J2EE Web Component
Development

Training Course

Chau Keng Fong
Adegboyega Ojo

e-Macao Report 24

Version 1.0, November 2005

Table of Contents i
Table of Contents
I = VT 1
B O Lo) 1< o Y= 1
G T o (=T =T U 1] o =P 1
T2 S 1= ol g Vo Ta [] o Yo |2 PP 2
S 0T o= o | P 2
1530 N 124 =1 = 1 ' Yo [0 T ' o P 2
IR/ o o= I @0 [0l o] £ PP 2
STC N o o] g bde] a1 =] I @e] g o= o) =3 PP 3
I B O 11T B (e A P 3
T N1 o g =T o PP 3
J72 O 1« 1= a1 2= 1 e] o S 4
FAY o] o 7= 5 [1t G PP 6
Y [o [PP 6
AW I o o o [Tt u o o RPN 6
AW I S Do = g e Y [T o o] I PP 10
A.1.2. Architecture Of J2EEoiuiiiiiiiii i e e e e 13
N G TR Y U o 1= V2 P 20
AN V=Y o o Tor- | B @le] g Tel=] o =S PP 21
A R Y =T V] = PP 22
AL2.2. JaVASEIVEE PagS e ittt e 50
A T 1= o= PP 87
JAVIC TN o Tol gbdo] g1 = | I @o] Yol o) =3 PP 106
N A A o= o] o = 107
A.3.2. Database ConNECHIVITY tuuiiriiiii i e 113
NG G TR Y =T 1 o | Y 120
A.3.4. Internationalization ... 129
F NG T Y U [0 o o ¢ 1= VP 136
N B - = T o § [| PP 139
o YT = 142
o T Y =1 P 142
o T Y =1 PP TPRPI 147

Introduction 1

1. Overview

The Java 2 Enterprise Edition (J2EE) platform is a standard technology for building Internet
applications and particularly Enterprise Applications. J2EE is a suite of Application
Programming Interfaces (APIs), a distributed computing architecture, and the method of
packaging distributable components for deployment [4]. Enterprise Applications are
essential for safe storage, retrieval and manipulations of business data. They are
characterised by multiple user interfaces, both web- and desktop-oriented, communication
between remote systems and data coordination on different machines.

Enterprise applications are multi-tier applications consisting of client, web, business and
enterprise tiers. J2EE provides the necessary APIs and services to develop these tiers, with
Web and Business Components implementing web and business tiers respectively.

This course introduces the J2EE Technologies, focusing mainly on the Web Component
Technologies. It starts by introducing the J2EE Platform including its origin, architecture and
components. Next, the course teaches the core technologies for developing web
components: how to develop controllers as Servlets, how to view contents using Java
Server Pages and how to use Filters for processing requests and responses. Later, support
for horizontal technologies like exception handling, database connectivity, security and
internationalization are briefly discussed.

The rest of this document explains the objectives, prerequisites and methodology for
teaching the course in Sections 2, 3 and 4 respectively. The content of the course is
introduced in some detail in Section 5. The assessment and organization of the course are
explained in Sections 6 and 7. Following references, Appendix A includes the complete set of
slides and Appendix B contains two sets of assessment questions with answers.

2. Objectives

The course has three main objectives:

1) To introduce the J2EE Technology to students.
2) To equip students with essential skills for developing enterprise applications using three
J2EE Web Components technologies:
a) Servlets
b) JavaServer Pages
c) Filters
3) To teach techniques for developing multi-lingual, secure web applications.

3. Prerequisites

The course requires that students have a working knowledge of the Java Programming
Language. Basic understanding of the TCP/IP network protocol is also essential. In addition,
the knowledge of XML and HTML are assumed.

Introduction 2

4. Methodology
The course has been designed based on the following didactic principles:

e Depth versus Breadth - As foundation, attempt is made to cover the various aspects of
web services without loss of depth.

e Academic Orientation — A body of concepts is defined rigorously and incrementally to
establish a proper foundation for understanding and use of technology.

e From Definitions to Demonstrations - All major concepts introduced during the course
are illustrated with small-size examples which are also demonstrated on the computer,
whenever possible.

e From Demonstrations to Assignments - On the basis of demonstrations, students are
asked to perform different tasks with increasing level of difficulty and independence.

5. Content

The course consists of 490 slides organized into four major sections: J2EE Introduction,
Vertical Concepts, Horizontal Concepts and Case Study. These sections are described below.

5.1. J2EE Introduction

This section comprises the slides 1 through 45. It presents an overview of the Java 2
Enterprise Edition (J2EE). The presentation covers the origin, architecture and design goal
of the J2EE platform. The concepts of components, containers and application servers are
introduced. Later in the section, standard services and platform roles defined by the J2EE
specification are introduced. Finally, setting up the Apache Tomcat Web Server is explained.

5.2. Vertical Concepts

This section comprises the slides 46 through 372. It teaches three major J2EE Web
Components technologies: (i) Servlet, (ii) JavaServer Pages (JSP) and (iii) Filter. The three
different types of Web Components are presented as follows:

1) Servlet - The basic concepts of the architecture and lifecycle of Servlets are introduced.
The HTTP protocol is explained before presenting how HTTPServlets are developed and
deployed. Communication between Servlet, Client tier and Container are also explained.

2) JavaServer Pages (JSP) - The architecture and life cycle of JSPs are introduced. The
use of scripting elements for writing JSP is explained. The usage of implicit objects and
standard JSP actions like forward, include and useBeans are presented. The J2.0
Expression Language is introduced. Finally, standard and custom tags are discussed.

3) Filter - Filters and Filter Chains are presented and their use of explained. Also, request
and response wrappers are discussed.

The lifecycles of all components are presented and compared.

Introduction 3

5.3. Horizontal Concepts

This section consists of the slides 373 through 483. It presents the supporting technologies
for J2EE applications: exception handling, database connectivity, security and
internationalization. Each of these topics is explained below:

1) Exception — Exceptions in J2EE can be handled in different manners. This section first
explains how to develop JSPs and Servlets to handle exceptions thrown by a web page.
Subsequently, methods to intercept and handle exceptions thrown by Containers are
discussed. The usage of error objects for retrieving error information is also explained.
An illustration involving Java Mail to send out error message is presented. Finally, the
concept of information logging is introduced.

2) Database Connectivity — The concept of data source to establish database connection is
introduced. Next, the section introduces connection pools. Finally, configurations for
data sources and connection pools are demonstrated.

3) Security - The technique for role-based and programmatic authentication in J2EE
applications is presented. The role-based security in Apache Tomcat server is
demonstrated. Configuration for providing secured communication through HTTPS
protocol in Apache Tomcat is introduced as well. In addition, the section describes the
programmatic security technique supported in the J2EE environment.

4) Internationalization — The concept of internationalisation is introduced, followed by a
discussion of difficulties in developing multi-lingual web applications. The development
of a multi-lingual website through the use of the Resource Bundle file is demonstrated.
Tools for generating the Resource Bundle are presented as well.

5.4. Case Study

This section comprises the slides from 484 through 499. It presents a complete case study
involving the development and deployment of a multi-lingual, secure website using the J2EE
Web Components Technology.

6. Assessment

The course finishes with an assessment. This comprises 15 multiple-choice questions which
cover all major sections and concepts taught.

Two sets of 15 assessment questions and answers are given in Appendices B.1 and B.2.
The two sets are different permutation of the same collection of questions. The assessment
complements the tasks provided in the various sections.

Introduction 4

7. Organization

The course consists of lectures and demonstrations:

e Jectures — The lectures mainly present the concepts and the use of the J2EE Web
Components Technologies.

e demonstrations - Demonstrations illustrate the concepts introduced during the lectures
with running code and examples. Some examples only provide skeleton codes and
require students to complete them by applying the technologies discussed in the lectures.

The full course has been taught for 7 days with 6 hours of lectures per day. A shorter
version of the course has also been taught over four days.

References

References

1. e-Macao Project, The State of Electronic Government in Macao, Volume 2: Agencies,

2005

Hans Bergsten, JavaServer Pages, 3rd edition, O'Reilly, 2003

Jayson Falkner and Kevin Jones, Servlets and JavaServer Pages: the J2EE Technology

Web Tier, Addison-Wesley, 2003

4. James L. Weaver, Kevin Mukhar and Jim Crume, Beginning J2EE 1.4 - From Novice to
Professional, Apress, 2004

wn

Slides — Introduction

Appendix
A. Slides

A.1. Introduction

J2EE Web Component
Development

Milton, Chau Keng Fong

INESC-Macau

The Course

e-Macao-16-6-2

1)

2)

3) resources - what teaching resources will be available?
4)

objectives - what do we intend to achieve?
outline - what content will be taught?

organization - duration, major activities, daily schedule

Slides — Introduction

e-Macao-16-6-3

Course Objectives

1) explain the concept of J2EE
a) origin
b) architecture

2) present the core J2EE Web Components technologies
a) Servlets
b) JavaServer Pages
c) Filters

3) present the techniques to develop a multi-lingual, secured web site

e-Macao-16-6-4

Course Outline

3) horizontal concepts
a) exceptions

2) vertical concepts b) database connectivity
a) Servlets c) security
b) JavaServer Pages d) internationalization
c) Filters

1) J2EE introduction

4) case study

e-Macao-16-6-5

QOutline: J2EE Introduction

An overview of J2EE:

1) origin of J2EE
2) architecture of J2EE

e-Macao-16-6-6

Outline: Vertical Concepts

The main concepts about different types of web components:

1
2

) introduction to Servlets, JavaServer Pages (JSP) and Filters
)
3) development of different types of web components
)

)

life cycle of different web components

4
5

how to deploy a web application
criteria for the usage of different web components

Slides — Introduction

e-Macao-16-6-7

Outline: Horizontal Concepts

Supporting technologies to develop web applications:

1
2
3
4

) different techniques to handle exceptions and produce logging
) various strategies to build secure web sites

) different ways to connect to databases

)

procedures to develop a multi-lingual web site

e-Macao-16-6-8

Outline: Case Study

Build a web site utilizing the J2EE Web Component technologies:

) enforce the MVC pattern with Filters

) multi-lingual support with resource bundles
3) utilizing declarative security

) adopt standard tag libraries in building JSPs

e-Macao-16-6-9

Course Resources

1) Books
a) JavaServer Pages, Hans Bergsten, 3rd edition, O’Reilly, 2003

b) Servlets and JavaServer Pages: the J2EE Technology Web Tier,
Jayson Falkner, Kevin Jones, Addison-Wesley, 2003

2) Articles
Links available from the website http: //www.emacao.gov.mo.

3) Tools
a) JDK 1.5.0_01
b) Eclipse IDE 3.0.1
c) Jakarta Tomcat 5.5.7

e-Macao-16-6-10

Course Logistics

duration - 42 hours

-
-

2) activities — lectures and development

3) timing
a) Monday 09:00-13:00 14:30-17:45
b) Tuesday 09:00-13:00 14:30-17:45
c) Wednesday 09:00-13:00
d) Thursday 09:00-13:00 14:30-17:45
e) Friday 09:00-13:00

4) sessions - 7 morning, 4 afternoon

5) style - interactive and tutorial

Slides — Introduction

e-Macao-16-6-11

Course Prerequisites

1
2
3
4

) basic Java

) basic understanding of TCP/IP networking concepts
) basic understanding of XML

)

basic understanding of HTML

Slides — Introduction

10

A.1.1. J2EE Introduction

J2EE Introduction

Course Outline

e-Macao-16-2-13

1) J2EE introduction

2) vertical concepts
a) Servlets

b) JavaServer Pages
c) Filters

3) horizontal concepts
a) exceptions
b) security
c) internationalization
d) database connectivity

4) case study

Slides — Introduction

11

e-Macao-16-2-14

J2EE Introduction Outline

1) Origin of J2EE
2) Architecture of J2EE
3) Summary

e-Macao-16-6-15

Background

The Java platform was first introduced in 1995 to address the programming
needs for networks and cross-platform programming.

In order to address different needs, Sun Microsystems soon split the Java
Technologies into three editions:

1) Java 2 Platform Micro Edition (J2ME)
2) Java 2 Platform Standard Edition (J2SE)
3) Java 2 Platform Enterprise Edition (J2EE)

e-Macao-16-6-16

Needs

In recent years, the needs for distributed computing in an enterprise made
n-tier applications a popular program model.

The needs facing the developers:
a) simplifying the complexity of building n-tier applications
b) easily achieving :
* availability
+ reliability
» performance
» scalability
* reusability
» interoperability

¢) using a standardized API between components and application
servers

e-Macao-16-6-17

J2EE Origin

Sun Microsystems, together with partners such as IBM, designed J2EE to
define a multi-tier architecture for developing enterprise information systems
(EIS) to answer the needs from the industry.

Goals:
a) reduce the cost and complexity of development
b) allow J2EE applications to be rapidly deployed and easily enhanced

Slides — Introduction

12

e-Macao-16-6-18

J2EE Major Elements 1

J2EE consists of the following elements to pursue its design goals:
1) J2EE Platform — a standard platform for hosting J2EE applications.

2) J2EE Compatibility Test Suite (CTS) — all J2EE application servers have
to pass the CTS test to carry the Java Compatible, Enterprise Edition
logo.

e-Macao-16-6-19

J2EE Major Elements 2

3) J2EE Reference Implementation — a reference implementation and
operational definition of the J2EE platform.

A binary version can be downloaded as J2EE Software Development
Kits (SDK).

4) J2EE Blue Prints — the standard programming model for developing
multi-tier, thin client applications.

Slides — Introduction

13

A.1.2. Architecture of J2EE

J2EE Introduction Outline

e-Macao-16-6-20

1) Origin of J2EE
2) Architecture of J2EE
3) Summary

e-Macao-16-6-21

J2EE Platform

J2EE platform uses a multi-tiered distributed application model.

Client-Side erver-Side Server-Side Enterprise
Fresentation) resentation IBusmass LOQIGI Infst‘:ynnahon

Browsar : [Web : __ .

Server
Pure
HTML

Java
Applat

" Desktep
Java :

Application

Other Device "

J2EE " |

Client dl

client tier web tier business tier EIS tier
courtesy of Sun Microsystems

Slides — Introduction

14

e-Macao-16-6-22

J2EE Architecture

J2EE architecture is a component architecture.

A J2EE component is a self-contained functional software unit
assembled into a J2EE application.

J2EE components are deployed to run on a J2EE server, which
executes and manages them.

e-Macao-16-6-23

J2EE Server

J2EE server provides the underlying services, such as:

—_

transaction management

N

multithreading

W
Nl N)

resource pooling

IS

other complex low-level services

e-Macao-16-6-24

J2EE Containers

Containers are the interface between a component and the low-level
platform.

Types of containers:

1

) EJB container
2) Web container
)
)

3
4) Applet container

Application client container

e-Macao-16-6-25

Task 1: Setup A Web Server

1) Setup and configure your Tomcat server for the usage in this course:
a) copy the folder named web_componet to your local hard disk
b) open the file Tomcat .bat and modify the path name if necessary
c) Configure Tomcat to use port 80 as the default port:

1. edit <Catalina Home>/conf/server.xml and change the
port attribute of the Connector element from 8080 to 80 as
following:
<Connector port="80" . maxThreads="150"

minSpareThreads="25"

This modification allows us to use the URL of the form
http://localhost/myServlet instead of
http://localhost:8080/myServlet

Slides — Introduction

15

e-Macao-16-6-26

Task 2: Setup Web Server

d) configure Tomcat to activate the auto-reload feature:

1. modify the <Catalina_Home>/conf/Context.xml file.
Change the tag <Context> to <Context
reloadable=“true”>. This allows Tomcat to reload the
servlet automatically when a modification is made to the
servlet. However, this setting may degrade the performance
of the server.

e) start Tomcat by runing Tomcat .bat bathc file
f) use a browser to access the following URL:
http://localhost/

e-Macao-16-6-27

Components and Containers

Components run within Container.

Container provides Runtime environment, J2SE ™ & J2EE™
APIs, and remote communication

courtesy of Sun Microsystems

e-Macao-16-6-28

J2EE Components

1) Clients
a) Web client
b) Applet
c) Application client
2) Web Components
a) Servlet
b) JavaServer Pages (JSP)
3) Business Components
a) Enterprise Java Bean (EJB)
4) Enterprise Information System (EIS)
a) Database

e-Macao-16-6-29

Web Components

In J2EE specification, v1.4, a web component is defined as a collection of:
a) Servlets
b) pages created with the JavaServer Pages™ technology
c) web Filters
d) web Event Listeners

In short, a web component is a software entity that runs in a web container
to provide responses to external requests.

Slides — Introduction

16

e-Macao-16-6-30

Business Components

The Enterprise Java Bean (EJB) architecture is a server-side technology for
building object-oriented business application in Java.

There are three types of Enterprise Beans:
a) Session Beans
b) Entity Beans
¢) Message-Driven Beans

e-Macao-16-6-31

J2EE Standard Services

J2EE standard services include the following:

HTTP
HTTPS
RMI-IOP
JavalDL

Java Naming and Directory
Interface (JNDI)

JDBC API
Java Message Service (JMS)
Java Transaction API (JTA)

Some of them are explained as follows.

JavaMail

JavaBeans Activation Framework
(JAF)

Java API for XML Parsing (JAXP)
J2EE Connector Architecture
Security Services

Web Services

Management

Deployment

e-Macao-16-6-32

J2EE Services: JNDI

1) Java naming and directory services (JNDT)

a) applications use JNDI to locate objects, such as environment entries,
EJBs, datasources or message queues

b) JNDI is implementation independent
c) underlying implementation varies: LDAP, DNS, DBMS, etc.

e-Macao-16-6-33

J2EE Services: JDBC

2) Java DataBase Connectivity (JDBC)

a) a programming interface that lets Java applications access a

database via the sQL language

b) allows the development of platform-independent database

applications

Slides — Introduction

17

e-Macao-16-6-34

J2EE Services: JMS

3) Java Message Service (JMS)

a) provides standard APIs that Java developers can use to access the
common features of an enterprise message system

b) supports publish/subscribe and point-to-point models

c) provides support for administration, security, error handling,
optimization, distributed transactions, message ordering, message
acknowledgments, and more

e-Macao-16-6-35

J2EE Services: JTA

4) Java Transaction API (JTAa)

a) an application-level interface used to define the transaction
boundaries

b) allows applications to perform distributed transactions

e-Macao-16-6-36

J2EE Services: JavaMail

5) JavaMail

a) a platform-independent Java API allowing to develop email clients or
servers using any of the standard email protocols

e-Macao-16-6-37

J2EE Services: JAF

6) JavaBeans Activation Framework (JAF)

a) used by JavaMalil to convert the MIME byte streams into Java objects
that can then be handled by assigned JavaBeans

Slides — Introduction

18

e-Macao-16-6-38

J2EE Services: JAXP

7) Java API for XML Parsing (JAXP)

a) includes both Simple API for XML (SAX) and Document Object Model
(DOM) APIs for manipulating XML documents

b) enables Extensible Stylesheet Language Transformation (XSLT)
engines to be plugged in

e-Macao-16-6-39

J2EE Services: Connector

8) J2EE Connector Architecture

a) integration with non-J2EE systems, such as mainframes and ERPs
(Enterprise Resource Planning)

b) standard API to access different E1S (Enterprise Information Systems)

c) vendors implement EIS-specific resource adapters

e-Macao-16-6-40

J2EE Services: Security

9) Security Services
a) Java Authentication and Authorization Service (JAAS)
b) authentication via user identification / password or digital certificates

c) role-based authorization limits access of users to the resources (URLs,
EJB methods)

e-Macao-16-6-41

J2EE Platform Roles 1

A set of roles to carry out application development:

1) J2EE product provider: implements a J2EE product which
provides component containers, J2EE platform APIs, and other
features defined in the J2EE specification

2) application component provider: produces the building blocks of
a J2EE application

3) application assembler: takes a set of components developed by
application component providers and assembles them into a
complete J2EE application.

Slides — Introduction

19

e-Macao-16-6-42

J2EE Platform Roles 2

4) deployer: responsible for deploying J2EE components and applications
into a specific operational environment

5) system administrator: responsible for configuring and administrating
the computing and networking infrastructure of an enterprise

6) tool provider: provides tools used for the development and packaging
of application components.

J2EE Introduction Outline

e-Macao-16-6-43

1) Origin of J2EE
2) Architecture of J2EE

3) Summary

Slides — Introduction

20

A.1.3. Summary

e-Macao-16-6-44

Summary 1

J2EE is designed to reduce the cost and complexity of developing
distributed cross-platform enterprise applications

J2EE provides a standard platform for hosting J2EE applications
Other than the J2SE standard services, J2EE server also provides:
1) transaction management

2) multithreading

3) resource pooling
4) other low level services

e-Macao-16-6-45

Summary 2

J2EE platform uses a multi-tiered distributed application model.

A J2EE server contains a web component container and a business
component container.

Components are executed and managed by the containers.

Slides - Vertical Concepts

21

A.2. Vertical Concepts

Vertical Concepts

Course Outline

e-Macao-16-2-47

1) J2EE introduction

2) vertical concepts
a) Servlets
b) JavaServer Pages
c) Filters

3) horizontal concepts
a) exceptions
b) database connectivity
c) security
d) internationalization

4) case study

Slides - Vertical Concepts

A.2.1. Servlet

e-Macao-16-6-48 e-Macao-16-6-49

Vertical Concepts Outline Java Servlets

A servlet is a Java Technology component that executes within the servlet

1) Servlet 2) JavaServer Pages 3) Filter .
container.
a) basic concepts a) basic concepts a) basic concepts
b) http servlet b) scripting elements b) filter chain
) hitp) Piing) Typically, servlets perform the following functions:
c) servlet context c) implicit objects c) filter dispatcher
a) process the HTTP request

d) communication d) actions d) wrapper b) generate the HTTP response dynamically

between serviets e) expression e) summary
e) summary language

f) tag library

g) summary

Slides - Vertical Concepts

23

Servlet Container

e-Macao-16-6-50

A servlet container

1) is a special JVM (Java Virtual Machine) that is responsible for

maintaining the life cycle of servlets

2) must support HTTP as a protocol to exchange requests and responses

3) issues threads for each request

e-Macao-16-6-51

Servlets Versus CGls

Servlets are lightweight and
are scalable.

Each cGI is heavyweight and
is not scalable.

Servlet Interface

e-Macao-16-6-52

All servlets either:

1) implement javax.servlet.Servlet interface, or

2) extend a class that implements javax.servlet.Servlet

In the Java Servlet API, classes GenericServlet and HttpServlet

implement the servlet interface.

HttpServlet is usually extended for Servlet implementation.

e-Macao-16-6-53

Servlet Architecture

<<interface>>

<<interface>>
servlet
ServletConfig
init (config:ServletConfig
service (request, response) getInitParameter (name:String) : String
destroy () getInitParameterNames () :Enumeration
getServletName () :String
GenericServlet

init (config:ServletConfig
init ()
service (request, response

igetInitParameterNames () :Enumeration
getServletName () :String

getInitParameter (name:String) : String

HttpServlet

YourServlet

init ()
doPost (request, response

Slides - Vertical Concepts

24

Servlet Life Cycle

e-Macao-16-6-54

Servlets follow a three-phase life
cycle:

1) initialization
2) service
3) destruction

Initialization

l

Service
> receive Request
— return Response

Destruction

unload resources

e-Macao-16-6-55

Life Cycle: Initialization 1

A servlet container:
a) loads a servlet class during startup, or
b) when the servlet is needed for a request

After the Sservlet class is loaded, the container will instantiate it.

e-Macao-16-6-56

Life Cycle: Initialization 2

Initialization is performed by container
before any request can be received.

Persistent data configuration, heavy
resource setup (such as JDBC
connection) and any one-time activities
should be performed in this state.

The init () method will be called in
this stage witha ServletConfig
object as an argument.

Initialization

|

Service

——— 1 receive Request
«——— return Response

Destruction
unload resources

e-Macao-16-6-57

Life Cycle: ServletConfig Object

The servletConfig object allows the servlet to access name-value

initialization parameters from the deployment descriptor file using a method
such as getInitParameter (String name).

The object also gives access to the ServletContext object which
contains information about the runtime environment.

ServletContext objectis obtained by calling to the
getServletContext () method.

Slides - Vertical Concepts

25

e-Macao-16-6-58

Life Cycle: Service 1

The service method is defined for Initialization
handling client request.

The Container of a servlet will call Service
this method every time a request for — receive Request
that specific servlet is received. «——— return Response

v
Destruction
unload resources

e-Macao-16-6-59

Life Cycle: Service 2

The Container generally handles

concurrent requests with multi-threads. Initialization
All interactions to response to v
requests will occur within this phase Service
until the servlet is destroyed. —— receive Request
<~—— return Response
Destruction
unload resources

e-Macao-16-6-60

Life Cycle: Service Method

The service () method is invoked to every request and is
responsible for generating the response to that request.

The service () method takes two parameters:
javax.servlet.ServletRequest

javax.servlet.ServletResponse

public void service (ServletRequest request,

ServletResponse response)throws IOException {

e-Macao-16-6-61

Life Cycle: Destruction

When the servlet container
determines that the servlet should R
be removed, it calls the destroy Initialization
method of the servlet. l

. . . Service
The servlet container waits until all —— receive Request
threads running in the service B return Response

method have been completed or
time out before calling the

destroy method. Destruction
unload resources

Slides - Vertical Concepts

26

e-Macao-16-6-62

Vertical Concepts Outline

1) Servlet 2) JavaServer Pages 3) Filter
a) basic concepts a) basic concepts a) basic concepts
b) http servlet b) scripting elements b) filter chain
c) servlet context c) implicit objects c) filter dispatcher
d) communication d) actions d) wrapper
between serviets e) expression e) summary
e) summary language
f) tag library
g) summary

HTTPServlet

e-Macao-16-6-63

A general servlet knows nothing about the HyperText Transfer
Protocol (HTTP), which is the major protocol used for Internet.

A special kind of servlet, H-TTPServlet, is needed to handle
requests from HTTP clients such as web browsers.

HTTPServlet isincluded in the package javax.servlet.http

as a subclass of GenericServlet.

e-Macao-16-6-64

Hypertext Transfer Protocol

Hypertext Transfer Protocol (HTTP) isthe network protocol
that underpins the World Wide Web.

For example:
a) when a user enters a URL in a Web browser, the browser issues
an HTTP GET request to the Web server
b) the HTTP GET method is used by the server to retrieve a
document

c) the Web server then responds with the requested HTML
document

HTTP Methods

e-Macao-16-6-65

Useful for Web applications:

GET - request information
from a server

POST - sends an unlimited
amount of information over a
socket connection as part of
the HTTP request

Not useful for Web applications:

PUT - place documents directly to a
server

TRACE - debugging

DELETE - remove documents from
a server

OPTIONS - ask a server what
methods and other options the
server supports for the requested
resource

HEAD - requests the header of a
response

Slides - Vertical Concepts

27

Get Versus Post

e-Macao-16-6-66

GET request :

provides a limited amount of
information in the form of a query
string which is normally up to 255
characters

visible in a URL

must only be used to execute
queries in a Web application

POST request :

sends an unlimited amount of
information

does not appear as part of a URL

able to update data in a Web
application

HTTP Request

e-Macao-16-6-67

A valid HTTP request may look like this:

GET /index.html HTTP/1.0

GET: is a method defined by HTTP to ask a server for a specific

resource

/index.html: is the resource being requested from the server

HTTP/1.0: is the version of HTTP being used

e-Macao-16-6-68

Handling HTTP Requests

HTTP request

Browser

A Web container processes HTTP requests by executing the
service method on an HttpServlet object.

Web Container

> HttpServlet
t Service
Method

e-Macao-16-6-69

Dispatching HTTP Requests

In the HttpServlet class, the service method dispatches
requests to corresponding methods based on the HTTP method such

as Get or Post.

A servlet should extend the HttpServlet class and overrides the
doGet () and/or doPost () methods.

HttpRequest

HTTPServlet

Service

doGet

doPost

T

YourServlet

doGet

doPost

Requests are dispatched by
the service method
according to their types.

Slides - Vertical Concepts

28

e-Macao-16-6-70

HTTP Response

After a request is handled, information should be send back to the
client.

In the HTTP protocol, an HTTP server takes a request from a client
and generates a response consisting of

a) aresponse line
b) headers
c) abody

The response line contains the HTTP version of the server, a
response code and a reason phrase :

HTTP/1.1 200 OK

HitpServlet Response o

The HttpServletResponse object is responsible for sending
information back to a client.

An output stream can be obtained by calls to:
1)getWriter ()

2)getOutputStream()

For example:

PrintWriter out = response.getWriter();
out.println ("<html>");

out.println ("<head>");
out.println ("<title>Hello World!</title>");

e-Macao-16-6-72

Task 3: HTTP Servlet

1) Create and deploy a HelloWorld HTTP servlet executing the Get
method.

a) Declare the package — com.examples

b) Import the required clases:
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import java.io.PrintWriter;
import java.io.IOException;

c) The body of the servlet may look like this:
public class HelloServlet extends HttpServlet ({
public void doGet (HttpServletRequest request,
HttpServletResponse response)throws IOException {

response.setContentType (“text/html”);
PrintWriter out = response.getWriter();

e-Macao-16-6-73

Task 4: HTTP Servlet

//Generate the HTML response

out.println (“<HTML>") ;

out .println (“<HEAD>");

out.println (“<TITLE>Hello Servlet</TITLE>");
out .println (“</HEAD>") ;

out .println (“<BODY BGCOLOR='white’>");
out.println (“Hello, World");
out.println (“</BODY>") ;

out.println (“</HTML>") ;

out.close();

Slides - Vertical Concepts

29

e-Macao-16-6-74

Deployment of an HTTP Servlet

The HTTPServlet object has to be deployed in the Web server
before being used by the server.

A typical structure for deploying a servlet may look as follows:

servlet com.web.HelloServlet

Fwebapps

should be deployed here

I Texamples/
Index.html

WEB-INF/

L= Ty
l-q?:_com/

ﬁeployment descriptor : rebs

web . xml should be put {Jrettoservice. ol
ithin WEB—INF

e-Macao-16-6-75

Deployment Descriptor

In order to deploy a servlet, we also need to put a deployment descriptor file,
web.xml, under the directory of the WEB-INF directory.

Within the web . xm1 file, the definition of the servlet is contained:

1) Define a specific servlet
<servlet>
<servlet-name>name</servlet-name>
<servlet-class>full_class_name</servlet—
class>
</servlet>

2) Map to a URL pattern
<servlet-mapping>
<servlet-name>name</servlet-name>
<url-pattern>pattern</url-pattern>
</servlet-mapping>

e-Macao-16-6-76

URL Patterns

There are four types of URL patterns:

a) Exact match:
<url-pattern>/dirl/dir2/name</url-pattern>

b) Path match:
<url-pattern>/dirl/dir2/*</url-pattern>

c) Extension match:
<url-pattern>*.ext</url-pattern>

d) Default resource:
<url-pattern>/</url-pattern>

e-Macao-16-6-77

Mapping Rules 1

When a request is received, the mapping used will be the first servlet
mapping that matches the request's path according to the following rules:

a) If the request path exactly matches the mapping, that mapping is
used.

1) If the request path starts with one or more prefix mappings (not
counting the mapping's trailing "/*"), then the longest matching prefix
mapping is used.

For example, "/ foo/*" will match "/foo", "/foo/", and
"/foo/bar", butnot"/foobar".

Slides - Vertical Concepts

30

e-Macao-16-6-78

Mapping Rules 2

3) If the request path ends with a given extension mapping, it will be
forwarded to the specified servlet.

4) If none of the previous rules produce a match, the default mapping is
used.

Task 5: Deploying HTTP Serviet

1) Deploy an HTTP Servlet in Tomcat server.

a) Create a directory for deployment. This directory, say "examples",
should be put under <Tomcat_Home>/webapps.

[Twebapps
" Jexamples/
Index.html
o
WEB-INF/
—classes/
£ com/
web/

‘HelloServlet.class

e-Macao-16-6-80

Task 6: Deploying HTTP Servlet

b) Refer to the directory structure in previous slide, copy the servlet
package to the directory WEB-INF/classes.

c) Create a web.xml file, if one does not exist, in the directory
WEB-INFE. The file may look like the following:

<web-app
xmlns="http://java.sun.com/xml/ns/j2ee"
version="2.4">

<servlet>
<servlet-name>HelloWorld</servlet-name>
<servlet-class>
com.web.HelloServlet
</servlet-class>

</servlet>

e-Macao-16-6-81

Task 7: Deploying HTTP Servlet

<servlet-mapping>
<servlet-name>HelloWorld</servlet—-name>
<url-pattern>/HelloWorld</url-pattern>
</servlet-mapping>

</web-app>

d) Test the output of the servlet by entering the URL in the browser:
http://localhost/examples/HelloWorld

Slides - Vertical Concepts

31

e-Macao-16-6-82

Task 8: Deploying HTTP Servlet

2) Change the URL address of the servlet to:
http://localhost/examples/myservelt/HelloWorld

3) Change the URL address of the servlet to:
http://localhost/examples/Hello

4) Deploy the servlet in a different context, say admin.
The URL may look like this:
http://localhost/admin/HelloWorld

e-Macao-16-6-83

Request Parameter

Data transmitted from a browser to a servlet is considered the request
parameter.

A Web browser can transmit data to a Web server through HTML form.

For example, if the submit button of the following form is pressed, the
corresponding data is sent to the Web server:

Say Hello Form
N Bryag

|MM®m

Get /servlet/myForm?name=Bryan HTTP/1.0

e-Macao-16-6-84

POST Method

By using a POST method, data may be contained in the body of the
HTTP request:

POST /register HTTP/1.0

Accept-Charset: is0-8859-1,*,utf-8
Content-type: application/x-www-form-urlencoded
Content-length: 129

name=Bryan

The HTTP POST method can only be activated from a form.

e-Macao-16-6-85

Extracting Request Parameters

Request parameters are stored as a set of name-value pairs.

ServletRequest interface provides the following methods to
access the parameters:

1) getParameter (String name)
2) getParameterValues (String name)
3) getParameterNames ()

4) getParameterMap ()

Slides - Vertical Concepts

32

e-Macao-16-6-86

Task 10: Extract Parameter

1) Parameter value is sent to a servlet through an HTML form. Create a
HTTP servlet to retrieve the value of the parameter.

a) Put the following HTML file in the examples folder of your web
application, name it form.html and browse it.
<html>
<BODY BGCOLOR=‘white’>

Submit this Form

<FORM ACTION=‘/examples/myForm’ METHOD=‘POST’>
Name: <INPUT TYPE=‘text’ NAME= ‘name’ >

<INPUT TYPE='submit’>

</FORM>

</BODY>

</html>

e-Macao-16-6-87

Task 11: Extract Parameter

b) Methods of the HttpServletRequest are available for extracting
parameters from different HTML forms:
String getParameter (name) — get a value from a text field
String getParameterValues (name) — get values from a multiple
selection such as a checkbox

c) Create a servlet named myForm and deploy it under the examples
context. The servlet will extract the parameter “name” and generate
an HTML page showing the name in bold type.

Make sure that your servlet implements the correct method to respond
to the request.

e-Macao-16-6-88

Defining Initial Parameters

A servlet can have multiple initial parameters defined in the
deployment descriptor (web . xm1) as follows:

<servlet>
<servlet-name>EnglishHello</servlet-name>

<servlet-class>
com.web.MultiHelloServlet

</servlet-class>

<init-param>
<param—-name>greetingText</param-name>
<param-value>Welcome</param-value>

</init-param>

<init-param>
<param-name>encoding</param-name>
<param-value>UTF-8</param-value>

</init-param>

</servlet>

e-Macao-16-6-89

Getting Initial Parameter

There are different ways to obtain servlet initial parameters defined
in web.xml. One is to override the init () method, which is
defined in the GenericServlet class in your servlet.

The getInitParameter method of the GenericServlet class
provides access to the initialization parameters for the servlet
instance.

Inthe init () method, a greeting St ring may be defined as
follows:

public void init () {

greeting = getInitParameter ("greetingText");

}

Slides - Vertical Concepts

33

e-Macao-16-6-90

Multiple Servlet Definition

Multiple “servlet definitions” can also be defined in a given servlet
class. The following could be added to web . xm1 along with the
previous slide.

<servlet>
<servlet-name>ChineseHello</servlet—name>

<servlet-class>
com.web.MultiHelloServlet

</servlet-class>

<init-param>
<param-name>greetingText</param-name>
<param-value> </param-value>

</init-param>

<init-param>
<param-name>encoding</param-name>
<param-value>UTF-8</param-value>

</init-param>

</servlet>

e-Macao-16-6-91

Task 12: Servlet Initial Parameter

1) Modify HelloServlet to create a servlet named
MultiHelloServlet which will pick up the initial parameters defined
earlier and display them on an HTML Web page.

Note: Don’t forget to define the servlet-mapping tag correctly. You need
to define two mappings for a single servlet.

e-Macao-16-6-92

Request Header

A servlet can access the headers of an HTTP request with the
following methods:

1) getHeader
2) getHeaders

3) getHeaderNames

e-Macao-16-6-93

Request Attributes

Attributes are objects associated with a request. They can be
access through the following methods:

1) getAttribute
2) getAttributeNames

3) setAttribute

An attribute name can be associated with only one value.

Slides - Vertical Concepts

34

Reserved Attributes

The following prefixes are reserved for attribute names and cannot
be used:

1) java.
2) javax.
3) sun.

4) com.sun.

e-Macao-16-6-95

Request Path 1

The request path can be obtained from this method:
getRequestURI ()
The request path is composed of different sections.

These sections can be obtained through the following methods of the
request object :

getContextPath() :

If the context of the servlet is the "default” root of the Web
server, this call will return an empty string.

Otherwise, the string will starts with a' /' character but not
end with a'/ ' character

e-Macao-16-6-96

Request Path 2

getServletPath() :

The mapping which activates this request:

If the mapping matches with the ' /* ' pattern, returns an
empty string

Otherwise, returns a string starts with a '/ ' character.

Example:

Context path: /examples
Servlet mapping : ContextPath: /examples
Pattern: /lec1/ex1 ServletPath: /lec1/ex1
Servlet: exServlet Pathinfo: null

Request Path: /examples/lec1/ex1

e-Macao-16-6-97

Request Path 3

getPathInfo():

The extra part of the request URT that is not returned by the
getContextPath Or getServletPath method.

If no extra parts, returns null

otherwise, returns a string starts with a ' /' character

Example:

Context path: /examples Request Path: /examples/lec1/ex/
Servlet mapping : ContextPath: /examples
Pattern: /lec1/* ServletPath: /lect
Servlet: exServlet Pathinfo: /ex/

Slides - Vertical Concepts

35

Request Path 4

e-Macao-16-6-98

To sum up:

RequestURI = ContextPath + ServletPath + PathInfo

e-Macao-16-6-99

Task 13: Request Path

1) Modify the HelloServlet class to print out the results of the following
methods:

a) getRequestURL ()
b) getRequestURI ()
c) getContextPath ()
d) getServletPath ()
e) getPathInfo ()

2) What is the result if entering this URL in the browser:
http://localhost/examples/HelloWorld/

3) Modify the mapping for HelloServlet from "HelloWorld" to
"/*" and check out the result again.

Response Headers

e-Macao-16-6-100

HttpServletResponse can manipulate the HTTP header of a

response with following methods:

addHeader (String name, String value)
addIntHeader (String name, int value)
addDateHeader (String name, long date)

setHeader (String name, String value)

setIntHeader (String name, String value)

setDateHeader (String name, long date)

For example:

You can make the client's browser cache the common graphic of

your web site as following:

response.addHeader ("Cache-Control",
"max—-age=3600") ;

e-Macao-16-6-101

Vertical Concepts Outline

1) Servlet 2) JavaServer Pages 3) Filter
a) basic concepts a) basic concepts a) basic concepts
b) http servlet b) scripting elements b) filter chain
c) servlet context c) implicit objects c) filter dispatcher
d) communication d) actions d) wrapper
between serviets e) expression e) summary

€) summary language
f) tag library
g) summary

Slides - Vertical Concepts

36

e-Macao-16-6-102

Servlet Context

A servletContext objectis the runtime representation of a Web
application.

A servlet has access to the servlet context object through the
getServletContext method of the GenericServlet interface.

The servlet context object provides:

a) read-only access to context initialization parameters
) read-only access to application-level file resources
c) read-write access to application-level attributes
) write access to the application-level log file

e-Macao-16-6-103

Context Initial Parameters 1

The application-wide servlet context parameters defined in the deployment
descriptor (web . xm1) can be retrieved through the context object.

The web.xml file may look like the following:
<web-app>
<context-param>
<param-name>admin email</param-name>
<param-value>admin@servlet.com</param-value>

</context-param>

e-Macao-16-6-104

Context Initial Parameters 2

In order to obtain a context object, the following can be used:

ServletContext context =

getServletConfig() .getServletContext ();

After having the context object, one can access the context initial parameter
like this:

String adminEmail =

context.getInitParameter ("admin email");

e-Macao-16-6-105

Access to File Resources

The servletContext object provides read-only access to file resources
through the getResourceAsStream method that returns a raw
InputStream object.

After having the servlet context object, one can access the file resources as
follows:

String fileName = context.getInitParameter (“fileName”);
InputStream is = null;

BufferedReader reader = null;

try |

is = context.getResourceAsStream(fileName) ;

reader = new BufferedReader (new inputStreamReader (is));

Slides - Vertical Concepts

e-Macao-16-6-106 e-Macao-16-6-107

Access to Attributes 1 Access to Attributes 2

The servletContext object provides read-write access to runtime Getting attributes:
context attributes through the getAttribute and setAttribute
methods. catalog =
(ProductList) context.getAttribute (“catalog”);
Setting attributes: Iterator items = catalog.getProducts();
ProductList catalog = new ProductList(); while (items.hasNext ()) {

catalog.add(new Product (“pl”,10); Product p = (Product) items.next();

catalog.add (new Product (“p2”,50); out .println (“<TR>") ;
. ;

context.setAttribute (“catalog”, catalog); out.println (“<TD>” + p.getProductCode() + “</TD>");
out.println(“ <TD>" + p.getPrice() + “</TD>");

out.println (“</TR>");

e-Macao-16-6-108 e-Macao-16-6-109

Write Access to the Log File Vertical Concepts Outline

The servletContext object provides write access to log file through the 1) Servlet 2) JavaServer Pages 3) Filter
log method. a) basic concepts a) basic concepts a) basic concepts
b) http servlet b) scripting elements b) filter chain
The code may look as follows: c) servlet context c) implicit objects c) filter dispatcher
d) communication d) actions d) wrapper
context.log (“This is a log record”); between servlets e) expression e) summary
€) summary language
f) tag library
g) summary

Slides - Vertical Concepts

38

e-Macao-16-6-110

Servlet Communication

When building a Web application, resource-sharing and communication
between servlets are important. This can be achieved through one of the
following:

a) servlet context
b
c

d

=

request dispatching
session tracking

= < =

event listening

e-Macao-16-6-111

ServletContext

Servlets can access other servlets within the same servlet context through
an instance of :

javax.servlet.ServletContext

The servletContext object can be obtained from the ServletConfig
object by calling the get ServletContext method.

A list of all other servlets in a given servlet context can be obtained by
calling the getservletNames method onthe ServletContext object.

e-Macao-16-6-112

Accessing a Servlet

The following code snippet shows how to access another servlet through
the servlet context instance.

BookDBServlet database = (BookDBServlet)
getServletConfig() .getServlietContext () .getServlet
("bookdb") ;

//0Obtain a Servlet and call its public method
// directly

BookDetails bd = database.getBookDetails (bookId);

e-Macao-16-6-113

Request Dispatching 1

A request may need several servlets to cooperate:

RequestDispatcher object can be used for redirecting a request from
one servlet to another.

An object implementing the RequestDispather interface may be obtained
from the ServletContext via the following methods:

1) getRequestDispatcher

2) getNamedDispatcher

Slides - Vertical Concepts

39

e-Macao-16-6-114

Request Dispatching 2

The getRequestDispatcher method takes a string argument as the
path for the located resources.

The pathname must begin with a "/ and is interpreted as relative to the
current context root.

The required servlet is obtained and returned as a RequestDispatcher
object.

e-Macao-16-6-115

Request Dispatching 3

The getNamedDispatcher method takes a string argument indicating the
name of a servlet known to the ServletContext.

Servlets may be given names via server administration or via a web
application deployment descriptor.

A servlet instance can be determined through its name by calling
ServletConfig.getServletName ()

If a servlet is known to the servletContext by name, it is wrapped with a
RequestDispatcher object and returned.

e-Macao-16-6-116

Example: Request Dispatching

RequestDispatcher dispatcher =
getServletContext () .getRequestDispatcher ("/response");

if (dispatcher != null) {

dispatcher.include (request, response);

Note:

1) The RequestDispatcher object’s include() method dispatches the
request to the “response” servlet path (/response — in the URL mapping).

e-Macao-16-6-117

Using a RequestDispatcher

To use a request dispatcher, a developer needs to call either the
include or forward methods of the RequestDispatcher interface as
follows:

dispatcher.include (request, response);

Slides - Vertical Concepts

40

e-Macao-16-6-118

Include Method

The include method of the RequestDispatcher interface may be
called at any time.

It works like a programmatic server-side include and includes the response
from the given resource (Servlet, JSP page or HTML page) within the
caller response.

The included servlet cannot set headers or call any method that affects the
headers of the response. Any attempt to do so should be ignored.

e-Macao-16-6-119

Forward Method

The forward method of the RequestDispatcher interface may only be
called by the calling servlet if no output has been committed to the client.

If output exists in the response buffer that has not been committed, it must
be reset (clearing the buffer) before the target servlet’ s service method
is called.

If the response has been committed, an IllegalStateException must
be thrown.

e-Macao-16-6-120

Task 14: Request Dispatcher

1) Create a servlet which dispatches its request to another servlet using
both the forward and include methods of the ServletContext.

a) create a servlet name TestDispatherServletl as follows:
package com.web;

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class TestDispatcherServletl extends
HttpServlet {

private static final String forwardTo

= "/DispatcherServlet2";

e-Macao-16-6-121

Task 15: Request Dispatcher

private static final String includeln

= "/DispatcherServlet2";

public void doGet (HttpServletRequest req,
HttpServletResponse res)

throws ServletException, IOException {

res.setContentType ("text/html") ;
PrintWriter out = res.getWriter();
out .print ("<html><head>");

out.print ("</head><body>") ;

Slides - Vertical Concepts

41

e-Macao-16-6-122

Task 16: Request Dispatcher

// Displaying Form

out.print ("<form action=\"");

out.print (reg.getRequestURI ());

out.print ("\" method=\"post\">");

out.print ("<input type=\"hidden\" name=\"mode\" ");
out.print ("value=\"forward\">");

out.print ("<input type=\"submit\" value=\" \"");
out.print ("> ");

out.print (" Forward to another Servlet ..");

out.print ("</form>") ;

e-Macao-16-6-123

Task 17: Request Dispatcher

out.print ("<form action=\"");

out.print (reg.getRequestURI ());

out.print ("\" method=\"post\">");

out.print ("<input type=\"hidden\" name=\"mode\" ");
out.print ("value=\"include\">");

out.print ("<input type=\"submit\" ");

out.print ("value=\" \"> ");

out.print (" Include another Servlet ..");

out.print ("</form>") ;

out.print ("</body></html>") ;

out.close() ;

e-Macao-16-6-124

Task 18: Request Dispatcher

public void doPost (HttpServletRequest req,
HttpServletResponse res)

throws ServletException, IOException ({
res.setContentType ("text/html") ;
String mode = reqg.getParameter ("mode");
PrintWriter out = res.getWriter();
out.print ("Begin...
");
// Forwarding to Servlet2
if (mode != null && mode.equals ("forward")) {
req.setAttribute ("mode", "Forwarding Response..");
req.getRequestDispatcher (forwardTo) . forward (req,

res) ;

e-Macao-16-6-125

Task 19: Request Dispatcher

// Including response from Servlet2

if (mode != null && mode.equals ("include")) {
req.setAttribute ("mode", "Including Response..");

reqg.getRequestDispatcher (includelIn) .include (req,
res);

b) Map the servlet at "/DispatcherServlet1" in the web . xm1 file

Slides - Vertical Concepts

42

e-Macao-16-6-126

Task 20: Request Dispatcher

2) Create a servlet as the target servlet built at task 14.

a) Make sure the servlet is mapped correctly in the web . xm1 file. For
instance:

<servlet>
<servlet-name>DispatcherServlet2</servlet—-name>

<servlet-class>
com.web.TestDispatcherServlet2
</servlet-class>

</servlet>

<servlet-mapping>
<servlet-name>DispatcherServlet2</servlet-name>
<url-pattern>/DispatcherServlet2</url-pattern>

</servlet-mapping>

e-Macao-16-6-127

Task 21: Request Dispatcher

b) Obtain the attribute “mode” of the Request object sent from the
TestDispatcherServletl and display it

3) What is the difference between include and forward methods?

e-Macao-16-6-128

Session Tacking

HTTP is a stateless protocol and associating requests with a particular
client is difficult.

Session tracking mechanism is used to maintain state about a series of
requests from the same user.

javax.servlet.http.HttpSession defined in Servlet specification
allows a servlet containers to use different approaches to track a user's
session easily.

e-Macao-16-6-129

HttpSession

HttpSession is defined in the Servlet specification for managing the state
of a client.

Each HttpSession instance is associated with an ID and can store the
client's data.

The stored data will be kept privately until the client's session is destroyed.

Slides - Vertical Concepts

43

e-Macao-16-6-130

Obtaining a Session

Servlets do not create sessions by default.

getSession method of the HttpServletRequest object has to be called
explicitly to obtain a user’s session.

For example:
public class CatalogServlet extends HttpServlet ({

public void doGet (HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException {

// Get the user's session

HttpSession session = request.getSession();

e-Macao-16-6-131

HttpSession Attributes

Objects, or data, can be bound to a session as attributes.

The following methods can be used to manipulate the attributes:

1) void setAttribute (String name, Object value)
- binds an object to this session, using the name specified

2) Object getAttribute (String name)
- returns the object bound with the specified name in this session, or
null if no object is bound under the name

3) Enumeration getAttributeNames ()
- returns an Enumeration of String objects containing the
names of all objects bound to this session
4) void removeAttribute (String name)
- removes the object with the specified name from this session

e-Macao-16-6-132

Invalidating the Session

A user's session can be invalidated manually or automatically when the
session timeouts.

To manually invalidate a session, the session's invalidate () method
can be used:

HttpSession session = request.getSession();

// After the process, invalidate the session and clear
// the data

session.invalidate () ;

e-Macao-16-6-133

Cookies

Cookies are used to provide session ID and can be used to store
information shared by the client and server.

When a session is created, an HTTP header, Set-Cookie, will be sentto
the client. This cookie stores the session ID in the client until time-out.

The ID may looks like:
Set—-Cookie:

JSESSIONID=50BAB1DB58D45F833D78D9ECIC5A10CS

This ID will be stored in a client and passed back to the server for each
subsequent request.

Cookie: JSESSIONID=50BAB1DB58D45F833D78D9ECIC5A10CS

Slides - Vertical Concepts

a4

e-Macao-16-6-134

Cookie Object

Other than providing session ID, cookie can be used to store information
shared by both the client and server.

javax.servlet.http.Cookie class provides methods for manipulating
the information such as:

setValue (String value)
getValue ()

setComment (String comment)
getComment ()

setMaxAge (int second)

getMaxAge ()

e-Macao-16-6-135

Using Cookies

A procedure for using cookies to store information in a client usually includes:

1) instantiating a cookie object
2) setting any attributes
3) sending the cookie

e-Macao-16-6-136

Instantiating a Cookie Object

public void doGet (HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException {

String bookId = request.getParameter ("Buy");

if (bookId != null) {

Cookie Book = new

Cookie ("book_purchased", bookId);

e-Macao-16-6-137

Setting Attributes

Cookie Book = new

Cookie ("book_purchased", bookId);

Book.setComment ("Book sold");

Slides - Vertical Concepts

45

e-Macao-16-6-138

Sending a Cookie

Cookie Book = new

Cookie ("book_purchased", bookId) ;

Book.setComment ("Book sold");

response.addCookie (Book) ;

e-Macao-16-6-139

Retrieving Information

A procedure to retrieve information from a cookie:
1) retrieve all cookies from the user's request

2) find the cookie or cookies with specific names
3) get the values of the cookies found

e-Macao-16-6-140

Retrieving a Cookie 1

public void doGet (HttpServletRequest request,
HttpServletResponse response) throws ServletException,
IOException {

String bookId = request.getParameter ("Remove");

if (bookId != null) {
// Find the cookie that pertains to that book

Cookie[] cookies = request.getCookies();

e-Macao-16-6-141

Retrieving a Cookie 2

for (i=0; i < cookies.length; i++) {
Cookie thisCookie = cookie[i];

if (thisCookie.getName () .equals

("book_purchased") &&

thisCookie.getValue () .equals (bookId)) {
// Delete the cookie by setting its
// maximum age to zero
thisCookie.setMaxAge (0) ;

response.addCookie (thisCookie) ;

Slides - Vertical Concepts

46

e-Macao-16-6-142

Task 22: Cookie

1) Create a servlet that stores the last time the client visits this servlet
within the session.

a) java.util.Date could be used to obtain the time-stamp.

b) The time-stamp should be stored as a cookie.

c) A message similar to the following should be shown:
Your last visit time is Fri Apr 01 14:37:48 CST
2005

e-Macao-16-6-143

URL Rewriting

If a client does not support cookies, URL rewriting could be used as a
mechanism for session tracking.

While using this method, session ID is added to the URL of each page
generated.

For example, after a session ID 123456 is generated, the rewritten URL
might look like:

http://localhost/ServletTest/index.html; jsessionid=123
456

e-Macao-16-6-144

Methods for URL Rewriting

The HttpServletResponse object provides methods for appending a
session ID to a URL address string:

String encodeURL (java.lang.String url)

Encodes the specified URL by including the session ID in it, or, if
encoding is not needed, returns the URL unchanged.

String encodeRedirectURL (String url)

Encodes the specified URL for use in the sendRedirect method or, if
encoding is not needed, returns the URL unchanged.

e-Macao-16-6-145

Task 23: URL Rewriting

1) Investigate the usage of URL rewriting.

a) Create a servlet, named "URLRewrite", which shows the following
information on a web page:

— request URL (request.getURL())

— request URI (request.getURI())

— servlet path (request .getServlietPath())

— pathinfo (request.getPathInfo())

— sessionid (request .getSession () .getId())

— a hyperlink pointing to another servliet named "DisplayURL"
b) Create a servlet DisplayURL which shows the session id.

Slides - Vertical Concepts

47

e-Macao-16-6-146

Task 24: URL Rewriting

c) Make sure that the browser accepts cookies.

d) Browse the URLRewrite servlet and click on the link to the
DisplayURL servlet. What is the session id displayed on both
page?

e) Configure the browser to disable the cookies.
f) Repeat step d and observe the result.

g) Modify the URLRewrite servlet and call the
response.encodeURL method to modify the hyperlink pointing to
theDisplayURL servlet.

h) What is the result now and what is the conclusion?

e-Macao-16-6-147

Servlet Event Listener

Information about container-managed life cycle events, such as
initialization of a web application or loading of a database could be useful.

Servlet event listener provides a mechanism to obtain these information.

e-Macao-16-6-148

Event Listener Interfaces

Interfaces of different event listeners:
javax.servlet.ServletRequestListener
javax.servlet.ServletRequestAttributelistener
javax.servlet.ServletContextListener
javax.servlet.ServletContextAttributelListener
javax.servlet.http.HttpSessionListener

javax.servlet.http.HttpSessionAttributelistener

e-Macao-16-6-149

Example of a Listener

A listener can be used in different situations and here is one of the
examples:

1) When a web application starts up, the listener class is notified by the
container and prepares the connection to the database.

2) When the application is closed and removed from the web server, the
listener class is notified and the database connection is closed.

Slides - Vertical Concepts

48

e-Macao-16-6-150

Task 24: Servlet Event Listener

1) Create HttpSessionListener which counts the number of users
connected to the server concurrently.

a) Create a class named UserCounter which implements the
HttpSessionListener.

b) Define a static integer variable "countexr" for counting the users.

c) Find out which methods are needed to implement the
HttpSessionListener interface.

d) Within which method should you add or deduct the number of
users?

e) Provide a static method getUserCounted to return the number of
users connecting currently.

e-Macao-16-6-151

Task 25: Servlet Event Listener

2) Deploy the listener developed in Task 23.
a) Modify the web . xm1 file as follows to deploy the listener:
<listener>
<listener-class>
FULL_CLASS_NAME_OF_THE_LISTENER
</listener-class>

</listener>

3) Create a servlet DisplayUser which displays the number of
connected user by calling the get UserCount method of the
UserCounter class.

4) What can be observed when establishing more connections to the
DisplayUser servlet?

e-Macao-16-6-152

Vertical Concepts Outline

1) Servlet 2) JavaServer Pages 3) Filter
a) basic concepts a) basic concepts a) basic concepts
b) http servlet b) scripting elements b) filter chain
c) servlet context c) implicit objects c) filter dispatcher
d) communication d) actions d) wrapper
between servlets e) expression e) summary
€) summary language

f) tag library
g) summary

e-Macao-16-6-153

Servlet Summary 1

The most commonly used servlet extends the HttpServlet class.

The life cycle of a servlet include initialization, service and destruction.

The web container dispatches the requests to the corresponding methods
according to their types such as Get or Post.

The URL of a servlet could be mapped as part of the web . xm1 file.

Slides - Vertical Concepts

49

e-Macao-16-6-154

Servlet Summary 2

Data transmitted from a browser to a servlet is considered a request
parameter.

ServletRequest interface provides methods such as getParameter ()
for accessing the request parameters.

Initial parameters for a servlet could be assigned in the web . xm1 file and
extracted within the init () method of a servlet using the
getInitParameter method.

HttpServletRequest interface also provides methods for accessing
different attributes of an HTTP request such as header, URI, etc.

e-Macao-16-6-155

Servlet Summary 3

ServletContext object is the runtime representation of a web
application.

The servlet context object provides:
a) read-only access to context initialization parameters

(o))

) read-only access to application-level file resources
read-write access to application-level attributes

o

)
)

o

write access to the application-level log file

e-Macao-16-6-156

Servlet Summary 4

Information and resources can be shared between servlets and the
container.

Different approaches could be used:
a) servlet context

O

request dispatching

)
c) session tracking
d)

event listening

Slides - Vertical Concepts

50

A.2.2. JavaServer Pages

e-Macao-16-6-157

Vertical Concepts Outline

1) Servlet 2) JavaServer Pages 3) Filter
a) basic concepts a) basic concepts a) basic concepts
b) http servlet b) scripting elements b) filter chain
c) servlet context c) implicit objects c) filter dispatcher
d) communication d) actions d) wrapper
between serviets e) expression e) summary
e) summary language

f) tag library

g) summary

e-Macao-16-6-158

What is JavaServer Pages

JavaServer Pagesisa J2EE technology for building web applications.

A JSp page is a textual document that describes how to create a dynamic
response to a request.

Jsp technology builds on:

1) template, or static, content

2) dynamic data

3) encapsulation of functionality through JavaBeans and tag libraries

Slides - Vertical Concepts

51

e-Macao-16-6-159

Goals of JSP

While keeping the benefits of Java Servlet, JSP supports separation of
presentation and business logic:

a) web designers can design and update pages without learning Java
programming language

b) programmers for Java platform can write codes without dealing
with web page design

How to achieve this?

Jsp allows web designer to write standard HTML pages containing tags
that run powerful programs based on Java technology.

e-Macao-16-6-160

Benefits of JSP

1) platform independent

2) roles separation

3) reuse of components and tag libraries
4) separation of dynamic and static content
5) encapsulation of functionality

6) integral parts of J2EE

e-Macao-16-6-161

Simple JSP Example 1

A Jsp file may look as follows:

<%! private static final String GREETING = “HELLO”; %>
<HTML>
<HEAD>

<TITLE>Hello JavaServer Pages</TITLE>

</HEAD>
<%
String name = request.getParameter (“name”);
if ((name == null) || (name.length() == 0)) {

name = "DEFAULT_NAME";

oe
\

e-Macao-16-6-162

Simple JSP Example 2

<%—-— THE FOLLOWING IS STANDARD HTML —--%>
<BODY BGCOLOR=’'white’>
<%= GREETING %>, <%= name %>
</BODY>
</HTML>

Slides - Vertical Concepts

52

e-Macao-16-6-163

Life Cycle

Web container 1
"~ Y
Lt e N
/,/’:Eé"j P G
e, S5 sendet i .&|
s N) |
[splnitf) ¥ |
(Load Resources)
Request — _jspService()
Response {Accept Requests)
| jspDestroy()
{Unload Rescurces)

LS

e-Macao-16-6-164

Life Cycle Process

1) Web client transmits a request to the web container asking for a Jsp
page.

2) As this Jsp page is accessed by the first time, it is translated into
servlet code.

3) The servlet code is compiled into class file and loaded into the web
container.

4) What is followed is similar to the working cycle of a normal servlet:

a) The web container creates an instance of the servlet class for
the Jsp page and executes the jspInit method.

b) The web container calls the _jspService method on the
servlet instance for that 7P page. the result is sent back to the
user.

e-Macao-16-6-165

Deployment

Jsp files can be placed under the webapps/
deployment directory together with .
the main HTML files. project/
WEB-INF/
This allows the JsP files to be web. xml
accessed as the main HTML files. classes/
lib/
JsP files can also be mapped to D
specific URLs in the web.xml file. index.htnl
—Dhello .jsp

—Ddate.jsp

e-Macao-16-6-166

Deployment Descriptor

The configuration information for JSP pages is described in the web . xm1
file rooted on the <jsp-config> element.

configuration elements may include:

<taglib> - element in mapping of tag libraries

<jsp-property-group> - properties of collections of Jsp files, such as
page encoding or automatic includes before and after pages, etc

Slides - Vertical Concepts

53

e-Macao-16-6-167

Example: Deployment Descriptor

Common header and footer for Jsp file can de defined in the web . xm1 file
as follows:

<jsp-config>
<jsp-property-group>
<url-pattern>*.jsp</url-pattern>
<include-prelude>/header. jsp</include-prelude>
<include-coda>/footer. jsp</include-coda>
</jsp-property-group>
</Jjsp-config>

e-Macao-16-6-168

Mapping JSP to a URL

Like a servlet, a Jsp page can be mapped to a specific URL by modifying
the web.xml file.

For example, mapping a JSP page named "ShowHello. jsp in

deployment directory to "/He110" may as follows:

<servlet>
<servlet-name>ShowHello</servlet-name>
<jsp—fsp</jsp—file>

</servlet>
full path name such as

/WEB-INF/classes/com/ShowHello. jsp|

<servlet-mapping>

<servlet-name>ShowHello</servlet-name>
<url-pattern>/Hello</url-pattern>

</servlet-mapping>

e-Macao-16-6-169

Task 26: Mapping JSP

1) Investigate the mapping mechanism for Jsp files.
a) create a Jsp file

b) put it under the directory:
<Your_Web_Context>/WEB-INF/classes/

c) map this page with a name: myPage
d) browse it with a web browser

e-Macao-16-6-170

Vertical Concepts Outline

1) Servlet 2) JavaServer Pages 3) Filter
a) basic concepts a) basic concepts a) basic concepts
b) http servlet b) scripting elements b) filter chain
c) servlet context c) implicit objects c) filter dispatcher
d) communication d) actions d) wrapper

between servlets e) expression

e) summary language

e) summary

f) tag library
g) summary

Slides - Vertical Concepts

54

e-Macao-16-6-171

Scripting Elements

Five kinds of scripting elements are defined in JavaServer Pages:

1) declarations <%! %>
2) scriptlets <% Yo>
3) expressions <Yo= %>
4) directives <%@ %>
5) comments <Yo-- =%><% " %>i<l-- -->

e-Macao-16-6-172

Declarations

Declaration tag is used for declaring variables or methods.

Codes generated are outside of the _jspService () method.
Syntax: <%! declaration %>

Examples:
declaring a variable
<%! int i = 0; %>

declaring a method
<%! public String foo(int 1)
{ 1f (i<3) return(“small”);

}

o
Vv

e-Macao-16-6-173

Scriptlets

The Java code within the scriptlet tag will be included in the _jspService
method.

Syntax: <% scriptlet %>

Examples :
<% int time = 0; %>
<% if (time < 12) { %>
Good Morning
<% } else { %>

Good Afternoon

A
oe

oe

>

b

e-Macao-16-6-174

Expressions

The expression represents a runtime value which is generated for a
response.

Syntax: <% expression %>
Examples :

Thank you, <I> <%= name %> </I>, for registering

Slides - Vertical Concepts

55

e-Macao-16-6-175

Directives

Directives are used to define page attributes and do not output to a client.

Syntax: <%@ directive {attribute="value’} * %>

Directives can be as follows:
1) page

2) include

3) taglib

e-Macao-16-6-176

Directive: page

Provides page-specific information to a Jsp container.
Syntax: <$@ page %>

The attributes include:

language isErrorPage
extends errorPage

import contentType
session pageEncoding
buffer isScriptingEnabled
autoFlush isELEnabled
isThreadSafe

e-Macao-16-6-177

Directive: include

Includes text and/or code at translation time of a Jsp.
Syntax: <@ include file="relativeURL" %>

Example:
<%@ include file="header.jsp" %>

This is a page with predefined header and footer by
means of the include directive

<%@ include file="footer.jsp" %>

e-Macao-16-6-178

Task 27: Directive include

1) Create a Jsp file named header. jsp.

a) use declaration directive to declare an integer variable "count" for
the page

b) use declaration directive to declare a method addCount () which add
the variable "count" by 1 for every call

c) use scriptlet to call the addCount method
d) append the following HTML code to the end of header.jsp which
use the expression to display the dynamic content of "count"”
<html>
<body>
<center>
This page has been viewed <%= count %> times
</center>

Slides - Vertical Concepts

56

e-Macao-16-6-179

Task 28: Directives include

2) Create a Jsp file named footer. jsp.
a) put HTML code to display the word “lie 1 come”
b) append to the HTML code to the file
</body>
</html>

3) Create a Jsp file named body . jsp.
1) use directive include toinclude the header. jsp atthe beginning

2) put a static statement
3) use directive include to include the footer. jsp at the end

e-Macao-16-6-180

Directive: taglib

used to declare which markup on the page should be considered custom
code and what code the markup links to

Syntax: <@ taglib uri="uri" prefix="prefixOfTag"“%>

This directive will be discussed in more detail in the session for tag library.

e-Macao-16-6-181

Comments

JsP file can use two different types of comments:

1) Jsp document comment

Examples:
<%—-—- comments ... —-—-%>, or

<% /** comments too *k /%>

2) Comments send back to users as a response
Examples:
<!-— comments ... —-->, or
<!-— comments <%=expression %> ... ——>

e-Macao-16-6-182

Guideline for Using Scripting

Overuse of scripting code can make JavaServer Pages confusing and
difficult to maintain.

Scripting code will mix the business and presentation logic together.
Scripting code may reduce the reusability of JSP.

Scripting code should only be used when it is necessary.

Slides - Vertical Concepts

57

Vertical Concepts Outline

e-Macao-16-6-183

1) Servlet 2) JavaServer Pages 3)
a) basic concepts a) basic concepts
b) http servlet b) scripting elements
c) servlet context c) implicit objects
d) communication d) actions

between servlets e) expression
e) summary language
f) tag library

g) summary

Filter

a) basic concepts
b) filter chain

c) filter dispatcher
d) wrapper

e) summary

e-Macao-16-6-184

JSP Implicit Objects

In servlet, objects such as HttpServletResquest Or
HttpServletResponse can be accessed directly.

In Jsp, some objects are automatically declared by the web container and
can be accessed directly by scripting elements. These objects are called
implicit objects.

Examples:
application pageContext
config page
session out
request exception
response

e-Macao-16-6-185

Implicit Objects: Servlet Equivalent

The following implicit objects have servlet equivalents:
application— javax.servlet.ServletContext
config— javax.servlet.ServletConfig
session— javax.servlet.http.HTITPSession

request — javax.servlet.http.HTTPRequest

response — javax.servlet.http.HTTPResponse

e-Macao-16-6-186

Implicit Objects: JSP Specific

Jsp defines some implicit objects as follows:

pageContext — aninstance of javax.servlet.jsp.PageContext
object
e.g. pageContext.include ("header. jsp");

page — synonym for the "this" operator.

out —an instance of javax.servlet.jsp.JspWriter object

exception —an instance of java.lang.Throwable object

Slides - Vertical Concepts

58

e-Macao-16-6-187

Example: Using Implicit Objects

The following Jsp codes use the implicit object “request” to get
information of the HTTP header and display it on a web page.

A
o

Enumeration enum

while (enum.hasMoreElementis()) {

String headerName

String headerValue

%>

<%= headerName

<

o
o

>

}

$>: <%=

. getHeaderNames () ;

) enum.nextElement () ;

.getHeader (headerName) ;

headervalue %>

can be used without declaring |

e-Macao-16-6-188

Task 29: Implicit Objects

1) Investigate the usage of implicit objects.

a) Referring to task 12, initial parameter was defined for a servlet in the
web . xml file.

b) Do the same setting for initial parameter in a JsP file named
ShowHello. jsp.

c) Callthe getInitParameter () method of the implicit object
“config” to get the initial parameter.

d) Make showHello. jsp to display the greeting statement on the web
page.

Vertical Concepts Outline

e-Macao-16-6-189

1) Servlet
a) basic concepts
b) http servlet
c) servlet context
)

d) communication

between servlets
e) summary

2) JavaServer Pages

a)

)

o T

(]

o
_ = =

—
=

basic concepts
scripting elements
implicit objects
actions

expression
language

tag library
summary

3) Filter

a) basic concepts
b
c
d
e

filter chain

=

filter dispatcher
wrapper

_ = =

summary

e-Macao-16-6-190

JSP Actions

JSP Actions have functions identical to that of scripting elements but
allow abstraction of Java codes for Jsp file.

JSP Actions have two types:

1) standard
2) custom

Syntax:
<prefix:element {attribute = "value"}* />

Slides - Vertical Concepts

59

e-Macao-16-6-191

Standard JSP Actions

Standard JSP Actions are completely specified by the Jsp
specification and are available for use with any Jsp container by default.

Include functionality that is commonly used with Jsp.
A standard Jsp Action generally use jsp as prefix.
Examples:

1) including resources (<jsp:include/>)

2) manipulating JavaBeans (<jsp:useBean/>)
3) forwarding requests (<jsp:forward/>)

e-Macao-16-6-192

Commonly used Standard Actions

Some of the commonly used standard actions will be discussed in this
section:

1) <jsp:include/>

2) <jsp:forward/>

3) <jsp:param/>

4) <jsp:useBean/>

5) <jsp:setProperties/>

6) <jsp:getProperties/>

e-Macao-16-6-193

<[sp:include/>

include resources during runtime

Syntax:
<jsp:include page="urlSpec" flush="true|false"/>

Example:
<jsp:include page="include_page" flush="true"/>

e-Macao-16-6-194

<jsp:include/>: Attribute Flush

Attribute flush indicates whether any existing buffer should be flushed
before reading in the included content.

The attribute flush is required in JSP 1.1 and should be set to t rue.

In JSP 1.2 and up, the flush attribute defaults to false and can be left off.

Slides - Vertical Concepts

60

e-Macao-16-6-195

Task 30: <jsp:include/>

1) Investigate the operation of action include.
a) Withthe header. jsp and footer. jsp developed in task 27 and
task 28, create a Jsp file named actionBody. jsp as follows:

<jsp:include page="header. jsp" />

This is a page with predefined header and footer by
means of the include action.

<jsp:include page="footer.jsp" />

b) Browse the actionBody. jsp a few times.

c) Modify the footer. jsp to add some text to it.
d) Refresh the web pages.

e) What observation did you have?

e-Macao-16-6-196

Task 31: <jsp:include/>

2) Compare with the result from using directive include.
a) Browse the body. jsp developed in task 27 and 28 a few times.
b) Repeat steps ¢ and d in task 30.
c) What is the difference comparing to the results of task 30.

e-Macao-16-6-197

<jsp:forward/>

Equivalent to call the RequestDispather.forwared () method.

This action forwards a request to a new resource and clears any content
that might have previously been sent to the output buffer by the current Jsp.

Example:
<jsp:forward page=“relative_URL"” />

e-Macao-16-6-198

<jsp:forward/>: Parameters

Both the Jsp forward and include actions can optionally include parameters.

Example:

<jsp:forward page=“examplePage. jsp”>
<jsp:param name=“para_l” value=“val”/>
<jsp:param name=“para_2” value=“<%= avVal %>"/>

</jsp:forward>

The value can be represented by an expression.

If the parameter specified by the param action were exist, the existing is
replaced.

Slides - Vertical Concepts

61

JavaBean Actions

e-Macao-16-6-199

The Actions used with the JavaBean:

1) <jsp:useBean/>
2) <jsp:setProperty/>
3) <jsp:getProperty/>

e-Macao-16-6-200

JavaBeans

A JavaBean is a Java class with at least the following features:

1) accessors and mutators (get and set methods) are used to
define the properties of the bean

2) has a default constructor
3) no public instance variables
4) notan Enterprise JavaBeans (EJB)

<[jsp:useBean/>

e-Macao-16-6-201

Declares a JavaBean for use in a Jsp.

Syntax:

<jsp:useBean id=“name” class=“full_class_name”
scope=“scope” />

Examples:

<jsp:useBean id=“guestBean”
class="com.web.GuestBean” scope=“request”/>

A
o

guestBean.setName (request.getParameter (“name”)) ;

guestBean.setEmail (request.getParameter (Yemail”));

oe

>
</jsp:useBean>

e-Macao-16-6-202

<jsp:useBean/>: Usage

Action Scriptlet
<html> <html>
<head> <head>
<title> <title>
with useBean with Scriptlet

</title> </title>
</head> </head>
<body> <body>
<jsp:useBean id=%“date” <% java.util.Date date

class=“java.util.Date” new java.util.Date();
/> %>
The date/time is The date/time is

<%= date %> <%= date %>
</body> </body>
</html> </html>

Slides - Vertical Concepts

62

e-Macao-16-6-203

<jsp:useBean/>: Valid Scope 1

Most

L& Application
application A
session
request

Sesslon

page
Visible

e-Macao-16-6-204

<jsp:useBean/>: Valid Scope 2

page:
1) The JavaBean will be available by calling the getAttribute ()
method of the PageContext.

2) The JavaBean is discarded upon completion of the current
request.

request:

1) The JavaBean is available by calling the getAttribute () from
the current page’s servletRequest object.

2) The JavaBean is discarded upon completion of the current
request.

<jsp:useBean/>: Valid Scope 3

session:

1) The JavaBean is available by calling the getAttribute () from
the current page’s Ht tpSession object.

2) The JavaBean automatically persists until the session is
invalidated.

application:

1) The JavaBean is available by calling the getAttribute () of
the web application’s ServletContext object.

<jsp:setProperty/>

The jsp:setProperty Action is used to initialize the JavaBean
instead of using the scriptlet.

Exmaples:

<jsp:useBean id=“guestBean”
class=“com.web.GuestBean” scope=“request”>

<jsp:setProperty name=“guestBeam”
property=“name” value=“Guestl”>

<jsp:setProperty name=“guestBean”
property=“email” />

</7jsp:useBean>

jsp:setProperty Action can be used outside of the
jsp:useBean Action.

Slides - Vertical Concepts

63

e-Macao-16-6-207

<jsp:setProperty>: Attributes

To initialize the bean properties, the following settings can be used:

<jsp:useBean id="guestBean"
class="com.web.GuestBean" scope="request">

<jsp:setProperty name="guestBean" property="*" />

<jsp:setProperty name="guestBean"
property="username" param="user"/>

<jsp:setProperty name="guestBean"
property="username" value="<%$=user%>" />

</jsp:useBean>

when property="*" is used, the request parameters will be
iterated to find the matched parameters.

e-Macao-16-6-208

<jsp:getProperty>

The jsp:getProperty Action is used to extract the value of an
attribute of a JavaBean:

Example:

<jsp:getProperty name=“guestBean”
property=“username” />

e-Macao-16-6-209

Task 32: <jsp:useBean/>

1) Investigate the usage of useBean Action.
a) Develop a Java class named User. java.
) The class has two instance variables, "name" and "password".
c) Provide getter and setter for these two variables.
)

Create a Jsp file which shows an HTML form for user to input
username and password.

e) Information submitted from d) will be stored in an instance of User
class.

f) Create another JsP file named displayeInfo. jsp which displays
the information of the User bean.

g) Use useBean, setProperty and getProperty Actions in the
Jsp file.

h) What is the difference applying different scopes for the useBean
Action?

e-Macao-16-6-210

Task 33: <jsp:useBean/>

2) Use the useBean Action to perform request chaining. In this task, the
following scenario is performed by modifying task 32.

request -

.hu’. 15P2

Slides - Vertical Concepts

64

e-Macao-16-6-211

Task 34: <jsp:useBean/>

a

=

Modify the HTML file in task 32 to show a form for entering user
information.

b) Create a Java bean named FormBean for storing the information.

c) When the submit button of the form is pressed, the data is transmitted
to a gsp file, say Jspl. jsp.

Jspl will instantiate the FormBean, using the useBean action with a
scope of request.

-~

d

Information from the request parameter is stored in the FormBean by
calling the jsp:setProperty Action.

f) Use attribute property="*" to populate the data to the FormBean.
¢}

e

-

-

Request is then forwarded to the servlet, Servlet1, through the
jsp:forward Action.

e-Macao-16-6-212

Task 35: <jsp:useBean/>

h) The controller servlet, Servlet1 extracts the bean passed to it from the
attribute of the request as follows:

public void doPost (HttpServletRequest request,
HttpServletResponse response) {
try {
FormBean f = (FormBean)
request .getAttribute ("fBean");

i) Modify the values of UserBean by calling the setter methods of the
bean.

e-Macao-16-6-213

Task 36: <jsp:useBean/>

j) Forward the request to the JSP page, say Jsp2. jsp for rendering
the output:
getServletConfig () .getServletContext ().
getRequestDispatcher ("/Jsp2. jsp") .forward (request,
response) ;

k) Extract the UserBean information by calling the getProperty
action.

I) Display the user info on a web page.

e-Macao-16-6-214

Vertical Concepts Outline

1) Servlet 2) JavaServer Pages 3) Filter
a) basic concepts a) basic concepts a) basic concepts
b) http servlet b) scripting elements b) filter chain
c) servlet context c) implicit objects c) filter dispatcher
d) communication d) actions d) wrapper
between serviets e) expression e) summary
e) summary language

f) tag library
g) summary

Slides - Vertical Concepts

65

e-Macao-16-6-215

JSP 2.0 Expression Language

JSP-specific expression language(Jsp EL), is defined in JSP 2.0
specification.

JSP EL provides a cleaner syntax and is designed specially for JSP.

e-Macao-16-6-216

JSP EL Examples

A variable can be accessed as:
${variable_name}

The property of a bean can be accessed as:
${aBean.name}

Expression can be accessed as:

<c:if test="${aBean.age < 20}">

</c:if>

e-Macao-16-6-217

JSP EL: Syntax

In JsP EL, expressions are always enclosed by the ${ } characters.

Any values not begin with ${ is literal.

Literal value contains the ${ has to be escaped with “\” character.

e-Macao-16-6-218

JSP EL: Attributes

Attributes are accessed by name, with an optional scope.

Members, getter methods, and array items are all accessed with a

Examples:

a member b in objecta > ${a.b}
amemberinanarray alb] > ${a.b} or ${a["b"]}

Slides - Vertical Concepts

66

e-Macao-16-6-219

JSP EL: Literals

Boolean: true / false
Long: as long values defined by Java

Float: as float values defined by Java
String: identical as in Java
Null: identical as in Java

e-Macao-16-6-220

JSP EL: Operators

Note: order of preference from top to bottom, left to right

e-Macao-16-6-221

JSP EL: Reserved Words

The following words are reserved and cannot be used in JSP EL

expression:

and true

or false
not instanceof
eq empty
gt null

1t div

ge mod

ne

le

JSP EL: Implicit Objects 1

A set of implicit objects is defined to match the Jsp equivalents:

1) pageContext: the context for the Jsp page

Through pageContext, the following implicit objects can be
accessed:

a) context
b)session
c) request

For example, the context path can be accessed as:

${pageContext.request.contextPath}

Slides - Vertical Concepts

67

e-Macao-16-6-223

JSP EL: Implicit Objects 2

2) param

a) maps name of parameter to a single string value

b) same as ServletRequest.getParameter (String
name)

e.g. ${param.name}
3) paramValues
a) map name of parameter to an array of string objects

b) same as
ServletRequest.getParameterValues (String
name)

e.g. ${paramValues.name}

e-Macao-16-6-224

JSP EL: Implicit Objects 3

4) header
a) maps a request header name to a single string header value
b) same as ServletRequest.getHeader (String name)
e.g. ${header.name}

5) headerValues
a) map request header names to an array of string objects

b) same as
ServletRequest.getParameterValues (String
name)

e.g. ${headerValues.name}

e-Macao-16-6-225

JSP EL: Implicit Objects 4

Additional implicit objects are available for accessing scope attributes:

1) pageScope
2) requestScope
3) sessionScope

4) applicationScope

For example:

${sessionScope.user.userid}

JSP EL: Implicit Objects 5

5) headerValues

a) maps all the header values
b) same as ServletRequest.getHeaders ()
6) cookie

a) maps the single cookie objects that are available by invoking
HttpServletRequest getCookies|()

b) If there are multiple cookies with the same name, only the
first one encountered is placed in the Map

Slides - Vertical Concepts

68

e-Macao-16-6-227

JSP EL: Defining EL Functions 1

Static methods in a Java class can be used as Jsp EL functions.

The name and signature of the function can be defined as follows:

<function> element inthe Tag Library Descriptor
file (TLD) is used for setting up the linkage

<taglib>

<function>
<name>myFunction</name>

<function-class>
com. functions.MyFunction
</function-class>

e-Macao-16-6-228

JSP EL: Defining EL Functions 2

<function-signature>
String bar (String)
</function-signature>
</function>

</taglib>

The static method, bar (), defined in the class
com. functions.MyFunction is now mapped inthe JSP EL as a
function named myFunction.

JSP EL: Using EL Functiongacao»mm

The previous EL functions can be used as following:

S{bar('hello'")}

If the function is defined in a non-default namespace, the prefix must
be declared explicitly.

For example:

If bar function is declared in a tag library with a prefix £, the function
may be declared as :

S{f:bar('hello')}

JSP EL Compatibility o

Using JSP EL may cause compatibility problems with Jsp 1.2 and
earlier code.

JSP EL is disabled by default if Servlet 2.3 defined web . xm1 file is
used.

Applications uses the Servlet 2.4 defined web . xm1 file will enable
JSP EL automatically.

Slides - Vertical Concepts

69

e-Macao-16-6-231

Enabling / Disabling JSP EL

JSP page can use the isScriptingEnabled page directive to
enable or disable Jsp EL.

For example:

<%@ page isScriptingEnabled="true" %>

Element scripting—enabled in the web.xml is used to
configure an application-wide usability.

For example:

<jsp-property-group>
<scripting-enabled>true</scripting-enabled>

e-Macao-16-6-232

Vertical Concepts Outline

1) Servlet 2) JavaServer Pages 3) Filter
a) basic concepts a) basic concepts a) basic concepts
b) http servlet b) scripting elements b) filter chain
c) servlet context c) implicit objects c) filter dispatcher
d) communication d) actions d) wrapper
between servlets e) expression e) summary
e) summary language
f) tag library
g) summary

Standard Tag Library S

JavaServer Pages Standard Tag Library (7STL) is an extended set
of Jsp standard actions includes the following tags:

1
2
3
4
5
6

Iteration and conditional

Expression Language

URL manipulation
Internationalization-capable text formatting
XML manipulation

= 2D

Database access

Problems with JSP Scriptlet_ Taqs

1) Java code is embedded within scriptlet tags.

2) Non-Java developer cannot understand the embedded Java
code.

3) Java code within Jsp scriptlets cannot be reused by other Jsp
pages.

4) Casting to the object's class is required when retrieving objects
out of HTTP request and session.

Slides - Vertical Concepts

70

e-Macao-16-6-235

Advantage of JSTL

e-Macao-16-6-236

Disadvantage of JSTL

1) JSTL tags are in xML format and can be cleanly and uniformly
blended into a page's HTML markup tags.

2) JSTL tag libraries are organized into four libraries which include
most functionality required for a JSP page and are easier for non-

programmers to use

3) JSTL tags encapsulate reusable logic and allow to be reused.

4) No casting is requiring while using JSTL tags for referencing
objects in the request and session.

5) JSP's EL (Expression Language) allows using dot notation to
access the attributes of Java objects.

1) JSTL may add processing overhead to the server:

like Jsp scriplet, tag libraries are also compiled into a resulting
servlet and then executed by the servlet container

2) JSTL tags only provide the typical operations but not all:

scriptlets may be needed if the JsP pages need to do
everything

Example: JSTL 1 T

1) Without JsTL, some scriptlets may look as follows:

<

o

List addresses =
(List) request.getAttribute ("addresses");

Iterator addressIter = addresses.iterator();
while (addressIter.hasNext ()) {

AddressVO address =
(AddressVO) addressIter.next () ;

if ((address != null) {

oe

>

<%=address.getLastName () $>

e-Macao-16-6-238

Example: JSTL 2

A
o

}

else {

N/A

Slides - Vertical Concepts

71

e-Macao-16-6-239

Example: JSTL 3

1) With JSTL, the previous may look as follows:

<%@ taglib prefix="c
uri="http://java.sun.com/jsp/jstl/core" %>

<c:forEach item=${addresses} var="address" >
<c:choose>
<c:when test="${address != null}" >
<c:out value="${address.lastName}"/>

<c:otherwise>
N/A

</c:otherwise>
</c:choose>

</c:forEach>

Using JSTL o

JSTL is standardized, but not a standard part of JSP 1.2 or 2.0.

JSTL must be downloaded and installed separately before being
used.

Task 37: Installing the JsTL

1) The JsTL will be installed and setup for used.

a) Dowonload the library from this URL:
http://www.apache.org/dist/jakarta/
taglibs/standard/

b) Unpack the file and two jar files are inside the /1ib
directory:

a) jstl.jar

b) standard. jar

Task 38 Installing the JSTL

c) Copy the jar file from step b to the following directory:
<Tomcat_Home>/common/lib.

d) the jar files can also be copied to the
/WEB-INF/1lib directory under your application context.

e) Inthe JsP page, the following tags can be used to refer to
the installed JSTL:

<%@ taglib
uri="http://Jjava.sun.com/jsp/Jjstl/core"
prefix="c" %>

Slides - Vertical Concepts

72

e-Macao-16-6-243

Organization of JSTL

The JSTL tags are organized into four libraries:

Library features Recommended prefix
Core (control flow, URLs, variable access) c
Text formatting fmt
XML manipulation x
Database access sql

e-Macao-16-6-244

JSTL: Core Tags 1

The core tags can be subdivided into a few categories:
1) General-purpose

a) out

b) set

c) catch
d) remove

2) Flow control
a) forEach

b) forTokens

e-Macao-16-6-245

JSTL: Core Tags 2

3) conditional

a) if
b) choose
c) when

d) otherwise

JSTL: Core Tags 3 o

4) URL management

a) url
b) import
c) redirect

d) param

Slides - Vertical Concepts

e-Macao-16-6-247 e-Macao-16-6-248

JSTL Tags: <c:out> Attributes of <c:out> tag

This tag evaluates the JSTL expression and send output to the 1) wvalue: expression to be evaluated and send

page’s current JspWriter object. 2) escapexml: defaultis true and characters <,>,s,’ and *

resultin &1t;, >, and &, ', and "

Example: 3) default: defines the default value to be used in case the

<%@ taglib uri="http://java.sun.com/jsp/jstl/core" expression fails or results in null
prefix="c" %>

<html><head><title><c:out></title></head>

<body>
<c:out value="${'<tag> , &'}"/>

<c:out value='<tag> , &' escapeXml="false"/>
</body>
</html>
e-Macao-16-6-249 e-Macao-16-6-250
Task 39: <c:out> tag JSTL Tags: <c:set>
1) Investigate the result of using different attributes of <c:out> tag. This tag evaluates an expression and uses the results to set a

a) Follow the previous example to test the output. scoped variable, a JavaBeanora java.util.Map object.

b) View the source of the web page to see the actual output of the

page. Examples:
. . A . <c:set lue=" ion" t t="t t object"
¢) What is the difference with different values of the attribute ciset vaiuesmiexpressiont targe arget objec
escapeXml? property="name of property" />

<c:set value="value" var="varName"/>

Slides -

Vertical Concepts

74

e-Macao-16-6-251

Attributes of <c:set> tag1

1) wvalue: expression to be evaluated

2) wvar: the name of the result variable representing the evaluated

3)

result from value attribute

scope: scope of the object named by the var attribute
including:

1) page (default)
2) request
3) session

4) application

e-Macao-16-6-252

Attributes of <c:set> tag 2

4) target: a JavaBean ofa java.util.Map object whose
property will be set

5) property: the name of the property of the target object which
will be set by the value attribute

e-Macao-16-6-253

Usage of <c:set> tag

1)

nN
-

set a scoped variable for use later
for example:

<c:set value="100" var="totalCost"
scope="session"/>

set the property of a JavaBean or Map object

<c:set value="pass" target="student_A"
property="grade"/>

e-Macao-16-6-254

JSTL Tags: <c:catch>

This tag provides a complement to the JsP error page mechanism.

It works as a try-catch statement.

Code surrounded by a catch tag will never cause the error page
mechanism to be invoked.

If a var attribute is set, the exception will be stored in the variable
identified by the var attribute.

The var attribute always has page scope.

Slides - Vertical Concepts

75

e-Macao-16-6-255

JSTL Tags: <c:remove>

This tag is used to remove a scoped variable
For example:

<c:remove var="cart" scope="session"/>

e-Macao-16-6-256

JSTL Tags: <c:forEach>

This tag provides iteration over a collection of objects.

supports iteration over an array, java.util.Collection,
java.util.Iterator, java.util.Enumeration, ora
java.util.Map

Example:

<c:forEach var="name" varStatus="status"
begin="expression" end="expression"
step="expression">

body content

</c:forEach>

e-Macao-16-6-257

Attributes of <c:forEach> tag1

var: defines the name of the current object, or primitive, exposed
to the body of the tag during iteration

items: attribute defines the collection of items to iterate over

varStatus: defines the name of the scope variable that provides
the status of the iteration

Properties of varStatus may be:

current
index
count
first
begin
end
step

e-Macao-16-6-258

Attributes of <c:forEach> tag 2

begin: an int value that sets where the iteration should begin

end: The end attribute is an int value that determines inclusively
where the iteration is to stop

step: The step attribute is an int value that determines the “step” to
use when iterating

Slides - Vertical Concepts

76

e-Macao-16-6-259

Example: <c:forEach> tag 1

e-Macao-16-6-260

Example: <c:forEach> tag 2

1) This example displays the varStatus value in a loop.

<%@ taglib uri="http://Jjava.sun.com/Jjsp/jstl/core"
prefix="c" %>

<H2>froEach varStatus</H2>

<c:forEach var="count" begin="0" end="10" step="2"
varStatus="status">

<c:out value="${count}
"
escapeXml="false"/>

<c:out value="current: ${status.current}
"
escapeXml="false"/>

<c:out value="index: ${status.index}
"
escapeXml="false"/>

<c:out value="count: ${status.count}
"
escapeXml="false"/>

<c:out value="first: ${status.first}
"
escapeXml="false"/>

<c:out value="begin: ${status.begin}
"
escapeXml="false"/>

<c:out value="end: ${status.end}
"
escapeXml="false"/>

<c:out value="step: ${status.step}
"
escapeXml="false"/>

</c:forEach>

e-Macao-16-6-261

Example: <c:forEach> tag 3

2) This example uses the <c: forEach> tag to loop through an array
and display on the web page.

<% String[] words = { "foo", "bar", "baz"};
pageContext.setAttribute ("words", words); %>

<%@ taglib uri="http://java.sun.com/Jjsp/jstl/core"
prefix="c" %>

<html>

<head>

<H2>Key Words:</H2>
</head>

<body>

e-Macao-16-6-262

Example: <c:forEach> tag 4

<c:forEach var="word" items="${words}">
<c:out value="${word}"/>
</c:forEach>

<H2>Values of the test Parameter:</H2>
<c:forEach var="val" items="${paramValues.test}">
<c:out value="${val}"/>
</c:forEach>
</body>
</html>

Slides - Vertical Concepts

77

e-Macao-16-6-263

JSTL Tags: <c:forTokens>

This tag parses a St ring into tokens based on a given delimiter.

It works similar to the forEach tag with an extra attribute delime
specifying a token delimiter.

Example:

<c:forTokens var="name" delime=",6"
items="Bryan,Frank, Gab">

<c:out value="${name}"/>

</c:forTokens>

e-Macao-16-6-264

JSTL Tags: <c:if>

This tag works similar to a Java if and switch.

Example:

<%@ taglib uri="http://java.sun.com/jsp/jstl/core"
prefix="c" %>

<c:if test="${user == null}">
<form>
Name: <input name="name">
Pass: <input name="pass">
</form>

</c:if>

Attributes of <c:if> tag o

test: the condition for testing

var: an optional attribute that defines the name of a scoped variable

scope: defines the scope of the var attribute.
(page, request, session or application)

e-Macao-16-6-266

JSTL Tags: <c:choose> 1

for more than one options, use the <c:choose>, <c:when> and
<otherwise> tag

Example:

<%@ taglib uri="http://Jjava.sun.com/Jjsp/jstl/core"
prefix="c" %>

<c:choose>
<c:when test="${user == null}">
<form>
Name: <input name="name">
Pass: <input name="pass">
</form>

Slides - Vertical Concepts

78

e-Macao-16-6-267

JSTL Tags: <c:choose> 2

</c:when>
<c:otherwise>

Welcome ${user.name}
</c:otherwise>

</c:choose>

</body>
</html>

e-Macao-16-6-268

Task 40: <c:choose> tag

1) Use tags <c:choose>, <c:when> and <c:otherwise> to develop a
JSP page which generates the follows:

(small)
(small)
(small)
(medium)
(medium)
(medium)
(medium)
(large)
(large)

H W 0 9 o U s W N

0 (large)

JSTL Tags: <c:url>

This tag provides automatically encoded URLs.

Session information and parameters are encoded with a URL.

This tag is used when client does not support cookies.

Attributes of <c:url> tag o

value: provides the URL to be processed

context : defines the name of the context
var: exports the encoded URL to a scoped variable
scope: defines the scope of the var object

For example:

<c:url var="thisURL" value="newPage.jsp">
<c:param name="aVariable" value="${v.id}"/>
<c:param name="aString" value="Simple String"/>
</c:url>

<a href="<c:out value="${thisURL}"/>">Next

The above generates a URL as follows:

newPage. jsp?aVariable=24&aString=Simple+String

Slides - Vertical Concepts

79

e-Macao-16-6-271

JSTL Tags: <c:redirect>

This tag provides the functionality to call the
HttpServletResponse.sendRedirect method.

It can have attributes as follows:
url: the URL the client should be redirected to

context: the context of the URL specified by the url attribute

e-Macao-16-6-272

JSTL Tags: <c:import>

This tag provides all of the functionality of the include Action.

It allows for inclusion of absolute URLs, e.g. the content from a
different web site.

Example:

<%@ taglib uri="http://java.sun.com/jsp/jstl/core"
prefix="c" %>

<c:import url="http://www.yahoo.com" />

JSTL Tags: <c:param>

This tag is used within the body of <c: import> tag to set URL
parameters.

Examples:

<%Q@ taglib uri="http://java.sun.com/jsp/jstl/core"
prefix="c" %>

<c:import url="http://search.yahoo.com/search"
var="yahoo">

<c:param name="p"

value="java" />
</c:import>

<c:out value="${yahoo}" escapeXml="false" />

e-Macao-16-6-274

Other Tags

Other than the core tags, there are tags for different purposes such
as:

database tags:
<sgl:setDataSource>, <sgl:query>, <sqgl:update>.

formatting tags:
<fmt : formatNumber>, <fmt :parseNumber>

internationalization tags:
<fmt:setLocale>, <fmt:setBundle>.

XML manipulation tags:
<x:parse>,<x:if>,<x:choose>, <x:transform>.

Slides - Vertical Concepts

e-Macao-16-6-275

Custom Tags

Like HTML, custom tags abstract code behind markup and provide a
clean separation between logic and content.

Custom tags are designed to be used easily for a non-programmer.

Unlike scriptlet, custom tags can be packaged into a JAR file and
deployed across web applications.

e-Macao-16-6-276

When to Use Custom Tags

Custom tags can be used to embedded dynamic functionality in a JSP.

Examples:

1) support the View partition in a MVC (Model-View-Controller)
design pattern

2) support multi-lingual site

3) produce different formats of output to different clients such as web
browser, PDA or web application

4) complement to the JSTL to provide full support for conditionals and
iterations

Simple JSP 2.0 Custom Tags B

introduced in Jsp 2.0 with a simple life cycle

easier to write and use than the classic custom tag handlers

based on the javax.servlet.jsp.SimpleTag interface

e-Macao-16-6-278

Life Cycle

Has only two parts:

1) Initialization
a) setthe parent and body
b) setby the Jsp container

Initialize

2) Service —doTag ()

a) implemented by the
custom tag developer

Slides - Vertical Concepts

81

e-Macao-16-6-279

SimpleTag Interface 1

All simpleTag classes should implement the
javax.servlet.jsp.tagext.SimpleTag interface

The interface defines the following methods:

doTag () —implemented by the tag developer and invoked by a Jsp
container during execution

getParent () — returns the custom tag surrounding this tag

e-Macao-16-6-280

SimpleTag Interface 2

setJspBody (javax.servlets. jsp.JspFragment) - invoked by
a JSP container during runtime before the doTag () method

setJspContext (javax.servlets. jsp.JspContext) -
invoked by a JSP container during runtime before the doTag ()
method

setParent (javax.servlets.jsp.JspTag - invoked by a Jgsp
container during runtime to set the current parent tag

How to Develop Simple Tags

The javax.servlet.jsp.tagext.SimpleTagSupport classis
the base implementation of the SimpleTag interface.

A custom tag can extend SimpleTagSupport and override the
doTag () method.

Task 41: Simple Custom Tég B

1) Develop a simple tag.
a) Create a class named HelloSimpleTag.

b) This class should be a subclass of SimpleTagSupport
class.

c) Allow the tag output a string in the doTag () method.
d) The class may look like the follows:

package web. jsp;

import javax.servlet.jsp.tagext.SimpleTagSupport;
import javax.servlet.jsp.*;

import java.io.IOException;

public class HelloSimpleTag extends
SimpleTagSupport {

Slides - Vertical Concepts

e-Macao-16-6-283

82

Task 42: Simple Custom Tag

public void doTag ()

throws JspException,
IOException {

JspWriter out = getJspContext ().getOut () ;

out.println("Hello World!");

e-Macao-16-6-285

e-Macao-16-6-284

How to Use Custom Tags

A collection of custom tags designed for a common goal can be
packaged into a library.

The custom tags within the library can be used by a JSP as described
by a Tag Library Descriptor (TLD) file.

public class FooTag |

puklic FooTagi| |
 inikalize

; JsP
pubic doTad(<% taghb prefix="fco"
throws JspExcaption| uri="WEB-INFilac.lid" %=
| =himl=

<heads
<tilig=A |t pago</tile
=head=
<body>
» <foomenu tite="A manu’/=
This & a page.
</bedy=
= hirml=

Tag Library Descriptor
(TLD)

Tag Library Descriptor 1

Tag Library Descriptor is an xML file with "t 1d" extension or a JAR file
used to bind the custom tags to the markup appears in a Jsp file.

For example, following TLD file will bind the CountTag to a Jsp with a
name "count":
<taglib xmlns="http://java.sun.com/xml/ns/j2ee"

xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee
http://java.sun.com/xml/ns/j2ee/

web jsptaglibrary_2_0.xsd" version="2.0">
<tlib-version>1.0</tlib-version>
<jsp-version>2.0</jsp-version>

<short-name>Example TLD</short-name>

e-Macao-16-6-286

Tagq Library Descriptor 2

<tag>

<name>count</name>

<tag-class>com.web.CountTag</tag-class>

<body-content>empty</body-content>
</tag>

</taglib>

Slides - Vertical Concepts

83

e-Macao-16-6-287

TLD: Tag Elements 1

All tag definitions must be nested inside the <taglib> element.

The following tags are mandatory and should appear only once:

<tlib-version>1.0</tlib-version>
<jsp-version>2.0</Jjsp-version>

<short-name>Example TLD</short-name>

e-Macao-16-6-288

TLD: Tag Elements 2

Each tag is defined by a <tag> element.

Within the <tag> element, the following attribute tags could be defined:
<name>: unique element name of the custom tag
<tag-class>: full class name for the tag class

<body-content>: types of code allowed to be inserted into the body of
the custom tag when used by a Jsp:

1) empty - tagbody should be empty

2) JSP - tag body may be empty or containing scripting
elements

3) scriptless - no scripting elements allowed

4) tagdependent - the body may contain non-JSP content
like sQL statements

e-Macao-16-6-289

Task 43: Custom Tag Library

1) Follow the example to create a custom tag library which defines the
HelloSimpleTag with a name "hello".

a) Modify the name element.
b) Save the file as example.t1d in the WEB-INF directory.

e-Macao-16-6-290

Using Tag Library

A tag library can be referenced and used in a JSp by different methods.
Two of them are:

1) define a relative URT in JsP file
2) define a web application-wide URT

Slides - Vertical Concepts

84

e-Macao-16-6-291

TLD: Relative URI

A relative URI can be defined in JSP file without a protocol and host.

For example:
<%@ taglib uri=“/WEB-INF/example.tld” prefix="ex” %>

<html>

<ex:hello/>

Note:

A root-relative URT should start with a “/”, while a non-root-relative URT
has no leading “/”

e-Macao-16-6-292

TLD: Application-Wide URI 1

An abstract URI can be defined by an entry in the web . xm1 file.

Example:
inweb.xml file:

<taglib>
<taglib-uri>
http://www.example.com/example
</taglib-uri>
<taglib-location>
/WEB-INF/example.tld
</taglib-location>
</taglib>

TLD App||ca’[|0n_W|de URIe—MZacao»le»e»z%

in Jsp file:

<%@ tablib uri="http://www.exmple.com/example"
prefix="ex" %>

<ex:hello/>

Vertical Concepts Outline

e-Macao-16-6-294

1) Servlet 2) JavaServer Pages 3) Filter
a) basic concepts a) basic concepts a) basic concepts
b) http servlet b) scripting elements b) filter chain
c) servlet context c) implicit objects c) filter dispatcher
d) communication d) actions d) wrapper
between serviets e) expression e) summary
e) summary language
f) tag library

g) summary

Slides - Vertical Concepts

85

Summary 1

e-Macao-16-6-295

Jsp can produce dynamic content using scriptlet or tags.

While keeping the benefit of servlet, JSP also provides separation
between business and presentation logic for a web application.

Using tags in Jsp allows the separation to be achieved easily.

e-Macao-16-6-296

Summary 2

The life cycle of a Jsp is similar to that of a Servlet except a Jsp file has to
be compiled into a servlet class before being used.

Five kinds of scripting elements can be used in JavaServer Pages:

1) declarations <%! %>

2) scriptlets <% %>

3) expressions <%= %>

4) directives <@ %>

5) comments <%—- ——%>; <5 /x* KX /> <o ——>

Summary 3

e-Macao-16-6-297

The following implicit objects are defined in Jsp and can be used without

declaration:

application
config
session
request

response

pageContext
page
out

exception

Summary 4

JSP 2.0 specification defines Expression Language which provides a
cleaner syntax then scriptlet.

JSP Actions can cooperate with JSP EL to provide a clean abstraction of
Java codes making the Jsp file easier to be maintained.

Slides - Vertical Concepts

86

e-Macao-16-6-299

Summary 5

JavaServer Pages Standard Tag Library (JSTL) is an extended set of Jsp
standard Actions. Tags are available for the follows:

1) lteration and conditional
Expression Language

URL manipulation
i18n-capable text formatting
XML manipulation

Database access
Jsp 2.0 define a Simple Custom Tags which can be developed easily.

Tag Library Descriptor file is used to bind custom tag library to a Jsp file.

Slides - Vertical Concepts

87

A.2.3. Filters

Vertical Concepts Outline

e-Macao-16-6-300

Filter: Basic Concepts

e-Macao-16-6-301

1) Servlet
a) basic concepts
b) http servlet
c) servlet context
)

d) communication

between servlets

€) summary

a)
b)
c)
d)
e)

f)
g)

2) JavaServer Pages

basic concepts
scripting elements
implicit objects
actions

expression
language

tag library

summary

Filter

a) basic concepts
b) filter chain

c) filter dispatcher
d) wrapper

e) summary

Filter is a new feature in the servlet 2.3 specification.

Filter usually acts as a components between a request and a

resource in a web application.

Filters can:

1) read request data
2
3
4
5
6
7

wrap request data
redirect a request
manipulate response data
generate its own response

wrap a response

—_— = 2 2 22

return errors to the client

Slides - Vertical Concepts

88

Filter: Advantages

e-Macao-16-6-302

Layers of Filters can be added for pre-processing and
processing to a request and response.

post-

Filters can perform similar functionality as servlets and request

dispatcher.

Unlike servlet which had to be programmed differently

for chaining,

applying Filters to existing web application resources is easier.

e-Macao-16-6-303

Filter: Sample Applications

1) Access Control

a) authentication, logging, auditing
b) role-based security
c) MIME-type redirection

2) Content Manipulation

a) modify headers (request and response)
b) data transformation

e encryption, compression

. XSLT, conversion

Filter: Life Cycle

e-Macao-16-6-304

Filter’ s life cycle mimics that of a Servlet:
1) initialization
a) occurs only once when the Filter is

first loaded
2) service
a) occurs every timethe Filter is
accessed Request
Response +—

3) destruction

a) invoked after web application has
finished using the Filter

Filter

Initialization
Inllf}

Sarvice
doFilter{

Destruction
destroy(]

b) all resources of the Filter should be
terminated

e-Macao-16-6-305

Filter: Interface

javax.servlet.Filter

a) For initialization:
public void init (FilterConfig config)
throws ServletException

b) For service:
public void doFilter (ServletRequest request,
ServletResponse response, FilterChain chain)
throws java.io.IOException, ServletException

c) For destruction:
public void destroy ()

Slides - Vertical Concepts

89

e-Macao-16-6-306

Filter: FilterConfig Object

FilterConfig objectis used for Filter configuration.

<init-param> elements is used in the web.xml file, as for a servlet, to
define custom initialization parameters

methods available:

String getFilterName ()

String getInitParameter (String parameterName)
Enumeration getInitParameterNames ()

ServletContext getServletContext ()

e-Macao-16-6-307

Filter: FilterChain Object

FilterChain objectis for invoking next Filter in chain (if any) or
requested resource.

A method doFilter is defined for this purpose.

Methods available:

public void doFilter (ServletRequest request,
ServletResponse response)

throws java.io.IOException, ServletException

e-Macao-16-6-308

Filter: Deployment

Filter is deployed in a servlet container like a servlet.

Web application deployment descriptor file (web . xm1) is also used for
configuringa Filter.

Filter is defined via <filter> element in the web. xm1l file:

<filter>
<filter—-name>name</filter—name>
<filter-class>class</filter-class>
<init-param>
<param-name>name</param-name>
<param-value>value</param-value>
</init-param>

</filter>

e-Macao-16-6-309

Filter: Mapping

Mapping of Filter is defined via <filter-mapping> element and has
two forms:

a) Map to a specific servlet as follows:
<filter-mapping>
<filter—-name>name</filter—name>
<servlet-name>name</servlet-name>
</filter-mapping>

b) Map to a URL pattern as follows:
<filter-mapping>
<filter-name>name</filter-name>
<url-pattern>pattern</url-pattern>
</filter-mapping>

Slides - Vertical Concepts

e-Macao-16-6-310 e-Macao-16-6-311

Task 44: Simple Filter Task 45: Simple Filter

1) AFilter can work as a normal Servlet. Try to build a simple <filter-mapping>
HelloWorld Filter, deploy and test it.

a) Create aFilter named “FilterHelloWorld. java”. Note that)
Filter hasto implement the javax.servlet.Filter interface. <url-pattern>/FilterHelloWorld</url-pattern>

b) implement the init, doFilter and destroy methods. Don't do </filter-mapping>
anything for init and destroy methods at this stage. Just try to
implement doFilter to generate an HTML page showing a String
“HelloWorld”. 2) Arilter cando whata servlet can. What is the difference
Deploy your Filter at Tomcat and add the followings to the web . xm1 between the dor'ilter method of a Filter and the service method
file: of a javax.servlet.Servlet interface?

<filter-name>FilterHelloWorld</filter—-name>

o
-

<filter>
<filter-name>FilterHelloWorld</filter—-name>
<filter-class>
com.web.FilterHelloWorld
</filter-class>
</filter>

e-Macao-16-6-312 e-Macao-16-6-313

Vertical Concepts Outline FilterChain Object

1) Servlet 2) JavaServer Pages 3) Filter The FilterChain object represents Client
a) basic concepts a) basic concepts a) basic concepts the possible stack of Filters being roqus! i
b) htt lot b inti | t b) filter chai executed on a particular request and T
) http servie) scripting elements) filter chain response. Container
c) servlet context c) implicit objects c) filter dispatcher ()
d) communication d) actions d) wrapper A mechanism for cleanly applying | Filter |
between servlets e) expression e) summary layers of functionality to a /I/ Filter |
ServletRequest and FilterChain
e) summary language ; -
ServletResponse. Object N
f) tag library \l Filter |
g) summary Functionality is easily divided up into ¥
many logical layers and stacked up Endpoint
as desired. Sarvlat JSP, HTML, alc.

Slides - Vertical Concepts

91

e-Macao-16-6-314

Filter Versus Servlet

request response recuest response
Container
‘ Security Filter ‘ ‘ Cortroller Servlet
doFier() (Inercepts all recuests)
I I _—
Cache Filter Security Servlet Cache Serviet
dofilter) Feque stDispa tcher forwardt)T—etf equestDispatsher forward()
! [Pl
Endpoint1 | | Endpoint2 Endpoint! | | Endpoint2
Content Gererafon | | Content Gererafon | - -« Content Gererafon | | Content Gererafon
Using Filters Servlets Mimicking Filters

e-Macao-16-6-315

Defining a Filter Chain 1

To define a £ilter chain, put two or more filter declarations into the
configuration file and supply appropriate values for the <url-pattern>
elements .

For example, inthe web.xml file, the following entries is set:

<filter>
<filter-name>FilterAllRequests</filter-name>
<filter-class>mypackagel.FilterOne</filter—-class>

</filter>

<filter-mapping>
<filter-name>FilterAllRequests</filter-name>
<url-pattern>/*</url-pattern>

</filter-mapping>

e-Macao-16-6-316

Defining a Filter Chain 2

<filter>
<filter-name>FilterMyDocs</filter—-name>
<filter-class>mypackagel.FilterTwo</filter-class>
</filter>
<filter-mapping>
<filter-name>FilterMyDocs</filter—-name>
<url-pattern>/mydocs/*</url-pattern>
</filter-mapping>

If a request for a resource like
http://127.0.0.1:8080/mydocs/foo.html is received, the container
will apply FilterAllRequests and FilterMyDocs according to their
order appearing in the web . xm1 file.

e-Macao-16-6-317

Invoking Filter Chain

A Filter can invoke another Filter by calling the doFilter method of the
FilterChain object.

For example: chain.doFilter();

The ordering of Filter execution matches the ascending order of filter-
mapping elements defined in web . xm1 file.

public void doFilter (ServletRequest req, ServletResponse
res, FilterChain chain) throws IOException,
ServletException

{

chain.doFilter();

Slides - Vertical Concepts

92

e-Macao-16-6-318

Task 46: Filter Chain

1) Add a hit counter Filter to a simple hello.html file.

a) Create an HTML file as follows:
<html>
<head>
<title>HTML Page</title>
</head>
<body bgcolor="#FFFFFF">
Hello World!
</body>
</html>

e-Macao-16-6-319

Task 47: Filter Chain

b) Create a Filter for counting the hit rate for the hello.html page.

1. This Filter has toimplements javax.servlet.Filter
interface.

2. Declare a static integer variable count for counting the hit.

3. Declare a FilterConfig object for the reference received
from the init methods.

4. There are three methods needed to be implemented: init,
doFilter and destroy.

5. Implement the init method. What type of argument should be
received?

6. Define an initial parameter named count in the web . xm1 file.
Its initial value should be 0. Use corresponding method to get
this initial parameter in the Filter.

e-Macao-16-6-320

Task 48: Filter Chain

7. Implements the doFilter method. The major task for the
doFilter is add one to the counter and add a message to the

response. The message may look like this: “The page has been

viewed 3 times”. You have your response object from the
argument of the method and try to geta PrintWriter from
there and write the message out to the response.

8. After modify the response, call the doFilter method of the
FilterChain object received from the method’s argument.
this will pass the control to next filter or the end resource if no
more filter exists.

9. Implement the destroy method to clear the FilterConfig
object.

e-Macao-16-6-321

Task 49: Filter Chain

c) Deploy the web application correctly. In the web . xm1 file, define
the Filter as follows:

<filter>
<filter—-name>CounterFilter</filter—-name>

<filter-lass>
your_filter_full_ class_name

</filter-class>
<init-param>
<param-name>Counter</param-name>
<param-value>0</param-value>

</init-param>

Slides - Vertical Concepts

93

e-Macao-16-6-322

Task 50: Filter Chain

</filter>

<filter-mapping>
<filter-name>CounterFilter</filter-name>
<url-pattern>maping_pattern</url-pattern>

</filter-mapping>

d) Change the value of <url-pattern> tag to allow
CounterFilter to work for all HTML files.

e) Try access the hello.html and check out the result. Make sure to
turn off the cache option of the browser.

e-Macao-16-6-323

Task 51: Filter Chain

2) Stack another Filter on top of the hit counter and named it
AuthenticationFilter. This Filter is simplified for this exercise.

The functionality of the Filter is as follows:

When the client want to access the hello.html page, the
AuthenticationFilter will check if the user has been login or not. A
login page may show up if the user has not been login. Once the user
pass the login process, a permission will be granted and the request will
pass to the hit counter filter, followed by the hello.html page.

Please be noted that by using Filter, no change is made to the target
resource, hello.html, at all.

e-Macao-16-6-324

Task 52: Filter Chain

a) The AuthenticationFilter may look as follows:

package com.web;
import java.io.IOException;
import java.io.PrintWriter;
import javax.servlet.*;
import javax.servlet.http.*;
public class AuthenticationFilter implements Filter ({

private FilterConfig config;

public AuthenticationFilter () {

super () ;

e-Macao-16-6-325

Task 53: Filter Chain

// initialize the FilterConfig object.

// we are not using this object in this filter

public void init (FilterConfig config) throws
ServletException {

// TODO Auto-generated method stub
this.config = config;

}

public void doFilter (
ServletRequest req,
ServletResponse res,

FilterChain chain) throws IOException,
ServletException {

Slides - Vertical Concepts

e-Macao-16-6-326 e-Macao-16-6-327

Task 54: Filter Chain Task 55: Filter Chain

String nextPage;

HttpServletRequest request=(HttpServletRequest) reqg;

HttpServletResponse response // if the user has login already, pass to next filter
= (HttpServletResponse) res; // make sure that you check if it is null

HttpSession = request.getSession(); if (login!= null && (login.equals ("true"))

String userName = request.getParameter ("username"); CheRmdoR et e Ees):

String passWord = request.getParameter ("password"); }

. . — . . 4 " 1 n .
String login (String) session.getAttribute ("login"); // print out the login in form, you may dispatch to
// other login page

else{

e-Macao-16-6-328 e-Macao-16-6-329

Task 56: Filter Chain Task 57: Filter Chain

res.setContentType ("text/html") ;

PrintWriter out = res.getWriter(); out.println (" <tr><td colspan='2'><input
out.println ("<form action="+uri+" method='POST'>") type=submit></td></tr>");
out.println ("<table>"); out.println (" </table>");
out.println (" <tr><td>User:</td><td><input out.println ("</form>");
type='text' name='username'></td></tr>"); }
out.println ("<tr><td>Password:</td><td><input }

type='password' name='password'></td></tr>"); }

public void destroy () {
}

Slides - Vertical Concepts

95

e-Macao-16-6-330

Task 58: Filter Chain

b) Modify the web . xm1 file to stack the AuthenticationFilter on
top of the CounterFilter as follows:

<filter>
<filter-name>AuthFilter</filter-name>

<filter-
class>com.web.AuthenticationFilter</filter-class>

</filter>

e-Macao-16-6-331

Task 59: Filter Chain

<!-- the AuthenticationFilter is applied to all html
files

——>

<filter-mapping>
<filter-name>AuthFilter</filter-name>
<url-pattern>*.html</url-pattern>

</filter-mapping>

e-Macao-16-6-332

Task 60: Filter Chain

b) Tryto access the hello.html again.
c) Tryto enter a wrong user name or password.

d) Tryto use “user” as user name and “pass” as password to login in.
What is the difference between this and step ¢?

e) Tryto access the hello.html couple times and check the output.
Make sure to disable the cache option of the browser.

e-Macao-16-6-333

Task 61: Filter Chain

f) Set up the Tomcat server to make session expire after 1 minute.
Put the following statement to the web.xm1 file:

<session-config>
<session—-timeout>
1 <!-—-minute-—->
</session-timeout>

</session-config>

g) Wait for a minute and try to access the hello.html again.

Slides - Vertical Concepts

e-Macao-16-6-334 e-Macao-16-6-335

Vertical Concepts Outline Filter Dispatcher

1) Serviet 2) JavaServer Pages 3) Filter By default, Filters will only handle a request made by a client.
a) basic concepts a) basic concepts a) basic concepts
b) http serviet b) scripting elements b) filter chain Request dispatched using either the forward () or include () methods of
L)) the RequestDispatcher object will not be handled.
c) servlet context c) implicit objects c) filter dispatcher
d) communication d) actions d) wrapper Thi b , dvi file b using th
between servlets) is can be re-configured via web . xm1 file by using the <dispatcher>
e) expression €) summary element as follows:
e) summary language
. <filter-mapping>
f) tag library
<filter—-name>AuthenticationFilter</filter—-name>
g) summary
<url-pattern>/*</url-pattern>

<dispatcher>INCLUDE</dispatcher>

</filter-mapping>

e-Macao-16-6-336 e-Macao-16-6-337

Filter Dispatcher Elements Vertical Concepts Outline

There are four types of dispatcher elements: 1) Servlet 2) JavaServer Pages 3) Filter
1) REQUEST a) basic concepts a) basic concepts a) basic concepts
2) INCLUDE b) http servlet b) scripting elements b) filter chain
3) FORWARD c) servlet context c) implicit objects c) filter dispatcher
4) ERROR d) communication d) actions d) wrapper
between servlets e) expression e) summary
More than one dispatcher elements can be used as the same time such as: e) summary language
f) tag library
<dispatcher>INCLUDE</dispatcher> g) summary

<dispatcher>REQUEST</dispatcher>

Noted that if the dispatcher elements used, only the declared dispatcher call
will be handled.

Slides - Vertical Concepts

97

e-Macao-16-6-338

Filter: Wrapper

Wrapper is a new feature of Filters introduce in Servlet 2.3
specification.

A request or response can be wrapped inside a customized one.

Custom coding can then be used to manipulate the wrapped request and
response.

Request and response are wrapped differently.

e-Macao-16-6-339

Invocating Wrappers in Filter

Wrappers are invocated within the doFilter methodofaFilter:

public void doFilter (ServletRequest request,
ServletResponse response FilterChain chain)
throws java.io.IOException, ServletException {

// Process request

// Wrap request and/or response

chain.doFilter (request or wrappedRequest,
response or wrappedResponse) ;

// Process (wrapped) response

e-Macao-16-6-340

ServletRequest Wrapper

For servletRequest, a corresponding ServletRequestWrapper is

available for sublcassing as a wrapper:
javax.servlet.ServletRequestWrapper implements
ServletRequest

Constructor:
public ServletRequestWrapper (ServletRequest req)

e-Macao-16-6-341

HttpServletRequest Wrapper

For HttpServletRequest, a corresponding
HttpServletRequestWrapper is provided for sublcassing as wrapper:

javax.servlet.HttpServletRequestWrapper extends
ServletRequestWrapper implements
HttpServletRequest
Constructor:

public HttpServletRequestWrapper (HttpServletRequest
req)

Slides - Vertical Concepts

98

e-Macao-16-6-342

Task 62: Request Wrappers

1) Use a Filter to change the request headers before a servlet or JSp

receives the request. A request wrapper is used to wrapped the request
and pass it to the FilterChain.doFilter() method, instead of the
original request destination.

a) Create a class that extends HttpServletRequestWrapper.
import javax.servlet.http.HttpServletRequestWrapper;
import javax.servlet.http.HttpServletRequest;
import java.util.*;
public class RequestWrapper extends
HttpServletRequestWrapper{

public RequestWrapper (HttpServletRequest request) {

super (request) ;

e-Macao-16-6-343

Task 63: Request Wrappers

public Locale getLocale () {

return new Locale ("English", "Canada");

b) Create a Filter name RequestFilter which uses the

RequestWrapper to wrapped the ServletRequest and passes it
to the target.

import javax.servlet.*;
import javax.servlet.http.*;

public class RequestFilter implements Filter ({

e-Macao-16-6-344

Task 64: Request Wrappers

private FilterConfig config;
public RequestFilter() {}

public void init(FilterConfig filterConfig)
throws ServletException{

this.config = filterConfig;
}
public void doFilter (ServletRequest request,

ServletResponse response, FilterChain chain)
throws java.io.IOException,ServletException {

e-Macao-16-6-345

Task 65: Request Wrappers

RequestWrapper wrapper null;

ServletContext context = null;

if (request instanceof HttpServletRequest)
wrapper = new
RequestWrapper ((HttpServletRequest) request) ;
if (wrapper != null)

chain.doFilter (wrapper, response) ;
else

chain.doFilter (request, response) ;

public void destroy() {}

Slides - Vertical Concepts

99

e-Macao-16-6-346

Task 66: Request Wrappers

c) Modify the web . xm1 file as follows:

<servlet>
<servlet-name>requestjsp</servlet-name>
<jsp-file>/request.jsp</jsp-file>

</servlet>

<servlet-mapping>
<servlet-name>requestjsp</servlet-name>
<url-pattern>/request jsp</url-pattern>

</servlet-mapping>

e-Macao-16-6-347

Task 67: Request Wrappers

<filter>
<filter-name>RequestFilter</filter—name>
<filter-class>com.web.RequestFilter</filter-class>

</filter>

<filter-mapping>
<filter—-name>RequestFilter</filter—-name>
<url-pattern>/request jsp</url-pattern>

</filter-mapping>

d) Deploy the files and try to browse the file /request jsp under the
application context. Try to browse the file through /request. jsp
under the application context. What is the difference?

e-Macao-16-6-348

Servlet Response Wrapper

Similar to request wrapper, there are ServletResponseWrapper and
httpServletResponseWrapper availabe for subclassing to create the
corresponding wrappers.

javax.servlet.ServletResponseWrapper implements
ServletResponse

Constructor :

public ServletResponseWrapper (ServletResponse res)

e-Macao-16-6-349

HttpServlet Response Wrapper

For HttpServletResponseWrapper:

javax.servlet.http.HttpServletResponseWrapper
extends ServletResponseWrapper
implements HttpServletResponse

Constructor:

public HttpServletResponseWrapper
(HttpServletResponse response)

Slides - Vertical Concepts

100

e-Macao-16-6-350

Task 68: Response Wrapper

1) Use Filter and Wrapper to compress the content requested by a client.
A Filter is used to intercept the request for a web page and a response
wrapper is used to capture the response and pass it through a
GzIPOutputStream to compress the data before sending it to the client.

a) Write a class named GZIPResponseStream extending the
standard ServletOutputStream, which is used to send output to
the client. Methods in the ServletOutputStream are overridden
to write compressed response data out to the client. The header of
the response should also be modified adding an entry "Content—
Encoding”. The skeleton code may look as follows:

e-Macao-16-6-351

Task 69: Response Wrapper

import java.io.*;

import java.util.zip.GZIPOutputStream;
import javax.servlet.¥*;

import javax.servlet.http.*;

public class GZIPResponseStream extends
ServletOutputStream ({

//declare variables

protected ByteArrayOutputStream baos = null;
protected GZIPOutputStream gzipstream = null;
protected boolean closed = false;

protected HttpServletResponse response = null;

protected ServletOutputStream output = null;

e-Macao-16-6-352

Task 70: Response Wrapper

// A constructor that receive the original response and
// replace the output stream with a GZIPOutputStream

public GZIPResponseStream(HttpServletResponse response)
throws IOException {

super () ;
closed = false;
this.response = response;

this.output = response.getOutputStream() ;
baos = new ByteArrayOutputStream();

gzipstream = new GZIPOutputStream (baos);

e-Macao-16-6-353

Task 71: Response Wrapper

// Override the close method that will modify the header
// entries such as “Content-Length” and

// “Content-Encoding” before closing the stream.

public void close () throws IOException {

if (!closed) {

throw new IOException ("Stream closed"); }
gzipstream.finish () ;
byte[] bytes = baos.toByteArray () ;
response.addHeader ("Content-Length",
Integer.toString (bytes.length));
response.addHeader ("Content-Encoding", "gzip");

output.write (bytes);

Slides - Vertical Concepts

101

e-Macao-16-6-354

Task 72: Response Wrapper

output.flush();
output.close();

closed = true;

// Override the flush() and various write methods to
// use the gzipstream instead of the original stream
public void flush () throws IOException ({
if (closed) {

throw new IOException("Fail to flush"); }

gzipstream.flush();

e-Macao-16-6-355

Task 73: Response Wrapper

public void write (int b) throws IOException {
if (closed) {

throw new IOException ("Cannot write to a closed
output stream");

gzipstream.write ((byte)b);
}
flush();

close();

e-Macao-16-6-356

Task 74: Response Wrapper

public void write(byte b[]) throws IOException {
if (closed) {
throw new IOException("Cannot write to a closed output
stream"); }
gzipstream.write(b, 0, b.length);
flush () ;

close();

e-Macao-16-6-357

Task 75: Response Wrapper

public void write (byte b[], int off, int len) throws
IOException {

System.out .println("writing...");

if (closed) {

throw new IOException ("Cannot write to a closed output
stream"); }

gzipstream.write (b, off, len);

flush () ;

close();

Slides - Vertical Concepts

102

e-Macao-16-6-358

Task 76: Response Wrapper

b) Write a class named GzZIPResponselWrapper extends the
HttpServletResponseWrapper. The main function of this
wrapper is to replace the original Output St ream with a
GZIPResponseStream that we defined in previous steps. The
getWriter () is also overridden to obtain a writer from the
GZIPResponseStream.

The skeleton code may look as follows:

import java.io.*;
import javax.servlet.*;

import javax.servlet.http.*;

e-Macao-16-6-359

Task 77: Response Wrapper

public class GZIPResponseWrapper extends
HttpServletResponseWrapper {

protected HttpServletResponse origResponse = null;
protected ServletOutputStream stream = null;
protected PrintWriter writer = null;

// Constructor

public GZIPResponseWrapper
(HttpServletResponse response) {

super (response) ;

origResponse = response;

e-Macao-16-6-360

Task 78: Response Wrapper

// Create a GZIPResponseStream from the original
Response

public ServletOutputStream createOutputStream ()
throws IOException {

return (new GZIPResponseStream(origResponse));

e-Macao-16-6-361

Task 79: Response Wrapper

// Overridden the getOutputStream and replace the
// ServletOutputStream with GZIPResponseStream
public ServletOutputStream getOutputStream() throws
IOException {

if (writer != null) {
throw new IllegalStateException (
"getWriter () has already been called!");
}
if (stream == null)
stream = createOutputStream();

return (stream);

Slides - Vertical Concepts

103

e-Macao-16-6-362

Task 80: Response Wrapper

// Overridden the getWriter and piped
// writer from the GZIPResponseStream
public PrintWriter getWriter () throws IOException {

if (writer != null) {
return (writer);
}
if (stream != null) {
throw new IllegalStateException (

"getOutputStream() has alreadybeen called!");

e-Macao-16-6-363

Task 81: Response Wrapper

stream = createOutputStream();

writer = new PrintWriter
(new OutputStreamWriter (stream, "UTF-8"));

return (writer);

e-Macao-16-6-364

Task 82: Response Wrapper

c) Write aclass named GzIpFilter implements the
javax.servlet.Filter interface. This Filter will check
whether the client will accept gzip format. If so, the Filter will
wrap the response with the GZIPResponseWrapper and let it
compress the data. Otherwise, the ordinary response will be
returned.

The skeleton code may look as follows:

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class GZIPFilter implements Filter {
public void init (FilterConfig filterConfig) {

//no implementation needed

e-Macao-16-6-365

Task 83: Response Wrapper

public void doFilter (ServletRequest req,
ServletResponse res,FilterChain chain) throws
IOException, ServletException {

if (reqg instanceof HttpServletRequest) {

HttpServletRequest request =
(HttpServletRequest) req;

HttpServletResponse response =
(HttpServletResponse) res;

String ae = request.getHeader ("accept-encoding") ;
if (ae != null && ae.indexOf ("gzip") != -1) {

System.out.println
("GZIP supported, compressing.");

Slides - Vertical Concepts

104

e-Macao-16-6-366

Task 84: Response Wrapper

GZIPResponseWrapper wrappedResponse = new
GZIPResponseWrapper (response) ;

chain.doFilter (req, wrappedResponse);
return;
}

chain.doFilter (req, res);

e-Macao-16-6-367

Task 85: Response Wrapper

d) Inorderto testthe Filter, download a web page such as
www . yahoo.com/index.html and save it under your web
application context, e.g.
<TOMCAT_HOME>/webapps/FilterTest/

e) Modify the web.xml file to apply the GzIPFilter tothe
downloaded page.

f) Browse the downloaded page and check the output from the console
of Tomcat.

e-Macao-16-6-368

Vertical Concepts Outline

1) Servlet 2) JavaServer Pages 3) Filter
a) basic concepts a) basic concepts a) basic concepts
b) http servlet b) scripting elements b) filter chain
c) servlet context c) implicit objects c) filter dispatcher
d) communication d) actions d) wrapper

between servlets

e) expression e) summary

€) summary language
f) tag library

g) summary

e-Macao-16-6-369

Filter: Summary 1

Filter is a new feature in the servlet 2.3 specification.

Filters are usually used for:

1) read request data

2) wrap request data

3) redirect a request

4) manipulate response data
5) generate its own response
6) wrap a response

7) return errors to the client

Slides - Vertical Concepts

105

e-Macao-16-6-370

Filter: Summary 2

Filter canstack upas aFilter chain to provide layers of functionality
to requested and response.

Functionality is easily divided up into many logical layers.

e-Macao-16-6-371

Filter: Summary 3

Filters do not handle dispatched request by default.

<dispatcher> elementis used in the web . xml file to configure a Filter
to handle dispatched requests.

e-Macao-16-6-372

Filter: Summary 4

Wrapper is a new feature of Filters introduce in Servlet 2.3
specification.

Wrappers are used to wrap and modify requests or responses.

Requests and responses are wrapped with different objects.

Slides - Horizontal Concepts

106

A.3. Horizontal Concepts

Horizontal Concepts

Course Outline

e-Macao-16-6-374

1) introduction

2) vertical concepts
a) servlet

b) java server page
c) filters

3) horizontal concepts
a) exception
b) database connectivity
c) security
d) internationalization

4) case study

Slides - Horizontal Concepts

107

A.3.1. Exceptions

e-Macao-16-6-375

Horizontal Concepts Outline

1) Exceptions
a) introduction
b) error handling
c) error objects
d) logging

2) DataBase Connectivity
a) jdbc review
b) datasource
c) connection pooling

1) Security
a) introduction
b) declarative security
c) programmatic security
d) secure communication

2) Internationalization
a) introduction
b) encoding
c) resource bundles

3) Summary

e-Macao-16-6-376

Exception

If an exception is thrown from a Servlets or a Jsp, itis passes to the
container and the reactions will be depending on the container.

Create a Jsp as follows and check out what is the response of the Tomcat
server.

<

o

if (true)

throw new Exception("An Exception thrown by JSP!");
%>

Slides - Horizontal Concepts

108

e-Macao-16-6-377

Handling Exception

Exceptions can be handled in following ways:

1) use try-catch-finally statements
2) forward the HTTP request to a JSP error page
3) forward the HTTP request to a Servlet to handle the error

4) declare error pages for specific error codes and allow the container to
forward to these pages

e-Macao-16-6-378

Declaring Error Page

In Jsp, the following directive forwards the request to “‘myErrorPage. jsp”
when exception is thrown:
<%@page errorPage=“myErrorPage.jsp” %>

The error can also be forward to a Servlet for handling the exception.

e-Macao-16-6-379

JSP Error Page

In Jsp, the directive <%@ page isErrorPage="true" %> isusedto
declare that the file for exception handling.

Implicit object “exception” can be used in the error page to provide
exception messages.

<%@ page dsErrorPage="true" %i\\\\\\

<html>

<body> Used to declarr that
this is the error
handling page

This is the error message :

"<%$=exception.getMessage () $>"
</body>
</html>

e-Macao-16-6-380

Task 86: JSP Error Handling

1) Test the error handling using a JsP error page.

a) Define an application-wide parameter “admin email” in the web.xml
file with a value “admin@servlet.com”.

b) Create a Jsp page which will throw an error message as in the
previous example. Remember to use the “page” directive with
attribute “errorbpage” correctly.

c) Create an error handling page to catch the exception thrown by the
JSP page at (b). The page needed to show the error message from
the implicit object "exception” and the admin email address.

d) What will happen when the “isErroPage” attribute is missing?

Slides - Horizontal Concepts

109

e-Macao-16-6-381

Task 87: JSP Error Handling

2) Test the error handling using a Servlet error page.
a) Create a Servlet named “ErrorServlet”.
b

-

Within this servlet, get the initial parameter “admin email” defined
in the web . xm1 file.

c) Within this Servlet, you can retrieve the Exception through the
request object as following :
Exception e =
(Exception) request.getAttribute
("javax.servlet.jsp.jspException") ;

d

-

Modify the previous ThrowError. jsp as following to test the output:

<%@ page errorPage=“ErrorServlet” %>
<% if (true) throw new Exception
("An Exception!");

o
\

e-Macao-16-6-382

Handling Specific Error

Error handling pages for specific exception can be declared in the web . xm1
file with the tag <error-page>.

Container will redirect the request to the specific page according to the
exception occurred.

For example, in the web . xm1 file, error page can be defined as follows:
<error-page>

<exceptiontype/exceptiontype>
<location>/Errorjsg. jSp ocation>
</error-page>
<error-page>

<error-code¥ error—-code>

<location>/Errorjso~jsp</location>

</error-page> HTTP response code |

e-Macao-16-6-383

Error Objects

The servlet specification defines some attributes which can be retrieved
from the request object for debugging:

javax.servlet.error.status_code
javax.servlet.error.exception_type
javax.servlet.error.message
javax.servlet.error.exception
javax.servlet.error.request_uri

javax.servlet.error.servlet_name

e-Macao-16-6-384

Task 88: Error Object

1) Create a JSP page which will send an email after receiving an error.
The email will contain messages extracted from the error. The container
will be configured to handle the forwarding operation.

a) Download two packages from SUN and put inside the folder
“<Tomcat_home>/common/1lib”:

JavaMail: http://java.sun.com/products/javamail/

JavaBeans Activation Framework(JAF)
http://java.sun.com/products/javabeans/glasgow/
Jaf.html

b) Create a JsP named EmailErrorPage. jsp as follows:

<%@page isErrorPage="true" import="java.util.*,
javax.mail.*, javax.mail.internet.*" %>

<

o

Properties props = new Properties();

Slides - Horizontal Concepts

110

e-Macao-16-6-385

Task 89: Error Object

props.put ("mail.smtp.host", "smtp.macau.ctm.net")

’

Session msession =
Session.getInstance (props,null);

String email =
application.getInitParameter ("lecturer email");

MimeMessage message= new MimeMessage (msession) ;
message.setSubject (" [Application Error]");
message.setFrom(new InternetAddress(email));

message.addRecipient (Message.RecipientType.TO,
new InternetAddress(email));

String debug = "";

e-Macao-16-6-386

Task 90: Error Object

Integer status_code

=(Integer) request.getAttribute
("javax.servlet.error.status_code");

if (status_code != null) {
debug += "status_code: "+status_code.toString ()
+ "\rl";

}

Class exception_type=

(Class) request.getAttribute
("javax.servlet.error.exception_type");

if (exception_type != null) {

debug += "exception_type:
"texception_type.getName () + "\n";

e-Macao-16-6-387

Task 91: Error Object

String m=
(String) request.getAttribute
(“javax.servlet.error.message”);

if (m != null) {
debug += "message: "+m + "\n";

Throwable e =(Throwable)
request.getAttribute
("javax.servlet.error.exception");

if (e != null) {

debug += "exception: "+ e.toString() + "\n";
}

e-Macao-16-6-388

Task 92: Error Object

String request_uri =
(String) request.getAttribute
("javax.servlet.error.request_uri");

if (request_uri != null) {
debug += "request_uri: "+request_uri + "\n";

}

String servlet_name=
(String) request.getAttribute
("javax.servlet.error.servlet_name");

if (servlet_name != null) {
debug += "servlet_name: "+servlet_name;

Slides - Horizontal Concepts

111

e-Macao-16-6-389

Task 93: Error Object

message.setText (debug) ;
Transport.send(message) ;
&>

<html><head><title>EmailErrorPage</title></head>
<body>
<h3>An Error Has Occurred</h3>

This site is unavailable! requested.

Please send a description of the
problem to:

<a href="mailto:<%=email%>"><%$=email%>.
</body>
</html>

e-Macao-16-6-390

Task 94: Error Object

c) Add atag <error-page> to the web.xml file as follows:

<error-page>
<error-code>404</error-code>
<location>/EmailErrorPage. jsp</location>
</error-page>

d) Inthe EmailErrorPage. jsqg file, “lecturer email”is used as
the email address for the sender and receiver for the email. Try to
modify this to use different email addresses. However, the real email
address is defined in the web . xm1 file as an initial parameter as
follows:
<context-param>

<param-name>lect i name>

<param-value>miltongm@gmail.com</Pparam-value>

</context-param>

Modify this to your own email address]

e-Macao-16-6-391

Logging

Logging is used to keep a record of important information in some
serialized form such as text file or information printed to
System.err OF System.out.

For constantly log information, a more robust logging API will be
prefer than System.out .print1n() method.

Some Logging API:
1) java.util.logging package
2) Log4J (jakarta.apache.org/log4j)

e-Macao-16-6-392

Example: Logger 1

The following example shows the basic logging functionality of the
javax.util.logging package.

<%@ page import="java.util.logging.*"%>

<% Logger logger = Logger.getLogger ("example");
<% logger.setlLevel (Level.ALL) ;
logger.addHandler (new FileHandler ("/log.txt"));
String info = request.getParameter ("info");

if (info != null && !info.equals("")) {
logger.info (info);

}

>

o

Slides - Horizontal Concepts

112

Example: Logger 2

<html>

<head>

<title>A Simple Logger</title>
</head>

<body>

Logging examples

<form>

Information to log:<input name="info">

<input type="submit">

</form>

</body>

</html>

e-Macao-16-6-394

Loggers and Levels

A Logger object is used to log messages for a specific system of
application components.

java.util.logging.Level object is used to manage different
types of logged information.

Types can be:

1) SEVERE

2) WARNING

3) INFO

4) CONFIG

5)FINE, FINNER AND FINNEST
6) OFF

7)ALL

e-Macao-16-6-395

Handlers

java.util.logging packages defines some Handlers for
handling information.

1) streamHandler: logged information is exported to a
java.io.OutputStream.

2) MemoryHandler: LogRecord objects are keptin memory.

3) SocketHandler: information is logged using a network
socket.

4) FileHandler: information is logged to a local file.

Slides - Horizontal Concepts

113

A.3.2. Database Connectivity

e-Macao-16-6-396

Horizontal Concepts Outline

1) Exceptions
a) introduction
b) error handling
c) error objects
d) logging

2) DataBase Connectivity
a) jdbc review
b) datasource
c) connection pooling

1) Security
a) introduction
b) declarative security
c) programmatic security
d) secure communication

2) Internationalization
a) introduction
b) encoding
c) resource bundles

3) Summary

e-Macao-16-6-397

JDBC Review 1

JDBC allows data stored in different databases to be accessed using a
common Java API.

In general, Java applications that use a database almost always use JDBC
to communicate with it.

Slides - Horizontal Concepts

114

e-Macao-16-6-398

JDBC Review 2

Important interfaces and classes:

javax.sgl.DataSource—interface for obtaining connections to a
database

java.sqgl.Statement—interface for executing SQL statements on a
database

java.sgl.Connection-object represents a physical connection with a
database and is governed by underlying JDBC driver

java.sgl.ResultSet—object returned as the results of an sQL statement

e-Macao-16-6-399

JDBC Review: DriverManger 1

Early version of JDBC may use an object called DriverManger to obtain
the connection of a database as following:

String url = "Jjdbc:hsgldb:" + dbDir +"/my_database";
String user = "sa"; // hsgldb default
String password = ""; // hsqgldb default

Class.forName ("org.hsgldb. jdbcDriver") ;
Connection conn =

DriverManager.getConnection (url, user, password);

e-Macao-16-6-400

JDBC Review: DriverManger 1

The previous example has two problems:

1) The code is vendor specific.

2) The DriverManager is not an interface but a class and cannot be
optimized by a Vendor easily.

e-Macao-16-6-401

DataSource

DataSource can solve the previous mentioned problems easily because
DataSource is an interface which allows vendors' optimizations.

DataSource objects can be managed by container for higher efficiency.

Disadvantage:
DataSource needed to be configured in a container-dependent method.

Slides - Horizontal Concepts

115

e-Macao-16-6-402

Configuring DataSource 1

The following example shows the procedure for creating a datasource
connecting a My SQL database to Tomcat server.

1) A database "dbTest" is assumed to have been created in My SQL already.
2) Downloaded and installed the required library as follows:
a) Download the MySQL connector/J from www.mysqgl . com.
file: mysgl-connector-java-3.1.7.zip

URL for download:
http:/dev .mysql.com/downloads/connector/j/3.1.html

b) Extract the zip file and copy the file, mysgl-connector-java-
3.1.7-bin.jar, to <TOMCAT_HOME>/common/1lib.

e-Macao-16-6-403

Configuring DataSource 2

The following steps will configure Tomcat with the Datasource connected
to My SQL:

a) modify the <TOMCAT_HOME>/conf/server.xml by adding the

following code segment within the tag <GlobalNamingResources>:

<Resource name="7jdbc/Testdb"
auth="Container"
type="javax.sqgl.DataSource"

driverClassName="com.mysqgl. jdbc.Driver"
url= c:mys : ocalhost: Test
1="5db ysql://1 1h 3306/db "

username="root"

password="1234"/>

e-Macao-16-6-404

Configuring DataSource 3

b) modify the <TOMCAT_HOME>/conf/context.xml by adding the
following code segment within the tag <Context>:

<Resourcelink
global="7dbc/Testdb"
name="7jdbc/Testdb"

type="javax.sqgl.DataSource"/>

e-Macao-16-6-405

Configuring DataSource 4

c) The setting in step 2 can also be done as follows:

Create a file META-INF/context .xml under the context of the
web application. If the context of the web application is
"dbTest", the context .xml may look as follows:

<Context docBace="dbTest" path="/dbTest"
reloadable="true">

<ResourcelLink global="jdbc/Testdb" name="7jdbc/Testdb"
type="javax.sqgl.DataSource"/>

</Context>

d) Restart Tomcat server and a DataSource is ready for connection.

Slides - Horizontal Concepts

116

e-Macao-16-6-406

Task 95: Connecting DataBase

1) Examine different ways, with and without DataSource, for connecting
a database. A database named "dbTest" with a table "testdata"is
assumed to have been created in a running My SQL server.

a) Deploy the following Servlet, which extracts data from the database
connected through DriverManger:

import java.sqgl.*;

import javax.servlet.*;

import javax.servlet.http.*;

import java.io.*;

public class DatabaseServlet extends HttpServlet

e-Macao-16-6-407

Task 96: Connecting DataBase

public void doGet (HttpServletRequest request,

HttpServletResponse response) throws
ServletException, java.io.IOException {

String sgl = "select * from testdata";
Connection conn = null;

Statement stmt = null;

ResultSet rs = null;

ResultSetMetaData rsm = null;
response.setContentType ("text/html");

PrintWriter out = response.getWriter();
out .println ("<html><head><title>Servlet
Database Access</title></head><body>");

e-Macao-16-6-408

Task 97: Connecting DataBase

try{
//load the database driver
Class.forName ("com.mysqgl.jdbc.Driver");

//The JDBC URL for database
String url =
"jdbc:mysqgl://127.0.0.1:3306/dbTest";

// Create the java.sqgl.Connection to the
// database wusing DriverManager

conn =
DriverManager.getConnection (url, "root",
"1234") ;

//Create a statement for executing some SQL

stmt = conn.createStatement ();

e-Macao-16-6-409

Task 98: Connecting DataBase

//Execute the SQL statement

rs = stmt.executeQuery (sql) ;

//Get info from the ResultSetMetaData object
rsm = rs.getMetaData();

// Display the data

int colCount = rsm.getColumnCount ();
for (int i = 1; i <=colCount; ++i) {
out.println ("<th>" + rsm.getColumnName (i) +
"</th>"); } }
out.println ("</tr>");
while(rs.next ()) {

out.println("<tr>");

Slides - Horizontal Concepts

117

e-Macao-16-6-410

Task 99: Connecting DataBase

for (int i = 1; i <=colCount; ++1i)
out.println ("<td>" + rs.getString(i)
+ "</td>");
out.println("</tr>");}
} catch (Exception e) {

throw new ServletException (e.getMessage());

} finally {
try{
if (stmt != null)
stmt.close();
if (conn != null)

conn.close();
} catch (SQLException sqgle) { }

e-Macao-16-6-411

Task 100: Connecting DataBase

out.println ("</table>

</body></html>") ;

} //doGet

b) Modify the previous Servlet and make it use a DataSource to
create a database connection. The set up for connection may look as
follows:

Context ctx = new InitialContext ();

DataSource ds=

(DataSource) ctx.lookup ("java:/comp/env/jdbc/Testdb") ;

conn = ds.getConnection();

e-Macao-16-6-412

Connection Pooling

Connection pooling is a technique of creating and managing a pool of
connections that are ready for use by any thread that needs them.

Connection pooling allows a thread to get connection from a pool and return
it to the pool when the work is done.

The connection may either be a new, or already-existing connection.

e-Macao-16-6-413

Advantages

Connection pooling can greatly increase the performance of Java application,
while reducing overall resource usage.

The main advantages are:

a) Reduced connection creation time - the overhead for creating
connection will be avoided if connections are "recycled.”

b) Simplified programming model — Only simple JDBC programming
techniques is required.

c) Controlled resource usage — The resource is controlled by the
container effectively.

Slides - Horizontal Concepts

118

e-Macao-16-6-414

Tomcat Implementation

Sun has standardized the concept of connection pooling in JDBC through the
JDBC-2.0 Optional Package API.

As in previous example, Tomcat has implemented the APIs with MySQL
Connector/J.

For Tomcat 5.0, install the following libraries in
<Tomcat_HOME>/common/lib:

a) Jakarta-Commons DBCP 1.0
b) Jakarta-Commons Collections 2.0

c) Jakarta-Commons Pool 1.0

For Tomcat 5.5, the required libraries are located in a single JAR at
<TOMCAT_HOME>/common/lib/naming-factory-dbcp. jar

e-Macao-16-6-415

Tomcat Configuration

For Tomcat, the following attributes can be added to the Resource
element in the server.xml file between the
</GlobalNamingResources> tag:

maxActive: Maximum number of connections in connection pool.
Make sure the mysqld max_connections is large
enough to handle all of the connections. A value of 0
represents "no limit".

maxIdle: Maximum number of idle connections to retain in pool. Set
to -1 for no limit.

maxWait: Maximum time to wait for a connection to become
available in millisecond. Set to -1 to wait indefinitely.

e-Macao-16-6-416

Connection pool leaks

While using connection pooling, a web application has to explicitly close
ResultSet, Statement, and Connection or they will never being
available for reuse causing a connection pool leak.

The Jakarta—-Commons DBCP can be configured to prevent this problem
while adding the attributes to the Resource configuration for your DBCP
DataSource as follows:

removeAbandoned="true"

removeAbandonedTimeout="60"

e-Macao-16-6-417

Example: Connection Pool 1

After setting up the connection pool configuration, the server.xml file of
the Tomcat server may look as follows:

<GlobalNamingResources>

<Resource name="jdbc/Testdb"
auth="Container"
type="javax.sql.DataSource"
driverClassName="com.mysqgl. jdbc.Driver"
url="jdbc:mysqgl://localhost:3306/dbTest"
username="root"

password="1234"

Slides - Horizontal Concepts 119

e-Macao-16-6-418

Example: Connection Pool 2

maxActive="20"
maxIdle="10"
maxWait="-1"
removeAbandoned="true"

removeAbandonedTimeout="60"

/>

Slides - Horizontal Concepts

120

A.3.3. Security

e-Macao-16-6-419

Horizontal Concepts Outline

1) Exceptions
a) introduction
b) error handling
c) error objects
)

d) logging

2) DataBase Connectivity
a) jdbc review
b) datasource
¢) connection pooling

1) Security

introduction
declarative security
programmatic security
secure communication

a
b
c
d

=

= = =

Internationalization
a) introduction

b) encoding

c) resource bundles

3) Summary

Servlet / JSPs Security

e-Macao-16-6-420

Problem to address:
1) Authentication, Authorization and Access Control (AAA)
2) Secure Encrypted Communication

Slides - Horizontal Concepts

121

e-Macao-16-6-421

Security Features

Authentication, Authorization and Access Control
1) Declarative Security:

a) access control configuration is separated from the servlet and
JSP code

b) no security-related code is written
c) static security that runtime condition can not be checked

2) Programmatic Security:
a) flexible but need more work
b) run-time condition such as client’s credit limit can be considered

e-Macao-16-6-422

Role-Based Security 1

Role-Based Security
The servlet specification only specifies that roles should exist and a
container must recognize them. How to assign a user to a role is not
specified.

In Tomcat, the <TOMCAT_HOME>/conf/tomcat-users.xml file is used
to define the mapping for a user. lts default content may look as follows:

<tomcat-users>
<role rolename="tomcat"/>
<role rolename="rolel"/>

<role rolename="manager"/>

e-Macao-16-6-423

Role-Based Security 2

<role rolename="admin"/>

<user username="tomcat" password="tomcat"
roles="tomcat"/>

<user username="rolel" password="tomcat"
roles="rolel"/>

<user username="both" password="tomcat"
roles="tomcat, rolel"/>

<user username="admin" password=""
roles="admin, manager"/>

</tomcat-users>

e-Macao-16-6-424

Applying Role-Based Security 1

The web . xm1 file is used to applied the role-based security to certain web
applications. The tag <security-constraint> is used as follows:

<web-app>

<security-constraint>

<web-resource-collection>

<web-resource-name>
SecuredWebPage

</web-resource-name>
<url-pattern>/secured/*</url-pattern>
<http-method>GET</http-method>
<http-method>POST</http-method>

Slides - Horizontal Concepts

122

e-Macao-16-6-425

Applying Role-Based Security 2

</web-resource-collection>
<auth-constraint>
<role-name>rolel</role-name>
</auth-constraint>
</security-constraint>
<login-config>
<auth-method>BASIC</auth-method>

</login-config>

e-Macao-16-6-426

Task 101: Role-Based Security

1) Follow the previous example to test the role-based security feature of
Tomcat.

a
b

=

Create a secured directory under your Web application context.

-

Use the default users setting in Tomcat’ s tomcat-users.xml
file.

c) Put two web pages under the secured directory.
d) Try to access one of the secured web pages.

e) What will happen when a wrong user name or password is
received?

f) Try to access the secured web page with correct user name and
password (user name: role1, password: tomcat).

g) Can all web pages under the secured directory be accessed?

e-Macao-16-6-427

Authentication 1

HTTP supports two built-in authentication schemes:

l)basic
a) user name and password are essentially sent as plain text
b) password could be spoofed by a malicious server

c) once authentication is issued, the client will have authentication for a
given subset of server resources

d) only used over an encrypted and with strong server authentication
link

e-Macao-16-6-428

Authentication 2

2) digest
a) Introduced in HTTP 1.1 to improve the basic authentication.

b) Not the password but an encrypted digest of the password is sent
and it cannot be determined by sniffing the network.

¢) Most but not all browser support.

d) Access may be gained by just working with the digest of the
password.

e) Note: using ssL is still a better choice for securing important
content.

Slides - Horizontal Concepts

123

e-Macao-16-6-429

Form-Based Authentication 1

Custom design authentication form can be used for authentication.
Modification of the web . xm1 file is needed as follows:

<web-app>
<security-constraint>
</security-constraint>
<login-config>

<auth-method>FORM</auth-method>

<form-login-config>

e-Macao-16-6-430

Form-Based Authentication 2

<form-login-page>/login.html</form-login-page>
<form-error-page>/loginError. jsp</form-error-page>
</form-login-config>

</login-config>

</web-app>

e-Macao-16-6-431

Form-Based Authentication 3

The login form may look as follows:

<!DOCTYPE HTML PUBLIC "-//W3C//DTID HTML 4.0
Transitional//EN">

<html>
<head>
<title>Login Form</title>
</head>
<body bgcolor="#ffffff">
<h2>Please Login to the Application</h2>
<!-— The value of action is mandatory —->

<form method="POST" action="3j_security_check">

e-Macao-16-6-432

Form-Based Authentication 4

<table border="0"><tr>

<td>Enter the username: </td><td>

<!-— The value of the text name is mandatory —-—>
<input type="text" name="Jj_username" size="15">
</td>

</tr>

<tr>

<td>Enter the password: </td><td>

<!-— The value of the password name is mandatory —->

<input type="password" name="j_password" size="15">

Slides - Horizontal Concepts

124

e-Macao-16-6-433

Form-Based Authentication 5

</td>

</tr>

<tr>

<td> <input type="submit" value="Submit"> </td>
</tr>

</table>

</form>

</body>

</html>

e-Macao-16-6-434

Form-Based Authentication 6

The loginError. jsp file may look as follows:
<html>
<head>
<title>Login Error</title>
</head>
<body bgcolor="#ffffff">

<h2>Authentication Fail</h2>

</body>
</html>

e-Macao-16-6-435

Form-Based Authentication 7

Once the user is authorized, the container will maintain the login session
with a cookie containing the session-id and send it back to the user for
subsequent requests.

If the role of the user is not allowed for certain resources, a “403 Access
Denied” response will be received by the user.

Note:
a) still not a strong authentication
b) session tracking and URL redirecting is difficult.
c) cookie must be enabled

e-Macao-16-6-436

Programmatic Security

Problems with role-based security:

Role-based security cannot deal with runtime based checking such as the
user’s credit limit.

It cannot filter resources by the role of the user.

HttpServletRequest object provides methods to perform different logics
based on the runtime information about the user.

Slides - Horizontal Concepts

125

e-Macao-16-6-437

HttpServletRquest 1

The following methods are available from the HttpServletRequest object
for security checking purpose:

String getAuthType ():

returns the name of the authentication scheme for determining how form
information was submitted

boolean isUserInRole(java.lang.String role):

To check if a user is in the given role.

String getProtocol():

returns the protocol that was used to send the request for checking if a
secure protocol was used

e-Macao-16-6-438

HttpServletRquest 2

boolean isSecure():

a boolean value representing if a HTTPS request was made.

Principle getUserPrinciple():
returns a java.security.Principle object that contains the name
of the current authenticated user.

String getRemoteUser ():
If the user is not authenticated, nul1l will be return.

e-Macao-16-6-439

Example: Programmatic Security 1

1) The following Servlet checks the user’s role and generates different
content according to the role.

if (request.isUserInRole ("manager")) {
out.println("Hello Manager");

out.println (request.getRemoteUser());

out.println ("</br>");

else if (request.isUserInRole("rolel")) {
out.println("Hello User");
out.println (request.getRemoteUser());

out.println ("</br>");

e-Macao-16-6-440

Example: Programmatic Security 2

else {

throw new IOException ("User does not have
access!");

Slides - Horizontal Concepts

e-Macao-16-6-441

Task 102: Programmatic Security

1) After logged in through a form-based authentication, access right will last
within the same session. Try to access another secured page under the
same context.

2) Try to delete the cookie stored in the browser from a sender
“localhost”. Browse to the same secured page again. What happen?

3) Create a page to allow the user to logout. The page should perform the
follows:

a) Check if the user was authenticated.
b) Find out if the user were under a specific role.
c) Logout the user by invalidate the session.

4) The skeleton code may look as follows:

e-Macao-16-6-442

Task 103: Programmatic Security

import javax.servlet.*;

import javax.servlet.http.*;

import java.io.*;

public class LogoutServlet extends HttpServlet {
public void doGet (HttpServletRequest request,
HttpServletResponse response)

throws ServletException, java.io.IOException {

HttpSession session = request.getSession();
response.setContentType ("text/html");
PrintWriter out = response.getWriter();

out.println ("<html><head><title>Logout Authenticated
User</title></head><body>");

e-Macao-16-6-443

Task 104: Programmatic Security

out.println ("request.getRemoteUser() returns: ");
//get the logged-in user's name
String userName = request.getRemoteUser ();

//If request.getRemoteUser() return null then the
//user is not authenticated

out.println(userName == null ? "Not authenticated."
userName + “
");

out .println ("request.isUserInRole (\"admin\") returns:
")
//Find out whether the user is in the admin role

out.println(isInRole + + “
");

e-Macao-16-6-444

Task 105: Programmatic Security

//log out the user by invalidating the HttpSession
session.invalidate();

out.println ("</body></html>");

Slides - Horizontal Concepts

127

e-Macao-16-6-445

Secured Communication

Other than controlling the access to certain resources, encrypting the
transmitted data to provide secured communication is equally important.

The level of security can be configured with the web . xm1 file by the
<transport-guarantee> element within the tag
<user-data-constraint>.

The <transport-guarantee> element has three levels of security:
NONE - default and requires no security
INTEGRAL - container must ensure the integrity of information

CONFIDENTIAL - information sent must be both private and unchanged

e-Macao-16-6-446

Security Configuration: Tomcat 1

Tomcat needs specific configuration to provide secured communication.

a) In <TOMCAT_HOME>/conf/server.xml, find the following entry and
modify the redirect attribute to “443”, the default port HTTPS :

<Connector

port="80" maxThreads="150"
minSpareThreads="25"
maxSpareThreads="75"
enablelLookups="false"
redirectPort="443"
acceptCount="100"
connectionTimeout="20000"
disableUploadTimeout="true"

/>

e-Macao-16-6-447

Security Configuration: Tomcat 2

b) In <TOMCAT_HOME>/conf/server.xml, uncomment the following
entry and add a keypass attribute representing the password used for
the keystore:
<!-- Define a SSL HTTP/1.1 Connector on port 8443 —-—>
<Connector port="443"

maxThreads="150" minSpareThreads="25"
maxSpareThreads="75" enableLookups="true"
disableUploadTimeout="true"

acceptCount="100" scheme="https" secure="true"
clientAuth="false" sslProtocol="TLS"
keypass="123456"

/>

e-Macao-16-6-448

Tomcat Configuration 3

c) Generate a self certified keystore:

$JAVA_HOMES/bin/keytool -genkey -keystore
mystore.keystore -alias tomcat -keyalg RSA

d) Put the keystore file generated to the home directory of Tomcat.

Slides - Horizontal Concepts 128

e-Macao-16-6-449

Task 106: Using HTTPS

1) Test the secure communication function provided by Tomcat server.

a) Follow previous slides to configure your Tomcat and restart it.

b) Modify the web . xm1 file to add the <t ransport-guarantee>
element for a protected resource. Put a value "CONFIDENTIAL” for
this element.

c) Access the protected resource. Is there any changes to the protocol
used?

Slides - Horizontal Concepts

129

A.3.4. Internationalization

e-Macao-16-6-450

Horizontal Concepts Outline

1) Exceptions
a) introduction
b) error handling
c) error objects
d) logging

2) DataBase Connectivity
a) jdbc review
b) datasource
c) connection pooling

1) Security
a) introduction
b) declarative security
€) programmatic security
d) secure communication

2) Internationalization
a) introduction
b) encoding
c) resource bundles

3) Summary

e-Macao-16-6-451

Introduction: Internationalization 1

Internationalization is also known as i18n representing the process of

designing an application supporting multi-lingual without engineering
changes.

Slides - Horizontal Concepts

130

e-Macao-16-6-452

Introduction: Internationalization 2

An internationalized program has the following characteristics:

1) With the addition of localization data, the same executable can run
worldwide.

2) Textual elements, such as status messages and the GUI component
labels, are not hardcoded in the program. Instead they are stored outside
the source code and retrieved dynamically.

3) Support for new languages does not require recompilation.

4) Culturally-dependent data, such as dates and currencies, appear in
formats that conform to the end user's region and language.

5) It can be localized quickly.

e-Macao-16-6-453

Problems with Encoding

When designing a web application, character encoding is a major problem
for internationalization:

1) The default character encoding of HTTP is 1S0-8859-1 (Latin-1).
2) 1s0-8859-1 uses only 8 bits and cannot be extended easily.

Java uses Unicode as default character encoding.

UTF-8 is a common way to use Unicode which encoding Unicode
characters using a varying number of bytes depending on the character set.

e-Macao-16-6-454

Clients’ Encoding

When invoking a method such as getParameter () to obtain data from
client, sometimes the returned st ring may not be encoded properly. The
following code snippet can avoid this situation:

String value = request.getParameter ("param");

value = new String(value.getBytes(),
request.getCharacterEncoding());

e-Macao-16-6-455

Specifying Encoding

While sending information to client, the encoding can be specified by
manipulating the content-type header :

response.setContentType ("text/html; charset=UTF-8");
ServletOutputStream sos = response.getOutputStream();
PrintWriter out =

new PrintWriter (new OutputStreamWriter (sos, "UTF-8"),
true);

response.setLocale("","");

out.println ("<html>");

By substituting the UTF-8 with specific encoding, different encoding can be
specified.

Slides - Horizontal Concepts

131

e-Macao-16-6-456

118n Implementation 1

Different ways can be done to provide multi-lingual support for a web site.

The following example illustrates one of the ways which uses a mechanism
called resource bundle to provide i18n support.

Assume a simple web page, welcome.html, as follows:
<html>

<head>

<title>Hello!</title>

</head>

e-Macao-16-6-457

118n Implementation 2

<body>
<cr>Welcome to the multi-language page

<i>multi-language page</i></cr>

</body>

</html>

e-Macao-16-6-458

Resource Bundle Files

In order to provide multi-lingual support, resource bundles can be used to
store the content information in different languages.

The resource bundle files for various languages may look like as follows:
For English:
title=Welcome!

welcome=Welcome

For Chinese:
title= !

welcome=

e-Macao-16-6-459

Naming of Resource Bundles

Each resource bundle file is just a simple property text file containing
key/value pairs information.

Each resource bundle file has a name starting with the base name,
appending with “_” and a two-digit language code. An extension
“.properties” should be used for this file.

For example, if the base name for resource bundle is “resource”, the locale-
specific property file will then be “resource_en.properties” for English
client. The name can also be extend with country code like _zh_Tw and
_zh_CN representing Taiwan and China respectively.

The resource bundle files should be placed under the WEB-INF/classes
directory or any sub-directory of it.

Slides - Horizontal Concepts

132

e-Macao-16-6-460

ResourceBundle Object

java.util.ResourceBundle provides static methods which takes base
name and Locale object to return a resource bundle with proper values.

For example:

Locale locale = request.getLocale();

ResourceBundle rb = ResourceBundle.getBundle ("resource",
locale);

This code will check the Locale of the client and if, for example, it were
zh_TW, the values of the resource_zh_TW.properties file would be
loaded.

e-Macao-16-6-461

List of Country Code

The following link lists the country code used for the Resource Bundle file:

http://www.iso.ch/iso/en/prods-services/iso3166ma/02iso-
3166-code-lists/list-enl.html

e-Macao-16-6-462

Loading Resource Bundles 1

A JavaBean may be used as a fagade for loading the content of the
resource bundle object. Getter and setter methods should be defined

in this JavaBean.
For example:

package com.web;

public class Welcome {

protected String title = null;
protected String welcome = null;
public String getTitle() {

return title;

e-Macao-16-6-463

Loading Resource Bundles 2

public void setTitle(String title) {
this.title = title;

}

public String getWelcome () {
return welcome;

}

public void setWelcome (String welcome) {

this.welcome = welcome;

Slides - Horizontal Concepts

133

e-Macao-16-6-464

Using Resource Bundles 1

In JSP file, scriptlets may be used to extract the values from the resource
bundle as follows:

<%@ page import="java.util, com.web.Resource"%>

<

oe

Locale locale = request.getLocale();

ResourceBundle rb = ResourceBundle.getBundle ("resource",
locale);

Welcome content = new Welcome();
content.setTitle(rb.getString("title"));
content.setWelcome (rb.getString ("welcome"));
request.setAttribute ("content", content);

>

oo

e-Macao-16-6-465

Using Resource Bundles 2

<%Q@ taglib uri="http://java.sun.com/jstl/core_rt"
prefix="c" %>

<html>

<head>
<title>${content.title}</title>
</head>

<body>

${content.welcome}

</body>

</html>

e-Macao-16-6-466

JSTL i18n Tags 1

JSTL provides a set of 118n tags for supporting internationalization.

The following example illustrates how to use the tag message:

<%@ taglib uri="http://java.sun.com/jstl/fmt" prefix="fmt"%>

<fmt:bundle basename="resource">

e-Macao-16-6-467

JSTL i18n Tags 2

<html>

<head>

<title><fmt:message key="title"/></title>
</head>

<body>

<fmt:message key="welcome"/>

</body>

</html>

</fmt :bundle>

Slides - Horizontal Concepts

134

Task 107:118n

e-Macao-16-6-468

1) Create three ResourceBundle files for a web page: one for English,
one for Traditional Chinese and one for Simplified Chinese. A Jsp
page with a form for selecting different languages is used to display the
content with different languages. The output may look as follows:

Task 108:118n

e-Macao-16-6-469

4
HALN

HER -
QORUABHALUE

om
& 2

OB~ 04
O i

=

Task 109:i18n

e-Macao-16-6-470

a) Tools for creating the ResourceBundle files can be used. There
is a free plugin, named Jinto, for Eclipse which converts input
into unicode and generates ResourceBundle files. This plugin

can be downloaded at :

http://www.guh-software.de/Jjinto_en.html

b) After installed this plugin, create a new resource bundle file at
Eclipse:File = New = Others > Java 2>

ResourceBundle File

=

Task 110:i18n

e-Macao-16-6-471

c) Foradding a new language, just press this button

d) For adding or deleting an entry, press these buttons.

Slides - Horizontal Concepts

135

e-Macao-16-6-472

Task 111:i18n

d) While using JSTL tags for the Jsp file, the Jsp file may look like
the following in order to produce the required effect:

<%@ page contentType="text/html" pageEncoding="UTF-
"%>
<%@ taglib wuri="http://java.sun.com/jsp/jstl/core"
prefix="c" %>
<%@ taglib uri="http://java.sun.com/jsp/Jjstl/fmt"
prefix="fmt" %>

<c:if test="${param.language == 'en'}">
<fmt:setLocale value="en" />
</c:if>

e-Macao-16-6-473

Task 112:i18n

<c:if test="${param.language == 'zh TW'}">
<fmt:setLocale value="zh TW" />

</c:if>
<c:if test="${param.language == 'zh CN'}">
<fmt:setLocale value="zh CN" />
</c:if>
<fmt:bundle basename="resource" >
<fmt:setBundle basename="resource" var="currLang"/>
<html>
<head>
<title>
<fmt :message key="title" />
</title>

e-Macao-16-6-474

Task 113:i18n

</head>
<body bgcolor="white">
<hl>
<fmt :message key="welcome" />
</h1>

<form action="jstlselect.jsp">
<p>
<input type="radio" name="language" value="en"
${currLang == 'en' ? 'checked' : ''}>
<fmt :message key="english" />

<input type="radio" name="language"
value="zh_TW"
${currLang == 'zh TW' ? 'checked' : ''}>

e-Macao-16-6-475

Task 114:i18n

<fmt :message key="tchinese" />

<input type="radio" name="language"
value="zh_CN"
${currLang == 'zh CN' ? 'checked' : ''}>
<fmt :message key="schinese" />

<p>
<input type="submit" value="<fmt:message
key="submit" />" >
</form>
</body>
</html>
</fmt :bundle>

Slides - Horizontal Concepts 136

A.3.5. Summary

e-Macao-16-6-476

Horizontal Concepts Outline Summary

e-Macao-16-6-477

1) Exceptions 1) Security 1) In this section, the following supporting technologies are presented:
a) introduction a) introduction a) Exception handling
b) error ha‘ndlmg b) declarative s.ecurlty. b) Database Connectivity
c) error objects c) programmatic security . o
. - c) Internationalization
d) logging d) secure communication
d) Security
2) DataBase Connectivity 2) Internationalization
a) jdbc review a) introduction
b) datasource b) encoding
¢) connection pooling c) resource bundles

3) Summary

Slides - Horizontal Concepts

137

e-Macao-16-6-478

Summary: Exception Handling 1

1) Directive <2@page errorPage="myErrorPage.jsp"%> indicates a
page for handling the exception.

2) Directive <%@ page isErrorPage="true"%> indicateds that the
current page can handle exception.

3) Servlet can also be used for handling exception.

4) A specific page can be declared within the web . xm1 file to handle
specific error

e-Macao-16-6-479

Summary: Exception Handling 2

1) Error Objects are defined by the Servlet specification to provide useful
information for debugging such as:

a) status code
b) exception type
c) exception

d) request uri

e-Macao-16-6-480

Summary: Exception Handling 2

Logging is used to keep record of important information.

The java.util.logging package provides a standard API for logging.

The following logging handlers are defined for handling different logged
information:

a) SteramHandler
b) MemoryHandler
c) SocketHandler
d) FileHandler

e-Macao-16-6-481

Summary: Database Connectivity

DataSource is used for connecting database with high efficency.

DataSource is managed by container but needed to be configured for
different server.

Connection Pooling create and manage a pool of connections and can be
accessed and managed easily through DataSource.

Slides - Horizontal Concepts

138

e-Macao-16-6-482

Summary: Security

The security of a web site can be enforced through role-based or
programmatic authentication.

Role-Based security can be set up easily in Tomcat server but is lack of
flexibility.

Programmatic security can provide runtime checking and provide a more
flexible access control.

Programmatic involves more work.

e-Macao-16-6-483

Summary: Internationalization

Internationalization is also known as i18n and aim to provide multi-lingual
support for a web site.

One of the ways to provide multi-lingual web site is through the usage of
ResouceBundle file.

Slides - Case Study

139

A.4. Case Study

Case Study

Course QOutline

e-Macao-16-6-485

1) J2EE introduction

2) vertical concepts
a) Servlets

b) JavaServer Pages
c) Filters

3) horizontal concepts
a) exceptions
b) security
c) internationalization
d) database connectivity

4) case study

Slides - Case Study

140

e-Macao-16-6-486

Case Study Outline

1) hands-on practice

e-Macao-16-6-487

Task 115: Hands-On Practice

1) Develop a portion of a web site to review the technology and techniques
discussed in this course.

a) Create a multi-lingual supported web site which can detect the
locale of the client's browser to provide corresponding contents.

b) Use DataSource to connectto a database and make use of the
default connection pooling.

Cc) Filter is used to provide a hit counter of the web site.

e-Macao-16-6-488

Task 116: Hands-On Practice

d) "Page not found" (404) exception should be handled by the
container to redirect the client to the default web page of the site.

e) Basic security should be set up to protected the content of a
specific directory.

e-Macao-16-6-489

Task 117: Hands-On Practice

ok 3] Case Study

i

E
12128 e
1118430595 5|

i
112323 g
11 162 4zasaR |
114 4
AT sl e B TR

oo e 30

Slides - Case Study 141

e-Macao-16-6-490

Task 118: Hands-On Practice

[d () S Meaba T e R
ERBEK |
—

||||| LR

{1111 1 R 2

8

Assessment

142

B. Assessment

B.1. Set 1

1. (8%)

In a JSP page you are required to insert a JSP fragment called insert.jsp,
where this JSP fragment requires an additional request parameter called
title.

What is necessary to perform this insertion?

<%@ include file='insert.jsp’ title="Web Wonk'%>

<jsp:include page="insert,jsp’ title="Web Wonk"/>

<%@ include file='insert.jsp’ %>Web Wonk<% @include%>

ol 0] =] »

<jsp:include page='insert.jsp’>
<jsp:param name="'title’ value="Web Wonk’/>
</jsp:include>

Answer

2. (10%)

Which deployment description snippet would you use to declare the use of a

tag library?

A. |<taglib>
<uri>http://jsp_prj.com/taglib.tld</uri>
<location>/WEB-INF/taglib.tld</location>
</taglib>

B. |<taglib>

<taglib-uri>http:// jsp_prj.com/tablib.tld</taglib-uri>
<taglib-location>/WEB-INF/tablib.tld </taglib-location>
</taglib>

C. |<tag-lib>

<uri>http:// jsp_prj.com/taglib.tld</uri>
<location>/WEB-INF/taglib.tld</location>
</tag-lib>

D. |<tag-lib>

<taglib-uri>http://jsp_prj.com /taglib.tld

</taglib-uri>
<taglib-location>/WEB-INF/taglib.tld</taglib-location>
</tag-lib>

Answer

Assessment

143

3. (8%) Where is the following declared JavaBean accessible?
<jsp:useBean id="ABean” class="com.examples.ABean"/>
A. |Throughout the remainder of the JSP page.
B. [Within other servlets or JSP pages in the same Web application.
C. |Within other servlets or JSP pages in the same servlet context.
D. |Throughout all future invocations of the JSP page, until the session
expires.
Answer A
4, (10%) Exhibit:
1. public class ABean {
2. private int count;
3. public void setCount(int count) {
4. this.count = count;
5.}
6. public int getCount() {
7. return count;
8.}
9.}
Given:
1. <htmlI>
2. <body>
3. <jsp:useBean id="myBean” class="ABean”>
4,
5. </jsp:useBean>
6. </body>
7. </html>
Which of the following answer inserted individually at line 4, will initialize the
count property of the newly created ABean myBean?
A. |<% myBean.count =1; %>
B. |[<% ABean.count=1; %>
C. |[<jsp:setProperty name="myBean” property="count” value="1" />
D. [<jsp:init property="count” value="1" />
Answer C

Assessment

144

5. (8%)

Given servlet A:

1. public class A extends HttpServlet {

2. public void doPost(HttpServletRequest req,
HttpServletResponse resp)

throws ServletException {

3. String id = “aString”;

4,

5.}

6.}

Servlet A and servlet B share the same active session.
Which, inserted at line 4, will allow servlet B to access the value “aString” in
subsequent POST requests to servlet B?

A. |req.getSession().put(“ID"”,id);

req.getSession().setValue(*ID"),id)

req.getSession().putAttribute(“ID”,id);

req.getSession().setAttribute(*ID”,id);

Answer

oo n|w

6. (8%)

Which method in the HttpServlet class services the HTTP POST request?

doPost(ServletRequest, ServletResponse)

doPOST(ServletRequest, ServletResponse)

servicePost(HttpServletRequest, HttpServletResponse)

doPost(HttpServletRequest, HttpServietResponse)

Answer

o| o] 0| ®| »

7. (8%)

Which method is required for using the URL rewriting mechanism of
implementing session support?

HttpServletRequest.encodeURL()

HttpServletRequest.rewriteURL()

HttpServletResponse.encodeURL()

HttpServletResponse.rewriteURL()

Answer

ol o] o] ®| »

Assessment

145

8. (8%)

Which of the following implicit objects can be used to store attributes that
need
to be accessed from all the sessions of a web application?

A.

application

. |session

. [request

page

Answer

B
C
D.
A

9. (8%)

Select the correct statement about the following code.
<% @ page language="java" %>

<html><body>

out.print("Hello ");

out.print("World ");

</body></html>

It will print Hello World in a single line

It will generate compile-time errors.

It will only print Hello in one line and world in another line.

None of above.

Answer

o| o 0| ®| »

10. (8%)

Which of the following lines would you use to include the output of
DataServlet
into any other servlet?

A.

RequestDispatcher rd = request.getRequestDispatcher(
"/servlet/DataServlet");
rd.include(response);

RequestDispatcher rd = request.getRequestDispatcher();
rd.include("/serviet/DataServlet", request, response);

RequestDispatcher rd = request.getRequestDispatcher();
rd.include("/serviet/DataServlet", response);

RequestDispatcher rd = request.getRequestDispatcher(
"/servlet/DataServlet");
rd.include(request, response);

Answer

Assessment

146

11. (8%)

Which of the following code types cannot be used within a scriptlet tag?

if block

while block

Code block

Static block

Answer

o| o 0| ®| »

12. (8%)

For a FilterChain object, chain, which of the following method can be called
to invoke another Filter?

A.

chain.next();

chain.doNext();

chain.doFilter();

None of the above.

Answer

o| o] 0| @

Assessment

147

B.2. Set 2
1. (8%) |Which method is required for using the URL rewriting mechanism of
implementing session support?
A. |HttpServletRequest.encodeURL()
B. |[HttpServietRequest.rewriteURL()
C. |HttpServletResponse.encodeURL()
D. [HttpServietResponse.rewriteURL()
Answer C
2. (8%) Where is the following declared JavaBean accessible?
<jsp:useBean id="ABean” class="com.examples.ABean"/>
A. |Throughout the remainder of the JSP page.
B. |Within other servlets or JSP pages in the same Web application.
C. |Within other servlets or JSP pages in the same servlet context.
D. [Throughout all future invocations of the JSP page, until the session
expires.
Answer A
3. (8%) Given servlet A:

1. public class A extends HttpServlet {

2. public void doPost(HttpServletRequest req,
HttpServletResponse resp)

throws ServletException {

3. String id = “aString”;

4,

5.3}

6.}

Servlet A and servlet B share the same active session.
Which, inserted at line 4, will allow servlet B to access the value “aString” in
subsequent POST requests to servlet B?

A. |req.getSession().put(*ID",id);

req.getSession().setValue(*ID"),id)

req.getSession().putAttribute(*ID”,id);

req.getSession().setAttribute("ID",id);

Answer

o/ o n| =

Assessment

148

4. (8%) For a FilterChain object, chain, which of the following method can be called
to invoke another Filter?
A. [chain.next();
B. |chain.doNext();
C. |[chain.doFilter();
D. [None of the above.
Answer C
5. (8%) Which of the following implicit objects can be used to store attributes that
need
to be accessed from all the sessions of a web application?
A. |application
B. |session
C. [request
D. [page
Answer A
6. (8%) In a JSP page you are required to insert a JSP fragment called insert.jsp,
where this JSP fragment requires an additional request parameter called
title.
What is necessary to perform this insertion?
A. |<%@ include file='insert.jsp’ title="Web Wonk'%>
B. |<jsp:include page="insert,jsp’ title="Web Wonk"/>
C. |<%@ include file='insert.jsp’ %>Web Wonk<% @include%>
D. |[<jsp:include page='insert.jsp’'>
<jsp:param name='title’ value="Web Wonk'/>
</jsp:include>
Answer D

Assessment

149

7. (8%) Which two represent valid JSP expressions?
A. |<%= Match.random() %>
B. <% X %>
C. |<% intx =%4" + “2"; %>
D. |<% String x = “4" + “2" %>
Answer A
8. (8%) Select the correct statement about the following code.
<% @ page language="java" %>
<html><body>
out.print("Hello ");
out.print("World ");
</body></html|>
A. |It will print Hello World in a single line
B. |It will generate compile-time errors.
C. |It will only print Hello in one line and world in another line.
D. INone of above.
Answer D
9. (10%) |Which deployment description snippet would you use to declare the use of a
tag library?
A. |<taglib>
<uri>http://jsp_prj.com/taglib.tld</uri>
<location>/WEB-INF/taglib.tld</location>
</taglib>
B. |[<taglib>
<taglib-uri>http:// jsp_prj.com/tablib.tld</taglib-uri>
<taglib-location>/WEB-INF/tablib.tld</taglib-location>
</taglib>
C. |<tag-lib>
<uri>http:// jsp_prj.com/taglib.tld</uri>
<location>/WEB-INF/taglib.tld</location>
</tag-lib>
D. |<tag-lib>
<taglib-uri>http://jsp_prj.com /taglib.tld
</taglib-uri>
<taglib-location>/WEB-INF/taglib.tld</taglib-location>
</tag-lib>
Answer B

Assessment 150

10. (10%) |Exhibit:

1. public class ABean {

2. private int count;

3. public void setCount(int count) {
4. this.count = count;

5.}

6. public int getCount() {

7. return count;

8.}

9.}

Given:

1. <htmlI>

2. <body>

3. <jsp:useBean id="myBean” class="ABean”>
4,

5. </jsp:useBean>

6. </body>

7. </html>

Which of the following answer inserted individually at line 4, will initialize the
count property of the newly created ABean myBean?
A. |<% myBean.count =1; %>

<% ABean.count=1; %>

<jsp:setProperty name="myBean” property="count” value="1" />

<jsp:init property="count” value="1" />

ololo|l=

Answer

11. (8%) Which of the following lines would you use to include the output of
DataServlet
into any other servlet?

A. |[RequestDispatcher rd = request.getRequestDispatcher(
"/servlet/DataServlet");

rd.include(response);

B. |RequestDispatcher rd = request.getRequestDispatcher();
rd.include("/serviet/DataServlet", request, response);

C. |RequestDispatcher rd = request.getRequestDispatcher();
rd.include("/servlet/DataServlet", response);

D. |RequestDispatcher rd = request.getRequestDispatcher(
"/servlet/DataServlet");

rd.include(request, response);

Answer D

Assessment 151

12. (8%) Given this fragment from a Web application deployment descriptor?
<context-param>

<param-name>user</param-name>
<param-value>tessking</param-value>

</context-param>

From within a servlet’'s doPost method, which retrieves the value of the user
parameter?

A. |getServletConfig().getAttribute(“user”);

getServletContext().getAttribute(“user”);

getServletConfig().getlnitParameter(“user”);

getServletContext().getInitParameter(“user”);

o/l o/ o @

Answer

