Hegskolen i Telemark

Telemark University College
Department of Electrical Engineering, Information Technology and Cybernetics

[Tutorial]

Introduction to
Visual Studio and C#

HANS-PETTER HALVORSEN, 2012.08.17

mFaculty of Technology, Postboks 203, Kjzlnes ring 56, N-3901 Porsgrunn, Norway. Tel: +47 3557 50 00 Fax: +47 35 57 54 01

Table of Contents

1 T (o o [V Tt o] o HR T TSP PP PR PRSI 5
1.1 VISUAL STUGIO ettt st sttt ettt e sb e s bt e s e st s e b e enee 5
0 O P PSPPSR TP PRSPPI 6
1.3 INET FrameWOrK ... ittt st sttt et b e st beeas 6
1.4 Object-Oriented Programming (OOP)ueiiiiiiiie ettt ettt e e e e e e e 7

2 VISUAI SEUIO 1ottt ettt b e s bt sttt s bt e b e b e s be e she e sab e et e e nbeenheesaee e 8
P28 R [414 o Yo [V ot o Yo DR OO PP P OO PPROPPTURTUPPOUONt 8
D A €11 d [T =] (=T ISR 8

2.2.1 Integrated Development Environment (IDE)........ccoccieeeiciieee i e e 8
2.2.2 NEW PrOjJECE ... 9
2.2.3 Yo 1V L] T o o] [=T SRR 10
224 TOOIDOX ..ttt ettt sttt e b e bt bt she e sat e et e e be e beesheesatenae 11
2.2.5 o [0o (=T oo D1 F=d =Y oSSR 12
2.2.6 Properties WIiNAOWcceiiiiiiiiiiiiieeec ettt e e e s e e e saraer e e e e e s ssnbaaeeeeeeeesennnnnnns 13
2.2.7 BUild and DEDUE TOOIS......oeiiieeiiee ettt e et e e e e et e e e e nreeas 14

3 WiNAOWS PrOSIramMINGceeeeeiiieiiiiieiee e e e e ettt e e e e e e e eette e e e s e s s s sssbeeeeeaessesasaseeeeeaessssnnssssnessasennns 16

3.1 [[a Ao Te [¥ Tt To] o DTSR P PR PRTTI 16
3.11 WINAOWS FOIMIS ..ottt sttt e st me e e s e e ne e saneesraeesareeennnes 16
3.1.2 AT N 17

3.2 HEIHO WOTIO. ...t e re e e s e s b e e e snne e sneeesanee s 18

4 Getting Started With CH ... e e e e e e s e e ra e e e e e e e eenas 20
4.1 [[a Ao Te [¥ Tt To] o DTSR PP RROPRTOTI 20

3 Table of Contents

4.2 Data Types and Variablesocuieii ittt s e s e s e 20
421 2 TeTo] [T oI Y/ o1 TSP 21
4.2.2 Numeric types: Integrals, Floating Point, Decimalccccceeveiiiiiinien e, 21
4.2.3) 1 g1 7= 0V o P PP PUTPUTOPPPPP 21
4.2.4 A - YN 22

4.3 CONTIOL FIOW ettt ettt et s e st e et e e s e e sab e e sabeesbeeesareeenees 22
43.1 The if STAtEMENT ..o e st e s e e s b e e sanes 22
4.3.2 The SWiItCh StatemMENt.....coiiiie e 23

4.4 o To] o L I T T T U P P U U P PP PP PP TP P U TP 24
44.1 B T2 11 (=T Mo To T R PP 24
4.4.2 B 1S [0 31 Mo Yo« PP 24
4.4.3 B 1108 o1 o oo « PP 25
444 Bl (2 o1 L= [o] o 1 e Lo o PP 25

4.5 IMEENOOS ..ot sttt s ae e e n e r e e reesnne e 25
451 NONSTATIC METNOASeoneiiiieiieee et 26
45.2 SEAtiC METNOAS ... 26

4.6 NAMMIESPACES ..o e s e eesasaeasaessasasasasasssanasasnssassananannnns 26

A7 CIASSES .eureeieerieeriee ettt ettt st ettt sttt e r e h e sttt s bt bt e bt e bt e sre e st e ereeneenreennne e 27
4.7.1 CONSTIUCTON c..uiiiiiiiiii i 28

4.8 [0] o =T A T=T PP PPPPSRRPPP 30

4.9 NAMING CONVENTION .ccciiiiieeieieeeeeeeeeee e e e e e e e e e e s e e e e e e e e e e eeeeessesasasasasenas 31

5 More Object-oriented TEChNIQUESccccuuviiiiiiiee ettt e e e e abae e e aaeeas 34

5.1 INREIITANCE weoeeeeieee et r e e 34

5.2 [0 1V g Yo o o] 11 o VSRR PRPPR 35

5.3 [or=] YU = 1 4 o Y o NSRRI 36

6 [ol=Y ohu oY o I o =T a o |1 1o PR 37
7 WiNdOWS FOrMS EXAMPIE ...uiiiiiiiie ittt e ettt e e e et e e e e aee e e e sabteeeesbaaeeesntneassanes 39

Tutorial: Introduction to Visual Studio and C#

4 Table of Contents
8 VA=l ol o =4 o1 01T o - PPN 45
8.1 INEFOTUCTION ..ttt st et st e et e s bt e s be e e sabeesbeeesnneesabeeesareens 45
8.2 HTIMIL ettt e b e bt s a e st st b e e bt e bt e s he e e a e e e bt e be e heeeheesateeabeebe e beeas 45
8.3 WD BIrOWSEN ittt ettt ettt ettt ettt et e st e e at e e s bt e s a bt e s abe e s bt e e s be e e neeeenreesbeeesareenn 45
2R 613 OO URPUPRR PSR 46
8.5 NV Yol] o) OO PP PTTPPPPPTN 46
8.0 ASPLNET Lttt ettt st bbbt h e h ettt e bt e be e ehe e sheesateeateebe e beens 46
8.7 AJAX/ ASP.NET AJAX ..eeeieitieeieteseetesteetes e st etesteeseestesseensesseessesseeseessesseensessesssensesssensessennees 47
LS T LYY g [=4 o | PSR SPP 47
9 Database ProgramiMingccuiieiiciiieieiiieeeeiiiee e et e e estre e e e sbae e s s sbaeeeesabaeeessbaeesssbeeesesnseeessnasens 48
T8 R 1 5 10 21 Y] = LTSRS P PP 48

Tutorial: Introduction to Visual Studio and C#

1Introduction

In this Tutorial we will use Visual Studio 2010 and C# 4.0. C# is the programming language, while
Visual Studio is the development environment.

1.1 Visual Studio

Microsoft Visual Studio is an integrated development environment (IDE) from Microsoft. It can be
used to develop console and graphical user interface applications along with Windows Forms
applications, web sites, web applications, and web services in both native code together with
managed code for all platforms supported by Microsoft Windows, Windows Phone, Windows CE,
.NET Framework, .NET Compact Framework and Microsoft Silverlight.

The latest version of Visual Studio is Visual Studio 2010.

Below we see the integrated development environment (IDE) in Visual Studio:

WindowsHarmspplicaliond. - Microsofll Visual Studlio

- Solikn Explor
et Bz R e
o) Salukr “WicusFometpslcatiood (1 project
L =] windowsFarmeApplications
7] T Pepetes
i i i efances
o lahat1 8 = [ElFoewlcs
L T . 1 Formnl D ynar s
= | : L batomt_| i -] Farmrs
m [8] Progremcz
A ezl 8
A LrMabe I
C- R
a5 Lkl
Rl Hasedrention
M Harthzaiendy
TH Mt
33 wmewlpboer, () Seeeeeeeseereee— R A S b bt B | R
E Azbresc e
T engrsEar e
@ Formd Sysbeo,¥ndom, Foome. Form -
@ Raduddio i
B achietox S 2L e
T Tete T Anmunsze 1S -
Dpaity 107
F' Tofmy @ 2eviting e
T T akktTeLef: He
o webdosse: aightTclefiLevok Pase
Eiokanes Fuwiim Tw
HiMaws B Towhars ShouaTaskhar Taw
wnam T 5 300,30
T Conparens Samnpitye ukz
Bernong HartPosition Wil ad Lol on
DRI Frars | g nenings | O Pesses b
HIPE e perchin L e < ' - Tent romnl
BResortig Desapn e Lnz ol Project Toghst Fdse ®
6 ¥is el B ProvierPicls Tenl
=iMaga famert Sk Thee et assmasted vach the comrdl,
i Erorust T

New projects are created from the “New Project” window:

6 Introduction

Mew Project
Fecert Temglates | NET Framevcek ¢ v | Sft by | Decault
Installed Templates I
Type: Visual T
—| Windows Forms Apgiication Vsl C# AP A
= A project for creating an sppilcation with 2
—H Windows Forrs user inkerfars
L | WFE Application Vielalcg
claud —ahl Console Application Visaal C#
Measroment Studio =
Reporting EE] Claze Lbrary Wioial C¥
= SharePaint m_.
Sleerlight | ¢ﬁ| WFF Browser Application VAl C4
Test
wer cf| Empty Praject Vil C#
Warkflaw
3 Uiherkanay2ges ; "E] Windaws Sarvice Vieal C#
[# Other Project Types =
Ciekabase
ot wer custom Contrdl Libra VAl e
Madeling Frajects o« g Y
® Tast Projects |
WY WPF User Control Library Visaal C#
nlre Templates
a{.’ﬁ ‘Windaws Forms Concedl Lioeary Meaal C#
Hane: | indowsFormsApplications |
Location: | chifempivisual studio i‘D“l‘DI,Pm]ed:; | Browse.. |
stlution rame: | windowsFormisapplications | [lcreate dractry For solution
A b suurce
[ladd corkrel

1.2 C#

C# is pronounced “see sharp”.

C# is an object-oriented programming language and part of the .NET family from Microsoft. The most
recent version is C# 4.0 and it is part of Visual Studio 2010.

C# is very similar to C++ and Java.

C# is developed by Microsoft and works only on the Windows platform.

1.3 .NET Framework

The .NET Framework (pronounced “dot net”) is a software framework that runs primarily on
Microsoft Windows. It includes a large library and supports several programming languages which
allow language interoperability (each language can use code written in other languages). The .NET
library is available to all the programming languages that .NET supports. Programs written for the
.NET Framework execute in a software environment, known as the Common Language Runtime
(CLR), an application virtual machine that provides important services such as security, memory
management, and exception handling. The class library and the CLR together constitute the .NET

Framework.

The latest version of .NET Framework is .NET Framework 4.0

Tutorial: Introduction to Visual Studio and C#

7 Introduction

1.4 Object-Oriented Programming (OOP)

Object-oriented programming (OOP) is a programming language model organized around "objects"
rather than "actions" and data rather than logic. Historically, a program has been viewed as a logical
procedure that takes input data, processes it, and produces output data.

The first step in OOP is to identify all the objects you want to manipulate and how they relate to each
other, an exercise often known as data modeling. Once you've identified an object, you generalize it
as a class of objects and define the kind of data it contains and any logic sequences that can
manipulate it. Each distinct logic sequence is known as a method. A real instance of a class is called
an “object” or an “instance of a class”. The object or class instance is what you run in the computer.
Its methods provide computer instructions and the class object characteristics provide relevant data.
You communicate with objects - and they communicate with each other.

Important features with OOP are:

e (Classes and Objects
e Inheritance

e Polymorphism

e Encapsulation

Simula was the first object-oriented programming language. Simula was developed in the 1960s by
Kristen Nygaard from Norway.

Java, Python, C++, Visual Basic .NET and C# are popular OOP languages today.

Since Simula-type objects are reimplemented in C++, Java and C# the influence of Simula is often
understated. The creator of C++ (1979), Bjarne Stroustrup (from Denmark), has acknowledged that
Simula was the greatest influence on him to develop C++.

Tutorial: Introduction to Visual Studio and C#

2Visual Studio

2.1 Introduction

The latest version of Visual Studio is Microsoft Visual Studio 2010 (SP1).

Home page of Visual Studio: http://www.microsoft.com/visualstudio

There exist different versions of Visual Studio, such as Visual Studio Express (free), Visual Studio
Professional, Visual Studio Premium and Visual Studio Ultimate.

2.2 Getting Started

2.2.1 Integrated Development Environment (IDE)

The Visual Studio product family shares a single integrated development environment (IDE) that is
composed of several elements: the Menu bar, Standard toolbar, various tool windows docked or
auto-hidden on the left, bottom, and right sides, as well as the editor space. The tool windows,
menus, and toolbars available depend on the type of project or file you are working in.

Below we see the Visual Studio IDE (Integrated Development Environment):

http://www.microsoft.com/visualstudio

Visual Studio

Start Pape - Microsoft Visual Studio

Fe Eck Wew Debug Team [ues Tooks Acitecare Test Andvze MessurementStude Wncow kek

9 -0 - Sln | b

Sl el Fege 3
e

Thete 2re o ussible conteoks 1 brs
o, D e am Crba this best b
add I ta the toakoy,

QO Vistal Studio 2010 Utimate

(52t Started

s
T Curnmed Ta Tasn Favdation Servar
= wielcomz windows
[L'I | ToewsFropezt...

1Ty) Gpenpreget,

i3]

Giddance srd Regatrces

Ihish

Cloud:. Office Sharefoint. Data

d What's New b Visusi Sodio 2010

o Corteel Apphzation

[simplerach.2010

[o porges e ter praject load
[t pers o sterig

5 Tenosratuetsiem 2010 3 | Creatng Agplicsnons v Yeual St
S CAGw bdagy —
= SR]

W (= Exterding visusl Stdio

o= .

Corvmunity snd Lesming Resouroes

Bl S |

Latest News

Lessen bl the e frsburas indudsd in this
release

Vi Sk 2030 Crver e

wihiak's M i RET Framanuth &

s M ot

Custorize the Vel Sucho Start Fage

= sauton Exalarer I i“

2.2.2 New Project

The first thing you do when you want to create a new application is to create a new project.

This can be done from the Start Page:

F Microsoftt 5
O Visual Studio 2010 Uttimate

&=
g Conneck To Team Foundation Server

Mew Project...

it |

@ Open Project...

R erent Proiects

Or from the File menu:

Get Started Guidance

Welcome Windows

by

Tutorial:

Introduction to Visual Studio and C#

10

Visual Studio

Start Page - Microsoft Yisual Studio

fnalyze Measurement Studio Window Help.

Mew L= Praject. .. Chrl+Shift-+1
Cpen e g ShiFt+alt+h]
Close i3 Team Project...

d"!' Close Salution (1 File... P

lml SaveSelected Items Ztel+S Praject From Existing Code, .,

oy Lot W S L e WA

Then the “New Project” window appears:

P|

| MET Framework 4 ~ | St by |Derault

Installed Templates

| ; i : Type: Visual C#
= visad o =cﬁ ‘Windows Forms Apolication Yisual C#
} o A project For creating an application wih a
“wirdaws —cit Windawe Forme user nkerface
Wb || weF appication visual C#
+ Offce
Cloud EGﬁ Zansole Applicabion Visual C#
Measurement Fudio et
Reporting Zlass Lbrary Visual C#
chererint '
Sibverlght I '{;ﬁ| WPF Brawser application Visual C#
Tes: =N
war | cit| Empby Project Visual C#
Whorkflow
@ f
¥ Other Larauades Q Windows Service Visual C#
I Other Froject Types A
Datab.
2 .asc i ‘Cﬁ WPF Custom Cantral Library Visual C#
Modeling Projects =
¥ TeskProjecks —
fd‘| WPF User Corkral Library Visual C#
Visual C#

‘Windows Forms Conbrol Library

Iame: | windowsForms&pplicationl |
Location: | ciisual Studo 201 0Proects v
Solution name: | WindowsFormsApplicationl | [V]icreate drectary for sciution

[Jaddts souree corkrol

= T

In this window you will select an appropriate template based on what kind of application you want to

create, and a name and location for your project and solution.

The most common applications are:

e Windows Form Application
e Console Application

e WPF Application

e ASP.NET Web Application
o Silverlight Application

2.2.3 Solution Explorer

Tutorial: Introduction to Visual Studio and C#

11 Visual Studio

Solutions and projects contain items that represent the references, data connections, folders, and
files that you need to create your application. A solution container can contain multiple projects and

a project container typically contains multiple items.

Solution Explorer * 0 X

_3 Solution ‘MyMovieCollection'(1 project)
= ._,"'l-r] MyMovieCollection

- =d My Project
+--J Controls
- Documentation
+ | Resources
| pvDCollectionDatabase. mdf
2] DvDCollectionDataSet. xsd
4| ListDetails.wvb

E MainForm.vb

_ﬁ| SearchOnlinevh

2.2.4 Toolbox

The Toolbox contains all the necessary controls, etc. you need to create your user interface. See

Figure below.

Tutorial: Introduction to Visual Studio and C#

12 Visual Studio
Toolbox =~ 1 x| The Toolbox contains all the controls, etc. we can use in our
-~ .
= Cormmon Controls b user interface.
bk Pointer
Butkon In order to use them in our user interface, we just drag and
CheckBo:x drop them to the “Form”, as shown below:
CheckedListBox
o SR |
= ComboBox 81 indows Foms ol . =
T DateTimePicker Rk Foror
[E Euttan
A Label & CheckBax ti
. BE chethedusang —
A LinkLabel G T = . » %
E:I ListEox T DaeTimmPicker
A Label
= LiskWiew X s [(5 i mn
B i ¥: 4558
MaskedTextBox i :1:=w T = 2
E MonthZalendar Bl Meshedrestio:
MorchCalandar
=] MokifyIcon { oyl
13 mMumericUpDown ; :mi:m
: I Frogressla
8] PickureBox < —
EE ProgressBar 8% hehimas
. Al TestEox
(*) RadioButton b Tode i
25 RichTextBox
TextBox
ToolTip
o TreeView
g:": WebBrowser
Conkainers
Menus & Toolbars L4
Daka
Components
Prinkting
Dialogs
WPF Interoperability
Reporting
Visual Basic PowerPacks
=l Measurement Studio

2.2.5 Editors and Designers

Visual Studio has different editors and design tools.

Graphical User Interface Designer:

Tutorial: Introduction to Visual Studio and C#

13 Visual Studio

Forml.cs [Desian* <

labell

L |

I

listBos 9 juni 2011 h

Code Editor:

Forml.cs [Design]* Forml.cs* X

3[3WindowsFormsF\ppIicationl.Forml =| 2¥buttonl_Click{object sender, EventArgs &)
= -

using System.Collections.Generic;
using System.ComponentModel;
using System.Data;

using System.Drawing;

using System.Ling;

using System.Text;

using System.Windows.Forms;

| % o] 4

-Inamespace WindowsFormsApplicationl

{

= public partial class Forml @ Form

1
= public Forml()

{ —

InitializeComponent();
h

B private void buttonl Click({cbject sender, Eventirgs e)

1
b

textBoxl.Text = "Hello World™;

|€

0% ~ <

|~

2.2.6 Properties window

Each control we have on our user interface has lots of Properties we can set.

This is done in the Properties window:

Tutorial: Introduction to Visual Studio and C#

Visual Studio

14

Propetties

textBoxl Svystem,Windows,Forms, TextBo

= HHlE =

MinimumSize o0
Modifiers Private
Mulkiline False
PasswardChar
ReadOnky False
RightToLeft Mo
acrollEars Mone
ShortcuksEnabled True

Size 383; 20
TabIndex 0
Tabstop True
Tag
Texk

2.2.7 Build and Debug Tools

In Visual Studio we have lots of Build and Debugging Tools.
Build menu:
Below we see the Build menu:

Buld | Debug Team Data Tools Architecture Test
_ Build Solution
Rebuild Solution
| Clean Solution
|ﬂ| Build WindowsFormsapplicationl
Rebuild WwindowsFormsapplicationl
_ Clean \WindowsFormsApplicationl
' 1_% Publish WindowsFarmsapplication]
Fun Code Analysis on windowsFormsapplication 1
Bakch Build. ..

Configuration Manager. ..

| £

analvze Me
Fé '

Shift+Fa

The most used tool is “Build Solution” (Shortcut Key: F6).

Debug menu:

Below we see the Debug menu:

Tutorial: Introduction to Visual Studio and C#

15 Visual Studio

Debug | Team Data Tools Architecture Test Anal

Windows k
| B Start Debugging F5
! [+ Skark without Debugging CErH-FS
: 5 Stark Performance Analysis Alk+F2
5% Attach to Process...
Exceptions, .. Ctrl+D, E
5E StepInto Fil
(= step Over F10
Toggle Breakpoink Fa
e Breakpoint 3
' Delete All Breakpoinks CkrH-Shift+-FD
InkelliTrace k
Clear All DataTips
Export DataTips ...
Impork DataTips ...
Cptions and Setkings. ..

The most used tool is “Start Debugging” (Shortcut Key: F5).

Tutorial: Introduction to Visual Studio and C#

3Windows Programming

3.1 Introduction

When creating ordinary Windows applications, we can select between the following:

e Windows Forms Application
e WPF Applications (Windows Presentation Foundation)

Windows Forms is the standard way of creating Windows applications and has existed in many years,
even before .NET 1.0 (2002) was introduced. WPF is a new approach from creating Windows
applications and was introduced with .NET Framework 3.0 (2006).

For example has the Visual Studio 2010 IDE been entirely rewritten using WPF.

Windows Forms Application and WPF Applications will be explained in more detail below.

3.1.1 Windows Forms

Windows Forms is the standard way of creating Windows applications.

Select “Windows Forms Application” in the “New Project” window:

16

17 Windows Programming

Mew Project
s |.MET Framawarka e |Scrtby | Dofaul
Installed Templates
_ oz e Type: Yisual Cx
= Visualc# \Windaws Forrs Applicstion Visual C#
= A projact for craating an applcation wich 2
wircous = = " “Wfroows Forms user interface
Weh 1 WPF Apoiicabon Wisual 2
1 Officz
Cloud . Comznlz appleation wisual C2
Measuramert studo s
Reporting ;'“TCH Dlass Librery Visual C#
1% SherePoit .
Silverlohe dd| \WPF Browser Applcation Visual C#
Test I
Wi | Ewgkr Projec: Visual C#
“orkflaw
W ot Leng.ages cH| windows Serycs Visual C#
& tter Frojed: Tyres =
(€ Database ctl
WPF Custom Control Librsr isual CF
Modeling Prajects b i N i ¥
F Tes Progcs H
d_‘iﬂ WP User Cortral Lirary Visual C#
;CH \Windawes Forrrs Control Library Visual C#
Hama: | windousFormsApplication |
Location; | civisual Shudio 20007Fr ojects w | Browse,,
Solution reme: | WinduwsFarmsécplication] | [“lrmste drectory for schubion
| Jadd to saurce control
o]

3.1.2 WPF

Developed by Microsoft, the Windows Presentation Foundation (or WPF) is a computer-software
graphical subsystem for rendering user interfaces in Windows-based applications.

WPF is intended to take over for the traditional Windows Forms.

The graphical user interface in WPF is designed using XAML (Extensible Application Markup
Language).

XAML:

Following the success of markup languages for web development, WPF introduces a new language
known as eXtensible Application Markup Language (XAML), which is based on XML. XAML is designed
as a more efficient method of developing application user interfaces

Select “WPF Application” in the “New Project” window:

Tutorial: Introduction to Visual Studio and C#

18

Windows Programming

3.2 Hello World

We start by creating a traditional “Hello World” application using Windows Forms. The application is

shown below:

Form1

i | MET Eramanicek 4 o st by |D.af.aul.t
Installed Templates I
Type: Visual S
15 Wions C# Windows Forme Aodlicabon Weual C¥ AR S
= windos Prasentation Foundaton clisnt
Windows Zppication
Web WFF Applcacion VAl C¥
£ OFfice
claud Conzole Application Visaal C#
Measroment Studio —
Reporting EE] Claze Lbrary Wioial C¥
= SharePaint -
Sleerlight | gH| WFF Browser gpplication VAl C4
Test
wer cf| Empty Praject Vil C#
Warkflaw
3 Uiherkanay2ges EE] Windaws Sarvice Vieal C#
[® e Project Types 1
Ciekabase
chl WFF Custom Control Libra Wisal C&
Madeling Projects —! g
& Test Prajects
«Q? WFF User Control Library Visal C#
@ Windows Forms Cartral Library Meaal C#
Hams; | WpFAppicationl |
Locatiory | el St 2010{EroEcts vl | erowse.. |
silitinn rame: | wpFappiicanont | [lcreate dractry For solution
[Jadd to source corgrel

| - |

Hello Wworld

The Visual Studio IDE looks like this:

Tutorial: Introduction to Visual Studio and C#

19 Windows Programming

WindewsFermeipplication] - Micresoft ¥isual Studio
A Ed: Vew Froes Bule Debug Tesn Date Tonls Uchiesire Test Gnshoe Besvement Shick Wi Hep
HiTnfashan ™ < I ? 810

G] A]|y |

L
gl = ommm Lotk A Schitien UsndousFartetzckoationl (L osect]
& neirter == i windomsTormaspplicationt
& e & Ed Pt

A i [R
3 = I oLz
Thaabeal ciFus '] Feemd Lesgerns
 coveaso] P e
B CamTimePoke Al Programcs

Propeetics =%
o EewtBont! Szsteam) ks, P, Testens i
o = R
[lesibioe Bl [yl St) Al
K TaTa B Cstatndogs)
e O [Marre) textBowel
% Aok <Ra Fobas
[wemonss Dececkslak Falss
L Aceessh el pkn
e b Tackers sl
®Dsy Mecmsshatols Defaulr
wCag T 3 .
Epi f owamiegs | (i) 0messges :r‘":x :f:'h_“
w0 Twscy lin Fi liw Cuwwe Fjad i otttz {Lolection}
W T e DwzaCanletetiode Here
Eepmhg wtnCuektes Hore =
il Besic P ks = = =
ool

S e S Tre st cesacelabed wikh b contbeal

In this project we use a simple TextBox (textBox1) and when we start the program the text “Hello
World” is written to the TextBox.

The code is as follows:

using System;

using System.Collections.Generic;
using System.ComponentModel;
using System.Data;

using System.Drawing;

using System.Ling;

using System.Text;

using System.Windows.Forms;

namespace WindowsFormsApplicationl

{
public partial class Forml : Form
{
public Forml ()
{
InitializeComponent () ;
}
private void Forml Load(object sender, EventArgs e)
{
textBoxl.Text = "Hello World";
}
}
}

Tutorial: Introduction to Visual Studio and C#

4Getting Started with C#

C# is a modern Object-oriented programming language.

Object-oriented programming (OOP) is a programming paradigm using "objects" — data structures
consisting of data fields and methods together with their interactions — to design applications and
computer programs. Programming techniques may include features such as data abstraction,
encapsulation, messaging, modularity, polymorphism, and inheritance.

4.1 Introduction

In this chapter we will start with the basic all programming languages have....

e Data Types and Variables
e Control Flow: If-Else, etc.
e Loops: While Loops, For Loops, etc.

Further we will introduce the following:

o Namespaces

e C(Classes
e Data Fields
e Methods

e Properties

In the next chapter we will go more in depth of what Object-oriented programming is and introduce
the following important OOP topics:

e Inheritance
e Polymorphism
e Encapsulation

Note! C# is case-sensitive.

4.2 Data Types and Variables

“Variables” are simply storage locations for data. You can place data into them and retrieve their
contents as part of a C# expression. The interpretation of the data in a variable is controlled through
“Types”.

20

21 Getting Started with C#

The C# simple types consist of:

e Boolean type
e Numeric types: Integrals, Floating Point, Decimal
e String type

42.1 Boolean type

Boolean types are declared using the keyword “bool”. They have two values: “true” or “false”. In
other languages, such as C and C++, boolean conditions can be satisfied where 0 means false and
anything else means true. However, in C# the only values that satisfy a boolean condition is true and
false, which are official keywords.

Example:

bool content = true;
bool noContent = false;

4.2.2 Numeric types: Integrals, Floating Point,
Decimal

Example:

int i=35;
long y=654654;

float x;
double y;
decimal z;

4.2.3 String type

Example:

string myString="Hei pa deg”;

Special characters that may be used in strings:

Tutorial: Introduction to Visual Studio and C#

22 Getting Started with C#

Escape Sequence Meaning
i Single Quote

! Double Quote

W EBackslash

W0 Mull, not the same as the C& null value
Ya Bell

b Backspace

W form Feed

“\n Mewline

W Carriage Return

Wt Horizontal Tab

o Vertical Tab

4.2.4 Arrays

Example:

int[] myInts = { 5, 10, 15 };

4.3 Control Flow

To be able to control the flow in your program is important in every programming language.
The two most important techniques are:

e The if Statement
e The switch Statement

431 The if Statement

The if statement is probably the most used mechanism to control the flow in your application.

An if statement allows you to take different paths of logic, depending on a given condition. When the
condition evaluates to a boolean true, a block of code for that true condition will execute. You have
the option of a single if statement, multiple else if statements, and an optional else statement.

Example:

bool myTest;
myTest=false;

if (myTest==false)
MessageBox.Show ("Hello") ;

Tutorial: Introduction to Visual Studio and C#

23

Getting Started with C#

If we have more than one line of code that that shall be executed, we need to use braces, e.g.:

bool myTest;
myTest=false;

if (myTest == false)

{
MessageBox.Show ("Hellol") ;
MessageBox.Show ("Hello2") ;

For more complex logic we use the if ... else statement.

Example:

bool myTest;

myTest=true;

if (myTest == false)
{
MessageBox.Show ("Hellol") ;

MessageBox.Show ("Hello2") ;

Or you can use nested if... else if sentences.

Example:

int myTest;
myTest=2;

if (myTest == 1)

{ MessageBox.Show ("Hellol") ;
élse if (myTest == 2)

{ MessageBox.Show ("Hello2") ;

MessageBox.Show ("Hello3") ;

4.3.2 The switch Statement

Another form of selection statement is the switch statement, which executes a set of logic

depending on the value of a given parameter. The types of the values a switch statement operates on

can be booleans, enums, integral types, and strings.

Example:

switch (myTest)

{
case 1:
MessageBox.Show ("Hellol") ;
break;

Tutorial: Introduction to Visual Studio and C#

24 Getting Started with C#

case 2:
MessageBox.Show ("Hello2") ;
break;

default:
MessageBox.Show ("Hello3");
break;

4.4 Loops

In C# we have different kind of loops:

e The while loop

e The do loop

e The for loop

e The foreach loop

44,1 The while Loop

A while loop will check a condition and then continues to execute a block of code as long as the
condition evaluates to a boolean value of true.

Example:

int myInt = 0;

while (myInt < 10)
{

MessageBox.Show ("Inside Loop: " + myInt.ToString());
myInt++;

}

MessageBox.Show ("Outside Loop: " + myInt.ToString());

44.2 The do Loop

A do loop is similar to the while loop, except that it checks its condition at the end of the loop. This
means that the do loop is guaranteed to execute at least one time. On the other hand, a while loop
evaluates its boolean expression at the beginning and there is generally no guarantee that the
statements inside the loop will be executed, unless you program the code to explicitly do so.

Example:

int myInt = 0;

do

{
MessageBox.Show ("Inside Loop: " + myInt.ToString());
myInt++;

} while (myInt < 10);

MessageBox.Show ("Outside Loop: " + myInt.ToString());

Tutorial: Introduction to Visual Studio and C#

25 Getting Started with C#

44.3 The for Loop

A for loop works like a while loop, except that the syntax of the for loop includes initialization and
condition modification. for loops are appropriate when you know exactly how many times you want
to perform the statements within the loop.

Example:

for (int 1 = 0; i < 10; i++)

{

MessageBox.Show ("Inside Loop: " + myInt.ToString());
myInt++;

}

MessageBox.Show ("Outside Loop: " + myInt.ToString()):;

444 The foreach Loop

A foreach loop is used to iterate through the items in a list. It operates on arrays or collections.

Example:

string[] names = { "Elvis", "Beatles", "Eagles", "Rolling Stones" };

foreach (string person in names)
{

MessageBox.Show (person) ;

}

4.5 Methods

Methods are extremely useful because they allow you to separate your logic into different units. You
can pass information to methods, have it perform one or more statements, and retrieve a return
value. The capability to pass parameters and return values is optional and depends on what you want
the method to do.

Methods are similar to functions, procedure or subroutine used in other programming languages.
The difference is that a method is always a part of a class.

Example:

public void ShowCarColor (string color)

{

MessageBox.Show ("My Car is: " + color);

}

We learn more about methods in the Classes section below.

We have 2 kinds of Methods:

e Static Methods

Tutorial: Introduction to Visual Studio and C#

26 Getting Started with C#

e Nonstatic Methods (Instance Method)

Static Methods belongs to the whole class, while nonstatic Methods belong to each instance created
from the class.

45.1 Nonstatic Methods

Example:

We define the class:

class Car

{
//Nonstatic/Instance Method
public void SetColor(string color)

{

MessageBox.Show ("My Car is: " + color);

}

Then we use it:

Car myCar = new Car(); //We create an Instance of the Class

myCar.SetColor ("blue"); //We call the Method

45.2 Static Methods

Example:

We define the class:

class Boat

{
//Static Method
public static void SetColor (string color)

{

MessageBox.Show ("My Boat is: " + color);

}

Then we use it:

Boat.SetColor ("green") ;

i.e., we don’t need to create an object/instantiating the class before we use the Static Method.

4.6 Namespaces

Tutorial: Introduction to Visual Studio and C#

27 Getting Started with C#

Namespaces are C# program elements designed to help you organize your programs. They also
provide assistance in avoiding name clashes between two sets of code. Implementing Namespaces in
your own code is a good habit because it is likely to save you from problems later when you want to
reuse some of your code.

You specify the Namespaces you want to use in the top of your code.

Example:

When you create a new Windows Forms application, the following default namespaces will be
included.

using System;

using System.Collections.Generic;
using System.ComponentModel;
using System.Data;

using System.Drawing;

using System.Ling;

using System.Text;

using System.Windows.Forms;

It is just to add more when you need it.

More about Namespaces later.

4.7 Classes

The first step in OOP is to identify all the objects you want to manipulate and how they relate to each
other, an exercise often known as data modeling. Once you've identified an object, you generalize it
as a class of objects and define the kind of data it contains and any logic sequences that can
manipulate it. Each distinct logic sequence is known as a method. A real instance of a class is called
an “object” or an “instance of a class”. The object or class instance is what you run in the computer.
Its methods provide computer instructions and the class object characteristics provide relevant data.
You communicate with objects - and they communicate with each other.

Everything in C# is based on Classes. Classes are declared by using the keyword class followed by the
class name and a set of class members surrounded by curly braces.

A class normally consists of Methods, Fields and Properties.

Every class has a constructor, which is called automatically any time an instance of a class is created.
The purpose of constructors is to initialize class members when an instance of the class is created.
Constructors do not have return values and always have the same name as the class.

Example:

We define the following class:

class Car

{

Tutorial: Introduction to Visual Studio and C#

28 Getting Started with C#

public string color; //Field

//Method
public void ShowCarColor ()
{

MessageBox.Show ("My Car is: " + color);

Then we can use it:

Car myCar = new Car(); //We create an Instance of the Class
myCar.color = "blue"; //We set a value for the color Field

myCar.ShowCarColor(); //We call the Method

The result is as follows:

Ml Car is: blue

4.7.1 Constructor

The purpose of constructors is to initialize class members when an instance of the class is created.
Example:
We can use a Constructor to create a “default” color for our car.

We define the class:

class Car

{

public string color; //Field

//Constructor - Used to initialize the Class
public Car()
{

color="green";

}

//Method
public void ShowCarColor ()
{

MessageBox.Show ("My Car is: " + color);

Then we can use it:

Car myCar = new Car(); //We create an Instance of the Class

Tutorial: Introduction to Visual Studio and C#

29 Getting Started with C#

myCar.ShowCarColor (); //We call the Method
myCar.color = "blue"; //We set a value for the color Field

myCar.ShowCarColor(); //We call the Method

The results are as follows:

My Car is: green

My Car is: blue

Example:

We can also do the following:

class Car

{

public string color; //Field

//Constructor - Used to initialize the Class
public Car(string initColor)
{

color = initColor;

}

//Method
public void ShowCarColor ()
{

MessageBox.Show ("My Car is: " + color);

Then we use it:

Car myCar = new Car("green"); //We create an Instance of the Class

myCar.ShowCarColor(); //We call the Method

New feature: Initialization an object without a Constructor:

In C# 4.0 we can do the following:

We define the Class (without any contructor):

Tutorial: Introduction to Visual Studio and C#

30 Getting Started with C#

class Car

{

public string color; //Field
public string model; //Field

//Method
public void ShowCarColor ()
{

MessageBox.Show ("My Car Color is: " + color);
MessageBox.Show ("My Car Model is: " + model);

Then we do the following:

Car myCar = new Car {color="white", model="2004"};

myCar.ShowCarColor(); //We call the Method

4.8 Properties

Properties provide the opportunity to protect a field in a class by reading and writing to it through
the property. In other languages, this is often accomplished by programs implementing specialized
getter and setter methods. C# properties enable this type of protection while also letting you access
the property just like it was a field.

Example:

We define a Class with Properties and a Method:

class Car

{

public string Name {get; set;}
public string Color {get; set;}

public void ShowCarProperties|()

{

MessageBox.Show ("My Car Name is: " + Name);
MessageBox.Show ("My Car Color is: " + Color);

Then we can use it:

Car myCar = new Car();

myCar .Name="Volvo";
myCar.Color="Blue";

myCar.ShowCarProperties () ;

The results are:

Tutorial: Introduction to Visual Studio and C#

31 Getting Started with C#

My Car Mame is: Yalvo

My Car Color is: Blue

So far, the only class members you've seen are Fields, Properties, Methods, and Constructors. Here is
a complete list of the types of members you can have in your classes:

e Constructors

e Destructors (opposite of Constructors)
e Fields

e Methods

e Properties

e Indexers

e Delegates

e Events

e Nested Classes

4.9 Naming Convention

There is different name convention for how to specify your variables, classes and Methods, etc.

Camel notation:

For variables and parameters/arguments we normally use “Camel notation”.

Examples:

string myCar;
int number;
string backColor;

-> In Camel casing the first letter of an identifier is lowercase and the first letter of each subsequent
concatenated word is capitalized.

Pascal notation:

For classes, methods and properties, we normally use “Pascal notation”.

Tutorial: Introduction to Visual Studio and C#

32 Getting Started with C#

Examples:

class Car

{

void ShowCarColor ()

{
}

-> In Pascal casing the first letter in the identifier and the first letter of each subsequent
concatenated word are capitalized.

For Namespaces we use Pascal casing and a dot separator.

Examples:

System.Drawing
System.Collections.Generics

Controls:

For controls on your user interface we either use “Pascal notation” or “Hungarian notation”, but stick
to one of them!

Examples:

“Pascal notation”:

LoginName
LoginPassword

“Hungarian notation”:

txtName
txtPassword
1blName
btnCancel

Where “txt” means it is a Text Control, “Ibl” a Label Control, “btn” a Button Control, etc.

Acronyms:

Casing of acronyms depends on the length of the acronym. All acronyms are at least two characters
long. If an acronym is exactly two characters, it is considered a short acronym. An acronym of three
or more characters is a long acronym.

In general, you should not use abbreviations or acronyms. These make your names less readable.
Similarly, it is difficult to know when it is safe to assume that an acronym is widely recognized.

But if you must, the rules are as follows:

Short acronym Examples (two characters):

DBRate

Tutorial: Introduction to Visual Studio and C#

33 Getting Started with C#

A property named DBRate is an example of a short acronym (DB) used as the first word of a
Pascal-cased identifier.

ioChannel

A parameter named ioChannel is an example of a short acronym (10) used as the first word of a
camel-cased identifier.

Long acronym Examples (three or more characters):

XmlWriter

A class named XmlWriter is an example of a long acronym used as the first word of a Pascal-cased
identifier.

htmlReader

A parameter named htmlReader is an example of a long acronym used as the first word of a
camel-cased identifier.

Tutorial: Introduction to Visual Studio and C#

5More Object-oriented
Techniques

In this chapter we will introduce the following Object-oriented techniques:

e Inheritance
e Polymorphism
e Encapsulation

5.1 Inheritance

Inheritance is one of the primary concepts of object-oriented programming. It allows you to reuse
existing code. Through effective employment of reuse, you can save time in your programming.

Example:

We define the Base class:

class Car

{

public void SetColor (string color)

{

MessageBox.Show ("My Car is: " + color);

}

Then we define a new class that inherits from the Base Class:

class Volvo : Car

{

//In this simple Example this class does nothing!

}

Then we start using the classes:

Car myCar = new Car();
myCar.SetColor ("blue") ;

Volvo myVolvo = new Volvo () ;
myVolvo.SetColor ("green") ;

34

35 More Object-oriented Techniques

As you can see we can use the “SetColor()” Method that has been defined in the Base Class.

5.2 Polymorphism

Another primary concept of object-oriented programming is Polymorphism. It allows you to invoke
derived class methods through a base class reference during run-time.

Example:

We start with a Base Class:

class Car

{
public virtual void CarType ()

{

MessageBox.Show ("I am a Car");

}

The virtual modifier indicates to derived classes that they can override this method.

Then we create 3 new Classes that derive from the Base Class:

class Volvo : Car
{
public override void CarType ()
{
MessageBox.Show ("I am a Volvo");

}

class Ford : Car
{
public override void CarType ()
{
MessageBox.Show ("I am a Ford");

}

P

class Toyota : Car
{
public override void CarType ()
{
MessageBox.Show ("I am a Toyota");

}

These 3 classes inherit the Car class. Each class has a CarType() method and each CarType() method
has an override modifier. The override modifier allows a method to override the virtual method of its
base class at run-time.

Then we can use it:

Car[] car = new Car[4];
car[0] = new Car();
car[1l] = new Volvo();
car[2] = new Ford();
car[3] = new Toyotal();

Tutorial: Introduction to Visual Studio and C#

36 More Object-oriented Techniques

foreach (Car carmodel in car)

{
carmodel.CarType () ;

}

The result is:

Tam a Car Iam a Volvo Tam a Ford Tam a Toyota

-> This is Polymorphism.

5.3 Encapsulation

Encapsulation means that the internal representation of an object is generally hidden from view
outside of the object's definition. Typically, only the object's own methods can directly inspect or
manipulate its fields.

We can set different Access rights on Classes and Methods:

Access Modifier Description (who can access)
private Only members within the same type. {default for type members)
protected Only derived types or members of the same type.

Only code within the same assembly. Can also be code external to object as long as it is in the same

internal assembly. (default for types)
protected internal Either code from derived type or code in the same assembly. Combination of protected OR internal.
public Any code. No inheritance, external type, or external assembly restrictions.

Tutorial: Introduction to Visual Studio and C#

6Exception Handling

In programming error and exception handling is very important. C# has built-in and ready to use
mechanism to handle this. This mechanism is based on the keywords try, catch, throw and finally.

Exceptions are unforeseen errors that happen in your programs. Most of the time, you can, and
should, detect and handle program errors in your code. For example, validating user input, checking
for null objects, and verifying the values returned from methods are what you expect, are all
examples of good standard error handling that you should be doing all the time.

However, there are times when you don't know if an error will occur. For example, you can't predict
when you'll receive a file I/O error, run out of system memory, or encounter a database error. These
things are generally unlikely, but they could still happen and you want to be able to deal with them
when they do occur. This is where exception handling comes in.

When exceptions occur, they are said to be “thrown”. C# uses the keywords try, catch, throw and
finally. It works like this: A method will try to execute a piece of code. If the code detects a problem,
it will throw an error indication, which your code can catch, and no matter what happens, it finally
executes a special code block at the end.

The syntax is as follows:

MyMethod ()
{

try
{

. //Do Something that can cause an Exception

}
catch

{
. //Handle Exceptions

}

finally

{
. //Clean Up

}
}

Example:

public void WriteDagData (double analogDataOut)
{
Task analogOutTask = new Task();
AOChannel myAOChannel;

try
{

37

38 Exception Handling

Tutorial: Introduction to Visual Studio and C#

/Windows Forms Example

In this chapter we will go through a large example. In this example we will create an application in
Visual Studio that controls the following water tank process:

D)

LM-800 LEVE CONTROL Syg7ey

| L

The purpose is to control the level in the water tank. In order to communicate with the physical
process we use a NI USB-6008 DAQ device:

GARAIBARABAIABER

We will not show all the details in the code, but focus on the structure.

Below we see the user interface we have created in Visual Studio:

39

40 Windows Forms Example

k& Control Application

Lece

RealFrocesz 10

v

Hode!

Eompmnler

Marual Corkiol

J

- 1
Pl Cortiol

o Coniile Vale
_F [E1 1
s
og
Ti
15

Below we see the Visual Studio project:

Conirol Application - Microsaft Visoal Studio

S Mimw Pruect Buki Debaag Team Dote - Tuss Arbecirs Jet fdyes Pessupmerk Sacks Windos Hel
3 = |t A | o R e E0) < om
2 v [——— g I
b0l 3 1% rdons Foms - - al
!ri Gemmeniobes 1 ekttt i e _\‘ 2 =
g i (= |51 [%] — Sclucion ontrol feplvebun' (1 projsc)
5 -— ~ = control application
% Budtun " Laval T Pt
chechaa e = ol +- o Refersnss
Checed. stz 5 6n
ConiaBir: 15
DisteTmeFide
Lebe) FiealFrocess 10
Iinkand
Lisifier l i
st
Hashadrestaa: W 9
] Fentiakids
Hetfyteon Cavircles
Hmsric_ Do e 5-n
faral Cul
Pitusefire
WO Froaressbar ‘ 3 e
repetis
T = gs Fils Sroperties
48 B == 5
T P Conval -'l Cunlialler Vil Euid fcten Comalke
ToaTy ' Cozy to Uutpuk Dred Do nok copy
- Custom Tocl
5 nleeie u Custom ol Naresge
B weEres I Fils fueme Usges
¥ Coverers 1
E Herz b Todlaars
*las ——
¥ Componerks Euit
F Froong o L
¥ Lialogs
& Wee Interopacabity
T Keoorbng ¢ 3
£ izl dasc Fowerdacks Build Actian
eSS 15 timert o s i relokes b the 2 and deplomerk
&k Fonts = processEs.

Rendy

We start with defining the classes we need in our application.

In the Solution Explorer we have defined a “Classes” folder where we put all the classes we create:

Tutorial: Introduction to Visual Studio and C#

41

Windows Forms Example

In order to create new classes we right-click in the Solution Explorer and select “Add-New Item...”:

Solution Explorer

= ia| B
; Solution "Control Application’ (1 project)
= _E Control Application
=d| Properties
«d] References
= | Classes
f*_:’l Dag.cs
#] Filter.cs
] PidController.cs
#] ProcessModel.cs
] bricks.ico
d%] ClassDiagram.cd
-E| Forml.cs
fﬁ Program.cs
) trend.ico

Solution Explorer

= | @ 2]

T A E N

MNew Ikem, ..

\Windows Farrm, ..

¥ 4]

= _E*ﬂ Control Application
=d| Properties
3] References

B [P
Chrl+Shift+A Add
Existing Ikem... Shift+alk+4
Mew Folder & cut

=5 Copy

Next we select the Class item in the “Add New Item” window:

TIII'X

g Solution "Control Application' {1 project)

”,

Exclude From Project

Tutorial: Introduction to Visual Studio and C#

42 Windows Forms Example
Add New Item - Control Application
Installed Templates e o [sasrch wistalize Terpiste 2|
=| Wisual C# [tems ~
Type: wisual CF T=ms
Code R AT — Vis.al 4 Thems i
Data _{’” A erpky class definkon
Genzrzl ﬁ MI Tnstromert: D ver sl O Trems
Wwieh B
windows Forire % W Wis Task wiLal O Ttens
"WFF e
BEpeng Cﬁ age Wipal T Ttems
‘oo =
nkrie: Ter d Interface VisLal C# Dtems
Windows Form Visoal C# Ttems
Lbszr Conlral Visoal C# Ttems
Component Class VisLial C# Thems
Lkzr Contrcl {uFF) WAl T Thems
Abaut Bax, Wizl Ci Trems
9, ADCLKET Entity Daza Maodel Wigal T [tems
=5
@__, ADOKET Entity Dboact Generator Wizl C# Items
3
(g.') ADCOUKET Sef-Tracking Entity Generabar Visual C# Ttems
i
[
== Acplcation Configuration Fils Visoal C# Ttems
o] i v
Hame: Classl s
=]
Classes:

We start with the “Daq” Class that contains logic for reading and writing to the DAQ device:

//Include necessary Namespaces

using
using
using
using
using
using

namespace Tuc.Control //We define a useful namespace

{

public class DagData

{

System;

System.Collections.Generic;

System.
System.

NationalInstruments;

Ling;
Text;

NationalInstruments.DAQmX;

public string aiChannel;
public string aoChannel;

//Constructor
public DagData(...)

{
}

//Method
public double ReadDagData ()

{

}

//Method
public void WriteDaqgData(...)

{
}

Tutorial: Introduction to Visual Studio and C#

43 Windows Forms Example

It is good practice to create a new file for each new class we define. Then we start by defining a
meaningful Namespace. Next we define our Class with necessary Fields, Properties and Methods.

We also need to include the necessary Namespace our Class will need. In this example we have
included some 3.party Assemblies from National Instruments:

using NationalInstruments;
using NationalInstruments.DAQmx;

These Assemblies contains the driver to the NI USB-6008 DAQ device we are using.
The Assemblies we use must be added in the “References” folder in the Solution Explorer:

Solution Explarer = 1

= .E Control Application
4 =d| Properties

=l L
A Micre Add Reference, ..
o Nat!n: &dd Service Reference. ..
« 2l Matic

A Mationallnstrurments, D&M

+3 Mationallnstrurments, Met

+3J Mationallnstruments, MI4382

+3J Mationallnstrurnents, U1

+J MationalInstruments, UL WindowsForms
A System

A System,Core

Main Application:

In our main application we start with including our Namespace:

using NationalInstruments;

using NationallInstruments.UI;
using NationalInstruments.UI.WindowsForms;
using System;

using System.Collections.Generic;
using System.ComponentModel;
using System.Data;

using System.Drawing;

using System.Ling;

using System.Text;

using System.Windows.Forms;

using Tuc.Control;

namespace Control Application

{

public partial class Forml : Form

{
}

It is also a good idea to create different regions in order to structure your code better. This can be
done like this:

//Comment

Tutorial: Introduction to Visual Studio and C#

44 Windows Forms Example

region
. //Your Code
endregion

In this way our Main Application may look like this:

Fusing L;J

[Flnamespace Control Applicatien

{

= public partial class Forml :

1

f// Initialization-------------------—---m - -

H # region

ff Private Functions----------------mmmmmmoo

[# # region

ff BEwents-------mmmmm e

B

Tutorial: Introduction to Visual Studio and C#

8Web Programming

8.1 Introduction

Today most of the applications focus on the Internet, where the applications can be viewed in a
standard Web Browser. Static Web pages are based on HTML and CSS. In order to create more
advanced applications, we need more powerful tools.

Important frameworks and tools for creating dynamic web pages:

e ASP.NET

o AJAX/ ASP.NET AJAX
e JavaScript

e Silverlight

These frameworks and tools will be explained below.

3.2 HTML

HTML, which stands for HyperText Markup Language, is the predominant markup language for web
pages. HTML is the basic building-blocks of webpages.

HTML is written in the form of HTML elements consisting of tags, enclosed in angle brackets (like
<html>), within the web page content. HTML tags normally come in pairs like <h1> and </h1>. The
first tag in a pair is the start tag, the second tag is the end tag (they are also called opening tags and
closing tags). In between these tags web designers can add text, tables, images, etc.

8.3 Web Browser

The purpose of a web browser is to read HTML documents and compose them into visual or audible
web pages. The browser does not display the HTML tags, but uses the tags to interpret the content of
the page.

Today we have the following major Web Browsers:

e Internet Explorer (by Microsoft)
e Firefox (by Mozilla)

45

46 Web Programming

e Chrome (by Google)
e Safari (by Apple)
e Opera (by Opera from Norway)

8.4 CSS

Web browsers can also refer to Cascading Style Sheets (CSS) to define the appearance and layout of
text and other material.

The W3C, maintainer of both the HTML and the CSS standards

8.5 JavaScript

JavaScript is an object-oriented scripting language basically used to create dynamic web pages.
JavaScript is primarily used in the form of client-side JavaScript, implemented as part of a web
browser in order to provide enhanced user interfaces and dynamic websites.

8.6 ASP.NET

ASP.NET is a web application framework developed by Microsoft to allow programmers to build
dynamic web sites, web applications and web services.

ASP.NET is part of the Visual Studio package

It was first released in January 2002 with version 1.0 of the .NET Framework, and is the successor to
Microsoft's Active Server Pages (ASP) technology. ASP.NET is built on the Common Language Runtime
(CLR), allowing programmers to write ASP.NET code using any supported .NET language, such as C#
and VB.NET.

ASP.NET web pages or webpage, known officially as Web Forms], are the main building block for
application development. Web forms are contained in files with an “.aspx” extension.

Select “ASP.NET Application” in the “New Project” window:

Tutorial: Introduction to Visual Studio and C#

47 Web Programming

Hew Project

Hiplates
Installed Templates

e Type: visual C¥

5 Wisud .C# £ proeck For areating an applization wih a
“indows wieh user terface
=i ASPUNET MYC 2 Web Applcation Visual C#
Offics -
Cloud f__.g ASPUET Empty weeh Applcation wisual C&
Measursment Studia =
Reparing % ASPLIET MYC 2 Emply Web Applicscion sual C#
sharePont =
Sihverlcht ‘f’;{ ASP.NET Dvnamic Data Enbities Web Applicstion Visual C#
Test Y
wCF f?;.’ ASP.NET Dynamic Data Ling to SGL Yeh Appication Visual C#
wenkfinw
- —
B Cther Lanaueces el ASPNET 185 Server Control Yisual C#
& diher Project Types =
& Database ‘-‘#
ASPNIET A1AY Server Control Extender wlsual Cx
Modeling Projects EDCJ
[Test Projedts
‘%FJ; ASPUET Server Contrl visual C#

Mezrne:; i

Locatior: o010 Projects v Browse,..

Soibion name: |wishepplicaion] [“erzate directery for solution
[Jadd ta scerce contal

8.7 AJAX/ ASP.NET AJAX

AJAX is an acronym for Asynchronous JavaScript and XML. AJAX is a group of interrelated web
development methods used on the client-side to create interactive web applications. With Ajax, web
applications can send data to, and retrieve data from, a server asynchronously (in the background)
without interfering with the display and behavior of the existing page.

ASP.NET AJAX is a set of extensions to ASP.NET developed by Microsoft for implementing AJAX

functionality.

8.8 Silverlight

Microsoft Silverlight is an application framework for writing and running browser plug-ins or other
rich internet applications, with features and purposes similar to those of Adobe Flash. The run-time
environment for Silverlight is available as a plug-in for most web browsers. Silverlight is also one of
the two application development platforms for Windows Phone 7/8.

The latest version is Silverlight 5.0.

Silverlight is based on WPF, so in Silverlight applications, user interfaces are declared in Extensible
Application Markup Language (XAML) and programmed using a subset of the .NET Framework.

Tutorial: Introduction to Visual Studio and C#

9Database Programming

Most of today’s applications use a backend database to store important data, e.g., Facebook, Twitter,
etc.

In order to use databases in our applications we need to know Structured Query language (SQL). For
more information about SQL, see the following Tutorial:

e Structured Query Language (SQL)

In addition you need to know about database systems. We have different kind of database systems
and lots of different vendors. Since this Tutorial is about Visual Studio and C#, we will use Microsoft
SQL Server. For more information about database systems in general and specially SQL Server, see
the following Tutorial:

e |Introduction to Database Systems

The Tutorials are available from: http://home.hit.no/~hansha

9.1 ADO.NET

ADO.NET (ActiveX Data Object for .NET) is a set of computer software components that programmers
can use to access data and data services. It is a part of the base class library that is included with the
Microsoft .NET Framework. It is commonly used by programmers to access and modify data stored in
relational database systems, though it can also access data in non-relational sources.

48

http://home.hit.no/~hansha/?tutorial=sql
http://home.hit.no/~hansha/?tutorial=database
http://home.hit.no/~hansha

[' [
i
Heagskolen i Telemark

Telemark University College
Faculty of Technology
Kjolnes Ring 56
N-3914 Porsgrunn, Norway

www.hit.no

Hans-Petter Halvorsen, M.Sc.
Telemark University College
Faculty of Technology

Department of Electrical Engineering, Information Technology and Cybernetics

E-mail: hans.p.halvorsen@hit.no

Blog: http://home.hit.no/~hansha/

http://www.hit.no/
mailto:hans.p.halvorsen@hit.no
http://home.hit.no/~hansha/

	1 Introduction
	1.1 Visual Studio
	1.2 C#
	1.3 .NET Framework
	1.4 Object-Oriented Programming (OOP)

	2 Visual Studio
	2.1 Introduction
	2.2 Getting Started
	2.2.1 Integrated Development Environment (IDE)
	2.2.2 New Project
	2.2.3 Solution Explorer
	2.2.4 Toolbox
	2.2.5 Editors and Designers
	2.2.6 Properties window
	2.2.7 Build and Debug Tools

	3 Windows Programming
	3.1 Introduction
	3.1.1 Windows Forms
	3.1.2 WPF

	3.2 Hello World

	4 Getting Started with C#
	4.1 Introduction
	4.2 Data Types and Variables
	4.2.1 Boolean type
	4.2.2 Numeric types: Integrals, Floating Point, Decimal
	4.2.3 String type
	4.2.4 Arrays

	4.3 Control Flow
	4.3.1 The if Statement
	4.3.2 The switch Statement

	4.4 Loops
	4.4.1 The while Loop
	4.4.2 The do Loop
	4.4.3 The for Loop
	4.4.4 The foreach Loop

	4.5 Methods
	4.5.1 Nonstatic Methods
	4.5.2 Static Methods

	4.6 Namespaces
	4.7 Classes
	4.7.1 Constructor

	4.8 Properties
	4.9 Naming Convention

	5 More Object-oriented Techniques
	5.1 Inheritance
	5.2 Polymorphism
	5.3 Encapsulation

	6 Exception Handling
	7 Windows Forms Example
	8 Web Programming
	8.1 Introduction
	8.2 HTML
	8.3 Web Browser
	8.4 CSS
	8.5 JavaScript
	8.6 ASP.NET
	8.7 AJAX/ ASP.NET AJAX
	8.8 Silverlight

	9 Database Programming
	9.1 ADO.NET

