

0

Getting started

with MVC3

By Scott Hanselman

This document is an unofficial printable version of ASP.NET MVC 3

tutorial written by Scott Hanselman. This document is free and was

edited by Gustavo Azcona to be shared with the developer community.

It’s provided "as is" without warranty of any kind. Enjoy it!

Getting started with MVC3 Page | 1

Contents

Intro to ASP.NET MVC 3 ... 3

What You'll Build ... 3

Skills You'll Learn ... 5

Getting Started ... 5

Creating Your First Application .. 6

Adding a Controller ... 10

Adding a View ... 15

Changing Views and Layout Pages ... 20

Passing Data from the Controller to the View .. 23

Adding a Model ... 28

Using NuGet to Install EFCodeFirst .. 28

Adding Model Classes.. 32

Accessing your Model's Data from a Controller .. 35

Strongly typed Models and the @model keyword.. 37

Creating a Connection String and Working with SQL Server Express ... 40

Adding a Create Method and Create View ... 47

Displaying the Create Form ... 47

Processing the HTTP-POST ... 52

Creating a Movie ... 54

Adding a New Field to the Movie Model and Table .. 57

Adding a Rating Property to our Movie Model ... 57

Managing Model / Database Schema Differences .. 59

Automatically Recreate the Database on Model Changes .. 60

Fixing the Precision of our Price ... 65

Adding Validation to the Model ... 68

Keeping Things DRY ... 68

Getting started with MVC3 Page | 2

Adding Validation Rules to the Movie Model ... 68

Validation Error UI within ASP.NET MVC .. 70

How Validation Occurs in the Create View and Create Action Method ... 71

Implementing Edit, Details, and Delete Views .. 74

Implementing an Edit View .. 76

Implementing a Delete View ... 78

Getting started with MVC3 Page | 3

Intro to ASP.NET MVC 3

This tutorial will teach you the basics of building an ASP.NET MVC Web application using Microsoft Visual Web Developer

Express, which is a free version of Microsoft Visual Studio. Before you start, make sure you have the following installed using

the Web Platform Installer.

 Visual Studio Web Developer Express with SQL Express

 ASP.NET MVC 3

 SQL Management Studio

This tutorial will teach you the basics of building an ASP.NET MVC Web application using Microsoft Visual Web Developer

2010 Express, which is a free version of Microsoft Visual Studio. Before you start, make sure you've installed the

prerequisites listed above. You can install all of them using the Web Platform Installer.

A Visual Web Developer project with C# source code is available to accompany this topic. Download the C# version here. If

you prefer Visual Basic, switch to the Visual Basic version of this tutorial.

What You'll Build

You'll implement a simple movie-listing application that supports creating, editing and listing movies from a database. Below

are two screeŶshots of the appliĐatioŶ Ǉou’ll ďuild. It iŶĐludes a page that displaǇs a list of ŵoǀies froŵ a dataďase:

The application also lets you add, edit, and delete movies as well as see details about individual ones. All data-entry

scenarios include validation to ensure that the data stored in the database is correct.

http://www.microsoft.com/web/gallery/install.aspx?appsxml=&appid=VWD
http://www.microsoft.com/web/gallery/install.aspx?appsxml=&appid=MVC3
http://www.microsoft.com/web/gallery/install.aspx?appsxml=&appid=SQLManagementStudio
http://www.microsoft.com/web/downloads/platform.aspx
http://code.msdn.microsoft.com/Introduction-to-MVC-3-10d1b098
http://www.asp.net/mvc/tutorials/getting-started-with-mvc3-part1-vb
file:///C:/Users/riande/AppData/Local/Temp/WindowsLiveWriter1286139640/supfiles29D61C52/MoviesWithVariousSm3.png

Getting started with MVC3 Page | 4

Getting started with MVC3 Page | 5

Skills You'll Learn

Here's what you'll learn:

 How to create a new ASP.NET MVC project.

 How to create ASP.NET MVC controllers and views.

 How to create a new database using the Entity Framework code-first paradigm.

 How to retrieve and display data.

 How to edit data and enable data validation.

Getting Started

Start by running Visual Web Developer 2010 Express ("Visual Web Developer" for short) and select New Project from the

Start page.

Visual Web Developer is an IDE, or integrated development environment. Just like you use Microsoft Word to write

documents, you'll use an IDE to create applications. In Visual Web Developer there's a toolbar along the top showing various

options available to you. There's also a menu that provides another way to perform tasks in the IDE. (For example, instead of

selecting New Project from the Start page, you can use the menu and select File > New Project.)

http://i3.asp.net/common/www-css/i/MVC3/MVC3_gettingStarted_CS/img/VWD.PNG

Getting started with MVC3 Page | 6

Creating Your First Application

You can create applications using either Visual Basic or Visual C# as the programming language. For now, select Visual C# on

the left and then select ASP.NET MVC 3 Web Application. Name your project "MvcMovie" and then click OK.

Getting started with MVC3 Page | 7

In the New ASP.NET MVC 3 Project dialog box, select Internet Application. Leave Razor as the default view engine.

Click OK. Visual Web Developer used a default template for the ASP.NET MVC project you just created, so you have a

working application right now without doing anything! This is a simple "Hello World!" project, and it's a good place to start

your application.

Getting started with MVC3 Page | 8

From the Debug menu, select Start Debugging.

Notice that the keyboard shortcut to start debugging is F5.

http://i3.asp.net/common/www-css/i/MVC3/MVC3_gettingStarted_CS/img/VisualStudioMvcMovie.png
http://i3.asp.net/common/www-css/i/MVC3/MVC3_gettingStarted_CS/img/VisualStudioMvcMovie.png

Getting started with MVC3 Page | 9

F5 causes Visual Web Developer to start a development web server and run your web application. Visual Web Developer

then launches a browser and opens the application's home page. Notice that the address bar of the browser says

localhost and not something like example.com. That's because localhost always points to your own local

computer, which in this case is running the application you just built. When Visual Web Developer runs a web project, a

random port is used for the web server. In the image below, the random port number is 43246. When you run the

application, you'll probably see a different port number.

Right out of the box this default template gives you two pages to visit and a basic login page. Let's change how this

application works and learn a little bit about ASP.NET MVC in the process. Close your browser and let's change some code.

Getting started with MVC3 Page | 10

Adding a Controller

MVC stands for model-view-controller. MVC is a pattern for developing applications that are well architected and easy to

maintain. MVC-based applications contain:

 Controllers: Classes that handle incoming requests to the application, retrieve model data, and then specify view

templates that return a response to the client.

 Models: Classes that represent the data of the application and that use validation logic to enforce business rules for

that data.

 Views: Template files that your application uses to dynamically generate HTML responses.

We'll be covering all these concepts in this tutorial series and show you how to use them to build an application.

Let's begin by creating a controller class. In Solution Explorer, right-click the Controllers folder and then select Add

Controller.

Name your new controller "HelloWorldController" and click Add.

http://i3.asp.net/common/www-css/i/MVC3/MVC3_gettingStarted_CS/img/AddController.png

Getting started with MVC3 Page | 11

Notice in Solution Explorer that a new file has been created named HelloWorldController.cs. The file is open in the IDE.

Inside the public class HelloWorldController block, create two methods that look like the following code. The

controller will return a string of HTML as an example.

Getting started with MVC3 Page | 12

using System.Web;
using System.Web.Mvc;

namespace MvcMovie.Controllers
{
 public class HelloWorldController : Controller
 {
 //
 // GET: /HelloWorld/

 public string Index()
 {
 return "This is my default action...";
 }

 //
 // GET: /HelloWorld/Welcome/

 public string Welcome()
 {
 return "This is the Welcome action method...";
 }
 }
}

Your controller is named HelloWorldController and the first method above is named Index. Let’s iŶǀoke it froŵ a
browser. Run the application (press F5 or Ctrl+F5). In the browser, append "HelloWorld" to the path in the address bar. (For

example, on my computer, it's http://localhost:43246/HelloWorld.) The page in the browser will look like the screenshot

below. In the method above, the code returned a string directly. You told the system to just return some HTML, and it did!

Getting started with MVC3 Page | 13

ASP.NET MVC invokes different controller classes (and different action methods within them) depending on the incoming

URL. The default mapping logic used by ASP.NET MVC uses a format like this to determine what code to invoke:

/[Controller]/[ActionName]/[Parameters]

The first part of the URL determines the controller class to execute. So /HelloWorld maps to the

HelloWorldController class. The second part of the URL determines the action method on the class to execute. So

/HelloWorld/Index would cause the Index method of the HelloWorldController class to execute. Notice that we

only had to browse to /HelloWorld and the Index method was used by default. This is because a method named Index is

the default method that will be called on a controller if one is not explicitly specified.

Browse to http://localhost:xxxx/HelloWorld/Welcome. The Welcome method runs and returns the string "This is the

Welcome action method...". The default MVC mapping is /[Controller]/[ActionName]/[Parameters]. For this

URL, the controller is HelloWorld and Welcome is the action method. You haven't used the [Parameters] part of the

URL yet.

Let's modify the example slightly so that we can pass some parameter information from the URL to the controller (for

example, /HelloWorld/Welcome?name=Scott&numtimes=4). Change your Welcome method to include two parameters as

shown below. Note that we've used the C# optional-parameter feature to indicate that the numTimes parameter should

default to 1 if no value is passed for that parameter.

public string Welcome(string name, int numTimes = 1) {
 return HttpUtility.HtmlEncode("Hello " + name + ", NumTimes is: " + numTimes);
 }

Getting started with MVC3 Page | 14

Run your application and browse to http://localhost:xxxx/HelloWorld/Welcome?name=Scott&numtimes=4

You can try different values for name and numtimes in the URL. The system automatically maps the named parameters

from your query string in the address bar to parameters in your method.

In both these examples the controller has been doing the "VC" portion of MVC — that is, the view and controller work. The

controller is returning HTML directly. Ordinarily you don't want controllers returning HTML directly, since that becomes very

cumbersome to code. Instead we'll typically use a separate view template file to help generate the HTML response. Let's

look next at how we can do this.

Getting started with MVC3 Page | 15

Adding a View

In this section we're going to modify the HelloWorldController class to use view template files to cleanly encapsulate

the process of generating HTML responses to a client.

We will create our view template files using the new Razor view engine introduced with ASP.NET MVC 3. Razor-based view

templates have a .cshtml file extension, and provide an elegant way to create HTML output using C#. Razor minimizes the

number of characters and keystrokes required when writing a view template, and enables a fast, fluid coding workflow.

Let's start by using a view template with the Index method in the HelloWorldController class. Currently the Index

method returns a string with a message that is hard-coded in the controller class. Change the Index method to return a

View object, as shown in the following:

public ActionResult Index()
{
 return View();
}

This code indicates that we want to use a view template to generate an HTML response to the browser. Let's add a view

template to our project that we can we can use with theIndex method. To do this, right-click inside the Index method

and click Add View. The Add View dialog box appears.

http://weblogs.asp.net/scottgu/archive/2010/07/02/introducing-razor.aspx

Getting started with MVC3 Page | 16

Leave the defaults the way they are and click the Add button.

Getting started with MVC3 Page | 17

The MvcMovie\Views\HelloWorld folder and the MvcMovie\Views\HelloWorld\Index.cshtml file are created. You can see

them in Solution Explorer:

Getting started with MVC3 Page | 18

This shows the Index.cshtml file that was created:

Add some HTML under the <h2> tag. The modified MvcMovie\Views\HelloWorld\Index.cshtml file is shown below.

@{
 ViewBag.Title = "Index";
}

<h2>Index</h2>

<p>Hello from our View Template!</p

Run the application and browse to the "hello world" controller (http://localhost:xxxx/HelloWorld). The Index method in

your controller didn't do much work; it simply ran the statement return View();, which indicated that we wanted to

use a view template file to render a response to the browser. Because we did not explicitly specify the name of the view

template file to use, ASP.NET MVC defaulted to using the Index.cshtml view file within the \Views\HelloWorld folder. The

image below shows the string hard-coded in the view.

Getting started with MVC3 Page | 19

Looks pretty good. However, notice that the browser's title bar says "Index" and the big title on the page says "My MVC

Application." Let's change those.

Getting started with MVC3 Page | 20

Changing Views and Layout Pages

First, let's change the "My MVC Application" title at the top of the page. That text is common to every page. It actually is

implemented in only one place in the project, even though it appears on every page in the application. Go to the

/Views/Shared folder inSolution Explorer and open the _Layout.cshtml file. This file is called a layout page and it's the

shared "shell" that all other pages use.

Getting started with MVC3 Page | 21

Layout templates allow you to specify the HTML container layout of your site in one place and then apply it across multiple

pages in your site. Note the @RenderBody() line of code near the bottom of the file.RenderBody is a placeholder

where all the view-specific pages you create show up, "wrapped" in the layout page. Change the title heading in the layout

template from "My MVC Application" to "MVC Movie App".

 <div id="title">
 <h1>MVC Movie App</h1>
 </div>

Run the application and notice that it now says "MVC Movie App". Click the About link, and you see how that page shows

"MVC Movie App", too. We were able to make the change once in the layout template and have all pages on the site reflect

the new title.

The complete _Layout.cshtml file is shown below:

<!DOCTYPE html>
<html>
<head>
 <title>@ViewBag.Title</title>
 <link href="@Url.Content("~/Content/Site.css")" rel="stylesheet" type="text/css"
/>
 <script src="@Url.Content("~/Scripts/jquery-1.4.4.min.js")"
type="text/javascript"></script>
</head>

<body>
 <div class="page">

 <div id="header">
 <div id="title">
 <h1>MVC Movie App</h1>
 </div>

Getting started with MVC3 Page | 22

 <div id="logindisplay">
 @Html.Partial("_LogOnPartial")
 </div>

 <div id="menucontainer">

 <ul id="menu">
 @Html.ActionLink("Home", "Index", "Home")
 @Html.ActionLink("About", "About", "Home")

 </div>
 </div>

 <div id="main">
 @RenderBody()
 <div id="footer">
 </div>
 </div>
 </div>
</body>
</html>

Now, let's change the title of the Index page (view).

Open MvcMovie\Views\HelloWorld\Index.cshtml. There are two places to make a change: first, the text that appears in the

title of the browser, and then in the secondary header (the <h2> element). We'll make them slightly different so you can

see which bit of code changes which part of the app.

@{
 ViewBag.Title = "Movie List";
}

<h2>My Movie List</h2>

<p>Hello from our View Template!</p>

To indicate the HTML title we want to display, we're setting a Title property of the ViewBag object in the code above

(which is in theIndex.cshtml ǀieǁ teŵplateͿ. If Ǉou look ďaĐk at the sourĐe Đode of the laǇout teŵplate, Ǉou’ll ŶotiĐe that the
template uses this value in the <title> element as part of the <head> section of the HTML. Using this approach, you can

easily pass other parameters between your view template and your layout file.

Run the application and browse to http://localhost:xx/HelloWorld. Notice that the browser title, the primary heading, and

the secondary headings have changed. (If you don't see changes in the browser, you might be viewing cached content. Press

Ctrl+F5 in your browser to force the response from the server to be loaded.)

Also notice how the content in the Index.cshtml ǀieǁ teŵplate ǁas ͞ŵerged͟ ǁith the _Layout.cshtml view template and a

single HTML response was sent to the browser. Layout templates make it really easy to make changes that apply across all of

the pages in your application.

Getting started with MVC3 Page | 23

Our little bit of "data" (in this case the "Hello from our View Template!" message) is hard-coded, though. Our MVC

application has a "V" (view) and we've got a "C" (controller), but no "M" (model) yet. Shortly, we'll walk through how create

a database and retrieve model data from it.

Passing Data from the Controller to the View

Before we go to a database and talk about models, though, let's first talk about passing information from the controller to a

view. Controller classes are invoked in response to an incoming URL request. A controller class is where you write the code

that handles the incoming parameters, retrieves data from a database, and ultimately decides what type of response to send

back to the browser. View templates can then be used from a controller to generate and format an HTML response back to

the browser.

Controllers are responsible for providing whatever data or objects are required in order for a view template to render a

response back to the browser. A view template should never perform business logic or interact with a database directly.

IŶstead, it should ǁork oŶlǇ ǁith the data that's proǀided to it ďǇ the ĐoŶtroller. MaiŶtaiŶiŶg this ͞separatioŶ of ĐoŶĐerŶs͟

helps keep your code clean and more maintainable.

Currently, the Welcome action method in the HelloWorldController class takes a name and a numTimes

parameter and then outputs the values directly to the browser. Rather than have the controller render this response as a

striŶg, let’s ĐhaŶge it to use a ǀieǁ teŵplate instead. The view template will generate a dynamic response, which means that

we need to pass appropriate bits of data from the controller to the view in order to generate the response. We can do this

by having the controller put the dynamic data that the view template needs in a ViewBag object that the view template

can then access.

Return to the HelloWorldController.cs file and change the Welcome method to add a Message and NumTimes value to

the ViewBag object. ViewBag is a dynamic object, which means you can put whatever you want in to it; the ViewBag

object has no defined properties until you put something inside it.The complete HelloWorldController.cs file looks like:

Getting started with MVC3 Page | 24

using System.Web;
using System.Web.Mvc;

namespace MvcMovie.Controllers
{
 public class HelloWorldController : Controller
 {
 public ActionResult Index()
 {
 return View();
 }

 public ActionResult Welcome(string name, int numTimes = 1)
 {
 ViewBag.Message = "Hello " + name;
 ViewBag.NumTimes = numTimes;

 return View();
 }
 }
}

Now the ViewBag object contains data that will be passed to the view automatically.

Getting started with MVC3 Page | 25

Next, we need a Welcome view template! In the Debug menu, select Build MvcMovie to make sure the project is compiled.

Getting started with MVC3 Page | 26

Then right-click inside the Welcome method and click Add View. Here's what the Add View dialog box looks like:

Click Add, and then add the following code under the <h2> element in the new Welcome.cshtml file. We'll make a loop and

say "Hello" as many times as the user says we should!

@{
 ViewBag.Title = "Welcome";
}

<h2>Welcome</h2>

 @for (int i=0; i < ViewBag.NumTimes; i++) {
 @ViewBag.Message
 }

Run the application and browse to the following URL:

http://localhost:xx/HelloWorld/Welcome?name=Scott&numtimes=4

Getting started with MVC3 Page | 27

Now data is taken from the URL and passed to the controller automatically. The controller packages up the data into a

ViewBag object and passes that object to the view. The view than displays the data as HTML to the user.

Well, that was a kind of an "M" for model, but not the database kind. Let's take what we've learned and create a database of

movies.

Getting started with MVC3 Page | 28

Adding a Model

In this section we'll add some classes for managing movies in a database. These classes will be the "model" part of our MVC

application.

We’ll use a .NET Fraŵeǁork data-access technology known as the Entity Framework to define and work with these model

Đlasses. The EŶtitǇ Fraŵeǁork ;ofteŶ referred to as ͞EF͟Ϳ supports a development paradigm called code-first. Code-first

allows you to create model objects by writing simple classes. (These are also known as POCO classes, from "plain-old CLR

objects.") You can then have the database created on the fly from your classes, which enables a very clean and rapid

development workflow.

Using NuGet to Install EFCodeFirst

We'll start by using the NuGet package manager (automatically installed by ASP.NET MVC 3) to add the EFCodeFirst library

to the MvcMovie project. This library lets us use the code-first approach.

Warning:

 You must stop debugging before you access the NuGet package manager. If you access NuGet while you are still debugging,

you'll get the error message and the Add Library Package Reference... menu item will disappear. You must then exit Visual

Web Developer and restart the project.

From the Tools menu, select Library Package Manager and then Add Library Package Reference.

Getting started with MVC3 Page | 29

The Add Library Package Reference dialog box appears.

By default, All is selected in the left pane. Because no packages are installed, the center pane shows No items found. Click

Online in the left pane.

http://i3.asp.net/common/www-css/i/MVC3/MVC3_gettingStarted_CS/img4/Add_Library_PackageReferenceDB.png
http://i3.asp.net/common/www-css/i/MVC3/MVC3_gettingStarted_CS/img4/Add_Library_PackageReferenceDB.png

Getting started with MVC3 Page | 30

NuGet queries the server for all available packages.

Getting started with MVC3 Page | 31

There are hundreds of packages available. We're interested in the EFCodeFirst package. In the search box, enter "EFCode".

In the search results, select the EFCodeFirst package and click the Install button.

After the package installs, click Close. The installation process downloaded the EFCodeFirst library and added it to the

MvcMovie project. The EFCodeFirst library is contained in the EntityFramework assembly.

http://i3.asp.net/common/www-css/i/MVC3/MVC3_gettingStarted_CS/img4/EFCodeFirstPkg.PNG
http://i3.asp.net/common/www-css/i/MVC3/MVC3_gettingStarted_CS/img4/EFCodeFirstPkg.PNG

Getting started with MVC3 Page | 32

Adding Model Classes

In Solution Explorer, right click the Models folder, select Add, and then select Class.

Name the class "Movie".

Getting started with MVC3 Page | 33

Add the following five properties to the Movie class:

public class Movie
{
 public int ID { get; set; }
 public string Title { get; set; }
 public DateTime ReleaseDate { get; set; }
 public string Genre { get; set; }
 public decimal Price { get; set; }
}

http://www.asp.net/mvc/tutorials/$MovieClassVWD[3].png

Getting started with MVC3 Page | 34

We'll use the Movie class above to represent movies in a database. Each instance of a Movie object will correspond to a

row within a database table, and each property of the Movie class will map to a column in the table.

In the same file, add the following MovieDBContext class:

 public class MovieDBContext : DbContext
{
 public DbSet<Movie> Movies { get; set; }
}

The MovieDBContext class represents the Entity Framework movie database context, which handles fetching, storing,

and updating Movie class instances in a database. The MovieDBContext derives from the DbContext base class

provided by the Entity Framework. In order to be able to reference the DbContext class, you need to add the following

using statement at the top of the file:

using System.Data.Entity;

The complete Movie.cs file is shown below.

using System;
using System.Data.Entity;

namespace MvcMovie.Models
{
 public class Movie
 {
 public int ID { get; set; }
 public string Title { get; set; }
 public DateTime ReleaseDate { get; set; }
 public string Genre { get; set; }
 public decimal Price { get; set; }
 }

 public class MovieDBContext : DbContext
 {
 public DbSet<Movie> Movies { get; set; }
 }
}

This small amount of code is everything you need to write in order to represent and store the movie data in a database.

Neǆt, let’s ďuild a Ŷeǁ MoviesController class that we can use to display the movie data and allow users to create new

movie listings.

Getting started with MVC3 Page | 35

Accessing your Model's Data from a Controller

In this section, you'll create a new MoviesController class and write code that retrieves the movie data and displays it

in the browser using a view template.

Right-click the Controllers folder and make a new MoviesController class.

This creates a new MoviesController.cs file in the project's Controllers folder. Let's update the Index action method in the

MoviesController class so that it retrieves the list of movies.

Note that in order to be able to reference the MovieDBContext class we created earlier, you need to add the following

two using statements at the top of the file:

using MvcMovie.Models;
using System.Linq;

The code for the MoviesController class looks like:

using MvcMovie.Models;
using System.Linq;
using System;
using System.Web.Mvc;

namespace MvcMovie.Controllers
{
 public class MoviesController : Controller
 {
 MovieDBContext db = new MovieDBContext();

 public ActionResult Index()
 {
 var movies = from m in db.Movies
 where m.ReleaseDate > new DateTime(1984, 6, 1)
 select m;

 return View(movies.ToList());
 }
 }
}

Getting started with MVC3 Page | 36

The code is performing a LINQ query to retrieve only movies that were released after the summer of 1984. We'll need a view

template to render this list of movies, so right-click inside the method and select Add View to create it.

In the Add View dialog box, we'll indicate that we're passing a Movie class to the view template. Unlike the previous times

when we used the Add View dialog box and chose to create an empty template, this time we'll indicate that we want Visual

Web Developer to automatically scaffold a view template for us, meaning that the new view template will contain some

default content. To do this, selectList in the Scaffold template drop-down list.

Remember that after you've created a new class, you'll need to compile your application before the class shows up in the

Add View dialog box.

Click Add. Visual Web Developer automatically generates the code for a view that displays a list of movies. This is a good

time to change the <h2> heading to something like "My Movie List" like you did earlier with the "Hello World" view.

The code below show a portion of the Index view for the movie controller. In this section, change the format string for the

release date from {0:g} to {0:d} (that is, from general date to short date). Change the format string for the Price

property from {0:F} to {0:c} (from float to currency).

In addition, in the table header, change the column name from "ReleaseDate" to "Release Date" (two words).

http://msdn.microsoft.com/en-us/library/bb397926.aspx

Getting started with MVC3 Page | 37

@model IEnumerable<MvcMovie.Models.Movie>

@{
 ViewBag.Title = "Movie List";
}

<h2>My Movie List</h2>

<p>
 @Html.ActionLink("Create New", "Create")
</p>
<table>
 <tr>
 <th></th>
 <th>
 Title
 </th>
 <th>
 Release Date
 </th>
 <th>
 Genre
 </th>
 <th>
 Price
 </th>
 </tr>

@foreach (var item in Model) {
 <tr>
 <td>
 @Html.ActionLink("Edit", "Edit", new { id=item.ID }) |
 @Html.ActionLink("Details", "Details", new { id=item.ID }) |
 @Html.ActionLink("Delete", "Delete", new { id=item.ID })
 </td>
 <td>
 @item.Title
 </td>
 <td>
 @String.Format("{0:d}", item.ReleaseDate)
 </td>
 <td>
 @item.Genre
 </td>
 <td>
 @String.Format("{0:c}", item.Price)
 </td>
 </tr>
}
</table>

Strongly typed Models and the @model keyword

Earlier in this tutorial, we covered how a Controller can pass data/objects to a view template using the ViewBag. The

ViewBag is a dynamic object, and provides a convenient, late-bound, way to pass bits of information to a view.

ASP.NET MVC also provides the ability to pass data/objects to a view template using a strongly-typed approach. This

strongly-typed approach enables richer editor intellisense, and better compile-time checking of your code. We are using this

approach above with our MoviesController and Index.cshtml view template.

Getting started with MVC3 Page | 38

Notice how we are passing an argument when calling the View() helper method within our Index action:

public class MoviesController : Controller
{
 MovieDBContext db = new MovieDBContext();

 public ActionResult Index()
 {
 var movies = from m in db.Movies
 where m.ReleaseDate > new DateTime(1984, 6, 1)
 select m;

 return View(movies.ToList());
 }
}

This line of code indicates that we are passing a list of Movies from our Controller to our View:

return View(movies.ToList());

View templates can indicate the type of object they expect to be passed using a@model statement at the top of the view

template file. Remember how when we created our Index.cshtml ǀieǁ teŵplate ǁe ĐheĐked the ͞Create a stroŶglǇ-typed

ǀieǁ͟ ĐheĐkďoǆ ǁithiŶ the ͞Add Vieǁ͟ dialog, aŶd told it that ǁe ǁere passiŶg a list of Moǀies? This Đaused Visual Weď
Developer to automatically emit the following @model statement at the top of our Index.cshtml file when it scaffolded our

view:

@model IEnumerable<MvcMovie.Models.Movie>

This @model directive allows us to access the list of Movies that our Controller passed us usiŶg a ͞Model͟ oďjeĐt that is
strongly-typed. For example, within our Index.cshtml template we are looping over the movies by doing a foreach statement

on this strongly-typed Model:

@foreach (var item in Model) {
 <tr>
 <td>
 @Html.ActionLink("Edit", "Edit", new { id=item.ID }) |
 @Html.ActionLink("Details", "Details", new { id=item.ID }) |
 @Html.ActionLink("Delete", "Delete", new { id=item.ID })
 </td>
 <td>
 @item.Title
 </td>
 <td>
 @String.Format("{0:d}", item.ReleaseDate)
 </td>
 <td>
 @item.Genre
 </td>
 <td>
 @String.Format("{0:c}", item.Price)
 </td>
 </tr>
}

BeĐause our ͞Model͟ is stroŶglǇ-typed (as an IEnumerable<Movie>Ϳ, eaĐh ͞iteŵ͟ ǁithiŶ the loop is stroŶglǇ- typed as a

͞Moǀie͟. AŵoŶg other ďeŶefits, this ŵeaŶs that ǁe get Đoŵpile-time checking of our code, and full Intellisense support

within the code editor:

Getting started with MVC3 Page | 39

Getting started with MVC3 Page | 40

Creating a Connection String and Working with SQL Server Express

The MovieDBContext class we created in the previous section handles the task of connecting to the database and

mapping Movie objects to database records. One question you might ask, though, is how to specify which database it will

ĐoŶŶeĐt to? We’ll do that ďǇ addiŶg ĐoŶŶeĐtioŶ iŶforŵatioŶ iŶ the Web.config file of our application.

Open the application root Web.config file. (Not the Web.config file in the Views folder.) The image below show both

Web.config files; open the Web.config file circled in red.

Add the following connection string to the <connectionStrings> element in the Web.config file.

 <add name="MovieDBContext"
 connectionString="Server=.\SQLEXPRESS;
 Database=Movies;Trusted_Connection=true"
 providerName="System.Data.SqlClient" />

The following code shows a portion of the Web.config file with the new connection string added:

<configuration>
 <connectionStrings>
 <add name="ApplicationServices"
 connectionString="data source=.\SQLEXPRESS;Integrated
Security=SSPI;AttachDBFilename=|DataDirectory|aspnetdb.mdf;User Instance=true"
 providerName="System.Data.SqlClient" />
 <add name="MovieDBContext"
 connectionString="Server=.\SQLEXPRESS;
 Database=Movies;Trusted_Connection=true"
 providerName="System.Data.SqlClient" />
 </connectionStrings>

Getting started with MVC3 Page | 41

The value of the connectionString attribute indicates that we want to use a Movies database that's managed by a

local instance of SQL Server Express. When you installed Visual Web Developer Express, the installation process

automatically installed SQL Server Express on your computer as well, which means you have everything necessary for the

database to work.

Run the application and browse to the Movies controller by appending/Movies to the URL in the address bar of your

browser. An empty list of movies is displayed.

EF code-first detected that the database connection-striŶg ǁe proǀided poiŶted to a ͞Moǀies͟ dataďase that didŶ’t Ǉet eǆist.
And so it helpfully created one for us automatically. You can verify that it's been created by looking in the C:\Program

Files\Microsoft SQL \MSSQL10.SQLEXPRESS\MSSQL\DATA folder.

Remember that in the previous part of the tutorial, we created a Movie model using the code below:

using System;
using System.Data.Entity;

namespace MvcMovie.Models
{
 public class Movie
 {
 public int ID { get; set; }
 public string Title { get; set; }
 public DateTime ReleaseDate { get; set; }
 public string Genre { get; set; }
 public decimal Price { get; set; }
 }

 public class MovieDBContext : DbContext
 {

Getting started with MVC3 Page | 42

 public DbSet<Movie> Movies { get; set; }
 }
}

As you just saw, when you first accessed the MovieDBContext instance using the MoviesController code above,

the Entity Framework automatically created an empty Movies database for you. It mapped the Movies properties of the

MovieDBContext class to a new Movies table that it created in the database. Each row in the table is mapped to a

Movie instance and each column in the Movies table is mapped to a property on theMovie class.

You can use the SQL Server Management Studio tool to see the database schema that was created using the model. Start

SQL Server Management Studio.

Getting started with MVC3 Page | 43

The Connect to Server dialog box is displayed. In the Server name box, enter the following name: .\SQLEXPRESS

Getting started with MVC3 Page | 44

Click Connect. The Movies database is displayed in the Object Explorer pane.

Getting started with MVC3 Page | 45

Right-click the Movies table and select Design.

Getting started with MVC3 Page | 46

You see the database schema.

Notice how the schema of the Movies database maps to the Movie class you created earlier. Entity Framework code-first

automatically created this database schema for you based on your Movie class.

You now have the database and a simple listing page to display content from it. In the next tutorial, we'll add a Create

method and a Create view that lets you add movies to this database.

Getting started with MVC3 Page | 47

Adding a Create Method and Create View

In this section we are going to add support for creating and saving new movies in the database. We'll implement the

/Movies/Create URL to enable this. It will show an HTML <form> with appropriate input elements that a user can fill out to

eŶter a Ŷeǁ ŵoǀie. WheŶ a user suďŵits the forŵ, ǁe’ll retrieǀe the ǀalues theǇ posted aŶd saǀe theŵ in the database.

Displaying the Create Form

We’ll start by adding a Create action method to our existing MoviesController class. It will return

back a view that contains an HTML form:

public ActionResult Create()
{
 return View();
}

Now let's implement the Create view that we'll use to display the form to the user. Right-click inside the Create method

and select Add View from the context menu to create the view template for the movie form.

Specify that you're going to pass a Movie object to the view template as its model class. In the Scaffold template list,

choose Create, then click Add.

Getting started with MVC3 Page | 48

After you click the Add button, the Views\Movies\Create.cshtml view template is created. Because you selectedCreate in the

Scaffold template list, Visual Web Developer automatically generated (scaffolded) some default content in the view. The

scaffolding created an HTML form and a place for validation error messages. It examined the Movie class and created code

to render <label> and <input> elements for each property of the class. The listing below shows theCreate view that

was generated:

@model MvcMovie.Models.Movie

@{
 ViewBag.Title = "Create";
}

<h2>Create</h2>

<script src="@Url.Content("~/Scripts/jquery.validate.min.js")"
type="text/javascript"></script>
<script src="@Url.Content("~/Scripts/jquery.validate.unobtrusive.min.js")"
type="text/javascript"></script>

@using (Html.BeginForm()) {
 @Html.ValidationSummary(true)
 <fieldset>
 <legend>Movie</legend>

 <div class="editor-label">
 @Html.LabelFor(model => model.Title)
 </div>
 <div class="editor-field">
 @Html.EditorFor(model => model.Title)
 @Html.ValidationMessageFor(model => model.Title)
 </div>

 <div class="editor-label">
 @Html.LabelFor(model => model.ReleaseDate)
 </div>
 <div class="editor-field">
 @Html.EditorFor(model => model.ReleaseDate)
 @Html.ValidationMessageFor(model => model.ReleaseDate)
 </div>

 <div class="editor-label">
 @Html.LabelFor(model => model.Genre)
 </div>
 <div class="editor-field">
 @Html.EditorFor(model => model.Genre)
 @Html.ValidationMessageFor(model => model.Genre)
 </div>

 <div class="editor-label">
 @Html.LabelFor(model => model.Price)
 </div>
 <div class="editor-field">
 @Html.EditorFor(model => model.Price)
 @Html.ValidationMessageFor(model => model.Price)
 </div>

 <p>
 <input type="submit" value="Create" />
 </p>
 </fieldset>

Getting started with MVC3 Page | 49

}

<div>
 @Html.ActionLink("Back to List", "Index")
</div>

The scaffolded code uses several HTML helper methods to help streamline the HTML markup. TheHtml.LabelFor helper

displays the name of the field ("Title", "ReleaseDate", "Genre", or "Price"). TheHtml.EditorFor helper displays an HTML

<input> element where the user can enter a value. TheHtml.ValidationMessageFor helper displays any validation

messages associated with that property. Notice how our view template has a @model MvcMovie.Models.Movie

statement at the top of the file – this strongly-tǇpes the ͞Model͟ of our ǀieǁ teŵplate to ďe a Moǀie.

http://msdn.microsoft.com/en-us/library/gg401864(VS.98).aspx
http://msdn.microsoft.com/en-us/library/system.web.mvc.html.editorextensions.editorfor(VS.98).aspx
http://msdn.microsoft.com/en-us/library/system.web.mvc.html.validationextensions.validationmessagefor(VS.98).aspx

Getting started with MVC3 Page | 50

Run the application and navigate to the /Movies/Create URL. You’ll see aŶ HTML forŵ like the folloǁiŶg:

Getting started with MVC3 Page | 51

Right-ĐliĐk ǁithiŶ the ďroǁser aŶd Đhoose the ͞Vieǁ “ourĐe͟ optioŶ. The HTML iŶ the page looks like the folloǁiŶg ;the
menu template was excluded for clarity):

<!DOCTYPE html>
<html>
<head>
 <title>Create</title>
 <link href="/Content/Site.css" rel="stylesheet" type="text/css" />
 <script src="/Scripts/jquery-1.4.4.min.js" type="text/javascript"></script>
</head>

<body>

<h2>Create</h2>

<script src="/Scripts/jquery.validate.min.js" type="text/javascript"></script>
<script src="/Scripts/jquery.validate.unobtrusive.min.js"
type="text/javascript"></script>

<form action="/Movies/Create" method="post"> <fieldset>
 <legend>Movie</legend>

 <div class="editor-label">
 <label for="Title">Title</label>
 </div>
 <div class="editor-field">
 <input class="text-box single-line" data-val="true" data-val-
required="Title is required" id="Title" name="Title" type="text" value="" />
 <span class="field-validation-valid" data-valmsg-for="Title" data-
valmsg-replace="true">
 </div>

 <div class="editor-label">
 <label for="ReleaseDate">ReleaseDate</label>
 </div>
 <div class="editor-field">
 <input class="text-box single-line" data-val="true" data-val-
required="The ReleaseDate field is required." id="ReleaseDate" name="ReleaseDate"
type="text" value="" />
 <span class="field-validation-valid" data-valmsg-for="ReleaseDate" data-
valmsg-replace="true">
 </div>

 <div class="editor-label">
 <label for="Genre">Genre</label>
 </div>
 <div class="editor-field">
 <input class="text-box single-line" id="Genre" name="Genre" type="text"
value="" />
 <span class="field-validation-valid" data-valmsg-for="Genre" data-
valmsg-replace="true">
 </div>

 <div class="editor-label">
 <label for="Price">Price</label>
 </div>
 <div class="editor-field">
 <input class="text-box single-line" data-val="true" data-val-number="The
field Price must be a number." data-val-range="Price must be between $1 and $100"
data-val-range-max="100" data-val-range-min="1" data-val-required="The Price field
is required." id="Price" name="Price" type="text" value="" />

Getting started with MVC3 Page | 52

 <span class="field-validation-valid" data-valmsg-for="Price" data-
valmsg-replace="true">
 </div>

 <p>
 <input type="submit" value="Create" />
 </p>
 </fieldset>
</form>
<div>
 Back to List
</div>

 <div id="footer">
 </div>
 </div>
 </div>
</body>
</html>

The <input> elements are in an HTML <form> element whose action attribute is set to post to the /Movies/Create

URL. The form data will be posted to the server when the Create button is clicked.

Processing the HTTP-POST

We’ǀe iŵpleŵeŶted the Đode ŶeĐessarǇ to shoǁ our Đreate forŵ. Our Ŷeǆt step will be to write the code to handle what

happeŶs ǁheŶ the forŵ is posted ďaĐk to the serǀer. We’ll ǁaŶt to take the posted ǀalues aŶd saǀe theŵ as a Ŷeǁ Moǀie iŶ
our database.

To do this, we'll add a second Create action method to the MoviesController class. This second Create action method

will have an [HttpPost] attribute on it – indicating that we want to use it to handle POST requests to the

/Movies/Create URL. All non-POST requests (in effect, GET requests) to the /Movies/Create URL will instead be handled

by the first Create action method, which simply displays the empty form.

The following shows the code for both Create action methods in the MoviesController class:

public ActionResult Create()
{
 return View();
}

[HttpPost]
public ActionResult Create(Movie newMovie)
{
 if (ModelState.IsValid)
 {
 db.Movies.Add(newMovie);
 db.SaveChanges();
 return RedirectToAction("Index");
 }
 else
 {
 return View(newMovie);
 }
}

Getting started with MVC3 Page | 53

Earlier you saw how ASP.NET MVC can automatically pass querystring parameters from a URL (for example,

/HelloWorld/Welcome?name=Scott&numTimes=5) as method parameters to an action method. In addition to

passing querystring parameters, ASP.NET MVC can also pass posted form parameters this way.

Form posted parameters can be passed as individual parameters to an action method. For example, the ASP.NET MVC

framework can pass in our form posted values as parameters to the POST Create action method as shown below:

 [HttpPost]
 public ActionResult Create(string title, DateTime releaseDate, string genre,
decimal price)
 {

The form posted values can also be mapped to a complex object with properties (like our Movie class) and passed as a

single parameter to an action method. This is the approach we are taking within our HTTP-POST Create action method.

Notice below how it accepts a single Movie object as a parameter:

[HttpPost]
public ActionResult Create(Movie newMovie)
{
 if (ModelState.IsValid)
 {
 db.Movies.Add(newMovie);
 db.SaveChanges();
 return RedirectToAction("Index");
 }
 else
 {
 return View(newMovie);
 }
}

The ModelState.IsValid check in the code above verifies that the data submitted in the form can be used to create a

Movie object . If the data is valid, our code adds the posted Movie to the Movies collection of the MoviesDBContext

instance. The code then saves the new movie to the database by calling the SaveChanges() method on our

MoviesDbContext, which persists changes to the database. After saving the data, the code redirects the user to the

Index action method of the MoviesController class, which causes the new movie to be displayed in the listing of

movies.

If the posted values are not valid, they are redisplayed in the form. The Html.ValidationMessageFor helpers we are using in

the Create.cshtml view template take care of displaying appropriate error messages for any posted values that were not

valid.

Getting started with MVC3 Page | 54

Creating a Movie

Run the application and navigate to the /Movies/Create URL. Enter some details about a movie and then click the Create

button.

Clicking the Create button will cause our form to post back to the server, and the movie will be saved in the database. We're

then redirected to the /Movies URL, where we can see the newly created movie in the listing.

Getting started with MVC3 Page | 55

You might have noticed that the price displayed in the list is $10, not the $9.99 we entered. That's because the default

precision of the Decimal type in our database currently doesn't allow decimal point values. We'll fix this when we make

some tweaks to the model in the next section.

We now have the beginning of an application that can create and display data from a database. Below is what our

MoviesController class looks like:

using System;
using System.Linq;
using System.Web.Mvc;
using MvcMovie.Models;

namespace MvcMovie.Controllers
{
 public class MoviesController : Controller
 {
 MovieDBContext db = new MovieDBContext();

 //
 // GET: /Movies/

 public ActionResult Index()
 {
 var movies = from m in db.Movies
 where m.ReleaseDate > new DateTime(1984, 6, 1)
 select m;

 return View(movies.ToList());
 }

 //

http://aspnet13.orcsweb.com/media/865407/WindowsLiveWriter_ImplementingEditDetailsandDelete_11047_HarrySallyMovieListFullIE_thumb_1.png

Getting started with MVC3 Page | 56

 // GET: /Movies/Create

 public ActionResult Create()
 {
 return View();
 }

 //
 // POST: /Movies/Create

 [HttpPost]
 public ActionResult Create(Movie newMovie)
 {
 if (ModelState.IsValid)
 {
 db.Movies.Add(newMovie);
 db.SaveChanges();
 return RedirectToAction("Index");
 } else
 {
 return View(newMovie);
 }
 }
 }
}

Note about locales

If you normally work with a locale other than English, you need to include the correct locale-specific jQuery scripts, which

you can download from the following URL:

http://plugins.jquery.com/node/8/release

For example, for German locales, you need to download the following file:

jquery.validate_17\jquery-validate\localization\methods_de.js

You then need to include the correct script reference in the Movies\Create.cshtml file, as in the following example:

<script src="@Url.Content("~/Scripts/methods_de.js")"
type="text/javascript"></script>

You don't need to include the localized messages script (messages_de.js for German locales), because ASP.NET MVC and the

DataAnnotations types use their own localized messages.

In addition to including the localized methods script, the current locale on the server must be set to the target locale so that

any server-side messages (used for both client-side and server-side validation) will be used correctly.

If you use a non-English locale, you should also use the correct locale-specific character for the decimal delimiter in the

price. (In German, for example, you would enter a price as "9,99".) On some non-English keyboards, the dot character (.)

does not produce the English dot character used for decimal places; in those cases, if you use a dot character for the decimal

point, you might see the following error:

The field Price must be a number.

In the next section, we will look at how we can add an additional property to our Movie model, and customize the precision

of our Price column within the database.

http://plugins.jquery.com/node/8/release

Getting started with MVC3 Page | 57

Adding a New Field to the Movie Model and Table

In this section we are going to make some changes to our Model classes and walkthrough how we can evolve the schema of

our database to match them.

Adding a Rating Property to our Movie Model

Let’s ďegiŶ ďǇ addiŶg aŶ additioŶal ͞RatiŶg͟ propertǇ to our eǆistiŶg Moǀie Đlass. OpeŶ the Movie.cs file and add a Rating

property to the Movie class within it:

public string Rating { get; set; }

The complete Movie class should now look like the code below:

public class Movie
{
 public int ID { get; set; }
 public string Title { get; set; }
 public DateTime ReleaseDate { get; set; }
 public string Genre { get; set; }
 public decimal Price { get; set; }
 public string Rating { get; set; }
}

Recompile the application using the Debug->Build Movie menu command.

Noǁ that ǁe’ǀe updated our Model, let’s also update our \Views\Movies\Index.cshtml and \Views\Movies\Create.cshtml

view templates to support the new Rating property.

Open the \Views\Movies\Index.cshtml file and add a <th>Rating</th> column heading just after the Price column.

Then add a <td> column near the end of the template to render the @item.Rating value. Below is what the updated

Index.cshtml view template should look like after we do this:

<table>
 <tr>
 <th></th>
 <th>Title</th>
 <th>Release Date</th>
 <th>Genre</th>
 <th>Price</th>
 <th>Rating</th>
 </tr>
 @foreach (var item in Model) {
 <tr>
 <td>
 @Html.ActionLink("Edit", "Edit", new { id=item.ID }) |
 @Html.ActionLink("Details", "Details", new { id=item.ID }) |
 @Html.ActionLink("Delete", "Delete", new { id=item.ID })
 </td>
 <td>
 @item.Title
 </td>
 <td>
 @String.Format("{0:d}", item.ReleaseDate)
 </td>
 <td>
 @item.Genre
 </td>

Getting started with MVC3 Page | 58

 <td>
 @String.Format("{0:c}", item.Price)
 </td>
 <td>
 @item.Rating
 </td>
 </tr>
}
</table>

Next open the \Views\Movies\Create.cshtml file and add the below markup near the end of the form. It will render a textbox

so that a Rating can be specified when a new Movie is created:

<div class="editor-label">
 @Html.LabelFor(model => model.Rating)
</div>
<div class="editor-field">
 @Html.EditorFor(model => model.Rating)
 @Html.ValidationMessageFor(model => model.Rating)
</div>

Getting started with MVC3 Page | 59

Managing Model / Database Schema Differences

We’ǀe updated our appliĐatioŶ Đode to support the Ŷeǁ RatiŶg propertǇ.

Let’s Ŷoǁ re-run the application and navigate to the /Movies URL. WheŶ ǁe do this, though, ǁe’ll fiŶd that the folloǁiŶg
error occurs:

We are seeing this error because the updated Movie model class within our application is now different than the schema of

the Moǀie taďle of our eǆistiŶg dataďase ;there is Ŷo ĐorrespoŶdiŶg ͞RatiŶg͟ ĐoluŵŶ iŶ the dataďase taďleͿ.

By default, when you use EF code-first to automatically create a database (like we did earlier in this tutorial), EF code-first

adds a table to the database to help track whether the schema of the database is in sync with the model classes it was

Getting started with MVC3 Page | 60

generated from. If it's not in sync, EF will throw an error. This makes it easier to track down issues at development time that

you might otherwise only find (by obscure errors) at run time. The sync checking feature is what causes the above error

message to be displayed.

There are two approaches to resolving the above error:

1. Have the Entity Framework automatically drop and re-create the database based on the new model class schema.

This approach is very convenient when doing active development on a test database, as it allows you to quickly

evolve your Model and database schema together. The downside, though, is that you lose existing data in the

database (and so you don’t want to use it on a production database!).

2. Modify the schema of the existing database so that it matches the model classes. The advantage of this approach is

that you keep your data. You can make this change either manually, or by creating a database change script.

For this tutorial, we'll use the first approach – and have EF code-first automatically re-create the database anytime the

model changes.

Automatically Recreate the Database on Model Changes

Let’s update our appliĐatioŶ so that EF Đode-first automatically drops and re-creates our database anytime we evolve the

model of our application.

Warning

: You should only enable this approach of automatically dropping and re-creating the database using a development/test

database, and never on a production database with real data. Using it on a production server can lead to data loss.

In Solution Explorer, right click the Models folder, select Add, and then select Class.

Getting started with MVC3 Page | 61

Name the class "MovieIntializer". Update the MovieIntializer class to contain the following code:

using System;
using System.Collections.Generic;
using System.Data.Entity.Database;

namespace MvcMovie.Models
{
 public class MovieInitializer : DropCreateDatabaseIfModelChanges<MovieDBContext>
 {
 protected override void Seed(MovieDBContext context)
 {
 var movies = new List<Movie> {

 new Movie { Title = "When Harry Met Sally",
 ReleaseDate=DateTime.Parse("1989-1-11"),
 Genre="Romantic Comedy",
 Rating="R",
 Price=7.00M},

 new Movie { Title = "Ghostbusters 2",
 ReleaseDate=DateTime.Parse("1986-2-23"),
 Genre="Comedy",
 Rating="R",
 Price=9.00M},
 };

 movies.ForEach(d => context.Movies.Add(d));
 }
 }
}

The MovieInitializer class above indicates that the database used by our Model should be dropped and

autoŵatiĐallǇ reĐreated if our Model Đlasses eǀer ĐhaŶge. We are usiŶg its ͞“eed͟ ŵethod to speĐifǇ soŵe default data that
we want to automatically add to the database any time it is created (or re-created). This provides a useful way to populate

some sample data into our database, without requiring us to manually populate it each time we make a database change.

Noǁ that ǁe’ǀe defiŶed our MovieInitializer Đlass, ǁe’ll ǁaŶt to ǁire it up so that eaĐh tiŵe our appliĐatioŶ ruŶs it
checks to see whether our Model classes are different than the schema in our the database, and if so re-creates it to match

(and then populates it with the sample seed data).

Getting started with MVC3 Page | 62

Open the Global.asax file located at the root of the MvcMovies project:

The Gloďal.asaǆ file ĐoŶtaiŶs the ͞AppliĐatioŶ Class͟ of our projeĐt, aŶd ĐoŶtaiŶs aŶ Application_Start() event

handler that will run when our application first starts up.

http://aspnet13.orcsweb.com/media/866213/WindowsLiveWriter_ImplementingEditDetailsandDelete_11047_Global_asax_thumb_1.png

Getting started with MVC3 Page | 63

Let’s add tǁo usiŶg stateŵeŶts to the top of the file. The first refereŶĐes the EŶtitǇ Fraŵeǁork ŶaŵespaĐe, aŶd the seĐoŶd
references the namespace where our MovieInitializer class lives:

using System.Data.Entity.Database; // DbDatabase.SetInitialize
using MvcMovie.Models; // MovieInitializer

Then find the Application_Start method and add a call to DbDatabase.SetInitializer() at the beginning of

the method as shown below:

protected void Application_Start()
{
 DbDatabase.SetInitializer<MovieDBContext>(new MovieInitializer());

 AreaRegistration.RegisterAllAreas();
 RegisterGlobalFilters(GlobalFilters.Filters);
 RegisterRoutes(RouteTable.Routes);
}

The DbDatabase.SetInitializer statement we just added indicates that the database used by our

MovieDBContext should be automatically deleted and recreated if the schema in the database does not match the

current state of our Movie model objects. It will then populate the database with the ͞seed͟ saŵple data speĐified ǁithiŶ
our MovieInitializer class.

Close the Global.asax file.

Let’s Ŷoǁ re-run our application again and navigate to the /Movies URL. When the application starts up, it will detect that

our Model structure no longer matches the schema of our database, and automatically recreates the database to match the

Ŷeǁ Model struĐture. It ǁill theŶ populate the dataďase ǁith the tǁo saŵple Moǀies ǁe speĐified as ͞seed͟ data:

http://aspnet13.orcsweb.com/media/866317/WindowsLiveWriter_ImplementingEditDetailsandDelete_11047_MovieList_thumb.png

Getting started with MVC3 Page | 64

CliĐk the ͞Create͟ liŶk to add a Ŷeǁ Moǀie:

Getting started with MVC3 Page | 65

Our new Movie, complete with Rating, will now show up in the Movies listing:

Fixing the Precision of our Price

In the screen-shots above you might have noticed that we have an issue with our Price column. We entered $9.99 as the

price in our Create form – and yet it is showing up as $10.00 in our movie listing page. Why is that?

This is happening because when EF code-first created our database, it used a default precision setting of (18:0) when

creating columns for Decimal data-types. This causes a value of $9.99 to ďe rouŶded up to $ϭϬ. We’ll ǁaŶt to ĐhaŶge this so
that we instead store at least two decimal places (18:2). The good news is that EF code-first allows you to easily override the

mapping rules for how Models are persisted and loaded from a database. You can use this mechanism to override the

default typing conventions and table inheritance rules used by EF code-first, and save data however you want within a

database.

To change the precision of how our Price column is persisted in a database, open up the Movie.cs file within the \Models

folder of the project. Add a using statement for System.Data.Entity.ModelConfiguration.

using System.Data.Entity.ModelConfiguration;

Add the following OnModelCreating override method to our existing MovieDBContext class:

public class MovieDBContext : DbContext
 {
 public DbSet<Movie> Movies { get; set; }

 protected override void OnModelCreating(ModelBuilder modelBuilder)
 {
 modelBuilder.Entity<Movie>().Property(p => p.Price).HasPrecision(18, 2);
 }
 }

http://aspnet13.orcsweb.com/media/866575/WindowsLiveWriter_ImplementingEditDetailsandDelete_11047_MovieListRioBravo_thumb_1.png

Getting started with MVC3 Page | 66

The OnModelCreating() method can be used to override/customize the mapping rules for how our Model classes are

ŵapped to/froŵ our dataďase. The Đode aďoǀe uses EF’s ModelBuilder API to indicate that we want thePrice

property of our Movie objects to have a precision of two decimal places when persisted in the database.

The full code listing for the Movie.cs file is shown below:

using System;
using System.Data.Entity;
using System.Data.Entity.ModelConfiguration;

namespace MvcMovie.Models
{
 public class Movie
 {
 public int ID { get; set; }
 public string Title { get; set; }
 public DateTime ReleaseDate { get; set; }
 public string Genre { get; set; }
 public decimal Price { get; set; }
 public string Rating { get; set; }
 }

 public class MovieDBContext : DbContext
 {
 public DbSet<Movie> Movies { get; set; }

 protected override void OnModelCreating(ModelBuilder modelBuilder)
 {
 modelBuilder.Entity<Movie>().Property(p => p.Price).HasPrecision(18, 2);
 }
 }
}

Let’s Ŷoǁ re-run our application and navigate again to the /Movies URL. When the application starts up, it will detect once

again that our Model structure no longer matches the schema of our database, and automatically recreate the database to

match the new Model structure (and have the new Price precision).

Getting started with MVC3 Page | 67

Create a new Movie and enter a price of 9.99. Notice how the decimal price is now correctly persisted in the database and

shows up in our movie listing:

In this section we showed how you can quickly modify your Model objects, and keep your database in sync with the changes.

We also showed how you can pre-populate your newly created databases with sample data to allow you to quickly try out

aŶd test sĐeŶarios. Neǆt, let’s look at hoǁ ǁe ĐaŶ add riĐher ǀalidatioŶ logiĐ to our Model Đlasses, aŶd eŶaďle soŵe ďusiŶess

rules to be enforced.

http://aspnet13.orcsweb.com/media/866671/WindowsLiveWriter_ImplementingEditDetailsandDelete_11047_RioBravo999_thumb.png

Getting started with MVC3 Page | 68

Adding Validation to the Model

In this section we'll add validation logic to our Movie model, and we'll ensure that the validation rules are enforced any

time a user attempts to create or edit a movie using our application.

Keeping Things DRY

One of the core design tenets of ASP.NET MVC is DRY ("'Don't Repeat Yourself"). ASP.NET MVC encourages you to specify

functionality or behavior only once, and then have it be reflected everywhere in an application. This reduces the amount of

code you need to write and makes the code you do write much easier to maintain.

The validation support provided by ASP.NET MVC and EF code-first is a great example of the DRY principle in action. You can

declaratively specify validation rules in one place (the model class) and then those rules are enforced everywhere within the

application.

Let's look at how we can take advantage of this validation support in the movie application.

Adding Validation Rules to the Movie Model

We'll begin by adding some validation logic to the Movie class.

Open the Movie.cs file. Add a using statement at the top of the file that references the

System.ComponentModel.DataAnnotations namespace:

using System.ComponentModel.DataAnnotations;

The namespace is part of the .NET Framework. It provides a built-in set of validation attributes that you can apply

declaratively to any class or property.

Let's update the Movie class to take advantage of the built-in Required, StringLength, and Range validation attributes using

the code below:

public class Movie
{
 public int ID { get; set; }

 [Required(ErrorMessage = "Title is required")]
 public string Title { get; set; }

 [Required(ErrorMessage = "Date is required")]
 public DateTime ReleaseDate { get; set; }

 [Required(ErrorMessage = "Genre must be specified")]
 public string Genre { get; set; }

 [Required(ErrorMessage = "Price Required")]
 [Range(1, 100, ErrorMessage = "Price must be between $1 and $100")]
 public decimal Price { get; set; }

 [StringLength(5)]
 public string Rating { get; set; }
}

http://msdn.microsoft.com/en-us/library/system.componentmodel.dataannotations.aspx
http://msdn.microsoft.com/en-us/library/system.componentmodel.dataannotations.requiredattribute.aspx
http://msdn.microsoft.com/en-us/library/system.componentmodel.dataannotations.stringlengthattribute.aspx
http://msdn.microsoft.com/en-us/library/system.componentmodel.dataannotations.rangeattribute.aspx

Getting started with MVC3 Page | 69

The validation attributes above specify behavior we want enforced on the model properties they are applied to. The

Required attribute indicates that a property must have a value; in this sample, a movie has to have a Title, ReleaseDate,

Genre, and Price in order to be valid. The Range attribute constrains a value to within a specified range. The

StringLength attribute lets you set the maximum length of a stringproperty, and optionally its minimum length.

EF code-first ensures that the validation rules you specify on a model class are enforced before allowing the application to

save changes in the database. For example, the code below will throw an exception when the SaveChanges method is

called, because several required Movie property values are missing and the price is zero (which is out of the valid range).

MovieDBContext db = new MovieDBContext();

Movie movie = new Movie();
movie.Title = "Gone with the Wind";
movie.Price = 0.0M;

db.Movies.Add(movie);
db.SaveChanges(); // <= Will throw validation exception

Having validation rules automatically enforced by the Entity Framework helps make our application more robust. It also

ensures that we can't forget to validate something and inadvertently let bad data into the database.

Here's a complete code listing for the updated Movie.cs file:

using System;
using System.ComponentModel.DataAnnotations;
using System.Data.Entity;
using System.Data.Entity.ModelConfiguration;

namespace MvcMovie.Models
{
 public class Movie
 {
 public int ID { get; set; }

 [Required(ErrorMessage = "Title is required")]
 public string Title { get; set; }

 [Required(ErrorMessage = "Date is required")]
 public DateTime ReleaseDate { get; set; }

 [Required(ErrorMessage = "Genre must be specified")]
 public string Genre { get; set; }

 [Required(ErrorMessage = "Price Required")]
 [Range(1, 100, ErrorMessage = "Price must be between $1 and $100")]
 public decimal Price { get; set; }

 [StringLength(5)]
 public string Rating { get; set; }
 }

 public class MovieDBContext : DbContext
 {
 public DbSet<Movie> Movies { get; set; }

 protected override void OnModelCreating(ModelBuilder modelBuilder)
 {

Getting started with MVC3 Page | 70

 modelBuilder.Entity<Movie>().Property(p => p.Price).HasPrecision(18, 2);
 }
 }
}

Validation Error UI within ASP.NET MVC

Let’s Ŷoǁ re-run our application and navigate to the /Movies URL.

Click the Create Movie link to add a new movie. Fill out the form with some invalid values and then click the Create button:

Notice how the form has automatically used a background color to highlight the text boxes that contain invalid data and has

emitted an appropriate validation error message next to each one. The error messages match the error message strings we

specified when we annotated the Movie class earlier in this tutorial. The errors are enforced both client-side (using

JavaScript) and server-side (in case a user has JavaScript disabled).

http://aspnet13.orcsweb.com/media/868718/WindowsLiveWriter_AddingaNewFieldtotheMovieModelandTable_E60A_Val_thumb_1.png

Getting started with MVC3 Page | 71

What's really nice is that we didn't need to change a single line of code in the MoviesController class or in the

Create.cshtml view in order to enable this validation UI. The controller and views we created earlier in this tutorial

automatically picked up the validation rules that we specified on the Movie model class.

How Validation Occurs in the Create View and Create Action Method

You might wonder how the validation UI was generated without any updates to the code in our controller or views. The next

listing shows what the Create methods in the MovieController class look like. They're unchanged from how we

created them earlier in this tutorial.

//
// GET: /Movies/Create

public ActionResult Create()
{
 return View();
}

//
// POST: /Movies/Create

[HttpPost]
public ActionResult Create(Movie newMovie)
{
 if (ModelState.IsValid)
 {
 db.Movies.Add(newMovie);
 db.SaveChanges();

 return RedirectToAction("Index");
 }
 else
 {
 return View(newMovie);
 }
}

The first action method displays the initial Create form. The second handles the form post. The second Create method

calls ModelState.IsValid to check whether the movie has any validation errors. (Calling this method evaluates any

validation attributes that have been applied to the object.) If the object has validation errors, the Create method

redisplays the form. If there are no errors, the method saves the new movie in the database.

Below is the Create.cshtml view template we scaffolded earlier in the tutorial, and that's used by the action methods shown

above both to display the initial form and to redisplay it in the event of an error.

@model MvcMovie.Models.Movie
@{
 ViewBag.Title = "Create";
}
<h2>
 Create</h2>
<script src="@Url.Content("~/Scripts/jquery.validate.min.js")"
type="text/javascript"></script>
<script src="@Url.Content("~/Scripts/jquery.validate.unobtrusive.min.js")"
type="text/javascript"></script>
@using (Html.BeginForm())
{

Getting started with MVC3 Page | 72

 @Html.ValidationSummary(true)
 <fieldset>
 <legend>Movie</legend>
 <div class="editor-label">
 @Html.LabelFor(model => model.Title)
 </div>
 <div class="editor-field">
 @Html.EditorFor(model => model.Title)
 @Html.ValidationMessageFor(model => model.Title)
 </div>
 <div class="editor-label">
 @Html.LabelFor(model => model.ReleaseDate)
 </div>
 <div class="editor-field">
 @Html.EditorFor(model => model.ReleaseDate)
 @Html.ValidationMessageFor(model => model.ReleaseDate)
 </div>
 <div class="editor-label">
 @Html.LabelFor(model => model.Genre)
 </div>
 <div class="editor-field">
 @Html.EditorFor(model => model.Genre)
 @Html.ValidationMessageFor(model => model.Genre)
 </div>
 <div class="editor-label">
 @Html.LabelFor(model => model.Price)
 </div>
 <div class="editor-field">
 @Html.EditorFor(model => model.Price)
 @Html.ValidationMessageFor(model => model.Price)
 </div>
 <div class="editor-label">
 @Html.LabelFor(model => model.Rating)
 </div>
 <div class="editor-field">
 @Html.EditorFor(model => model.Rating)
 @Html.ValidationMessageFor(model => model.Rating)
 </div>
 <p>
 <input type="submit" value="Create" />
 </p>
 </fieldset>
}
<div>
 @Html.ActionLink("Back to List", "Index")
</div>

Notice how we're using an Html.EditorFor helper to output the <input> element for each Movie property. Next to

this helper is a call to the Html.ValidationMessageFor helper method. These two helper methods work with the

model object that is passed by the controller to the view (in this case, a Movie object). They automatically look for

validation attributes specified on the model and display error messages as appropriate.

What's really nice about this approach is that neither the controller nor the Create view template know anything about the

actual validation rules being enforced or about the specific error messages displayed. The validation rules and the error

strings are specified only in the Movie class.

If we want to change the validation logic later, we can do so in exactly one place. We won't have to worry about different

parts of our application being inconsistent with how the rules are enforced — all validation logic will be defined in one place

Getting started with MVC3 Page | 73

and used everywhere. This keeps our code very clean. It means the code is easy to maintain and evolve. And it means that

we fully honor the DRY principle.

Next, let's look at how we can finish up the application by enabling the ability to edit and delete existing movies, as well as

display details for individual ones.

Getting started with MVC3 Page | 74

Implementing Edit, Details, and Delete Views

Open the Movie controller and add the following Details method:

 //
 // GET: /Movies/Details

 public ActionResult Details(int id)
 {
 Movie movie = db.Movies.Find(id);
 if (movie == null)
 return RedirectToAction("Index");
 return View("Details", movie);
 }

The code-first approach makes it easy to search for data using the Find method. An important security feature of this

method is that we actually verify that we found a movie. For example, a hacker could introduce errors into the site by

changing the URL created by the links from http://localhost:xxxx/Movies/Details/1 to

http://localhost:xxxx/Movies/Details/12345. Without the check for a null movie, this could result in a database error.

Right-click inside the Details method and select Add View. For Scaffold template, choose Details.

Getting started with MVC3 Page | 75

Run the application and select a Details link.

Getting started with MVC3 Page | 76

Implementing an Edit View

Back in the Movie controller, add the following Edit methods:

 //
 // GET: /Movies/Edit

 public ActionResult Edit(int id)
 {
 Movie movie = db.Movies.Find(id);
 if (movie == null)
 return RedirectToAction("Index");

 return View(movie);
 }

 //
 // POST: /Movies/Edit

 [HttpPost]
 public ActionResult Edit(Movie model)
 {
 try
 {
 var movie = db.Movies.Find(model.ID);

 UpdateModel(movie);
 db.SaveChanges();
 return RedirectToAction("Details", new { id = model.ID });
 } catch (Exception)
 {
 ModelState.AddModelError("", "Edit Failure, see inner exception");
 }

 return View(model);
 }

The first Edit method will be called when a user clicks one of the edit links. If the movie is found, the application will

display the movie data in the Edit view. The Edit method marked with [HttpPost] takes a movie object created by the

model binder from data posted in the Edit form(that is, when the user changes data on the Edit form and hits the Save

button). The UpdateModel(movie) method invokes the model copier which copies the edited data (the model

parameter) into the movie entry in the database. If any errors occur while the data is being saved to the database, the user

is redirected to the Edit view with the data that was posted.

Getting started with MVC3 Page | 77

Right-click inside the Edit method and select Add View. For Scaffold template, choose Edit.

Run the application, select an Edit link, and try editing some data.

Getting started with MVC3 Page | 78

Implementing a Delete View

Add the following Delete methods to the Movie controller.

 //
 // GET: /Movies/Delete

 public ActionResult Delete(int id)
 {
 Movie movie = db.Movies.Find(id);
 if (movie == null)
 return RedirectToAction("Index");
 return View(movie);
 }

 //
 // POST: /Movies/Delete

 [HttpPost]
 public RedirectToRouteResult Delete(int id, FormCollection collection)
 {
 Movie movie = db.Movies.Find(id);
 db.Movies.Remove(movie);
 db.SaveChanges();

 return RedirectToAction("Index");
 }

Note that the Delete method that isn't marked with[HttpPost] does not delete the data. Performing a delete

operation in response to a GET request (or for that matter, performing an edit operation, create operation, or any other

operation that changes data) opens up a security hole. For more information on this, see Stephen Walther's blog entry

ASP.NET MVC Tip #46 — Don't use Delete Links because they create Security Holes.

http://stephenwalther.com/blog/archive/2009/01/21/asp.net-mvc-tip-46-ndash-donrsquot-use-delete-links-because.aspx

Getting started with MVC3 Page | 79

Right-click inside the Delete method and select Add View. Select the Delete scaffold template.

Getting started with MVC3 Page | 80

We now have a complete MVC application that stores data in a SQL Server Express database. We can create, read, update,

and delete movies.

This basic tutorial got you started making controllers, associating them with views, and passing around hard-coded data.

Then we created and designed a data model. The code-first approach created a database from the data model on the fly. We

retrieved the data from the database and displayed it in an HTML table. Then we added a Create form that let users add

data to the database. We changed the database to include a new column of data, then updated two pages to create and

display this new data. We added validation by marking the data model with attributes from the DataAnnotations

namespace. The resulting validation runs on the client and on the server. Finally, we added code and view templates to

support Edit, Details, and Delete actions.

I now encourage you to move on to our intermediate-level MVC Music Store tutorial, to explore the ASP.NET articles on

MSDN, and to check out the many videos and resources at http://asp.net/mvc to learn even more about ASP.NET MVC! The

MVC forums are a great place to ask questions.

Enjoy!

— Scott Hanselman (http://hanselman.com and@shanselman on Twitter)

Rev 1.0 - Edited by Gustavo Azcona (http://gustavoazcona.blogspot.com)

See the original tutorial at http://www.asp.net/mvc/tutorials#Getting-Started-With-MVC3

Download this document from http://www.avanic.com.ar/downloads/docs/getting_started_with_mvc3_cs.pdf

http://www.asp.net/mvc/tutorials/mvc-music-store-part-1
http://msdn.microsoft.com/en-us/library/gg416514(VS.98).aspx
http://msdn.microsoft.com/en-us/library/gg416514(VS.98).aspx
http://asp.net/mvc
http://forums.asp.net/1146.aspx
http://hanselman.com/
http://twitter.com/shanselman
http://gustavoazcona.blogspot.com/
http://www.asp.net/mvc/tutorials#Getting-Started-With-MVC3
http://www.avanic.com.ar/downloads/docs/getting_started_with_mvc3_cs.pdf

