
Understanding C++: An Accelerated Introduction 

by Marshall Brain 
 

Introduction 
 

For many people the transition from C to C++ is not easy. In fact, this transition is often 
accompanied by quite a bit of anxiety because C++ is surrounded by a certain aura that makes 
it inaccessible. For example, you can pick up a book on C++, randomly turn to a page, and 
encounter paragraphs like this:  

"From a design perspective, private derivation is equivalent to containment except for the 
(occasionally important) issue of overriding. An important use of this is the technique of deriving 
a class publicly from an abstract base class defining an interface and privately from a concrete 
class providing an implementation. Because the inheritance implied in private derivation is an 
implementation detail that is not reflected in the type of the derived class, it is sometimes called 
'implementation inheritance' and contrasted to public declaration, where the interface of the 
base class is inherited and the implicit conversion to the base type is allowed. The latter is 
sometimes referred to as sub- typing or 'interface inheritance'." [From "The C++ Programming 
Language, second edition", by Bjarne Stroustrup, page 413]  

It can be difficult to get started in an environment that is this obtuse.  

The goal of these tutorials is to help you to gain an understanding of the fundamental concepts 
driving C++ in a quick and painless way. They let you begin thinking in an "object oriented way". 
Once you understand the fundamentals, the rest of the language is relatively straightforward 
because you will have a framework on which to attach other details as you need them. Once 
you understand its underlying themes and vocabulary, C++ turns out to be a remarkable 
language with quite a bit of expressive power. Used correctly, it can dramatically improve your 
productivity as a programmer.  

These tutorials answer three common questions:  

1. Why does C++ exist, and what are its advantages over C?  

2. What tools are available in C++ to express object oriented ideas?  

3. How do you design and implement code using object oriented principles?  

Once you understand the basic tools available in C++ and know how and why to use them, you 
have become a C++ programmer. These tutorials will start you down that road, and make other 
C++ material (even Stroustrup) much easier to understand.  

These tutorials assume that you already know C. If that isn't the case, spend a week or two 
acclimating yourself to the C language and then come back to these tutorials. C++ is a superset 
of C, so almost everything that you know about C will map straight into this new language.  

1.1 Why does C++ Exist? 

People who are new to C++, or who are trying to learn about it from books, often have two major 
questions: 1) "Everything I read always has this crazy vocabulary--'encapsulation', 'inheritance', 
'virtual functions', 'classes', 'overloading', 'friends'-- Where is all of this stuff coming from?" and 



2) "This language--and object oriented programming in general--obviously involve a major 
mental shift, so how do I learn to think in a C++ way?" Both of these questions can be 
answered, and the design of C++ as a whole is much easier to swallow, if you know what the 
designers of C++ were trying to accomplish when they created the language. If you understand 
why the designers made the choices they did, and why they designed certain features into the 
language, then it is much easier to understand the language itself.  

Language design is an evolutionary process. A new language is often created by looking at the 
lessons learned from past languages, or by trying to add newly conceived features to a 
language. Languages also evolve to solve specific problems. For example, Ada was designed 
primarily to solve a vexing problem faced by the Pentagon. Programmers writing code for 
different military systems were using hundreds of different languages, and it was impossible to 
later maintain or upgrade the systems because of this. Ada tries to solve some of these 
problems by combining the good features of many different languages into a single language.  

Another good example of the evolutionary process in computer languages occurred with the 
development of structured languages. These languages arose in response to a major problem 
unforeseen by earlier language designers: the overuse of the goto statement in large programs. 
In a small program, goto statements are not a problem. But in a large program, especially when 
used by someone who likes goto statements, they are terrible. They make the code completely 
incomprehensible to anyone who is trying to read it for the first time. Languages evolved to 
solve this problem, eliminating the goto statement entirely and making it easier to break large 
programs down into manageable functions and modules.  

C++ is an "object oriented" language. Object oriented programming is a reaction to 
programming problems that were first seen in large programs being developed in the 70s. All 
object oriented languages try to accomplish three things as a way of thwarting the problems 
inherent in large projects:  

1. Object oriented languages all implement "data abstraction" in a clean way using a concept called "classes". 
We will look at data abstraction in much more detail later because it is a central concept in C++. Briefly, 
data abstraction is a way of combining data with the functions used to manipulate the data so that 
implementation details are hidden from the programmer. Data abstraction makes programs much easier to 
maintain and upgrade.  

2. All object oriented languages try to make parts of programs easily reusable and extensible. This is where 
the word "object" comes from. Programs are broken down into reusable objects. These objects can then be 
grouped together in different ways to form new programs. Existing objects can also be extended. By giving 
programmers a very clean way to reuse code, and by virtually forcing programmers to write code this way, 
it is much easier to write new programs by assembling existing pieces.  

3. Object oriented languages try to make existing code easily modifiable without actually changing the code. 
This is a unique and very powerful concept, because it does not at first seem possible to change something 
without changing it. Using two new concepts however --inheritance and polymorphism-- it is possible to do 
just that. The existing object stays the same, and any changes are layered on top of it. The programmer's 
ability to maintain and adjust code in a bug-free way is drastically improved using this approach.  

Since C++ is an object oriented language, it possesses the three object oriented benefits 
discussed above. C++ adds two other enhancements of its own to clean up problems in the 
original C language or to make programming in C++ easier than it is in C:  

1. C++ adds a concept called "operator overloading". This feature lets you specify new ways of using 
standard operators like "+" and "> > " in your own programs. For example, if you want to add a new type 
such as a complex number type to a C program, the implementation will not be clean. To add two complex 
numbers, you will have to create a function named "add" and then say "c3=add(c1,c2);", where c1, c2 and 



c3 are values of the new complex number type. In C++, you can overload the "+" and "=" operators instead, 
so that you can say, "c3 = c1 + c2". In this way, new types are added to the language in a completely 
seamless manner. The overloading concept extends to all functions created in C++.  

2. C++ also cleans up the implementation of several portions of the C language, most importantly I/O and 
memory allocation. The new implementations have been created with an eye toward operator overloading, 
so that it is easy to add new types and provide seamless I/O operations and memory allocation for them.  

Let's look at some examples of problems that you have probably run across in your C 
programming exploits, and then look at how they are solved in C++.  

The first example can be seen in every library that is built in C. The problem is demonstrated in 
the code below, which sets a string to a value and then concatenates another string onto it:  

 

char s[100]; 

strcpy(s, "hello "); 

strcat(s, "world"); 

 

This code is not very pretty, but the format is typical of every library you create in C. The string 
type is built out of the array-of-characters type native to C. Because the new type is not part of 
the original language, the programmer is forced to use function calls to do anything with it. What 
you would like to do instead is be able to create a new type and have it seamlessly blend in with 
the rest of the language. Something like this:  

 

string s; 

   

s = "hello "; 

s += "world"; 

 

If this were possible, then the language would be infinitely extensible. C++ supports this sort of 
extension through operator overloading and classes. Notice also that by using the string type, 
the implementation is completely hidden. That is, you do not know that--or if--string has been 
created using an array of characters, a linked list, etc., and it appears to have no maximum 
length. Therefore it is easy to change the implementation of the type in the future without 
adversely affecting existing code.  

Another example using a library can be seen in the implementation of a simple stack library. The 
function prototypes for a typical stack library (normally found in the header file) are shown 
below:  

 

void stack_init(stack s, int max_size); 

int stack_push(stack s, int value); 

int stack_pop(stack s, int *value); 

void stack_clear(stack s); 

void stack_destroy(stack s); 

  

  

  

The user of this library can push, pop and clear the stack, but before these operations are valid 
the stack must be initialized with stack_init. When finished with the stack, the stack must be 
destroyed with stack_destroy. But what if you forget the initialization or destruction steps? In 
the former case, the code will not work and it can be very difficult to track down the problem 
unless all of the routines in the library detect initialization failure and report it. In the latter case, 



the failure to destroy the stack properly can cause memory leaks that are again very difficult to 
track down. C++ solves this problem using constructors and destructors, which automatically 
handle initialization and destruction of objects such as stacks.  

Continuing with the stack example, notice that the stack as defined can push and pop integers. 
What if you want to create another stack that can handle reals, and another for characters? You 
will have to create three separate libraries, or alternatively use a union and let the union handle 
all different types possible. In C++, a concept called templates lets you create just one stack 
library and redefine the types stored on the stack when it is declared.  

Another problem that you might have had as a C programmer involves changing libraries. Say, 
for example, that you are using the printf function defined in the stdio library but you want to 
modify it so that it can handle a new type you have recently created. For example, you might 
want to modify printf so that it can print complex numbers. You are out of luck unless you 
happen to have the source code for printf. And even if you have the source, modification won't 
do a lot of good because that source is not portable, nor do you have the right to copy it. There 
really is no way to extend a C library easily once it has been compiled. To solve your output 
problem, you will have to create a new function to print your new type. If you have more than 
one new type, then you probably will have to create several different output functions, and they 
will all be different. C++ handles all of these problems with its new technique for standard 
output. A combination of operator overloading and classes allow new types to integrate 
themselves into the standard C++ I/O scheme.  

While thinking about the printf function, think about its design and ask yourself this: Is that a 
good way to design code? Inside of printf there is a switch statement or an if-else-if chain that 
is parsing the format string. A %d is used for decimal numbers, a %c is used for characters, a 
%s is used for strings, and so on. There are at least three problems with this implementation:  

1. The programmer has to maintain that switch statement and modify it for each new type that is to be 
handled. Modification means that new bugs might be introduced.  

2. There is no guarantee that the user will match up the data parameters with the format string, so the whole 
system can fail catastrophically.  

3. It is inextensible--unless you have the source you cannot extend the printf statement.  

C++ solves these problems completely by forcing the programmer to structure the code in a new 
way. The switch statement is hidden and handled automatically by the compiler through function 
overloading. It is impossible to mismatch the parameters, first because they are not 
implemented as parameters in C++, and second because the type of the variable automatically 
controls the switching mechanism that is implemented by the compiler.  

C++ solves many other problems as well. For example, it solves the "common code replicated in 
many places" problem by letting you factor out common code in a third dimension. It solves the 
"I want to change the parameter type passed into a function without changing the function" 
problem by letting you overload the same function name with multiple parameter lists. It solves 
the "I want to make a tiny change to the way this works, but I don't have the source for it" 
problem, and at the same time it also solves the "I want to redo this function completely but not 
change the rest of the library" problem using inheritance. It makes the creation of libraries much 
cleaner. It drastically improves the maintainability of code. And so on.  

You have to change your way of thinking slightly in order to take advantage of much of this 
power, and it turns out that you generally have to consider the design of your code up front a 



little more. If you don't, you lose many of the benefits. As you can see however, you gain a great 
deal in return for your investment. As in everything else, there is a tradeoff, but overall the 
benefits outweigh the disadvantages. 

 



Understanding C++: An Accelerated Introduction 

by Marshall Brain 
 

Improving C 
 

Everything you have ever written in C works in C++. However, in many cases C++ offers a 
better way to handle a given task. In other cases C++ offers a second way to do something, and 
the option gives you more flexibility. In this section we will examine C++ extensions to C. Many 
of these extensions were not added for their own sake, but instead "enable" object oriented 
features that we will see in later tutorials.  

This tutorial contains a lot of detail. Don't panic--just scan it for now if you like, and then come 
back and study the necessary sections as they are needed later on. These concepts have been 
collected here for easy reference because they are used at many different places in the notes.  

2.1 Comments 

C++ supports the old-style multi-line C comment, as well as a new single line form denoted by 
the "//" symbol. For example:  

 

// get_it function reads in input values 

void get_it() 

{ 

    // do something. 

} 

 

Everything from the "//" to the end of the line is ignored. You can use both commenting styles 
interchangeably in a C++ program.  

2.2 Type casting 

In C, you cast a type by placing a type name in parenthesis and placing it in front of the variable 
name, as shown below  

 

int i; 

float f; 

   

f = (float) i; 

 

In C++ a second format is also supported. It makes the cast look like a function call, as shown 
here  

 

int i; 

float f; 

  

f = float(i); 

 

We will see later, when we begin discussing classes, that there is a reason for this new format.  

2.3 Input and output 

2.3.1 Terminal I/O 



One of the most obvious differences between C and C++ is the replacement of the stdio library 
in C with the iostream library in C++. The iostream library takes advantage of a number of the 
features of the C++ object-oriented extensions (we will see detailed examples later), and 
therefore makes the addition of new user-defined type I/O much easier. The iostream library 
also replaces all of the capabilities found in the stdio library, so it is important to know how to 
use the basic features of the new library as you translate code over to C++.  

Use of the iostream library for basic input and output is straightforward. Two simple examples 
are shown below:  

 

cout <<  "hello\n"; 

 

or equivalently:  

 

cout <<  "hello" <<  endl; 

 

Both forms produce the same output, and cause the word "hello" followed by a newline to 
appear on standard out. The word cout indicates stdout as the destination for the output, and 
the << operator (the insertion operator) is used to gather the items. Two other standard output 
destinations are pre-defined: cerr for unbuffered error information, and clog for buffered error 
information.  

Any of the standard types can be written using the technique shown above: integers, floats, 
characters, and pointers to characters all can be written. Multiple items can either be strung 
together on a single line or stacked on multiple lines. For example:  

 

int i = 2; 

float f = 3.14 

char c = 'A'; 

char *s = "hello"; 

  

cout << s << c << f << i <<  endl; 

 

produces the output:  

helloA3.142 

and it is the same as:  

 

cout << s << c; 

cout << f; 

cout i << endl; 

 

The cout mechanism automatically understands addresses, and formats them for hex output. 
For example, if i is an integer then the statement:  

 

cout << &i << endl; 

 

prints the address of i in hex format. If p is a pointer to i, then printing p also prints the address 
of i in hex format. There are cases however where this formatting rule does not hold. Printing s, 
where s is a pointer to a character, produces the string pointed to by s rather than the address 



held by s. To remedy this situation, cast s to a void pointer as shown below if you want to see its 
address:  

 

cout << (void *) s; 

 

Now the address held by s will be shown in hex format. If you wish to display an address as a 
decimal number rather than in hex format, cast it to a long integer:  

 

cout << long(& i); 

 

This line prints the address of i in decimal format. In the same way, an int cast is used to print 
out the integer value of a character:  

 

cout << int('A');        // produces 65 as output 

 

You may notice that the << operator--known in C as the shift left operator--has been stolen to 
handle output in C++. If you wish to use it for shifting left within an output line, then parenthesis 
should be used:  

 

cout << (2 << 4);        // produces 32 as output 

 

To format output, you can use several techniques. Information can be spaced by adding in 
spaces or tabs as literal strings, as shown below:  

 

int i = 2; 

float f = 3.14 

char c = 'A'; 

char *s = "hello"; 

  

cout << s << " " << c << "\t" << f  

    << "\t" << i << endl; 

 

There are several other manipulators that can be inserted into an output stream (on many 
systems you will have to include "iomanip.h" to use these)  

o dec Use decimal base  

o oct Use octal base  

o hex Use hex base  

o endl End of line  

o ends End of string ('\0')  

o flush Flush output buffer  

o  

o setw(w) Set output width to w (0 is default)  

o setfill(c) Set fill character to c (blank is default)  

o setprecision(p) Set float precision to p  



The statement:  

 

cout << "[" << setw (6) << setfill('*') << 192; 

cout << "]" << endl; 

cout << hex << "[" << setw (6); 

cout << setfill('*') << 192 << "]" << endl; 

cout << setprecision(4) << 3.14159 << endl; 

 

produces:  

 

[***192] 

[****c0] 

3.142 

 

Floating point output may or may not truncate trailing zeros no matter how you set the precision-
-it is compiler-dependent.  

You can see from the above examples that certain variable and function names should not be 
used to avoid losing the manipulators built into the iostream library.  

Input is handled in a similar manner, using the cin input stream and the ">>" extraction operator. 
For example, the statement:  

 

int i,j,k; 

cin >> i >> j >> k; 

 

will read three integer values from stdin into i, j and k. White space is automatically used as a 
separator and ignored. When reading into a string variable, the input is read word by word, 
where words are separated by white space. White space characters are ignored when reading 
into a character. This behavior can be overridden by explicitly reading strings and lines (see 
below). All of the standard types handled by cout are handled by cin. The cin stream can also 
be used in a while loop that terminates when EOF is detected, as shown below:  

 

while (cin >> i) 

    cout <<  i; 

 

The cin stream automatically breaks string input into words and terminates on EOF.  

2.3.2 File input and output 

Input and output to text files are handled by including the file "fstream.h" and by then declaring 
variables of type ifstream and ofstream respectively. For example, the following program reads 
from a file named "xxx" and writes to a file named "yyy":  

 

#include <iostream.h>  

#include <fstream.h>  

  

void main() 

{ 

    char c; 

    ifstream infile("xxx"); 

    ofstream outfile("yyy"); 

  



    if (outfile &&  infile) // They will be 0 on err. 

        while (infile >> c) 

            outfile <<  c; 

} 

 

The infile and outfile variables are passed the file name on initialization, and are used just as 
cin and cout are used. This code does not do work as expected however, because blanks, 
tabs, and '\0' characters at the end of each line are ignored as white space when using << on a 
character. Instead, the "get" function can be used, as shown below:  

 

while (infile.get(c)) 

    outfile << c; 

 

or:  

 

while (infile.get(c)) 

    outfile.put(c); 

 

It is also possible to read complete lines by calling the "getline" function in the same manner as 
used for the "get" function. To open a file for appending, use the following:  

 

ofstream("xxx", ios::app); 

 

This line, along with the ".get" function notation, will make more sense once you know more 
about C++. The fact that ofsteam sometimes takes one parameter and other times takes two is 
built into C++ (see Section 2.6).  

Note that no "close" function is needed for file input and output. A file automatically closes itself 
when the file variable goes out of scope. If you do need to explicitly close a file, you can say:  

 

outfile.close(); 

 

2.3.3 String I/O 

Input can be read from strings in memory, and output can be sent to strings in memory, 
duplicating the action of sscanf and sprintf. To do this, you must include the file "strstream.h" 
and then declare input and output strings. An output string is shown below:  

 

char s[100]; 

ostrstream outstring(s,100); 

  

outstring << 3.14 << " is pi" << ends; 

cout << s; 

 

The string s is filled with the text "3.14 is pi". If s is overfilled, outstring will automatically stop 
placing values into it.  

If a string s exists and you wish to read from it, you can use an input string stream as shown 
below:  

 

char *s = "3.14  12  cat"; 



istrstream instring(s, strlen(s)); 

float f; 

int i; 

char t[100]; 

  

instring >> f >> i >> t; 

 

The iostream library has many many other capabilities not discussed here. For more information 
see the the C++ documentation supplied with the compiler--it contains a complete reference on 
the I/O library.  

2.4 Variable declarations 

Variables are declared in C++ as they are in C. Variables can be declared anywhere in the code 
in C++, returning things almost to the point of FORTRAN in terms of flexibility. The variable 
comes into existence when it is declared, and ceases to exist when the ending brace of the 
current block of code is reached. For example, in the following code:  

 

{ 

    int i; 

    ... code ... 

    int j; 

    ... code ... 

    int k=func(i,j); 

    ... code ... 

} 

 

All three variable come into existence at the point of declaration and disappear at the closing 
brace.  

2.5 Constants 

In C you create a constant by using the macro preprocessor. An example is shown below:  

 

#define MAX 100 

 

When the program is compiled, the preprocessor finds each occurrence of the word MAX and 
replaces it with the string 100.  

In C++, the word "const" is used instead, and it is applied to normal variable declarations as 
shown below:  

 

const int MAX=100; 

 

The int MAX=100; portion is formatted exactly the same way as a normal declaration. The word 
const in front of it simply defines that the variable MAX cannot be subsequently changed.  

The use of uppercase characters for constant variable names is a C tradition which you may 
choose to uphold or ignore.  

The const modifier can also be used in parameter lists to specify the valid usage of a 
parameter. The three functions below demonstrate different uses of const.  

 



void func1(const int i) 

{ 

    i=5;        // cannot modify a constant 

} 

  

void func2(char * const s) 

{ 

    s="hello";  // cannot modify the pointer 

} 

  

void func3(const char * s) 

{ 

    s="hello";  // this is OK 

    *s='A';     // cannot modify what is pointed to 

} 

 

The usage shown in func2 should almost always be used when a char* parameter is passed.  

2.6 Function overloading 

One of the most powerful new features in C++ is called "function overloading". An overloaded 
function has several different parameter lists. The language distinguishes which function to call 
based on pattern- matching the parameter list types. Here is an extremely simple demonstration 
of the process:  

 

#include <iostream.h>  

  

void func(int i) 

{ 

    cout << "function 1 called" << endl; 

    cout << "parameter = " << i << endl; 

} 

  

void func(char c) 

{ 

    cout << "function 2 called" << endl; 

    cout << "parameter = " << c << endl; 

} 

  

void func(char *s) 

{ 

    cout << "function 3 called" << endl; 

    cout << "parameter = " << s << endl; 

} 

  

void func(char *s, int i) 

{ 

    cout << "function 4 called" << endl; 

    cout << "parameter = " << s; 

    cout << ", parameter = " << i << endl; 

} 

  

main() 

{ 

    func(10); 

    func('B'); 

    func("hello"); 

    func("string", 4); 



    return 0; 

} 

 

When this code is executed, each version of the function func is called based on parameter list 
matching. You will use this capability a great deal in C++ once you get used to the idea. For 
example, if you create a function that initializes a module, you can have it call different code 
depending on whether it is passed a string, an integer, a float, and so on.  

2.7 Default arguments 

C++ also allows you to give default values to parameters--if the parameter is not passed, the 
default value is used. This capability is demonstrated in the following code:  

 

#include <iostream.h>  

  

void sample(char *s, int i=5) 

{ 

    cout << "parameter 1 = " << s << endl; 

    cout << "parameter 2 = " << i << endl; 

} 

  

main() 

{ 

    sample("test1"); 

    sample("test1",10); 

    return 0; 

} 

 

The first function call will output the default value of 5 for the parameter i, while the second call 
will output the value 10.  

When creating default parameters, you need to avoid ambiguity between the default parameter 
lists and other overloaded parameter lists. For example, given the above function definition for 
sample it is not possible to create an overloaded version that accepts a single char* parameter-
-the compiler would be unable to pick which function to call in the case where it is passed a 
string.  

2.8 Memory allocation 

C++ replaces the C memory allocation function malloc and the deallocation function free with 
new and delete respectively, and in the process makes them much easier to use. New and 
delete allow user-created types to be allocated as easily as existing types.  

The following code shows the simplest use of new and delete. A pointer to an integer is points to 
a block of memory created by new:  

 

int *p; 

p = new int; 

*p = 12; 

cout << *p; 

delete p; 

 

It is also possible to allocate blocks consisting of arrays of varying length using a similar 
technique. Note the use of delete [] for deleting the array:  



 

int *p; 

p = new int[100]; 

p[10] = 12; 

cout << p[10]; 

delete [] p; 

 

The value 100 can be a variable if desired.  

When working with user-defined types, new works just the same way. For example:  

 

typedef node 

{ 

    int data; 

    node *next; 

} node; 

  

main() 

{ 

    node *p; 

    p=new node; 

    p->data = 10; 

    delete p; 

}  

 

We will see in later tutorials that the delete operator is very sophisticated when working with 
user-defined classes.  

2.9 Reference declarations 

In C, pointers are frequently used to pass parameters to functions. For example, the following 
swap function swaps the two values passed:  

 

void swap(int *i, int *j) 

{ 

    int t = *i; 

    *i = *j; 

    *j = t; 

} 

  

main() 

{ 

    int a=10, b=5; 

   

    swap(& a, & b); 

    cout << a << b << endl; 

 

}  

C++ provides a referencing operator to clean up the syntax a bit. The following code works in 
C++:  

 

void swap(int&  i, int&  j) 

{ 

    int t = i; 

    i = j; 

    j = t; 



} 

  

main() 

{ 

    int a=10, b=5; 

  

    swap(a, b); 

    cout << a << b << endl; 

} 

 

The parameters i and j declared as type int& act as references to the integers passed (read 
int& as "a reference to an integer") . When a variable is assigned to the reference variable, the 
reference picks up its address and mimics the actual location of the assigned variable. For 
example:  

 

int a; 

int & b=a; 

  

a=0; 

b=5; 

cout << a << endl; 

 

This code produces 5 as its output because b references a. It is the same as using pointers and 
address operators in C but the syntax has been greatly simplified. Note that b must be initialized 
at creation as shown. 



Understanding C++: An Accelerated Introduction 
by Marshall Brain 
 

C++ Vocabulary 
 

The last tutorial focused on elements of the C++ language that extend C or correct problems 
inherent in it. These modifications are fairly easy to understand. The other part of C++ is the 
object oriented extensions. These additions to the language are not so easy to understand. 
Whereas the cout capability is simply another way to handling printing--which you already 
understand--many of the object oriented extensions will be unfamiliar. The purpose of this 
chapter is to give you your first exposure to some of the general ideas. Then we will look at the 
C++ syntax that supports these concepts and come back and look at the concepts again.  

3.1 C++ Vocabulary  

Look at the world around you. You can understand a good bit about the structure, vocabulary, 
and organization of C++ by looking at the structure and organization of the real world as well as 
the vocabulary that we use to talk about it. Many of the design elements of C++--and object 
oriented languages in general--try to emulate the way we interact with the real world.  

For example, whenever you look around yourself you see a large number of objects. We 
organize all of the objects around us in our minds by arranging them in hierarchical categories, 
or "classes". For example, you have in your hands a book. A book is a general class of object. 
You might say, "This object I am holding is classified as a book."  

A hierarchy of object classes surrounds the class "book", and it extends in two directions. Books 
are a member of the more general class "publications". Specific types of books also exists: 
computer books, fiction books, biographical books, and so on. The hierarchy extends both 
toward the general and the more specific. At this point you are holding a single, particular book. 
In OOP lingo, you are holding an "instance" of the class "book".  

Books have certain attributes that are shared by all books: They have a cover, several chapters, 
no advertising, and so on. They also have attributes shared by publications in general: a title, a 
date of publication, a publisher, etc. They have attributes that are shared by all physical objects: 
a location, size, shape, and weight. This idea of shared attributes is very important in C++. C++ 
models the concept of shared attributes using inheritance.  

There are certain things you do with and to different objects, and those actions change from 
object to object. For example, you can read a book, and you can flip its pages. You can look at 
the title, find a specific chapter, look something up in the index, count the number of pages, and 
so on. These actions are largely unique to publications: you never find yourself flipping the 
pages of a hammer, for example. However, there are actions that are generic to all physical 
objects, such as picking them up. C++ takes this fact about the world into account as well, again 
using inheritance.  

The hierarchical nature of object categories, as well as our hierarchical organization of object 
attributes and actions, are all embedded into the syntax and vocabulary of C++. For example, 
when designing a program you will break it down into objects, each of which has a "class". You 
will "inherit" features of a "base class" when you create a "derived class". That is, you will create 
general object classes and then make more specific classes from them, deriving the particular 



from the general. You will "encapsulate" the data found in an object with "member functions", 
and as you extend a class you will "overload" and "override" the functions of the base class. 
Confused? Let's look at a quick example to see what all of these words actually mean.  

The classic example of object oriented programming is a graphics program that allows you to 
draw objects--lines, rectangles, circles and such--on the screen. What do all of these objects 
share in common? All objects have a location on the screen. They might also have a color. 
These attributes are possessed by every shape shown on the screen. Therefore, as a program 
designer you would create a "base class"--another way to think about it is "a generic object 
class"--that holds attributes found in all objects appearing on the screen. The base class might 
be called "shape" to identify it in a generic sort of way. You would then "derive" different objects-
-circles, squares, lines--from this base class, adding in new attributes that are specific to these 
objects. A specific circle drawn on the screen using the circle class would then be an "instance" 
of the circle class, which inherited some of its behavior from the more generic shape class.  

It is possible to create this sort of hierarchy with normal structures in C, but it is not nearly as 
easy to do as it is in C++. C++ contains syntax to handle inheritance. For example, in C you 
could create a base structure that holds the object's location on the screen and color. Then 
specific object structures could include this base structure and add to it. C++ makes this process 
easier, and then goes one step further. In C++, functions can be bonded into a structure as well 
and this is called a "class". So the base class might have "member functions", as they are called 
in C++, that allow an object to be moved and recolored. The "derived classes" can use these 
member functions as they are, or add in new member functions to increase functionality, or 
override existing member functions to change behavior.  

The most important feature differentiating C++ from C is this idea of a "class", both at a syntactic 
and a conceptual level. Classes let you use all of the normal object oriented programming 
features--encapsulation, inheritance, and polymorphism--in your C++ programs. They also are 
the framework on which other features, such as "operator overloading" (the ability to redefine 
operators such as "+" and ">" for newly created data types), are built. That all may sound like 
gibberish now, but as you become familiar with the concepts and vocabulary you will begin to 
see the power of these new techniques.  

3.2 The evolution of classes 

Given the amount of conceptual power embodied in the class concept, it is interesting to note 
that the syntax remains fairly straightforward. A class is simply an extension of a C structure. 
Basically a class allows you to create a structure, and then permanently bind all related 
functions to that structure. This process is known as encapsulation. It is a very simple concept, 
but it is the heart of object oriented programming: data + functions = object. Classes can also be 
built on top of other classes using inheritance. Under inheritance, a new class extends its base 
class. Finally, new classes can modify the behavior of their base classes, a capability known as 
polymorphism.  

This is a new way of thinking about your code--it is three-dimensional thinking. You can consider 
a straight-line piece of code (one that has no functions) as one-dimensional code. It starts at the 
beginning and ends at the end and that's it. Then you add functions to it to remove some of the 
redundancies and give names to some of the big pieces. That's two-dimensional code. Now we 
are going to add a third dimension to that, grouping functions and data together into classes so 
that the code is further organized. The class hierarchy created by inheritance adds the third 



dimension. And just as flying is much harder to master than driving because flying adds a third 
dimension to the mix, object-oriented programming can take some time to master.  

One of the best ways to understand classes and their importance to you as a programmer is to 
understand how and why they evolved. The roots of the class concept lie in a topic known as 
"data abstraction".  

Let's imagine that you are watching a typical room full of college freshmen write a program. 
Imagine a group of such students who are in their first-semester Pascal course. Once they know 
how to create if statements and loops and arrays they are pretty much ready to write code, but 
they don't yet know how to organize their thinking. If you ask them to create a simple program 
they create a blob of code that does the job somehow. It won't be pretty, but it will work.  

Imagine that you have asked these students to create a program that can play the "cannon" 
game. If you have been around computers for 15 years or so then you are familiar with this 
game because it was very common on early personal computers: The player sees a cannon and 
a target sitting on terrain that changes from game to game. The goal is to set the angle of the 
cannon and the amount of powder so that the cannon ball hits the target, missing any hills or 
other obstacles in the terrain.  

 

Assume that the terrain data exists in a text file consisting of pairs of coordinates. The 
coordinates are endpoints of the line segments that define the terrain. The students figure out 
that they need to read this file in so that they can draw it, and they also need it in memory so 
that they can check for intersections of the cannon ball's path with the terrain in order to 
determine where the cannon ball "lands". So what do they do? They declare a global array to 
hold the coordinates, read the file into the array, and then use the array whenever it is needed 
anywhere in the program.  

The problem with this approach is that the array has now embedded itself in their code. If a 
change is ever required--say from an array to a linked list--the program will probably be thrown 
out and rewritten because it contains so many specific references to the array that change is 
impossible. From a production-programming standpoint this is not good because data structures 
frequently change in a large program.  

A better way to design the program is to use an "abstract data type". In this approach, the 
programmer first tries to decide how the data will be used. In our terrain example, the 
programmer might think, "Well, I need to be able to load in the terrain data from wherever it 
comes from, and to draw the terrain on the screen, and to see if the cannon ball's path 
intersects with the terrain." Notice that this is done abstractly--there is no mention of an array or 



a linked list anywhere. Then the programmer creates functions to implement those capabilities. 
The functions might be named load_terrain, draw_terrain, and check_terrain_intersection. 
These functions are used throughout the program.  

The functions act as a barrier. They hide the actual data structure from the program. If the data 
structure later has to change, say from an array to a linked list, the majority of the program 
remains unaffected--only the three functions have to change. The programmer has succeeded 
in creating an "abstract data type".  

Many languages formalize this concept. In Pascal you can use a "unit", in C you can use a 
"library". Both allow you to create and separately compile a file containing the data structure and 
the functions that access it. You can specify that the data structure be "hidden", which means 
that the array can only be accessed by the functions in that unit. In addition, the unit can be 
compiled so that the code inside is hidden as well: other programmers can call the functions 
because of a publicly available interface, but they cannot see or modify the actual code.  

Pascal units and C libraries represent a step in an evolutionary chain. They start to attack the 
problem of data abstraction but they do not go far enough. They work, but there are problems:  

1. Most importantly, there is no easy way to modify or extend the behavior of the unit after it is 
compiled.  

2. These abstract types don't mesh with the original language very well. Syntactically they are a 
mess, and they don't use any of the operators like the "normal" types do. For example, if you 
create a new type for which an addition operation is natural, there is no way for you to use the plus 
sign to signify the operation--you have to create a function called add instead.  

3. If you hide an array in a unit you can have only one array. You cannot create multiple instances of 
the data type unless you modify the code and break the data hiding principle in the process.  

C++ classes eliminate these deficiencies.  

3.3 C++ and Data Abstraction 

In response to these problems, object oriented languages such as C++ offer easy, extensible 
ways to implement data abstraction. All that you have to do is modify your thinking patterns so 
that you think about problems in an "abstract" way. This mental shift is fairy easy once you have 
seen some examples.  

First of all you want to try to think in terms of "data types". Whenever you create a data type you 
need to think of all of the things you will want to do with that data type and then bind the 
functions you create to the type. For example, say that you are creating a program which 
requires a rectangle data type containing two coordinate pairs. You should think, "what will I 
need to do with this type?" You might come up with the following actions: set it to a value, check 
for equality with another rectangle, check for intersection with another rectangle, and check to 
see if a point is inside the rectangle. If you need a terrain data type, you go through the same 
process and come up with functions to load the terrain data, draw the data, and so on. You then 
bind these functions to the data. Doing this for each data type you need in a program is the 
essence of object oriented program.  

The other essential technique used when thinking in an object oriented way involves training 
your mind to think in a "generic-to-specific" hierarchy. For example, when thinking about a 
terrain object, you might notice some similarities between it and a list. After all, somewhere in 
there is a list of coordinates that is loaded from the file. A list is a generic object that can be 



used in many places. So you would try to create a generic list class and then build the terrain 
object on top of it. We will examine this process in detail as we go though more examples in the 
following tutorials. 



Understanding C++: An Accelerated Introduction 
by Marshall Brain 
 

A Simple C++ Vocabulary 
 
We can use a specific example to firm up some of the ideas from the last section. In this tutorial 
we will look at a simple address list program implemented in C, and see how it can be moved to 
C++ by adding a class.  

4.1 An address list program 

Let's say that you want to create an address list program that manages a list of names and 
addresses. The first thing you want to do to create this program is describe the program in 
English. It turns out that a good English description also helps to find objects in a program, and 
this is useful when designing C++ code. The description helps you to see the objects you need 
to create, as well as the functions that will go with each object. Here is a typical description:  

I want to create an address list program. The program will hold a list of names and addresses. 
The user will be able to add entries to the list, print the list to the screen, and find entries in the 
list. 

You can see that this is a very high level description. It doesn't talk about the user interface, 
loading and saving information on disk, error checking, the record format, or the data structure 
used. All of that would come later. The point of this description is to see what it does talk about. 
In particular, it talks about an object--a list-- and a set of actions that go with the object--adding, 
printing, and finding. Now let's take the description further:  

The list can be loaded from disk and saved to disk. When the program begins, it will load the list 
and then display a menu that lets the user select from the following options: add, delete, find, 
and quit. When the user selects quit, the list will be saved and the program will terminate. 

From this description, you can see that there are two more actions for the list object-- load and 
save. You can also see two new objects developing--the menu object and the program object. 
Two actions are listed for the menu: display and selection. The program object currently has 
three actions: initialization, menu display, and termination.  

The point to gain from this example is that an application breaks down into objects fairly 
naturally. As you describe the program, you begin to see objects in the description. They are 
generally the nouns in the description. You also can see the functions for the object--they are 
the verbs. One technique for finding objects in a program is to describe it, make a list of nouns 
from that description, and then throw out obvious things like "the user". What's left is a set of 
objects that the program will have to deal with. Then make a list of verbs and use them to form 
functions for each object.  

4.2 An old-style program  

Let's start creating this address list program by implementing it in C. Then we will move it to C++ 
by adding a class. The following listing shows a very simple implementation of the address list 
using normal functions. The program can add elements to the list, print the list to the screen, or 
find an item in the list. The list is held in a global array.  

 

#include <iostream.h>  



#include <string.h>  

  

typedef struct 

{ 

    char name[20]; 

    char city [20]; 

    char state[20]; 

} addrStruct; 

  

const int MAX=10; 

addrStruct list[MAX]; 

int numInList; 

  

void addName() 

{ 

    if (numInList < MAX) 

    { 

        cout << "Enter Name: "; 

        cin >>  list[numInList].name; 

        cout << "Enter City: "; 

        cin >> list[numInList].city; 

        cout << "enter State: "; 

        cin >> list[numInList].state; 

        numInList++; 

    } 

    else 

    { 

        cout << "List full\n"; 

    } 

} 

  

void printOneName(int i) 

{ 

    cout << endl; 

    cout << list[i].name << endl; 

    cout << list[i].city << endl; 

    cout << list[i].state << endl; 

} 

  

void printNames() 

{ 

    int i; 

  

    for (i=0; i < numInList; i++) 

        printOneName(i); 

    cout << endl; 

} 

  

void findName() 

{ 

    char s[20]; 

    int i; 

    int found=0; 

  

    if (numInList==0) 

    { 

        cout << "List empty\n"; 

    } 

    else 

    { 

        cout << "Enter name to find: "; 



        cin >> s; 

        for (i=0; i < numInList; i++) 

        { 

            if (strcmp(s,list[i].name)==0) 

            { 

                printOneName(i); 

                found=1; 

            } 

        } 

        if (!found) 

            cout << "No match\n"; 

    } 

} 

  

void paintMenu() 

{ 

    cout << "Address list Main Menu\n"; 

    cout << "  1 - add to list\n"; 

    cout << "  2 - print list\n"; 

    cout << "  3 - find name\n"; 

    cout << "  4 - quit\n"; 

    cout << "Enter choice: "; 

} 

  

void main() 

{ 

    char choice[10]; 

    int done=0; 

    numInList=0; 

    while (!done) 

    { 

        paintMenu(); 

        cin >> choice; 

        switch(choice[0]) 

        { 

            case '1': 

                addName(); 

                break; 

            case '2': 

                printNames(); 

                break; 

            case '3': 

                findName(); 

                break; 

            case '4': 

                done=1; 

                break; 

            default: 

                cout << "invalid choice.\n"; 

        } 

    } 

}     

 

This program has a fairly typical structure and organization. Functions are used to break up the 
code. One function handles each of the menu options, one paints the menu, and the function 
printOneName holds a piece of redundant code used in two places in the program. This 
program demonstrates the two main uses for functions-- decomposition/naming and redundancy 
removal.  



There is one fundamental problem with this program: The code is strongly bonded to the global 
array variable. As shown in the figure below, the array is global and it is referenced directly 
throughout the program:  

 

There is no easy way to change the array to another data structure without rewriting most of the 
code. This code has nothing to do with the list implemented by the array--it simply is in the 
wrong place.  

The idea behind data abstraction is to protect variables such as the global array from direct 
manipulation by the program. By isolating the variables implementing the list from the rest of the 
program with function calls, we can accomplish three things:  

1. It is much easier to replace the list with different data structures later on, because only the list functions 
need changing.  

2. The program is better organized--the list concept is separated out from the rest of the code as much as 
possible.  

3. The list functionality can be used elsewhere in other programs now that it stands on its own.  

In C you would make the program look like this:  

 

#include <iostream.h>  

#include <string.h>  

  

typedef struct 

{ 

    char name[20]; 

    char city [20]; 

    char state[20]; 

} addrStruct; 

  

//-------- data and functions for the list ------- 

const int MAX=10; 

addrStruct list[MAX]; 

int numInList; 

  

void listInit() 

{ 

    numInList=0; 

} 

  



void listTerminate() 

{ 

} 

  

int listFull() 

{ 

    if (numInList >=MAX) return 1; else return 0; 

} 

  

int listEmpty() 

{ 

    if (numInList==0) return 1; else return 0; 

} 

  

int listSize() 

{ 

    return numInList; 

} 

  

int listAdd(addrStruct addr) 

{ 

    if (!listFull()) 

    { 

        list[numInList++]=addr; 

        return 0;  // returns 0 if OK 

    } 

    return 1; 

} 

  

int listGet(addrStruct&  addr, int i) 

{ 

    if (i < listSize()) 

    { 

        addr=list[i]; 

        return 0;  // returns 0 if OK 

    } 

    return 1; 

} 

//------------------------------------------------ 

  

void addName() 

{ 

    addrStruct a; 

  

    if (!listFull()) 

    { 

        cout << "Enter Name: "; 

        cin >> a.name; 

        cout << "Enter City: "; 

        cin >> a.city; 

        cout << "enter State: "; 

        cin >> a.state; 

        listAdd(a); 

    } 

    else 

        cout << "List full\n"; 

} 

  

void printOneName(addrStruct a) 

{ 

    cout << endl; 



    cout << a.name << endl; 

    cout << a.city << endl; 

    cout << a.state << endl; 

} 

  

void printNames() 

{ 

    int i; 

    addrStruct a; 

  

    for (i=0; i < listSize(); i++) 

    { 

        listGet(a,i); 

        printOneName(a); 

    } 

    cout << endl; 

} 

  

void findName() 

{ 

    char s[20]; 

    int i; 

    int found=0; 

    addrStruct a; 

  

    if (listSize==0) 

        cout << "List empty\n"; 

    else 

    { 

        cout << "Enter name to find: "; 

        cin >> s; 

        for (i=0; i < listSize(); i++) 

        { 

            listGet(a, i); 

            if (strcmp(s,a.name)==0) 

            { 

                printOneName(a); 

                found=1; 

            } 

        } 

        if (!found) 

            cout << "No match\n"; 

    } 

} 

  

void paintMenu() 

{ 

    cout << "Address list Main Menu\n"; 

    cout << "  1 - add to list\n"; 

    cout << "  2 - print list\n"; 

    cout << "  3 - find name\n"; 

    cout << "  4 - quit\n"; 

    cout << "Enter choice: "; 

} 

  

void main() 

{ 

    char choice[10]; 

    int done=0; 

    listInit(); 

    while (!done) 



    { 

        paintMenu(); 

        cin >> choice; 

        switch(choice[0]) 

        { 

            case '1': 

                addName(); 

                break; 

            case '2': 

                printNames(); 

                break; 

            case '3': 

                findName(); 

                break; 

            case '4': 

                done=1; 

                break; 

            default: cout << "invalid choice.\n"; 

        } 

    } 

    listTerminate(); 

} 

 

At the top of the program are seven functions as well as the variables used to implement the list. 
The goal of the functions is to completely protect, or encapsulate, the variables. Using the list... 
functions it is possible to do anything that this program needs to do to the list without using any 
of the actual variables that implement the list. The functions act as a wall between the variables 
and the program. With this program structure, any change to the implementation of the list (for 
example, changing the array to a linked list) has no effect on the program itself--only the seven 
functions must be modified. The structure of this program is shown below:  

 

Many of these functions may seem trivial. For example, the listTerminate function contains no 
actual code at all. But it is there because of future possibilities--if the implementation changes to 
a linked list, there will need to be a function that deletes all of the elements in the list to avoid 
memory leaks. The listSize function contains just one line here, but if the list were implemented 
using a binary tree the function would have to recursively traverse the tree to count all of the 



elements and it would be much larger. What we have done is think of all the functions that might 
actually be needed for a generic list no matter how it is implemented.  

While the implementation above is successful in isolating the list from the rest of the program, it 
has several problems. For example, anyone could come along and modify the program, calling 
the variables directly and defeating the wall of functions. In other words, there is no enforcement 
of the wall. Also, it is not easy to use two of these lists in one program. All of the functions are 
tightly bound to a single array. You could get around this problem by passing the array in as a 
parameter, but that gets messy. C++ solves both problems with classes.  

4.3 Creating a class - 

The following code takes the data and the seven list functions from the previous listing and 
implements them as a C++ class. It then uses that class in the program:  

 

#include <iostream.h>  

#include <string.h>  

  

typedef struct 

{ 

    char name[20]; 

    char city [20]; 

    char state[20]; 

} addrStruct; 

  

const int MAX = 10; 

  

class List 

{ 

    addrStruct list[MAX]; 

    int numInList; 

public: 

    List(): numInList(0) // constructor 

    { 

    } 

    ~List() // destructor 

    { 

    } 

    int Full() 

    { 

        if (numInList >=MAX) return 1; else return 0; 

    } 

    int Empty() 

    { 

        if (numInList==0) return 1; else return 0; 

    } 

    int Size() 

    { 

        return numInList; 

    } 

    int Add(addrStruct addr) 

    { 

        if (!Full()) 

        { 

            list[numInList++]=addr; 

            return 0;  // returns 0 if OK 

        } 

        return 1; 



    } 

    int Get(addrStruct&  addr, int i) 

    { 

        if (i < Size()) 

        { 

            addr=list[i]; 

            return 0;  // returns 0 if OK 

        } 

        return 1; 

    } 

}; 

//----------------------------------------------- 

  

List list; 

  

void addName() 

{ 

    addrStruct a; 

  

    if (!list.Full()) 

    { 

        cout << "Enter Name: "; 

        cin >> a.name; 

        cout << "Enter City: "; 

        cin >> a.city; 

        cout << "enter State: "; 

        cin >> a.state; 

        list.Add(a); 

    } 

    else 

        cout << "List full\n"; 

} 

  

void printOneName(addrStruct a) 

{ 

    cout << endl; 

    cout << a.name << endl; 

    cout << a.city << endl; 

    cout << a.state << endl; 

} 

  

void printNames() 

{ 

    int i; 

    addrStruct a; 

  

    for (i=0; i < list.Size(); i++) 

    { 

        list.Get(a,i); 

        printOneName(a); 

    } 

    cout << endl; 

} 

  

void findName() 

{ 

    char s[20]; 

    int i; 

    int found=0; 

    addrStruct a; 

  



    if (list.Size()==0) 

        cout << "List empty\n"; 

    else 

    { 

        cout << "Enter name to find: "; 

        cin >> s; 

        for (i=0; i < list.Size(); i++) 

        { 

            list.Get(a, i); 

            if (strcmp(s,a.name)==0) 

            { 

                printOneName(a); 

                found=1; 

            } 

        } 

        if (!found) 

            cout << "No match\n"; 

    } 

} 

  

void paintMenu() 

{ 

    cout << "Address list Main Menu\n"; 

    cout << "  1 - add to list\n"; 

    cout << "  2 - print list\n"; 

    cout << "  3 - find name\n"; 

    cout << "  4 - quit\n"; 

    cout << "Enter choice: "; 

} 

   

int main() 

{ 

    char choice[10]; 

    int done=0; 

  

    while (!done) 

    { 

        paintMenu(); 

        cin >> choice; 

        switch(choice[0]) 

        { 

            case '1': 

                addName(); 

                break; 

            case '2': 

                printNames(); 

                break; 

            case '3': 

                findName(); 

                break; 

            case '4': 

                done=1; 

                break; 

            default: 

                cout << "invalid choice.\n"; 

        } 

    } 

    return 0; 

    // list destroys itself when it goes out of scope. 

} 

 



The list class is near the top of the program and starts with the words class List. This is just a 
type declaration--the actual instance of the list appears at the line:  

 

List list; 

 

This line declares a variable named list of the type class List.  

Notice that the List class starts off looking very much like a structure. It declares two variables 
in the same way a structure would. These are called data members. It then contains the word 
"public": This word indicates that the following functions will be known to any code using this 
class. The opposite word is "private" and is used when functions or variables are to remain 
hidden from the rest of the program. The variables and functions defined in a class are by 
default private unless you specifically make them public as shown here (the 2 data members are 
private by default, and the 7 functions are public).  

Following the data members come the member functions. These are the functions that can be 
applied to instances of this class. The first two functions-- List and ~List--are unique, and are 
called the constructor and the destructor respectively. The constructor is automatically called 
when any instance of this class comes into existence. In this case, the instance comes into 
existence at the start of program execution because it is declared as a global variable, but 
constructors of local variables are called when the local variable comes into existence and 
constructors of pointers are activated when new is called on the pointer. The constructor has 
the same name as the class itself:  

 

List(): numInList(0) // constructor 

{ 

} 

 

The initialization of the numInList data member is unique here. Another way to do it would be to 
say:  

 

List() // constructor 

{ 

    numInList = 0; 

} 

 

However, the first form is more efficient at run time because of the way C++ internally initializes 
classes. The syntax, when used as shown in this constructor, initializes the data member 
numInList to 0 and should be used whenever initializing data members in a constructor.  

The destructor ~List is called automatically when the instance goes out of scope or is deleted. 
The remaining functions look just like C functions. They are unique only in that they are tightly 
bound to the class variables, and can reference the class variables at any time.  

The variable list is an instance of this class. If list were a plain structure it would be declared in 
about the same way, and it acts the same here. The variable list is as big as the size of its data 
members. The functions do not actually take up any space in each instance of the class. The 
syntax of the language simply allows them to be declared, and used, with instances of the class.  

The instance list is used throughout the program. Each time something needs to be done to list 
you find the instance name list followed by a dot and then a function name. This again follows 



the syntax of a structure. The dot says, "call the member function of the class List on the 
specific instance list".  

This may not all make immediate sense, and that's OK. The important thing to gather from this 
example is that all we have done is take some data--in this case an array and an integer--and 
the functions needed to manipulate the variables, and we have bound them together into a 
class. Now the variables cannot be directly accessed by the rest of the code. Because they are 
private within the class, they can be accessed only by the class's member functions and not by 
any other part of the program. The list object--data and functions glued together into an object--
can only be accessed via the member functions.  

4.4 A Simpler Example 

The last example was fairly large. Let's look at a Stack class to review some of the concepts 
learned in a smaller setting.  

 

#include <iostream.h>  

  

class Stack 

{ 

    int stk[100]; 

    int top; 

public: 

    Stack(): top(0) {} 

    ~Stack() {} 

    void Clear() {top=0;} 

    void Push(int i) {if (top < 100) stk[top++]=i;} 

    int Pop()  

    { 

        if (top > 0) return stk[--top];  

        else return 0; 

    } 

    int Size() {return top;} 

}; 

  

int main() 

{ 

    Stack stack1, stack2; 

  

    stack1.Push(10); 

    stack1.Push(20); 

    stack1.Push(30); 

    cout << stack1.Pop() << endl; 

    stack2=stack1; 

    cout << stack2.Pop() << endl; 

    cout << stack2.Pop() << endl; 

    cout << stack1.Size() << endl; 

    cout << stack2.Size() << endl; 

    return 0; 

} 

 

This program consists of two parts: the Stack class and the main function. The class defines 
the Stack type, and two instances of this type are declared inside of main. Each of the 
instances will have its own copy of the stk and top data members, and a sizeof operation on 
each would indicate that just enough space (202 or 404 bytes, depending on the environment) is 



allocated for each. A class uses just as much space as a structure with the same data members 
would--there is no memory overhead for the member functions.  

The class contains a constructor, a destructor, and four other functions, each of which is public. 
Because the functions are public they can be called by any instance of the class. The 
constructor is called when stack variables are instantiated, and the destructor is called when 
they go out of scope. Inside the main function, different calls to the other four functions are 
made by using the instantiation name followed by a dot followed by a function name. For 
example:  

 

stack1.Push(10); 

 

This line indicates that the value 10 should be pushed onto stack1. The instance stack1 holds 
two pieces of data (stk and top) which contain values. This line says, "Call the function Push on 
the structure help in stack1--apply the statements in Push and the value 10 to the actual array 
and integer held within stack1. There are two completely separate stacks in this program: 
stack1 and stack2. A statement like stack2.Push(5) means that 5 should be pushed onto the 
structure stack2.  

The assignment statement midway down the main function is interesting. It does the same thing 
that an assignment between two structures would--the values of the data members of the right 
side are copied to the data members on the left:  

 

stack2 = stack1; 

 

After the assignment statement the two stacks contain the same values. This normally works 
fine, but if any of the data members are pointers you have to be careful. We will see a good 
example of this problem in Tutorial Seven.  

4.5 A rectangle class  

How do you decide what should be turned into an object and what shouldn't? Essentially what 
you do is take each little group of related data elements that you can find in a program, attach 
some functions to it, and make aclass. In the stack example above, the array stk and the integer 
top are the data elements needed by the stack. Several useful functions relate to that little data 
grouping (Push, Pop, Clear, and Size). Together the data and functions make a class.  

Say you have to remember the coordinates for a rectangle in one of your programs. Your 
variables are labeled x1, y1, x2, and y2--x1 and y1 represent the upper left corner and x2 and 
y2 represent the lower right corner. Together they represent a rectangle. What are some useful 
functions that go with these values? You need to be able to initialize them (a perfect job for the 
constructor), and maybe it would be handy to find the area and perimeter of the rectangle. The 
class might look like this:  

 

class Rect 

{ 

    int x1, y1, x2, y2; 

public: 

    Rect(int left=0,int top=0, 

        int right=0,int bottom=0): 

        x1(left),  y1(top),  x2(right),  y2(bottom) 

    { 



    } 

    ~Rect() {} 

    int Height() { return (y2-y1); } 

    int Width() { return (x2-x1); } 

    int Area() { return Width()*Height(); } 

    int Perimeter() { return 2*Width()+2*Height();} 

};   

 

If you simply look at a program you are building and try to find each natural grouping of data 
along with some functions that are useful for manipulating that data, you will go a long way 
toward objectifying your programs.  

4.6 Class Specifics 

Let's review a few of the specifics learned in this tutorial. First, each class has a constructor and 
a destructor. The constructor is called when an instance of the class comes into existence and 
the destructor is called when the instance is destroyed. The following program can help you to 
learn about constructors and destructors:  

 

#include <iostream.h>  

  

class Sample 

{ 

    int num; 

public: 

    Sample(int i): num(i)  

    { 

        cout << "constructor " << num 

            << " called" << endl; 

    } 

    ~Sample()  

    {  

    cout << "destructor " << num  

        << " called" << endl;} 

}; 

  

int main() 

{ 

    Sample *sp; 

    Sample s(1); 

  

    cout << "line 1" << endl; 

    { 

        Sample temp(2); 

        cout << "line 2" << endl; 

    } 

    cout << "line 3" << endl; 

    sp = new Sample(3); 

    cout << "line 4" << endl; 

    delete sp; 

    cout << "line 5" << endl; 

    return 0; 

}  

 

Try running this code on paper and predict what it will do. Then run the program with a single-
stepping debugger and see what happens.  



Data members and member functions can be public or private, depending on their role in the 
program. It is good to strive toward the goal of no public data members. A public member can 
be used anywhere in the program, while a private member can only be used by a function that is 
a member of the class. Let's modify the Rect class slightly to see what this means:  

 

class Rect 

{ 

    int x1, y1, x2, y2; 

public: 

    Rect(int left=0,int top=0, 

        int right=0,int bottom=0): 

        x1(left),  y1(top),  x2(right),  y2(bottom) 

    { 

    } 

    ~Rect() {} 

private: 

    int Height() { return (y2-y1); } 

    int Width() { return (x2-x1); } 

public: 

    int Area() { return Width()*Height(); } 

    int Perimeter() { return 2*Width()+2*Height();} 

};   

 

Now the Width and Height functions are private. They can be called as shown here because 
Area and Perimeter are member functions. But if you try the following:  

 

    Rect r; 

    ... 

    cout  << r.Height();  

 

You will get a compiler error because Height is private.  

Assignment between two instances of a class simply copies the data members from one 
instance to the other. For example:  

 

    Rect r1,r2; 

    ... 

    r1=r2; 

 

is the same as saying:  

 

    r1.x1 = r2.x1; 

    r1.y1 = r2.y1; 

    r1.x2 = r2.x2; 

    r1.y2 = r2.y2; 

 

Finally, there are two accepted ways to specify member functions. The examples seen 
previously represent one method, called inline functions. The code below shows the second 
method, here applied to the Rect class:  

 

class Rect 

{ 

    int x1, y1, x2, y2; 

public: 



    // the constructor uses default param. See tutor 2 

    Rect(int left=0,int top=0,int right=0,int bottom=0); 

    ~Rect(); 

    int Height(); 

    int Width(); 

    int Area(); 

    int Perimeter(); 

}; 

 

 

Rect::Rect(int left, int top, int right, int bottom): 

    x1(left),  y1(top),  x2(right),  y2(bottom) 

// default values are understood from the prototype 

{ 

} 

 

 

Rect::~Rect() 

{ 

} 

  

int Rect::Height() 

{ 

    return (x2-x1); 

} 

  

int Rect::Width()  

{ 

    return (y2-y1); 

} 

  

int Rect::Area() 

{ 

    return Width()*Height();  

} 

     

int Rect::Perimeter() 

{ 

    return 2*Width()+2*Height(); 

} 

 

This form is generally much easier to read when the functions in the class are long. The Rect:: 
portion specifies the class to which the function belongs. The class definition itself contains what 
are essentially prototypes for the class functions.  

There are many other things that you can do with a class, but to create simple data- abstracting 
collections of functions and data the material presented here is all that you need. Now we can 
start creating hierarchies from these classes. 

 



Understanding C++: An Accelerated Introduction 
by Marshall Brain 
 

Inheritance 
 
Let's say that you have a list class, and now you want to modify it. In the old world of 
programming you would take the source and start changing things. In the object oriented world 
of programming you do things differently. What you do instead is leave the existing class alone 
and then layer your changes on top of it using a process called inheritance. Layering through 
inheritance lies at the very heart of object oriented programming. It is a totally different way of 
doing things, but it has several important advantages:  

1. Let's say that you bought the list class from someone else, so you don't have the source code. By leaving 
the existing class alone and layering your changes on top of it you don't need to have the source.  

2. The existing class is completely debugged and tested. If you modify its source, it has to go through the 
testing process again to be re-certified. Changes you make might also have side-effects that aren't 
detected immediately. By layering the changes on top of the existing class, the existing class never 
changes and therefore remains bug-free. Only the new pieces must be tested.  

3. The layering process forces you to think in a generic-to-specific way. You create a generic class like a list, 
and then layer specificity on top of it. A nice bonus of this way of thinking is that the generic classes are 
useful in many different programs. A list, for example, is useful in a lot of places. Each new program layers 
its own specifics onto the generic list, but the generic list stays the same everywhere.  

4. If the "base class" is improved, all classes built on top of it take advantage of those improvements without 
modification. For example, say that the list class is changed so that it sorts 10 times faster than it used to. 
Now every class built on top of the list class sorts 10 times faster as well, without modifying anything.  

It is these benefits that get people excited about object oriented programming.  

5.1 Inheritance example 

Let's look at a specific example to get a feel for how inheritance works. Say you have purchased 
a simple list manager. It has the ability to insert at a specified location, to get items from the list, 
and to return the size of the list. The code for this list class is shown below, along with a small 
piece of test code:  

 

#include <iostream.h>  

  

class List 

{ 

    int array[100]; 

    int count; 

public: 

    List(): count(0) {} 

    ~List() {} 

    void Insert( int n, int location ) 

    { 

        int i; 

        for (i=count; i >= location; i--) 

            array[i+1] = array[i]; 

        array[location]=n; 

        count++; 

    } 

    int  Get( int location ) {return array[location];} 



    int Size() { return count; } 

}; 

  

void main() 

{ 

    List list; 

    int i, value; 

  

    for (i=0; i < 10; i++) 

        list.Insert(i,i); 

    list.Insert(100,5); 

    list.Insert(200,7); 

    list.Insert(300,0); 

    for (i=0; i < list.Size(); i++) 

        cout << list.Get(i) << endl; 

} 

 

The class contains no error checking to keep it small--obviously you would want to add some if 
this were a commercial product.  

Now let's say that you want to modify this class to add two features. First, you want to have a 
sorted insertion function so that the class maintains a sorted list. Second, you want to keep track 
of the total sum of all items in the list. Rather than cycling through all elements in the list each 
time the sum function is called, you want to keep a running total as each item is inserted.  

Obviously one way to do this is to simply modify the List class shown above. In C++ you use 
inheritance to make the changes instead. We will create a SortedList class by inheriting the 
List class and modifying it. Let's start by adding the sorted insertion feature:  

 

class SortedList: public List 

{ 

public: 

    SortedList():List() {} 

  

    void SortedInsert(int n) 

    { 

        int i,j; 

  

        i=0; 

        do 

        { 

            j = Get(i); 

            if (j < n ) i++; 

        } while (j < n && i < Size()); 

        Insert(n, i); 

    } 

}; 

 

The List class is totally unchanged--we have simply created the SortedList class on top of it. 
The SortedList class inherits its behavior from the List class--it is derived from the List class. 
The List class is the base class for SortedList.  

The List class is inherited on the fist line:  

 

class SortedList: public List 

 



The colon indicates that we are inheriting something. The word public indicates that we want 
the public functions and variables in List to remain public in the SortedList class. We could 
have also used private or protected. In either of these cases any public variables and 
functions in the inherited class would be converted in the derived class. The use of public here 
is standard.  

The diagram below shows what is happening:  

 

The SortedList class simply extends the List class. Anyone using the SortedList class has 
access to the functions available in List as well as the new functions available in SortedList.  

The constructor for SortedList is also new--we have used a colon here to call the constructor 
for the inherited class:  

 

SortedList():List() {} 

 

This line says that the constructor named List from the base class should be called, and that the 
SortedList constructor needs to do nothing of its own.  

In the remainder of the SortedList class we simply add the new SortedInsert function into the 
class. This new function makes use of the old Insert, Get, and Size functions from the List 
class as needed, but it does not access any of the List class data members directly because it 
can't--they are private to the List class, so they cannot be seen in the inheriting class.  

Say that you wanted to have a variable or a function that seems private to outside users of a 
class but seems public to classes that inherit the class. For example, say that the SortedList 
class needed direct access to the array variable in List in order to improve its performance, but 
we still want to keep normal instances of List and SortedList from accessing the array directly. 



The word protected: can be used in the same manner as public: or private: to indicate this 
behavior. By declaring array as a protected member in List, it would be accessible by the 
derived class SortedList but not by normal instances of List or SortedList.  

Now let's add the totaling capability to the SortedList class. To do this we will need to add a 
new variable, and we will also need to modify the Insert function so that each insertion adds to 
the total. The code is shown below:  

 

class SortedList: public List 

{ 

private: 

    int total; 

public: 

    SortedList():List(), total(0) {} 

    void Insert( int n, int location ) 

    { 

        total = total + n; 

        List::Insert(n, location); 

    } 

    int GetTotal() { return total; } 

    void SortedInsert(int n) 

    { 

        int i,j; 

        i=0; 

        do 

        { 

            j = Get(i); 

            if (j < n ) i++; 

        } while (j < n && i < Size()); 

        Insert(n, i); 

    } 

}; 

 

In this version of the SortedList class we have added a new data member named total, a new 
member function GetTotal to retrieve the current total, and a new function Insert which 
overrides the existing Insert function. We have also modified the SortedList constructor so that 
it initializes total. Now whenever the SortedList class is used and the Insert function is called, 
the new version of the Insert function will be accessed instead of the old version in List. The 
same goes for the SortedInsert function as well--when it calls Insert it is calling the new 
version.  

The code for the new Insert function is straightforward:  

 

    void Insert( int n, int location ) 

    { 

        total = total + n; 

        List::Insert(n, location); 

    } 

 

This function first adds the new value to the total. It then calls the old Insert function inherited 
from the base class so that the value is inserted in the list properly. The List:: specifies from 
which class in the hierarchy the Insert function should be chosen. This is only a two-level 
hierarchy so it is a simple decision here, but in a hierarchy that has several layers of inheritance 
you can use this technique to choose a specific function from many. It is this layering, and the 



ability to work and think in a multi-level inheritance hierarchy as shown here, that gives C++ its 
3- dimensional feel.  

5.2 A More Advanced Example 

Let's take what we have learned about inheritance and use it to create a 
realistic example class. What we would like to do is create a new number 
class called a "multi- precision integer", or "mint". This integer type will 
work like a normal integer, but it will have up to 100 digits (for now--later 
we will see how to extend it to have as many digits as memory will hold 
using linked lists). A mint allows you to do things like find the actual value 
for 60!, or find the 300th value in a Fibonacci sequence.  

What is a good way to create the new class in a object-oriented 
programming environment? One way to think about it is to think in a 
generic-to-specific way. For example, what is a multi-precision integer? It is 
simply a list of digits. Therefore, you can start by creating a generic list 
class that has all of the insertion features needed to implement a mint, and 
then layer the mint functionality on top of it.  

How do we decide which features are needed in the list? A good way to do 
this is to think about what you will have to do with the digits in typical mint 
operations, and then use those thoughts to create the list class. Alternatively, you would have a 
list class laying around and you would simply build on top of it. Let's take the first approach 
since we don't have a good list class laying around.  

How do you initialize a mint? The mint will start off containing no digits. We will then add one 
digit at a time to create the new mint. For the value 4,269 the mint would look like this:  

 

Each square in this diagram represents one element in the list, and each element in the list 
contains an integer value between 0 and 9. At the list level we need to be able to add digits to 
the beginning or the end of the list, depending on where the initial value came from.  

Now let's look at a simple addition, as shown in the figure below:  

 

In order to implement addition we will want to start with the last digits of the two mints being 
summed, add them together, and insert the resulting digit in the new mint being formed as the 
sum. Then we will go to the previous two digits and do the same thing, and so on. We will 
therefore need an efficient way to move through the lists from end to beginning (for example, 
GetLast and GetPrevious functions), and we will also need a way to be able to tell when we 

Visualizing Class 
Hierarchies 

Whenever you begin using 
inheritance you have to start 
creating Class hierarchies. 
One of the most frusterating 
things when you are first using 
class hierarchies is the "Where 
am I?" feeling you get. Many 
larger hierarchies have 
hundreds of classes. A good 
way to get around this feeling is 
to use a class hierarchy 
visualization tool like 
CodeVizor. With CodeVizor you 
can drag the source code into 
the CodeVizor tool and in about 
30 seconds have a beautiful, 
clickable (and printable!) class 
hierarchy chart. You can even 
color classes individually or in 
groups so that they stand out!  
Get CodeVizor and see how 
much easier undestanding 
class hierarchies becomes!  

CodeVizor Web Site 



have hit the beginning of the list (perhaps a return value from GetPrevious can indicate that the 
action is not possible, or a Size function can indicate how far to go).  

From this discussion and our previous work with lists we can surmise that the list will probably 
need to have the following capabilities:  

• constructor and destructor  

• AddToFront  

• AddToEnd  

• GetFirst  

• GetLast  

• GetPrevious  

• GetNext  

• Size  

• Clear  

The code below implements the list:  

 

class List 

{ 

    int array[100]; 

    int count; 

    int pointer; 

public: 

    List(): count(0), pointer(0) {} 

    ~List() {} 

    void AddToFront(int n) 

    { 

        int i; 

        for(i=count; i >= 1; i--) 

            array[i]=array[i-1]; 

        array[0]=n; 

        count++; 

    } 

    void AddToEnd(int n) 

    { 

        array[count++]=n; 

    } 

    // &n is a reference - see tutor 2 

    int GetFirst(int & n)   

    { 

        if (count==0) 

            return 1; 

        else 

        { 

            n=array[0]; 

            pointer=0; 

            return 0; 

        } 

    } 

    int GetLast(int & n) 

    { 



        if (count==0) 

            return 1; 

        else 

        { 

            n=array[count-1]; 

            pointer=count-1; 

            return 0; 

        } 

    } 

    int GetPrevious(int & n) 

    { 

        if (pointer-1 < 0) 

            return 1; 

        else 

        { 

            pointer--; 

            n=array[pointer]; 

            return 0; 

        } 

    } 

    int GetNext(int & n) 

    { 

        if (pointer+1 > count-1) 

            return 1; 

        else 

        { 

            pointer++; 

            n=array[pointer]; 

            return 0; 

        } 

    } 

    int Size() { return count; } 

    void Clear() { count = 0; } 

}; 

 

This code should all be fairly straightforward to you at this point. List is simply a generic list of 
integers. A data member named pointer points to one of the elements in the list and is moved 
by the four Get... functions. Each of these functions returns 0 on success and 1 on failure (for 
example, if pointer is not on element 0 of the list then there is a previous element to get and 
GetPrevious function will return a 0). The two Add... functions add at the beginning and end of 
the list respectively--they currently contain no error checking. The AddToFront function 
contains an inherent inefficiency because it must move the entire contents of the array down 
one element for each insertion.  

The Mint class inherits List and uses it to build the actual mint type. It implements two 
constructors (a default constructor that accepts no parameters and a second constructor that 
accepts a string and uses it to fill the list), as well as functions that add two mints and print a 
mint. The code is shown below:  

 

class Mint: public List 

{ 

public: 

    Mint():List() {} 

    Mint(char *s):List() 

    { 

        char *p; 

        for (p=s; *p; p++) 



            AddToEnd(*p-'0'); 

    } 

    void Add(Mint & a, Mint & b) 

    { 

        int carry, temp; 

        int erra, errb, na, nb; 

  

        carry=0; 

        Clear(); 

        erra=a.GetLast(na); 

        errb=b.GetLast(nb); 

        while (!erra || !errb) 

        { 

            if (erra) 

                temp=nb+carry; 

            else if (errb) 

                temp=na+carry; 

            else 

                temp=na+nb+carry; 

            AddToFront(temp%10); 

            carry=temp/10; 

            erra=a.GetPrevious(na); 

            errb=b.GetPrevious(nb); 

        } 

        if (carry > 0) 

            AddToFront(carry); 

    } 

    void Print() 

    { 

        int n, err; 

  

        err=GetFirst(n); 

        while( !err ) 

        { 

            cout << n; 

            err=GetNext(n); 

        }  

        cout << endl; 

    } 

};  

 

The following main function tests the mint class by adding two numbers and printing the sum:  

 

void main() 

{ 

    Mint a("1234567"); 

    Mint b("1234"); 

    Mint c; 

  

    c.Add(a,b); 

    c.Print(); 

} 

 

The constructors and the Print function are simple and straightforward. The Add function may 
remind you of your grade school days, because it is doing addition the old fashioned way. It 
starts with the last digits of the two numbers being summed, adds those digits, saves the result 
in the current mint, and remembers the carry value. It then moves forward through the list. Since 
it is likely that the two mints will not have an equal number of digits, the code must continually 



check to make sure that it has not run out of digits in one or the other mint. It does this using 
erra and errb. As soon as both mints have run out it checks carry and saves one last digit if 
necessary.  

Running the test code you will see that the Mint class works as advertised and can add two 
numbers of up to 100 digits each. After you use the Mint class for awhile though you begin to 
see a problem with the Add function--there is no way to say something like "m = m + 1", or in 
the format necessary here "m.Add(m, one);" where one has been initialized to "1". The reason 
for this lies in the fact that Add must clear out the destination of the result before it can place a 
value into it, and this forces the loss of needed data in the case shown here.  

The solution to this problem lies in the creation of a temporary holding value for the result during 
the actual addition. Then at the end of the function, the final result is copied into the current 
instance. The this pointer is used to solve the problem, as shown below:  

 

    void Add(Mint & a, Mint & b) 

    { 

        int carry, temp; 

        int erra, errb, na, nb; 

        Mint x; 

  

        carry=0; 

        erra=a.GetLast(na); 

        errb=b.GetLast(nb); 

        while (!erra || !errb) 

        { 

            if (erra) 

                temp=nb+carry; 

            else if (errb) 

                temp=na+carry; 

            else 

                temp=na+nb+carry; 

            x.AddToFront(temp%10); 

            carry=temp/10; 

            erra=a.GetPrevious(na); 

            errb=b.GetPrevious(nb); 

        } 

        if (carry > 0) 

            x.AddToFront(carry); 

    *this = x; 

    } 

 

In this version of Add a temporary value named x has been created. The results of the addition 
are placed into x digit by digit. The last line of the function copies x into the current instance. 
The this pointer is available in every instance of a class in C++--it points to the current instance. 
That is, this is a pointer that points to the data members (the structure) that make up the current 
instance. In this case we use this because it saves code. The alternative would be to replace 
the last line with:  

 

array = x.array; 

count = x.count; 

pointer = x.pointer; 

 

The value *this is the structure pointed to by this, and it is more expedient to copy the whole 
structure at once.  



As a final example of the Mint class, let's use it to implement a Fibonacci number finder. The 
Fibonacci sequence is as follows:  

1, 1, 2, 3, 5, 8, 13, 21, 34, etc. 

Each number in the sequence is the sum of the prior two numbers. In order to implement this 
feature we will need a way to check for equality in mints so that we can make a loop. The 
following member function can be added to the Mint class to check for equality between two 
mints:  

 

    int Equal(Mint & a) 

    { 

        if (a.Size()!=Size()) 

            return 0; 

        else 

        { 

            int i, na, nb; 

            a.GetFirst(na); 

            GetFirst(nb); 

            for (i=0; i < a.Size(); i++) 

                if (na!=nb) 

                    return 0; 

                else 

                { 

                    a.GetNext(na); 

                    GetNext(nb); 

                } 

            return 1; 

        } 

    } 

 

Given the existence of this function, then the following code will find the 100th number in the 
Fibonacci sequence:  

 

void main() 

{ 

    Mint max("100"); 

    Mint counter("1"), one("1"); 

    Mint t1("0"), t2("1"); 

    Mint d; 

  

    do 

    { 

        d.Add(t1,t2); 

        t1=t2; 

        t2=d; 

        counter.Add(counter,one); 

    } while (!counter.Equal(max)); 

    d.Print(); 

} 

 

The code uses two values t1 and t2 to remember the previous two values. They are added 
together and then shifted down by one. The counter is then incremented and the loop continues 
until the counter has reached the desired value. Using this code, the 100th number was found to 
be 354,224,848,179,261,915,075.  

5.3 Conclusion 



In this tutorial you have seen how inheritance is used to create class hierarchies, and at how the 
existence of inheritance tends to favor the development of code using a generic-to- specific 
style. The Mint class is a perfect example of this phenomena--a generic list was used to build 
the Mint class because a mint is nothing more than a list of digits.  

Although we have accomplished our goal, the Mint class is not very well integrated into the 
language. We would like to use the "+" operator for addition and the "==" operator to check for 
equality. We will see how to do this in the next section. 

 



Understanding C++: An Accelerated Introduction 
by Marshall Brain 
 

Operator Overloading 
 
In the last tutorial we implemented a version of the Mint class, ending up with code that 
calculates members of the Fibonacci sequence. The code used to perform the calculation 
looked like this:  

 

void main() 

{ 

    Mint max("100"); 

    Mint counter("1"), one("1"); 

    Mint t1("0"), t2("1"); 

    Mint d; 

  

    do 

    { 

        d.Add(t1,t2); 

        t1=t2; 

        t2=d; 

 

        counter.Add(counter,one); 

    } while (!counter.Equal(max)); 

    d.Print(); 

} 

 

What we would like instead is to be able to write code that looks "normal", like this:  

 

void main() 

{ 

    Mint max("100"); 

    Mint counter("1"); 

    Mint t1("0"), t2("1"); 

    Mint d; 

  

    do 

    { 

        d = t1 + t2; 

        t1=t2; 

        t2=d; 

        counter = counter + "1"; 

    } while (! (counter==max)); 

    cout << d << endl; 

} 

 

C++ allows this sort of seamless melding of new types using a process called operator 
overloading. The normal operators like "+", "==", and "<<" are overloaded so that they can 
handle the new types.  

Some operator overloading involves the use of friend functions. A friend function is just like a 
normal C function, but it is permitted to access private members of the class within which it is 
declared. The fact that it is a normal C function means that it does not have access to a this 
pointer, and also that it can be called without having to name a class that it operates on. For 



example, a normal member function such as Insert in the List class requires an instantiation of 
the list to be called:  

 

List lst; 

... 

lst.Insert(5); 

 

A friend function does not necessarily require a class instantiation because it does not have a 
this pointer.  

Almost every operator in C++ can be overloaded:  

    +    -    *    /    %    ^    &     | 

    ~    !    ,    =    <     >     <=    >= 

    ++    --    <<     >>     ==    !=    &&     || 

    +=    -=    /=    %=    ^=    & =    |=    *= 

    <<=    >>=    [ ]    ( )    ->     ->*    new    delete 

Many of these are never seen, much less overloaded, but by overloading all of the common 
operators like "+" and "==" you can make a class much easier to use.  

The code below shows the Mint class redone so that the "+", "==", and "<< " operators are 
overloaded, along with a piece of test code that uses all three:  

 

class Mint: public List 

{ 

public: 

    Mint():List() {} 

    Mint(char *s):List() 

    { 

        char *p; 

        for (p=s; *p; p++) 

            AddToEnd(*p-'0'); 

    } 

  

    friend Mint operator+ (Mint & a, Mint & b) 

    { 

        int carry, temp; 

        int erra, errb, na, nb; 

        Mint x; 

  

        carry=0; 

        erra=a.GetLast(na); 

        errb=b.GetLast(nb); 

        while (!erra || !errb) 

        { 

            if (erra) 

                temp=nb+carry; 

            else if (errb) 

                temp=na+carry; 

            else 

                temp=na+nb+carry; 

            x.AddToFront(temp%10); 

            carry=temp/10; 

            erra=a.GetPrevious(na); 

            errb=b.GetPrevious(nb); 

        } 

        if (carry> 0) 

            x.AddToFront(carry); 



        return x; 

    } 

  

    int operator==(Mint & a) 

    { 

        if (a.Size()!=Size()) 

            return 0; 

        else 

        { 

            int i, na, nb; 

            a.GetFirst(na); 

            GetFirst(nb); 

            for (i=0; i < a.Size(); i++) 

                if (na!=nb) 

                    return 0; 

                else 

                { 

                    a.GetNext(na); 

                    GetNext(nb); 

                } 

 

            return 1; 

        } 

    } 

  

    friend ostream&  operator << (ostream&  s, Mint & m) 

    { 

        int n, err; 

  

        err=m.GetFirst(n); 

        while( !err ) 

        { 

            s << n; 

            err=m.GetNext(n); 

        }  

        return s; 

    } 

}; 

  

void main() 

{ 

    // add two numbers 

    Mint a("1234567"); 

    Mint b("1234"); 

    Mint c; 

  

    c = a + b; 

    cout << "it's fine " << c << "...really" << endl; 

    cout << a + "3333" << endl; 

  

    // find the 100th Fibonacci number 

    Mint counter; 

    Mint t1, t2; 

    Mint d; 

  

    t1 = "0"; 

    t2 = "1"; 

    counter = "1"; 

    do 

    { 

        d = t1 + t2; 



        t1 = t2; 

        t2 = d; 

        counter = counter + "1"; 

    } while (! (counter == "100") ); 

    cout << d << endl; 

} 

 

Let's start by looking at the "==" function:  

int operator== (Mint & a)  

Because this function is a member of the Mint class, this header says that the operator should 
return an integer, use what's on the left side of the == as this, and use what is on the right hand 
side of the == as a. In the code for the == operator function, when we use a function like 
GetFirst directly we are referring to the value on the left side of the ==. A function call of the 
form a.GetFirst refers to the right side of the ==:  

 

Mint b, m; 

... 

if (b == m) 

 

The rest of the code is identical to the Equal function that we saw in Tutorial 5. The returned 
integer value is used as the result of the comparison. With this function in place, our "==" 
operator is called whenever the compiler finds and "==" operator between two values of type 
Mint.  

The oveloaded "+" operator is a friend function:  

 

friend Mint operator+ (Mint & a, Mint & b) 

 

It is declared as a friend because we do not want it to automatically use the left side of a plus 
statement as this because that would clear it (as discussed in Tutorial 5). Since it is a friend it 
acts as a normal C function without a this pointer. It adds the two mints passed and returns the 
resulting mint.  

In the main function there are several statements of the following form:  

 

c = "3333" 

 

and  

 

c = c + "1"; 

 

How does the compiler know what to do? How does it know to convert "1" to a mint? Since we 
have a mint constructor that accepts a char* type, the constructor is automatically invoked in an 
attempt to make the + operator's types match up. If we created another constructor that 
accepted a long parameter, then we would also be able to write code like this:  

 

c = c + 1; 

 



The conversion of the integer value would be automatic as well. The following statement will not 
work:  

 

c = "2222" + "3333"; 

 

The compiler does not have anything to tell it that the "+" should be adding mints, so it cannot 
make the conversion--one side of the "+" must be a mint to cue the compiler.  

The << operator is also overloaded. The function must be a friend because the left parameter is 
not of the class type. It must accept a reference to a ostream parameter and then to a 
parameter of the class type. It must also return a reference to ostream. Having done this 
however the code is simple. With this function in place any C++ output operation using a mint 
will work.  

The >> operator is overloaded in a similar way:  

 

friend istream& operator >> (istream& s, Mint&  m) 

{ 

    buf[100]; 

  

    s >> buf; 

    m = buf; // calls the constructor 

    return s; 

} 

 

Other operators such as ++, +=, !=, etc. are easily overloaded using the examples above. For 
some of the more esoteric operators, see a book such as Lippman's. 

 



Understanding C++: An Accelerated Introduction 
by Marshall Brain 
 

Working with Pointers 
 
When a class contains data members that are pointers there are several concerns that must be 
addressed in order to make the class "work". For example, when an instantiation of the class is 
destroyed, the destructor should make sure that all allocated blocks of memory within the class 
are deleted. Another example involves the assignment operator: the standard "copy all data 
members" behavior for the "=" operator that we have seen until now has worked fine, but it does 
not work with pointers.  

To get a feel for the differences let's implement a stack class both with an array and with 
pointers. Here is the array version, along with a main function containing test code (this is 
identical to the code we saw in Tutorial 4):  

 

#include <iostream.h>  

  

class Stack 

{ 

    int stk[100]; 

    int top; 

public: 

    Stack(): top(0) {} 

    ~Stack() {} 

    void Clear() {top=0;} 

 

 

    void Push(int i) {if (top < 100) stk[top++]=i;} 

    int Pop() 

    { 

        if (top > 0) return stk[--top];  

        else return 0; 

    } 

    int Size() {return top;} 

}; 

  

void main() 

{ 

    Stack stack1, stack2; 

  

    stack1.Push(10); 

    stack1.Push(20); 

    stack1.Push(30); 

    cout << stack1.Pop() << endl; 

    stack2=stack1; 

    cout << stack1.Size() << endl; 

    cout << stack2.Size() << endl; 

    cout << stack2.Pop() << endl; 

    cout << stack2.Pop() << endl; 

} 

 

The code below implements the same stack using pointers, but it has several problems that will 
be discussed in a moment:  

 



typedef struct node 

{ 

    int data; 

    node *next; 

} node; 

  

class Stack 

{ 

    node *top; 

public: 

    Stack(): top(0) {} 

    ~Stack() { Clear(); } 

    void Clear() 

    { 

        node *p=top; 

        while (p) 

        { 

            top = top->next; 

            delete p; 

            p = top; 

        } 

    } 

    void Push(int i) 

    { 

        node *p = new node; 

        p->data = i; 

        p->next = top; 

        top = p; 

    } 

    int Pop() 

    { 

        if (top != 0) 

        { 

            int d = top->data; 

            node *p=top; 

            top = top->next; 

            delete p; 

            return d; 

        } 

        else return 0; 

    } 

    int Size() 

    { 

        int c=0; 

        node *p=top; 

        while (p) 

        { 

            c++; 

            p = p->next; 

        } 

        return c; 

    } 

}; 

 

This is a fairly complete class. It properly cleans up after itself in its destructor and works the 
same way as the previous stack class. However, this class does not work as expected after an 
assignment statement such as:  

 

stack1 = stack2; 



 

The following diagram demonstrates what is happening. When the assignment operation 
executes, it simply copies the data members from stack2 to stack1 leaving one copy of the 
data on the heap with two pointers accessing it:  

 

After the assignment, the pointers stack1.top and stack2.top both point to the same chain of 
memory blocks. If one of the stacks is then cleared, or if one executes a Pop, the other pointer 
will be pointing to memory that is no longer valid. On many machines the code will compile fine 
and everything will look OK for awhile during execution. But as the system runs the rot sets in 
and things gets flakier and flakier for no apparent reason until the program finally crashes.  

What is needed is a way to redo the assignment operation to create a copy of the memory 
blocks. But where is the assignment operator coming from, and how can it be modified?  

7.1 Default Functions 

Whenever you create any class, four default functions are created automatically unless you 
override them by creating your own. They are:  

• The default constructor  

• The default copy constructor  

• The default assignment operator  

• The default destructor  

The default constructor is invoked whenever you declare a instance of a class and pass it no 
parameters. For example, if you create a class Sample and you create no constructors for it, 
then the following statement invokes the default constructor on s:  

 

Sample s; 

 

The following initialized declaration of s2 invokes the copy constructor:  

 

Sample s1; 

   

Sample s2 = s1; 

 

The default destructor is called whenever a variable goes out of scope, and the default 
assignment operator is called whenever a normal assignment occurs. You can override any of 



the defaults by creating functions of your own. For example, if you create any constructor then 
the default constructor is not created.  

The code below can be used to gain an understanding of what the default constructor and 
destructor do:  

 

#include <iostream.h>  

  

class Class0 

{ 

    int data0; 

public: 

    Class0 () { cout << "class0 constructor" << endl; } 

    ~Class0 () { cout << "class0 destructor" << endl; } 

}; 

  

class Class1 

{ 

    int data1; 

public: 

    Class1 () { cout << "class1 constructor" << endl; } 

    ~Class1 () { cout << "class1 destructor" << endl; } 

}; 

  

class Class2: public Class1 

{ 

    int data2; 

  Class0 c0; 

}; 

  

void main() 

{ 

    Class2 c; 

} 

 

The class Class2 has neither constructor nor destructor, but when you run this code the 
following output is produced:  

 

class1 constructor 

class0 constructor 

class0 destructor 

class1 destructor 

 

What has happened is that the compiler created a default constructor and destructor for Class2. 
The behavior of the default constructor is to call the base class default constructor as well as the 
default constructor for all data members that are classes. The default constructor calls the 
destructors for the base class and class data members.  

Let's say that you create a new constructor for Class2 that accepts an integer. The compiler will 
still call the necessary default constructors for the base class and class data members. The 
following code demonstrates the process:  

 

class Class2: public Class1 

{ 

    int data2; 

    Class0 c0; 



public: 

    Class2(int i)  

    {  

        cout << "class2 constructor" << endl;  

    } 

}; 

  

void main() 

{ 

    Class2 c(1); 

} 

 

 

This also works, producing the following output: 

  

class1 constructor 

class0 constructor 

class2 constructor 

class0 destructor 

class1 destructor 

 

But now you cannot declare an uninitialized variable of type Class2 because there is no default 
constructor. The following code demonstrates:  

 

Class2 c(1);    // OK 

Class2 e;    // not OK--no default constructor 

 

It is also impossible to declare arrays of a class unless there is no default constructor defined. 
Therefore, you should recreate the default constructor yourself by creating a constructor with an 
empty parameter list whenever you create other constructors.  

The assignment operator and copy constructor are created automatically as well. Both simply 
copy the data members from the right side of the equal sign to the left. In the case of our stack 
class we want to eliminate these default functions and use our own so that assignment works 
correctly. Below are the two new functions for the stack class, along with a function Copy that is 
shared by both:  

 

    void Copy(const Stack&  s) 

    { 

        node *q=0; 

        node *p=s.top; 

  

        while (p) 

        { 

            if (top==0) 

            { 

                top = new node; 

                q=top; 

            } 

            else 

            { 

                q->next = new node; 

                q = q->next; 

            } 

  

            q->data = p->data; 

            p = p->next; 



            q->next=0; 

        } 

    } 

    Stack&  operator= (const Stack&  s) //assignment 

    { 

        if (this == & s) 

            return *this; 

        Clear(); 

        Copy(s); 

        return *this; 

    } 

    Stack(const Stack&  s): top(0) // copy constructor 

    { 

        Copy(s); 

    } 

 

The function for the assignment operator starts by checking for the case of equivalent 
assignment, as in:  

 

s = s; 

 

If it finds this situation it does nothing. It then clears the recipient and copies the linked list on the 
heap so that the left side of the assignment has its own copy of the stack. The copy constructor 
is just like any other constructor, and it is used to handle the following cases:  

 

Stack s1; 

s1.Push(10); 

s1.Push(20); 

Stack s2(s1);        // copy constructor invoked 

Stack s3 = s1;    // copy constructor invoked 

 

With the assignment operator and copy constructor in place, the Stack class is complete--it can 
handle any condition that may arise.  

7.2 Conclusion 

This may all seem like a lot of work to go through, but generally it is only necessary when 
working with pointers. What is happening is that you are having to actually secure your pointer-
based structures against any contingency so that the data is always valid. In many C programs 
the programmer will make an assumption such as, "I can point several pointers at the same 
blocks on the heap, and it will be OK because in this part of the code nothing modifies the 
blocks." However, if another programmer comes along and violates that assumption 
accidentally, the program can break in mysterious and hard-to-track ways. That can never 
happen with a secure C++ class, because all of the contingencies are covered.  

You can see that the implementation shown above is inefficient however. What if, in certain 
places, you want to have only one copy of the blocks on the heap. For example, what if the data 
on the heap occupies many megabytes, and you can't afford to make a copy? What you can do 
in that case is use a technique such as a reference count--each instance increments a static 
global variable that keeps count of the number of instances using the single copy of the data on 
the heap. Then in each destructor you can decrement the counter. Only when a destructor, after 
decrementing the counter, detects that no other instance is using the data in the heap does it 
actually delete all of the heap blocks containing the data. 



 



Understanding C++: An Accelerated Introduction 
by Marshall Brain 
 

Virtual Functions 
 
In these tutorials we have seen many examples of inheritance, because inheritance is very 
important to object oriented programming. We have seen that inheritance allows data members 
and member functions to be added in the derived class. We have also seen several examples 
where we used inheritance to change the behavior of a function. For example, in Tutorial 3 we 
saw an example where the Insert function of a base List class was overridden to implement a 
totaling feature. A similar hierarchy is shown below, using a base class called List and a derived 
class called TotalingList:  

 

#include <iostream.h>  

  

class List 

{ 

    int array[100]; 

    int count; 

public: 

    List(): count(0) {} 

    void Insert(int n) { array[count++]=n; } 

    int Get(int i) { return array[i]; } 

    int Size() { return count; } 

}; 

  

void ManipList(List list) 

{ 

    // do things to the list 

    list.Insert(100); 

    list.Insert(200); 

    // do things to the list 

} 

  

class TotalingList: public List 

{ 

    int total; 

public: 

    TotalingList(): List(), total(0) {} 

    void Insert(int n) 

    { 

        total += n; 

        List::Insert(n); 

    } 

    int GetTotal() { return total; } 

}; 

  

void main() 

{ 

    TotalingList list; 

    int x; 

  

    list.Insert(10); 

    list.Insert(5); 

    cout << list.GetTotal() << endl; 

    ManipList(list); 



    cout << list.GetTotal() << endl; 

    for (x=0; x < list.Size(); x++) 

        cout << list.Get(x) << ' '; 

    cout << endl; 

} 

 

In this code, the class List implements the simplest possible list with the three member 
functions Insert, Get, and Size as well as the constructor. The function ManipList is an 
example of some arbitrary function that uses of the List class, and it calls the insert function 
twice simpy as an example.  

The TotalingList class inherits the List class and adds in a data member named total. This 
member holds the current total of all the numbers held in the list. The Insert function is 
overridden so that total is updated at each insertion.  

The main function declares an instance of the TotalingList class. It inserts 10 and 5, and prints 
out the total. It then calls ManipList. It might surprise you that this actually compiles--if you look 
at the prototype for ManipList you can see that it expects a parameter of type List, not 
TotalingList. But C++ understands certain things about inherited classes, one of them being 
that a parameter of a base class type should accept any class derived from that base class as 
well. Therefore, since TotalingList is derived from the List class, ManipList will accept it. This 
is one of the features of C++ that makes inheritance so powerful--you can create derived 
classes and pass them to existing functions that know only about the base class.  

When the code shown above runs however, it does not produce the correct result. It produces 
the output:  

15 

15 

10 5  

This output indicates that not only did the totaling not work, but the 100 and 200 were never 
inserted in the list during the call to ManipList. Part of this problem is occurring because of an 
outright error in the code--the parameter accepted by ManipList must be a pointer or a 
reference or no values are returned. Modifying the prototype for ManipList to the following 
partially fixes the problem:  

 

void ManipList(List&  list) 

 

Now the output looks like this:  

15 

15 

10 5 100 200 

It is educational to single-step through the ManipList and watch what happens. When the calls 
to the Insert functions occur, they route themselves to List::Insert rather than 
TotalingList::Insert.  

This problem can also be solved however. It is possible in C++ to create a function with the 
prefix virtual, and this causes C++ to call the version of the function in the derived class. That 
is, when a function is declared as virtual, the compiler can call versions of the function that did 
not even exist when the code calling the function was written. To see this, add the word virtual 
in front of the Insert functions in both the List and TotalingList classes, as shown below:  

 



class List 

{ 

    int array[100]; 

    int count; 

public: 

    List(): count(0) {} 

    virtual void Insert(int n) { array[count++]=n; } 

    int Get(int i) { return array[i]; } 

    int Size() { return count; } 

}; 

  

void ManipList(List&  list) 

 

 

{ 

    // do things to the list 

    list.Insert(100); 

    list.Insert(200); 

    // do things to the list 

} 

  

class TotalingList: public List 

{ 

    int total; 

public: 

    TotalingList(): List(), total(0) {} 

    virtual void Insert(int n) 

    { 

        total += n; 

        List::Insert(n); 

    } 

    int GetTotal() { return total; } 

}; 

 

Actually it is only necessary to place it in front of the function name in the base class, but its a 
good habit to perpetuate it in all derived classes as well to give some indication of what is 
happening.  

Now when you execute the program, you will get the correct output:  

15 

315 

10 5 100 200 

What is happening? The word virtual in front of a function tells C++ that you plan to create new 
versions of this function in derived classes. That is, it lets you state future intentions for a class. 
When the virtual function is called, C++ looks at the class that called the function and picks the 
version of the function for that class, even if the derived class did not exist at the time that the 
function call was written.  

What all of this means is that in many cases you have to think into the future when you are 
writing code. You have to think, "will I or anyone else ever need or want to change the behavior 
of this function?" If the answer is yes then the function should be declared as a virtual function.  

You have to pay attention to several things in order for virtual functions to work correctly. For 
example, you have to actually predict the need for the function and remember to make it virtual 
in the base class. Another point can be seen in the program above--try removing the & from the 
parameter in the ManipList function and then single-step through the code. Even though the 



Insert function is tagged as virtual, the List::Insert function is called instead of the 
TotalingList::Insert function. The behavior changes because the parameter type List is acting 
like a type cast when the & is not there. Any class passed in is cast back to the base List class. 
With the & in place, this casting does not happen.  

You see virtual functions everywhere in C++ class hierarchies. A typical hierarchy expects you 
to be changing behavior in the future to customize the library to your application. Virtual 
functions are also frequently used when the creator of the class cannot know what you will do 
with the class. For example, say that you are using a user interface class that implements 
buttons on the screen. When you create an instance of the button it paints itself onto the screen 
and behaves as a button should by highlighting itself when the button is clicked by the user. 
However, the person who wrote the class has no idea what people using the class plan to have 
the button do when it is clicked. In such cases, the author will create a virtual function named 
something like handleEvent that is called whenever the button is clicked. Then you override 
that virtual function with a function of your own that handles the button event properly.  

Conclusion 

We have covered quite a bit of ground in these tutorials, but you are probably left with the 
impression that we have only scratched the surface. And that is true to a certain degree- -C++ is 
a very deep language, with many subtleties and quirks that are only mastered with experience. 
C is like that, only on a much smaller scale.  

The only way to fully understand this language is to write, and read, a lot of C++ code. You can 
learn a great deal by using and studying class libraries that other people have developed.  

The many advantages of this language become apparent once it is fully understood. So start 
coding....  

 


