Getting started
with MVC3 ==

By Scott Hanselman

This document is an unofficial printable version of ASP.NET MVC 3
tutorial written by Scott Hanselman. This document is free and was
edited by Gustavo Azcona to be shared with the developer community.
It’s provided "as is" without warranty of any kind. Enjoy it!

Getting started with MVC3 Page | 1

Contents

INEFO TO ASP.UNET IMIVC 3. ittt ettt ettt ettt ettt e ettt e e e bt e e e e ate e e e e a bt e e e e b baeeeaabbeeaeeabbeeeeaabbeeesabeeeesabbeeessabbeeesaabaeeesanbaeens 3
L o TU N | 21U 1 o SR PUPROTPPR 3
) 1| Lo T L =T o o PSSP U PP P PTPT P OPPPPPPPIN 5
LCT= ud (g T] - [=T ISP ST PP P PTPP P UPPPPPPPIN 5
(@1 A TaY= A o T T gl T A AN oY o] 1 or- 1 4 e o PSPPIt 6
AAAING @ CONTIOIIBT ettt s 10
AGAING @ VIBW ettt an 15
Changing VIEWS aNd LAYOUL PAZESuuuuuuiee s e e e s 20
Passing Data from the CoNtroller t0 the VIEWeeeeeeiiiiiiiiiiieeeeeeeeeeeeeeee ettt ee e e e eeeeeeeeeeeeeeeeeeesessesesssssesessnssnnnsnnnnnns 23

¥ o g == TN 1Y/ o Yo 1= 28
O 1o Y- N T €=y i o I a1y = | I 0T =] Ty PPt 28
AdAING MOl ClaSSES....ciiiieiiiie e 32
Accessing your Model's Data from @ CONTIOIIENee e s 35
Strongly typed Models and the @mModel KEYWOId............u e 37
Creating a Connection String and Working wWith SQL SEIrVEr EXPresscceeeeeeeeeeiieiieiieeseeeesssss s e ss s s s s s s ss s e e e e e e e e e s 40
Adding a Create Method and Create VIEWueeuueiee s 47
DiSPlaying the CrEate FOIM .ccciiiiiiiiiiieiiiieeeeeeeeeeeee et ee e e ee e et eeeeeeeeeeeeeeeeeeesaaeesaasasssssssasssssassssssssssssasssssssssssssssssnssssssssnssnnnnnns 47
PrOCESSING TNE HTTP-POST .. .ciiiiiiiiiiiiieiiiieeeieeeeeeeeeeeeeeeeeeeetaeeaaeseeasssasssssasessasssssssssssssnnnnnns 52
(@1 Lo 11V Lo Y =TSPt 54
Adding a New Field to the Movie Model and TabIe e an 57
Adding a Rating Property to our Movie Model ... 57
Managing Model / Database SChema DIfferE&nCESccuvveiiii it e e et e e e e e e e et br e e e e e e e s esabbaeeeaeeeeenanes 59
Automatically Recreate the Database on Model Changes ..., 60
FIXiNG the PreCiSiON Of OUI PrICE.....oeiiiiiiiiieieeeeeeeeeeee ettt ettt ettt e eeeeeeeeeseaaa ssssssssssssssssssssssssssnnnnnns 65
Adding Validation t0 The IMOTENueeeeiiii e nnnnnnnnnnnnnnnnnn 68

KEEPINE THINES DRY ..ottt ettt et ettt ettt eeeeeeeeeeeeee s e e aa s e e s e s e s e s e s s aasaassssasa s s s s s s s s s s aassaassaasasaasasssssssasssssssssssnsnnnnnns 68

Getting started with MVC3 Page | 2

Adding Validation Rules t0 the MOVIE MOENooueiiiiiiie ettt e st e e s sabae e e s eabeee s 68
Validation Error Ul Within ASP.NET IMVC.....ceiiiiiie ittt ettt ettt ettt e ettt e e ettt e e sabte e e s eabbe e e sbbteeseabbeeessabbeeesnabeeess 70
How Validation Occurs in the Create View and Create Action Methodcooiiiiiiiiiiiiiiii e 71
Implementing Edit, Details, and DelEtE VIEWSueiiiiiiiiieiieeee ettt e et e e e s s s e et e e e s s e anbreeeeeeeeas 74
IMPIEMENTING AN EAIt VIBW..eiiiiiiiiiiiiee ettt e e e ettt et e e e e e s aab b et e e e eeessaabbbbeeeeeessannbbneeeeeeessnnnes 76

IMPIEMENTING @ DEIETE VIBW ...ttt e e e e ettt e e e e e st b et e e e e e e s saabbbbeeeeeessannbbaeeeeeessananes 78

Getting started with MVC3 Page | 3

Intro to ASPNET MVC 3

This tutorial will teach you the basics of building an ASP.NET MVC Web application using Microsoft Visual Web Developer
Express, which is a free version of Microsoft Visual Studio. Before you start, make sure you have the following installed using
the Web Platform Installer.

e Visual Studio Web Developer Express with SQL Express
e ASP.NETMVC 3
e SQL Management Studio

This tutorial will teach you the basics of building an ASP.NET MVC Web application using Microsoft Visual Web Developer
2010 Express, which is a free version of Microsoft Visual Studio. Before you start, make sure you've installed the
prerequisites listed above. You can install all of them using the Web Platform Installer.

A Visual Web Developer project with C# source code is available to accompany this topic. Download the C# version here. If
you prefer Visual Basic, switch to the Visual Basic version of this tutorial.

What You'll Build

You'll implement a simple movie-listing application that supports creating, editing and listing movies from a database. Below
are two screenshots of the application you’ll build. It includes a page that displays a list of movies from a database:

[=]E=]

g._f-__:u @ hitp//locathastB905/Mave: 0 ~ | B[| >¢|| & MyMovie List l_] N s e
MVC Movie App

My Movie List
Create New

Title Release Date Genre
Edit | Details | Delste When Harry Met Safly 1/11/1289 Romantic Comedy
Edit | Details | Delete Ghostbustars 2 2/23/1986 Comedy

Edit | Details | Delete Ghostbusters 3 3/13/1989 Comedy

The application also lets you add, edit, and delete movies as well as see details about individual ones. All data-entry
scenarios include validation to ensure that the data stored in the database is correct.

http://www.microsoft.com/web/gallery/install.aspx?appsxml=&appid=VWD
http://www.microsoft.com/web/gallery/install.aspx?appsxml=&appid=MVC3
http://www.microsoft.com/web/gallery/install.aspx?appsxml=&appid=SQLManagementStudio
http://www.microsoft.com/web/downloads/platform.aspx
http://code.msdn.microsoft.com/Introduction-to-MVC-3-10d1b098
http://www.asp.net/mvc/tutorials/getting-started-with-mvc3-part1-vb
file:///C:/Users/riande/AppData/Local/Temp/WindowsLiveWriter1286139640/supfiles29D61C52/MoviesWithVariousSm3.png

Getting started with MVC3 Page | 4

< 5

[Log On]

MVC Movie App

Create

Movie

Title

' | Title is required
ReleaseDate

_11’1 _‘_:_.l”t_E!_E_EI‘E!

Genre

'C'umec_!j_.r

Price

1_29__9_9 Price must be between $1 and $100
Rating

PG

Back to List

Getting started with MVC3 Page | 5

Skills You'll Learn

Here's what you'll learn:

e How to create a new ASP.NET MVC project.

e How to create ASP.NET MVC controllers and views.

e How to create a new database using the Entity Framework code-first paradigm.
e How to retrieve and display data.

e How to edit data and enable data validation.

Getting Started

Start by running Visual Web Developer 2010 Express ("Visual Web Developer" for short) and select New Project from the
Start page.

Visual Web Developer is an IDE, or integrated development environment. Just like you use Microsoft Word to write
documents, you'll use an IDE to create applications. In Visual Web Developer there's a toolbar along the top showing various
options available to you. There's also a menu that provides another way to perform tasks in the IDE. (For example, instead of
selecting New Project from the Start page, you can use the menu and select File > New Project.)

{ . A
(2] Start Page - Microsoft Visual Web Developer 2010 Express "D“EJ = l & W
File Edt View Dzbug Toclks Windaw Heip
T] wCa i e | b oebue 3 movic -8

e Get Started | Latest News
'} Mews Project.. | New Web3ze...

o= Weicome Uporade
IF Open Project... Opan Web Sita.. P

ss0jdxg oseqeseg S 1aacydry vognjes g.

Get Started with ASR.NET and Visual Web Developer Exprass

u »
l Learn using Video's and Tuterials
I Ask Quastions, Get Answers on ASP.NET Forums

_/l

B Explore Frea Open Source Aoplictions
Jumip Sart your Wb Site froen \Web Applicabon Gallery

K}

Find Afferdable Wen Hosting

W Hosting Gallery
[V] Clase page after project load
[V] Show page on statup s Get More Software At No Cost

W Qutput B Ercor List & Find Symbol Results
Ready

http://i3.asp.net/common/www-css/i/MVC3/MVC3_gettingStarted_CS/img/VWD.PNG

Getting started with MVC3

Creating Your First Application

Page | 6

You can create applications using either Visual Basic or Visual C# as the programming language. For now, select Visual C# on
the left and then select ASP.NET MVC 3 Web Application. Name your project "MvcMovie" and then click OK.

New Project

Recent Templates

Installed Templates

Visual Basic
4 Visual C=
Windows
Web
Cloud
Extensibility

Naked Objects
Saveright
WCF

Name:
Location:
Solution name:

Micro Framework

Online Tempiates

MycMovie
cwork

MvcMovie

Sort by: Default w5

e

&l

]
O
A

491 Bl fal Bl fal 0

ASP.NET Web Application

Class Library

ASP.NET MVC 2 Web Application

ASPINET MVC 3 Web Application

Silverlight Application

Sitverlight Class Library

Sitverlight Business Application

WCF RIA Senvices Class Library

WCF Service Apphication

Visual C#

Visual C#

Visual C#

Visual C#

Visual C#

Visual C#

Visual C&

Visual C#

Visual C#

Search Instolied Templates R

Type: Visusl C#

A project for creating an application using
ASP.NETMVC 3

'/ Create directory for solution

Getting started with MVC3

In the New ASP.NET MVC 3 Project dialog box, select Internet Application. Leave Razor as the default view engine.

New ASP.NET MVC 3 Project |5 o
Project Template
Select atemplate: Description:
.’ : A default ASP.NET MVC 3 project with an | =
\=ch @ account controller that uses forms
Empty rE— authentication.
Apphlication

View engine:

Razor

reate & unit test projec

Test projact name:

Test framewaork:

- | Additional Info

Page | 7

Click OK. Visual Web Developer used a default template for the ASP.NET MVC project you just created, so you have a

working application right now without doing anything! This is a simple "Hello World!" project, and it's a good place to start

your application.

Getting started with MVC3

File Edit Wiew Projec Dabug
Pl ol o

Buaih] -0 o] b ooy

¥
!ﬂ Metechdovie - Wioroeoft Vizwsl Web Developer 2010 Exgpress

Took ‘Wirdow Hep

- | [manie

T el

Bohilion Explosis = Box

A W hdonae, Tomtealless. Home

orLroder

e

Tusing System
using System
uzing Systam
using System
using System

i
{
1

}

{

:

.Collections.Generic;

.Ling:
ek
ek, My

public class HomeContraoller i

-namezpace MvcMovie.Controllers

3 public ActionResult Imdex()

return View();

5 public ActionResult About()

return View();

Cantroller

ViewBag.Message = "Welcome te ASP.NET MMVCLY;

S MrecMovie
d Prooedtias
i Befmrences
L5 Agp_Deta
L& Content
& | Controlles
] AccountControllencs
] Homeonirallercs
L Mimdete
L Scripts
L Wieves
*] Slobel asex
i WVimb.canfig

gl Sothution Caph.. [ORE e
Properties

HosneCanfrelleros o Prapetes =

frmhie

FF
Bkl fcbon Coonpele
Copy to Ouspe Do nat copy
Cuziom Too
Chistern loot b

File Blarmie
Full Ptk

Hiemelonliollercx

civwaribnchiodie

From the Debug menu, select Start Debugging.

’
El MvcMovie - Microsoft Visual Web Developer 2010 Express

HomeController.cs 3¢ |

1 r

b

Start Debugging
Buitd MvchMovie

% Mvchovie Controlld = StepInto
l . | LE Step©
susing Sy b= et
‘us 1 ng S} Toggle Breakpoint
| = ' Wind
‘using Sy b
| LlSi ng 5} Clear All DataTips
using S-:-,l Export DataTips ..,

Import DataTips ...

. Options and Settings...
FTnamespace rverovie oo

Notice that the keyboard shortcut to start debugging is F5.

F5

F11
F10

Page | 8

http://i3.asp.net/common/www-css/i/MVC3/MVC3_gettingStarted_CS/img/VisualStudioMvcMovie.png
http://i3.asp.net/common/www-css/i/MVC3/MVC3_gettingStarted_CS/img/VisualStudioMvcMovie.png

Getting started with MVC3 Page | 9

F5 causes Visual Web Developer to start a development web server and run your web application. Visual Web Developer
then launches a browser and opens the application's home page. Notice that the address bar of the browser says
localhost and not something like example . com. That's because 1ocalhost always points to your own local
computer, which in this case is running the application you just built. When Visual Web Developer runs a web project, a
random port is used for the web server. In the image below, the random port number is 43246. When you run the
application, you'll probably see a different port number.

i | [0 B | B [
g{:) & hitp//localhost B~ ~ [g’g Hlime Pie |] 0 e 453

7]
G
X

[LogOn]

My MVC Application

Welcome to ASP.NET MVCI!

Ta learn more about ASP.NET MVC visit http://asp.net/mve.

Right out of the box this default template gives you two pages to visit and a basic login page. Let's change how this
application works and learn a little bit about ASP.NET MVC in the process. Close your browser and let's change some code.

Getting started with MVC3

Adding a Controller

Page | 10

MVC stands for model-view-controller. MVC is a pattern for developing applications that are well architected and easy to

maintain. MVC-based applications contain:

e Controllers: Classes that handle incoming requests to the application, retrieve model data, and then specify view

templates that return a response to the client.

e Models: Classes that represent the data of the application and that use validation logic to enforce business rules for

that data.

o Views: Template files that your application uses to dynamically generate HTML responses.

We'll be covering all these concepts in this tutorial series and show you how to use them to build an application.

Let's begin by creating a controller class. In Solution Explorer, right-click the Controllers folder and then select Add

Controller.

Controller...
Ctel+Shift-A
Shift+Alt+ A

New Item..,
Existing Item...
New Folder
Add ASP.NET Folder »

S 3 B)

v Class..

B %<

X L

Convert to Web Application
Add

Exclude From Project

Cut

Copy

Paste
Delete
Rename

Properties

Ctri+X
Ctri«C

sV

Del

Alt+Enter

Selution Explorer
= | !
@l Pl
B MvcMovie
-4 Properties
« References
55 App_Data
4 Content
a | Controliers |
n AccountController.cs

HomeController.cs

odels
npts

ens
obal.asax
eb.config

e Database Exp...

v 31X

Name your new controller "HelloWorldController" and click Add.

[m' Folder Properties

http://i3.asp.net/common/www-css/i/MVC3/MVC3_gettingStarted_CS/img/AddController.png

Getting started with MVC3

Add Controller B =

Controller Mame:

HelloWarldController

[] Add action methods for Create, Update, Delete, and Details scenarios

[Add] | Cancel

Page | 11

Notice in Solution Explorer that a new file has been created named HelloWorldController.cs. The file is open in the IDE.

HhEﬁtTmhquehugﬂahTﬁuEWuﬁmﬂHﬂp

5ﬂ'I_J lﬂﬂ|¥—éﬂ’||‘4'r—" i;_LDebug ||3'

= ¢ Publish: |Create Publish Settings '| _-f:,p

4

HelloWorldController.ce ¢ Wglalgal=18s]q o]l = #al= -

4 MvcMovie.Controllers. HelloWar -l @ Index()

-—‘us:mg System; |
using System.Collections.Generic;
using System.Ling;
using System.Web;

| using System.Web.Mvc;

Flnamespace MvcMovie.Controllers
I{

El public class HellolorldContraller : Controller
d

El A

/f GET: fHelloWorld/

public ActionResult Index()

1
¥

return View();

Ready

Solution Explorer
S| 2 E] e
.Eg MwvcMovie
[+ [=d Properties
[+ |z References
_ 4 App_Data
[Content
4 [Controllers
#] AccountController.cs
<) HelloWorldController
C_*g HormeController.cs
[Models

= O Scripts

= [l Views

[+ ,ﬁ] Global.asax
_} Web.config

1 |
&3 Solution E...

!

Inside the public class HelloWorldController block, create two methods that look like the following code. The

controller will return a string of HTML as an example.

Getting started with MVC3 Page | 12

using System.Web;
using System.Web.Mvc;

namespace MvcMovie.Controllers

{
public class HelloWorldController : Controller

{
//
// GET: /HelloWorld/

public string Index ()
{

return "This is my default action...";

}

//
// GET: /HelloWorld/Welcome/

public string Welcome ()

{

return "This is the Welcome action method...";

}

Your controller is named HelloWorldController and the first method above is named Index. Let’s invoke it from a
browser. Run the application (press F5 or Ctrl+F5). In the browser, append "HelloWorld" to the path in the address bar. (For
example, on my computer, it's http://localhost:43246/HelloWorld.) The page in the browser will look like the screenshot
below. In the method above, the code returned a string directly. You told the system to just return some HTML, and it did!

F Eﬂﬂ?FEiJL£:|[juh!g§!d
glﬁ_l E",."1:fflcrcalhust:#BZd&fHelanorrd -~ B|d|x @fucalhust | |ﬁu T;\F ﬁa

o

This is my default action_..

Getting started with MVC3 Page | 13

ASP.NET MVC invokes different controller classes (and different action methods within them) depending on the incoming
URL. The default mapping logic used by ASP.NET MVC uses a format like this to determine what code to invoke:

/ [Controller]/[ActionName]/[Parameters]

The first part of the URL determines the controller class to execute. So /HelloWorld maps to the
HelloWorldController class. The second part of the URL determines the action method on the class to execute. So
/HelloWorld/Index would cause the Index method of the HelloWorldController class to execute. Notice that we
only had to browse to /HelloWorld and the Index method was used by default. This is because a method named Index is
the default method that will be called on a controller if one is not explicitly specified.

Browse to http://localhost:xxxx/HelloWorld/Welcome. The Welcome method runs and returns the string "This is the
Welcome action method...". The default MVC mappingis / [Controller]/ [ActionName] /[Parameters]. For this
URL, the controlleris Hel1oWorld and Welcome is the action method. You haven't used the [Parameters] part of the
URL yet.

o el

gf- | | & st43246/HelloWorld/Welcome ~ | B | & | X || @ localhost | |-LE|_|' 5.4 463

This 15 the Welcome action method. ..

—

Let's modify the example slightly so that we can pass some parameter information from the URL to the controller (for
example, /HelloWorld/Welcome ?name=Scott&numtimes=4). Change your We1lcome method to include two parameters as
shown below. Note that we've used the C# optional-parameter feature to indicate that the numTimes parameter should
default to 1 if no value is passed for that parameter.

public string Welcome (string name, int numTimes = 1) {
return HttpUtility.HtmlEncode ("Hello " + name + ", NumTimes is: " + numTimes) ;

}

Getting started with MVC3 Page | 14

Run your application and browse to http://localhost:xxxx/HelloWorld/Welcome ?name=Scott&numtimes=4
You can try different values for name and numtimes in the URL. The system automatically maps the named parameters
from your query string in the address bar to parameters in your method.

(< [| 51
Q'if-. 'g'Elcume?namE:Scott&numtl'meszdl -« | B = localhost |_ 0} S.c to

F cia

UL 2af 2o

&

Hello Scott. NumTimes is: 4

In both these examples the controller has been doing the "VC" portion of MVC — that is, the view and controller work. The
controller is returning HTML directly. Ordinarily you don't want controllers returning HTML directly, since that becomes very
cumbersome to code. Instead we'll typically use a separate view template file to help generate the HTML response. Let's

look next at how we can do this.

Getting started with MVC3 Page | 15

Adding a View

In this section we're going to modify the HelloWorldController class to use view template files to cleanly encapsulate
the process of generating HTML responses to a client.

We will create our view template files using the new Razor view engine introduced with ASP.NET MVC 3. Razor-based view

templates have a.cshtml file extension, and provide an elegant way to create HTML output using C#. Razor minimizes the
number of characters and keystrokes required when writing a view template, and enables a fast, fluid coding workflow.

Let's start by using a view template with the Tndex method in the Hel1loWorldController class. Currently the Index
method returns a string with a message that is hard-coded in the controller class. Change the Index method to return a
View object, as shown in the following:

public ActionResult Index()
{

return View () ;

}

This code indicates that we want to use a view template to generate an HTML response to the browser. Let's add a view
template to our project that we can we can use with theIndex method. To do this, right-click inside the ITndex method
and click Add View. The Add View dialog box appears.

public class HelloWorldController : Controller
{

public ActionResult Inde» j ———
{ =] Go To View
return Uiew() ’ Refactor b
} Organize Usings F
= Cemment Selection Crl+ K, Crl+C

http://weblogs.asp.net/scottgu/archive/2010/07/02/introducing-razor.aspx

Getting started with MVC3 Page | 16

Leave the defaults the way they are and click the Add button.

[Add View | B S

View name:

View engine:

| Razor (CSHTML) -

[] Create a strongly-typed view
Model class:
Scaffold template:
iEmpt_',r * | [] Reference ccript libraries

[] Create as a partial view

Use a layout or master page:

(Leave empty if it is set in a Razor _viewstart file)

ContentPlaceHolder [T

il"n.“lainCn:nr'ltent |

Getting started with MVC3 Page | 17

The MvcMovie\Views\HelloWorld folder and the MvcMovie\Views\HelloWorld\Index.cshtml file are created. You can see

them in Solution Explorer:

Solution Explorer

=il
:‘% MuvcMovie
[=d| Properties
[id] References
3 App_Data
3 Content
4 [=7 Controllers
] AccountController.cs
] HelloWorldController.cs
#] HomeController.cs

Cd Models
3 Scripts
4 [T Views
b [l Account
4 [HelloWorld
[':@ Index.cshtml]
- [Home
[Shared

“@ _Viewstart.cshtiml
= Web.config

[z ﬂ Global.azax

& E9 Web.config

Getting started with MVC3
This shows the Index.cshtml file that was created:
File Edit View Project Debug Data Tools Window Hep

_ﬂ_ll_?nﬂﬂhﬂ—é |9 - | F & [Debug -]

i | XHTML 1.0 Transition ! Publish: | Create Publish Settings =| & =] -

e[Fagiah el HelloWorldController.cs Movie.cs Solution Explorer

@]
¥

<h2>Index</h2>

ViewBag.Title = "Index"; - u‘% MwcMovie

[=d] Properties
|~g] References
CH App_Data
[Content
[Controllers
4 Models
CA Scripts
[Views
3 Account
| & HelloWorld
c@ Index.cshtml
[Home
3 Shared
‘:ﬁ] _YiewStart.cshtml
5 Web.config
ﬂ Global.asax
% Web,config

Ready

l—__g Solution Ex.. [SREETEIETER =

Page | 18

Add some HTML under the <h2> tag. The modified MvcMovie\Views\HelloWorld\Index.cshtml file is shown below.

@

ViewBag.Title = "Index";
}
<h2>Index</h2>

<p>Hello from our View Template!</p

Run the application and browse to the "hello world" controller (http://localhost:xxxx/HelloWorld). The Index method in

your controller didn't do much work; it simply ran the statement return View () ;, which indicated that we wanted to

use a view template file to render a response to the browser. Because we did not explicitly specify the name of the view
template file to use, ASP.NET MVC defaulted to using the Index.cshtml view file within the \Views\HelloWorld folder. The

image below shows the string hard-coded in the view.

Getting started with MVC3 Page | 19

[Log On]

My MVC Application

Index

Hallo from our View Template!

Looks pretty good. However, notice that the browser's title bar says "Index" and the big title on the page says "My MVC
Application." Let's change those.

Getting started with MVC3 Page | 20

Changing Views and Layout Pages

First, let's change the "My MVC Application" title at the top of the page. That text is common to every page. It actually is
implemented in only one place in the project, even though it appears on every page in the application. Go to the
/Views/Shared folder inSolution Explorer and open the _Layout.cshtml file. This file is called a layout page and it's the
shared "shell" that all other pages use

File Edit View Project Debug Data Tools Window Help
S - A e R e A -

¢ |XHTML1.0 Transition =| = { Publish: | Create Publish Settings ~=| ‘& =1 =

_Layout.cshtml & Solution Explorer * X
<!DOCTYPE html> B IRl)
Ei<html> 8 MvcMovie

i%j(headb T -
<titles@iViewBag. Title</title> b Sl FRopemies
[+ |«3] References

<link: href="(gUrl.Content("~/Content/Site.css™)" rel="g
<script sre="@Url.Content("~/Scripts/jquery-1.4.4.min. 3 App_Data
i [Content

| </head>

| a [Controllers

Ei<body> #] AccountController.cs

'_’ AR BB s dpa = 'ff:j HelloWeorldController
'-?_.*Q HomeController.cs

<div id="header":>

<div id="title"s b . Moder
<hlspy MUC Application</hl> v L Seripts
< /divy 4 | Views
> [CJ Account
<div id="logindisplay"> [HelleWorld
@Html.Partial(" LogOnPartial™) » [J Home
g s a4 [Shared

“@ _Layout.cshtml
'3@ _LegOnPartial.csh
"iﬁ] Error.cshtml
i) _ViewStart.cshtml
j Web.config
b 4&] Global.asax
2 L_j} Web.config

<div id="menucontainer":

<ul id="menu":
f@Html.ActionLink("Home", "Index",
@Html.ActionLink("&bout™, "About”,
<ful>

< divy
<fdive

=l <div id="main"»

: [IRenderBody ()
<div id="footer">
< /dive

| <fdive
| </ dive

| </body>

| </html>

€| T | ¥
Lff‘j Selution E.. E, Database...

100% = 4|

Ready Lnl Coll Chl IMS

Sy o |

Getting started with MVC3 Page | 21

Layout templates allow you to specify the HTML container layout of your site in one place and then apply it across multiple
pages in your site. Note the @RenderBody () line of code near the bottom of the file.RenderBody is a placeholder
where all the view-specific pages you create show up, "wrapped" in the layout page. Change the title heading in the layout
template from "My MVC Application" to "MVC Movie App".

<div id="title">
<hl>MVC Movie App</hl>
</div>

Run the application and notice that it now says "MVC Movie App". Click the About link, and you see how that page shows
"MVC Movie App", too. We were able to make the change once in the layout template and have all pages on the site reflect
the new title.

¥ Eﬂﬂ 2 About Us

MVC Movie App

About

Put content hers.

The complete _Layout.cshtml file is shown below:

<!DOCTYPE html>

<html>
<head>

<title>@ViewBag.Title</title>

<link href="Q@Url.Content ("~/Content/Site.css")" rel="stylesheet" type="text/css"
/>

<script src="QUrl.Content ("~/Scripts/jquery-1.4.4.min.js")"
type="text/javascript"></script>
</head>

<body>
<div class="page">

<div id="header">
<div id="title">
<h1>MVC Movie App</hl>
</div>

Getting started with MVC3 Page | 22

<div id="logindisplay">
@Html.Partial (" LogOnPartial")
</div>

<div id="menucontainer">

<ul id="menu">
<1i>@Html.ActionLink ("Home", "Index", "Home")
<1i>Q@Html.ActionLink ("About", "About", "Home")

</div>
</div>

<div id="main">
@RenderBody ()
<div id="footer">

</div>
</div>
</div>
</body>
</html>

Now, let's change the title of the Index page (view).

Open MvcMovie\Views\HelloWorld\Index.cshtml. There are two places to make a change: first, the text that appears in the
title of the browser, and then in the secondary header (the <h2> element). We'll make them slightly different so you can
see which bit of code changes which part of the app.

@
ViewBag.Title = "Movie List";

}
<h2>My Movie List</h2>

<p>Hello from our View Template!</p>

To indicate the HTML title we want to display, we're settinga Tit 1e property of the ViewBag object in the code above
(which is in thelndex.cshtml view template). If you look back at the source code of the layout template, you’ll notice that the
template uses this value in the <title> element as part of the <head> section of the HTML. Using this approach, you can
easily pass other parameters between your view template and your layout file.

Run the application and browse to http://localhost:xx/HelloWorld. Notice that the browser title, the primary heading, and
the secondary headings have changed. (If you don't see changes in the browser, you might be viewing cached content. Press
Ctrl+F5 in your browser to force the response from the server to be loaded.)

Also notice how the content in the Index.cshtml view template was “merged” with the _Layout.cshtml view template and a
single HTML response was sent to the browser. Layout templates make it really easy to make changes that apply across all of
the pages in your application.

Getting started with MVC3 Page | 23

& nitptoc. - B O] X[& Movielis

[Log On]

MVC Movie App

My Movie List

Hello from our View Template!

Our little bit of "data" (in this case the "Hello from our View Template!" message) is hard-coded, though. Our MVC
application has a "V" (view) and we've got a "C" (controller), but no "M" (model) yet. Shortly, we'll walk through how create
a database and retrieve model data from it.

Passing Data from the Controller to the View

Before we go to a database and talk about models, though, let's first talk about passing information from the controller to a
view. Controller classes are invoked in response to an incoming URL request. A controller class is where you write the code
that handles the incoming parameters, retrieves data from a database, and ultimately decides what type of response to send
back to the browser. View templates can then be used from a controller to generate and format an HTML response back to
the browser.

Controllers are responsible for providing whatever data or objects are required in order for a view template to render a
response back to the browser. A view template should never perform business logic or interact with a database directly.
Instead, it should work only with the data that's provided to it by the controller. Maintaining this “separation of concerns”
helps keep your code clean and more maintainable.

Currently, the We 1 come action method in the Hel1loWorldController class takes a name and a numTimes
parameter and then outputs the values directly to the browser. Rather than have the controller render this response as a
string, let’s change it to use a view template instead. The view template will generate a dynamic response, which means that
we need to pass appropriate bits of data from the controller to the view in order to generate the response. We can do this
by having the controller put the dynamic data that the view template needs in a ViewBag object that the view template
can then access.

Return to the HelloWorldController.cs file and change the Welcome method to add a Message and NumT imes value to
the ViewBag object. ViewBag is a dynamic object, which means you can put whatever you want in to it; the ViewBag
object has no defined properties until you put something inside it.The complete HelloWorldController.cs file looks like:

Getting started with MVC3 Page | 24

using System.Web;
using System.Web.Mvc;

namespace MvcMovie.Controllers
{ public class HelloWorldController : Controller
{ public ActionResult Index()
{ return View () ;

}

public ActionResult Welcome (string name, int numTimes = 1)
{

ViewBag.Message = "Hello " + name;

ViewBag.NumTimes = numTimes;

return View () ;

Now the ViewBag object contains data that will be passed to the view automatically.

Getting started with MVC3

Page | 25

Next, we need a Welcome view template! In the Debug menu, select Build MvcMovie to make sure the project is compiled.

b

H eIIchDrldCc-ntroller.c °

‘“"ii e v cwiE.IContmIIsé
using System.|

Flnamespace Mvc)
|5 |
= public 1

i .
publi|

1
¥

Mecw

public A
1

View
View

retu

Start Dehuggmg

Build MvchMovie

Step Into
Step Owver
Teggle Breakpoint
Windows
Clear All DataTips
Export DataTips ...
Import DataTips ..

Options and Settings...

LE TS IF 1I'|j|' B T a v Ly e C\'J'U:I"actinn T

wctionResult Welcome(string name, int mil

Bag.Message = "Hello
Bag.NumTimes = numTimes;

+ name;

rn View()};

B Cutput
Ready

Col10

i _J:‘g MvcMovie

[=d] Properties

[+3] References

[App_Data

[Content

[Controllers
'C.g AccountController.cs
o] HelloWarldController.cs
#] HomeController.cs

3 Models

3 Scripts

A Views

*‘] Global.asax

= Web.config

L‘fg Solution Ex... E Database Ex...

Getting started with MVC3 Page | 26

Then right-click inside the We 1 come method and click Add View. Here's what the Add View dialog box looks like:

[Add View ==

View name:

Welcome
View engine:

|Razor (CSHTML .

["] Create a strongly-typed view

Model class:

Scaffold template:
| Empty - /| Reference script fibraries

["] Create as a partial view

[¥] Use a layout or master page:

(Leave empty if it is set in a Razor _viewstart file)

- i i i I
[el e B s %
= OTTLET

;MEII‘ICDHtEHt

Click Add, and then add the following code under the <h2> element in the new Welcome.cshtml file. We'll make a loop and

say "Hello" as many times as the user says we should!

@f
ViewBag.Title = "Welcome";

}
<h2>Welcome</h2>

@for (int i=0; i < ViewBag.NumTimes; i++) {
<1i>@ViewBag.Message
}

Run the application and browse to the following URL:

http.//localhost:xx/HelloWorld/Welcome ?name=Scott&numtimes=4

Getting started with MVC3 Page | 27

Now data is taken from the URL and passed to the controller automatically. The controller packages up the data into a
ViewBag object and passes that object to the view. The view than displays the data as HTML to the user.

S IEE=]
| @ Mifelcarme [| ﬁ ﬁ {%

BD
a
x

QO @ nitpitfloca., v
MVC Movie App

[Log On]

Welcome

Hello Scott
Hello Scott
Hello Scott
Hello Scott

Well, that was a kind of an "M" for model, but not the database kind. Let's take what we've learned and create a database of
movies.

Getting started with MVC3 Page | 28

Adding a Model

In this section we'll add some classes for managing movies in a database. These classes will be the "model" part of our MVC
application.

We'll use a .NET Framework data-access technology known as the Entity Framework to define and work with these model
classes. The Entity Framework (often referred to as “EF”) supports a development paradigm called code-first. Code-first
allows you to create model objects by writing simple classes. (These are also known as POCO classes, from "plain-old CLR
objects.") You can then have the database created on the fly from your classes, which enables a very clean and rapid
development workflow.

Using NuGet to Install EFCodeFirst

We'll start by using the NuGet package manager (automatically installed by ASP.NET MVC 3) to add the EFCodeFirst library
to the MvcMovie project. This library lets us use the code-first approach.

Warning:

You must stop debugging before you access the NuGet package manager. If you access NuGet while you are still debugging,
you'll get the error message and the Add Library Package Reference... menu item will disappear. You must then exit Visual
Web Developer and restart the project.

From the Tools menu, select Library Package Manager and then Add Library Package Reference.

wsoft Visual Web Developer 2010 Express

'roject Debug | Tools | Window Help

@ | & =34 ¥k Connectto Database.., u | [# | movie -1 EH =
j?_ﬂ__:! = Library Package Manager » | E% Package Manager Console
T MucMo @'ﬂ Extension Manager... Add Library Package Reference...

Settings » | W% Package Manager Settings

Custornize... |

Options...

Getting started with MVC3 Page | 29

The Add Library Package Reference dialog box appears.

er Library Package Reference l&“m

Sart by: | Narne: Ascending * | | search rstalted packages D

Online Blo iterns found.

Updates

Each package is licensed to you by its

owner. Microseft is not respansible

for, nor does it grant any licenses to,

third-party packages. 1

By default, All is selected in the left pane. Because no packages are installed, the center pane shows No items found. Click
Online in the left pane.

al

Add Library Package Reference

Installed packages Sort by IName.' Ascending -
All

Mo items found.

http://i3.asp.net/common/www-css/i/MVC3/MVC3_gettingStarted_CS/img4/Add_Library_PackageReferenceDB.png
http://i3.asp.net/common/www-css/i/MVC3/MVC3_gettingStarted_CS/img4/Add_Library_PackageReferenceDB.png

Getting started with MVC3 Page | 30

NuGet queries the server for all available packages.

-
Add Library Package Reference

Installed packages Sort by: IHighﬁt Rated -

Online

All
MuGet official package source

Search Results

-

Retrieving information...

Cancel

Getting started with MVC3 Page | 31

There are hundreds of packages available. We're interested in the EFCodeFirst package. In the search box, enter "EFCode".
In the search results, select the EFCodeFirst package and click the Install button.

r
Add Library Package Reference

T

Online
-

All B

MubGet official package sowrce
Search Resuits

Ce

Highest Rated - | (||= i J x
EFCodeFirst Created by: Micrasoft
CTPS of the Code First deaiol Version:03
Pragramming Model and P... o " 164
Rating: {0 Votes]

EFCodefrst.5ample
This ;.ump|e hlug model demonstrates the
use of the Entity Framework Feature CTP3 C.,

EFCodeFirst.5qi5erverCompact
Allows SQL Server Compact 40 CTP2 to be

View License Terms

Feport Abuse

LTP5 of the Cade First Programming Model
and Productivity Improvernents for Entrty
Frarmewaork 4 {included in MET Framework
4).

used with Entrty Framework Feature CTPS.
Dependencies:

Mo Dependencies

Each package is licensed to you by its

owner. Microseft is not respancible

for, nor does it grant any licenses to,

third-party packages. 1

After the package installs, click Close. The installation process downloaded the EFCodeFirst library and added it to the
MvcMovie project. The EFCodeFirst library is contained in the EntityFramework assembly.

Solution Explorer

=&k
IE% MvcMovie -
> [=d| Properties
4 | 7 References
(-D Entit_b,rFramewnrk)
<3 Microsoft.CSharp
<3 System
<3 Systermn.ComponentModel.Data,
<3 Systern.Configuration
<3 Systern.Core
<3 Systern.Data
<3 Systern.Data.DataSetExtensions
<3 Systemn.Drawing

m

<3 Systern.EnterpriseServices
<3 Systern.Web
<3 Systermn.\Web.Abstractions

a4 | m | b

Ila SO T 2t sl B Database Explorer

http://i3.asp.net/common/www-css/i/MVC3/MVC3_gettingStarted_CS/img4/EFCodeFirstPkg.PNG
http://i3.asp.net/common/www-css/i/MVC3/MVC3_gettingStarted_CS/img4/EFCodeFirstPkg.PNG

Getting started with MVC3

Adding Model Classes

In Solution Explorer, right click the Models folder, select Add, and then select Class.

Mew Item...

Existing Item...

Mew Folder

Add ASP.MET Folder

LEE

ﬂ;g Class...

Ctrl+5hift+4,
Shift+ A+ 04

Name the class "Movie".

@ MvcMovie
=d| Properties

+ |23 References

3 App_Data
i [C3 Content
b [Controllers
B ¢ 3 Models|
Convert to Web Application LF"’EE
§
o) bal.asax
Exclude From Project kages.col
¥ Bk Cirle X b.config
53 Copy Ctri+C
iy Paste Ctri+V
X Delete Del
Rename Explorer
2= Properties Alt+Enter -
i |

Page | 32

Getting started with MVC3

Page | 33

[ﬂ hechdovie - Microsoft Visual Web Developer 2010 Express

Powiecs 2 Index.cahtmil

_Layout.cshtml

[==&](=]

File Edit “iew Project Debug Data Tools ‘Window Help
Pl T e | # S B9 - ™ | B | Debug - [%2
i) as hey A f2| = 2 < ¢ Publisht | Create Publish Settings ~| o «f =

Solution Explorer

L“Eg et bl onie Models. B awvie

HEREE

15|

Fusing System;
using System.Collections.Generic;
using System.ling;

| using System.lkeb;

Finamespace MwvcMovie.Models

1
= public class Movie

1
¥

ﬂ; ErrorList B Cutput

Ready

Caoll

;—,:'g Mvchovie
[=d| Properties
wa References
% App_Data
[Content
[Contrallers
= Models
] AccountModels.cs
] Movie.cs
[Scripts
4 [Wiewrs
CF Account
[Zr HelloWarld
c@ Index.cshtml
[Home
[Shared
5] _Layout.cshtrnl
5 _LogOnPartial.cshitrm
@ Error.cshtml
'ﬂ@ MieweStart. cshtml
3 Web.config
ﬂlj Globalasax
3 Weh.config

F]

4

l—“‘i] Zolution Ex..

Add the following five properties to the Movie class:

public class Movie
{
public
public
public
public
public

int ID { get; set; }

string Title { get; set; }
DateTime ReleaseDate { get;
string Genre { get; set; }
decimal Price { get; set; }

set;

}

http://www.asp.net/mvc/tutorials/$MovieClassVWD[3].png

Getting started with MVC3 Page | 34

We'll use the Movie class above to represent movies in a database. Each instance of a Movie object will correspond to a
row within a database table, and each property of the Movie class will map to a column in the table.

In the same file, add the following MovieDBContext class:

public class MovieDBContext : DbContext

{
public DbSet<Movie> Movies { get; set; }

}

The MovieDBContext class represents the Entity Framework movie database context, which handles fetching, storing,
and updating Movie class instances in a database. The MovieDBContext derives from the DbContext base class
provided by the Entity Framework. In order to be able to reference the DbContext class, you need to add the following
using statement at the top of the file:

using System.Data.Entity;
The complete Movie.cs file is shown below.

using System;
using System.Data.Entity;

namespace MvcMovie.Models

{

public class Movie

{
public int ID { get; set; }
public string Title { get; set; }
public DateTime ReleaseDate { get; set; }
public string Genre { get; set; }
public decimal Price { get; set; }

}

public class MovieDBContext : DbContext

{
public DbSet<Movie> Movies { get; set; }

This small amount of code is everything you need to write in order to represent and store the movie data in a database.
Next, let’s build a new MoviesController class that we can use to display the movie data and allow users to create new
movie listings.

Getting started with MVC3 Page | 35

Accessing your Model's Data from a Controller

In this section, you'll create a new MoviesController class and write code that retrieves the movie data and displays it
in the browser using a view template.

Right-click the Controllers folder and make a new MoviesController class.

er Controller ﬁ

Contraller Mame:

MoviesController

[] Add action methods for Create, Update, Delete, and Details scenarios

[Add]| Cancel

This creates a new MoviesController.cs file in the project's Controllers folder. Let's update the Index action method in the
MoviesController class so that it retrieves the list of movies.

Note that in order to be able to reference the MovieDBContext class we created earlier, you need to add the following
two using statements at the top of the file:

using MvcMovie.Models;
using System.Ling;

The code for the MoviesController class looks like:

using MvcMovie.Models;
using System.Ling;
using System;

using System.Web.Mvc;

namespace MvcMovie.Controllers

{
public class MoviesController : Controller

{
MovieDBContext db = new MovieDBContext () ;

public ActionResult Index ()
{
var movies = from m in db.Movies
where m.ReleaseDate > new DateTime (1984, 6, 1)
select m;

return View (movies.ToList ()):;

Getting started with MVC3 Page | 36

The code is performing a LINQ query to retrieve only movies that were released after the summer of 1984. We'll need a view
template to render this list of movies, so right-click inside the method and select Add View to create it.

In the Add View dialog box, we'll indicate that we're passing a Movie class to the view template. Unlike the previous times
when we used the Add View dialog box and chose to create an empty template, this time we'll indicate that we want Visual
Web Developer to automatically scaffold a view template for us, meaning that the new view template will contain some
default content. To do this, selectList in the Scaffold template drop-down list.

Remember that after you've created a new class, you'll need to compile your application before the class shows up in the
Add View dialog box.

i N

Add View B =

View name;
Index

View engine:

[Razor (CSHTML) -

-
Create a strongly-typed view

Model class:

Mowvie (Mvchovie Models) -

Scaffold template:

’List v] Reference script libraries
\, /

[] Create as a partial view

Use a layout or master page:

]

(Leave empty if it is set in a Razor _viewstart file)

MainContent

Add H —_

Click Add. Visual Web Developer automatically generates the code for a view that displays a list of movies. This is a good
time to change the <h2> heading to something like "My Movie List" like you did earlier with the "Hello World" view.

The code below show a portion of the Index view for the movie controller. In this section, change the format string for the
release date from {0:g} to {0:d} (thatis, from general date to short date). Change the format string for the Price
property from {0:F} to {0:c} (from float to currency).

In addition, in the table header, change the column name from "ReleaseDate" to "Release Date" (two words).

http://msdn.microsoft.com/en-us/library/bb397926.aspx

Getting started with MVC3

@model IEnumerable<MvcMovie.Models.Movie>

@
ViewBag.Title = "Movie List";

}
<h2>My Movie List</h2>

<p>
@Html.ActionLink ("Create New", "Create")
</p>
<table>
<tr>
<th></th>
<th>
Title
</th>
<th>
Release Date
</th>
<th>
Genre
</th>
<th>
Price
</th>
</tr>

@foreach (var item in Model) {
<tr>
<td>

@Html.ActionLink ("Edit", "Edit", new { id=item.ID })
@Html.ActionLink ("Details", "Details", new { id=item.ID })
@Html.ActionLink ("Delete", "Delete", new { id=item.ID })

</td>
<td>
@item.Title
</td>
<td>
@String.Format ("{0:d}", item.ReleaseDate)
</td>
<td>
@item.Genre
</td>
<td>
@String.Format ("{0:c}", item.Price)
</td>
</tr>
}
</table>

Strongly typed Models and the @model keyword

Page | 37

Earlier in this tutorial, we covered how a Controller can pass data/objects to a view template using the ViewBag. The

ViewBag is a dynamic object, and provides a convenient, late-bound, way to pass bits of information to a view.

ASP.NET MVC also provides the ability to pass data/objects to a view template using a strongly-typed approach. This

strongly-typed approach enables richer editor intellisense, and better compile-time checking of your code. We are using this

approach above with our MoviesController and Index.cshtml view template.

Getting started with MVC3 Page | 38

Notice how we are passing an argument when calling the View () helper method within our Index action:

public class MoviesController : Controller

{
MovieDBContext db = new MovieDBContext () ;

public ActionResult Index()
{

var movies = from m in db.Movies
where m.ReleaseDate > new DateTime (1984, 6, 1)
select m;

return View (movies.ToList ());

This line of code indicates that we are passing a list of Movies from our Controller to our View:
return View (movies.ToList ());

View templates can indicate the type of object they expect to be passed using a@model statement at the top of the view
template file. Remember how when we created our Index.cshtml view template we checked the “Create a strongly-typed
view” checkbox within the “Add View” dialog, and told it that we were passing a list of Movies? This caused Visual Web
Developer to automatically emit the following @mode1 statement at the top of our Index.cshtml file when it scaffolded our
view:

@model IEnumerable<MvcMovie.Models.Movie>

This @model directive allows us to access the list of Movies that our Controller passed us using a “Model” object that is
strongly-typed. For example, within our Index.cshtml template we are looping over the movies by doing a foreach statement
on this strongly-typed Model:

@foreach (var item in Model) {
<tr>

<td>
@Html.ActionLink ("Edit", "Edit", new { id=item.ID }) |
@Html.ActionLink ("Details", "Details", new { id=item.ID }) |
@Html.ActionLink ("Delete", "Delete", new { id=item.ID })

</td>

<td>
@item.Title

</td>

<td>
@String.Format ("{0:d}", item.ReleaseDate)

</td>

<td>
@item.Genre

</td>

<td>
@String.Format ("{0:c}", item.Price)

</td>

</tr>

Because our “Model” is strongly-typed (as an TEnumerable<Movie>), each “item” within the loop is strongly- typed as a
“Movie”. Among other benefits, this means that we get compile-time checking of our code, and full Intellisense support
within the code editor:

Getting started with MVC3 Page | 39

= | MvcMovie - Mic :
File Edit View Project Debug Data Tools Window Help
PGl S % B9 | b G [peng [

i | XHTML1.0 Transition ~| = ¢ Publish:

Create Publish Settings '| _"51 E

Index.cshtml* & X Solution Explorer v I

=] <h> [F = | @ 2] |
{Ithzrlce i é‘% .h.l-chovie.
[- [» [=d| Properties
I [+ [«3] References
fiforeach (var item in Model) { 3 App_Data
= ctrs i [Content
=) <tds [Centrollers
{@Html.Actionbink("Edit", “Edit", new { id=ite b Ed Models
{iHtml.Actionbink("Details™, "Details"™, new { — > [Scripts
{@Html.Actionbink("Delete™, “"Delete", new { it 2 iy Ve
& g £ HelloWorld
@item.Title . b [Home
</td> a |7 Movies
g <tds “i5) Indesx.cshtrnl
[@string.Format("{8:d}", item.ReleaseDate) [Shared
L </td> M) _ViewStart.cshtmi
= <td> ; 3 Web.config
{;td?ﬂ:em.y s #j Glokal.asax
i i W Equals =% packages.config
T @Striwﬁ: Genre ‘string Movwie,Genre 5 Web.config
</td> W GetHashCode
!. < trs 9 GetType
¥ el
</tablex 2 Price A
100 % - ¢ | ﬁl: ReleaseDate r & Solution E... fESReElEEom
T Title = : -
Ready @ ToStiing LE] Col19 Ch19 IMS

: e —

Getting started with MVC3

Creating a Connection String and

Page | 40

Working with SQL Server Express

The MovieDBContext class we created in the previous section handles the task of connecting to the database and
mapping Movie objects to database records. One question you might ask, though, is how to specify which database it will
connect to? We'll do that by adding connection information in the Web.config file of our application.

Open the application root Web.config file. (Not the Web.config file in the Views folder.) The image below show both
Web.config files; open the Web.config file circled in red.

Solution Explorer » 0 X
=nall”
2 MveMovie
=d| Properties
g References
. App_Data
[Content
_d Controllers
1 Maodels
[l Scripts
4[5 Views
|3 Account
3 HelloWorld
[d Home
[Movies
3 Shared
':’@ _ViewStart, cshtiml
=9 Web.config
» iij Global.asax
S garanfig

b s Web.config

Add the following connection string to the <connectionStrings> element in the Web.config file.

<add name="MovieDBContext"

connectionString="Server=.\SQLEXPRESS;
Database=Movies;Trusted Connection=true"
providerName="System.Data.SglClient" />

The following code shows a portion of the Web.config file with the new connection string added:

<configuration>
<connectionStrings>

<add name="ApplicationServices"

connectionString="data

source=.\SQLEXPRESS; Integrated

Security=SSPI;AttachDBFilename=|DataDirectoryl|aspnetdb.mdf;User Instance=true"
providerName="System.Data.SglClient" />

<add name="MovieDBContext"

connectionString="Server=.\SQLEXPRESS;
Database=Movies;Trusted Connection=true"
providerName="System.Data.SglClient" />

</connectionStrings>

Getting started with MVC3 Page | 41

The value of the connectionString attribute indicates that we want to use a Movies database that's managed by a
local instance of SQL Server Express. When you installed Visual Web Developer Express, the installation process
automatically installed SQL Server Express on your computer as well, which means you have everything necessary for the
database to work.

Run the application and browse to the Movies controller by appending/Movies to the URL in the address bar of your
browser. An empty list of movies is displayed.

===

F2)]
Q
x

||\ '_-/JILUJ 2 httpiffloc... v | 2 Movie List i
MVC Movie App

My Movie List
Creafe New

Title Release Date Genre Price

EF code-first detected that the database connection-string we provided pointed to a “Movies” database that didn’t yet exist.
And so it helpfully created one for us automatically. You can verify that it's been created by looking in the C:\Program
Files\Microsoft SQL \MSSQL10.SQLEXPRESS\MSSQL\DATA folder.

Remember that in the previous part of the tutorial, we created a Movie model using the code below:

using System;
using System.Data.Entity;

namespace MvcMovie.Models
{
public class Movie
{
public int ID { get; set; }
public string Title { get; set; }
public DateTime ReleaseDate { get; set; }
public string Genre { get; set; }
public decimal Price { get; set; }

}

public class MovieDBContext : DbContext
{

Getting started with MVC3 Page | 42

public DbSet<Movie> Movies { get; set; }
}

As you just saw, when you first accessed the MovieDBContext instance using the MoviesController code above,
the Entity Framework automatically created an empty Movies database for you. It mapped the Movies properties of the
MovieDBContext class to a new Movies table that it created in the database. Each row in the table is mapped to a
Movie instance and each column in the Movies table is mapped to a property on theMovie class.

You can use the SQL Server Management Studio tool to see the database schema that was created using the model. Start
SQL Server Management Studio.

| €& Internet Explorer -
E Microsoft Forefront Endpoint Protectior
o Microsoft Web Platform Installer
4 windows DVD Maker
528 Windows Fax and Scan Rick Anderson
€ Windows Media Center
Windows Media Player
& windows Update
<& XPSWiewer

o Accessories

Documents
Pictures

PwtLizic
| Games

. Maintenance
bicrosaft IT
L Microsoft Silverlight

Control Panel

| Microsaft Silverlight 3 S0

0 Microsoft SQL Sereer 2003 Dievicesand Printers

0 Microzaft 301 Server 2008 B2

.k Irnport and Export Data (32-hit) Default Prograrms
U 0L Server Management Studio

| Configuration Tools Help and Support

L Integration Services

. Microsoft Sync Framework Windo

4 Back

Learch progrars and files

Getting started with MVC3 Page | 43

The Connect to Server dialog box is displayed. In the Server name box, enter the following name: .\SQLEXPRESS

-

@l Connectta Server |E|
Microsoft*
Z SQLServer2008r2
Server type: [Database Engine v]
Server name: ASOLEXPRESS =
Authentication: [Windnws Authentication -]

Bdaiiiamg e
Fazsword [

_| Remember passaond

[_ I:::-nrject] [Cancel] [Help] [Dptichs »3

Getting started with MVC3 Page | 44

Click Connect. The Movies database is displayed in the Object Explorer pane.

File Edit ‘iew [::I&I-:nug 'Tn:n:nls, Windi Community Help

0 New Query | [y [y |25 W 4
Connect~ 31 # & 7 [F] 5§

5 |4 NSQOLEXPRESS (SQL Server 10.0,2531 - REDMC|
= 3 Databases
F [Systemn Databases
= [.i"Ml:_u_vie_s
& 1 Database Diagrams
= [Tables
F [Syster Tables
dba.EdmMetadata
@ 2 dboMovies
A Wiews
@ Synonyms
Prograrnmability
[[Service Broker
[Storage
[0 Security
MveMavie Models. MovieDBCantext
[Security
F [Server Ohjects
[Replication
[Management

o . = o

.P;E'ﬂ.lj'j" il

Getting started with MVC3 Page | 45

Right-click the Movies table and select Design.

Connect 2 &1 o 7 F] B
& [ASQUEXPRESS (SQL Server 10.0,2531 - REDMC
£ 3 Databases
@ [Systern Databases
2 L) Mevies
& [Database Dingrams
= 3 Tables
® [System Tables
@ 1 dboEdmbdetadata
23
@ 3 Miews New Table...
@ (3 Smonyms | |;}r.|.£?\L
= g ::“‘-’;"";"": Select Top 1000 Rows
o wvice Brok R
@ 3 Storage Edit Top 200 Rows
@ [Security Scnpt Table as *
@ WMM!MM View Dependencies
[Security
[Server Objects Full-Test indesx ,
& g :F&.‘F‘nnm Falicies 3
€] anageme s
s Start PowerShel|

R —— Reports ¥l

Getting started with MVC3 Page | 46

You see the database schema.

!'_';::-,:. Microsoft SQL Server Management Studio

Fil= Edit View Debug TableDesigner Tools Window Community Help
Pl New Query | [y | [| (7 W & |) o
S =aRsEE:

REVOSSD\SQLEX... - dbo.Movies | - X
Connect~ 31 81 g ¥ 45 Column Name I Data Type I Allow Mulls I
= [} .\sgExpress (0L Server 10.50.1600 - | M%) ID | int r
5l 3 Databases _| Title nvarchar{4000) r
H Il_j System Databases _| N i E— r
= Mawvies
[Database Diagrams _I BenE nvarchar(4000) 3
E [Tables | price decimal(18, 2) r
[System Tables _J r
= dbo,EdmMetadata
E dbo.Movies
il Views Column Properties |
|3 Synonyms
3 Programmability
[_3 Service Broker |
[3 Storage ,_ﬂ
|34 Security jin] J
[[Cd Security Mo
[+ [Server Objects Data Type int
[[Replication Default vahie or Binding
[[Management B Table Designer
Collatinn =datahase default= %
{General)
ol | -
Ready p

Notice how the schema of the Movies database maps to the Movie class you created earlier. Entity Framework code-first
automatically created this database schema for you based on your Movie class.

You now have the database and a simple listing page to display content from it. In the next tutorial, we'll add a Create
method and a Create view that lets you add movies to this database.

Getting started with MVC3 Page | 47

Adding a Create Method and Create View

In this section we are going to add support for creating and saving new movies in the database. We'll implement the
/Movies/Create URL to enable this. It will show an HTML <form> with appropriate input elements that a user can fill out to
enter a new movie. When a user submits the form, we’ll retrieve the values they posted and save them in the database.

Displaying the Create Form

We’ll start by adding a create action method to our existing MoviesController class. It will return
back a view that contains an HTML form:

public ActionResult Create()
{

return View () ;

}

Now let's implement the Create view that we'll use to display the form to the user. Right-click inside the Create method
and select Add View from the context menu to create the view template for the movie form.

Specify that you're going to pass a Movie object to the view template as its model class. In the Scaffold template list,
choose Create, then click Add.

. .
Add View 22
View name:
Create
View engine

| Razor (CSHTML) |

|| Create a strongly-typed view

Model class:

Mowvie (MvcMowvie.Models) -

Scaffold template:
Create * [¥7] Reference script libraries

[7] Create as 2 partial view

[¥] Use a layout or master page:

(Leave empty if it is set in a Razor _viewstart file)

MamnContent

| add || cancel

Getting started with MVC3 Page | 48

After you click the Add button, the Views\Movies\Create.cshtml view template is created. Because you selectedCreate in the
Scaffold template list, Visual Web Developer automatically generated (scaffolded) some default content in the view. The
scaffolding created an HTML form and a place for validation error messages. It examined the Movie class and created code
to render <label> and <input> elements for each property of the class. The listing below shows theCreate view that
was generated:

@model MvcMovie.Models.Movie

@
ViewBag.Title = "Create";

}
<h2>Create</h2>

<script src="@Url.Content ("~/Scripts/jquery.validate.min.js")"
type="text/javascript"></script>

<script src="@Url.Content ("~/Scripts/jquery.validate.unobtrusive.min.js")"
type="text/javascript"></script>

Qusing (Html.BeginForm()) {
@Html.ValidationSummary (true)
<fieldset>

<legend>Movie</legend>

<div class="editor-label">
@Html.LabelFor (model => model.Title)
</div>
<div class="editor-field">
@Html.EditorFor (model => model.Title)
@Html.ValidationMessageFor (model => model.Title)
</div>

<div class="editor-label">
@QHtml.LabelFor (model => model.ReleaseDate)
</div>
<div class="editor-field">
@QHtml.EditorFor (model => model.ReleaseDate)
@Html.ValidationMessageFor (model => model.ReleaseDate)
</div>

<div class="editor-label">
@Html.LabelFor (model => model.Genre)
</div>
<div class="editor-field">
@QHtml.EditorFor (model => model.Genre)
@Html.ValidationMessageFor (model => model.Genre)
</div>

<div class="editor-label">
QHtml.LabelFor (model => model.Price)
</div>
<div class="editor-field">
@QHtml.EditorFor (model => model.Price)
@Html.ValidationMessageFor (model => model.Price)
</div>

<p>
<input type="submit" value="Create" />
</p>
</fieldset>

Getting started with MVC3 Page | 49

}

<div>
@Html.ActionLink ("Back to List", "Index")
</div>

The scaffolded code uses several HTML helper methods to help streamline the HTML markup. TheHtml.LabelFor helper
displays the name of the field ("Title", "ReleaseDate", "Genre", or "Price"). TheHtml.EditorFor helper displays an HTML
<input> element where the user can enter a value. TheHtm|.ValidationMessageFor helper displays any validation

messages associated with that property. Notice how our view template has a @model MvcMovie.Models.Movie

statement at the top of the file — this strongly-types the “Model” of our view template to be a Movie.

http://msdn.microsoft.com/en-us/library/gg401864(VS.98).aspx
http://msdn.microsoft.com/en-us/library/system.web.mvc.html.editorextensions.editorfor(VS.98).aspx
http://msdn.microsoft.com/en-us/library/system.web.mvc.html.validationextensions.validationmessagefor(VS.98).aspx

Getting started with MVC3

Run the application and navigate to the /Movies/Create URL. You'll see an HTML form like the following:

&=

FD

A | & Create

g C:%] & http://localhost =
MVC Movie App

Create

Movie

ﬁtFe
Releaselate
.Gen re

Price

Back to List

| & 3%

Page | 50

Getting started with MVC3 Page | 51

Right-click within the browser and choose the “View Source” option. The HTML in the page looks like the following (the
menu template was excluded for clarity):

<!DOCTYPE html>
<html>
<head>
<title>Create</title>
<link href="/Content/Site.css" rel="stylesheet" type="text/css" />
<script src="/Scripts/jquery-1.4.4.min.Jjs" type="text/javascript"></script>
</head>

<body>
<h2>Create</h2>

<script src="/Scripts/jquery.validate.min.js" type="text/javascript"></script>
<script src="/Scripts/jquery.validate.unobtrusive.min.js"
type="text/javascript"></script>

<form action="/Movies/Create" method="post"> <fieldset>
<legend>Movie</legend>

<div class="editor-label">
<label for="Title">Title</label>
</div>
<div class="editor-field">
<input class="text-box single-line" data-val="true" data-val-
required="Title is required" id="Title" name="Title" type="text" value="" />
<span class="field-validation-valid" data-valmsg-for="Title" data-
valmsg-replace="true">
</div>

<div class="editor-label">
<label for="ReleaseDate">ReleaseDate</label>
</div>
<div class="editor-field">
<input class="text-box single-line" data-val="true" data-val-
required="The ReleaseDate field is required." id="ReleaseDate" name="ReleaseDate"
type="text" value="" />
<span class="field-validation-valid" data-valmsg-for="ReleaseDate" data-
valmsg-replace="true">
</div>

<div class="editor-label">
<label for="Genre">Genre</label>
</div>
<div class="editor-field">
<input class="text-box single-line" id="Genre" name="Genre" type="text"
value="" />
<span class="field-validation-valid" data-valmsg-for="Genre" data-
valmsg-replace="true">
</div>

<div class="editor-label">
<label for="Price">Price</label>
</div>
<div class="editor-field">
<input class="text-box single-line" data-val="true" data-val-number="The
field Price must be a number." data-val-range="Price must be between $1 and $100"
data-val-range-max="100" data-val-range-min="1" data-val-required="The Price field
is required." id="Price" name="Price" type="text" value="" />

Getting started with MVC3 Page | 52

<span class="field-validation-valid" data-valmsg-for="Price" data-
valmsg-replace="true">
</div>

<p>
<input type="submit" value="Create" />
</p>
</fieldset>
</form>
<div>
Back to List
</div>

<div id="footer">
</div>
</div>
</div>
</body>
</html>

The <input> elements are in an HTML <form> element whose action attribute is set to post to the /Movies/Create
URL. The form data will be posted to the server when the Create button is clicked.

Processing the HTTP-POST

We've implemented the code necessary to show our create form. Our next step will be to write the code to handle what
happens when the form is posted back to the server. We'll want to take the posted values and save them as a new Movie in
our database.

To do this, we'll add a second Create action method to the MoviesController class. This second Create action method
will have an [HttpPost] attribute on it —indicating that we want to use it to handle POST requests to the
/Movies/Create URL. All non-POST requests (in effect, GET requests) to the /Movies/Create URL will instead be handled
by the first Create action method, which simply displays the empty form.

The following shows the code for both Create action methods in the MoviesController class:

public ActionResult Create()
{
return View () ;

}

[HttpPost]
public ActionResult Create (Movie newMovie)
{
if (ModelState.IsValid)
{
db.Movies.Add (newMovie) ;
db.SaveChanges () ;
return RedirectToAction ("Index");
}
else
{
return View (newMovie) ;

}

Getting started with MVC3 Page | 53

Earlier you saw how ASP.NET MVC can automatically pass querystring parameters from a URL (for example,
/HelloWorld/Welcome?name=Scott&numTimes=>5) as method parameters to an action method. In addition to
passing querystring parameters, ASP.NET MVC can also pass posted form parameters this way.

Form posted parameters can be passed as individual parameters to an action method. For example, the ASP.NET MVC
framework can pass in our form posted values as parameters to the POST Create action method as shown below:

[HttpPost]
public ActionResult Create(string title, DateTime releaseDate, string genre,

decimal price)

{

The form posted values can also be mapped to a complex object with properties (like our Movie class) and passed as a
single parameter to an action method. This is the approach we are taking within our HTTP-POST Create action method.
Notice below how it accepts a single Movie object as a parameter:

[HttpPost]
public ActionResult Create (Movie newMovie)

{
if (ModelState.IsValid)

{

db.Movies.Add (newMovie) ;
db.SaveChanges () ;
return RedirectToAction ("Index");

}

else

{

return View (newMovie) ;

}

The ModelState.IsValid checkinthe code above verifies that the data submitted in the form can be used to create a
Movie object. If the data is valid, our code adds the posted Movie to the Movies collection of the MoviesDBContext
instance. The code then saves the new movie to the database by calling the SaveChanges () method on our
MoviesDbContext, which persists changes to the database. After saving the data, the code redirects the user to the
Index action method of the MoviesController class, which causes the new movie to be displayed in the listing of

movies.

If the posted values are not valid, they are redisplayed in the form. The Html.ValidationMessageFor helpers we are using in
the Create.cshtml view template take care of displaying appropriate error messages for any posted values that were not

valid.

Getting started with MVC3 Page | 54

Creating a Movie

Run the application and navigate to the /Movies/Create URL. Enter some details about a movie and then click the Create
button.

v Blla/E@] = |
(— \ . ! @ http://loc... - |@ Crigia | ' 0 S

3]
G
X

MVC Movie App

Create

Movie

Titla

‘When Harry Met Sally
ReleaseDate

11111989

Genre

{Comedy

Price
999

Back to List

Clicking the Create button will cause our form to post back to the server, and the movie will be saved in the database. We're
then redirected to the /Movies URL, where we can see the newly created movie in the listing.

Getting started with MVC3 Page | 55

= elEE]

a ttp://localhost:6905/ - | B | c | b 4 || E My Movie List I | ‘u.'i ‘ij‘ r"‘:|

N
S A

MVC Movie App

My Movie List
Create MNew

Title Release Date Genre Price
Edit | DelFils | Delete When Harry Met Sally 1/11/1989 Romantic Comedy $10.00

You might have noticed that the price displayed in the list is $10, not the $9.99 we entered. That's because the default
precision of the Decimal type in our database currently doesn't allow decimal point values. We'll fix this when we make
some tweaks to the model in the next section.

We now have the beginning of an application that can create and display data from a database. Below is what our
MoviesController class looks like:

using System;

using System.Ling;
using System.Web.Mvc;
using MvcMovie.Models;

namespace MvcMovie.Controllers
{
public class MoviesController : Controller
{
MovieDBContext db = new MovieDBContext () ;

//
// GET: /Movies/

public ActionResult Index ()
{
var movies = from m in db.Movies
where m.ReleaseDate > new DateTime (1984, 6, 1)
select m;

return View (movies.ToList ());

//

http://aspnet13.orcsweb.com/media/865407/WindowsLiveWriter_ImplementingEditDetailsandDelete_11047_HarrySallyMovieListFullIE_thumb_1.png

Getting started with MVC3 Page | 56

// GET: /Movies/Create

public ActionResult Create()
{

return View () ;

}

//
// POST: /Movies/Create

[HttpPost]
public ActionResult Create (Movie newMovie)

{
if (ModelState.IsValid)

{
db.Movies.Add (newMovie) ;
db.SaveChanges () ;
return RedirectToAction ("Index");
} else

{

return View (newMovie) ;

}

Note about locales
If you normally work with a locale other than English, you need to include the correct locale-specific jQuery scripts, which
you can download from the following URL:

http://plugins.jquery.com/node/8/release

For example, for German locales, you need to download the following file:
jquery.validate_17\jquery-validate\localization\methods_de.js
You then need to include the correct script reference in the Movies\Create.cshtml file, as in the following example:

<script src="QUrl.Content ("~/Scripts/methods de.js")"
type="text/javascript"></script>

You don't need to include the localized messages script (messages_de.js for German locales), because ASP.NET MVC and the
DataAnnotations types use their own localized messages.

In addition to including the localized methods script, the current locale on the server must be set to the target locale so that
any server-side messages (used for both client-side and server-side validation) will be used correctly.

If you use a non-English locale, you should also use the correct locale-specific character for the decimal delimiter in the
price. (In German, for example, you would enter a price as "9,99".) On some non-English keyboards, the dot character {(.)
does not produce the English dot character used for decimal places; in those cases, if you use a dot character for the decimal
point, you might see the following error:

The field Price must be a number.

In the next section, we will look at how we can add an additional property to our Movie model, and customize the precision
of our Price column within the database.

http://plugins.jquery.com/node/8/release

Getting started with MVC3 Page | 57

Adding a New Field to the Movie Model and Table

In this section we are going to make some changes to our Model classes and walkthrough how we can evolve the schema of
our database to match them.

Adding a Rating Property to our Movie Model

Let’s begin by adding an additional “Rating” property to our existing Movie class. Open the Movie.cs file and add a Rating
property to the Movie class within it:

public string Rating { get; set; }

The complete Movie class should now look like the code below:

public class Movie

{

public int ID { get; set; }
public string Title { get; set; }
public DateTime ReleaseDate { get; set; }
public string Genre { get; set; }
public decimal Price { get; set; }
public string Rating { get; set; }

Recompile the application using the Debug->Build Movie menu command.

Now that we’ve updated our Model, let’s also update our \Views\Movies\Index.cshtml and \Views\Movies\Create.cshtml|
view templates to support the new Rating property.

Open the \Views\Movies\Index.cshtml file and add a <th>Rating</th> column heading just after the Price column.
Then add a <td> column near the end of the template to render the @item.Rating value. Below is what the updated
Index.cshtml view template should look like after we do this:

<table>
<tr>
<th></th>
<th>Title</th>
<th>Release Date</th>
<th>Genre</th>
<th>Price</th>
<th>Rating</th>
</tr>
@foreach (var item in Model) {
<tr>
<td>
@QHtml.ActionLink ("Edit", "Edit", new { id=item.ID }) |
@QHtml.ActionLink ("Details", "Details", new { id=item.ID }) |
@QHtml.ActionLink ("Delete", "Delete", new { id=item.ID })
</td>
<td>
Qitem.Title
</td>
<td>
@String.Format ("{0:d}", item.ReleaseDate)
</td>
<td>
@item.Genre
</td>

Getting started with MVC3 Page | 58

<td>
@String.Format ("{0:c}", item.Price)
</td>
<td>
@item.Rating
</td>
</tr>
}
</table>

Next open the \Views\Movies\Create.cshtml file and add the below markup near the end of the form. It will render a textbox
so that a Rating can be specified when a new Movie is created:

<div class="editor-label">
@Html.LabelFor (model => model.Rating)
</div>
<div class="editor-field">
@Html.EditorFor (model => model.Rating)
@Html.ValidationMessageFor (model => model.Rating)
</div>

Getting started with MVC3 Page | 59

Managing Model / Database Schema Differences
We’ve updated our application code to support the new Rating property.

Let’s now re-run the application and navigate to the /Movies URL. When we do this, though, we’ll find that the following

error occurs:

(- :} H (2! The model backing the ‘Mowvi... .

Server Errorin '/' Application.

The model backing the 'MovieDBContext' context has changed
since the database was created. Either manually delete/update
the database, or call Database.SetInitializer with an
IDatabaselnitializer instance. For example, the
DropCreateDatabaselIfModelChanges strategy will automatically
delete and recreate the database, and optionally seed it with new
data.

m

Description: An unhandled exception occurred during the execution of the current web reguest. Please review the sfack
trace for more information about the error and where it originated in the code.

Exception Details: System.InvalidOperationException: The model backing the ‘MovieDBContext context has changed since
the database was created. Either manually delete/update the database, or call Database. Setinitializer with an [Databaseinitializer
instance. For example, the DropCreateDatabaselfModelChanges strategy will automatically delete and recreate the databasze, and
optionally seed it with new data.

Source Error:

Line 10:

Line 11: public ActionResult Index() {

Line 12: var movies = from m in db.Movies

Line 13: where m.ReleaseDate » new DateTime(1934, &, 1)
Line 14: select m;

Source File: C\Temp\c_projectic#projectiveMovie\ControliersiMoviesController.cs - Line: 12

Stack Trace:

| « | 0 | b

We are seeing this error because the updated Movie model class within our application is now different than the schema of
the Movie table of our existing database (there is no corresponding “Rating” column in the database table).

By default, when you use EF code-first to automatically create a database (like we did earlier in this tutorial), EF code-first
adds a table to the database to help track whether the schema of the database is in sync with the model classes it was

Getting started with MVC3 Page | 60

generated from. If it's not in sync, EF will throw an error. This makes it easier to track down issues at development time that
you might otherwise only find (by obscure errors) at run time. The sync checking feature is what causes the above error
message to be displayed.

There are two approaches to resolving the above error:

1. Have the Entity Framework automatically drop and re-create the database based on the new model class schema.
This approach is very convenient when doing active development on a test database, as it allows you to quickly
evolve your Model and database schema together. The downside, though, is that you lose existing data in the
database (and so you don’t want to use it on a production database!).

2. Modify the schema of the existing database so that it matches the model classes. The advantage of this approach is
that you keep your data. You can make this change either manually, or by creating a database change script.

For this tutorial, we'll use the first approach — and have EF code-first automatically re-create the database anytime the
model changes.

Automatically Recreate the Database on Model Changes

Let’s update our application so that EF code-first automatically drops and re-creates our database anytime we evolve the
model of our application.

Warning

: You should only enable this approach of automatically dropping and re-creating the database using a development/test
database, and never on a production database with real data. Using it on a production server can lead to data loss.

In Solution Explorer, right click the Models folder, select Add, and then select Class.

£ "

:E§ MvcMovie
=d| Properties
|:3§ References

3 App_Data
3 Content
[Controllers
i | M,u:lc_:lels'
Convert to Web Application ipts
| s
=i New fem... Ctrl+Shift+A Add ’ !haLasax
=] Existing Item... Shift+Alt+ 4 Exclude Fram Project ’%kages.cm
4 New Folder X cut Ciri X b.config
Add ASP.MET Folder P |53 Copy Ctrle
¥i2 Class.. & Paste Ctri+V
[X Delete Del
Rename | Explorer

=) Properties AM

Getting started with MVC3 Page | 61

Name the class "Movielntializer". Update the MovieIntializer classto contain the following code:

using System;
using System.Collections.Generic;
using System.Data.Entity.Database;

namespace MvcMovie.Models

{

public class MovieInitializer : DropCreateDatabaseIfModelChanges<MovieDBContext>

{

protected override void Seed (MovieDBContext context)

{

var movies = new List<Movie> {

new Movie { Title = "When Harry Met Sally",
ReleaseDate=DateTime.Parse ("1989-1-11"),
Genre="Romantic Comedy",
Rating="R",
Price=7.00M},

new Movie { Title = "Ghostbusters 2",
ReleaseDate=DateTime.Parse ("1986-2-23"),
Genre="Comedy",
Rating="R",
Price=9.00M},
b

movies.ForEach (d => context.Movies.Add(d)):;

The MovieInitializer class above indicates that the database used by our Model should be dropped and
automatically recreated if our Model classes ever change. We are using its “Seed” method to specify some default data that
we want to automatically add to the database any time it is created (or re-created). This provides a useful way to populate
some sample data into our database, without requiring us to manually populate it each time we make a database change.

Now that we’ve defined our MovieInitializer class, we'll want to wire it up so that each time our application runs it
checks to see whether our Model classes are different than the schema in our the database, and if so re-creates it to match
(and then populates it with the sample seed data).

Getting started with MVC3 Page | 62

Open the Global.asax file located at the root of the MvcMovies project:

|~D_ Vi - B X
Pl S & a9 - - b 2 [Debug -1 2
P e By A (2| 2 < Publishy | Create Publish Settings -/ 4] <

Global.asax.cs X Solution Explorer ~ 1 X

wiNEIE e
B MvcMovie

4| Properties

w4 References

3 App_Data

. Content

. Controllers

4 Models

3 Scripts

—d Views

, Global.asax
i packages.config

i3 Web.config

")(.'5!‘d'.'c?v’lovic‘«‘ﬂu_»’«pphcatlc-n -[9F.cgrster:}Iob)!F;ItcrurfGic-bGEFiitchc»Hcc -

[Fusing System;
using System.Collections.Generic;
using System.Ling;
using System.Web;
using System.Web.Mvc;
L using System,Web.Routing;

X0gIo0] X

[~ namespace MvcMovie

{
[= // Note: For instructions on enabling IIS6 or IIS7 classic
// visit htep://go.micresoft.com/?LinkTd=9394801

public class MvcApplication : System.Web.HttpApplication

{

public static void RegisterGlobalFilters(GlobalFilter(
{

}

public static void RegisterRoutes(RouteCollection rout

{

filters.Add(new HandleErroratt

routes.IgnoreRoute(”{rescurce}.axd/{*pathInfe}"); |

routes.MapRoute(
"Defaulit”™, // Route name
"{controller}/{action}/{id}", // URL with par:
new { controller = “Home", action = “Index", i
)i
¥
protected void Application Start()
{

AreaRegistration.RegisterAllAreas();

RegisterGlobalfilters(Globalrilters.Filters);
RegisterRoutes(RouteTable.Routes);

Ready inl Coll

The Global.asax file contains the “Application Class” of our project, and containsan Application Start () event

handler that will run when our application first starts up.

http://aspnet13.orcsweb.com/media/866213/WindowsLiveWriter_ImplementingEditDetailsandDelete_11047_Global_asax_thumb_1.png

Getting started with MVC3 Page | 63

Let’s add two using statements to the top of the file. The first references the Entity Framework namespace, and the second
references the namespace where our MovieInitializer class lives:

using System.Data.Entity.Database; // DbDatabase.SetInitialize
using MvcMovie.Models; // MovieInitializer

Then find the Application Start method and add a call to DbDatabase.SetInitializer () atthe beginning of
the method as shown below:

protected void Application Start ()
{

DbDatabase.SetInitializer<MovieDBContext> (new MovielInitializer());

AreaRegistration.RegisterAllAreas();
RegisterGlobalFilters (GlobalFilters.Filters);
RegisterRoutes (RouteTable.Routes) ;

The DbDatabase.SetInitializer statement we just added indicates that the database used by our
MovieDBContext should be automatically deleted and recreated if the schema in the database does not match the
current state of our Movie model objects. It will then populate the database with the “seed” sample data specified within
ourMovieInitializer class.

Close the Global.asax file.

Let’s now re-run our application again and navigate to the /Movies URL. When the application starts up, it will detect that
our Model structure no longer matches the schema of our database, and automatically recreates the database to match the
new Model structure. It will then populate the database with the two sample Movies we specified as “seed” data:

MVC Movie App

My Movie List
Create New

Title Release Date Genre Price Rating
t | Details | Delete When Harry Met Sally 1/11/198%2 Romantic Comedy %7.00 R

Edi
i

Edit | Details | Delete Ghostbusters 2 2/23/1936 Comedy $0.00 R

http://aspnet13.orcsweb.com/media/866317/WindowsLiveWriter_ImplementingEditDetailsandDelete_11047_MovieList_thumb.png

Getting started with MVC3 Page | 64

Click the “Create” link to add a new Movie:

[Log On]

MVC Movie App

Create

Movie
Titla

Rio Bravo |l
ReleaseDate
212812011
Fenre
Western
Price
9.99

Rating
G

Create

Back to List

Getting started with MVC3 Page | 65

Our new Movie, complete with Rating, will now show up in the Movies listing:

& My Movie List

MVC Movie App

My Movie List
Create New

Title Release Date Genre Price Rating
Edit | Detalls | Delete When Harry Met Sally 1/11/1989 Romantic Comedy $7.00 R
Edit | Details | Detete Ghostbusters 2 2/23/1986 Comedy $9.00 R
Edit | Details | Dalete Rio Bravo 1 272872011 Western $10.00 G

Fixing the Precision of our Price

In the screen-shots above you might have noticed that we have an issue with our Price column. We entered $9.99 as the
price in our Create form — and yet it is showing up as $10.00 in our movie listing page. Why is that?

This is happening because when EF code-first created our database, it used a default precision setting of (18:0) when
creating columns for Decimal data-types. This causes a value of $9.99 to be rounded up to $10. We'll want to change this so
that we instead store at least two decimal places (18:2). The good news is that EF code-first allows you to easily override the
mapping rules for how Models are persisted and loaded from a database. You can use this mechanism to override the
default typing conventions and table inheritance rules used by EF code-first, and save data however you want within a
database.

To change the precision of how our Price column is persisted in a database, open up the Movie.cs file within the \Models
folder of the project. Add a using statement for System.Data.Entity.ModelConfiguration.

using System.Data.Entity.ModelConfiguration;

Add the following OnMode1Creating override method to our existing MovieDBContext class:

public class MovieDBContext : DbContext

{
public DbSet<Movie> Movies { get; set; }

protected override void OnModelCreating (ModelBuilder modelBuilder)

{
modelBuilder.Entity<Movie> () .Property(p => p.Price) .HasPrecision (18, 2);

}

http://aspnet13.orcsweb.com/media/866575/WindowsLiveWriter_ImplementingEditDetailsandDelete_11047_MovieListRioBravo_thumb_1.png

Getting started with MVC3 Page | 66

The OnModelCreating() method can be used to override/customize the mapping rules for how our Model classes are
mapped to/from our database. The code above uses EF’'s Mode1Builder APIto indicate that we want thePrice
property of our Movie objects to have a precision of two decimal places when persisted in the database.

The full code listing for the Movie.cs file is shown below:

using System;
using System.Data.Entity;
using System.Data.Entity.ModelConfiguration;

namespace MvcMovie.Models

{

public class Movie
{
public int ID { get; set; }
public string Title { get; set; }
public DateTime ReleaseDate { get; set; }
public string Genre { get; set; }
public decimal Price { get; set; }
public string Rating { get; set; }
}

public class MovieDBContext : DbContext

{
public DbSet<Movie> Movies { get; set; }

protected override void OnModelCreating (ModelBuilder modelBuilder)

{
modelBuilder.Entity<Movie> () .Property(p => p.Price) .HasPrecision (18, 2);

}

Let’s now re-run our application and navigate again to the /Movies URL. When the application starts up, it will detect once
again that our Model structure no longer matches the schema of our database, and automatically recreate the database to
match the new Model structure (and have the new Price precision).

Getting started with MVC3 Page | 67

Create a new Movie and enter a price of 9.99. Notice how the decimal price is now correctly persisted in the database and
shows up in our movie listing:

¢ ° EErEEEED ErT

[Log On]

MVC Movie App

My Movie List
Create Naw

Title Release Date Genro Price
Edit | Details | Delete When Harry Met Sally 1/11/1680 Romantic Comeady $7.00
Edit | Details | Delgte Ghostbusters 2 2/23/1986 Comedy £9.00
Edit | Details | Delete Rio Bravo 11 2f28/2011 Western 50,09

In this section we showed how you can quickly modify your Model objects, and keep your database in sync with the changes.
We also showed how you can pre-populate your newly created databases with sample data to allow you to quickly try out
and test scenarios. Next, let’s look at how we can add richer validation logic to our Model classes, and enable some business
rules to be enforced.

http://aspnet13.orcsweb.com/media/866671/WindowsLiveWriter_ImplementingEditDetailsandDelete_11047_RioBravo999_thumb.png

Getting started with MVC3 Page | 68

Adding Validation to the Model

In this section we'll add validation logic to our Movie model, and we'll ensure that the validation rules are enforced any
time a user attempts to create or edit a movie using our application.

Keeping Things DRY

One of the core design tenets of ASP.NET MVC is DRY ("'Don't Repeat Yourself"). ASP.NET MVC encourages you to specify
functionality or behavior only once, and then have it be reflected everywhere in an application. This reduces the amount of
code you need to write and makes the code you do write much easier to maintain.

The validation support provided by ASP.NET MVC and EF code-first is a great example of the DRY principle in action. You can
declaratively specify validation rules in one place (the model class) and then those rules are enforced everywhere within the
application.

Let's look at how we can take advantage of this validation support in the movie application.

Adding Validation Rules to the Movie Model

We'll begin by adding some validation logic to the Movie class.

Open the Movie.cs file. Add a using statement at the top of the file that references the
System.ComponentModel.DataAnnotations namespace:

using System.ComponentModel.DataAnnotations;

The namespace is part of the .NET Framework. It provides a built-in set of validation attributes that you can apply
declaratively to any class or property.

Let's update the Movie class to take advantage of the built-in Required, StringLength, and Range validation attributes using

the code below:

public class Movie

{
public int ID { get; set; }

[Required (ErrorMessage = "Title is required")]
public string Title { get; set; }

[Required (ErrorMessage = "Date is required")]
public DateTime ReleaseDate { get; set; }

[Required (ErrorMessage = "Genre must be specified")]
public string Genre { get; set; }

[Required (ErrorMessage = "Price Required")]
[Range (1, 100, ErrorMessage = "Price must be between $1 and $100")]
public decimal Price { get; set; }

[StringLength (5)]
public string Rating { get; set; }

http://msdn.microsoft.com/en-us/library/system.componentmodel.dataannotations.aspx
http://msdn.microsoft.com/en-us/library/system.componentmodel.dataannotations.requiredattribute.aspx
http://msdn.microsoft.com/en-us/library/system.componentmodel.dataannotations.stringlengthattribute.aspx
http://msdn.microsoft.com/en-us/library/system.componentmodel.dataannotations.rangeattribute.aspx

Getting started with MVC3 Page | 69

The validation attributes above specify behavior we want enforced on the model properties they are applied to. The
Required attribute indicates that a property must have a value; in this sample, a movie has to have a Title, ReleaseDate,
Genre, and Price in order to be valid. The Range attribute constrains a value to within a specified range. The
StringLength attribute lets you set the maximum length of a stringproperty, and optionally its minimum length.

EF code-first ensures that the validation rules you specify on a model class are enforced before allowing the application to
save changes in the database. For example, the code below will throw an exception when the SaveChanges method is
called, because several required Movie property values are missing and the price is zero (which is out of the valid range).

MovieDBContext db = new MovieDBContext () ;

Movie movie = new Movie () ;
movie.Title = "Gone with the Wind";
movie.Price 0.0M;

db.Movies.Add (movie) ;
db.SaveChanges () ; // <= Will throw validation exception

Having validation rules automatically enforced by the Entity Framework helps make our application more robust. It also
ensures that we can't forget to validate something and inadvertently let bad data into the database.

Here's a complete code listing for the updated Movie.cs file:

using System;

using System.ComponentModel.DataAnnotations;
using System.Data.Entity;

using System.Data.Entity.ModelConfiguration;

namespace MvcMovie.Models

{

public class Movie

{
public int ID { get; set; }

[Required (ErrorMessage = "Title is required")]
public string Title { get; set; }

[Required (ErrorMessage = "Date is required")]
public DateTime ReleaseDate { get; set; }

[Required (ErrorMessage = "Genre must be specified")]
public string Genre { get; set; }

[Required (ErrorMessage = "Price Required")]
[Range (1, 100, ErrorMessage = "Price must be between $1 and $100")]
public decimal Price { get; set; }

[StringLength(5)]
public string Rating { get; set; }
}

public class MovieDBContext : DbContext
{
public DbSet<Movie> Movies { get; set; }

protected override void OnModelCreating (ModelBuilder modelBuilder)

{

Getting started with MVC3 Page | 70

modelBuilder.Entity<Movie> () .Property(p => p.Price) .HasPrecision (18, 2);

Validation Error Ul within ASP.NET MVC

Let’s now re-run our application and navigate to the /Movies URL.

Click the Create Movie link to add a new movie. Fill out the form with some invalid values and then click the Create button:

RIS

I P N

O e o -[E[0]x][@ cume i

MVC Movie App

Title is required

ReleaseDate
Date is reguired

Genre must be specified

Price
129.99 Price must be between $1 ang $100

Rating

Probably G The figld Rating must ba 3 string \with a3 maximum length of 5.

| Create |

Back to List

N =

Notice how the form has automatically used a background color to highlight the text boxes that contain invalid data and has
emitted an appropriate validation error message next to each one. The error messages match the error message strings we
specified when we annotated the Movie class earlier in this tutorial. The errors are enforced both client-side (using
JavaScript) and server-side (in case a user has JavaScript disabled).

http://aspnet13.orcsweb.com/media/868718/WindowsLiveWriter_AddingaNewFieldtotheMovieModelandTable_E60A_Val_thumb_1.png

Getting started with MVC3 Page | 71

What's really nice is that we didn't need to change a single line of code in the MoviesController class or in the
Create.cshtml view in order to enable this validation Ul. The controller and views we created earlier in this tutorial
automatically picked up the validation rules that we specified on the Movie model class.

How Validation Occurs in the Create View and Create Action Method

You might wonder how the validation Ul was generated without any updates to the code in our controller or views. The next
listing shows what the Create methods in the MovieController class look like. They're unchanged from how we
created them earlier in this tutorial.

//
// GET: /Movies/Create

public ActionResult Create()
{

return View () ;

}

//
// POST: /Movies/Create

[HttpPost]
public ActionResult Create (Movie newMovie)

{
if (ModelState.IsValid)
{
db.Movies.Add (newMovie) ;
db.SaveChanges () ;

return RedirectToAction ("Index");

}

else

{

return View (newMovie) ;

}

The first action method displays the initial Create form. The second handles the form post. The second Create method
callsModelState.IsValid tocheck whether the movie has any validation errors. (Calling this method evaluates any
validation attributes that have been applied to the object.) If the object has validation errors, the Create method
redisplays the form. If there are no errors, the method saves the new movie in the database.

Below is the Create.cshtml view template we scaffolded earlier in the tutorial, and that's used by the action methods shown
above both to display the initial form and to redisplay it in the event of an error.

@model MvcMovie.Models.Movie
@{
ViewBag.Title = "Create";

}
<h2>
Create</h2>
<script src="@Url.Content ("~/Scripts/jquery.validate.min.js")"
type="text/javascript"></script>
<script src="@Url.Content ("~/Scripts/jquery.validate.unobtrusive.min.js")"
type="text/javascript"></script>
@using (Html.BeginForm())
{

Getting started with MVC3 Page | 72

@Html.ValidationSummary (true)
<fieldset>
<legend>Movie</legend>
<div class="editor-label">
@QHtml.LabelFor (model => model.Title)
</div>
<div class="editor-field">
@Html.EditorFor (model => model.Title)
@Html.ValidationMessageFor (model => model.Title)
</div>
<div class="editor-label">
@Html.LabelFor (model => model.ReleaseDate)
</div>
<div class="editor-field">
@Html.EditorFor (model => model.ReleaseDate)
@Html.ValidationMessageFor (model => model.ReleaseDate)
</div>
<div class="editor-label">
@Html.LabelFor (model => model.Genre)
</div>
<div class="editor-field">
@Html .EditorFor (model => model.Genre)
@Html.ValidationMessageFor (model => model.Genre)
</div>
<div class="editor-label">
@Html.LabelFor (model => model.Price)
</div>
<div class="editor-field">
@QHtml.EditorFor (model => model.Price)
@Html.ValidationMessageFor (model => model.Price)
</div>
<div class="editor-label">
@Html.LabelFor (model => model.Rating)
</div>
<div class="editor-field">
@Html.EditorFor (model => model.Rating)
@Html.ValidationMessageFor (model => model.Rating)

</div>
<p>
<input type="submit" value="Create" />
</p>
</fieldset>
}
<div>
@Html.ActionLink ("Back to List", "Index")
</div>

Notice how we're using an Htm1 . EditorFor helper to output the <input> element for each Movie property. Next to
this helper is a call to the Htm1 .ValidationMessageFor helper method. These two helper methods work with the
model object that is passed by the controller to the view (in this case, a Movie object). They automatically look for
validation attributes specified on the model and display error messages as appropriate.

What's really nice about this approach is that neither the controller nor the Create view template know anything about the
actual validation rules being enforced or about the specific error messages displayed. The validation rules and the error
strings are specified only in the Movie class.

If we want to change the validation logic later, we can do so in exactly one place. We won't have to worry about different
parts of our application being inconsistent with how the rules are enforced — all validation logic will be defined in one place

Getting started with MVC3 Page | 73

and used everywhere. This keeps our code very clean. It means the code is easy to maintain and evolve. And it means that
we fully honor the DRY principle.

Next, let's look at how we can finish up the application by enabling the ability to edit and delete existing movies, as well as
display details for individual ones.

Getting started with MVC3 Page | 74

Implementing Edit, Details, and Delete Views

Open the Movie controller and add the following Details method:

//
// GET: /Movies/Details

public ActionResult Details (int id)
{

Movie movie = db.Movies.Find (id);
if (movie == null)

return RedirectToAction ("Index");
return View ("Details", movie);

}

The code-first approach makes it easy to search for data using the Find method. An important security feature of this
method is that we actually verify that we found a movie. For example, a hacker could introduce errors into the site by
changing the URL created by the links from http://localhost:xxxx/Movies/Details/1 to
http://localhost:xxxx/Movies/Details/12345. Without the check for a null movie, this could result in a database error.

Right-click inside the Details method and select Add View. For Scaffold template, choose Details.

[Add View ==

View name:

Details

View engine:

| Razor (CSHTML) -

Create a strongly-typed view
Model class:
.M.DU.I-E I[.f.'-.;"l;.rc.f;-a"l.u:rvi;a.f';"luz.ua;elsj -
Scaffold template:
IEDetaiLs v] [¥] Reference script libraries

["] Create as a partial view

[¥] Use a layout or master page:

(Leave empty if it is set in a Razor _viewstart file)

;MalnCDntent

Getting started with MVC3 Page | 75

Run the application and select a Details link.

[Log On]

MVC Movie App

Details

Movie
Title
When Harry Met Sally

ReleaseDate
1/11/1989 12:00 AM

Genre
Romantic Comedy

Price
0,09

Rating
R

Edit | Back to List

Getting started with MVC3 Page | 76

Implementing an Edit View

Back in the Movie controller, add the following Edit methods:

//
// GET: /Movies/Edit

public ActionResult Edit(int id)
{
Movie movie = db.Movies.Find(id);
if (movie == null)
return RedirectToAction ("Index");

return View (movie) ;

}

//
// POST: /Movies/Edit

[HttpPost]
public ActionResult Edit (Movie model)
{

try

{

var movie = db.Movies.Find(model.ID);

UpdateModel (movie) ;
db.SaveChanges () ;
return RedirectToAction ("Details", new { id = model.ID });
} catch (Exception)
{
ModelState.AddModelError ("", "Edit Failure, see inner exception");

}

return View (model) ;

The first Edit method will be called when a user clicks one of the edit links. If the movie is found, the application will
display the movie data in the Edit view. The Edit method marked with [HttpPost] takes a movie object created by the
model binder from data posted in the Edit form(that is, when the user changes data on the Edit form and hits the Save
button). The UpdateModel (movie) method invokes the model copier which copies the edited data (the model
parameter) into the movie entry in the database. If any errors occur while the data is being saved to the database, the user
is redirected to the Edit view with the data that was posted.

Getting started with MVC3

Right-click inside the Edit method and select Add View. For Scaffold template, choose Edit.

-

Add View

View name:
Edit
View engine:

| Razor (CSHTML) -

Create a strongly-typed view
Model class:

Mowvie (Mvchovie.Models)

Scaffold template:
| Edit -

[] Create as a partial view

Use a layout or master page:

(Leave emnpty if it is set in a Razor _viewstart file)

MainContent

Reference script libraries

]

Add

|| cance

Run the application, select an Edit link, and try editing some data.

Page | 77

Getting started with MVC3 Page | 78

Implementing a Delete View

Add the following Delete methods to the Movie controller.

//
// GET: /Movies/Delete

public ActionResult Delete (int id)
{
Movie movie = db.Movies.Find(id) ;
if (movie == null)
return RedirectToAction ("Index");
return View (movie) ;

}

//
// POST: /Movies/Delete

[HttpPost]
public RedirectToRouteResult Delete(int id, FormCollection collection)
{

Movie movie = db.Movies.Find(id);

db.Movies.Remove (movie) ;

db.SaveChanges () ;

return RedirectToAction ("Index");

Note that the Delete method that isn't marked with [HttpPost] does not delete the data. Performing a delete
operation in response to a GET request (or for that matter, performing an edit operation, create operation, or any other
operation that changes data) opens up a security hole. For more information on this, see Stephen Walther's blog entry
ASP.NET MVC Tip #46 — Don't use Delete Links because they create Security Holes.

http://stephenwalther.com/blog/archive/2009/01/21/asp.net-mvc-tip-46-ndash-donrsquot-use-delete-links-because.aspx

Getting started with MVC3

Right-click inside the Delete method and select Add View. Select the Delete scaffold template.

&

Add View

==

View name:

Delete
View engine:

| Razor (CSHTML) -

Create a strongly-typed view

Model class:

Mowvie (Mvchdowvie.Models)

Scaffold template:
| Delete -

Reference script libraries

["] Create as a partial view

Use a layout or master page:

(Leave empty if it is set in a Razor _viewstart file)

ContentPlaceHolder [T

:MainCDntent

Page | 79

Getting started with MVC3 Page | 80

We now have a complete MVC application that stores data in a SQL Server Express database. We can create, read, update,
and delete movies.

(e o] o
L2 () [@ nitpri/tocathost3216/ -[B¢ [x| @ myMovie it r‘ EAALE

[Log On]

MVC Movie App

My Movie List
Create New

Title Release Date Genre Price
Edit | Details | Delete When Harry Mzt Sally 1/11/1989 Romantic Comedy $9.99
Edit | Details | Delete Ghostbusters 2 2/23/1986 Comedy $£7.99
Edit | Details | Delete Ghostbusters 3 3/13/1989 Comedy %6.99

This basic tutorial got you started making controllers, associating them with views, and passing around hard-coded data.
Then we created and designed a data model. The code-first approach created a database from the data model on the fly. We
retrieved the data from the database and displayed it in an HTML table. Then we added a Create form that let users add

data to the database. We changed the database to include a new column of data, then updated two pages to create and
display this new data. We added validation by marking the data model with attributes from the DataAnnotations
namespace. The resulting validation runs on the client and on the server. Finally, we added code and view templates to
support Edit, Details, and Delete actions.

| now encourage you to move on to our intermediate-level MVC Music Store tutorial, to explore the ASP.NET articles on
MSDN, and to check out the many videos and resources at http://asp.net/mvc to learn even more about ASP.NET MVC! The
MVC forums are a great place to ask questions.

Enjoy!

— Scott Hanselman (http://hanselman.com and@shanselman on Twitter)

Rev 1.0 - Edited by Gustavo Azcona (http://gustavoazcona.blogspot.com)
See the original tutorial at http://www.asp.net/mvc/tutorials#Getting-Started-With-MVC3
Download this document from http://www.avanic.com.ar/downloads/docs/getting started with mvc3 cs.pdf

http://www.asp.net/mvc/tutorials/mvc-music-store-part-1
http://msdn.microsoft.com/en-us/library/gg416514(VS.98).aspx
http://msdn.microsoft.com/en-us/library/gg416514(VS.98).aspx
http://asp.net/mvc
http://forums.asp.net/1146.aspx
http://hanselman.com/
http://twitter.com/shanselman
http://gustavoazcona.blogspot.com/
http://www.asp.net/mvc/tutorials#Getting-Started-With-MVC3
http://www.avanic.com.ar/downloads/docs/getting_started_with_mvc3_cs.pdf

