersecting a set of line seg-
ments that describe the swept volume of a moving object with the
database. The racing car simulator shown in Figure 15 uses two
segments for following the track height and four segments for
detecting collisions with walls and other cars. Several line seg-
ments can be grouped into a single intersection request to reduce
processing overhead. Performance may be further improved by
specifying an optional bounding cylinder which encompasses all
line segments and by caching plane equations for static pfGeoSets.

pfSegsIsectGSet() returns the nearest or farthest intersection along
each line segment. Applications can use a discriminator callback
to examine each intersection individually during traversal of the
geometry. Discriminator callbacks can direct the intersection tra-
versal and/or modify the intersecting line segments for fine-grained
intersection control. Intersection information available to the appli-
cation includes the actual triangle within the hit pfGeoSet, the
intersection position and geometric normal.

3 libpf - Adds Database Hierarchy and

Automated Multiprocessing to libpr

Representing a visual database involves more than just geometry
and its associated graphics state. A higher-level library, libpf, built
on top of libpr provides a hierarchical scene graph of nodes which
organizes libpr geometry for improved modeling and processing

efficiency.

IRIS Performer accomplishes most database processing through
traversals of the scene graph hierarchy. Much of libpf’s program-
ming interface handles traversal configuration and control. Typi-
cally, an application updates scene graph and viewing parameters
for a frame and then activates one or more processing traversals.
For improved performance on multiprocessor systems, libpf can
automatically execute these traversals in parallel with little extra
programming burden on the application.

3.1 Database

A scene graph consists of nodes connected in a directed, acyclic
fashion. Geometry lies at the leaves of the scene graph while inter-
nal nodes support notions such as grouping, transformation, selec-
tion, and sequencing as well as special operations such as level-of-
detail switching, and morphing.

3.1.1 Class Hierarchy

While both libpf and libpr libraries are object-oriented, the flat
class hierarchy of libpr allowed us to write it in C. However, the
natural expression of scene graph nodes requires a deeper class
hierarchy as shown in Figure 3. Consequently libpf is written in
C++.

Figure 3. Node Class Hierarchy

Nodes fall into three groups: abstract, internal and leaf. pfNode is
the abstract base class for all nodes and is itself derived from an
internal class called pfUpdatable which creates and maintains mul-
tiple copies of the node for multiprocessing as described in Section
3.2.

The internal node types are:

• pfGroup: references pfNodes as children

• pfScene: group that roots a scene graph.

• pfSwitch: group with none, one, or all children active

• pfSequence: sequences through its children for animation
effects

• pfSCS: applies an unchangeable transformation (static coordi-
nate system) to its children

• pfDCS: applies a changeable transformation to its children
(dynamic coordinate system)

• pfLayer: renders coplanar geometry, e.g. pictures on a wall.

• pfLOD: selects one or more children based on distance to eye,
viewport pixel size, and field-of-view (level-of-detail).

• pfMorph: interpolates geometry, color, etc. between models

• pfPartition: spatially partitions geometry beneath it into an effi-
cient data structure

The leaf node types are:

• pfGeode: references zero or more pfGeoSets

• pfBillboard: rotates pfGeoSets to face the eyepoint

pfNode

pfGroup

pfSwitchpfLayer

pfLOD

pfSequence

pfSCS

pfDCS

pfPartition

pfScene
pfLightPoint

pfGeode

pfBillboard

pfMorph
pfLightSource
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• pfLightPoint: draws visible, but non-illuminating points of
light, e.g. stars, runway lights

• pfLightSource: non-visible but illuminating light source

In a scene graph, pfGeodes typically contain most of the visual
geometry. Each pfGeode references a set of libpr pfGeoSets. Spe-
cialized geometry is contained within pfLightPoints and pfBill-
boards.

3.1.2 Node Hierarchy

State Inheritance

In addition to providing organizational and instancing capability, a
hierarchy of nodes (scene graph) also allows state inheritance.
Within a scene graph, inheritance is strictly top-down. The absence
of any left-right or bottom-up inheritance allows arbitrary pruning
of the scene graph during traversal. This also facilitates paralleliza-
tion of a single traversal because subgraphs of the scene graph can
be traversed independently. The primary type of inherited state is
3D transformations, although user callbacks may also affect inher-
ited state during traversals. Graphics state such as that defined by
the pfGeoState primitive is not inherited through the scene graph.
Grouping the primary specification of graphics state with leaf
geometry rather than with internal nodes of the scene graph greatly
facilitates tasks such as sorting by graphics mode.

Bounding Volume Hierarchy

The node hierarchy also defines a hierarchy of bounding volumes
which are used to accelerate intersection and culling. Each node
has a bounding sphere which encloses the node as well as any chil-
dren it may have. The toolkit automatically recalculates these
bounding volumes when geometry or scene graph topology
changes.

All node types except pfScene retain parent lists. This allows a
change to a child in a scene graph, such as a bounding volume
change, to be propagated to all its ancestors in the scene graph. To
eliminate redundant updates, internal state is marked using dirty
bits which are propagated to the root of the scene graph so the
cleaning of dirty state can be deferred until required.

3.1.3 Traversals

After the application configures the scene graph and viewing
parameters, three basic traversals may process the scene graph:

• Intersection traversal (ISECT) — processes intersection
requests for collision detection and terrain following.

• Culling traversal (CULL) — rejects objects outside the view-
ing frustum, computes level-of-detail switches, sorts geometry
by modes

• Drawing traversal (DRAW) — sends geometry and graphics
commands to the graphics subsystem.

TABLE 1. Traversal Characteristics

ISECT CULL DRAW

Controller pfSegSet pfChannel pfChannel

Global
Activation

pfSegsIsectNode pfCull pfDraw

Modes pfSegSet mode pfChanTravMode pfChanTravMode

Masks pfNodeTravMask
pfSegSet mask

pfNodeTravMask
pfChanTravMask

pfNodeTravMask
pfChanTravMask

Process
Callback

pfIsectFunc pfChanCullFunc pfChanDrawFunc

Node
Callbacks

pfNodeTravFuncs pfNodeTravFuncs pfNodeTravFuncs

Table 1 lists the libpf routines which define major characteristics
of these 3 traversals

The default CULL and DRAW traversals are completely automatic
and are triggered by pfFrame() (See Section 3.2.2). However,
pfFrame() first triggers a partial traversal of the scene graph which
cleans the internal state of the scene graph. Portions of the scene
graph may have already been cleaned if the application called a
routine which attempted to read a piece of state which was dirty.

Cull Traversal

The CULL traversal precedes the DRAW and uses many tech-
niques to improve rendering performance by reducing load on both
the DRAW traversal and on the graphics subsystem:

• Culling to the viewing frustum (pfChannel)

• Computing state specific to a pfChannel, e.g. level-of-detail

• Sorting for performance and visual quality

• Generating a simple display list (pfDispList) for the DRAW
traversal

For applications with an eye point in the midst of the database,
culling to the viewing frustum can reject the majority of geometry,
substantially reducing the amount of data sent to the graphics sub-
system. Viewing state and frustum are encapsulated by the pfChan-
nel object. IRIS Performer supports multiple views, e.g. stereo,
through multiple pfChannels which may view the same or different
pfScenes.

The CULL traversal uses the hierarchical bounding volumes pro-
vided by the scene graph (See Section 3.1.2). Bounding spheres are
used within the scene graph because they are fast to update, trans-
form and test against. Axially aligned bounding boxes are used for
each pfGeoSet to provide tighter bounds around the actual geome-
try.

During the CULL traversal the bounding sphere of each node is
transformed as necessary and compared against the viewing frus-
tum. The action taken depends on the result of the bounding vol-
ume test as follows:

• Completely outside the frustum: traversal continues without
traversing any of the node’s children — the node is pruned

• Completely inside the frustum: continue down the scene graph
with no further culling tests

• Partially or potentially intersecting: continue testing and tra-
versing down the scene graph

The ultimate output of the CULL traversal is the geometry and
graphics state information to be sent to the graphics hardware.
When enabled to do so, the CULL traversal first generates sorted
lists of the pfGeoSets to be rendered. Each frame, these lists are
sorted by graphics mode to increase rendering performance by
minimizing expensive graphics mode changes such as transforma-
tion and texture changes. It is here that the order-independence
offered by pfGeoStates (see Section 2.2.3) is especially useful.
Next, the CULL traversal converts these sorted lists into a single
pfDispList which eventually contains the entire frame. Transparent
geometry is placed into the display list last, after a limited depth
sort which improves both pixel-fill performance and the visual
quality of the transparency. In our experience, mode sorting can
significantly improve rendering throughput, sometimes more than
50%.

Draw Traversal

For each visual channel, the DRAW traverses the display list gen-
erated by its associated CULL traversal and sends commands to
the graphics subsystem. The DRAW traversal differs from the
CULL and ISECT traversals in that it does not involve traversing
the actual scene graph. We designed the pfDispList format to be
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very simple, so the DRAW traversal has very little work other than
issuing graphics calls. The scene graph traversal overhead is
absorbed by the CULL which increases rendering throughput when
multiprocessing. When not multiprocessing, we can combine the
CULL and DRAW traversals into a single traversal which both
culls and issues graphics commands to avoid the small overhead of
pfDispList generation.

Traversal Control

Nodes have separate traversal masks for each traversal type to
allow the application to “mask off” subgraphs of the scene for tra-
versal. A node is only traversed if the logical AND of the traversal
mask and the node mask is non-zero. This allows multiple data-
bases to coexist in the same scene graph. For example, a scene
graph may contain simpler geometry for collisions than for render-
ing in order to reduce intersection times. In this case, the DRAW
traversal mask for the collision geometry and the ISECT traversal
mask for the visual geometry would both be zero.

Traversal Callbacks

Traversal callbacks provide even finer control on traversals. Each
node can have its own pre- and post-traversal callbacks corre-
sponding to each traversal type. These allow the application to
prune or terminate the traversal at any time. The pre-CULL call-
back also allows the application to specify the result of the cull test
for customized culling. The application may use the pre- and post-
DRAW callbacks for custom rendering using libpr or the underly-
ing graphics library, or to change and restore the graphics state for
a portion of the scene graph. Figure 16 shows a real-time video
effects program which uses DRAW callbacks to apply video tex-
turing.

Intersection Traversal

ISECT traversals differ from the CULL and DRAW in that they are
not automatic but are directly invoked by the application. Cur-
rently, intersections are based entirely on sets of line segments. The
pfSegSet structure embodies an intersection request as a group of
line segments, an intersection mask, discriminator callback, and
traversal mode. The traversal consists of testing the pfSegSet
against the hierarchical bounding volumes in the scene graph.
Intersection “hits” can be returned for pfNode bounding volumes,
pfGeoSet bounding boxes and the actual geometry inside pfGeo-
Sets. In addition to the traversal callbacks described above, inter-
sections also provide a discriminator callback so that the
application can examine each “hit” during traversal and accept or
reject the intersection as well as terminate traversal. Because
ISECT traversals usually require a pfSegSet to be tested against
many triangles, the traversal transforms the pfSegSet into local
object coordinates rather than transforming the bounding volumes
and pfGeoSets into world coordinates. Since intersections do not
modify the database, applications may invoke many intersection
requests in parallel.

Efficiency of Bounding Volume Hierarchy

The efficiency of both CULL and ISECT traversals is largely
dependent on the depth and balance of the scene graph hierarchy.
For example, a scene graph arranged as a balanced octree will cull
more quickly than a flat scene graph. A scene graph with poor spa-
tial hierarchy can be rearranged as a result of database profiling as
described in Section 4.2 or be imposed with an improved second-
ary partitioning with pfPartition as described in Section 3.1.4.

3.1.4 Performance Optimizations

pfFlatten - Eliminating Transformations

Taking a single model and placing it under multiple static transfor-
mations (e.g. trees, houses) in the scene graph is convenient for
modeling, but not always necessary at run time. During rendering,
a transformation typically requires the hardware matrix stack to be

pushed, the new transformation applied, the geometry drawn and
then the matrix stack to be popped. For small models, these matrix
operations can consume as much time or more than the actual ren-
dering. pfFlatten() can improve graphics performance at a cost in
memory usage by duplicating static, instanced geometry, applying
the current static transform to the geometry, and setting all static
coordinate systems (pfSCSes) to the identity matrix.

pfLOD - Level of Detail

Next to view frustum culling, the most important mechanism for
reducing and managing the graphics load is level-of-detail (LOD)
switching. When an object is only a few pixels large on the screen,
it’s wasteful to render a model with a high polygon count; rather, a
coarser model with a lower level-of-detail should be rendered
instead. The pfLOD node uses distance to the eye point, field-of-
view, viewport pixel size, and graphics stress (see Section 3.3.2) to
select among models of varying geometric complexity.

To make LOD changes as inconspicuous as possible, the pfLOD
node can gradually fade between two models when switching. A
drawback to fade LOD is that it requires rendering both models
during the transition which temporarily increases the graphics load.
An alternative LOD mechanism provided by the pfMorph node is
described in Section 3.1.5 and can avoid this penalty by smoothly
migrating vertices from one LOD to another.

pfSequence - Animation Sequences

Most high-quality animation requires moving vertices every frame.
But for the highest performance with minimal CPU loading, most
real-time applications make extensive use of precomputed anima-
tion sequences such as a sequence of textures to simulate a flicker-
ing torch. The pfSequence node supports this by automatically
sequencing through its children. Each child is assigned a period of
time, rather than a number of frames, during which it should be
displayed so that the sequence is immune to frame rate variations.
An example of pfSequence use is the dragon seen in the back-
ground of Figure 13.

pfBillboard - Billboarded Geometry

Rotating geometry, usually a single textured polygon, so that it
always faces the eye is a trick from visual simulation used for axi-
ally and radially symmetric objects such as trees, clouds and spe-
cial effects such as smoke or fire. Using a billboarded polygon
instead of a full three-dimensional model reduces both geometry
and pixel fill demands on the graphics pipe. A pfBillboard can be
constrained to rotate about an axis or a point. The trees and lamp
posts in Figure 14 are examples of pfBillboards.

pfPartition - Spatial Data Structure

IRIS Performer relies on the hierarchical bounding volumes of a
scene graph to accelerate intersection and culling traversals. How-
ever, a user-constructed scene graph may exhibit poor spatial
arrangement, obviating the benefits of hierarchical bounding vol-
umes. In this case a specialized spatial data structure imposed on
the default scene graph can provide much higher performance, par-
ticularly for intersections. The pfPartition group node analyzes
geometry underneath it at database load time and partitions pfGeo-
Sets into a 2D grid with multiple membership. During the intersec-
tion traversal, line segments in a pfSegSet are scan converted onto
the grid to quickly determine which pfGeoSets need to be tested
against. Other types of spatial data structures may be added in the
future.

3.1.5 Special Features

pfMorph - Morphing

The pfMorph node provides a mechanism for interpolating geome-
try between many sources. A pfMorph takes a set of input arrays
and weights and places the linear combination of the input arrays
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into an output array. Typically, the morphed arrays are the vertex,
color, normal or texture coordinate arrays of a pfGeoSet in the
scene graph beneath the pfMorph node. The two main applications
are for continuously varying animated geometry such as the head
of the creature in the foreground of Figure 13 and for continuous
LOD switching [3]. The latter allows nearly invisible LOD transi-
tions and can be more efficient than fade LOD if the cost of mor-
phing is small compared to the cost of drawing two models during
a fade transition.

3.1.6 Database Importation

IRIS Performer is strictly a runtime programming interface with an
in-memory scene representation and currently has no database file
format. An application calls toolkit routines to create and assemble
a scene graph from various elements such as pfNodes, pfGeoSets
and pfGeoStates. Because the task of creating pfGeoSets can be
tedious, a utility library built on top of the toolkit provides routines
(pfuBuilder) to simplify the construction and triangle meshing of
pfGeoSets. Using these, database loaders have been written for
various database formats including Autodesk DXF, Wavefront
OBJ, Software Systems FLT, Coryphaeus DWB, and LightScape
LSB. Database formats with a hierarchical scene graph and visual
simulation extensions (e.g. level-of-detail, billboards) map directly
to the toolkit scene graph. For those database formats without any
hierarchy, the utility library provides spatial octree-based breakup
of geometry (pfuBreakup) so that even large, monolithic models
can be organized into a scene graph for efficient culling and inter-
secting.

3.2 Multiprocessing

A fundamental design criterion of the toolkit was to improve per-
formance through multiprocessing while hiding the programming
complexities that multiprocessing creates. This section describes
our solutions to the following multiprocessing problems:

• How to partition work among multiple processes

• How to synchronize process execution

• How to manage data in a pipelined, multiprocessing environ-
ment

3.2.1 Pipelined Multiprocessing

IRIS Performer employs a coarse-grained, pipelined, multipro-
cessing scheme, i.e., a relatively small number of processes work
concurrently on different stages of one or more processing pipe-
lines. This configuration favors workstations with a relatively
small number of processors (tens) over massively parallel systems
(thousands). The partitioning of work into multiple processes is
based on processing stages. A processing stage is a discrete section
of a processing pipeline and encompasses specific types of work.
Processing stages are tightly coupled to the scene graph traversals
described in Section 3.1.3. The ISECT, CULL, and DRAW pro-
cessing stages consist of zero or more intersection, culling, and
drawing traversals respectively in addition to application-specific
processing that is accessed through function callbacks. An addi-
tional processing stage, the APP, consists primarily of application
code as well as database, viewpoint, and system modifications
made through toolkit routines. Together, these four stages define
two kinds of processing pipelines:

• rendering pipeline: APP → CULL → DRAW

• intersection pipeline: APP → ISECT

pfPipe - Rendering Pipeline

The APP stage is the head of all pipelines and controls their execu-
tion. A rendering pipeline consists of the CULL and DRAW stages
and is encapsulated by the pfPipe primitive. An application may
use one or more parallel pfPipes that each renders zero or more
viewpoints into a single graphics window. The multipipe feature is

provided for machines with multiple graphics subsystems and
includes support for time-multiplexing the output of multiple hard-
ware renderers to a single display. The intersection pipeline con-
sists of the ISECT stage. Only one intersection pipeline is
supported.

Figure 4. Multiprocessing Multipipe Configuration

Multiprocess Partitioning - pfMultiprocess

Multiprocessing in IRIS Performer is achieved by splitting the ren-
dering and intersection pipelines at stage boundaries into multiple
processes. For example, the APP and CULL stages may be com-
bined into a single process while the DRAW stage is split into a
separate process, resulting in a 2-process configuration which is
suitable for a 2-processor machine. The application specifies this
partitioning through pfMultiprocess(), allowing applications to
choose a process partitioning based on the number of available
CPUs. Figure 4 illustrates a processing configuration consisting of
two rendering pipelines and an intersection pipeline where each
stage has been split into a separate process. Figure 5 illustrates dif-
ferent multiprocess partitionings of the rendering pipeline that
range from 1 to 3 processes.

Multiprocessing With Shared vs. Non-shared Address Space

All pipelined processes are created by pfConfig() using the fork()
mechanism. We chose fork() over mechanisms which allow a fully
shared virtual address space so we could selectively share memory
and support multiple graphics pipes, since not all immediate-mode
graphics libraries allow multiple rendering contexts within a single
virtual address space. Synchronization for all processes created by
pfConfig() is handled internally.

Additional Multiprocessing

Additional multiprocessing is easily acquired if the application
itself creates extra processes. The ISECT and APP stages particu-
larly lend themselves to this kind of multiprocessing. For example,
multiple ISECT processes may concurrently execute calls to
pfSegsIsectNode() which intersects a set of line segments with a
scene graph (see Section 3.1.3). However, synchronization for
these processes is the responsibility of the application. The stippled
circles in Figure 4 depict these user-spawned processes.

3.2.2 Process Synchronization

Process synchronization defines the execution order of multiple
processes. It is responsible for enforcing periods of mutual exclu-
sion between processes and for ensuring concurrent execution of
processes. Most process synchronization in the toolkit is achieved
through well-known mechanisms such as semaphores and locks.

Throughput vs. Latency

IRIS Performer enforces pipelined synchronization of processes
created by pfConfig(). Pipelined multiprocessing trades increased
throughput for increased latency. Rendering latency is defined as

scene graphs
app

cull draw

shared
memory

pfPipe1

isect

isect

app
user-
spawned
processes

cull draw

pfPipe0 hardware
pipe 0

hardware
pipe 1

Toolkit-spawned processes



A-10 SIGGRAPH ’96 Course — Designing Real-Time 3D Graphics for Entertainment

the time elapsed from viewpoint specification until the display is
completed for that viewpoint. Rendering throughput is defined as
the amount of geometry processed in unit time. The size of the
throughput vs. latency trade-off is dictated by the number of pro-
cesses in the pipeline (its depth) and increases with process count.
Pipeline depth is configurable and can range from 1 to 3. For exam-
ple, a configuration combining the APP and CULL into a single
process and separating the DRAW will generate a rendering pipe-
line whose depth is 2. If all pipeline stages are well-utilized, per-
formance can be increased over the single-processed case by a
factor equal to the pipeline depth.

Figure 5. Multiprocess Partitioning and Timing Diagram

Figure 5 illustrates timing diagrams for different multiprocess con-
figurations ranging from 1 to 3 processes that are running at 20Hz.
Boxes represent the execution time of individual stages and each
row of boxes corresponds to a single process. Thus, multiple rows
of timing boxes illustrate parallel execution of pipeline stages. The
text inside the boxes specify the stage or stages that the process
handles while the numbers indicate the frame that the process is
currently working on. Notice how the amount of time available to
each stage (throughput) increases as the number of processes
(pipeline depth) increases.

Frame Control

The toolkit typically synchronizes the application to a user-speci-
fied frame rate, e.g. 30Hz. This frame rate defines a series of frame
boundaries that demarcate the beginning and ending of a frame.
The APP stage is responsible for synchronizing to the specified
frame rate and for triggering all processing pipelines once per

cull1 draw1 cull2 draw2

a1 c1 d1 a2 c2 d2 a3 c3 d3

app0 app2 app3

draw0 draw1 draw2

cull0 cull1

app0 app2 app3

draw0 draw1

a0 c0 d0

cull2

draw0

app0 app1 app2 app3

draw1 draw2

cull0 cull1 cull2

min. latency = 117ms

min. latency = 67ms

(APP) + (CULL) + (DRAW) = 3 processes

(APP) + (CULL + DRAW) = 2 processes

(APP +CULL +DRAW) = 1 process

(APP + CULL) + (DRAW) = 2 processes

min. latency = 33ms

min. latency = 92ms

min. latency = 67ms

(APP) + (CULL) + (DRAW) = 3 processes
CULL and DRAW are overlapped

CPU 1

CPU 1

CPU 1

CPU 2

CPU 2

app1

app0 cull0 app1  cull1 app3  cull3app2 cull2

CPU 1

CPU 2

CPU 3

CPU 1

CPU 2

CPU 3

cull0  draw0

1/20sec 1/60sec
frame video

boundary retrace

time

app1

frame by calling pfSync() and pfFrame() respectively.

pfSync() suspends the calling process until the next frame bound-
ary and is discussed in more detail in Section 3.3.1. pfFrame() indi-
cates that all rendering and intersection pipelines should begin
processing a new frame. If a pipeline stage is not ready to begin
processing a new frame because the processing time for the previ-
ous frame exceeded the allotted frame time, the stage has frame-
extended. In this event, pfFrame() does not block but returns con-
trol to the application. If the APP process frame-extends, then
pfFrame() is not called often enough and the update rate drops
even if the rendering pipeline can keep up. For this reason, applica-
tion processing must be kept to within a frame time.

Improving Latency

Certain applications like “man-in-the-loop” flight simulation and
virtual reality applications utilizing a head-tracked display require
very low latencies [14]. The latencies listed in Figure 5 are timed
from the end of the APP processing until video scanout of the last
pixel. To ensure this minimal latency even in cases when the APP
takes less than its full allotment of time, the toolkit allows latency-
critical updates such as the viewpoint to be made just before kick-
ing off the CULL traversal with pfFrame(). Figure 6 depicts a
close-up view of how pfSync() and pfFrame() work together to
synchronize process execution. Latency-critical updates are made
in the shaded portions of the APP processing time and may reduce
throughput by delaying the triggering of the processing pipelines.

Figure 6. pfSync and pfFrame

The following pseudo-code fragment illustrates the use of pfSync()
and pfFrame() in a typical simulation loop:

while(!Done)
{

updateSim(); /* Make non-latency-critical updates */
pfSync(); /* Sleep until next frame boundary */
updateView(); /* Read input devices and update eyepoint */
pfFrame(); /* Trigger new frame */

}

A special multiprocessing mode illustrated by the last timing dia-
gram of Figure 5 eliminates an entire frame of latency by overlap-
ping the CULL and DRAW processes that are working on the same
frame. The two processes communicate via a FIFO which stalls a
process on empty and full conditions. Although the DRAW has to
wait for the CULL to begin filling the FIFO and will stall if it is
faster than the CULL, in practice neither of these drawbacks are
significant. In this overlapped case, latency is reduced to a single
frame, generally the lowest possible. When CULL and DRAW are
not overlapped, latency can still be reduced to a single frame by
culling to a slightly larger viewing volume and sampling a new
viewing position just before drawing.

A lower latency alternative to pipelined multiprocessing would be
a single, multithreaded scene graph traversal. We chose against this
method due to the much higher complexity and overhead arising
from the necessary fine-grained synchronization. Also, the threads
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would have to be single-threaded when the application makes ran-
dom access modifications to the database and when rendering, if
the graphics pipeline does not allow multiple writers.

Pipeline Bottlenecks

Ideally, each process in the pipeline takes exactly one frame time to
complete its work. This situation indicates a balanced pipeline that
is getting maximum utilization of its processors and is the one
depicted in Figure 5. An out-of-balance situation arises when a
particular process takes longer than all other processes in the pipe-
line and becomes a bottleneck. In most graphics intensive applica-
tions, the process handling the DRAW stage is the bottleneck. In
this case, draw times can be reduced through the stress manage-
ment techniques described in Section 3.3.2. If the bottleneck is due
to the CULL stage, times can be reduced by disabling one or more
culling modes. Bottlenecks due to the APP stage are largely the
responsibility of the application.

Process Callbacks

By default, IRIS Performer performs all rendering processing
when triggered by pfFrame(); culling and drawing functions are
carried out in “black box” fashion. Process callbacks provide the
user with the ability to execute custom code both before and after
default processing, and to execute the code in the appropriate pro-
cess when multiprocessing.

Process callbacks are provided for the ISECT, CULL, and DRAW
stages. Default processing for these stages is triggered by pfSegsI-
sectNode, pfCull, and pfDraw respectively. If a callback is speci-
fied, default processing is disabled and must be explicitly triggered
by the callback. This arrangement allows the user to “wrap” default
processing with custom code, allowing save/restore, before/after,
and multipass rendering methods which use techniques such as
projective textures [11]. Figure 12 is from an application which
uses multipass renderings with projective textures to simulate a
spotlight with real-time shadows. In practice, the DRAW callback
is often used for 2D graphics, textual annotations and specialized
rendering that requires the full flexibility of the underlying graph-
ics library. A typical DRAW callback is illustrated below:

void
drawCallback(pfChannel *chan, void *data)
{

clearFrameBuffer();
pfDraw();
drawSpecialStuff();

}

3.2.3 Data Management

Three problems plague data management in a pipelined multipro-
cessing environment:

1) Data visibility. Processes need to share data.

2) Data exclusion. A process must not modify data while other
processes are simultaneously reading and/or writing it.

3) Data synchronization. Data modifications must be propagated
down processing pipelines in a “frame-accurate” fashion.

1) is handled by the shared memory mechanisms described in
Section 2.3.1. 2) can be handled with hardware spin locks but fine-
grain locking becomes expensive and as we shall see, the data
exclusion problem is solved by the solution to 3). First, let us
examine the data synchronization problem more closely.

Data Synchronization

In the toolkit’s multiprocessing pipelines, multiple processes work
on different frames at the same time. For example, the APP process
works on frame 33 while the DRAW is on frame 31. Suppose a sin-
gle matrix in shared memory represents the position of a database
model. If the APP process updates this matrix while the DRAW
process is sending it to the graphics hardware, the matrix might be
partially updated when sent to the graphics, resulting in an unin-

tended combination of two matrices. Alternatively, the model
might be drawn at the position it should have at frame 33, rather
than frame 31. In this case we say that the matrix update is not
frame-accurate since it does not affect the displayed model at the
appropriate time.

Note that hardware pipelines exemplified by graphics subsystems
such as RealityEngine[1] solve the data synchronization problem
by copying the entire database down through the pipeline. While
wide, fast data paths make this practical for hardware pipelines,
software pipelines do not have this luxury and require another
approach.

Multibuffering

We solve the problem of data exclusion and data synchronization
with a technique called multibuffering. Multibuffering employs
multiple copies of data structures known as pfUpdatables (or
updatables) that are logically partitioned into buffers known as
pfBuffers. All libpf objects including pfNodes are pfUpdatables so
that each pfBuffer contains a full copy of the scene graph. A
pfBuffer is associated with a single process and that process may
access only those pfUpdatables in its pfBuffer, thereby solving the
data exclusion problem.

Modifications made to pfUpdatables by the APP process are
recorded in an update list. Each frame these updates are applied to
all downstream pfUpdatables so the updates propagate down all
pipelines in frame-accurate fashion, thereby solving the data syn-
chronization problem. Propagating only database modifications
significantly reduces the amount of data that flows through the pro-
cessing pipelines.

This update-based multibuffering mechanism is most useful when
making sparse modifications to largely static data structures. This
is in contrast to the pointer-switching type of multibuffering pro-
vided by pfMultibuffer (see Section 2.3.2) which is most suitable
for data structures with large changes, such as vertex arrays used in
morphing. In this case, swapping pointers is much more efficient
than copying large amounts of data.

Figure 7. Multibuffering of a Scene Graph for APP and CULL

pfBuffer and pfUpdatable

In addition to forking multiple processes, pfConfig() creates and
associates a pfBuffer with each process (except the DRAW as is
discussed below). Each pfBuffer has an id table which associates
the address of a pfUpdatable with its id. When created, a pfUpdat-
able is assigned a unique integer id and is added to the id table of
the creating process’ pfBuffer. Then during the period when
updates are exchanged, corresponding pfUpdatables are created in
all downstream pfBuffers. Figure 7 depicts the referencing of two
copies of the scene graph (one each for the APP and CULL pro-
cesses) through the pfBuffer’s idTable.
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Selective Multibuffering

The net result is that N “images” of each pfUpdatable are created:
one for each pfBuffer in use. At first glance this may seem to be an
extravagant use of memory. However, only pfUpdatables are mul-
tibuffered and only libpf objects are pfUpdatables, e.g. pfNodes,
pfChannels. Thus all libpr primitives such as pfGeoSets and
pfGeoStates are not multibuffered and do not suffer the memory
penalty that multibuffering introduces. This design decision relies
on the following assumptions:

• Geometric primitives like pfGeoSets and pfGeoStates repre-
sent the vast majority of database memory. Thus, duplicating
only the scene graph skeleton does not drastically increase
memory usage.

• Most geometry is static and does not require the frame-accurate
behavior provided by multibuffering. (In Figure 7 the pfUpdat-
able numbered “1” is a pfGeode that references a non-multi-
buffered pfGeoSet.)

Although the first assumption has proven reasonable in most cir-
cumstances, we are currently exploring a “copy-on-write” exten-
sion to the multibuffering mechanism which would create extra
copies only when an updatable is modified. The second assumption
however, is restrictive in applications which use sophisticated mor-
phing techniques like continuous terrain level-of-detail that require
vertex-level manipulations of geometry [3]. Without multibuffer-
ing, the APP process may modify geometry at the same time the
DRAW is sending the geometry to the graphics subsystem, result-
ing in cracks between adjacent polygons. To solve this problem we
have offered a solution with the pfMultibuffer primitive described
in Section 2.3.2.

Data Exclusion Revisited

In addition to frame-accurate behavior, multibuffering provides
data exclusion which is essential to robust multiprocessing. Since
each process is guaranteed exclusive access to updatables in its
pfBuffer, it need not worry for example, that the APP process has
removed a node from the scene graph. Otherwise, the process
might collide with the modification and dereference a bad pointer
with disastrous results.

Update List

An update consists of an updatable id and another integer id which
defines what has changed. For example an update of [31, 12] might
mean “update the transform of the pfDCS whose id is 31.” Record-
ing updates by reference has significant advantages over recording
updates by value, which in the above example would mean copy-
ing the transformation matrix into the update list:

• Updates are homogeneous, thereby simplifying code and data
structures

• Updates are small, resulting in quick recording and memory
conservation

• Updates have a unique key which allow them to be efficiently
managed by a hash table. Specifically, duplicate updates are
discarded, keeping the update list from growing without bound.

The primary disadvantage of this update form is that it requires
blocking the upstream process during the update period described
below.

In order to provide frame-accurate behavior, updates must propa-
gate in an orderly fashion down all processing pipelines. This prop-
agation period occurs during pfFrame(). At this point all processes
downstream of the APP (all CULL and ISECT processes) traverse
the update list generated by the APP process and update their
pfUpdatables. Each update consists of copying a portion of a pfUp-
datable in the upstream pfBuffer into the corresponding pfUpdat-
able in the downstream pfBuffer. For the pfDCS example
mentioned above, we would copy only the transformation matrix

between pfDCS copies. At the end of the update period, all pfUp-
datables in the downstream pfBuffer are identical to those in the
upstream pfBuffer.

During the update period, the upstream process (the APP) must be
blocked so that it cannot modify updatables in its buffer and possi-
bly corrupt the update data exchange; we must ensure data exclu-
sion. This update period is illustrated in Figure 6 as the shaded
portions of the CULL and ISECT processes.

Figure 8 illustrates an APP feeding two pipelines: one intersection
and one rendering pipeline. In this case there are three pfBuffers -
one each for the APP, ISECT, and CULL processes.

Figure 8. Interprocess Communication for Processing Pipelines
Using Update Lists and Display Lists

Pipeline Frame Extension

The APP pfBuffer maintains an update list for each processing
pipeline and appends all updates to all update lists. If a downstream
pipeline is not ready to accept the update list when pfFrame() is
called because it has frame-extended, the APP does not block but
continues with the next frame. In this case, the update list corre-
sponding to the frame-extended pipeline is not reset so that further
updates are appended to the list and previous updates are not lost;
they will be consumed later when the pipeline is ready. If the APP
is feeding multiple pipelines, all ready pipelines update themselves
in parallel.

Cull/Draw Communication

Note however that the DRAW process in Figure 8 does not have a
pfBuffer and uses a different communication mechanism with the
upstream CULL process. This is not precluded by the pfBuffer/
pfUpdatable mechanism but was chosen to reduce memory
requirements and performance degradation. When the CULL and
DRAW stages are in separate processes, the CULL process
traverses the scene graph and renders visible geometry into a libpr

display list (See pfDispList in Section 2.2.2). This is very impor-
tant because it off-loads scene graph traversal overhead from the
time-critical DRAW process. However, this means that there is no
need for a scene graph in the DRAW process. Also, maintaining a
pfBuffer in the DRAW process would require an update period that
would steal precious drawing time.

As illustrated in Figure 8, the CULL and DRAW communicate via
three display lists. In a perfectly balanced pipeline, only two dis-
play lists would be required — the classic double-buffered configu-
ration. However, both CULL and DRAW processes may frame-
extend. As a result, a third display list is required to keep the non-
extending process from waiting until the extending process is fin-
ished with its display list.

pfDelete - Object Deletion

Deletion of a hierarchical scene or subgraph that supports instanc-
ing can be tricky. Care must be taken to ensure that an object’s
memory is not freed until all references to it are removed. To do
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otherwise would open the possibility of corrupted memory and
ungraceful program cessation. IRIS Performer employs a reference
counting scheme to avoid such results.

Whenever an “attachment” is made between two objects, the refer-
ence count of the “attachee” is incremented by one. Reference
count modifications are locked to ensure data exclusion between
multiple processes. pfDelete() deletes objects whose reference
counts are non-positive and follows all reference chains, deleting
objects until it reaches one whose reference count is greater than
zero. The reference count of a pfNode is simply the number of its
parents. User-allocated memory such as the attribute arrays of
pfGeoSets (See Section 2.1) are reference-counted if the memory
is allocated by libpr routines since they maintain internal reference
counts.

Multiprocessed Delete

Unfortunately, multiprocessing adds another dimension to refer-
ence counting. Non-multibuffered objects such as pfGeoSets are
“referenced” by the processes which are accessing them. For
example, the ISECT and DRAW processes may be concurrently
intersecting with, and rendering a given pfGeoSet. Consequently, a
simple reference counting scheme is inadequate.

One possibility would be for processes to reference/dereference
objects as they need them. This is unacceptable from a perfor-
mance standpoint since locks are not free and the number of
objects needing locking is large. IRIS Performer’s solution takes
advantage of its pipelined configuration. An object is not immedi-
ately deleted; rather, a frame-stamped deletion request is added to a
special list. Meanwhile, the back ends of all pipelines (ISECT and
DRAW processes) record the frame count of their most-recently-
completed frame. Then when pfFrame() is called, each deletion
request on the list is examined. If its frame stamp is less than the
frame counts of all pipelines, the deletion request is safely carried
out since all pipelines have flushed themselves of the object.

3.3 Achieving Real-Time

3.3.1 Achieving Real-time Synchronization

Real-time behavior is often required of graphics applications, both
for human and hardware (sensor) perception. Real-time in this con-
text implies more than a reasonable frame rate. Equally important
is a fixed frame rate which ensures a solid, consistent update rate
without glitches or hiccups. In fact, many visual simulation appli-
cations sacrifice peak frame rates for a fixed frame rate.

The first step in achieving real-time behavior is accessing a timer
that runs at wall-clock time, i.e., it runs at the same rate as the
clock on your office wall. Since the graphics update rate is
restricted to integral fractions of the video refresh rate, the video
clock provides a natural real-time clock for synchronizing a graph-
ics application.

pfVClockSync - Synchronizing to Video Retrace

The kernel maintains a video retrace counter and also provides a
synchronizing feature that is accessed through the pfVClockSync()
call. This routine takes two arguments, [interval, offset] that
together specify the frame synchronization boundary. Put arithmet-
ically, pfVClockSync() puts the calling process to sleep until the
video retrace count modulo the interval equals the offset. For
example, if pfVClockSync() is called with arguments of [3, 0]
when the current video clock is 658, the process will sleep until the
video clock is 660.

An application specifies its desired fixed frame rate and synchro-
nizes the APP process to that rate by invoking pfSync() which calls
pfVClockSync() to sleep until the next frame boundary. Note that
pfSync() alone does not guarantee a fixed frame rate. First, the
APP cannot take longer than a frame time because it would then

synchronize to an integral multiple of the desired field rate such as
30Hz dropping to 15 Hz or even 10Hz. Second, the processing
pipelines must be able to complete their work within a frame time
as is discussed in more detail below.

3.3.2 Achieving A Fixed-Frame Rate

Once synchronization to wall-clock time is achieved, the next step
in attaining real-time behavior is to ensure a fixed frame rate. Many
things can compromise a fixed frame rate on a multiuser worksta-
tion:

1) Graphics context switching

2) Process context switching

3) Process frame extension (e.g. APP, CULL extensions)

4) Graphics pipeline frame extension (DRAW extension)

1) can be remedied by ensuring that only the application of interest
is running: no clocks or performance meters allowed. 2) may be
solved by running the application with super-user privileges and
using OS commands to isolate and restrict processors. 3) is more
difficult to solve and requires rearranging database hierarchies, dis-
abling of modes, and further multiprocessing to unload the bur-
dened process(es). 4) is often the most prevalent enemy to a fixed
frame rate and it is that which we address in this section.

Graphics pipelines have hard limits on the amount of geometry
they can process in a given time. Ideally, the throughput of a graph-
ics pipeline is always enough to render the desired amount of scene
geometry in the desired amount of time. In this case a fixed frame
rate is easily achieved. However, most scenes have varying geo-
metric complexities due to varying scene density and/or moving
models which may come into view. If a frame rate is chosen such
that the view of highest complexity may be rendered within a
frame time, then the expensive graphics hardware will be under-
utilized for less complex scenes. On the other hand, if a higher
frame rate is chosen, complex scenes will take longer to render
than the allowed frame time and distracting visual anomalies, tech-
nically referred to as “hiccups”, will occur. Consequently, many
applications choose a frame rate that can handle the average scene
and rely on other mechanisms to artificially reduce more complex
scenes so that they can be rendered within a frame time.

Figure 9. Stress Feedback Filtering

Stress management is the technique used to reduce scene complex-
ity that relies on the level-of-detail mechanism described in
Section 3.1.4. When the system is in stress, LODs are artificially
reduced; coarser than normal models are chosen, so that overall
graphics load is reduced. Stress is based on load, the fraction of a
frame time taken to render a frame, and increases as load exceeds a
user-specified threshold. The load for frame N is used in conjunc-
tion with user-specified parameters to define the stress value for
frame N+1, thus defining a feedback network. As discussed in [4],
this method works reasonably well for relatively constant scene
densities but suffers because the stress is always a frame late and
can exhibit oscillatory behavior. As illustrated in Figure 9, a hys-
teresis band can reduce stress oscillations but a more sophisticated
stress management technique such as that described in [4] has bet-
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ter characteristics.

3.3.3 Overload Management

While stress management seeks to fit DRAW processing into a
frame time, overload management dictates what happens when
stress management has failed and the DRAW exceeds a frame time
— it has frame extended. The application may choose differing
overload behavior by selecting the phase of the DRAW process.
Phase dictates the type of synchronization used by the DRAW pro-
cess: if the phase is locked, the DRAW process is guaranteed to
begin only on a frame boundary. Thus if the DRAW takes just
slightly longer than a frame time, the aggregate frame rate will
drop in half. If the phase is floating, a frame-extended DRAW will
start to draw again as soon as it can (at the next vertical retrace)
and try to “catch up”, relying on stress management to reduce
scene complexity. In practice, floating phase is used more often
than locked phase since it does not sacrifice an entire frame time if
the DRAW takes just slightly longer than a frame. However,
locked phase offers deterministic latencies and can produce a
steadier frame rate.

4 Run-Time Profiling

Without proper profiling and diagnostic utilities, it is difficult to
ascertain the performance of a given application. “Is it running as
fast as it can go?” is the most pertinent question. To answer, the
developer must be able to answer other questions concerning
potential bottleneck areas:

• CPU processing, e.g., is the APP taking longer than the
DRAW?

• CPU to graphics transfer, e.g., is the bus saturated or is the
DRAW suffering from overhead due to small pfGeoSets?

• Geometry transform, e.g., are excessive mode changes thrash-
ing the Geometry Engines? Are my triangle strips too short?

• Geometry fill, e.g., is the pixel depth complexity too high?

To further complicate matters, bottlenecks change and shift as the
visual scene changes, making them moving targets for the tuner.

To aid application and database tuning, IRIS Performer provides
extensive profiling information that is collected at run-time and
may be graphically displayed for easy comprehension. Run-time
collection provides a display of up-to-date information as you fly
through the database, facilitating an interactive and time-saving
approach to tuning. Figure 10 is the statistics display for the scene
in Figure 14 and shows both process and database statistics mea-
surements that are examined in the following sections.

4.1 Process Statistics

Due to the concurrent, time-dependent nature of multiprocessing, it
is often difficult to understand the behavior of a multiprocessed
application. IRIS Performer records the times spent by each pro-
cessing stage and displays the results in a timing diagram which
quickly exposes any bottlenecks. In Figure 10, the upper portion of
the display defines a timing diagram analogous to those in
Figure 5. Vertical lines indicate vertical retrace and frame bound-
aries. Horizontal lines indicate the processing times for different
stages and their color indicates the stage’s frame count.

Example Analysis

From Figure 10 we see that the application is configured as 4 pro-
cesses, one each for ISECT, APP, CULL and DRAW, which all run
in parallel. Additionally, the processing times for CULL and
DRAW are roughly equivalent and occupy most of a frame time
indicating that 30Hz is a reasonable frame rate and load balancing
is good. (Note that the time required to draw the statistics display
itself pushes the draw time over 1/30 sec.) However, the APP and

ISECT stages take little time so we could free a CPU by combining
these two stages into a single process.

Figure 10. Display of Process and Database Statistics

4.2 Database Statistics

Although the toolkit strives to achieve maximum performance with
a given database, a significant amount of performance gain may
lurk within the database itself. For example, a scene graph without
hierarchy will suffer from poor intersection and culling perfor-
mance, both of which rely on hierarchical bounding volumes to
accelerate processing. Also, a pfGeoSet which contains few trian-
gles will suffer from overhead in pfDrawGSet(). These problems
and more can be easily inferred from the statistics display of
Figure 10.

Example Analysis

The ratios of primitives to pfGeoState (12.7) and pfGeoSets to
pfGeoState (2.3) are reasonably high, indicating that pfGeoSet and
pfGeoState overhead is not likely a problem. However, the average
number of triangles per strip is low at 3.1 which indicates that the
hardware geometry processing stage may be a bottleneck. This
fragmentation of the database is likely due to the large number of
textures (81) since a strip cannot span multiple textures.

Figure 11. Profiling Display Depicting Pixel Depth Complexity

Although Figure 10 reveals much about the database, it says noth-
ing about the pixel fill bottleneck which is the most important one
for the majority of full-screen applications. The toolkit provides a
special mode for visualizing pixel depth complexity, the number of
times each pixel is touched. Figure 11 is a false-color visualization
of the depth complexity for the scene of Figure 14. Depth com-
plexities of up to 7 are represented by colors of increasing bright-
ness (some areas have complexities > 7 and wrap). Additionally,
the total number of pixels rendered and the average depth com-
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plexity is displayed. All of these statistics are computed and dis-
played at a run-time, albeit at a reduced frame rate.

4.3 Future Work

Our design approach has been to focus on the performance and
structure of the toolkit’s rendering and multiprocessing core.
Because of this, we believe the toolkit provides a good foundation
for additional functionality.

Database Paging

Many applications use databases which are too large to fit in main
RAM memory or even a 32-bit virtual address space so portions of
the database must reside on disk. The avoidance of distracting
pauses when loading from disk requires a quick-loading database
format as well as run-time logic which anticipates the viewpoint so
the toolkit can begin paging database regions before they come
into view.

Traversals

While the current 3-process rendering pipeline (APP, CULL,
DRAW) is adequate for most applications, some require extensive
application and cull processing. The addition of an APP traversal
would allow user callbacks to be invoked each frame to control
object behavior or trigger activity outside the toolkit. And cur-
rently, each pipeline’s CULL traversal is restricted to a single pro-
cess. Implementing parallelized traversals for both APP and
CULL, where multiple processes concurrently carry out the same
traversal, would improve throughput for both. The strict top-down
inheritance of state in the scene graph eases this task since multiple
processes can traverse individual subgraphs without requiring state
information from other subgraphs. However, load balancing issues
and allowing APP processing to be conditional on the results of
visibility and level-of-detail computations are problematic since
these computations are currently made after APP processing.

Collision Detection

While intersecting with line segments is useful for terrain follow-
ing and simple collisions, collisions between objects of substan-
tially different sizes and more detailed interference checking can
require very large numbers of segments for adequate spatial cover-
age. Graph-to-graph intersections of volumes, geometry, and line
segments represented by nodes within the scene graph would
greatly benefit applications such as MCAD.

5 Conclusions

In this paper, we have presented a toolkit with a novel architecture
for building high performance, multiprocessed graphics applica-
tions. We have described how the toolkit extracts maximal perfor-
mance from mult iprocessor,  immediate-mode graphics
workstations primarily through:

• geometric data structures designed for efficient immediate-
mode data transfer

• reduction of graphics mode changes

• pipelined multiprocessing for parallel scene graph traversal

• efficient host-based view frustum culling

• stress modified level-of-detail switching

• run-time database and process statistics for tuning

By emphasizing immediate-mode performance without caching,
the toolkit lends itself to techniques such as character animation
and morphing which require intensive vertex-level modifications.

In the course of writing the toolkit, we developed a number of use-
ful techniques for efficient task and data synchronization in a pipe-
lined, multiprocessing system including a configurable software
pipeline with update-driven multibuffering.

Without these performance optimizations, expensive hardware can
be substantially underutilized. Since the optimizations described in
this paper are non-trivial to implement, providing this functionality
in a layered toolkit makes it substantially easier for application and
other toolkit developers to reap significant performance benefits.
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Figure 1. Real-Time Shadows Using Multipass Rendering

Figure 2. Precomputed and Dynamic Geometry Animations

Figure 3. Visual Simulation Scene

Figure 4. Racing Simulator with Collision Detection

Figure 5. Video Special Effects Using Draw Callbacks

Figure 6. Fly Through with Virtual Reality Interface
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1   Introduction

A new class of machines, known both as superworkstations and graphics
supercomputers, has become available. These workstations provide computing
performance previously available only on supercomputers, and graphics per-
formance at levels never before available. Their spectacular graphics perfor-
mance is due both to advances in hardware technology and to tight integration
between graphics and CPU subsystems.

Although superworkstation architectures share a commitment to graphics per-
formance, and all evidence tightly integrated graphics subsystems, they differ
fundamentally in their approaches to the partitioning of graphics related com-
putations, specifically in their support of the transformation process. These dif-
ferent partitionings, while seemingly new, are in fact well known options to
designers of high-performance graphics systems.
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This paper presents a model that differentiates graphics architectures based on
graphics computation partitioning, and places superworkstation architectures
within this framework. It then presents the reasoning that resulted in the archi-
tecture of the Silicon Graphics 4D/240GTX superworkstation. Finally, the
architecture and performance of the 4D/240GTX are discussed.

2   Architectural Alternatives

Both traditional and contemporary high-performance graphics systems use par-
allelism to achieve their performance goals[1-3]. Fortunately, graphics compu-
tations are easily partitioned into functional tasks, which can then be assigned
to multiple processors.

 Graphics Task Partitioning

All programmable, geometry-based raster graphics systems implement five
fundamental tasks:

1. Generation. Generate (create, acquire, or modify) graphics data. Orga-
nize these data into a structure.

2. Traversal. Traverse the graphics data structure, delivering graphics data
to the appropriate processor(s).

3. Transformation. Transform graphics data from object-space coordinates
into eye-space coordinates. Do whatever shading operations are appro-
priate in eye-space. (Lighting calculations are an example.) Transform
eye-space coordinates to clip-space, clip these coordinates, and project
the resulting coordinates to screen-space.

4. Scan Conversion. Render the resulting screen-space objects (points,
lines, and polygons) into raster memory. Iterate parameters as appropri-
ate throughout this process. Do whatever shading operations are appro-
priate in screen-space.

5. Display. Scan the resulting pixels out of raster memory to a display mon-
itor.

Because these tasks are executed in order (transformation precedes scan con-
version, etc.) they are always implemented as a pipeline of processes. The
choice of which tasks are executed on the application-programmable CPU, and
which on special-purpose graphics processors, differentiates high-performance
graphics architectures.

Display is a simple but performance sensitive task. It is simple and regular
because raster data are always transferred to the monitor in scan-line order,
whether from a single raster or from a small set of sub-screen rasters. It is per-
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formance sensitive because monitors must be provided complete image data at
least 60 times per second if irritating flicker is to be avoided. Thus a
1280x1024 pixel color monitor, typical of superworkstations, demands data at
the sustained rate of 236 Mbytes/sec (1280 X 1024 pixels/frame X 60 frames/sec
X 3 bytes/pixel). While this data rate would significantly burden any general-
purpose processor, its regularity allows support to be provided in the form of a
simple, special-purpose processor. For these reasons the display task is always
executed on such a processor. (Systems that scan convert into non-displayable
memory require an additional copy operation. This copy may be supported by
an application-programmable processor.)

Generation, while more forgiving of performance variation, is demanding in its
algorithmic complexity. Interactive simulations, for example, generate graph-
ics data by culling and selecting object models based on viewer position and
direction. Stress analysis requires that new colors be generated for each vertex
in a mechanical model. Position and length of each bond are changed in the
model of a molecule. Multiple windows, each with its own specific require-
ments, are maintained simultaneously. Because generation tasks are complex,
widely varied, and application specific, they are always executed on the appli-
cation-programmable processor.

Traversal, transformation, and scan conversion, however, have all been suc-
cessfully implemented both on application-programmable processors and on
special-purpose processors. Some examples will clarify these alternatives.

Architecture Examples

Bitmap workstations such as the Xerox Alto[4] and the original SUN systems
supported generation, traversal, and transformation (typically in just 2 dimen-
sions), completely with their application-programmable processors. While
some hardware support was provided to increase the performance of scan con-
version (BitBlt microcode on the Alto, a 32-bit barrel shifter on the SUN work-
station) this hardware was driven directly by code executing on the application
processor. Only the display task executed on a separate, special-purpose pro-
cessor. We refer to such an architecture as GTXS-D, indicating that generation,
traversal, transformation, and scan conversion (GTXS-) execute on the appli-
cation-programmable processor, display (-D) on a separate, special-purpose
processor.

Tradition host-terminal implementations, on the other hand, offer a very differ-
ent assignment of graphics tasks. The DEC VAX/E&S PS-390 combination,
for example, supports only the generation task on the application-programma-
ble VAX processor. Traversal, transformation, scan conversion, and display are
all executed on special-purpose processors within the PS-390 terminal. While
some of the PS-390 processors are user programmable, their special-purpose
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design clearly distinguishes them from the general-purpose, application-pro-
grammable VAX. We refer to such host-terminal architectures as G-TXSD,
indicating that only the generation process executes on the application-pro-
grammable processor.

Many contemporary systems, including superworkstations, shun the architec-
tural extremes of GTXS-D and G-TXSD. Graphics accelerator boards that
include display, scan conversion, and sometimes transformation processors are
widely available for machines ranging from personal computers to engineering
workstations. With the addition of such accelerators, GTXS-D systems are
modified to become either GTX-SD or GT-XSD systems.

While superworkstations have sufficient application-programmable CPU
power to generate, traverse, transform, and scan convert with surprisingly high
performance, all currently support one or more of these tasks with special-pur-
pose processors. Superworkstations available from Apollo, Ardent, and Stellar
implement variations of GTX-SD architectures. All Silicon Graphics worksta-
tions, including the 4D/240GTX superworkstation, are variations of GT-XSD
architectures.

The assignment of graphics tasks to special-purpose processors is a compro-
mise of factors such as cost-performance, generality, configurability, and user
coding style. Before investigating the merits of various partitionings as they
pertain to superworkstations, we simply observe that all of the alternatives
have legitimate application. Examples of each recur as graphics architectures
evolve[5].

3   The Silicon Graphics Task Partitioning

As we have seen, the issue facing a graphics system designer is not whether to
partition graphics tasks among various processors, but rather how to partition
these tasks. Our choice to support generation and traversal on our application-
programmable CPU, transformation, scan conversion, and display in dedicated
hardware, was made six years ago when our first workstation product was
developed. Since that time the internal details of both the CPU and of the dedi-
cated graphics systems have changed dramatically. Application-programmable
CPUs have gone from 0.5 MIPS CISC machines (68010) to 20 MIPS RISC
machines (MIPS R3000), and from single to multiprocessor organizations.
Dedicated graphics processors have evolved from hard-wired engines (such as
the original Geometry EngineTM) to the 40 MFLOP (sustained) programmable
floating-point subsystem of the 4D/240GTX. But the fundamental GT-XSD
task partition has remained unchanged.



The Silicon Graphics Task Partitioning

SIGGRAPH ’96 Course  —  Designing Real-Time 3D Graphics for Entertainment B-5

What are the characteristics of GT-XSD task partitioning that allow us, and in
fact encourage us, to continue to design with it? We consider both the options
of increasing (G-TXSD) and of decreasing (GTX-SD) the number of graphics
tasks executed on special-purpose processors.

Why not Traverse in Hardware?

The arguments against a G-TXSD partition boil down to just one issue: imme-
diate mode graphics. Moving the traversal task from the application-program-
mable environment of the general-purpose CPU into dedicated graphics
hardware offers the promise of increased performance, but at the price of
imposing hard-wired traversal algorithms, predefined data structures, and
clumsy modeling interaction. When the generation task is ignored (as it often
is in graphics demonstration programs) machines with G-TXSD architectures
shine. Their inflexible traversals and costly model changes do not affect perfor-
mance, because simple traversals are adequate, and the model is not being
changed. Thus host-terminal G-TXSD systems are capable of displaying com-
plex models with rapid viewpoint changes, but offer limited support of either
user imposed or computed changes to the model being viewed.

The VAX/PS-390 combination, often used in molecular modeling applications,
offers a suitable example. Users of this system quickly learn that, while mole-
cule stick figures can be quickly viewed from any direction, and in fact ‘wig-
gled’ to improve depth perception, changes to the structure of the molecule are
not interactive. Thus individual molecules can be viewed, but studies of the
interaction of neighboring molecules are limited.

It is sometimes thought that the limitations of host-terminal systems are the
result only of insufficient bandwidth on the ‘thin wire’ connecting the host to
the terminal. While low bandwidth does reduce interactivity, all G-TXSD sys-
tems, whether connected by an RS-232 line or a 500 Mbyte/sec backplane,
remain limited by predefined traversal algorithms, fixed data structures, and
clumsy, often slow, modifications to geometry. Only when generation and tra-

versal execute on the same application-programmable processor (or proces-
sors) are these limitations overcome.

Immediate mode graphics is graphics driven entirely, i.e. generated and tra-

versed, by an application program executing on the programmable CPU. While
it imposes additional requirements on the dedicated transformation graphics
hardware (section 5.1) it frees the graphics programmer from the constraints of
predefined display lists, display list traversal, and from inefficient change
mechanisms to model definitions. The generation task of an immediate mode
molecular modeling program, for example, computes bond lengths and angles
resulting from an interactive condition, then changes them by simply editing its
own data structures. The subsequent traversal takes its data from the shared
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data structures, effecting the changes to the image automatically. Alternately, a
real time simulation traversal can modify its own operation, culling and mak-
ing model detail decisions as it operates based on the actual time elapsed dur-
ing the construction of a frame. A generation task could make these decisions
only in the abstract, based on viewer position and direction. Ultimately, an
immediate mode workstation performs well not only on ‘canonical demo’ pro-
grams, but also on interactive applications, applications that change both
model data and traversal as a function of user input.

Before leaving the issue of application-driven traversal, it is important to con-
sider the PHIGS graphics standard. PHIGS, and its proposed extension
PHIGS+, define a retained-model graphics standard. Traversal of the graphics
data retained in PHIGS structures is defined by the standard, and is therefore
not under direct application control. Thus PHIGS offers the software architec-
tural equivalent of a G-TXSD hardware architecture. Two points must be
made:

1. Because PHIGS inherits the limitations of G-TXSD architectures, a
high-performance system should offer an immediate mode graphics
interface in addition to its PHIGS/PHIGS+ interface.

2. PHIGS and PHIGS+ are easily and efficiently implemented on a GT-
XSD platform. An immediate mode graphics interface, on the other
hand, cannot be efficiently implemented on a G-TXDS platform.

Why transform in graphics hardware?

Tight coupling between model generation and traversal is critical to the perfor-
mance of superworkstation machines; it is a characteristic that is shared by all
superworkstation architectures. These architectures differ, however, in their
implementation of the transformation task. What is the case for doing transfor-

mation in special-purpose processor hardware? We consider the following
issues:

1. Impact of graphics requirements on CPU architecture.

2. Efficiency of hardware use during anticipated operation.

3. Configurability.

4. Feature/performance trade-off.

We will see that the first three considerations argue for special-purpose trans-

formation processing, and that only the last argues against it.

Impact on CPU Architecture

The impact of including the traversal process on the general-purpose CPU is
low. The CPU must be able to traverse data structures and transfer data at the
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rate that they are consumed by the transformation process. While this rate is
substantial in a modern workstation, and some hardware support in the CPU
may be required to accommodate it, there is no need to radically alter the orga-
nization of the chosen CPU.

Transformation, on the other hand, makes tremendous demands of its support-
ing hardware. The 4D/240GTX, for example, executes approximately 100
floating-point operations per transformed vertex, which it generates at the rate
of 400,000 per second. Thus its dedicated transformation engine operates at a
sustained rate of 40,000,000 floating-point operations per second (40
MFLOPS). This computation rate is simply not achievable using currently
available general-purpose CPU technology. If it is to be sustained, either a spe-
cial-purpose processor must be designed to support it (e.g. a Geometry
EngineTM), or the application-programmable CPU must itself be designed as a
special-purpose system (e.g. a vector processor). Such a special-purpose CPU
will compromise performance across the wide variety of non-graphics applica-
tion programs. It may also become separated from the mainstream of CPU
technology, increasing the difficulty of tracking future hardware advances.

Efficiency of Hardware Use

It would seem that cost-performance is optimized when no hardware in the
machine goes unused. Thus dedicated graphics hardware, when graphics com-
putations are not being performed, is a poorly utilized resource. However, cost-
performance is also reduced when hardware systems are underutilized. A sin-
gle-precision graphics MFLOPS can be supported in special-purpose hardware
at a substantially lower cost than it can be in the (typically double-precision)
floating-point hardware of an application-programmable processor. The ratio
on the 4D/240GTX, for example, is greater than 10:1. Thus, while graphics
hardware in a GT-XSD machine is poorly utilized when graphics computations
are not being performed, CPU hardware in a GTX-SD machine is poorly uti-
lized when graphics computations are being done. Again, the choice is not
whether to compromise, but how.

GTX-SD workstations compromise simultaneous computation and graphics
performance because the graphics transformation process consumes a dispro-
portionate, often total, fraction of the available application processor(s). When
computation and graphics performances are specified independently, they cre-
ate a misleading impression of GTX-SD interactive capability. The GT-XSD
4D/240GTX, on the other hand, efficiently executes computationally intensive
applications and real-time 3D geometric graphics simultaneously. Traversal at
full graphics performance consumes only a fraction of the power of 1 of its 4
application processors. Thus over 3/4 of its CPU performance is available for
generation and other computation tasks.
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Stress analysis, for example, is a computationally intensive task. The 4D/
240GTX can apply almost all of its CPU performance to this problem, utilize
its immediate mode graphics capability to update the display model, and sup-
port simultaneous viewing of a constantly re-colored image.

Configurability

Because only a small fraction of the 4D/240GTX CPU power is required to
support full-performance graphics, its graphics and CPU performance are
effectively decoupled. Simply removing the special-purpose graphics proces-
sors creates a powerful and efficient application engine (4D/240S). Alterna-
tively, application processors can be removed (2-processor 4D/220GTX) or
run at lower clock rates without affecting graphics performance.

The 16 MHz, 2-processor 4D/120GTX, for example, provides a cost-effective
solution in embedded simulation environments. While the generation task is
typically shared between the 4D/120GTX and another controlling processor,
reducing the computational requirements on the superworkstation, full graph-
ics performance, including traversal, is still required.

Feature/Performance Trade-off

The disadvantage of special-purpose hardware is its reduced flexibility. We
expect a more rigid feature/performance trade-off from a dedicated graphics
processor than from an application-programmable processor. Indeed, for the
same reasons that special-purpose application processors compromise perfor-
mance when executing general-purpose algorithms, dedicated special-purpose
processors also operate best when executing their intended algorithms. Also,
unlike special-purpose application processors, dedicated processors are incon-
venient, or simply impossible, to program from the application level. Thus a
dedicated transformation processor must be provided by its manufacturer with
a wide variety of graphics algorithms if it is to exhibit gradual feature/perfor-
mance trade-offs.

The single-precision floating-point transformation processor used in the 4D/
240GTX, while not application programmable, is driven by RAM-based
microcoded controllers. Each software release adds features and capabilities to
its large initial set. Although its hardware design anticipated some specific
requirements of the algorithms for which it was tuned, it has proved to be
readily adaptable, and its performance on new and original algorithms is com-
parable.

Our recent implementation of non-uniform rational B-spline (NURBS)[6] pro-
vides a useful example. NURBS generation is both algorithmically complex
and computationally intensive. By implementing the (complex) trimming algo-
rithms in software on the application-programmable processor, and the float-
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ing-point intensive mesh expansion in the special-purpose transformation

processor, we achieved high performance on a feature that was not intended
when the transformation processor was designed.

Summary

The advantages of application-programmable traversal and immediate mode
graphics compel us to keep the traversal process located on the CPU. We have
chosen the advantages of CPU independence, cost-effective simultaneous
computation and graphics operation, and configurability demonstrated by a
dedicated transformation processor over the potential benefits of feature/per-
formance trade-off exhibited by CPU transformation machines. This given, we
have designed our dedicated transformation engine to deliver high perfor-
mance across a broad range of graphics algorithms.

4   Computing System Architecture

As we saw previously, our implementation of a dedicated transformation

engine allowed us to choose our CPU architecture without consideration of
special-purpose graphics computation requirements. Given this freedom, we
have implemented a parallel-scalar multiprocessor subsystem. This general-
purpose architecture performs extremely well across a wide variety of both
scalar and vector applications. Figure 1 is a block diagram of the major compo-
nents of this subsystem.

Key to both the performance and the efficiency of the processor system is a
hierarchy of busses, each tailored to a particular function. The sync bus pro-
vides high-speed synchronization between the four application processors in
support of fine-grained parallelism. Processor busses support full-speed data
and instruction transfer between individual processors and their first-level
instruction and data caches. The MPlink bus protocols support consistent data
sharing between processors, as well as high-speed block data transfer between
processors, the memory and I/O subsystem, the graphics subsystem. Proces-
sors communicate to the MPlink bus through individual read/write buffers and
second-level data caches, both increasing the efficiency of MPlink bus utiliza-
tion and supporting the data consistency operations.

Sync Bus

The sync bus was designed to meet the synchronization needs of a multipro-
cessor supporting efficient fine-grained parallelism. Single application pro-
grams can make efficient use of parallel processors at the individual loop level.
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Large-grain parallelism, such as consistent access of shared data structures
between generation and traversal tasks, is supported as well.

The sync bus provides 64K individual test-and-set variables, which are
accessed in the physical address space of each processor. These variables can
be mapped directly into the virtual address space of a user process, supporting
application synchronization with overhead measured only in fractions of
microseconds. As a result, many programming and compiler techniques devel-
oped for vector processors are also suitable for the scalar multiprocessor sys-
tem. For example, strip mining, the technique of taking a long vector and
breaking it into a number of strips for a vector register, is implemented by pro-
viding data strips to each of the 4 processors.

Input / Output

Graphics Subsystem

FIGURE 1. System block diagram.
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IRIXTM, the Silicon Graphics implementation of UNIXTM System V.3., is
itself a parallel, fully-symmetric multiprocessing application. Several thousand
test-and-set variables are used by the system to provide fine-grained locks for
its control variables. IRIX also benefits from the sync bus interrupt facility,
which supports both directed and broadcast interrupts. The flexible interrupt
distribution scheme allows process scheduling to support, rather than disrupt,
the private first-level caches.

Processor Bus

The RISC CPU, floating-point coprocessor (FPU), and first-level instruction
and data caches of each processor are connected by the processor bus. Each 32-
bit processor bus operates at twice the 25 MHz CPU clock rate, sustaining
instruction and data transfer at up to 200 Mbytes/sec. Because each CPU
includes its own processor bus, aggregate processor bus bandwidth scales
directly with the number of CPUs in a system. Processor-to-cache transfer is
sustained at up to 800 Mbytes/sec in the 4-processor 4D/240GTX, 400 Mbytes/
sec in the 2-processor 4D/220GTX.

First-level instruction and data caches each store 64K bytes, resulting in a 4-
processor aggregate first-level cache size of 0.5 Mbytes. A read buffer and a 4-
word deep write buffer isolate the first-level caches from the MPlink bus and
its second-level data caches. In addition to improving performance, these buff-
ers provide an asynchronous interface between the 25 MHz processors and the
16 MHz MPlink bus. Processor clock speed can be increased to improved per-
formance, or decreased to reduce cost, independent of the system bus fre-
quency.

MPlink Bus

The MPlink bus supports the system’s cache consistency protocol and provides
block data transfer between the four processors, the memory and I/O sub-
system, and the graphics subsystem. Second-level 256 Kbyte data caches, one
associated with each processor, are best thought of as components of the
MPlink bus. Operating as a single, synchronous unit, the four second-level data
caches and the MPlink bus monitor each block data transfer. Together, using a
convention known as the Illinois Protocol[7], they ensure that only valid data
are made available to the four processors.

Because bus monitoring is a single, synchronous operation, the 64-bit data path
of the MPlink bus can be efficiently utilized. The peak data rate for this bus is
128 Mbytes/sec (8 bytes/clock X 16 clocks/us). A data rate of 64 Mbytes/sec is
sustained, implying an overhead of only 50 percent for both bus monitoring
and cache-line updating operations.
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Graphics Support

Each processor includes hardware to support efficient transfer of graphics data
to the transformation engine. The transfer is referred to as a 3-way transfer
because:

1. The application processor initiates the transfer, after it completes the vir-
tual-to-physical address translation of the first word of a short (2 through
4) word data vector,

2. The memory subsystem provides the specified data, and

3. The graphics system accepts the data.

While 3-way transfer can be thought of as a DMA operation, its atomic nature
(the 3 steps cannot be interrupted) and integral address translation make it far
more efficient than a typical DMA implementation. We prefer to think of the
short data vectors as additional data types for which the hardware has been
tuned, just as double-precision floating point numbers are constructed of two
32-bit words on many machines. A 3D coordinate, for example, is a vector of 3
floating point values, representing x, y, and z in object space. Data types
include 2, 3, and 4 dimension coordinates, vertex normals (nx,ny,nz), and 3 and
4 component colors (r,g,b,a).

The 3-way transfer hardware, which is added without modification to the RISC
integrated circuits, allows the Silicon Graphics immediate mode graphics
library to transfer randomly located vertex data at the rate of over 400,000
position/normal pairs per second. Graphics data can be stored in an applica-
tion-defined structure, and traversed with application code, at the full transfor-
mation rate. Because graphics library subroutines are called indirectly through
a shared library interface, programs compiled for the 4D/240GTX can be run
on any 4D product without recompilation or relinking, and without perfor-
mance loss.

Performance

 MIPS R3000 CPU and R3010 FPU RISC components are used in each of the
4 processors. Running at 25 MHz, each of the 4 processors executes approxi-
mately 20 million instructions per second (MIPS), and achieves 4 double-pre-
cision LINPACK MFLOPS, Their performance operating as a system,
however, cannot be so easily reduced to two numbers.

One useful performance measure is throughput, the rate that n equivalent pro-
cesses execute on an n-processor system. Both Dhrystone and LINPACK[8]
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benchmark results document that the 4D/240GTX delivers near-linear through-
put performance improvement.

LINPACK numbers are for 100 X 100 double-precision data, measured with
coded BLAS. Dhrystone VAX MIPS are related to the base numbers by a fac-
tor of 1760. Large, write-back second-level data caches, ample I/O capability,
and careful attention to reduction of system overhead all contribute to near-lin-
ear throughput performance. The fully semaphored operating system, which
executes as a distributed process rather than in master/slave mode, allows the 4
processors to make balanced throughput contributions. (Semaphores block less
than 0.1 percent of the times they are encountered.)

Near-linear throughput performance, though certainly not achieved by all mul-
tiprocessor systems, is more easily accomplished than near-linear performance
increase of a single process as it is distributed across the n-processor system.
Unfortunately, the performance of a single application distributed across all
available processors, a very significant measure of a multiprocessor system, is
not well represented by benchmarks in use today. An indication of the perfor-
mance delivered by the 4D/240GTX is provided by the table below:

LINPACK numbers are for 1000 X 1000 double-precision data, measured with
coded BLAS. BRL RTFM is the Ballistic Research Lab’s ray tracing figure of
merit, an application designed to test parallelization capability. Hardware
cache consistency, distributed interrupts, synchronization supported by a dedi-
cated bus, and an automatic parallelizing compiler all contribute to the support
of 1->n parallel execution.

5   Graphics Architecture

The graphics system of the 4D/240GTX is itself partitioned into four sub-
systems, corresponding almost exactly to the task partitions described earlier in
this paper. Figure 2 is a block diagram of the entire graphics system.

1 processor/

1 program

4 processors/

4 programs

Ratio

Dhrystone 37,400 149,085 3.98

(VAX MIPS) 21.3 84.8

LINPACK 4.0 15.3 3.83

1 processor/

1 program

4 processors/

4 programs

Ratio

LINPACK 6.6 16.6 2.56

BRL RTFM 1360 5034 3.7
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Transformation Subsystem

Vertex transformation is a very demanding task in an interactive 3D environ-
ment. Roughly 100 single-precision floating-point operations are required to

MPlink Bus
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Geometry Engine

Geometry Engine

Geometry Engine

Geometry Engine

Geometry Engine

Polygon Processor

Edge Processor
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Video In

FIGURE 2. Graphics subsystem.
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transform, light, clip test, project, and map an object-space vertex to screen-
space[9].

The 4D/240GTX dedicated transformation subsystem, called the Geometry
EngineTM, processes vertexes at the rate of 400,000 per second, sustaining a
computation rate of 40 MFLOPS.

Careful attention to the flow of both data and control in the design of the
Geometry Engine ensure that polygonal and mesh boundaries do not substan-
tially affect performance. Thus full transformation performance is available
not only to large blocks of contiguous vertexes, but also to the vertexes of inde-
pendent polygons and of short triangle meshes. Both independent triangles and
independent quadrilaterals, for example, are drawn at the full 400,000 vertex
per second rate (100K quadrilaterals/second, 135K triangles/sec). Meshes of
only 5 vertexes (3 triangles), draw at over 90 percent of the peak triangle mesh
rate (also 135K, see Figure 3).

A workstation that is to support immediate mode graphics (with the desirable
properties described in previous sections) must achieve full transformation
performance on small data sets, as well as support both generation and tra-

versal on its application-programmable processor. The transformation proces-

Operation FLOPS

Vertex transformation 28

Normal transformation 15

Single-source lighting 28

Clip testing 6

Projection 11

Map to screen-space 9

Total 97

2 4 6 8 10

50K

100K

150K

Triangles/Sec

Triangles/Mesh

FIGURE 3. Triangle mesh performance.
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sor of the 4D/240GTX, in conjunction with the 3-way transfer hardware of the
processor system, meets this requirement. Special-purpose application proces-
sors in GTX-SD machines sometimes do not.

The Geometry Engine comprises a single conversion and FIFO module, fol-
lowed by 5 identical microcoded floating-point processors. The 6 processors
are organized as a single pipeline. Each executes a specific subset of the stan-
dard transformation algorithm.

Coordinate and color data are accepted by the conversion module in single and
double-precision floating-point, integer, and packed integer formats. All data
are converted to single-precision IEEE floating-point format before being
transferred to the first floating-point processor. A 512-word deep FIFO pre-
cedes the conversion module. The processor that is currently executing the tra-

versal process is interrupted whenever the FIFO becomes more than half full.
It stalls until the FIFO empties past a low-water mark, then returns control to
the application graphics program. Thus graphics flow control adversely affects
traversal performance only when the allowable transfer rate is exceeded.

The floating-point processors are identical modules, each consisting of a 20
MFLOPS peak data path component (FPU) and a RAM-based microcode
sequencer. Data and control transfer between the processors is arranged to
avoid lost FPU cycles. Transformation tasks are distributed among the 5 pro-
cessors as follows:

1. Matrix and normal transformation. Coordinate matrix and normal
(inverse-transpose) matrix stack maintenance. Normal normalization.

2. Lighting calculations.

3. Clip testing.

4. Perspective division. Clipping (when required).

5. Viewport transformation. Color clamping to a maximum value. Depth-
cue calculations.

Scan Conversion Subsystem

Output data of the Transformation Subsystem specify the vertexes of points,
lines, and polygons in screen coordinates. The Scan Conversion Subsystem
performs the calculations required to reduce these vertex data to individual
pixels. Each pixel is assigned an x, y, and z coordinate and an r, g, b, and a

color value. Color and z data are interpolated linearly between vertexes and
between the edges of polygons.

Polygon scan conversion is partitioned across 3 separate processors within the
Scan Conversion subsystem. The Polygon Processor decomposes polygons
into screen-aligned trapezoids whose left and right edges are vertical. (Figure
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4A.) These trapezoids are themselves decomposed into vertical single-width
spans by the Edge Processor. (Figure 4B.) Finally, the individual spans are
reduced to pixels by an array of 5 Span Processors, each of which operates on a
single span. (Figure 4C.)

Color and depth slopes are computed at each decomposition step, resulting in
bilinear interpolation across the interior of the polygon[10]. The scan conver-
sion is point-sampled, meaning that:

1. Only pixels whose exact centers are within the precise polygon boundary
are filled, and

2. Color and depth parameters are iterated with subpixel precision, then
corrected to correspond exactly to the (pixel centered) sample points.
(Figure 5.)

A. Polygon Processor

B. Edge Processor

C.Span Processor

FIGURE 4. Polygon decomposition.

FIGURE 5. Point-sampled polygon.
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As a result, iterated color and depth values remain planar across polygonal sur-
faces, avoiding unnecessary color banding and yielding clean Z-buffer inter-
sections. Also, adjacent polygons neither share nor omit pixels, properly
supporting transparent renderings.

Polygon spans are generated at the rate of 2 million per second. Span proces-
sors reduce spans to pixels at the rate of 16 million pixels per second, resulting
in an aggregate (5 Span Processor) fill rate of 80 Mpixels/sec. Line pixels are
generated by the Edge Processor at the rates of 16 Mpixels/sec.

Raster Subsystem

The Raster Subsystem contains 20 Image EnginesTM, each of which is an
independent state machine that controls 1/20th of the frame buffer memory.
Groups of 4 Image Engines are driven by each Span Processor. The array of
Image Engines tiles the frame buffer in a 5-wide, 4-high, pattern. (Figure 6.)
This 2-dimensional interleaved tiling pattern is arranged such that any screen-
aligned 5 X 4 region is supported by all 20 Image Engines. As a result, the
Image Engines operate in parallel even when very small regions are being
filled.

Bitplane memory is organized into 5 banks, with a total of 96 bits per pixel.
The banks are arranged as follows (Figure 7):

• Image banks. Two banks of 32 bits each provide direct support of double-
buffered images. Organized as 8 bits each of red, green, blue, and alpha
data when used for RGB (true color) imaging, and as 12-bits each when
used for pseudo color imaging.

FIGURE 6. Image engine tiling pattern.

15

10

5

0

16

11

6

1

17

12

7

2

18

13

8

3

19

14

9

4

15

10

5

0

16

11

6

1

17

12

7

2

18

13

8

3

19

14

9

4

15

10

5

0

16

11

6

1

17

12

7

2

18

13

8

3

19

14

9

4

15

10

5

0

16

11

6

1

17

12

7

2

18

13

8

3

19

14

9

4

8

4

0

0 5 10



Graphics Architecture

SIGGRAPH ’96 Course  —  Designing Real-Time 3D Graphics for Entertainment B-19

• Depth bank. One bank of 24 bits. Stores 24-bit integer depth information
when used in conjunction with the Image Engine Z-buffer pixel algo-
rithm. It is also available for image data.

• Overlay bank. One bank of 4 bits. Two bits are reserved for the window
manager to display popup menus. The two remaining banks are available
to application programs for both overlay and underlay images.

• Window ID bank. One bank of 4 bits, used by the window manager to tag
pixels based on the drawing process to which they belong.

The 4-bit window ID field identifies each pixel as belonging to one of (up to)
16 currently active windows. All pixel algorithms except high-speed clear
compare the contents of this ID field to the ID of the currently drawing window
process. If the IDs do not match, no change is made to the current pixel values.
Thus both partially obscured and non-rectangular windows are supported with
no performance penalty.

Image Engines operate as specialized memory controllers, supporting video
RAM refresh, display refresh, and a handful of pixel access algorithms. These
algorithms include:

• Replace. Replace the destination color with the source color.

• Z-buffer. Compare the source and destination z values. If the test passes,
replace the destination color and z with the source color and z, Any com-
bination of greater than, equal to, and less than can be specified as the test
condition.

FIGURE 7. Bitplane assignments.
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• Alpha blend. Replace the destination color with a linear combination of
the source and destination colors[11]. Each of the four color components
is operated on with the following equation:

• Applications choose the component multipliers from the following lists:

The subscripts src and dst refer to the incoming and current color values
respectively.

• High-speed clear. Simple replace available only for large, screen-aligned
rectangles.

Although the Image Engines are simple machines, their parallel operation and
multiple algorithms result in extremely powerful pixel fill operation. Aggre-
gate performance for the various pixel algorithms is:

Display Subsystem

The Display Subsystem receives pixel data from the frame buffer, interprets it,
and routes the resulting red, green, blue, and alpha data to the Digital-to-Ana-
log converters for display. Five Multimode Graphics Processors (MMGPs)
operate in parallel, one assigned to the pixels controlled by each Span Proces-
sor. These MMGPs receive all 64 image bank bits, the 4 auxiliary bank bits,
and the 4 window ID bits for each pixel. They interpret the image and auxiliary
bits as a function of the window ID bits, using an internal 16-entry table. Thus
windows can independently select single or double buffer operation, and dou-
ble buffer windows can swap buffers independently. Color index (pseudo
color) and RGB (true color) operation are also selected independently on a per-
window basis.

Window ID interpretation allows complete window support in a system that
scan converts into and displays from the same raster memory (i.e. frame
buffer). Eliminating the need for copy operations between raster memory and
display memory reduces system bandwidth requirements, allows double buffer

Pixel Algorithm

Fill Rate

Mpixel/sec

Replace 80

Z-buffer 40

Alpha blend 16

High-speed clear 160

Cdst αFsrcCsrc FsrcCdst+=

Fsrc 0 1 α src 1 α src– αdst 1 α– dst Cdst 1 C– dst,, , , , , ,∈

Fdst 0 1 α src 1 α src– αdst 1 α– dst Csrc 1 C– src,, , , , , ,∈
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windows to be easily synchronized with monitor refresh, and supports 30 and
even 60 Hz frame refreshes. Rapid frame rates are critical in real time simula-
tion environments, and were an important consideration in the design of the
4D/240GTX.

Context Switching

The graphics subsystem is designed to support context switching with minimal
overhead. Because significant quantities of state are accumulated in the 5 float-
ing-point processors of the Geometry Engine, each maintains complete context
for 16 independent processes in its local data memory. The floating-point pro-
cessors are also able to dump and restore context to and from a host processor,
allowing more than 16 processes to share the hardware. Thus a working set of
up to 16 processes is supported, with essentially no limit to the total number of
processes.

Because the Edge, Span, and Image Processors are unable to return state infor-
mation, the few states stored in these processors are shadowed by the Polygon
Processor. The Polygon Processor state, including shadow state, is minimal,
and is therefore maintained by a host CPU.

Graphics System Features

Pan and zoom are implemented as high-speed pixel copy operations. Copy per-
formance varies from 4 to 16 million pixels per second as a function of pixel
zoom factor. A 1/4-screen zoom by a factor of 2, for example, runs at 7 frames
per second. Smaller areas, common in window-capable systems, easily zoom
at 30 frames per second. Because the effects of pan and zoom are limited to a
single window, or to multiple windows with independent factors if desired, the
full screen remains a useful resource.

An optional frame-grab board captures both NTSC and PAL video in real time.
Images are transferred to an arbitrary window at the rate of 16 million pixels
per second. Once in raster memory, these images are operated on and displayed
just like geometry-based images. Multiple buffers in the frame-grab hardware
ensure that synchronization is correct and that neither images nor performance
are lost.

The Image EnginesTM support alpha blending, allowing pixel color compo-
nents to be replaced with a linear combination of their previous components
and the incoming color components. Application programmers select a specific
blending equation from a list of options (Section 5.3). Perhaps the most com-
monly used blending function is:

Cdst α srcCsrc 1 α src–( ) Cdst+=
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When  represents opacity of the incoming pixel value, the pixel is rendered
transparently. Alternatively, when  represents pixel coverage (perhaps com-
puted by the antialiased line drawing hardware) the edges of the object being
drawn are smoothed.

Antialiased lines, critical to molecular modeling applications, are drawn at up
to 1/2 the rate of standard lines. Pixel coverage is computed from the fractional
line position in the direction perpendicular to its primary direction. (Figure 8.)
The computed coverage, in the range 0..1, is used to scale the a of each pixel in
the line.

A blending function such as the one described above is used to merge the line
into the frame buffer.

6   Summary

The 4D/240GTX represents state-of-the-art in superworkstation architecture.
Its parallel-scalar CPU architecture supports an attractive performance balance
of 80 MIPS and 16 MFLOPS. Graphics performance of over 100,000 lighted,
Z-buffered quadrilaterals per second is provided by its tightly-integrated
graphics subsystem. A complete set of development software, including a par-
allelizing FORTRAN compiler, user-level parallelizing directives, and the
immediate-mode graphics library, allows application programs to easily

α src

αdst

FIGURE 8. Antialiased line generation.

α src αcoverageα src=
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achieve optimal performance. Its GT-XSD architecture insures that full CPU
and graphics performance are available simultaneously to application program-
mers.
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