
Author : Tony H

Date : 24th M

Version : v1-3

Linux OS : Ubuntu

Kernel : v3.2.0

Iptables : v1.4.12

I
A

 Hill

March 2013

ntu 12.04.2 LTS (precise)

.0-39

.12

IP TABLES
A Beginner’s Tutorial

S

Tutorial – IPTABLES [Version 1-3]

24th March 2013 Tony Hill 1

INDEX

1 INTRODUCTION .. 2

2 FIREWALL OVERVIEW .. 2

3 IPTABLES OVERVIEW ... 3

4 IPTABLES STRUCTURE AND TERMINOLOGY ... 3

5 BASIC CONFIGURATION .. 6

5.1 EXAMINING THE TABLES .. 6

5.2 DEFAULT POLICY .. 6

5.3 INTERFACE RULES .. 9

5.4 PROTOCOLS & SERVICES – DHCP ... 10

5.5 PROTOCOLS & SERVICES – TCP & UDP ... 11

5.6 BASIC CONFIGURATION SUMMARY .. 13

5.7 BASIC CONFIGURATION ADDITIONAL INFORMATION ... 13

5.7.1 Skype ... 13

5.7.2 TCP .. 14

5.7.3 FTP .. 16

6 ADVANCED CONFIGURATION .. 17

6.1 PROTOCOLS & SERVICES – CONNECTION TRACKING ... 18

6.1.1 Examining the Connections Database ... 18

6.1.2 Conntrack Modules ... 19

6.1.3 Conntrack Tuning .. 20

6.1.4 Conntrack Rule Specifications ... 22

6.2 PROTOCOLS & SERVICES – SSH .. 22

6.3 PROTOCOLS & SERVICES – FTP .. 23

6.4 PROTOCOLS & SERVICES – TFTP .. 24

6.5 PROTOCOLS & SERVICES – DHCP SERVER .. 25

6.6 PROTOCOLS & SERVICES – DNS SERVER .. 25

6.7 PROTOCOLS & SERVICES – CIFS/SMB .. 26

6.7.1 NETBIOS Name Resolution .. 28

6.7.2 NETBIOS Browser Service .. 29

6.7.3 NETBIOS Session Service ... 29

6.7.4 NETBIOS Filters.. 30

6.8 PROTOCOLS & SERVICES – ICMP ... 31

6.9 LOGGING ... 33

6.10 OTHER TABLES – THE MANGLE TABLE ... 36

7 DEPLOYING & AUTO-STARTING THE FIREWALL .. 37

7.1 STEP ONE .. 37

7.2 STEP TWO .. 40

7.3 STEP THREE .. 40

7.4 STEP FOUR ... 41

Tutorial – IPTABLES [Version 1-3]

24th March 2013 Tony Hill 2

1 Introduction

This paper shows how to use iptables to set up a secure firewall on your Linux home
computer(s). It contains plenty of configuration examples and command output. If
you follow the examples you will be able to build and deploy a robust and flexible
firewall of your own.

Having configured the firewall there are instructions on how to create a script to start
it automatically at boot-time using the “/etc/init.d update-rc” mechanism.

2 Firewall Overview

Essentially, there are two types of firewall - external and internal. Corporate firewalls
are usually dedicated external devices with complex rule-sets, whereas internal
(personal) firewalls run on your computer and are generally much simpler to
configure.

The basic job of both types of firewall is the same – an external firewall prevents
unwanted “outside” traffic from entering your network whereas an internal firewall
prevents unwanted “inside” traffic from entering your computer; together with any
“outside” traffic that the external firewall may have allowed through either deliberately
or by misconfiguration.

An underlying principle of all firewalls is as follows:

The outbound traffic that you generate is good because you sent it so you know what
it is. Inbound responses to that traffic must, for the most part, also be good.
Unsolicited inbound traffic may be bad and should be stopped!

Clearly there are some exceptions to this principle but I am assuming that it holds
true for the purpose of this tutorial.

Most corporate firewalls spend their day trying to detect and prevent Denial of
Service attacks. They not only enforce connection rules but also look out for
anomalous protocol behaviour and use deep packet inspection to find virus
signatures and other naughty code. Iptables is very good at the connection rules
thing, but is not a virus scanner or deep packet inspection tool.

Note: Fire-walling and virus protection are two distinct functions. A personal firewall
per se does not protect against viruses, although most commercially available
personal firewall packages are accompanied by a virus scanner of some description.

Firewalls correlate related outbound and inbound traffic into “flows”. Related traffic is
any bi-directional traffic stream that has corresponding source and destination IP
addresses, protocol types, source and destination port numbers and, in the case of
TCP, sequence numbers and acknowledgements. The firewall maintains a
connection table to track the state of each flow and check for correct protocol
behaviour. Firewalls that maintain connection tables are referred to as “stateful”
firewalls. Iptables is a stateful firewall.

Tutorial – IPTABLES [Version 1-3]

24th March 2013 Tony Hill 3

3 Iptables Overview

Iptables is a suite of powerful directives that hook into the Linux kernel at various
stages of the packet processing lifecycle. Figure-1 below shows where iptables sits
in relation to the kernel and at which points the hooks into the kernel are provisioned.

Figure-1: How Iptables Hooks into the Kernel

Iptables is used to create and manage rules that provide, amongst other things,
packet manipulation, connection tracking, NAT, ToS / DSCP matching and re-writing,
and connection rate-limiting.

Netfilter is the Linux kernel’s native packet filtering subsystem which is not available
to the user other than through system primitives. Iptables provides a user interface to
configure the netfilter subsystem. Most third party Linux firewalls that you download,
and install, such as UFW and Firewall Builder, are simply front-ends to iptables.
Understanding how to configure iptables natively allows you to implement more
granular and comprehensive packet filtering and manipulation policies than any of
the third party applications.

4 Iptables Structure and Terminology

Iptables allows an administrator to populate tables with chains of rules that
manipulate packets at different stages of the kernel's packet processing life-cycle.

Each table has a distinct function. For example, the filter table (the default table)
provides commands to filter and accept or drop packets, the NAT table provides
commands to translate (modify) source or destination IP addresses, and the mangle
table provides commands to modify packet headers.

Each table contains entities called “chains” under which specific packet rules

INPUT PRE-

ROUTING
FORWARD

POST

ROUTING
OUTPUT

Local

Processing

filter

table
nat

table

mangle

table
raw

table

security

table

Routing

Tutorial – IPTABLES [Version 1-3]

24th March 2013 Tony Hill 4

(policies) are configured. For example, the filter table contains built-in chains called
INPUT, FORWARD and OUTPUT. A packet drop rule configured underneath the
INPUT chain directs the kernel to DROP packets that are received on a particular
interface.

Table-1 below lists the “iptables tables”, their function and the built-in chains they
contain. This tutorial focuses predominantly on the filter table but the principles apply
equally well to all of the tables in the iptables subsystem.

Table Function Chain

filter (default) Packet filtering / firewall

INPUT

FORWARD

OUTPUT

NAT Network Address Translation

PREROUTING

INPUT

OUTPUT

POSTROUTING

mangle Packet modification

PREROUTING

INPUT

FORWARD

OUTPUT

POSTROUTING

security Mandatory Access Control

INPUT

FORWARD

OUTPUT

raw
Bypass “conntrack” for corner
cases

PREROUTING

OUTPUT

Table-1: Iptables Tables & Chains

Figure-2 below shows another representation of the stages at which the various rule
chains hook into the kernel packet processing subsystem together with the tables
with which the chains are associated. This diagram depicts two types of packet flow:

− Packets entering interfaces one and two that terminate in an application within
the computer (local packets). The application returns these packets to the
interface over which they arrived if the application issues a response to the
sender.

− Packets entering interface one are forwarded direct to interface two, and vice-
versa. These packets are not handed over for local processing. The computer
is set up to forward packets, which are simply routed through the computer.

Tutorial – IPTABLES [Version 1-3]

24th March 2013 Tony Hill 5

Figure-2: Schematic of Tables & Chains

Iptables makes more sense logically if we visualise the sequence of events from a
chains rather than tables perspective. For example, if you configure rules under the
INPUT chain within any of the filter, security, mangle, or nat tables you apply the
actions that those tables support to the packet at the kernel’s input processing stage.

Referring to Figure-1 above, if the INPUT chain of the filter table contains a rule to
“accept” a red packet arriving on INT-2, a rule under the INPUT chain of the nat table
could be configured to change the packet’s destination address and a rule under the
INPUT chain of the mangle table could be configured to change the packet’s Type of
Service value.

INT-1 OUTPUT

POSTROUTING

INT-2

Packet IN Routed Packet OUT

Packet IN
Routed Packet OUT

Local Packet

Local Packet

security

nat (SRC)

mangle

filter

mangle

nat (SRC)

FORWARD

mangle

security

filter

PREROUTING

mangle

raw

filter

INPUT

mangle

nat (DST)

filter

security

INPUT

mangle

nat (DST)

filter

security

PREROUTING

mangle

raw

filter

FORWARD

mangle

security

filter

POSTROUTING

mangle

nat (SRC)

OUTPUT

security

nat (SRC)

mangle

filter

LOCAL
PROCESSING

LOCAL
PROCESSING

Routed Packet Routed Packet

Local Packet

Local Packet

ROUTING

Local Packet OUT

Local Packet OUT

Tutorial – IPTABLES [Version 1-3]

24th March 2013 Tony Hill 6

No rules exist in any of the chains by default and every chain’s default policy is
ACCEPT. Therefore, by default, iptables allows all packets to pass through the
kernel unchanged.

5 Basic Configuration

All of the configuration examples in this section use the filter table. If you do not need
your computer to perform NAT or to forward (route) packets, the filter table is all that
you need to build and implement a robust and secure firewall.

In the advanced configuration section I show an example of how the mangle table is
used to modify the DSCP values of packets before the kernel queues them for
transmission on an interface.

5.1 Examining the Tables

To examine the default filter table issue the following command, where -v is verbose,
-n is numeric display of addresses and ports, and -L is list:

root@tony-laptop:~/Firewall# iptables -vnL

Chain INPUT (policy ACCEPT 147 packets, 25720 bytes)

 pkts bytes target prot opt in out source destination

Chain FORWARD (policy ACCEPT 0 packets, 0 bytes)

 pkts bytes target prot opt in out source destination

Chain OUTPUT (policy ACCEPT 122 packets, 9361 bytes)

 pkts bytes target prot opt in out source destination

The chains within the table are displayed along with their default policy, which is
ACCEPT. We have not yet configured any packet rules underneath the chains.

To examine the chains in any of the other tables use the -t <name> command, for
example:

root@tony-laptop:~/Firewall# iptables -t mangle -vnL

The filter table is the default table so it is not necessary to specify -t when examining
it.

5.2 Default Policy

Iptables assigns ACCEPT as the default policy to every chain in every table.

Even though iptables isn't yet doing anything special to the packets it is still
processing them because the packet and byte counters of each chain are
incrementing:

root@tony-laptop:~/Firewall# iptables -vnL

Chain INPUT (policy ACCEPT 177 packets, 33983 bytes)

 pkts bytes target prot opt in out source destination

Chain FORWARD (policy ACCEPT 0 packets, 0 bytes)

 pkts bytes target prot opt in out source destination

Tutorial – IPTABLES [Version 1-3]

24th March 2013 Tony Hill 7

Chain OUTPUT (policy ACCEPT 158 packets, 11814 bytes)

 pkts bytes target prot opt in out source destination

Each rule that we configure has its own packet and byte counters, which allows us to
check that the rules are processing packets correctly.

To zero the counters on a chain in the default filter table specify the -Z option
together with the name of the chain:

iptables -Z INPUT

To zero the counters on a chain in any other table specify the table name using the –
t option:

iptables -t mangle -Z OUTPUT

The computer is totally “open” if the default policy is ACCEPT on every chain in
every table. The first thing to do to start securing the computer is to change the
default policy to DROP on the INPUT chain of the filter table.

Issue a ping to the loopback IP address 127.0.0.1

root@tony-laptop:~/Firewall# ping 127.0.0.1

PING 127.0.0.1 (127.0.0.1) 56(84) bytes of data.

64 bytes from 127.0.0.1: icmp_req=1 ttl=64 time=0.052 ms

64 bytes from 127.0.0.1: icmp_req=2 ttl=64 time=0.039 ms

64 bytes from 127.0.0.1: icmp_req=3 ttl=64 time=0.038 ms

64 bytes from 127.0.0.1: icmp_req=4 ttl=64 time=0.038 ms

The ping works as expected. Now change the INPUT chain's default policy to DROP
using the -P option, and redisplay the chains:

iptables -P INPUT DROP

root@tony-laptop:~/Firewall# iptables -nvL

Chain INPUT (policy DROP 0 packets, 0 bytes)

 pkts bytes target prot opt in out source destination

Chain FORWARD (policy ACCEPT 0 packets, 0 bytes)

 pkts bytes target prot opt in out source destination

Chain OUTPUT (policy ACCEPT 29 packets, 1888 bytes)

 pkts bytes target prot opt in out source destination

Issue a ping to the loopback interface and examine the filter table again:

root@tony-laptop:~/Firewall# ping 127.0.0.1

PING 127.0.0.1 (127.0.0.1) 56(84) bytes of data.

^C

--- 127.0.0.1 ping statistics ---

4 packets transmitted, 0 received, 100% packet loss, time 3022ms

root@tony-laptop:~/Firewall# iptables -nvL

Chain INPUT (policy DROP 4 packets, 336 bytes)

Tutorial – IPTABLES [Version 1-3]

24th March 2013 Tony Hill 8

 pkts bytes target prot opt in out source destination

Chain FORWARD (policy ACCEPT 0 packets, 0 bytes)

 pkts bytes target prot opt in out source destination

Chain OUTPUT (policy ACCEPT 4 packets, 336 bytes)

 pkts bytes target prot opt in out source destination

The ping fails and the INPUT chain has counted the dropped packets. We sent 4 x
84-byte ICMP packets and the policy counters correctly show 4 x dropped packets
and 336 bytes.

This proves that the policy we applied is working. The filter table is acting as a
firewall and telling the kernel to drop incoming packets that are destined for the
loopback interface.

The next step is to change the default policy to DROP on the FORWARD chain, but
not on the OUTPUT chain.

iptables -P FORWARD DROP

We don't change the default policy to DROP on the OUTPUT chain because it is safe
to assume that any traffic we send out is secure. We are only concerned with the
traffic that we receive and whether any new, unsolicited incoming connections are
being attempted. We can always modify the OUTPUT policy and rules later on if we
wish to prevent certain types of outbound traffic to specific destinations.

Incidentally, if we do set the OUTPUT chain's policy to drop, we get the following
error messages when trying to ping the loopback interface:

root@tony-laptop:~/Firewall# ping 127.0.0.1

PING 127.0.0.1 (127.0.0.1) 56(84) bytes of data.

ping: sendmsg: Operation not permitted

ping: sendmsg: Operation not permitted

ping: sendmsg: Operation not permitted

ping: sendmsg: Operation not permitted

^C

--- 127.0.0.1 ping statistics ---

4 packets transmitted, 0 received, 100% packet loss, time 3022ms

Changing the OUTPUT chain's default policy to DROP instructs the kernel to
disallow any outbound packets from every interface on the router, including the
loopback interface. An internal ping uses the loopback interface as its source.

I have changed the OUTPUT chain's default policy back to ACCEPT so we can
resume sending outbound packets. The filter table is displayed below and the packet
counters confirm that the kernel is accepting packets for output once more.

root@tony-laptop:~/Firewall# iptables -nvL

Chain INPUT (policy DROP 73 packets, 5394 bytes)

 pkts bytes target prot opt in out source destination

Chain FORWARD (policy DROP 0 packets, 0 bytes)

 pkts bytes target prot opt in out source destination

Chain OUTPUT (policy ACCEPT 53 packets, 4155 bytes)

Tutorial – IPTABLES [Version 1-3]

24th March 2013 Tony Hill 9

 pkts bytes target prot opt in out source destination

Notice that the FORWARD chain is not counting any packets. This is because the
FORWARD chain is effectively not being used. Why?

On Ubuntu, IP forwarding (a.k.a routing) between interfaces is disabled by default. If
you enable IP forwarding the FORWARD chain rules are used only to filter and
manipulate packets that the routing subsystem processes.

Please note: On Ubuntu, the command to enable IP forwarding manually is echo "1" >
/proc/sys/net/ipv4/ip_forward. Use echo “0” > /proc/sys/net/ipv4/ip_forward to
disable IP forwarding. To enable IP forwarding across reboots uncomment the line
net.ipv4.ip_forward=1 in file /etc/sysctl.conf. Be cautious. Enabling IP forwarding on
your computer can break your network if you are not sure what you are doing.

5.3 Interface Rules

The default policy in the filter table's INPUT chain is currently set to DROP, which is
preventing any packets from coming into any interfaces on the computer. We need to
append a rule to the INPUT chain to allow packets into the loopback interface
because the operating system and some applications need to be able to reach this
interface to function properly.

iptables -A INPUT -i lo -j ACCEPT

The -A in the command means “append” the rule to the chain, the -J means “jump”
to a target, and the target is ACCEPT. In iptables terminology, a “target” is the action
to perform on that packet. In the filter table the target actions are ACCEPT, DROP,
REJECT etc. Different tables support different target actions e.g. the nat table
supports actions such as SNAT and DNAT to change a packet’s source and/or
destination IP addresses.

If you create a user-defined chain you can specify the chain name as a target action
in another rule, which allows you to create branching rule-sets. This is explained
later on in the section on logging.

Please note: In addition to -A the iptables command supports a variety of other
arguments, such as –I to insert rules, -D to delete rules etc. The iptables -h
command summarises the list of available arguments.

Having added the above rule, examine the filter table. Note the use of a new option
in the list command to display rule line numbers:

root@tony-laptop:~/Firewall# iptables -nvL --line-numbers

Chain INPUT (policy DROP 55 packets, 6646 bytes)

num pkts bytes target prot opt in out source destination

1 33 2268 ACCEPT all -- lo * 0.0.0.0/0 0.0.0/0

Chain FORWARD (policy DROP 0 packets, 0 bytes)
num pkts bytes target prot opt in out source destination

Chain OUTPUT (policy ACCEPT 97 packets, 6600 bytes)

num pkts bytes target prot opt in out source destination

Tutorial – IPTABLES [Version 1-3]

24th March 2013 Tony Hill 10

Rule 1 underneath the INPUT chain directs the kernel to accept into the loopback
interface packets from any protocol, from any source (0.0.0.0) to any destination
(0.0.0.0) IP address.

Rule 1's packet counter is counting accepted packets but the INPUT chain's
summary counter is still counting dropped packets. This is correct because we only
applied the ACCEPT action to the loopback interface and the INPUT chain is using
its default policy to drop packets arriving on other interfaces.

Ping the loopback interface to check that Rule 1 is working correctly:

root@tony-laptop:~/Firewall# ping 127.0.0.1

PING 127.0.0.1 (127.0.0.1) 56(84) bytes of data.

64 bytes from 127.0.0.1: icmp_req=1 ttl=64 time=0.051 ms

64 bytes from 127.0.0.1: icmp_req=2 ttl=64 time=0.052 ms

64 bytes from 127.0.0.1: icmp_req=3 ttl=64 time=0.053 ms

64 bytes from 127.0.0.1: icmp_req=4 ttl=64 time=0.051 ms

^C

--- 127.0.0.1 ping statistics ---

4 packets transmitted, 4 received, 0% packet loss, time 2999ms

rtt min/avg/max/mdev = 0.051/0.051/0.053/0.008 ms

The configuration can now be extended to encompass the “eth0” and “wlan0”
interfaces as well as the protocols that run over them.

5.4 Protocols & Services – DHCP

If your computer uses DHCP to obtain IP addresses automatically it is necessary to
add an INPUT chain rule to allow its interfaces to receive bootp packets.

DHCP uses the bootp protocol that runs over UDP. The DHCP client uses protocol
destination port 68 to receive “bootpc” packets and the DHCP server uses protocol
source port 67 to send “bootps” packets (please refer to the IANA protocol port
number list).

Create a rule using these port numbers and append it to the INPUT chain, as shown
below. Please note that no interfaces are specified in the rule so it will permit “bootp”
packets to be received on both the “eth0” and “wlan0” interfaces. But we could have
created two separate rules, one for each interface.

iptables -A INPUT -p udp --sport 67 --dport 68 -j ACCEPT

The INPUT chain's rules are shown below. Notice use of the –L INPUT option in the
command to display only the rules in the INPUT chain.

root@tony-laptop:~/Firewall# iptables -nvL INPUT --line-numbers

Chain INPUT (policy DROP 424 packets, 82256 bytes)

num pkts bytes target prot opt in out source destination

1 1108 94156 ACCEPT all -- lo * 0.0.0.0/0 0.0.0.0/0

2 0 0 ACCEPT udp -- * * 0.0.0.0/0 0.0.0.0/0 udp spt:67 dpt:68

Rule 2's counters are zero because the computer already has an IP address so no

Tutorial – IPTABLES [Version 1-3]

24th March 2013 Tony Hill 11

“bootp” packets have been exchanged yet with the DHCP server. However, forcing
an IP address renewal on “eth0” will cause the counters to increment and, hopefully,
the interface should receive an IP address.

root@tony-laptop:~/Firewall# dhclient -r

root@tony-laptop:~/Firewall# dhclient eth0

root@tony-laptop:~/Firewall# iptables -nvL INPUT --line-numbers

Chain INPUT (policy DROP 424 packets, 82256 bytes)

num pkts bytes target prot opt in out source destination

1 1108 94156 ACCEPT all -- lo * 0.0.0.0/0 0.0.0.0/0
2 2 636 ACCEPT udp -- * * 0.0.0.0/0 0.0.0.0/0 udp spt:67 dpt:68

Perfect! The computer receives and counts 2 x “bootp” packets. It sent out a DHCP
Discover and the DHCP server returned a DHCP Offer containing our IP, default gateway
and DNS addresses. The computer then sent out a DHCP Request to confirm that we will
use the offered addresses, and the DHCP server returned a DHCP ACK. We now have all
of the IP address information that we need to communicate with the outside world.

Recall that it is not necessary to configure any specific OUTPUT rules because the default
output policy is ACCEPT.

5.5 Protocols & Services – TCP & UDP

In order to browse the Internet it is necessary to configure filters that permit inbound
responses to the outbound HTTP/HTTPS TCP requests that we transmit. We also
need to permit UDP responses for VoIP applications, such as Skype.

The Linux “netstat” command displays the contents of the computer’s TCP connection
table. The output below confirms that there are currently no active TCP or UDP
connections to any external IP addresses.

root@tony-laptop:~/Firewall# netstat -n -A inet

Active Internet connections (w/o servers)

Proto Recv-Q Send-Q Local Address Foreign Address State

tcp 1 0 192.168.1.66:37868 91.189.89.144:80 CLOSE_WAIT

udp 0 0 127.0.0.1:52831 127.0.0.1:53 ESTABLISHED

The only connections that do exist are a TCP connection in the CLOSE_WAIT state and
an internal ESTABLISHED UDP connection between the computer’s loopback interface
and its DNS daemon.

The following commands append rules to the INPUT chain for each of the “eth0” and
“wlan0” interfaces to permit reception of inbound responses to outbound connections that
we initiate over those interfaces.

Note that the rules do not specify a specific protocol type so any response packets are
permitted. The commands include some additional and very important arguments, namely
-m (match) and --state ESTABLISHED and RELATED.

iptables -A INPUT -i eth0 -m state --state ESTABLISHED,RELATED -j ACCEPT

Tutorial – IPTABLES [Version 1-3]

24th March 2013 Tony Hill 12

iptables -A INPUT -i wlan0 -m state --state ESTABLISHED,RELATED -j ACCEPT

The ESATBLISHED argument permits responses only to connections that we originate.
The RELATED argument has special significance. It permits responses to connections
that existing ESTABLISHED connections may “spawn”. This is explained in more detail in
the sections Protocol & Services - FTP and Basic Configuration - FTP.

Please note: The “nf_conntrack” kernel module is loaded by default with iptables. It is
responsible for identifying established and related IP connections in the connection
tracking database. For Passive FTP it is necessary to load the “nf_conntrack_ftp” kernel
module, which is not loaded by default. This module is specifically responsible for
identifying established and related FTP connections.

After appending the new rules to the INPUT chain the filter table now looks like this:

root@tony-laptop:~/Firewall# iptables -nvL --line-numbers

Chain INPUT (policy DROP 20 packets, 1244 bytes)

num pkts bytes target prot opt in out source destination

1 187 19204 ACCEPT all -- lo * 0.0.0.0/0 0.0.0.0/0

2 2 636 ACCEPT udp -- * * 0.0.0.0/0 0.0.0.0/0 udp spt:67 dpt:68
3 2698 3070K ACCEPT all -- eth0 * 0.0.0.0/0 0.0.0.0/0 state

RELATED,ESTABLISHED

4 0 0 ACCEPT all -- wlan0 * 0.0.0.0/0 0.0.0.0/0 state

RELATED,ESTABLISHED

Chain FORWARD (policy DROP 0 packets, 0 bytes)

num pkts bytes target prot opt in out source destination

Chain OUTPUT (policy ACCEPT 2511 packets, 315K bytes)

num pkts bytes target prot opt in out source destination

We could have configured more specific rules using the -p tcp and -p udp arguments but
the iptables ESTABLISHED and RELATED options are better because they reduce
considerably the number of rules that we need to create.

It is now possible for us to browse the Internet. After browsing to the BBC home page the
computer’s netstat connection table shows the external sites to which the computer has
established connections successfully. The Linux “netstat” command shows TCP rather
than iptables states, the difference between these two is explained in the section Basic
Configuration - TCP.

root@tony-laptop:~/Firewall# netstat -n -A inet

Active Internet connections (w/o servers)

Proto Recv-Q Send-Q Local Address Foreign Address State

tcp 0 0 192.168.1.66:36793 217.41.223.67:80 ESTABLISHED

tcp 0 0 192.168.1.66:51749 217.41.223.66:80 ESTABLISHED

tcp 0 0 192.168.1.66:50812 217.41.223.48:80 ESTABLISHED

tcp 0 0 192.168.1.66:36795 217.41.223.67:80 ESTABLISHED

tcp 0 0 192.168.1.66:36797 217.41.223.67:80 ESTABLISHED

tcp 0 0 192.168.1.66:50813 217.41.223.48:80 ESTABLISHED

tcp 0 0 192.168.1.66:36794 217.41.223.67:80 ESTABLISHED

tcp 1 0 192.168.1.66:37868 91.189.89.144:80 CLOSE_WAIT

tcp 0 0 192.168.1.66:36796 217.41.223.67:80 ESTABLISHED

tcp 0 0 192.168.1.66:34031 212.58.246.94:80 TIME_WAIT

tcp 0 0 192.168.1.66:50814 217.41.223.48:80 ESTABLISHED

tcp 0 0 192.168.1.66:36798 217.41.223.67:80 ESTABLISHED

Tutorial – IPTABLES [Version 1-3]

24th March 2013 Tony Hill 13

tcp 0 0 192.168.1.66:50811 217.41.223.48:80 ESTABLISHED

tcp 0 0 192.168.1.66:33740 173.194.41.99:80 ESTABLISHED

The order of the rules is important. If a rule matches a packet the remaining rules
take no action. The two rules we just applied are effectively catch-all rules that
should be configured at the end of the INPUT chain. If these catch-all rules are
configured higher up the chain they may match packets for which more specific rules
have been configured lower down.

However, these catch-all rules sometimes work in conjunction with the rules
configured above them. For example, when we create the rule to accept inbound
FTP connections these catch-all rules are used to process the RELATED
connections for Passive FTP to work.

5.6 Basic Configuration Summary

So, what has our pretty basic iptables configuration provided so far?

− By default, the computer drops all inbound packets that are not explicitly
ACCEPTED by rules (INPUT default policy is DROP)

− By default, the computer allows out any packets that it generates (OUTPUT
default policy is ACCEPT)

− The loopback interface accepts all internally generated packets to ensure
correct operation of the operating system and applications

− The “eth0” and “wlan0” interfaces accept DHCP server assigned IP addresses

− The computer is able to browse the web, view videos and participate in audio
/ video connections with other machines, provided that the computer has
initiated the connections

− The computer does not accept any new, inbound connections (but this is fine
as we are not yet acting as a web server, DHCP server or any other server
for that matter)

For a basic but relatively secure initial configuration that's pretty much it. Type in the
aforementioned commands and attempt to access your laptop from another
machine. You should find that it is impossible to access anything for which rules have
not been explicitly configured.

5.7 Basic Configuration Additional Information

5.7.1 Skype

If the configuration that we just applied doesn't allow new inbound connections, what
happens, for example, when someone calls you using Skype? Why does your
firewall let this inbound, unsolicited connection into your computer when you have
not initiated it?

The answer is, “it isn’t unsolicited”.

Skype uses TCP to set up connections and UDP for the transmission of audio and

Tutorial – IPTABLES [Version 1-3]

video data between end-points. The firewall only requires UDP source / destination
IP address and source / destination port number information to create flow records.

When you start your Skype client it first establishes a TCP connection with a central
Skype server and tells the server the source and destination UDP port numbers that
your computer will use for audio sessions. The person calling you will have done
exactly the same at his / her end.

The Skype server now has your IP addresses and UDP port information, which it
sends to the other party. It also sends the IP address and UDP port information of
the other party to your Skype client. The Skype clients at both ends start sending
UDP packets direct to each other’s IP addresses creating an outbound flow record in
their respective firewalls. When the other party calls you, the UDP packets he / she
sends contain your UDP destination port and his / her UDP source port information.
Your firewall believes that these packets are related to the outbound flow that you
just initiated and creates an ESTABLISHED bi-directional flow record allowing the
packets in.

5.7.2 TCP

For UDP flows, iptables determines “flow membership” (i.e. bi-directional
communication) using only source / destination IP address and source / destination
port numbers.

For TCP flows, iptables determines “flow membership” using source / destination IP
addresses, source / destination port numbers, and TCP sequence numbers and
acknowledgements.

To “talk” TCP, the participating devices must first establish a TCP session. The
device initiating the session sends a TCP SYN packet to the receiving device. The
receiving device responds with a SYN ACK packet that has the ACK control bit set.
The initiating device responds to this SYN ACK packet with an ACK packet that also
has the ACK control bit set. This is known as a three-way TCP handshake.

Figure 5-1: Three-Way TCP SYN Handshake

The ACK bit resides in the flags field of the TCP header and is set in every
acknowledgement packet for the rest of the conversation thereafter.

Tutorial – IPTABLES [Version 1-3]

Figure 5-2: TCP Flags Field

If the ACK bit is set in an inbound packet it indicates that the packet is a response to
something we transmitted. Some firewalls and router access control lists use the
ACK bit to distinguish whether inbound packets are responses (bit set - therefore
permissible) or new connection attempts (bit not set - therefore blocked).

Iptables does not check the ACK bit of TCP packets but it does designate
connections as established. The “conntrack” connection tracking subsystem
monitors flow records in the iptables connections database. Conntrack shows a
connection as being ESTABLISHED after successful completion of the three-way
handshake. The output below is an extract from the connections database:

[NEW] tcp 6 120 SYN_SENT src=192.168.1.73 dst=192.168.1.66 sport=49511

dport=21 [UNREPLIED] src=192.168.1.66 dst=192.168.1.73 sport=21 dport=49511

[UPDATE] tcp 6 60 SYN_RECV src=192.168.1.73 dst=192.168.1.66 sport=49511

dport=21 src=192.168.1.66 dst=192.168.1.73 sport=21 dport=49511

[UPDATE] tcp 6 432000 ESTABLISHED src=192.168.1.73 dst=192.168.1.66

sport=49511 dport=21 src=192.168.1.66 dst=192.168.1.73 sport=21 dport=49511

[ASSURED]

Use of the ESTABLISHED argument in a rule effectively tells iptables to check the
connections database and directs it to permit inbound packets that are part of an
established flow i.e. one that we initiated or permitted to be initiated.

Use of the RELATED argument performs has a complementary but slightly different
function. Some types of connection are not as straightforward as others. For example, in
Passive FTP the client establishes an inbound “control” connection to the server using
port 21. The server then generates a random port number and tells the client to use that
port to set up a separate, inbound “data” connection to the server. We can’t know in
advance what the random port number will be so cannot pre-configure a rule to
accommodate the separate inbound connection on that port. The RELATED keyword
directs iptables to use the information in its connections database to determine whether
the data connection is related to the control connection and, if so, to permit it. Iptables
only deems connections to be RELATED if they are associated with pre-existing
ESTABLISHED connections.

Please note: It is necessary to load the “nf_conntrack_ftp” kernel module to support
Passive FTP. This “helper” module is responsible for identifying that the data connection is
related to the already established control connection.

Without the “related” command we would need to configure numerous and much more
complex rules.

TCP sessions are closed in an orderly fashion using a four-way handshake, as
shown in the figure below.

Figure 5-3: TCP Four-Way FIN Handshake

Tutorial – IPTABLES [Version 1-3]

5.7.3 FTP

There are two types of FTP – Active and Passive. It’s good to understand how they
work in order to configure the correct rules in your firewall for inbound, client initiated
FTP connections. The configuration is explained in the next section.

In both types of FTP, the client connects to the server using a control connection to
send commands, such as “get”, “put” and “dir” etc. A separate data connection is
used to transfer data. In Active FTP the client initiates the control connection and the
server initiates the data connection. In Passive FTP the client initiates both
connections.

With an inbound Active FTP connection, the client initiates a TCP control connection
to server port 21 and tells the server on what port the client wishes to receive data,
usually its initiating source port + 1.

The server then opens a separate data connection from port 20 to the client
specified receive port and files are exchanged on this connection. Control traffic and
commands continue to be exchanged on the control connection.

This is all fine on a local LAN between two trusted machines. But, if the client uses
FTP to retrieve files from a server somewhere on the Internet the client has no real
way of knowing whether the server initiated data connection is trustworthy or not.

Figure 5-4: Active FTP

Passive FTP was developed to overcome this client side problem. Great! It’s now the
server firewall administrator’s problem. In Passive FTP, the client initiates both the
control and data connections.

Tutorial – IPTABLES [Version 1-3]

Figure 5-5: Passive FTP

The client connects to the server’s control port 21 sending it the “PASV” command
indicating that it wishes to use Passive FTP. Meanwhile, the client also opens its own
data port - 49741, for example.

If the server agrees to use Passive FTP it generates a random data port number,
4010 for example. The server tells the client on the control connection that it will be
listening for a data connection on this port. The client initiates a data connection from
its data port 49741 to the server’s data port 4010.

In the rules that we configure we must be able to cater for both Active and Passive
FTP connections.

For Active FTP, we only need to configure a rule to permit the inbound control port 21
connection from the client. The server’s outbound data connection to the client is
permitted because we initiate it and our default OUTPUT policy is ACCEPT.

For Passive FTP, we still need to configure a rule to permit the inbound control port
connection. But, for the client’s inbound data connection we need two things:

1. To specify the ESTABLISHED and RELATED arguments in our general
inbound response rule (as configured in the Basic Configuration section)

2. To load the “nf_conntrack_ftp” kernel module.

By the way, the server may well not agree to use Passive FTP, in which case the
client and server may agree to fall back to Active FTP.

6 Advanced Configuration

This section provides an overview of connection tracking and also explains how to
configure additional rules to expand functionality to allow other connection types into
the computer, such as SSH, FTP, TFTP and CIFS (for Samba file sharing).

Tutorial – IPTABLES [Version 1-3]

24th March 2013 Tony Hill 18

6.1 Protocols & Services – Connection Tracking

6.1.1 Examining the Connections Database

Iptables maintains state for all the connections it manages using the conntrack
subsystem’s connections database. Conntrack hooks into the kernel’s netfilter APIs.
Conntrack creates flow records in its database, tracks and changes the state of
existing flows, expires and deletes old flows and calls helper modules, such as
nf_conntrack and nf_conntrack_ftp. These modules are necessary when iptables
needs to create flows that are RELATED to ESTABLISHED flows.

The conntrack command line tool is used to inspect the connections database
contents interactively.

Please Note: You may have to download and install the conntrack tools separately.

apt-get install conntrack conntrack-tools

Use the conntrack command with the -L option to examine a snapshot of the filter
table’s connections database. You can examine the databases of other tables with
the conntrack <table> -L command. Use the -s or -d options to list entries with the
specified source or destination IP addresses. The conntrack -h command lists all of
the other available command options.

The entries below show a TCP dialogue between two computers with IP addresses
192.168.1.66 and 192.168.1.72. The information tells us that this is an Active FTP
exchange. The first entry shows that the client (192.168.1.72) has already
established a connection to the server’s FTP control port 21. The second entry
shows that the server has just sent a TCP SYN packet from data port 20 to set up
the corresponding FTP data connection to the client.

conntrack -L -s 192.168.1.72

tcp 6 431975 ESTABLISHED src=192.168.1.72 dst=192.168.1.66 sport=49747

 dport=21 src=192.168.1.66 dst=192.168.1.72 sport=21 dport=49747

 [ASSURED] mark=0 use=1

Conntrack -L -s 192.168.1.66

tcp 6 119 SYN_SENT src=192.168.1.66 dst=192.168.1.72 sport=20

 dport=49748 src=192.168.1.72 dst=192.168.1.66 sport=49748

 dport=20 [ASSURED] use=2

ASSURED means that conntrack will maintain the entries in the database even if the
maximum number of sessions has been reached (see the conntrack tuning section).

The first number on the left of each entry is TCP protocol number 6 and the number
immediately after it is a count-down timer to flow expiry in seconds. The established
connection has 431975 seconds (almost 5 days) until it expires and the SYN sent
connection has only 119 seconds left. One or the other of the communicating
devices will terminate the established connection well before its countdown timer
expires.

You can also examine these records by doing a “cat” of the file:

more /proc/net/ip_conntrack

Tutorial – IPTABLES [Version 1-3]

24th March 2013 Tony Hill 19

In addition to examining the records in the connections database you can also see
records in real time as conntrack is creating them. Issue the conntrack -E (Events)
command:

root@tony-laptop:~# conntrack -E

[NEW] tcp 6 120 SYN_SENT src=192.168.1.73 dst=192.168.1.66 sport=49511

dport=21 [UNREPLIED] src=192.168.1.66 dst=192.168.1.73 sport=21 dport=49511

[UPDATE] tcp 6 60 SYN_RECV src=192.168.1.73 dst=192.168.1.66 sport=49511

dport=21 src=192.168.1.66 dst=192.168.1.73 sport=21 dport=49511

[UPDATE] tcp 6 432000 ESTABLISHED src=192.168.1.73 dst=192.168.1.66

sport=49511 dport=21 src=192.168.1.66 dst=192.168.1.73 sport=21 dport=49511

[ASSURED]

[NEW] tcp 6 120 SYN_SENT src=192.168.1.73 dst=192.168.1.66 sport=49512

dport=40253 [UNREPLIED] src=192.168.1.66 dst=192.168.1.73 sport=40253

dport=49512

[UPDATE] tcp 6 60 SYN_RECV src=192.168.1.73 dst=192.168.1.66 sport=49512

dport=40253 src=192.168.1.66 dst=192.168.1.73 sport=40253 dport=49512

[UPDATE] tcp 6 432000 ESTABLISHED src=192.168.1.73 dst=192.168.1.66

sport=49512 dport=40253 src=192.168.1.66 dst=192.168.1.73 sport=40253

dport=49512 [ASSURED]

[UPDATE] tcp 6 120 FIN_WAIT src=192.168.1.73 dst=192.168.1.66 sport=49512

dport=40253 src=192.168.1.66 dst=192.168.1.73 sport=40253 dport=49512

[ASSURED]

[UPDATE] tcp 6 60 CLOSE_WAIT src=192.168.1.73 dst=192.168.1.66 sport=49512

dport=40253 src=192.168.1.66 dst=192.168.1.73 sport=40253 dport=49512

[ASSURED]

[UPDATE] tcp 6 30 LAST_ACK src=192.168.1.73 dst=192.168.1.66 sport=49512

dport=40253 src=192.168.1.66 dst=192.168.1.73 sport=40253 dport=49512

[ASSURED]

[UPDATE] tcp 6 120 TIME_WAIT src=192.168.1.73 dst=192.168.1.66 sport=49512

dport=40253 src=192.168.1.66 dst=192.168.1.73 sport=40253 dport=49512

[ASSURED]

6.1.2 Conntrack Modules

Iptables loads most of the modules it needs by default. You can examine the loaded
modules using the lsmod | grep ip command:

root@tony-laptop:~# lsmod | grep ip

ipt_LOG 12783 2
iptable_mangle 12646 0

iptable_nat 13016 0

nf_nat 24959 1 iptable_nat

nf_conntrack_ipv4 19084 5 iptable_nat,nf_nat

nf_conntrack 73847 4 xt_state,iptable_nat,nf_nat,nf_conntrack_ipv4
nf_defrag_ipv4 12649 1 nf_conntrack_ipv4

iptable_filter 12706 1

ip_tables 18106 3 iptable_mangle,iptable_nat,iptable_filter

x_tables 22011 8

ipt_LOG,xt_limit,xt_state,xt_tcpudp,iptable_mangle,iptable_nat,iptable_filter,ip_tables

The modules above include the nf_conntrack module, which conntrack needs to
create IPv4 and NAT flow records and related connections. However, to support the
creation of FTP flow records and related connections it is necessary to load the
nf_conntrack_ftp module. To load it manually, issue the command:

modprobe ip_conntrack_ftp

To load the module at boot-time insert the following line in the /etc/modules file:

Tutorial – IPTABLES [Version 1-3]

24th March 2013 Tony Hill 20

root@tony-laptop:~# more /etc/modules
Load the FTP conntrack module at boot time

nf_conntrack_ftp

Confirm that the module is loaded:

root@tony-laptop:~/Firewall# lsmod | grep ip (WITH FTP)

ipt_LOG 12783 2

iptable_mangle 12646 0

iptable_nat 13016 0

nf_nat 24959 1 iptable_nat

nf_conntrack_ipv4 19084 4 iptable_nat,nf_nat

nf_conntrack 73847 6 nf_conntrack_ftp,nf_conntrack_netlink,xt_state,

 iptable_nat,nf_nat,nf_conntrack_ipv4,nf_defrag_ipv4

12649 1 nf_conntrack_ipv4
iptable_filter 12706 1

ip_tables 18106 3 iptable_mangle,iptable_nat,iptable_filter

x_tables 22011 8

ipt_LOG,xt_limit,xt_state,xt_tcpudp,iptable_mangle,iptable_nat,iptable_filter,ip_tables

All of the conntrack modules that are loaded automatically and that are available to
be loaded manually are in the following directory:

root@tony-laptop:~# ls /lib/modules/3.2.0-38-generic-pae/kernel/net/netfilter/

ipset nf_conntrack_snmp.ko xt_conntrack.ko xt_limit.ko

xt_sctp.ko

ipvs nf_conntrack_tftp.ko xt_cpu.ko xt_mac.ko
xt_SECMARK.ko

nf_conntrack_amanda.ko nfnetlink.ko xt_CT.ko xt_mark.ko

xt_set.ko

nf_conntrack_broadcast.ko nfnetlink_log.ko xt_dccp.ko xt_multiport.ko
xt_socket.ko

nf_conntrack_ftp.ko nfnetlink_queue.ko xt_devgroup.ko xt_NFLOG.ko

xt_state.ko

nf_conntrack_h323.ko nf_tproxy_core.ko xt_dscp.ko xt_NFQUEUE.ko

xt_statistic.ko

nf_conntrack_irc.ko x_tables.ko xt_DSCP.ko xt_NOTRACK.ko

xt_string.ko

nf_conntrack.ko xt_addrtype.ko xt_esp.ko xt_osf.ko

xt_tcpmss.ko

nf_conntrack_netbios_ns.ko xt_AUDIT.ko xt_hashlimit.ko xt_owner.ko
xt_TCPMSS.ko

nf_conntrack_netlink.ko xt_CHECKSUM.ko xt_helper.ko xt_physdev.ko

xt_TCPOPTSTRIP.ko

nf_conntrack_pptp.ko xt_CLASSIFY.ko xt_hl.ko xt_pkttype.ko

xt_tcpudp.ko

nf_conntrack_proto_dccp.ko xt_cluster.ko xt_HL.ko xt_policy.ko

xt_TEE.ko

nf_conntrack_proto_gre.ko xt_comment.ko xt_IDLETIMER.ko xt_quota.ko

xt_time.ko

nf_conntrack_proto_sctp.ko xt_connbytes.ko xt_iprange.ko xt_rateest.ko
xt_TPROXY.ko
nf_conntrack_proto_udplite.ko xt_connlimit.ko xt_ipvs.ko xt_RATEEST.ko

xt_TRACE.ko

nf_conntrack_sane.ko xt_connmark.ko xt_LED.ko xt_realm.ko

xt_u32.ko

nf_conntrack_sip.ko xt_CONNSECMARK.ko xt_length.ko xt_recent.ko

Only the default nf_conntrack and nf_conntrack_ftp modules are required for this
tutorial.

6.1.3 Conntrack Tuning

The conntrack subsystem can be tuned to, amongst other things, accommodate
more flow records in its connections database. The default number of flow records

Tutorial – IPTABLES [Version 1-3]

24th March 2013 Tony Hill 21

supported is usually 65535, depending on how much memory is available in the
computer. This is more than enough for home computer firewall implementations but
if you were configuring iptables for a firewall in a corporate environment it may be
necessary to increase this value.

“sysctl” is used to manage kernel runtime parameters. The tuneable parameters are
contained in the directory /proc/sys/net/netfilter:

root@tony-laptop:~# ls /proc/sys/net/netfilter

nf_conntrack_acct nf_conntrack_tcp_timeout_close

nf_conntrack_buckets nf_conntrack_tcp_timeout_close_wait

nf_conntrack_checksum nf_conntrack_tcp_timeout_established

nf_conntrack_count nf_conntrack_tcp_timeout_fin_wait

nf_conntrack_events nf_conntrack_tcp_timeout_last_ack

nf_conntrack_events_retry_timeout nf_conntrack_tcp_timeout_max_retrans

nf_conntrack_expect_max nf_conntrack_tcp_timeout_syn_recv

nf_conntrack_generic_timeout nf_conntrack_tcp_timeout_syn_sent

nf_conntrack_icmp_timeout nf_conntrack_tcp_timeout_time_wait

nf_conntrack_log_invalid nf_conntrack_tcp_timeout_unacknowledged

nf_conntrack_max nf_conntrack_timestamp

nf_conntrack_tcp_be_liberal nf_conntrack_udp_timeout

nf_conntrack_tcp_loose nf_conntrack_udp_timeout_stream

nf_conntrack_tcp_max_retrans nf_log

For example, issue the following command to check the current maximum number of
connections allowed:

root@tony-laptop:~# sysctl net.netfilter.nf_conntrack_max
net.netfilter.nf_conntrack_max = 65535

To manually increase the number of connections allowed issue the following
command:

sysctl -w net.netfilter.nf_conntrack_max=131072

Or edit the /etc/syctl.conf file and enter the following lines to increase the default
value across reboots:

Conntrack Max

net.netfilter.nf_conntrack_max=131072

The other parameters in the /proc/sys/net/netfilter directory can also be examined
and tuned. For example, to display the current default expiry timer for established
TCP connections, issue the following command:

root@tony-laptop:~# sysctl net.netfilter.nf_conntrack_tcp_timeout_established

net.netfilter.nf_conntrack_tcp_timeout_established = 432000

To display a snapshot of the current number of connections in the database, issue
the following command:

root@tony-laptop:~# sysctl net.netfilter.nf_conntrack_count

net.netfilter.nf_conntrack_count = 11

Tutorial – IPTABLES [Version 1-3]

24th March 2013 Tony Hill 22

6.1.4 Conntrack Rule Specifications

In addition to using conntrack to monitor connections, you can also use conntrack
syntax in the rules that you specify, for example:

iptables -A INPUT -p tcp -m conntrack --ctstate ESTABLISHED,RELATED

The main difference between using -m conntrack with --ctstate instead of -m state
with --state is that “-m conntrack” supports a few more match options than “-m state”
but the functionality is essentially the same.

The rules that we specify in this tutorial use the -m state and --state syntax because
this provides sufficient granularity for our requirements.

6.2 Protocols & Services – SSH

If you wish to allow other people to log into your computer using SSH you must
complete a few tasks in addition to adding rules to iptables:

− Install an SSH server (in this example OpenSSH v5.9)

− Configure the server's /etc/ssh/sshd_config file to allow logins from specific
users on specific subnets

− Configure an iptables rule to allow inbound connections on SSH TCP
destination port 22

The only item added to the default /etc/ssh/sshd_config file in this example is:

Allow only specific users

AllowUsers tony@192.168.1.0/24

Now add the iptables rule to the filter table to allow inbound connections to the SSH
daemon. Notice that this rule uses the parameters -p tcp, --dport 22 and -s
192.168.1.0/24. Anyone attempting to connect to the computer from any subnet
other than 192.168.1.0/24 is rejected, both by the rule and by the entry in the
sshd_config file:

iptables -A INPUT -i eth0 -p tcp --dport 22 -s 192.168.1.0/24 -j ACCEPT

Repeat the rule for interface “wlan0” if you wish to allow logins over the wireless interface.

Connect using PUTTY SSH from another machine and examine the packet counters:

root@tony-laptop:~/Firewall# iptables -nvL INPUT --line-numbers

Chain INPUT (policy DROP 129 packets, 23953 bytes)

num pkts bytes target prot opt in out source destination

1 983 74126 ACCEPT all -- lo * 0.0.0.0/0 0.0.0.0/0

2 1 318 ACCEPT udp -- * * 0.0.0.0/0 0.0.0.0/0 udp spt:67 dpt:68

3 4403 3787K ACCEPT all -- eth0 * 0.0.0.0/0 0.0.0.0/0 state

RELATED,ESTABLISHED

4 0 0 ACCEPT all -- wlan0 * 0.0.0.0/0 0.0.0.0/0 state

RELATED,ESTABLISHED

Tutorial – IPTABLES [Version 1-3]

24th March 2013 Tony Hill 23

5 2 104 ACCEPT tcp -- eth0 * 192.168.1.0/24 0.0.0.0/0 tcp dpt:22

The connection is successful and the rule 5 packet counters are counting correctly the
packets and bytes received.

6.3 Protocols & Services – FTP

If you wish to allow other people to retrieve files from your computer using FTP you
must complete a few tasks in addition to adding rules to iptables:

− Install an FTP server (in this example VSFTPD v2.3.5)

− If desired, configure the server's /etc/vsftp.conf file (default in this example)

− Configure iptables rules to allow inbound connections on FTP TCP port 21

Configure the rule for the inbound FTP control port 21 connection. As with the SSH
rule, we are only permitting inbound FTP connections from other computers on the
192.168.1.0/24 subnet.

iptables -A INPUT -i eth0 -p tcp --dport 21 -s 192.168.1.0/24 -j ACCEPT

Please note: This rule will support Passive FTP provided that the nf_conntrack_ftp
module is loaded. Active and Passive FTP are supported when the above rule is
used in conjunction with the following rule that we specified in the section Basic
Configuration section Protocols & Services - TCP & UDP:

iptables -A INPUT -i eth0 -m state --state ESTABLISHED,RELATED -j ACCEPT

Establish an Active FTP connection to the computer from a remote host and “get” a
file. The control and data connections are successful.

Examine the filter table:

root@tony-laptop:~/Firewall# iptables -nvL INPUT --line-numbers

Chain INPUT (policy DROP 819 packets, 163K bytes)

num pkts bytes target prot opt in out source destination

1 1962 166K ACCEPT all -- lo * 0.0.0.0/0 0.0.0.0/0

2 1 318 ACCEPT udp -- * * 0.0.0.0/0 0.0.0.0/0 udp spt:67 dpt:68

3 3157 4231K ACCEPT all -- eth0 * 0.0.0.0/0 0.0.0.0/0 state

RELATED,ESTABLISHED

4 3157 4231K ACCEPT all -- wlan0 * 0.0.0.0/0 0.0.0.0/0 state

RELATED,ESTABLISHED

5 2 104 ACCEPT tcp -- eth0 * 192.168.1.0/24 0.0.0.0/0 tcp dpt:22

6 7 364 ACCEPT tcp -- eth0 * 192.168.1.0/24 0.0.0.0/0 tcp dpt:21

Notice that the Rule 6 packet count increases for the inbound Port 21 control
connection from the client, and so does the Rule 3 packet count. This is because the
ESTABLISHED argument in Rule 3 causes iptables to accept inbound packets for
the outbound Port 20 data connection even though we have not defined a specific

Tutorial – IPTABLES [Version 1-3]

24th March 2013 Tony Hill 24

Port 20 rule.

The message exchange is summarised below showing that the client uses
destination port 21 to talk to the server's control port (red), and the server uses
source port 20 to send data to, and receive data from, the client (blue):

Client Server

open control sport 49747 dport 21 --->

 <--- login exchange --->

my data port 49748 sport 49747 dport 21 ---> use port 49748 for data

get file sport 49747 dport 21 --->

 <--- dport 49748 sport 20 open data connection

ACK sport 49748 dport 20 --->

 <--- dport 49748 sport 20 send file

ACK sport 49748 dport 20 --->

 <--- dport 49748 sport 20 send file

ACK sport 49748 dport 20 --->

close control <--- FIN handshake --->

 <--- FIN handshake ---> close data connection

The rules above are also used for a Passive FTP connection. However, the
difference is that the nf_conntrack_ftp module uses the RELATED argument of Rule
3 to permit the client to establish an inbound data connection on the server specified
random port even though we haven’t configured a specific rule for that port.

6.4 Protocols & Services – TFTP

If you wish to allow other people to retrieve files from your computer using TFTP you
must complete a few tasks in addition to adding rules to iptables:

− Install a TFTP server (in this example TFTPD-HPA v5.2-1)

− Configure the relevant set up file /etc/default/tftpd-hpa

− Configure an iptables rule to allow inbound connections on TFTP UDP
destination port 69

Configure a rule for the TFTP protocol UDP port 69, as follows:

iptables -A INPUT -i eth0 -p udp --dport 69 -s 192.168.1.0/24 -j ACCEPT

As with the FTP rule, TFTP connections are only permitted from other computers on
the 192.168.1.0/24 subnet.

Establish a TFTP connection to the computer from another machine and “get” a file.
The connection and transfer are successful.

Examine the filter table:

Tutorial – IPTABLES [Version 1-3]

24th March 2013 Tony Hill 25

root@tony-laptop:~/Firewall# iptables -nvL INPUT --line-numbers

Chain INPUT (policy DROP 225 packets, 37425 bytes)

num pkts bytes target prot opt in out source destination

1 423 43720 ACCEPT all -- lo * 0.0.0.0/0 0.0.0.0/0

2 1 318 ACCEPT udp -- * * 0.0.0.0/0 0.0.0.0/0 udp spt:67 dpt:68

3 4134 3746K ACCEPT all -- eth0 * 0.0.0.0/0 0.0.0.0/0 state

RELATED,ESTABLISHED
4 0 0 ACCEPT all -- wlan0 * 0.0.0.0/0 0.0.0.0/0 state

RELATED,ESTABLISHED

5 1 52 ACCEPT tcp -- eth0 * 192.168.1.0/24 0.0.0.0/0 tcp dpt:22

6 1 52 ACCEPT tcp -- eth0 * 192.168.1.0/24 0.0.0.0/0 tcp dpt:21
7 2 118 ACCEPT udp -- eth0 * 192.168.1.0/24 0.0.0.0/0 udp dpt:69

The connection and file transfer are successful and iptables counts the packets
correctly.

6.5 Protocols & Services – DHCP Server

This configuration is necessary only if you wish to use the computer as a DHCP
server to allocate IP addresses to DHCP clients. I have not installed and enabled
DHCP server software for this example.

Configure a rule for protocol UDP ports 67 (bootps) and 68 (bootpc). Note that the
source and destination port numbers are in the reverse order to the DHCP client rule
that we created previously:

iptables -A INPUT -i eth0 -p udp --sport 68 --dport 67 -s 192.168.1.0/24 -j ACCEPT

Examine the filter table:

root@tony-laptop:~/Firewall# iptables -nvL INPUT --line-numbers

Chain INPUT (policy DROP 0 packets, 0 bytes)

num pkts bytes target prot opt in out source destination

1 455 46150 ACCEPT all -- lo * 0.0.0.0/0 0.0.0.0/0

2 1 318 ACCEPT udp -- * * 0.0.0.0/0 0.0.0.0/0 udp spt:67 dpt:68

3 4161 3754K ACCEPT all -- eth0 * 0.0.0.0/0 0.0.0.0/0 state

RELATED,ESTABLISHED
4 0 0 ACCEPT all -- wlan0 * 0.0.0.0/0 0.0.0.0/0 state

RELATED,ESTABLISHED

5 1 52 ACCEPT tcp -- eth0 * 192.168.1.0/24 0.0.0.0/0 tcp dpt:22

6 1 52 ACCEPT tcp -- eth0 * 192.168.1.0/24 0.0.0.0/0 tcp dpt:21

7 1 49 ACCEPT udp -- eth0 * 192.168.1.0/24 0.0.0.0/0 udp dpt:69

8 0 0 ACCEPT udp -- eth0 * 192.168.1.0/24 0.0.0.0/0 udp spt:68 dpt:67

6.6 Protocols & Services – DNS Server

This configuration is necessary only if you wish to use your computer as a DNS
server to service DNS lookups from other computers. I have not installed and
enabled DNS server software for this example.

Configure a rule for protocols UDP and TCP port 53. Note that DNS clients may use
either TCP or UDP to perform lookups:

iptables -A INPUT -p udp --dport 53 -j ACCEPT

iptables -A INPUT -P tcp --dport 53 -j ACCEPT

Tutorial – IPTABLES [Version 1-3]

24th March 2013 Tony Hill 26

Examine the filter table:

root@tony-laptop:~/Firewall# iptables -nvL INPUT --line-numbers

Chain INPUT (policy DROP 2 packets, 80 bytes)

num pkts bytes target prot opt in out source destination

1 774 77384 ACCEPT all -- lo * 0.0.0.0/0 0.0.0.0/0

2 1 318 ACCEPT udp -- * * 0.0.0.0/0 0.0.0.0/0 udp spt:67 dpt:68

3 6122 5292K ACCEPT all -- eth0 * 0.0.0.0/0 0.0.0.0/0 state

RELATED,ESTABLISHED

4 0 0 ACCEPT all -- wlan0 * 0.0.0.0/0 0.0.0.0/0 state
RELATED,ESTABLISHED

5 1 52 ACCEPT tcp -- eth0 * 192.168.1.0/24 0.0.0.0/0 tcp dpt:22

6 1 52 ACCEPT tcp -- eth0 * 192.168.1.0/24 0.0.0.0/0 tcp dpt:21
7 1 49 ACCEPT udp -- eth0 * 192.168.1.0/24 0.0.0.0/0 udp dpt:69

8 0 0 ACCEPT udp -- eth0 * 192.168.1.0/24 0.0.0.0/0 udp spt:68 dpt:67

9 0 0 ACCEPT udp -- * * 0.0.0.0/0 0.0.0.0/0 udp dpt:53

10 0 0 ACCEPT tcp -- * * 0.0.0.0/0 0.0.0.0/0 tcp dpt:53

6.7 Protocols & Services – CIFS/SMB

CIFS stands for Common Internet File System and SMB for Server Message Block.
CIFS is not a protocol but a term that is used to describe the mechanisms and
underlying protocols that network servers use to make their file systems available to
clients. However, SMB is a protocol. It is used to transfer data between the clients
and servers. CIFS is often associated with Windows networks but Linux servers and
clients are increasingly being deployed within these environments. Samba software
not only allows Linux servers and clients to integrate with Windows networks but also
to offer file system services in their own right.

If you wish to use Samba shares to allow Windows and Linux clients to access
folders and files on your Linux computer you must complete a few tasks in addition
to adding rules to iptables.

This example uses a Windows Vista client laptop called “catherine-pc” that accesses
a shared folder and files on a Ubuntu Samba server called “tony-laptop”. The folder it
is sharing (the share name) is called “tony-1”.

− Install a Samba server (in this example Samba 2 v3.6.3-2)

− Add a Samba user to the “smbpasswd” file from the command line (in this
example the user is “tony”). The Samba user must correspond to an existing
Linux user:

smbpasswd -a tony

− Verify from the command line that the user has been added successfully:

pdbedit -L -v

− Configure the /etc/samba/smb.conf file and specify the security method in the
[global] section:

security = user

− Configure the /etc/samba/smb.conf file and specify the workgroup name in the

Tutorial – IPTABLES [Version 1-3]

24th March 2013 Tony Hill 27

[global] section:

workgroup = home

− Configure the /etc/samba/smb.conf file and specify ports 139 and 445 in the
[global] section:

smb ports = 139 445

− Configure the /etc/samba/smb.conf file and specify the server's “server string”
and “netbios name” in the [global] section:

server string = tony-laptop

netbios name = tony-laptop

− Configure the /etc/samba/smb.conf file and specify the server's interfaces in
the [global] section:

interfaces = 127.0.0.0/8 eth0

bind interfaces only = no

− Configure the /etc/samba/smb.conf file and specify the name resolution order:

name resolve order = lmhosts bcast

− Configure the /etc/samba/smb.conf file and set up the share in the “share
definitions” section:

[tony-1]

 comment = tony-1

 path = /home/tony/Desktop/tony-1

 writeable = yes

 browseable = yes

 valid users = tony

− Create a “lmhosts” file in the /etc/samba directory of the server that includes
the IP address and NETBIOS name of the client computer that will be
accessing the share:

192.168.1.73 catherine-pc

− issue the following command to tell the (network message block) “nmbd”
daemon where to find the “lmhosts” file:

nmbd -H /etc/samba/lmhosts -D

− Restart the “nmbd” daemon for the above change to take effect:

service nmbd restart

Tutorial – IPTABLES [Version 1-3]

− Restart the Samba daemon for the above changes to take effect:

service smbd restart

− Edit the C:\Windows\System32\drivers\etc\lmhosts file on the client computer
and enter the IP address and NETBIOS name of the server:

192.168.1.66 tony-pc

− Configure iptables rules to allow inbound connections for NETBIOS Name
Service (UDP port 137), NETBIOS Datagram Service (UDP port 138),
NETBIOS Session Service (TCP port 139) and Microsoft Directory Service
(TCP port 445)

Windows networks are based upon the NETBIOS protocol. File servers and clients
use NETBIOS over UDP (unreliable) broadcasts for name resolution and to advertise
their capabilities and services. NETBIOS over TCP is used to establish (reliable)
connections for SMB data transfers.

By default, most Windows clients are configured to support TCP over NETBIOS. This
setting is found in Control Panel � Network Adapters � <Adapter Name> � IPv4 �
Properties � Advanced � WINS Tab.

6.7.1 NETBIOS Name Resolution

The network administrator assigns a NETBIOS name (up to 15 characters long) to
each device. Each name must be resolved to an IP address for the devices to
communicate with each other using NETBIOS over UDP and NETBIOS over TCP.

The NETBIOS Name Service (NBNS) performs the name to IP address resolution
function using UDP port 137. NBNS is loosely speaking Windows' equivalent of
DNS. Names can be resolved in a number of ways - broadcasts, LOCLAHOST file
on each machine, Host file on each machine, WINS Server or DNS Server on the
LAN segment.

Most home networks are small and use NBNS broadcasts or the LOCALHOST file
on each machine for name resolution whereas corporate environments us a
Windows Internet Name Service (WINS) or DNS server. The Samba server can be
configured to act as a WINS server but in this example I am using the LOCALHOST
file on the Windows client and Ubuntu Samba server.

With the broadcast method, when a client wishes to communicate with a server it
resolves the IP address of the server by issuing a NETBIOS over UDP port 137
broadcast that contains the NETBIOS name of the server. The server responds with
its IP address using a UDP port 137 unicast to the client. The packet exchange
below shows the client (catherine-pc 192.168.1.73) issuing a NBNS name query
broadcast asking who has name “TONY-LAPTOP” and the server (tony-laptop
192.168.1.66) responds with its IP address.

Figure 6-1: NETBIOS Name Service Messages

Tutorial – IPTABLES [Version 1-3]

However, in this example we use the LOCALHOST method so the client simply
reads its LOCALHOST file to retrieve the IP address of the server, and vice-versa.

6.7.2 NETBIOS Browser Service

Windows machines use the broadcast NETBIOS Browser service on UDP port 138
to advertise on the LAN segment their capabilities, the services they offer and the
workgroup to which they belong. The Samba server advertises the fact that it is a file
server along with its shares using this mechanism.

All of the machines participate in an election to nominate a Local Master Browser
(LMB) and a Backup Master Browser (BMB) for the LAN segment. The LMB and
BMB collect and collate the browser service advertisements from all the machines.
When you click on network neighbourhood in the file explorer of a Windows PC it
interrogates the LMB, which returns a browser list of the workgroups, machines, file
servers, print servers etc. that are available on the LAN. You can then click on the
resources that you wish to access.This mechanism is more efficient than each
machine interrogating every other machine on the network every time someone
wants to access a resource.

The packet below is an example of a browser service broadcast from “catherine-pc”
informing the LMB and BMB of its presence and the services that it offers as a client.

Figure 6-2: NETBIOS Browser Service

It is possible to configure the Samba server with a high priority to ensure that it wins
the browser service election. However, in this example I have left the machines to
decide amongst themselves which device should be the LMB.

6.7.3 NETBIOS Session Service

Having resolved name to IP address mappings and exchanged service information it
is now possible for clients to connect to servers on the LAN and access their file
systems and shares. These connections use the Server Message Block (SMB)
protocol that runs over NETBIOS over TCP. TCP is used because it is essential that
the connections be reliable. TCP ports 139 and 445 are used for the SMB /
NETBIOS / TCP connections.

If a client has NETBIOS over TCP enabled it first establishes a connection with the
server using SMB / NETBIOS / TCP port 139. A protocol negotiation then takes place
and the connection switches to SMB / NETBIOS / TCP port 445. Why?

It is not necessary to run NETBIOS at all if you do not wish to benefit from the device
naming and service advertising functionality that NETBIOS provides. In a non-
NETBIOS network, the clients connect to servers using SMB direct over TCP port
445. Disabling NETBIOS altogether eliminates the NETBIOS protocol overhead and
reduces broadcast traffic but it also eliminates the network neighbourhood
functionality that Windows networking provides. In a non-NETBIOS network, clients
must connect direct to shares using an explicit IP address and share name path, or
obtain this information from, for example, an Active Directory server.

NETBIOS over TCP is enabled and used in this example so the relevant IPTABLES

Tutorial – IPTABLES [Version 1-3]

filters are configured to allow the server (tony-laptop) to receive inbound packets for
NETBIOS Name Service on UDP port 137, Browser Service on UDP port 138,
Session Service on TCP port 139 and Session Service on TCP port 445.

To instigate the Windows Vista client’s connection to the share on the server I clicked
on the network neighbourhood icon in the client’s file explorer and double-clicked on
the server’s icon. The client immediately sent an SMB / NETBIOS / TCP port 139
NETBIOS Session Service (NBSS) request to the server. The server responded that
it is accepting connections on this port:

Figure 6-3: NETBIOS Session Service Messages

The client then sent a Server Service SMB / NETBIOS / TCP port 139 packet to the
server asking it to enumerate the shares that it is offering:

Figure 6-4: NETBIOS Server Service Messages

To determine whether the server supports SMB / NETBIOS / TCP port 445
connections, the client sent a “Negotiate Protocol Request” on TCP port 445 to the
server. The server responds on TCP port 445 signalling that it does support SMB
connections on this port:

Figure 6-5: SMB Protocol Negotiation

The client requests a connection to the server’s shared folder “tony-1” using a
“Connect AndX Request” on SMB / NETBIOS / TCP port 445 and the server permits
the connection:

Figure 6-6: SMB Connection Request

The client asks for a list of the files in the shared folder using a
“QUERY_FILE_INFO” request on SMB / NETBIOS / TCP port 445 and the server
responds with the information:

Figure 6-7: SMB Query Request

The client is now able to access the files in the server’s shared directory using SMB.

6.7.4 NETBIOS Filters

Configure the following iptables rules to permit reception on interface “eth0” the
protocols discussed above:

Tutorial – IPTABLES [Version 1-3]

24th March 2013 Tony Hill 31

NETBIOS Name Service:

iptables -A INPUT -i eth0 -p udp --dport 137 -s 192.168.1.0/24 -j ACCEPT

NETBIOS Datagram Service:

iptables -A INPUT -i eth0 -p udp --dport 138 -s 192.168.1.0/24 -j ACCEPT

NETBIOS Session Service

iptables -A INPUT -i eth0 -p tcp --dport 139 -s 192.168.1.0/24 -j ACCEPT

Microsoft Directory Service

iptables -A INPUT -i eth0 -p tcp --dport 445 -s 192.168.1.0/24 -j ACCEPT

Use the client laptop to access a shared folder on the Samba server and examine
the filter table:

root@tony-laptop:~/Firewall# iptables -nvL INPUT --line-numbers

Chain INPUT (policy DROP 26 packets, 3371 bytes)

num pkts bytes target prot opt in out source destination

<snip>

16 1 78 ACCEPT udp -- eth0 * 192.168.1.0/24 0.0.0.0/0 udp dpt:137

17 1 242 ACCEPT udp -- eth0 * 192.168.1.0/24 0.0.0.0/0 udp dpt:138

18 30 3951 ACCEPT tcp -- eth0 * 192.168.1.0/24 0.0.0.0/0 tcp dpt:139

19 43 5577 ACCEPT tcp -- eth0 * 192.168.1.0/24 0.0.0.0/0 tcp dpt:445

20 32 16209 ACCEPT all -- eth0 * 0.0.0.0/0 0.0.0.0/0 state

RELATED,ESTABLISHED

21 0 0 ACCEPT all -- wlan0 * 0.0.0.0/0 0.0.0.0/0 state

RELATED,ESTABLISHED

Access to the share is successful and iptables counts the packets for each of the
rules we created.

Notice that the server only saw a single Name Service UDP port 137 broadcast
packet from the client because we used the LMHOSTS file for name resolution on
the client and the server. During the test, the client only broadcast a single NETBIOS
Browser Service UDP port 138 packet to announce its presence and capabilities on
the LAN segment. Many more of these advertisements will be counted over time
from both the client and the server.

There are a significant number of SMB / NETBIOS / TCP port 139 packets because
the Vista client used this port initially to connect to the server. The subsequent
negotiation with the server caused a switch to the SMB / NETBIOS / TCP port 445
protocol.

6.8 Protocols & Services – ICMP

Configure ICMP rules if you wish to allow other machines to ping your computer and
you want to receive ICMP response message types.

Tutorial – IPTABLES [Version 1-3]

24th March 2013 Tony Hill 32

Try to ping the “eth0” interface from another machine before configuring the rules.
The ping fails.

Create the following rules in the filter table:

iptables -A INPUT -p icmp --icmp-type destination-unreachable -j ACCEPT

iptables -A INPUT -p icmp --icmp-type source-quench -j ACCEPT

iptables -A INPUT -p icmp --icmp-type time-exceeded -j ACCEPT

iptables -A INPUT -p icmp --icmp-type parameter-problem -j ACCEPT

iptables -A INPUT -p icmp --icmp-type echo-request -j ACCEPT

Ping the interface again. The ping succeeds (in this example I sent 4 x ping packets).

Examine the filter table:

Chain INPUT (policy DROP 9 packets, 2307 bytes)

num pkts bytes target prot opt in out source destination

<snip>

11 0 0 ACCEPT icmp -- * * 0.0.0.0/0 0.0.0.0/0 icmptype 3

12 0 0 ACCEPT icmp -- * * 0.0.0.0/0 0.0.0.0/0 icmptype 4

13 0 0 ACCEPT icmp -- * * 0.0.0.0/0 0.0.0.0/0 icmptype 11

14 0 0 ACCEPT icmp -- * * 0.0.0.0/0 0.0.0.0/0 icmptype 12

15 4 240 ACCEPT icmp -- * * 0.0.0.0/0 0.0.0.0/0 icmptype 8

Iptables counted the 4 x ping packets and bytes correctly.

Issue a traceroute from the computer to a non-existent IP address so that we receive
ICMP diagnostic responses:

root@tony-laptop:~/Firewall# traceroute -M icmp 10.0.0.1

traceroute to 10.0.0.1 (10.0.0.1), 64 hops max

 1 192.168.1.254 (192.168.1.254) 0.612ms 0.360ms 0.342ms

 2 217.32.147.2 (217.32.147.2) 6.136ms 5.977ms 5.917ms

 3 217.32.147.46 (217.32.147.46) 7.887ms 7.711ms 7.710ms

 4 213.120.156.74 (213.120.156.74) 9.783ms 9.459ms 9.774ms

 5 217.41.168.207 (217.41.168.207) 9.135ms 10.091ms 9.603ms

 6 217.41.168.109 (217.41.168.109) 9.494ms 9.691ms 9.503ms

 7 * * *

^C

Examine the filter table. A number of time exceeded ICMP (Type 11) messages are
returned and accepted by the rule:

0 0 ACCEPT icmp -- * * 0.0.0.0/0 0.0.0.0/0 icmptype 3

0 0 ACCEPT icmp -- * * 0.0.0.0/0 0.0.0.0/0 icmptype 4

18 1488 ACCEPT icmp -- * * 0.0.0.0/0 0.0.0.0/0 icmptype 11

0 0 ACCEPT icmp -- * * 0.0.0.0/0 0.0.0.0/0 icmptype 12

0 0 ACCEPT icmp -- * * 0.0.0.0/0 0.0.0.0/0 icmptype 8

Ping a non-existent port on another machine so that we receive a ICMP diagnostic
responses:

root@tony-laptop:~/Firewall# ping 192.168.1.73 50

PING 50 (0.0.0.50) 56(124) bytes of data.

Tutorial – IPTABLES [Version 1-3]

24th March 2013 Tony Hill 33

^C

--- 50 ping statistics ---

5 packets transmitted, 0 received, 100% packet loss, time 4004ms

Examine the filter table. A number of parameter problem ICMP (Type 12) messages
are returned and accepted by the rule:

0 0 ACCEPT icmp -- * * 0.0.0.0/0 0.0.0.0/0 icmptype 3

0 0 ACCEPT icmp -- * * 0.0.0.0/0 0.0.0.0/0 icmptype 4

18 1488 ACCEPT icmp -- * * 0.0.0.0/0 0.0.0.0/0 icmptype 11
5 600 ACCEPT icmp -- * * 0.0.0.0/0 0.0.0.0/0 icmptype 12
0 0 ACCEPT icmp -- * * 0.0.0.0/0 0.0.0.0/0 icmptype 8

This demonstrates that the rules are working correctly and allowing ICMP response
messages into the computer.

6.9 Logging

It is possible to create user-defined chains within any of the tables in order to create
branched rules.

This section demonstrates how user-defined chains work and how they are used to
set up logging.

Delete the following rule from the INPUT chain:

15 4 240 ACCEPT icmp -- * * 0.0.0.0/0 0.0.0.0/0 icmptype 8

 Re-insert it using the -I argument with a new -j “jump” action of LOGACCEPT to
jump to the new chain that we create:

iptables -D INPUT 15

iptables -I INPUT 15 -p icmp --icmp-type echo-request -j LOGACCEPT

Create a user-defined chain called LOGACCEPT in the filter table. The -N signifies
“new”:

iptables -N LOGACCEPT

Create (Append) two new rules underneath the user-defined LOGACCEPT chain:

iptables -A LOGACCEPT -m limit --limit 5/min -j LOG --log-prefix "ICMP Allowed: " -

-log-level 7

iptables -A LOGACCEPT -j ACCEPT

When Rule 15 in the INPUT chain matches an ICMP echo request packet,
processing “jumps” to the LOGACCEPT chain. The first rule in the LOGACCEPT
chain has a target built-in action of -j LOG, which instructs iptables to log the event in
syslog. Because the action is LOG rather than ACCEPT or DROP, iptables logs the
packet and moves to the next rule, which has a target built-in action of ACCEPT to
permit the packet. If the second rule had a target action of DROP instead we would
log the packet and drop it.

Examine the filter table. Note the new, user-defined LOGACCEPT chain at the foot

Tutorial – IPTABLES [Version 1-3]

24th March 2013 Tony Hill 34

of the table:

root@tony-laptop:~/Firewall# iptables -nvL

Chain INPUT (policy DROP 14 packets, 1462 bytes)

 pkts bytes target prot opt in out source destination

 12 968 ACCEPT all -- lo * 0.0.0.0/0 0.0.0.0/0

 0 0 ACCEPT udp -- * * 0.0.0.0/0 0.0.0.0/0 udp spt:67 dpt:68

 0 0 ACCEPT udp -- eth0 * 192.168.1.0/24 0.0.0.0/0 udp dpt:69

 0 0 ACCEPT udp -- wlan0 * 192.168.1.0/24 0.0.0.0/0 udp dpt:69

 0 0 ACCEPT tcp -- eth0 * 192.168.1.0/24 0.0.0.0/0 tcp dpt:20

 0 0 ACCEPT tcp -- eth0 * 192.168.1.0/24 0.0.0.0/0 tcp dpt:21
 0 0 ACCEPT tcp -- wlan0 * 192.168.1.0/24 0.0.0.0/0 tcp dpt:20

 0 0 ACCEPT tcp -- wlan0 * 192.168.1.0/24 0.0.0.0/0 tcp dpt:21

 0 0 ACCEPT tcp -- eth0 * 192.168.1.0/24 0.0.0.0/0 tcp dpt:22
 0 0 ACCEPT tcp -- wlan0 * 192.168.1.0/24 0.0.0.0/0 tcp dpt:22

 0 0 ACCEPT icmp -- * * 0.0.0.0/0 0.0.0.0/0 icmptype 3

 0 0 ACCEPT icmp -- * * 0.0.0.0/0 0.0.0.0/0 icmptype 4

 0 0 ACCEPT icmp -- * * 0.0.0.0/0 0.0.0.0/0 icmptype 11

 0 0 ACCEPT icmp -- * * 0.0.0.0/0 0.0.0.0/0 icmptype 12

 0 0 LOGACCEPT icmp -- * * 0.0.0.0/0 0.0.0.0/0 icmptype 8

 0 0 ACCEPT udp -- eth0 * 192.168.1.0/24 0.0.0.0/0 udp dpt:137
 0 0 ACCEPT udp -- wlan0 * 192.168.1.0/24 0.0.0.0/0 udp dpt:137

 1 242 ACCEPT udp -- eth0 * 192.168.1.0/24 0.0.0.0/0 udp dpt:138

 0 0 ACCEPT udp -- wlan0 * 192.168.1.0/24 0.0.0.0/0 udp dpt:138

 30 3284 ACCEPT tcp -- eth0 * 192.168.1.0/24 0.0.0.0/0 tcp dpt:139

 0 0 ACCEPT tcp -- wlan0 * 192.168.1.0/24 0.0.0.0/0 tcp dpt:139

 0 0 ACCEPT tcp -- eth0 * 192.168.1.0/24 0.0.0.0/0 tcp dpt:445

 0 0 ACCEPT tcp -- wlan0 * 192.168.1.0/24 0.0.0.0/0 tcp dpt:445

 15 7153 ACCEPT all -- eth0 * 0.0.0.0/0 0.0.0.0/0 state

RELATED,ESTABLISHED

 0 0 ACCEPT all -- wlan0 * 0.0.0.0/0 0.0.0.0/0 state
RELATED,ESTABLISHED

Chain FORWARD (policy DROP 0 packets, 0 bytes)

 pkts bytes target prot opt in out source destination

Chain OUTPUT (policy ACCEPT 0 packets, 0 bytes)

 pkts bytes target prot opt in out source destination

Chain LOGACCEPT (1 references)

 pkts bytes target prot opt in out source destination

 0 0 LOG all -- * * 0.0.0.0/0 0.0.0.0/0

 limit: avg 5/min burst 5 LOG flags 0 level 7 prefix "ICMP Allowed: "

 0 0 ACCEPT all -- * * 0.0.0.0/0 0.0.0.0/0

The parameters that we applied to the first rule in the LOGACCEPT chain govern
how logging is performed.

The limit parameter stipulates that we only log 5 messages per minute with a
possible burst capability of a further 5 messages. This prevents large volumes of
traffic from swamping the logging mechanism causing log files to roll over frequently.

The logging level is 7, which is syslog level debug. We prefix the log entries with
“ICMP Allowed” so they are easy to identify in the log file.

Logging is carried out to the /var/log/syslog file.

Tutorial – IPTABLES [Version 1-3]

24th March 2013 Tony Hill 35

To prove that logging is working, ping the computer from another machine whilst
observing the syslog file with the “tail -f /var/log/syslog” command. The log messages
are generated and displayed correctly:

Mar 1 06:15:39 tony-laptop kernel: [32556.569396] ICMP Allowed: IN=eth0

OUT= MAC=00:1d:72:f8:99:80:00:1d:72:d6:ca:d2:08:00 SRC=192.168.1.73

DST=192.168.1.66 LEN=60 TOS=0x00 PREC=0x00 TTL=128 ID=9023 PROTO=ICMP

TYPE=8 CODE=0 ID=1 SEQ=5

Mar 1 06:15:41 tony-laptop kernel: [32557.579744] ICMP Allowed: IN=eth0

OUT= MAC=00:1d:72:f8:99:80:00:1d:72:d6:ca:d2:08:00 SRC=192.168.1.73

DST=192.168.1.66 LEN=60 TOS=0x00 PREC=0x00 TTL=128 ID=9024 PROTO=ICMP

TYPE=8 CODE=0 ID=1 SEQ=6

Mar 1 06:15:42 tony-laptop kernel: [32558.593662] ICMP Allowed: IN=eth0

OUT= MAC=00:1d:72:f8:99:80:00:1d:72:d6:ca:d2:08:00 SRC=192.168.1.73

DST=192.168.1.66 LEN=60 TOS=0x00 PREC=0x00 TTL=128 ID=9025 PROTO=ICMP

TYPE=8 CODE=0 ID=1 SEQ=7

Mar 1 06:15:43 tony-laptop kernel: [32559.607641] ICMP Allowed: IN=eth0

OUT= MAC=00:1d:72:f8:99:80:00:1d:72:d6:ca:d2:08:00 SRC=192.168.1.73

DST=192.168.1.66 LEN=60 TOS=0x00 PREC=0x00 TTL=128 ID=9027 PROTO=ICMP

TYPE=8 CODE=0 ID=1 SEQ=8

Examine the filter table. Note that the 4 x ICMP packets are counted both in the
INPUT chain that instigated the branch to the LOGACCEPT chain, and also in the
LOGACCEPT chain itself:

root@tony-laptop:~/Firewall# iptables -nvL

Chain INPUT (policy DROP 245 packets, 36364 bytes)

 pkts bytes target prot opt in out source destination

<snip>

 0 0 ACCEPT icmp -- * * 0.0.0.0/0 0.0.0.0/0 icmptype 3

 0 0 ACCEPT icmp -- * * 0.0.0.0/0 0.0.0.0/0 icmptype 4

 0 0 ACCEPT icmp -- * * 0.0.0.0/0 0.0.0.0/0 icmptype 11

 0 0 ACCEPT icmp -- * * 0.0.0.0/0 0.0.0.0/0 icmptype 12

 4 240 LOGACCEPT icmp -- * * 0.0.0.0/0 0.0.0.0/0 icmptype 8

<snip>

Chain LOGACCEPT (1 references)

 pkts bytes target prot opt in out source destination

 4 240 LOG all -- * * 0.0.0.0/0 0.0.0.0/0

limit: avg 5/min burst 5 LOG flags 0 level 7 prefix "ICMP Allowed: "

 4 240 ACCEPT all -- * * 0.0.0.0/0 0.0.0.0/0

This functionality is extremely powerful. It is possible to create branches to user-
defined chains for a number of rule conditions, not just logging.

In addition to controlling logging rates, the limit functions could be used on other
rules to rate limit specific connections. I have not tested this yet but it would certainly
be one way to rate limit DoS attacks, for example.

Tutorial – IPTABLES [Version 1-3]

24th March 2013 Tony Hill 36

6.10 Other Tables – The Mangle Table

The mangle table is used to modify packet headers either on input or just before
output.

In this example I am using the mangle table to change the DSCP value of ICMP
packets that I generate just before they exit the “eth0” interface. I only change the
DSCP values of those packets that have a source address of 192.168.1.66. The new
DSCP value is 14 decimal.

Create a rule in the mangle table. The mangle table is used because this table
supports packet header modification directives whereas the filter table does not. The
rule is configured under the POSTROUTING chain but it could also have been
configured under the OUTPUT chain.

iptables -t mangle -A POSTROUTING -p icmp -s 192.168.1.66 -j DSCP --set-dscp 14

Examine the mangle table:

root@tony-laptop:~/Firewall# iptables -t mangle -nvL

Chain PREROUTING (policy ACCEPT 6 packets, 403 bytes)

 pkts bytes target prot opt in out source destination

Chain INPUT (policy ACCEPT 6 packets, 403 bytes)

 pkts bytes target prot opt in out source destination

Chain FORWARD (policy ACCEPT 0 packets, 0 bytes)
 pkts bytes target prot opt in out source destination

Chain OUTPUT (policy ACCEPT 3 packets, 202 bytes)

 pkts bytes target prot opt in out source destination

Chain POSTROUTING (policy ACCEPT 3 packets, 202 bytes)

 pkts bytes target prot opt in out source destination

 0 0 DSCP icmp -- * * 192.168.1.66 0.0.0.0/0 DSCP set 0x0e

Ping a remote host:

root@tony-laptop:~/Firewall# ping 192.168.1.73

PING 192.168.1.73 (192.168.1.73) 56(84) bytes of data.

64 bytes from 192.168.1.73: icmp_req=1 ttl=128 time=1.44 ms

64 bytes from 192.168.1.73: icmp_req=2 ttl=128 time=1.17 ms

64 bytes from 192.168.1.73: icmp_req=3 ttl=128 time=1.15 ms

64 bytes from 192.168.1.73: icmp_req=4 ttl=128 time=1.14 ms

Examine the packets using Wireshark. Note the source IP of the packets, which
matches the filter. The Differentiated Services Field has been modified to DSCP
0x0e, which is 14 decimal.

Tutorial – IPTABLES [Version 1-3]

Figure 6-8: DSCP Modification

7 Deploying & Auto-Starting the Firewall

7.1 Step One

Create a script in your home directory called firewall1.conf. Use a combination of the
commands shown in this tutorial and your own firewall rules changing as required
interface names / numbers, IP addresses etc.

The section highlighted in red between the BEGIN INIT INFO and END INIT INFO
LABELS is mandatory and must be positioned right after the #! /bin/sh line. It must
be formatted exactly as shown. Please refer to the file /etc/init.d/skeleton to see a
template file.

#! /bin/sh

BEGIN INIT INFO

Provides: firewall1

Required-Start: $remote_fs $syslog

Required-Stop: $remote_fs $syslog
Default-Start: 2 3 4 5

Default-Stop: 0 1 6

Short-Description: Tony's firewall

Description: This file should be used to construct scripts to be

placed in /etc/init.d

END INIT INFO

Author: Tony - 23rd Feb 2013

PATH=/usr/local/sbin:/usr/local/bin:/sbin:/bin:/usr/sbin:/usr/bin

NAME=firewall1

DESC="Tony's firewall"

IPT="/sbin/iptables"

Tutorial – IPTABLES [Version 1-3]

24th March 2013 Tony Hill 38

DO NOT "set -e"

case "$1" in

 start)

 echo "Starting $DESC: $NAME"

Flush the tables (NAT & MANGLE not currently used but left for reference)

 $IPT -F INPUT

 $IPT -F OUTPUT
 $IPT -F FORWARD

 $IPT -F POSTROUTING -t nat

 $IPT -F PREROUTING -t nat

 $IPT -F PREROUTING -t mangle

Delete old and create new logging chains

 $IPT -X LOGACCEPT

 $IPT -X LOGDROP

 $IPT -N LOGACCEPT

 $IPT -N LOGDROP

Set default policy to drop everything but allow all OUTPUT

 $IPT -P INPUT DROP

 $IPT -P OUTPUT ACCEPT

 $IPT -P FORWARD DROP

#################

INPUT section #

#################

Accept traffic into the loopback interface

 $IPT -A INPUT -i lo -j ACCEPT

Accept services on "eth0" and "wlan0" - DHCP,DNS,TFTP,FTP,SSH,ICMP,CIFS

DHCP Client (67=bootps, 68=bootpc)

 $IPT -A INPUT -p udp --sport 67 --dport 68 -j ACCEPT

DHCP Server only on eth0 subnet 192.168.1.0/24

$IPT -A INPUT -i eth0 -p udp --sport 68 --dport 67 -s 192.168.1.0/24 -j ACCEPT

DNS Server

$IPT -A INPUT -p udp --dport 53 -j ACCEPT

$IPT -A INPUT -p tcp --dport 53 -j ACCEPT

TFTP on specific interfaces on LAN 192.168.1.0/24

 $IPT -A INPUT -i eth0 -p udp --dport 69 -s 192.168.1.0/24 -j ACCEPT

 $IPT -A INPUT -i wlan0 -p udp --dport 69 -s 192.168.1.0/24 -j ACCEPT

FTP on specific interfaces on LAN 192.168.1.0/24

PASSIVE FTP must have nf_conntrack_ftp module loaded in /etc/modules
Works in conjunction with --state ESTABLISHED, RELATED

 $IPT -A INPUT -i eth0 -p tcp --dport 21 -s 192.168.1.0/24 -j ACCEPT

 $IPT -A INPUT -i wlan0 -p tcp --dport 21 -s 192.168.1.0/24 -j ACCEPT

SSH on specific interfaces on LAN 192.168.1.0/24

 $IPT -A INPUT -i eth0 -p tcp --dport 22 -s 192.168.1.0/24 -j ACCEPT

 $IPT -A INPUT -i wlan0 -p tcp --dport 22 -s 192.168.1.0/24 -j ACCEPT

ICMP from anywhere (notice the logging)

 $IPT -A INPUT -p icmp --icmp-type destination-unreachable -j ACCEPT
 $IPT -A INPUT -p icmp --icmp-type source-quench -j ACCEPT

 $IPT -A INPUT -p icmp --icmp-type time-exceeded -j ACCEPT

 $IPT -A INPUT -p icmp --icmp-type parameter-problem -j ACCEPT

 $IPT -A INPUT -p icmp --icmp-type echo-request -j LOGACCEPT

CIFS - only on specific interfaces on LAN 192.168.1.0/24

NETBIOS Name Service (name resolution)

 $IPT -A INPUT -i eth0 -p udp --dport 137 -s 192.168.1.0/24 -j ACCEPT

Tutorial – IPTABLES [Version 1-3]

24th March 2013 Tony Hill 39

 $IPT -A INPUT -i wlan0 -p udp --dport 137 -s 192.168.1.0/24 -j ACCEPT

NETBIOS Datagram Service (BROWSER service)

 $IPT -A INPUT -i eth0 -p udp --dport 138 -s 192.168.1.0/24 -j ACCEPT

 $IPT -A INPUT -i wlan0 -p udp --dport 138 -s 192.168.1.0/24 -j ACCEPT

NETBIOS Session Service (data transfer legacy SMB/NETBIOS/TCP)

 $IPT -A INPUT -i eth0 -p tcp --dport 139 -s 192.168.1.0/24 -j ACCEPT

 $IPT -A INPUT -i wlan0 -p tcp --dport 139 -s 192.168.1.0/24 -j ACCEPT

Microsoft Directory Service (data transfer SMB/TCP)

 $IPT -A INPUT -i eth0 -p tcp --dport 445 -s 192.168.1.0/24 -j ACCEPT
 $IPT -A INPUT -i wlan0 -p tcp --dport 445 -s 192.168.1.0/24 -j ACCEPT

Accept *all* other safe TCP Established traffic - i.e. traffic that we originate

Putting this at the end allows all the rules above to count packets
 $IPT -A INPUT -i eth0 -m state --state ESTABLISHED,RELATED -j ACCEPT

 $IPT -A INPUT -i wlan0 -m state --state ESTABLISHED,RELATED -j ACCEPT

###################

FORWARD section #

###################
Possible future use

##################

OUTPUT section #

##################

Allow outgoing from local interfaces

We allow all OUTPUT anyway, but specifying entries shows packet counts per entry

 $IPT -A OUTPUT -o lo -j ACCEPT

 $IPT -A OUTPUT -o eth0 -j ACCEPT

 $IPT -A OUTPUT -o wlan0 -j ACCEPT

##################

LOGGING Accept #

##################

User defined chain

Use -m limit --limit 5/min to log only 5 records per minute to syslog

 $IPT -A LOGACCEPT -m limit --limit 5/min -j LOG --log-prefix "ICMP Allowed: " --

log-level 7

 $IPT -A LOGACCEPT -j ACCEPT

##################
LOGGING & Drop #

##################

User defined chain for future use

 $IPT -A LOGDROP -m limit --limit 5/min -j LOG --log-prefix "Disallowed: " --log-

level 7

 $IPT -A LOGDROP -j DROP

 echo "Done"

 ;;

 stop)
 echo "Disabled $DESC: $NAME - CAUTION! Re-start firewall soonest”

 $IPT -F INPUT

 $IPT -F OUTPUT

 $IPT -F FORWARD

 $IPT -F LOGACCEPT

 $IPT -F LOGDROP

 $IPT -P INPUT ACCEPT

 $IPT -P OUTPUT ACCEPT

 $IPT -P FORWARD ACCEPT

 echo "Done"
 ;;

 *)

 N=/etc/init.d/$NAME

 echo "Usage: $N {start|stop}" >&2

 exit 1
 ;;

esac

Tutorial – IPTABLES [Version 1-3]

24th March 2013 Tony Hill 40

exit 0

Read through the script carefully. The first thing it does is to flush the chains within
the tables and then deletes any existing user-defined chains in the default filter table.
It recreates the chains and sets the default policy on the INPUT and FORWARD
chains to DROP, much as we did earlier on.

All of the policies that I wish to implement are defined within the case start) and
case stop) stanzas. When the firewall is deployed to /etc/init.d, the script will
execute all of the start commands if the argument “start” is passed to the script, and
the stop commands if the argument “stop” is passed to the script.

When “stop” is passed to the script, the firewall it effectively turned off i.e. all of the
tables are flushed and the default policies changed back to ACCEPT allowing
everything in and out.

Tip: To save a copy of the running firewall at any given moment in time use the
iptables-save > yourfilename command. To restore this same configuration to the
firewall use the iptables-restore < yourfilename command.

7.2 Step Two

Copy the script to the /etc/init.d directory and call it whatever you want, taking care to
not overwrite any existing operating system files that may be called the same name.
I called it firewall1 for this reason.

cp $HOME/firewall1.conf /etc/init.d/firewall1

Change the permissions of the file as follows:

chmod ogu+x /etc/init.d/firewall1

7.3 Step Three

Use update-rc.d to deploy the script and update the System V “init” script links in the
/etc/rc<runlevel>.d directories. These scripts are run by “init” when it changes run
levels and are used to start and stop system services, usually at boot and shutdown
time.

Use the following command to update the “init” links:

update-rc.d firewall1 defaults 20

The defaults parameter causes the script to be started at run levels 2, 3, 4 and 5,
and stopped at run levels 0, 1 and 6. The 20 is the sequence number of the script
within those run levels.

If, for whatever reason, you wish to stop the script from loading at boot time, issue
the following command:

update-rc.d -f firewall1 remove

Tutorial – IPTABLES [Version 1-3]

You can apt-get install and use the sysv-rc-conf tool to verify that the script’s run
levels are correct:

Figure 7-1: SysV Run Levels

Once you've deployed the firewall, reboot the computer to double check that it has
loaded correctly and that all your policies are in place.

7.4 Step Four

Create a small bash script in your home directory that allows you to start and stop
the firewall easily when you are logged in.

If you edit the firewall1.conf file in your home directory to modify any of the rules,
running the bash script with the start argument will copy the file to the /etc/init.d
directory and cause the new policies to be applied immediately.

You do not need to repeat the update-rc.d steps.

A sample script is shown below. Remember to change its permissions to execute:

chmod u+x firewall.sh

Execute the script using either “start” or “stop” as arguments:

./firewall.sh start

./firewall.sh stop

Tutorial – IPTABLES [Version 1-3]

24th March 2013 Tony Hill 42

cat firewall.sh

#!/bin/bash

Script that stops or redeploys and starts the /etc/init.d script

Complain if no parameters passed

if ["$1" != "start"] && ["$1" != "stop"]; then

 echo "Start/Stop action not supplied!"

 exit

fi

action=$1

if ["$action" = "stop"]; then

 /etc/init.d/firewall1 $action

 if [$? != 0]; then echo "Firewall STOP failed"; exit; fi

 iptables -nvL

 echo -e "\nFirewall STOPPED successfully\n"

else

 cp /home/tony/Firewall/firewall1.conf /etc/init.d/firewall1

 if [$? != 0]; then echo "File copy to /etc/init.d failed"; exit; fi

 chmod o-wx /etc/init.d/firewall1

 if [$? != 0]; then echo "User Other permission change failed"; exit; fi

 chmod ug+rwx /etc/init.d/firewall1

 if [$? != 0]; then echo "User/Group permission change failed"; exit; fi

 /etc/init.d/firewall1 $action

 if [$? != 0]; then echo "Firewall START failed"; exit; fi

 iptables -nvL

 echo -e "\nFirewall STARTED successfully\n"

fi

This completes creation and deployment of the firewall and is the end of this tutorial.

