
AJAX and JSON – Lessons Learned

Jim Riecken, Senior Software Engineer, Blackboard® Inc.

About Me

• Jim Riecken

• Senior Software Engineer

• At Blackboard for 4 years.

• Work out of the Vancouver office.

• Working a lot with User Interface components of Blackboard LearnTM.

– Lots of JavaScript, CSS, JSP, Tag Libraries

About this presentation

• Goals

– Quickly introduce AJAX and JSON.

– Describe the approaches we’ve taken for implementing asynchronous
behavior in Blackboard Learn.

– Share some experiences and lessons we’ve learned in the following

areas:areas:

• Performance

• Security

• Accessibility

– Show “real-life” examples wherever possible from Blackboard Learn.

Quick Introduction to AJAX and JSONQuick Introduction to AJAX and JSON

What is AJAX?

• Asynchronous JavaScript And XML

– Buzzword

– Don’t have to use XML.

– Really just an asynchronous HTTP request.

• Browser doesn’t refresh the page.

– Server-side, it’s just a normal HTTP request.– Server-side, it’s just a normal HTTP request.

– Done via the XMLHttpRequest object built into modern browsers.

• Various libraries are available that hide minor browser differences in how
AJAX requests are constructed.

• E.g. Prototype’s Ajax.Request object, Direct Web Remoting (DWR)

new Ajax.Request(“/some/url”, {
method: ‘get’,
parameters: { param1: ‘value1’, param2: ‘value2’ },
onSuccess: function(req)
{

alert(req.responseText);
}

});

AJAX vs. Non-AJAX

“Regular” Request AJAX Request

Why use AJAX?

• Helps your application become:

– More “Desktop”-like

• Drag and drop.

• In-place editing.

• Etc.

– More responsive– More responsive

• Instead of whole page refreshes, only parts need to update.

• Immediately show feedback that an operation is in progress and let the user
do other things while it’s processing.

– More usable

• Immediate feedback.

• No long waits.

• Less clicks.

• Better overall user experience.

What is JSON?

• JavaScript Object Notation (text/x-json)

– Stems from how Object literals are specified in JavaScript.
var myObject = {

one: 'value1',

two: [1, 2, 3, 4, { one: 'two' }],

three: { another: 'object' },

four: function(a) { alert(a); },four: function(a) { alert(a); },

five: someOtherVariable

};

– JSON is a subset of this.

• Can have arrays and nested objects.

• No functions or variable references though.

• Property names must be strings.

{ 'property1': 'value1', 'property2': 42 }

{ 'items' : ['item1', 'item2', 'item3'] }

What is JSON?

– A pretty good alternative to using XML for data transfer.

• More succinct and easy to read.

• Easy to generate.

• Don’t have to do any XML DOM processing.

• Browsers can parse it very fast into native JavaScript objects

– Using eval, or a parsing function from a JavaScript library.

– E.g. Prototype’s String.evalJSON– E.g. Prototype’s String.evalJSON

var jsonString = “{‘name’:‘value’,‘items’:[1,2,3,4]}”;
var parsed = jsonString.evalJSON(true);

alert(parsed.name) // alerts “value”
alert(parsed.items[2]) // alerts “3”

JSON vs. XML - Format

XML
<result>
<people>
<person firstName="Alice" lastName="Anderson"/>
<person firstName="Bill" lastName="Brown"/>
...
</people>
</result>

JSON
{
people:
[
{ 'firstName': 'Alice', 'lastName', 'Anderson' },
{ 'firstName': 'Bill', 'lastName', 'Brown' },
...

]
}

JSON vs. XML - Processing

XML – DOM traversal

// req is a XMLHttpRequest with text/xml content
var result = req.responseXML;
var people = result.getElementsByTagName('person');
for (var i = 0, l = people.length; i < l; i++)
{
alert(people[i].getAttribute('firstName'));

}

JSON – Native JS objects
// req is a XMLHttpRequest with text/x-json content
var result = req.responseText.evalJSON(true);
var people = result.people;
for (var i = 0, l = people.length; i < l; i++)
{
alert(people[i].firstName);

}

What are we using?What are we using?

What are we using?

• In Blackboard Learn we use several different approaches to

asynchronous requests.

1. Direct Web Remoting (DWR)

– DWR allows Java classes to be exposed directly to JavaScript callers.

– Extremely simple.

– http://directwebremoting.org– http://directwebremoting.org

2. Normal AJAX requests.

– Using Prototype’s Ajax.Request on the client-side.

– http://prototypejs.org

– Using Struts actions that return JSON content on the server-side.

– Using Json-lib to generate the JSON.

– http://json-lib.sourceforge.net/

What are we using? DWR

Service class

public class MyDwrService
{
public List<String> getItems(String parameter1, String parameter2)
{

List<String> result = // construct the list somehow
...
return result;

}
}

In dwr.xml

In HTML

<create creator=“new” javascript=“MyDwrService”>
<param name=“class” value=“my.package.MyDwrService”/>

</create>

<script type=“text/javascript” src=“/path/to/dwr/engine.js”></script>
<script type=“text/javascript” src=“/path/to/dwr/interface/MyDwrService.js”></script>
<script type=“text/javascript”>
MyDwrService.getItems(1, 2, function(result)
{
alert(result[0]);

});
</script>

What are we using? Ajax.Request

In JavaScript
new Ajax.Request('/path/execute/adder', {
method: 'get',
parameters: 'one=1&two=2'
onSuccess: function(req)
{

var result = req.responseText.evalJson(true);
alert(result.answer);

}
});

Struts Action
public class AdderAction extends Action
{
public ActionForward execute(ActionMapping m, ActionForm f,

HttpServletRequest req, HttpServletResponse res) throws Exception
{
Map<String, String> result = new HashMap<String,String>();
int i = Integer.parseInt(req.getParameter('one');
int j = Integer.parseInt(req.getParameter('two');
result.put('answer', String.valueOf(i + j));
res.setContentType("text/x-json");
res.setCharacterEncoding("UTF-8");
JSON json = JSONSerializer.toJSON(result)
json.write(res.getWriter());
return null;

}
}

Lessons LearnedLessons Learned

PerformancePerformance

Be Lazy!

• Don’t do upfront processing if you don’t need to and defer

expensive processing to as late as possible.

– If a large component is hidden on the page,

• Can dynamically load the content with AJAX only when it’s accessed.

– If a JavaScript component doesn’t need to be initialized until the user

interacts with it,interacts with it,

• Can initialize the component when the user hovers over, or puts focus on the
component.

– If JavaScript code isn’t needed right away by the page when it loads,

• Can dynamically load scripts using AJAX.

• Example of lazy “on-demand” loading in Blackboard Learn:

– Context Menus

• Make use of the first two items in the list above.

Be Lazy! – Context Menus

• A large change in the UI of 9.0 was the introduction of

Context Menus

– Large lists of data can potentially have hundreds of them on one page.

– Menu items can differ depending on the object the menu is acting upon.

– Users are not likely to click on all (or even many) of the
menus on a page.

– Prime candidate for lazy loading and initialization.

Be Lazy! – Context Menus

• How does it work?

– The user hovers or focuses on the context menu link.

• Event handler runs that initializes the context menu JavaScript and then
removes itself (so it only runs once.)

– The user clicks on the context menu link.

– An AJAX request is sent off to the server (e.g. to a Struts action.)– An AJAX request is sent off to the server (e.g. to a Struts action.)

– Server constructs the contents of the context menu.

• Using parameters sent in the request to determine the context.

– The server returns the contents in a JSON response.

• The response is in a specific format the JavaScript knows how to process.

– The HTML elements for the menu are constructed in JavaScript

• The contents are cached.

• No need for another AJAX request if the user opens the menu again.

– The menu is shown to the user!

Be Lazy! – Context Menus

• Example loading time savings if:

– The page, without any of the context menus, takes 100ms to generate.

– Each context menu takes 5ms to generate in-page.

– The context menu takes 50ms to request dynamically.

– There is a list with 100 context menus on it in the page.

• Latency threshold for “interactivity” is somewhere

between 50-200ms

– Anything more will feel “sluggish”

With Lazy Loading Without Lazy Loading

Page response time 100ms 600ms

Time to open a

context menu

50ms 0ms

Be Lazy! – Context Menus

JSP

Menu generator action

...
<bbNG:contextMenu dynamic="true" menuGeneratorUrl="/path/to/my/action"

contextParameters="param1=one¶m2=two"/>
...

import blackboard.platform.ui.struts.dynamiccontextmenu.BaseContextMenuGenerator;

public class MyGenerator extends BaseContextMenuGeneratorpublic class MyGenerator extends BaseContextMenuGenerator
{
protected List<List<ContextMenuItem>> generateContextMenu(HttpServletRequest request)
{

List<List<ContextMenuItem>> result = new ArrayList<List<ContextMenuItem>>();
List<ContextMenuItem> group = new ArrayList<ContextMenuItem>();
result.add(group);

String param1 = request.getParameter("param1");
//...
ContextMenuItem item = new ContextMenuItem();
item.setTitle("Title");
item.setUrl("<url>");
group.add(item)
//...
return result;

}
}

Be Efficient!

• Try to minimize the number of HTTP requests that you need to

do while loading the page.

– Many small requests are slower than one big one.

• Combine related JavaScript functions into one file.

• Don’t add an external script file more than once.

– Can even load JavaScript code on demand.– Can even load JavaScript code on demand.

• Get code with an AJAX request, then dynamically construct a <script>
block and add it to the <head>.

• Ensure that your scripts and content (if desired) can be cached.

– Add appropriate Cache-Control or Expires headers.

– With AJAX requests

• Use GET requests for content that may be cached – browsers will cache
AJAX GETs unless told otherwise.

• Use POST requests for saving.

Be Efficient!

• Minimize time spent in “onload” initialization JavaScript code.

– Some browsers execute JavaScript much slower than others.

– Long-running scripts can cause the page to appear unresponsive.

– Ways to help:

• Split up processing into chunks, waiting a short amount of time between
each chunk to let the browser do other things.each chunk to let the browser do other things.

– Use setTimeout, or Prototype’s Function.delay or Function.defer

• Perform lazy initialization of components

– Like the context menus do.

document.observe("dom:loaded", function()
{
(function() {
//Do first part of long-running item.

(function() {
//Do second part of long-running item.

}).delay(0.1);

}).delay(0.1);
}

Be Efficient!

• Batch calls together if you’re using DWR.

– Instead of N small AJAX requests, it will do one large one that

performs all the operations in the batch.

DWREngine.beginBatch();

MyService.method1(....., callback1);
MyService.method2(....., callback2);

– Instead of 12 separate AJAX requests, this only makes 1

• All the callbacks will be called with the method call’s
return value when the overall request completes.

MyService.method2(....., callback2);
for (int i = 0; i < 10; i++)
{
MyService.method3(i, callback3);

}

DWREngine.endBatch();

Cache!

• If data is not likely to change often, cache it. E.g.

– Server-side

• Results of database queries.

• Generated JSON.

– Client-side

• Results of AJAX calls• Results of AJAX calls

– Can do this either with browser caching (by setting appropriate Cache-Control

headers)

– Or saving data in JavaScript objects.

• Disk space (and increasingly, memory) is cheap.

• Time is expensive.

• Example of JSON caching in Blackboard Learn:

– Blackboard Grade Center

Cache! – Grade Center

• The Blackboard Learn Grade Center makes heavy use of AJAX and

JSON

– Grade data is pushed to the browser and then saved to the server

asynchronously.

– Updates to grade data are retrieved incrementally from the server.

• Generating the JSON data needed to render the Grade Center is • Generating the JSON data needed to render the Grade Center is

very expensive, especially for large courses.

– E.g. 100 students, 100 columns = 10000 pieces of grade data.

– Database queries, calculations, etc.

• The grade data is cached at two levels:

– On the browser – Until the instructor leaves the current course.

• Helps with secondary loads of the Grade Center.

– On the server – JSON in files in the file system.

• Helps with initial load.

Cache! – Grade Center

• Client-side caching

– Data is stored in JavaScript variables inside the frameset.

– Not 100% reliable.

• Doesn’t work with selective SSL due to browser security handling.

• Doesn’t work if the page is opened outside the frameset.

– But it helps a lot in most cases.– But it helps a lot in most cases.

Cache! – Grade Center

• Server-side JSON caching.

– Although the client side caching helps, it doesn’t help with the loading of

the grade data when entering the grade center initially after login.

• Database queries.

• Generation of JSON.

– Gradebook data doesn’t change that often– Gradebook data doesn’t change that often

• So, the JSON can be cached on the file system.

• Then sent back to the browser on subsequent entries.

• Along with a “delta” of what’s changed between the cached version and the
actual live data in the database.

– The caching gives a significant performance improvement

Cache! – Grade Center

• How the caching works

– When the cached JSON data doesn’t exist:

• It is generated (e.g. all the database queries are run)

• It is sent back to the browser while simultaneously being streamed to the file
system.

• The browser shows the grade center grid.

– When the cached JSON data does exist:

• It is sent back directly to the browser and a delta computation is immediately
started (via a background thread.)

• The browser retrieves the data and then requests the delta from the server.

– In most cases, the delta has finished processing by the time the request is made.

– If not, the request will wait until the delta is complete.

• The delta is sent back to the browser.

• The browser shows the grade center grid.

Cache! – Grade Center

• Performance improvement when

data is cached:

– Small Course

• 40 students

• 26 columns

• No caching: 1828ms

• Caching: 1421ms 30

35

40

45

50

• Caching: 1421ms

• Improvement: 23%

– Extreme Course

• 500 students

• 98 columns

• No caching: 44827ms

• Caching: 16594

• Improvement: 63%

0

5

10

15

20

25

30

Small Extreme

No Cache

Cache

SecuritySecurity

Trust No One

• AJAX requests and responses are just like any other HTTP

request

– Don’t assume input from an AJAX request is clean.

• Assume the opposite.

• Filter all input that may be displayed somewhere later.

– Validate request parameters.– Validate request parameters.

• Client-side validation can be trivially bypassed.

– Check that a user is allowed to do the action that they are trying to do

• If they figure out the URL, students can try to call an instructor-only action.

• Ensure that the user has the right entitlements.

Stop Cross Site Scripting (XSS)

• Cross-site scripting happens when arbitrary JavaScript code is

allowed to be injected into parts of a page.

– Attacks can perform actions as other users

• If the instructor looks at an “infected” page, for example, the script could try
to make all the student users instructors without the instructor knowing.

• Ways to avoid:• Ways to avoid:

– Strip out HTML from all user input

– If you need allow HTML, run XssUtil.filter(String input) on

all HTML inputs.

• It strips out all known XSS attacks from the HTML while still allowing most
tags through.

Stop Cross-Site Request Forgery

• Cross-Site Request Forgeries (XSRF) are a subset of XSS

attacks where the attack originates on another website

altogether.

– Instructor visits “Site X” which has an XSS attack on it that makes a

request to the Blackboard Learn server to make all the students

instructors.instructors.

– Since the instructor is logged in to Blackboard Learn, the request

succeeds.

• Ways to fix

– Use POSTs for actions that modify data

• Marginally more difficult to attack.

– Include a unique token (or “nonce”) generated each time a request is

made (that the server knows)

• The server checks for the existence of this parameter,
and rejects requests that don’t have it.

XSRF – Cont.

– For AJAX requests, you can “double submit” cookies.

• Cookies are automatically sent in request headers.

• JavaScript can access cookies, but only for the domain that the current
page is on.

• In the AJAX request, send the document.cookie as a request parameter

and on the server side check if it matches what’s in the request header.

• DWR > 2.0 does this by default on all requests.• DWR > 2.0 does this by default on all requests.

new Ajax.Request('/url/to/action',
{
method: 'post',
parameters: { cookie: document.cookie, },
onSuccess: function() { ... }

});

//in action code
String cookie = request.getHeader("Cookie");
String jsCookie = request.getParameter("cookie");
if (StringUtil.isEmpty(jsCookie) || !jsCookie.equals(cookie))
{
//INVALID REQUEST

}

AccessibilityAccessibility

Design for Accessibility

• Not all users have sight, or can use a mouse.

• Ensure your rich UI components are keyboard accessible

– E.g. Drag and Drop in Blackboard Learn

• Completely separate set of controls that allow reordering of items to be
performed using the keyboard.

Design For Accessibility

• Ensure components are described appropriately.

– Give form elements <label>s

– Can give additional context to a screen reader by placing content off-
screen with CSS

Info for screen
reader

• Give feedback that operations have completed.• Give feedback that operations have completed.

– Show an alert, or set focus on a message.

– E.g. Inline Receipts in Blackboard Learn

• Are focused on when they appear.

Use ARIA

• ARIA (Accessible Rich Internet Applications) is an emerging

W3C standard for accessible “Web 2.0” sites.

– Specialized HTML markup lets assistive technologies (e.g. screen

readers) know what role a given component on the page has.

• E.g. that a specific is actually a popup menu

• Live regions in specific for AJAX.• Live regions in specific for AJAX.

– They indicate areas of the page that will be updated with new content

(e.g. from an AJAX call)

– They will notify the user when the content has updated based on the

mode the live region is set

• “polite” – announce updates when the user is idle.

• “assertive” – announce updates as soon as possible.

<div aria-live="assertive">
...
</div>

Q & A

