
MySQL Cluster Tutorial

O’Reilly MySQL Conference & Expo 2010, Apr. 12 2010.

Andrew Hutchings (Oracle)
Andrew Morgan (Oracle)
Geert Vanderkelen (Oracle)

This document is a handout for the MySQL Cluster Tutorial. Please also check the slides
which were shown turing the tutorial.

http://en.oreilly.com/mysql2010/public/schedule/detail/12438

 Copyright © 2010, Oracle and/or its affiliates. All rights reserved. 1/81

http://en.oreilly.com/mysql2010/public/schedule/detail/12438
http://en.oreilly.com/mysql2010/public/schedule/detail/12438

Introduction! 5

Virtual Machine! 5

Topics! 5

Speakers! 6

MySQL Cluster in short! 7

Transactions! 7

Installation and Configuration! 9

Release Model and Versioning! 9

Download! 9

Installation! 9

Locations! 10

Configuration! 11

Starting & Using MySQL Cluster! 13

Starting MySQL Cluster! 13

Start Management Node(s)! 13

Start Data Nodes! 14

Start MySQL Server(s)! 14

Create a Cluster table! 15

Exercise:! 16

Administer MySQL Cluster! 17

Common Commands! 17

Data Node Logs! 20

MySQL Cluster Manager! 23

MySQL Cluster Manager – Architecture and Use! 23

MySQL Cluster Manager Model & Terms! 25

Using MySQL Cluster Manager – a worked example! 26

Single host exercise! 33

Fault tolerance ! 34

MySQL Server! 34

Heartbeats! 34

Online Backup! 36

Tools! 36

Backing up the data, online! 36

Backing up meta data! 36

Restoring using ndb_restore! 37

ndb_restore can do more! 38

NDB Info! 39

 Copyright © 2010, Oracle and/or its affiliates. All rights reserved. 2/81

ndbinfo Data Node Statistics! 39

ndbinfo.counters! 39

ndbinfo.logbuffers! 40

ndbinfo.logspaces! 40

ndbinfo.memoryusage! 41

ndbinfo.nodes! 41

ndbinfo.transporters! 42

Exercise! 42

NDB API! 43

NDB API Overview! 43

Example NDB API Code! 44

MySQL Cluster Connector for Java ! 49

Technical Overview! 49

ClusterJ! 50

ClusterJPA! 52

Pre-requisites for Tutorial! 54

ClusterJ Tutorial! 55

Compiling and running the ClusterJ tutorial code! 61

OpenJPA/ClusterJPA Tutorial! 61

Compiling and running the ClusterJPA tutorial code! 67

Exercise! 67

Schema considerations! 68

Develop for MySQL Cluster! 68

Re-normalization! 68

Denormalization! 69

Primary Keys and Unique Indexes! 70

Historical Data! 70

Scaling and Performance! 71

MySQL Nodes! 71

NDBAPI! 71

Data Nodes! 71

Other Issues! 71

Online Add Node! 72

Geographical Replication! 73

Binary Log Format! 73

Enabling Binary Logging! 74

The LOST_EVENT incident & solution! 75

Setting up Replication between Clusters! 76

 Copyright © 2010, Oracle and/or its affiliates. All rights reserved. 3/81

Handling LOST_EVENTS ! 77

Switching Replication Channel! 78

Security! 81

MySQL Authentication! 81

 Copyright © 2010, Oracle and/or its affiliates. All rights reserved. 4/81

Introduction

MySQL Cluster is a tool which could help make your data Highly Available. This tutorial
will help you run a MySQL Cluster, show how to manage it and discuss various topics such
as performance, backups and schema considerations.

Before going any further we need to setup the Virtual Machine (VM) running under
VirtualBox. You can install MySQL Cluster yourself following instructions found in section
Installation and Configuration, but we strongly suggest to stick to the filesystem
layout and configuration files (found on the DVD).

Virtual Machine

You have been given a DVD which contains VirtualBox and a Virtual Machine. The VM will
boot Ubuntu (Linux Distribution) with all software pre-installed and configured.

To get you going, do the following:

1. Mount or open the DVD
2. Install (or upgrade) VirtualBox. The latest version is included on the DVD in the folder

software/.

3. Copy the clustervm/ and config/ folder to your hard drive. Location does not matter,

but make sure you copy the complete folder and all its contents.
4. Start VirtualBox: from the File-menu choose ‘Import Appliance’
5. The ‘Appliance Wizard’ will show. Locate the Ubuntu 9.10.ovf file you copied from the

DVD and follow the steps. No options should be changed.

Topics

Installation and Configuration

What to download, how to install and configure MySQL Cluster.

Running Nodes and Your First Table

Starting MySQL Cluster and creating your first NDB table.

Administer MySQL Cluster

Managing and monitoring MySQL Cluster.

MySQL Cluster Manager

We’ll introduce a new tool to manage MySQL Cluster.

Fault Tolerance

Explains what happens when some node fails.

Online Backup

How to backup your data and meta data.

NDB Info

Getting information out of MySQL Cluster made easy.

NDBAPI

Coding for Cluster using NDB API, and ‘No SQL’.

MySQL Cluster Connector for Java

Introduction and talking to Cluster directly using Java.

 Copyright © 2010, Oracle and/or its affiliates. All rights reserved. 5/81

Schema Considerations

A few tips when planning to develop for or convert to MySQL Cluster

Scaling and Performance

How you can scale and get more performance.

Geographical Replication

Making your MySQL Cluster itself highly available.

Security

Discusses how you can secure your MySQL Cluster

Speakers

Andrew Hutchings

MySQL Support Engineer

“Andrew Hutchings is a MySQL Support Engineer for Oracle Corporation specialising
in MySQL Cluster and C/C++ APIs. He is based in the United Kingdom and has
worked for MySQL/Sun since 2008. Before joining Sun he was the Technical
Architect, Senior Developer and DBA for a major UK magazine publisher. In his
spare time Andrew develops various bug fixes and features for MySQL and MySQL
Cluster.”

Andrew Morgan

MySQL Product Manager

“Andrew is the MySQL Product Manager responsible for High Availability Solutions
– in particular MySQL Cluster and replication. He is based in United Kingdom and
has worked for MySQL/Sun/Oracle since February 2009.Before joining MySQL he
was responsible for delivering High Availability telecoms applications which is where
he became exposed to MySQL Cluster – replacing proprietary and other 3rd party
databases. His primary roles in MySQL are working with engineers to make sure that
MySQL Cluster & replication evolve to meet the needs of their users as well as
spreading the word on the what people can get from these technologies.”

Geert Vanderkelen

MySQL Support Engineer

“Geert is a member of the MySQL Support Team at Sun Microsystems. He is based in
Germany and has worked for MySQL AB since April, 2005.
Before joining MySQL he worked as developer, DBA and SysAdmin for various
companies in Belgium and Germany.
Today Geert specializes in MySQL Cluster and works together with colleagues around
the world to ensure continued support for both customers and community. He’s also
the maintainer of Sun’s MySQL Connector/Python.”

 Copyright © 2010, Oracle and/or its affiliates. All rights reserved. 6/81

MySQL Cluster in short

• MySQL Cluster is a tool to help you keep your data available

• It consists of various processes called Nodes which should be setup in a shared-nothing
environment.

• Data Nodes: where data, table and index information is stored in-memory and
optionally on disk (for non indexed data)
During the tutorial you will notice NoOfReplicas=2 in the cluster configuration. This

means that data is stored 2 times with cluster. If you have 2 data nodes, the data is
partitioned in two parts. Each partitions has a replica on another data node. This way, in
a 2 data node setup, each data node has a copy of all the data.

• SQL Nodes or MySQL servers: using the NDBCluster engine, you can use SQL to update
data and retrieve information from the Data Nodes through your network (using TCP/IP)

• Management Nodes: used for management and monitoring

• API Nodes: application written using NDB API (SQL Nodes are an example)

• The NDBCluster engine is transaction-safe, ACID. Durability through checkpointing.

Transactions

Lets have a look how data is stored inside MySQL Cluster. We’ll use a table which was
created using the ENGINE table option set to NDBCluster:

CREATE TABLE attendees (
id INT UNSIGNED NOT NULL AUTO_INCREMENT,
email VARCHAR(200) NOT NULL,
PRIMARY KEY (id)
) ENGINE=NDBCluster

The Request

Your web, Java or Python application talks to a MySQL server and asks to store a new
attendee. It does this by first starting a transaction:

START TRANSACTION

The Transaction

The MySQL server, or SQL Node, is opening a transaction on behave of the application and
gets a Transaction Coordinator assigned. This coordinator is actually a Data Node which is
chosen in a Round-Robin way.

The Commit

The application is done with sending the data and issues the COMMIT command. The MySQL

server passes on the request to the transaction coordinator and waits for the result.

The Storage

The Data Node acting as coordinator starts the 2-Phase Protocol. It first the other nodes
whether they are ready to get the changes. When it gets an OK from all (and from itself), it
says all to actually do the commit.

 Copyright © 2010, Oracle and/or its affiliates. All rights reserved. 7/81

The Acknowledgment

The tuple got stored safely on the data nodes and the transaction coordinator tells the SQL
Node that the transaction succeeded.
The MySQL server, still talking to the application which issued the initial request, gives an
OK.

What if it fails?

When the transaction coordinator, the data node responsible for the transaction, is
noticing a problem, it will do a roll back.
The application will receive an error and is responsible for taking action. If it is a
temporary problem, it can, for example, to try again.

 Copyright © 2010, Oracle and/or its affiliates. All rights reserved. 8/81

Installation and Configuration

In this section we discuss how to install MySQL Cluster and configure it.

Release Model and Versioning

MySQL Cluster is developed and maintained at a different pace than the normal MySQL
server. Having both separate allows to release more often and independently.
With the new release model came a new versioning scheme. Here is an overview of MySQL
Cluster versions with their full version:

MySQL Cluster .. full version

6.3.33 mysql-5.1.44 ndb-6.3.33

7.0.14 mysql-5.1.44 ndb-7.0.14

7.1.2a mysql-5.1.41 ndb-7.1.2beta

Download

Just like the regular MySQL releases, MySQL Cluster can be downloaded from the
Developer Zone on mysql.com: http://dev.mysql.com/downloads/cluster/.
Here is an example of the tar-distribution for 32-bit Linux platforms, the one used in this
tutorial:

mysql-cluster-gpl-7.1.2a-beta-linux-i686-glibc23.tar.gz

Installation

You can install MySQL Cluster the same way you install a regular MySQL server. You are
free to place it where ever you like, but the more ‘default’ on UNIX-like systems, is in
/usr/local.

Here are instructions for installing MySQL Cluster on a Linux 32-bit platform.

shell> cd /usr/local
shell> tar xzf mysql-cluster-gpl-7.0.13-linux-i686-glibc23.tar.gz
shell> ln -s mysql-cluster-gpl-7.0.13-linux-i686-glibc23 mysql

If you want more details, see the section ‘Installing MySQL from Generic Binaries on
Unix/Linux’ in the MySQL Manual:
http://dev.mysql.com/doc/refman/5.1/en/installing-binary.html

 Copyright © 2010, Oracle and/or its affiliates. All rights reserved. 9/81

http://dev.mysql.com/doc/refman/5.1/en/installing-binary.html
http://dev.mysql.com/doc/refman/5.1/en/installing-binary.html
http://dev.mysql.com/downloads/cluster/
http://dev.mysql.com/downloads/cluster/

Lets look at some files which are useful for daily usage of MySQL Cluster:

/usr/local/mysql/

bin/mysql MySQL command-line client tool

bin/mysqld MySQL server
Use the mysqld_safe to start the MySQL server. To see all
the options available use:

 shell> mysqld --help --verbose | less

bin/mysqldump Schema and data backup
For MySQL Cluster you’ll need this to backup schema,
stored procedures, etc.. For data you want to use
ndb_restore.

bin/mysqld_safe MySQL server startup script
Use this to start the MySQL server.

bin/ndbd Data Node daemon

bin/ndbmtd Data Node daemon, multi-threaded

bin/ndb_mgm MySQL Cluster management client tool

bin/ndb_mgmd Management Node daemon

bin/ndb_restore Restore MySQL Cluster backup

You can use the --help option for the above application to show their options.

Locations

After the installation of MySQL Cluster we need to define where the data is going to be
stored. For this tutorial we’ll use some subdirectories in /opt/mysqlcluster/.

/opt/mysqlcluster/opt/mysqlcluster

/ndb Data directory for MySQL Cluster

/ndb_Slave Data Directory for Slave MySQL Cluster

/mysql_A Data directory for first MySQL server (mysqld)

/mysql_B Data directory for second MySQL server (mysqld)

my_A.cnf Option files for first MySQL server

my_B.cnf Option file for second MySQL server

config.ini Configuration file for MySQL Cluster

/mysql_Slave Data directory for Slave MySQL Cluster

 Copyright © 2010, Oracle and/or its affiliates. All rights reserved. 10/81

my_Slave.cnf Configuration file Slave MySQL server

Configuration

There are two configuration files needed: one for MySQL Cluster (config.ini) and the
options file for the regular MySQL server (my.cnf). The first default location for both is
/etc but it recommended to put them into a mysql subdirectory, which is also read by

default: /etc/mysql/.

For this tutorial we'll be putting the configuration files under /opt/mysqlcluster.

First MySQL Server

File /opt/mysqlcluster/my_A.cnf:

[mysqld]
datadir = /opt/mysqlcluster/mysql_A
socket = /tmp/mysql_A
port = 3306
log_bin = master_A_binary
server_id = 1
ndbcluster

Second MySQL Server

File /opt/mysqlcluster/my_B.cnf:

[mysqld]
datadir = /opt/mysqlcluster/mysql_B
socket = /tmp/mysql_B
port = 3306
log_bin = master_B_binary
server_id = 2
ndbcluster

Slave MySQL Server

File /opt/mysqlcluster/my_B.cnf:

[mysqld]
datadir=/opt/mysqlcluster/mysql_Slave
port=3308
socket=/tmp/mysql_Slave
log_bin = master_Slave_binlog
server_id = 90
binlog_format = MIXED
ndbcluster
ndb_connectstring = localhost:1187

 Copyright © 2010, Oracle and/or its affiliates. All rights reserved. 11/81

Configuration of MySQL Cluster

File /opt/mysqlcluster/config.ini:

[ndbd default]
NoOfReplicas = 2
DataMemory = 80M
IndexMemory = 10M
DataDir = /opt/mysqlcluster/ndb

[ndb_mgmd default]
DataDir = /opt/mysqlcluster/ndb

[tcp default]

[ndb_mgmd]

Id = 1
HostName = localhost

[ndbd]
Id = 3
HostName = localhost

[ndbd]
Id = 4
HostName = localhost

[mysqld]
Id = 20
HostName = localhost

[mysqld]
Id = 21
HostName = localhost

[mysqld]
Id = 22
HostName = localhost

[mysqld]
Id = 23
HostName = localhost
[api]
[api]
[api]
[api]

Configuration of MySQL Cluster

File /opt/mysqlcluster/

config_Slave.ini:

[ndbd default]
NoOfReplicas = 1
DataMemory = 80M
IndexMemory = 10M
DataDir = /opt/mysqlcluster/ndb_Slave

[ndb_mgmd default]
PortNumber = 1187
DataDir = /opt/mysqlcluster/ndb_Slave

[tcp default]

[ndb_mgmd]
Id = 1
HostName = localhost

[ndbd]
Id = 3
HostName = localhost

[mysqld]
Id = 20
HostName = localhost

[api]
[api]
[api]
[api]

 Copyright © 2010, Oracle and/or its affiliates. All rights reserved. 12/81

Starting & Using MySQL Cluster

Starting MySQL Cluster

The nodes (processes) should be started in this order:

1. Management Node(s)
ndb_mgmd

2. Data Nodes
ndbd or ndbmtd

3. MySQL Server(s)
mysqld

Start Management Node(s)

192.168.0.3: ndb_mgmd --initial -f conf/config.ini –configdir=/home/billy/mysql/
7_0_6/conf
192.168.0.4: ndb_mgmd --initial -f conf/config.ini –configdir=/home/billy/mysql/
7_0_6/conf
192.168.0.3: ndb_mgm

 Copyright © 2010, Oracle and/or its affiliates. All rights reserved. 13/81

ndb_mgm> show
Connected to Management Server at: localhost:1186
Cluster Configuration

[ndbd(NDB)] 2 node(s)
id=1 (not connected, accepting connect from 192.168.0.3)
id=2 (not connected, accepting connect from 192.168.0.4)

[ndb_mgmd(MGM)] 2 node(s)
id=101 @192.168.0.3 (mysql-5.1.34 ndb-7.0.6)
id=102 (not connected, accepting connect from 192.168.0.4)

[mysqld(API)] 2 node(s)
id=51 (not connected, accepting connect from 192.168.0.3)
id=52 (not connected, accepting connect from 192.168.0.4)

Start Data Nodes

192.168.0.3: ndbd -c localhost:1186
192.168.0.4: ndbd -c localhost:1186
192.168.0.3: ndb_mgm

ndb_mgm> show
Connected to Management Server at: 192.168.0.4:1186
Cluster Configuration

[ndbd(NDB)] 2 node(s)
id=1 @127.0.0.1 (mysql-5.1.34 ndb-7.0.6, Nodegroup: 0, Master)
id=2 @192.168.0.4 (mysql-5.1.34 ndb-7.0.6, Nodegroup: 0)

[ndb_mgmd(MGM)] 2 node(s)
id=101 (not connected, accepting connect from 192.168.0.3)
id=102 @192.168.0.4 (mysql-5.1.34 ndb-7.0.6)

[mysqld(API)] 2 node(s)
id=51 (not connected, accepting connect from 192.168.0.3)
id=52 (not connected, accepting connect from 192.168.0.4)

Note: only use the --intial option when starting the data nodes for the very first time as

it erases any existing data in the database!

Wait until all data nodes have started before the next step.

Start MySQL Server(s)

192.168.0.3: mysqld --defaults-file=conf/my.1.conf &
192.168.0.4: mysqld --defaults-file=conf/my.2.conf &
192.168.0.3: ndb_mgm

 Copyright © 2010, Oracle and/or its affiliates. All rights reserved. 14/81

ndb_mgm> show
Connected to Management Server at: localhost:1186
Cluster Configuration

[ndbd(NDB)]	2 node(s)
id=1 @127.0.0.1 (mysql-5.1.34 ndb-7.0.6, Nodegroup: 0, Master)
id=2 @192.168.0.4 (mysql-5.1.34 ndb-7.0.6, Nodegroup: 0)

[ndb_mgmd(MGM)]	 2 node(s)
id=101 @127.0.0.1 (mysql-5.1.34 ndb-7.0.6)
id=102 @127.0.0.1 (mysql-5.1.34 ndb-7.0.6)

[mysqld(API)]	 2 node(s)
id=51 @192.168.0.3 (mysql-5.1.34 ndb-7.0.6)
id=52 @192.168.0.4 (mysql-5.1.34 ndb-7.0.6)

Create a Cluster table

192.168.0.3: mysql -h localhost -P 3306

mysql> use test
Database changed

mysql> create table assets (name varchar(30) not null primary key,
 -> value int) engine=ndb;
Query OK, 0 rows affected (0.99 sec)

mysql> insert into assets values ('Car','1900');
Query OK, 1 row affected (0.03 sec)

mysql> select * from assets;
+------+-------+
| name | value |
+------+-------+
| Car | 1900 |
+------+-------+
1 row in set (0.00 sec)

Now check that the same data can be accessed from the second MySQL Server:

192.168.0.3: mysql -h 192.168.0.4 -P 3306

mysql> use test
Database changed
mysql> select * from assets;
+------+-------+
| name | value |
+------+-------+
| Car | 1900 |
+------+-------+
1 row in set (0.00 sec)

 Copyright © 2010, Oracle and/or its affiliates. All rights reserved. 15/81

Exercise:

Using the configuration files already created in previous exercise (all nodes on a single
host):

1. Start the management nodes
2. Check the status
3. Start the data nodes and wait for them to start
4. Start the MySQL Servers
5. Connect to a MySQL Server, create a Cluster table (engine=ndb)
6. Add a tuple
7. Check the data is visible when using the other MySQL Server.

 Copyright © 2010, Oracle and/or its affiliates. All rights reserved. 16/81

Administer MySQL Cluster

MySQL Cluster has a command line tool to talk directly to the management server to
obtain information and execute basic functions. It also has a verbose logging system which
can help diagnose many problems with the cluster.

NDB_MGM

A key tool for running basic administration tasks is ndb_mgm. This is a command line tool to

send basic commands to the cluster. It communicates to the management nodes using an
unsecured port with no authentication (take note this should be done behind a firewall or
private network).
To invoke this tool simply run:

shell> ndb_mgm

If you are not running it locally to the management node then you will need to give it a
connect string:

shell> ndb_mgm --ndb-connectstring=192.168.1.10

You can also execute a one-time command with this tool rather than getting a command
prompt using:

shell> ndb_mgm -e 'SHOW'

Commands in ndb_mgm almost all follow a common syntax. Many commands require
node IDs, some do not, so the syntax is typically as follows:

ndb_mgm> [node_id] {command} [parameters]

The node_id can be any single node ID or the keyword 'ALL' to send it to all data nodes.

Common Commands

SHOW

This command gives a quick overview of the status of all the nodes, whether or not they are
connected and up/down.
For example:

ndb_mgm> show
Cluster Configuration

[ndbd(NDB)]	2 node(s)
id=2	 @127.0.0.1 (mysql-5.1.41 ndb-7.1.2, Nodegroup: 0, Master)
id=3	 @127.0.0.1 (mysql-5.1.41 ndb-7.1.2, Nodegroup: 0)

[ndb_mgmd(MGM)]	 1 node(s)
id=1	 @127.0.0.1 (mysql-5.1.41 ndb-7.1.2)

[mysqld(API)]	 2 node(s)
id=4	 @127.0.0.1 (mysql-5.1.41 ndb-7.1.2)
id=5 (not connected, accepting connect from any host)

If the data nodes are currently starting you will see this reflected in this status as follows:

[ndbd(NDB)]	2 node(s)
id=2	 @127.0.0.1 (mysql-5.1.41 ndb-7.1.2, starting, Nodegroup: 0, Master)
id=3	 @127.0.0.1 (mysql-5.1.41 ndb-7.1.2, starting, Nodegroup: 0)

 Copyright © 2010, Oracle and/or its affiliates. All rights reserved. 17/81

It is worth noting that whilst all the data nodes are in this phase and the cluster is not
officially started API nodes will not be allowed to connect, even if they are started, so these
will show 'not connected'.

STATUS

This command gives a more detailed status report for an individual node, as such it
requires a node ID (or the 'ALL' keyword).

For example, during a cluster start:

ndb_mgm> 2 status
Node 2: starting (Last completed phase 3) (mysql-5.1.41 ndb-7.1.2)

With the 'ALL' keyword on a started cluster:

ndb_mgm> all status
Node 2: started (mysql-5.1.41 ndb-7.1.2)
Node 3: started (mysql-5.1.41 ndb-7.1.2)

Note that the 'ALL' keyword only means all data nodes, not all nodes. This command can,

however, be used with any node type.
For example, lets ask for the management node's status:

ndb_mgm> 1 status
Node 1: connected (Version 7.1.2)

STOP

The STOP command is used to shutdown an individual data or management node cleanly or

stop all the data nodes. For example:

ndb_mgm> 2 stop
Node 2: Node shutdown initiated
Node 2: Node shutdown completed.
Node 2 has shutdown.
This command will not let you do an action which will terminate other nodes too
(unless 'ALL' is used). So with node 2 down:

ndb_mgm> 3 stop
Node 3: Node shutdown aborted
Shutdown failed.
* 2002: Stop failed
* Node shutdown would cause system crash: Permanent error: Application error

So with 'ALL STOP' with all data nodes running again:

ndb_mgm> all stop
Executing STOP on all nodes.
Node 2: Cluster shutdown initiated
Node 3: Cluster shutdown initiated
Node 2: Node shutdown completed.
Node 3: Node shutdown completed.
NDB Cluster has shutdown.

RESTART

The RESTART command is very much like STOP but it starts the node again. This command

does not always work as expected, so in general we recommend using with caution. When
it does work you should expect output similar to this:

 Copyright © 2010, Oracle and/or its affiliates. All rights reserved. 18/81

ndb_mgm> 2 restart
Node 2: Node shutdown initiated
Node 2: Node shutdown completed, restarting, no start.
Node 2 is being restarted

ndb_mgm> Node 2: Started (version 7.1.2)

START BACKUP

This command initiates a cluster backup. This is covered in more detail in the 'Online
Backup' section of this document.
It can basically be executed using:

ndb_mgm> start backup
Waiting for completed, this may take several minutes
Node 3: Backup 1 started from node 1
Node 3: Backup 1 started from node 1 completed
 StartGCP: 474 StopGCP: 477
 #Records: 2053 #LogRecords: 0
 Data: 50312 bytes Log: 0 bytes

There are additional parameters for this command too. These can change the backup
number (normally sequential), whether or not the client should wait for it to complete and
whether the snapshot should be consistent to the point of the start of the backup, or end of
the backup. So:

START BACKUP [backup_id] [wait_option] [snapshot_option]
wait_option:
WAIT {STARTED | COMPLETED} | NOWAIT
snapshot_option:
SNAPSHOTSTART | SNAPSHOTEND

The default is:

START BACKUP {next_backup_id} WAIT COMPLETED SNAPSHOTEND

REPORT

There are currently two reports you can get using this command, BACKUPSTATUS and

MEMORYUSAGE. Although shorter versions of these names can be used. For example:

ndb_mgm> all report memory
Node 2: Data usage is 0%(22 32K pages of total 2560)
Node 2: Index usage is 0%(16 8K pages of total 2336)
Node 3: Data usage is 0%(22 32K pages of total 2560)
Node 3: Index usage is 0%(16 8K pages of total 2336)

DUMP

This is probably the most dangerous command and should not be used on a production
cluster. The developers added dump codes in various cluster components to get
information out or trigger an action. If there are any results for the code these are sent to
the management node's log file. Using the wrong number for a dump code can easily take
down an entire cluster. One example is the dump code '1000' which does the same as

REPORT MEMORYUSAGE, but it is recorded in the management node log instead:

ndb_mgm> all dump 1000
Sending dump signal with data:
0x000003e8
Sending dump signal with data:
0x000003e8

 Copyright © 2010, Oracle and/or its affiliates. All rights reserved. 19/81

In the management node log:

[MgmtSrvr] INFO -- Node 2: Data usage is 0%(22 32K pages of total 2560)
[MgmtSrvr] INFO -- Node 2: Index usage is 0%(16 8K pages of total 2336)
[MgmtSrvr] INFO -- Node 2: Resource 0 min: 2602 max: 4935 curr: 1694
[MgmtSrvr] INFO -- Node 2: Resource 3 min: 3144 max: 3144 curr: 606
[MgmtSrvr] INFO -- Node 2: Resource 5 min: 1152 max: 1152 curr: 1088
[MgmtSrvr] INFO -- Node 3: Data usage is 0%(22 32K pages of total 2560)
[MgmtSrvr] INFO -- Node 3: Index usage is 0%(16 8K pages of total 2336)
[MgmtSrvr] INFO -- Node 3: Resource 0 min: 2602 max: 4935 curr: 1694
[MgmtSrvr] INFO -- Node 3: Resource 3 min: 3144 max: 3144 curr: 606
[MgmtSrvr] INFO -- Node 3: Resource 5 min: 1152 max: 1152 curr: 1088

Cluster Log

The management node keeps a log of the state of all the nodes, such as when they connect
and disconnect, when checkpointing happens and so on. It can be found on the
management node's file system with the filename ndb_{node_id}_cluster.log, where

node_id is the management node's ID.

The verbosity level for logging can be set using the CLUSTERLOG ndb_mgm command as

follows:

node_id CLUSTERLOG category=threshold

Threshold is an integer between 0 and 15, the following table is a list of categories and their
default thresholds:

Category Default threshold

STARTUP 7

SHUTDOWN 7

STATISTICS 7

CHECKPOINT 7

NODERESTART 7

CONNECTION 7

ERROR 15

INFO 7

Data Node Logs

The data nodes all have their own logs which are mainly aimed at diagnosing faults with
the nodes. There are typically 3 types of log files. The first a stdout log which stores basic

information on things such as the node watchdog and memory allocation. Then there is the
error log which stores information about node failures. Finally there is the trace files
which stores signal data about each failure in the error log.

Out Log

The stdout log is named ndb_{node_id}_out.log. This normally will only show

information about the node starting and stopping but can also contain information related

 Copyright © 2010, Oracle and/or its affiliates. All rights reserved. 20/81

to load problems such as timing issues or watchdog problems. It also contains basic
information about a node failure if it occurs.

Error Log

This by default records the last 25 node failures which occurred on the node. The 25 figure
can be changed using MaxNoOfSavedMessages in config.ini. Each entry in the error log

points to a corresponding trace log (or set of trace logs for ndbmtd). This file is named

ndb_{node_id}_error.log.

Trace Log

The trace log contains low level details about the execution history for the node prior to the
crash including a signal log. This is very complicated to read and it is recommended this
information is passed to MySQL Support. These files are named
ndb_{node_id}_trace.log.{trace_id}[_t{thread_id}].

Data Node File System

Data nodes have a their own ‘filesystem’ which is a collection of files, most of which are
stored in a ndb_{node_id}_fs directory in the data node's DataDir by default. Most of this

is checkpoint data, which is essential so that a node failure does not mean data loss.

Local CheckPoint

Every so often a complete dump of the DataMemory is made to disk, this is called a Local
CheckPoint (or LCP).
The calculation used to figure out how often this happens is a little complex. The setting is
TimeBetweenLocalCheckpoints but it is not time based at all. It is calculated by

x = (4*2y). Where x is the number of bytes of write operations since the last LCP and y is
TimeBetweenLocalCheckpoints. In most cases the default is fine (20, which works out to

4MB).

The speed at which this is written to disk is controlled by DiskCheckpointSpeed. This is

10MB/sec by default and is not recommended to be increased unless you have really fast
disks as this can limit time-sensitive operations such as Global CheckPoints.

Global CheckPoint

Creating an LCP is fine, but data is still being written in mean time. This data needs storing
to disk too to minimize the risk of data loss if all nodes go down. This comes in the form of
a redo log. Every commit is also recorded to the redo log which is committed to disk
synchronously across all nodes using a Global CheckPoint (GCP). By default a GCP
happens every 2 seconds using the TimeBetweenGlobalCheckpoints setting. If the node

cannot write all the redo data to disk since the last GCP in 2 seconds then the node will
intentionally fail to prevent the risk of large data loss.

Redo data is stored in the fragment log files, controlled using NoOfFragmentLogFiles and

FragmentLogFileSize. There are 4 sets of fragment log files so the former setting should

be multiplied by 4 when calculating how much data this will use. The fragment log files
must be large enough to store all the redo between two LCPs or again, the node will fail to
stop potential data loss.

Undo Log

If you use disk data there is the addition of the undo log which needs creating before the
disk data files. This stores all the disk changes since the last LCP so that they can be rolled
back before the redo is applied.

 Copyright © 2010, Oracle and/or its affiliates. All rights reserved. 21/81

Online Backup

By default these is stored in the BACKUP subdirectory of the DataDir. They are covered in
more detail in the 'Online Backup' section of this document.

 Copyright © 2010, Oracle and/or its affiliates. All rights reserved. 22/81

MySQL Cluster Manager

MySQL Cluster Manager – Architecture and Use

MySQL Cluster Manager Architecture

MySQL Cluster Manager is implemented as a set of agents – one running on each physical
host that will contain MySQL Cluster nodes (processes) to be managed. The administrator
connects the regular mysql client to any one of these agents and then the agents each
communicate with each other. By default, port 1862 is used to connect to the agents. An
example consisting of 4 host machines together with the mysql client running on a laptop
is shown in Figure 1.

Figure 1: MySQL Cluster Manager Agents running on each host

The agents work together to perform operations across the nodes making up the Cluster,
each Cluster dealing with its local nodes (those processes running on the same host). For
example, if a data node, management node or MySQL Server on host X fail, then the
process will be restarted by the agent running on host X.

As another example, in the event of an upgrade operation the agents co-operate to ensure
that each node is upgraded in the correct sequence, but it is always the local agent that will
actually perform the upgrade to a specific node.

 Copyright © 2010, Oracle and/or its affiliates. All rights reserved. 23/81

To upgrade MySQL Cluster Manager, all agents can be stopped and new ones started
(using the new software version) with no impact to the continuing operation of the MySQL
Cluster database.

Changes from Previous Approaches to Managing MySQL Cluster

When using MySQL Cluster Manager to manage your MySQL Cluster deployment, the
administrator no longer edits the configuration files (for example config.ini and my.cnf);

instead, these files are created and maintained by the agents. In fact, if those files are
manually edited, the changes will be overwritten by the configuration information which is
held within the agents. Each agent stores all of the cluster configuration data, but it only
creates the configuration files that are required for the nodes that are configured to run on
that host. An example of this is shown in Figure 2 below.

Figure 2: Configuration files created on each host

Similarly when using MySQL Cluster Manager, management actions must not be
performed by the administrator using the ndb_mgm command (which directly connects to

the management node meaning that the agents themselves would not have visibility of any
operations performed with it).

The introduction of MySQL Cluster manager does not remove the need for management
nodes; in particular they continue to perform a number of critical roles:

• When data nodes start up (or are restarted) they connect to the management node(s) to
retrieve their configuration data (the management node in turn fetches that data from
the configuration files created by the agents);

• When stopping or restarting a data node through MySQL Cluster Manager, the state
change is actually performed by the management node;

 Copyright © 2010, Oracle and/or its affiliates. All rights reserved. 24/81

• The management node(s) can continue to act as arbitrators (avoiding a split-brain
scenario). For this reason, it is still important to run those processes on separate hosts
from the data nodes;

• Some reporting information (for example, memory usage) is not yet available in the
Cluster Manager and can still be performed using the ndb_mgm tool.

When using MySQL Cluster Manager, the 'angel' processes are no longer needed (or
created) for the data nodes, as it becomes the responsibility of the agents to detect the
failure of the data nodes and recreate them as required. Additionally, the agents extend
this functionality to include the management nodes and MySQL Server nodes.

It should be noted that there is no angel process for the agents themselves and so for the
highest levels of availability, the administrator may choose to use a process monitor to
detect the failure of an agent and automatically restart it. When an agent is unavailable,
the MySQL Cluster database continues to operate in a fault-tolerant manner but
management changes cannot be made until it is restarted. When the agent process is
restarted, it re-establishes communication with the other agents and has access to all
current configuration data, ensuring that the management function is restored.

When using MySQL Cluster Manager, the 'angel' processes are no longer needed (or
created) for the data nodes, as it becomes the responsibility of the agents to detect the
failure of the data nodes and recreate them as required. Additionally, the agents extend
this functionality to include the management nodes and MySQL Server nodes.

It should be noted that there is no angel process for the agents themselves and so for the
highest levels of availability, the administrator may choose to use a process monitor to
detect the failure of an agent and automatically restart it. When an agent is unavailable,
the MySQL Cluster database continues to operate in a fault-tolerant manner but
management changes cannot be made until it is restarted. When the agent process is
restarted, it re-establishes communication with the other agents and has access to all
current configuration data, ensuring that the management function is restored.

MySQL Cluster Manager Model & Terms

Before looking at how to install, configure and use MySQL Cluster Manager, it helps to
understand a number of components and the relationships between them (as viewed by
the MySQL Cluster Manager). Figure 3 illustrates a number of these entities and then there
is a brief description of each.

 Copyright © 2010, Oracle and/or its affiliates. All rights reserved. 25/81

Figure 3: MySQL Cluster Manager model

Site: the set of physical hosts which are used to run database cluster processes that will be
managed by MySQL Cluster Manager. A site can include 1 or more clusters.

Cluster: represents a MySQL Cluster deployment. A Cluster contains 1 or more processes
running on 1 or more hosts.

Host: a physical machine (i.e. a server), running the MySQL Cluster Manager agent.

Agent: the MySQL Cluster Manager process running on each host. Responsible for all
management actions performed on the processes.

Process: an individual MySQL Cluster node; one of: ndb_mgmd, ndbd, ndbmtd, mysqld &

ndbapi.

Package: a copy of a MySQL Cluster installation directory as downloaded from
mysql.com, stored on each host.

Using MySQL Cluster Manager – a worked example

This section walks through the steps required to install, configure and run MySQL Cluster
Manager. It goes on to demonstrate how it is used to create and manage a MySQL Cluster
deployment.

 Copyright © 2010, Oracle and/or its affiliates. All rights reserved. 26/81

Example configuration

Throughout the example, the MySQL Cluster configuration shown in Figure 4 is used.

Figure 4: MySQL Cluster configuration used in example

Installing, configuring, running & accessing MySQL Cluster Manager

The agent must be installed and run on each host in the Cluster:

1. Expand the downloaded tar-ball into a known directory (in this example we use

/usr/local/mcm)

2. Copy the /usr/local/mcm/etc/mysql-cluster-manager.ini to /home/billy/mcm/ and

edit it:

[mysql-proxy]
plugins=manager
log-file = mysql-manager-agent.log
log-level = message
manager-directory=/home/billy/mcm/

3. Launch the agent process:

$ /usr/local/mcm/bin/mysql-cluster-manager --defaults-file=/home/billy/mcm/
mysql-cluster-manager.ini &

4. Access any of the agents from any machine (that has the mysql client installed):

$ mysql -h 192.168.0.10 -P 1862 -u admin -p --prompt='mcm> '
Enter password: super
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 1
Server version: 1.0.1-agent-manager MySQL Cluster Manager
Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.
mcm>

 Copyright © 2010, Oracle and/or its affiliates. All rights reserved. 27/81

After repeating steps 1 through 3 on each of the physical hosts that will contain MySQL
Cluster nodes to be managed, the system looks like Figure 5 below.

Figure 5: MySQL Cluster Manager Agents running on each host

Creating & Starting a Cluster

Once the agents have been installed and started, the next step is to set up the entities that
will make up the managed Cluster(s). As a prerequisite, the installation files for the version
(s) of MySQL Cluster that are to be managed should be stored in a known location – in this
example, /usr/local/mysql_X_Y_Z.

As in step 4 from section 1.3.2 connect to the agent process running on any of the physical
hosts – from there the whole process of creating all entities needed for the Cluster (site,
hosts, packages and Cluster) and then starting the Cluster can be performed.

1. Define the site – that is, the set of hosts that will run MySQL Cluster processes that need
to be managed:

mcm> create site --hosts=192.168.0.10,192.168.0.11,192.168.0.12,192.168.0.13
mysite;

2. Define the package(s) that will be used for the Cluster; further packages can be added
later (for example when upgrading to the latest MySQL Cluster release). In this

 Copyright © 2010, Oracle and/or its affiliates. All rights reserved. 28/81

example, the MySQL Cluster installation directories are in the same location on every
host – if that isn't the case then the --hosts option can be used to qualify which hosts

the directory name applies to:

mcm> add package --basedir=/usr/local/mysql_6_3_27a 6.3.27a;
mcm> add package --basedir=/usr/local/mysql_7_0_9 7.0.9;

3. Create the Cluster, specifying the package (version of MySQL Cluster) and the set of
nodes/processes and which host each should run on:

mcm> create cluster --package=6.3.26
--processhosts=ndb_mgmd@192.168.0.10,ndb_mgmd@192.168.0.11,
ndbd@192.168.0.12,ndbd@192.168.0.13,ndbd@192.168.0.12,
ndbd@192.168.0.13,mysqld@192.168.0.10,mysqld@192.168.0.11
mycluster;

4. The Cluster has now been defined – all that remains is to start the processes for the
database to become available:

mcm> start cluster mycluster;

Note that the node-ids are allocated automatically, starting with 1 for the first in the list
of processes provided, and then incrementing by 1 for each subsequent process.

The MySQL Cluster is now up and running as shown in Figure 7 above.

Check the status of the Cluster

Using MySQL Cluster Manager, you can check the status at a number of levels:

• The overall state of the Cluster

• The state of each of the hosts (specifically whether the agent on that host is running and
accessible)

• The state of each of the nodes (processes) making up the Cluster

mcm> show status --cluster mycluster;
+-----------+-------------------+
| Cluster | Status |
+-----------+-------------------+
| mycluster | fully-operational |
+-----------+-------------------+

mcm> list hosts mysite;
+--------------+-----------+---------+
| Host | Status | Version |
+--------------+-----------+---------+
192.168.0.10	Available	1.0.1
192.168.0.11	Available	1.0.1
192.168.0.12	Available	1.0.1
192.168.0.13	Available	1.0.1
+--------------+-----------+---------+

 Copyright © 2010, Oracle and/or its affiliates. All rights reserved. 29/81

mcm> show status --process mycluster;
+------+----------+--------------+---------+-----------+
| Id | Process | Host | Status | Nodegroup |
+------+----------+--------------+---------+-----------+
1	ndb_mgmd	192.168.0.10	running	
2	ndb_mgmd	192.168.0.11	running	
3	ndbd	192.168.0.12	running	0
4	ndbd	192.168.0.13	running	0
5	ndbd	192.168.0.12	running	1
6	ndbd	192.168.0.13	running	1
7	mysqld	192.168.0.10	running	
8	mysqld	192.168.0.11	running	
+------+----------+--------------+---------+-----------+

Checking and setting MySQL Cluster parameters

When using MySQL Cluster Manager, the administrator reviews and changes all
configuration parameters using the get and set commands rather than editing the

configuration files directly. For both get and set you can control the scope of the attributes

being read or updated. For example, you can specify that the attribute applies to all nodes,
all nodes of a particular class (such as all data nodes) or to a specific node. Additionally,
when reading attributes you can provide a specific attribute name or ask for all applicable
attributes as well as indicating whether you wish to see the attributes still with their default
values or just those that have been overwritten.

There follow some examples of getting and setting attributes.

1. Fetch all parameters that apply to all data nodes, including defaults

mcm> get -d :ndbd mycluster;
+-----------------------+-------+----------+------+----------+------+---------+----------+
| Name | Value | Process1 | Id1 | Process2 | Id2 | Level | Comment |
+-----------------------+-------+----------+------+----------+------+---------+----------+
__ndbmt_lqh_threads	NULL	ndbd	3			Default	
__ndbmt_lqh_workers	NULL	ndbd	3			Default	
Arbitration	NULL	ndbd	3			Default	
........ : : : : : : : :							
__ndbmt_lqh_threads	NULL	ndbd	4			Default	
__ndbmt_lqh_workers	NULL	ndbd	4			Default	
Arbitration	NULL	ndbd	4			Default	
ArbitrationTimeout	3000	ndbd	4			Default	
........ : : : : : : : :							
__ndbmt_lqh_threads	NULL	ndbd	5			Default	
........ : : : : : : : :							
__ndbmt_lqh_threads	NULL	ndbd	6			Default	
........ : : : : : : : :
+-----------------------+-------+----------+------+----------+------+---------+----------+

2. Fetch the values of parameters (excluding defaults) for mysqld with ID=7:

mcm> get :mysqld:7 mycluster;
+------------+--+----------+------+-...
| Name | Value | Process1 | Id1 |
+------------+--+----------+------+-...
| datadir | /usr/local/mcm/manager/clusters/mycluster/7/data | mysqld | 7 | ...
| HostName | ws1 | mysqld | 7 | ...
| ndb-nodeid | 7 | mysqld | 7 | ...
| ndbcluster | | mysqld | 7 | ...
| NodeId | 7 | mysqld | 7 | ...
+------------+--+----------+------+-...

 Copyright © 2010, Oracle and/or its affiliates. All rights reserved. 30/81

3. Fetch the port parameter to connect to mysqld with ID=7:

mcm> get -d port:mysqld:7 mycluster;
+------+-------+----------+------+----------+------+---------+---------+
| Name | Value | Process1 | Id1 | Process2 | Id2 | Level | Comment |
+------+-------+----------+------+----------+------+---------+---------+
| port | 3306 | mysqld | 7 | | | Default | |
+------+-------+----------+------+----------+------+---------+---------+

4. Turn off privilege checking for all MySQL Servers and change the port for connecting to
the mysqld with ID = 8 to 3307. Allow data nodes to be automatically restarted after

they fail:

mcm> set skip-grant-tables:mysqld=true,port:mysqld:8=3307,StopOnError:ndbd=false
mycluster;

MySQL Cluster Manager automatically determines which nodes (processes) need to be
restarted and in which order to make the change take effect but avoid loss of service. In
this example, this results in each management, data and MySQL Server node being
restarted sequentially as shown in Figure 6 below.

Figure 6: MySQL Cluster nodes automatically restarted after configuration change

Upgrading MySQL Cluster

Upgrading MySQL Cluster when using MySQL Cluster Manager is extremely simple. The
amount of administrator time needed and the opportunities for human error are massively
reduced.

There are three prerequisites before performing the upgrade:

1. Ensure that the upgrade path that you are attempting to perform is supported; by
referring to http://dev.mysql.com/doc/mysql-cluster-excerpt/5.1/en/mysql-cluster-
upgrade-downgrade-compatibility.html.
If not then you will need to perform an upgrade to an intermediate version of MySQL
Cluster first;

 Copyright © 2010, Oracle and/or its affiliates. All rights reserved. 31/81

http://dev.mysql.com/doc/mysql-cluster-excerpt/5.1/en/mysql-cluster-upgrade-downgrade-compatibility.html
http://dev.mysql.com/doc/mysql-cluster-excerpt/5.1/en/mysql-cluster-upgrade-downgrade-compatibility.html
http://dev.mysql.com/doc/mysql-cluster-excerpt/5.1/en/mysql-cluster-upgrade-downgrade-compatibility.html
http://dev.mysql.com/doc/mysql-cluster-excerpt/5.1/en/mysql-cluster-upgrade-downgrade-compatibility.html

2. Ensure that the version of MySQL Cluster Manager you are using supports both the
original and new versions of MySQL Cluster; if not then you must first upgrade to an
appropriate version of MySQL Cluster Manager as described in section 1.3.7.

3. Ensure that the install tar ball for the new version of MySQL Cluster has been copied to
each host and the associated packages defined.

The upgrade itself is performed using a single command which will upgrade each node in
sequence such that database service is not interrupted to connected applications and
clients:

mcm> upgrade cluster --package=7.0.9 mycluster;
+-------------------------------+
| Command result |
+-------------------------------+
| Cluster upgraded successfully |
+-------------------------------+
1 row in set (1 min 41.54 sec)

Upgrading MySQL Cluster Manager

Upgrading MySQL Cluster Manager is very straightforward. Simply stop the agents on
each host and then start up the new version of the agents. The same
mysql-cluster-manager.ini file should be used for the new version; in particular the

manager-directory attribute should be the same as used with the previous version, so that

the configuration information is not lost.

MySQL Cluster continues to run when the MySQL Cluster Manager agents are stopped,
and so there is no service impact during the upgrade. If a MySQL Cluster node fails during
the upgrade, the database continues to function but the node is not recovered until the new
agents have started – for this reason, the administrator may choose to perform the
upgrade when demands on the database are at their lowest.

Shutting down the Cluster

An entire Cluster can be shutdown using a single command:

mcm> stop cluster mycluster;
+------------------------------+
| Command result |
+------------------------------+
| Cluster stopped successfully |
+------------------------------+
1 row in set (22.96 sec)

Unlike the shutdown command from ndb_mgm that would be used if not using MySQL

Cluster Manager, stop cluster will also safely stop all MySQL Server processes.

HA Provided by MySQL Cluster Manager

If MySQL Cluster detects that a MySQL Cluster process has failed, then it will
automatically restart it (for data nodes this only happens if StopOnError attribute the has

been set to FALSE). For data nodes, the agents take over this role from the existing MySQL

Cluster data node angel processes, but for Management and MySQL Server nodes this is
new functionality.

It is the responsibility of the administrator or application to restart the MySQL Cluster
Manager agents in the event that they fail; for example by creating a script in
/etc/init.d

 Copyright © 2010, Oracle and/or its affiliates. All rights reserved. 32/81

Introducing MySQL Cluster Manager to an existing Cluster

In MySQL Cluster 1.0, there is no automated method to bring an existing MySQL Cluster
deployment under the management of MySQL Cluster Manager; this capability will be
added in a future release. In the mean time, a documented procedure is provided.

Single host exercise

1. The MySQL Cluster Manager software has been installed in /usr/local/mcm
2. Create a directory called 'mcm' in your home directory
3. Copy /usr/local/mcm/etc/mysql-cluster-manager.ini to your local mcm

folder and edit it to set manager-directory to a folder called 'manager' within your mcm
folder (no need to create the folder)

4. Launch the agent:
$ /usr/local/mcm/bin/mysql-cluster-manager --defaults-file=/home/billy/mcm/
mysql-cluster-manager.ini&

5. Connect to the agent:

$ mysql -h 127.0.0.1 -P 1862 -u admin -p --prompt='mcm> '

6. Define the site:

mcm> create site -–hosts=127.0.0.1 mysite;

7. Define the site packages:

mcm> add package --basedir=/usr/local/mysql_7_X_Y my_package;

8. Define the Cluster:

mcm> create cluster --package=my_package
--processhosts=ndb_mgmd@127.0.0.1,ndbd@127.0.0.1,ndbd@127.0.0.1,mysqld@127.0.0.1
mycluster;

9. Start the Cluster:

mcm> start cluster mycluster;

10.Stop the Cluster:

mcm> stop cluster mycluster;

 Copyright © 2010, Oracle and/or its affiliates. All rights reserved. 33/81

Fault tolerance

MySQL Cluster is designed to be very fault tolerant. Although there are issues you should
be aware of. This section will cover how cluster is fault tolerant and how your application
should work with this.

MySQL Server

When using MySQL in general temporary errors can happen, that is to say errors that may
not occur if the transaction is retried. In MySQL Cluster this can happen more often than
other storage engines for a variety of reasons, such as timeouts, node failures or redo log
problems. With MySQL Cluster when this happens the transaction will be implicitly
rolled-back and the error will be returned to the client. It is up to the client application to
retry the transaction.

Sometimes the error message returned will not give enough details to find the true cause of
the failure, so it is a good idea to run 'SHOW WARNINGS' after an error to see other messages

from cluster. For example, if there is a transaction exclusive locking some rows this could
happen:

mysql> select * from t1;
ERROR 1205 (HY000): Lock wait timeout exceeded; try restarting transaction

This is kind of useful, but MySQL Cluster has 5 different things that can cause this error.
So:

mysql> show warnings\G
*************************** 1. row ***************************
 Level: Error
 Code: 1297
Message: Got temporary error 274 'Time-out in NDB, probably caused by deadlock'
from NDB
*************************** 2. row ***************************
 Level: Error
 Code: 1297
Message: Got temporary error 274 'Time-out in NDB, probably caused by deadlock'
from NDB
*************************** 3. row ***************************
 Level: Error
 Code: 1205
Message: Lock wait timeout exceeded; try restarting transaction
*************************** 4. row ***************************
 Level: Error
 Code: 1622
Message: Storage engine NDB does not support rollback for this statement.
Transaction rolled back and must be restarted
4 rows in set (0.00 sec)

So, the error here is NDB error code 274, it is now possible for the MySQL cluster team to
find out the cause of this (274 is triggered by TransactionDeadLockDetectionTimeOut

exceeded during a scan operation).

Heartbeats

The data nodes use a system of heartbeats in a ring to make sure that a node's neighbour is
still up and running. The heartbeat interval is set using the HeartbeatIntervalDBDB setting

which is 1500ms by default. A cluster node will be declared dead if it is not heard from

 Copyright © 2010, Oracle and/or its affiliates. All rights reserved. 34/81

within 4 heartbeat intervals. This can happen if the data node is overloaded and too busy
to send heartbeats on-time or if there are network problems.

If any heartbeats are missed it will be logged in the cluster log on the management node. A
node's neighbours are decided when a node starts and this information is logged in the
node's stdout log.

 Copyright © 2010, Oracle and/or its affiliates. All rights reserved. 35/81

Online Backup

MySQL Cluster allows you to take online backups from your production database without
interrupting any transaction. There are two parts: backing up the meta data (schema,
stored procedures, etc..) and backing up the data itself.

Tools

To take an online backup, we'll use the following client tools:

• mysqldump: for backing up the meta data (table definition, stored procedures, etc..)

• ndb_mgm: the management client tool in which we'll issue the START BACKUP command

• mysql: to restore the meta data

• ndb_restore: reading data from the backup, and writing it back

Backing up the data, online

First, lets look how to make a backup for the data stored in MySQL Cluster using the
ndb_mgm management tool. Important: it will only backup tables created with the

NDBCluster storage engine.

ndb_mgm> START BACKUP
Waiting for completed, this may take several minutes
Node 3: Backup 2 started from node 1
Node 3: Backup 2 started from node 1 completed
 StartGCP: 284 StopGCP: 287
 #Records: 2059 #LogRecords: 0
 Data: 51016 bytes Log: 0 bytes

The START BACKUP asks the Data Nodes to dump the data for which they are responsible for

to disk. It will also dump the meta data: table definition and index information.

When the command is done, a subdirectory BACKUP-<backup-id>/ will be created in the

file system subdirectory BACKUP/ of each data node.

For example, the /opt/mysqlcluster/ndb/BACKUP/BACKUP-2/ will contain the following files

when START BACKUP finished:

BACKUP-2-0.3.Data
BACKUP-2-0.4.Data
BACKUP-2.3.ctl
BACKUP-2.3.log
BACKUP-2.4.ctl
BACKUP-2.4.log

The *.Data files contain the actual records. *.ctl files contain the meta information. The
*.log contains the Transaction Log, which are the transaction committed while the backup
was being made.

Important: backups made by data nodes need to be moved to a secure place.

Backing up meta data

Although the backup done using the management tool is including the meta data, it is
advised to dump your table structures using mysqldump.

• Other tables not using the NDBCluster engine can only be backed up using mysqldump.

 Copyright © 2010, Oracle and/or its affiliates. All rights reserved. 36/81

• Stored routines and other none table metadata is not stored in Cluster and consequently
not backed up the online backup tool.

• Going from one version of MySQL Cluster to another might bring incompatible table
formats.

For example:

shell> mysqldump --no-data --routines --all-tablespaces --all-databases >
meta_backup.sql

Restoring using ndb_restore

Backups made using ndb_mgm’s START BACKUP command can be restored using
ndb_restore. For this to work, you’ll need to configure your MySQL Cluster so there is
always a free [API] slot, which can connect from a dedicated machine which will do the
restore.

Note that MySQL Cluster needs to be empty before restoring data. There is a possibility
using ndb_restore to only recover a selection of tables. This could be used for restoring a
table which was dropped by mistake.

Since backups are moved away from the data nodes ones they are made, ndb_restore will

not necessary run from the data nodes. For simplicity, this tutorial assumes they were kept
in place.

Restoring meta data

Meta data can be restored by both using ndb_restore and the mysql client tool. However, it

is advised to restore the backups done with the mysqldump tool.

For example using an SQL dump of the meta data:

shell> mysql -uroot < meta_backup.sql

However, it’s also important to know how to do it using ndb_restore. Suppose you have

the following backup with ID 2 and need to restore Node 3 and Node 4, which were started
empty.

BACKUP-2-0.3.Data
BACKUP-2-0.4.Data
BACKUP-2.3.ctl
BACKUP-2.3.log
BACKUP-2.4.ctl
BACKUP-2.4.log

When you use ndb_restore, you only need restore the meta once. Every backup of each
node contains this information, so it doesn’t matter which one you take.
Lets restore the meta data using the backup of Node 3:

shell> ndb_restore -m -b 2 -n 3 /path/to/BACKUP-2/

-m = restore meta
-b = backup ID
-n = node ID

The tables should now already be available.

 Copyright © 2010, Oracle and/or its affiliates. All rights reserved. 37/81

Restoring the data

Similar to restoring meta data, we can restore the records. This time you’ll need to it for
each data node, or you will end up with half the data.

shell> ndb_restore -r -b 2 -n 3 /path/to/BACKUP-2/
shell> ndb_restore -r -b 2 -n 4 /path/to/BACKUP-2/

-m = restore meta
-r = restore records
-b = backup ID
-n = node ID

ndb_restore can do more

There are quite a few options for ndb_restore. For example --print-meta and

--print-data allow you to get the table and records information out of a backup without

actually restoring it.

You can also selective restore using --include-* and --exclude-* options.

Check the full list using ndb_restore --help.

 Copyright © 2010, Oracle and/or its affiliates. All rights reserved. 38/81

NDB Info

ndbinfo Data Node Statistics

ndbinfo is a read-only database presenting information on what is happening within the
cluster – in particular, within the data nodes. This database contains a number of views,
each providing data about MySQL Cluster node status, resource usage and operations.

Because this information is presented through regular SQL views, there is no special
syntax required to access the data either in its raw form (“SELECT * FROM

ndbinfo.counters”) or manipulating it by filtering on rows and columns or combining

(joining) it with data held in other tables. This also makes it simple to integrate this
information into existing monitoring tools (for example MySQL Enterprise Monitor).

The ndbinfo views include the node-id for the data node that each piece of data is
associated with and in some cases the values will be different for each data node.

ndbinfo.counters

This view presents information on the number of events since the last restart for each data
node:

mysql> select * from ndbinfo.counters;
+---------+------------+----------------+------------+--------------+------+
| node_id | block_name | block_instance | counter_id | counter_name | val |
+---------+------------+----------------+------------+--------------+------+
3	DBLQH	1	10	OPERATIONS	2069
3	DBLQH	2	10	OPERATIONS	28
4	DBLQH	1	10	OPERATIONS	2066
4	DBLQH	2	10	OPERATIONS	27
3	DBTC	0	1	ATTRINFO	140
3	DBTC	0	2	TRANSACTIONS	19
3	DBTC	0	3	COMMITS	19
3	DBTC	0	4	READS	19
3	DBTC	0	5	SIMPLE_READS	0
3	DBTC	0	6	WRITES	0
3	DBTC	0	7	ABORTS	0
3	DBTC	0	8	TABLE_SCANS	0
3	DBTC	0	9	RANGE_SCANS	0
4	DBTC	0	1	ATTRINFO	2
4	DBTC	0	2	TRANSACTIONS	1
4	DBTC	0	3	COMMITS	1
4	DBTC	0	4	READS	1
4	DBTC	0	5	SIMPLE_READS	0
4	DBTC	0	6	WRITES	0
4	DBTC	0	7	ABORTS	0
4	DBTC	0	8	TABLE_SCANS	1
4	DBTC	0	9	RANGE_SCANS	0
+---------+------------+----------------+------------+--------------+------+

The block_name refers to the software component that the counter is associated with – this

gives some extra context to the information:

• DBLQH: Local, low-level query handler block, which manages data and transactions
local to the cluster's data nodes, and acts as a coordinator of 2-phase commits.

• DBTC: Handles distributed transactions and other data operations on a global level
The block_instance field is used to distinguish between the different Local Query Handles

threads when using the multi-threaded data node.

 Copyright © 2010, Oracle and/or its affiliates. All rights reserved. 39/81

The counter_name indicates what events are being counted and the val field provides the

current count (since the last restart for the node).

This information can be used to understand how an application’s SQL queries (or NDB API
method calls) are mapped into data node operations and can be invaluable when tuning
the database and application.

ndbinfo.logbuffers

This view presents information on the size of the redo and undo log buffers as well as how
much of that space is being used:

mysql> select * from ndbinfo.logbuffers;
+---------+----------+--------+----------+----------+--------+
| node_id | log_type | log_id | log_part | total | used |
+---------+----------+--------+----------+----------+--------+
3	REDO	0	1	67108864	131072
3	REDO	0	2	67108864	131072
3	DD-UNDO	4	0	2096128	0
4	REDO	0	1	67108864	131072
4	REDO	0	2	67108864	131072
4	DD-UNDO	4	0	2096128	0
+---------+----------+--------+----------+----------+--------+

This information can be used to identify when the buffers are almost full so that the
administrator can increase their size – preempting potential issues. If the redo log buffers
are exhausted then applications will see 1221 “REDO log buffers overloaded” errors. In
extreme cases, if the undo log buffers fill too quickly then the database may be halted.

When using the multi-threaded data node (ndbmtd), the log_part column is used to

distinguish between different LQH threads.

The sizes of the redo buffer can be increased using the RedoBuffer parameter. The size of

the undo buffer is specified in the undo_buffer_size attribute when creating the log file.

ndbinfo.logspaces

This view provides information on the disk space that has been configured for the log spaces for

redo and undo logs:

mysql> select * from logspaces;
+---------+----------+--------+----------+-----------+--------+
| node_id | log_type | log_id | log_part | total | used |
+---------+----------+--------+----------+-----------+--------+
3	REDO	0	0	536870912	0
3	REDO	0	1	536870912	0
3	REDO	0	2	536870912	0
3	REDO	0	3	536870912	0
3	DD-UNDO	4	0	78643200	169408
4	REDO	0	0	536870912	0
4	REDO	0	1	536870912	0
4	REDO	0	2	536870912	0
4	REDO	0	3	536870912	0
4	DD-UNDO	4	0	78643200	169408
+---------+----------+--------+----------+-----------+--------+

 Copyright © 2010, Oracle and/or its affiliates. All rights reserved. 40/81

For the redo log space, there is 1 row for each of the 4 file sets for each data node and the
total colum is equal to the NoOfFragmentLogFiles configuration parameter multiplied by

the FragmentLogFileSize parameter while the used column is the amount actually used. If

the files fill up before a local checkpoint can complete then error code 410 (Out of log file
space temporarily) will be observed. That error can now be avoided by increasing
NoOfFragmentLogFiles and/or FragmentLogFileSize if used approaches total.

For the undo log space, the total column represents the cumulative size of all of the undo

log files assigned to the log group, as added using create/alter logfile group or the
InitialLogFileGroup configuration parameter. Adding extra undo files if used approaches

total can be done to avoid getting 1501 errors.

ndbinfo.memoryusage

This view compares the amount of memory and index used to the amount configured for each data

node:

mysql> select * from memoryusage;
+---------+--------------+------+------+
| node_id | memory_type | used | max |
+---------+--------------+------+------+
3	DATA_MEMORY	632	3144
4	DATA_MEMORY	632	3144
3	INDEX_MEMORY	38	2336
4	INDEX_MEMORY	38	2336
+---------+--------------+------+------+

For data memory, the max column represents the amount of configured memory for the data

node – set using the DataMemory configuration parameter and used represents the amount

currently in use by the Cluster tables.

For index memory, the max column represents the amount of configured index memory for

the data node – set using the IndexMemory configuration parameter and used represents

the amount currently in use by the Cluster tables.

To avoid exhausting the memory, monitor this table and if used approaches max then
either:

• Delete obsolete table rows and run OPTMIMIZE TABLE

• Increase the value of IndexMemory and/or DataMemory

• Consider whether it is practical to alter some tables or columns to be stored on disk
rather than in memory

ndbinfo.nodes

This view shows status information for every data node in the cluster:

mysql> select * from ndbinfo.nodes;
+---------+--------+---------+-------------+
| node_id | uptime | status | start_phase |
+---------+--------+---------+-------------+
| 3 | 16548 | STARTED | 0 |
| 4 | 17 | STARTED | 0 |
+---------+--------+---------+-------------+

The uptime column shows the time in seconds since the data node was started or last

restarted.

 Copyright © 2010, Oracle and/or its affiliates. All rights reserved. 41/81

The status is one of NOTHING, CMVMI, STARTING, STARTED, SINGLEUSER, STOPPING_1,

STOPPING_2, STOPPING_3, or STOPPING_4. If the status is set to STARTING then the start

phase is also displayed.

ndbinfo.transporters

This is a view showing the status of the connection between each data node and each of the
other nodes in the cluster (data nodes, management nodes, MySQL Server nodes and any
NDB API applications):

mysql> select * from transporters;
+---------+----------------+--------------+
| node_id | remote_node_id | status |
+---------+----------------+--------------+
3	1	CONNECTED
3	3	DISCONNECTED
3	4	CONNECTED
3	102	CONNECTED
3	103	CONNECTING
3	104	CONNECTING
4	1	CONNECTED
4	3	CONNECTED
4	4	DISCONNECTED
4	102	CONNECTED
4	103	CONNECTING
4	104	CONNECTING
+---------+----------------+--------------+

Exercise

1. Connect to Cluster using mysql client
2. open the ndbinfo database:

mysql> use ndbinfo;

3. Check what tables are visible:
4. mysql> show tables;

5. Query the memory usage table:
6. mysql> select * from memoryusage;

7. Increase DataMemory in config.ini by 10% and restart 1 data node

8. Check memoryusage again
mysql> select * from memoryusage;

 Copyright © 2010, Oracle and/or its affiliates. All rights reserved. 42/81

NDB API

NDB API Overview

The NDB API is the real-time, C++ interface that provides access to the data held in the
data nodes. Typically, applications access this through another layer (e.g. via a MySQL
Server). The NDB APU is used extremely successfully by many mission-critical, real-time
customer applications. You should consider using the NDB API if the following criteria are
met:

• C++ application

• You need maximum real-time performance (latency & throughput)

• Willing to accept added complexity in your application and lock-in to a proprietary
interface

The API is documented at: http://dev.mysql.com/doc/ndbapi/en/index.html

There are a number of alternate ways to more easily exploit many of the performance
benefits of the NDB API while making life easier for the developer:

• back-ndb plugin for OpenLDAP

• MySQL Cluster Connector for Java (including OpenJPA)

• http plugin for Apache

 Copyright © 2010, Oracle and/or its affiliates. All rights reserved. 43/81

http://dev.mysql.com/doc/ndbapi/en/index.html
http://dev.mysql.com/doc/ndbapi/en/index.html

Example NDB API Code

#include <mysql.h>
#include <NdbApi.hpp>
#include <stdio.h>
#include <iostream>
#include <cstdlib>
#include <string.h>

static void run_application(MYSQL &, Ndb_cluster_connection &);

#define PRINT_ERROR(code,msg) \
 std::cout << "Error in " << __FILE__ << ", line: " << __LINE__ \
 << ", code: " << code \
 << ", msg: " << msg << "." << std::endl
#define MYSQLERROR(mysql) { \
 PRINT_ERROR(mysql_errno(&mysql),mysql_error(&mysql)); \
 exit(-1); }
#define APIERROR(error) { \
 PRINT_ERROR(error.code,error.message); \
 exit(-1); }

int main(int argc, char** argv)
{
 if (argc != 3)
 {
 std::cout << "Arguments are <mysqld port> <connect_string>.\n";
 exit(-1);
 }
 // ndb_init must be called first
 ndb_init();

 // connect to mysql server and cluster and run application
 {
 int mysqld_port = atoi (argv[1]);
 const char *connectstring = argv[2];

 // Object representing the cluster
 Ndb_cluster_connection cluster_connection(connectstring);

 // Connect to cluster management server (ndb_mgmd)
 if (cluster_connection.connect(4 /* retries */,
	 	 	 	 5 /* delay between retries */,
	 	 	 	 1 /* verbose */))
 {
 std::cout << "Cluster management server was not ready within 30 secs.\n";
 exit(-1);
 }

 // Optionally connect and wait for the storage nodes (ndbd's)
 if (cluster_connection.wait_until_ready(30,0) < 0)
 {
 std::cout << "Cluster was not ready within 30 secs.\n";
 exit(-1);
 }

 // connect to mysql server
 MYSQL mysql;
 if (!mysql_init(&mysql)) {
 std::cout << "mysql_init failed\n";
 exit(-1);
 }
 if (!mysql_real_connect(&mysql, "localhost", "root", "", "",
	 	 	 mysqld_port, NULL, 0))
 MYSQLERROR(mysql);

 // run the application code
 run_application(mysql, cluster_connection);
 }

 ndb_end(0);

 return 0;
}

static void create_table(MYSQL &);
static void drop_table(MYSQL &);
static void do_insert(Ndb &);
static void do_indexScan(Ndb &);

 Copyright © 2010, Oracle and/or its affiliates. All rights reserved. 44/81

static void run_application(MYSQL &mysql,
	 	 	 Ndb_cluster_connection &cluster_connection)
{
 /**
 * Connect to database via mysql-c *
 **/
 mysql_query(&mysql, "CREATE DATABASE TEST_DB_1");
 if (mysql_query(&mysql, "USE TEST_DB_1") != 0) MYSQLERROR(mysql);
 create_table(mysql);

 /**
 * Connect to database via NdbApi *
 **/
 // Object representing the database
 Ndb myNdb(&cluster_connection, "TEST_DB_1");
 if (myNdb.init()) APIERROR(myNdb.getNdbError());

 do_insert(myNdb);
 do_indexScan(myNdb);

 drop_table(mysql);

 mysql_query(&mysql, "DROP DATABASE TEST_DB_1");
}

/***
 * Create a table named COUNTRY if it does not exist *
 ***/
static void create_table(MYSQL &mysql)
{
 if (mysql_query(&mysql,
	 	 "DROP TABLE IF EXISTS"
	 	 " COUNTRY"))
 MYSQLERROR(mysql);

 if (mysql_query(&mysql,
	 	 "CREATE TABLE"
	 	 " COUNTRY"
	 	 " (SUB_ID INT UNSIGNED NOT NULL PRIMARY KEY,"
	 	 " COUNTRY_CODE INT UNSIGNED NOT NULL)"
	 	 " ENGINE=NDB"))
 MYSQLERROR(mysql);

}

/***********************************
 * Drop a table named MYTABLENAME
 ***********************************/
static void drop_table(MYSQL &mysql)
{
 if (mysql_query(&mysql,
	 	 "DROP TABLE"
	 	 " COUNTRY"))
 MYSQLERROR(mysql);

}

static void do_insert(Ndb &myNdb)
{
 NdbDictionary::Dictionary* myDict= myNdb.getDictionary();
 const NdbDictionary::Table *myTable= myDict->getTable("COUNTRY");

 if (myTable == NULL)
 APIERROR(myDict->getNdbError());

 NdbTransaction *myTransaction= myNdb.startTransaction();
 if (myTransaction == NULL) APIERROR(myNdb.getNdbError());

 NdbOperation *myOperation= myTransaction->getNdbOperation(myTable);
 if (myOperation == NULL) APIERROR(myTransaction->getNdbError());

 myOperation->insertTuple();
 myOperation->equal("SUB_ID", 1);
 myOperation->setValue("COUNTRY_CODE", 44);

 myOperation= myTransaction->getNdbOperation(myTable);
 if (myOperation == NULL) APIERROR(myTransaction->getNdbError());

 myOperation->insertTuple();

 Copyright © 2010, Oracle and/or its affiliates. All rights reserved. 45/81

 myOperation->equal("SUB_ID", 2);
 myOperation->setValue("COUNTRY_CODE", 1);

 myOperation= myTransaction->getNdbOperation(myTable);
 if (myOperation == NULL) APIERROR(myTransaction->getNdbError());

 myOperation->insertTuple();
 myOperation->equal("SUB_ID", 4);
 myOperation->setValue("COUNTRY_CODE", 61);

 myOperation= myTransaction->getNdbOperation(myTable);
 if (myOperation == NULL) APIERROR(myTransaction->getNdbError());

 myOperation->insertTuple();
 myOperation->equal("SUB_ID", 5);
 myOperation->setValue("COUNTRY_CODE", 33);

 myOperation= myTransaction->getNdbOperation(myTable);
 if (myOperation == NULL) APIERROR(myTransaction->getNdbError());

 myOperation->insertTuple();
 myOperation->equal("SUB_ID", 7);
 myOperation->setValue("COUNTRY_CODE", 46);

 myOperation= myTransaction->getNdbOperation(myTable);
 if (myOperation == NULL) APIERROR(myTransaction->getNdbError());

 myOperation->insertTuple();
 myOperation->equal("SUB_ID", 8);
 myOperation->setValue("COUNTRY_CODE", 1);

 myOperation= myTransaction->getNdbOperation(myTable);
 if (myOperation == NULL) APIERROR(myTransaction->getNdbError());

 myOperation->insertTuple();
 myOperation->equal("SUB_ID", 9);
 myOperation->setValue("COUNTRY_CODE", 44);

 myOperation= myTransaction->getNdbOperation(myTable);
 if (myOperation == NULL) APIERROR(myTransaction->getNdbError());

 myOperation->insertTuple();
 myOperation->equal("SUB_ID", 10);
 myOperation->setValue("COUNTRY_CODE", 33);

 myOperation= myTransaction->getNdbOperation(myTable);
 if (myOperation == NULL) APIERROR(myTransaction->getNdbError());

 myOperation->insertTuple();
 myOperation->equal("SUB_ID", 12);
 myOperation->setValue("COUNTRY_CODE", 44);

 myOperation= myTransaction->getNdbOperation(myTable);
 if (myOperation == NULL) APIERROR(myTransaction->getNdbError());

 myOperation->insertTuple();
 myOperation->equal("SUB_ID", 13);
 myOperation->setValue("COUNTRY_CODE", 1);

 myOperation= myTransaction->getNdbOperation(myTable);
 if (myOperation == NULL) APIERROR(myTransaction->getNdbError());

 myOperation->insertTuple();
 myOperation->equal("SUB_ID", 14);
 myOperation->setValue("COUNTRY_CODE", 61);

 if (myTransaction->execute(NdbTransaction::Commit) == -1)
 APIERROR(myTransaction->getNdbError());

 myNdb.closeTransaction(myTransaction);

}

/**
 * Read and print all tuples via primary ordered index scan *
 **/
static void do_indexScan(Ndb &myNdb)
{
 NdbDictionary::Dictionary* myDict= myNdb.getDictionary();

 Copyright © 2010, Oracle and/or its affiliates. All rights reserved. 46/81

 const NdbDictionary::Index *myPIndex= myDict->getIndex("PRIMARY", "COUNTRY");

 if (myPIndex == NULL)
 APIERROR(myDict->getNdbError());

 std::cout << "SUB_ID COUNTRY_CODE" << std::endl;

 NdbTransaction *myTransaction=myNdb.startTransaction();
 if (myTransaction == NULL) APIERROR(myNdb.getNdbError());

 NdbIndexScanOperation *psop;

 /* RecAttrs for NdbRecAttr Api */
 NdbRecAttr *recAttrAttr1;
 NdbRecAttr *recAttrAttr2;

 psop=myTransaction->getNdbIndexScanOperation(myPIndex);

 if (psop == NULL) APIERROR(myTransaction->getNdbError());

 Uint32 scanFlags=
 NdbScanOperation::SF_OrderBy |
 NdbScanOperation::SF_MultiRange |
 NdbScanOperation::SF_ReadRangeNo;

 if (psop->readTuples(NdbOperation::LM_Read,
	 	 scanFlags,
	 	 (Uint32) 0, // batch
	 	 (Uint32) 0) != 0) // parallel
 APIERROR (myTransaction->getNdbError());

 /* Add a bound
 * Tuples where SUB_ID >=2 and < 4
 */
 Uint32 low=2;
 Uint32 high=4;
 Uint32 match=13;

 if (psop->setBound("SUB_ID", NdbIndexScanOperation::BoundLE, (char*)&low))
 APIERROR(myTransaction->getNdbError());
 if (psop->setBound("SUB_ID", NdbIndexScanOperation::BoundGT, (char*)&high))
 APIERROR(myTransaction->getNdbError());

 if (psop->end_of_bound(0))
 APIERROR(psop->getNdbError());

 /* Second bound
 * Tuples where SUB_ID > 5 and <=9
 */
 low=5;
 high=9;
 if (psop->setBound("SUB_ID", NdbIndexScanOperation::BoundLT, (char*)&low))
 APIERROR(myTransaction->getNdbError());
 if (psop->setBound("SUB_ID", NdbIndexScanOperation::BoundGE, (char*)&high))
 APIERROR(myTransaction->getNdbError());

 if (psop->end_of_bound(1))
 APIERROR(psop->getNdbError());

 /* Third bound
 * Tuples where SUB_ID == 13
 */

 if (psop->setBound("SUB_ID", NdbIndexScanOperation::BoundEQ, (char*)&match))
 APIERROR(myTransaction->getNdbError());

 if (psop->end_of_bound(2))
 APIERROR(psop->getNdbError());

 /* Read all columns */
 recAttrAttr1=psop->getValue("SUB_ID");
 recAttrAttr2=psop->getValue("COUNTRY_CODE");

 if(myTransaction->execute(NdbTransaction::Commit) != 0)
 APIERROR(myTransaction->getNdbError());

 if (myTransaction->getNdbError().code != 0)
 APIERROR(myTransaction->getNdbError());

 Copyright © 2010, Oracle and/or its affiliates. All rights reserved. 47/81

 while (psop->nextResult(true) == 0)
 {
 printf(" %8d %8d Range no : %2d\n",
	 recAttrAttr1->u_32_value(),
	 recAttrAttr2->u_32_value(),
	 psop->get_range_no());
 }
 psop->close();

 myNdb.closeTransaction(myTransaction);

}

 Copyright © 2010, Oracle and/or its affiliates. All rights reserved. 48/81

MySQL Cluster Connector for Java

Technical Overview

Prior to MySQL Cluster 7.1, the choices for Java developers were somewhat limited. The
only supported method was JDBC – either directly or through a 3rd party layer such as
Java Persistence API (JPA) compliant middleware. If Java users wanted greater
performance then they were responsible for writing their own Java Native Interface (JNI)
layer sitting between their (Java) application and the (C++) NDB API.

With the introduction of MySQL Cluster 7.1, the options are much wider as shown in
Figure 1. Working from left to right the options are:

Figure 1: Options for Java Applications

• Java application makes JDBC calls through “JDBC Driver for MySQL (Connector/J)”.
This is a technology that many Java developers are comfortable and it is very flexible.
However it requires that the application developer maps from their Java objects to
relational, SQL statements. In addition, performance can be compromised as Connector/
J accesses the data through a MySQL Server rather than directly accessing the data nodes
through the NDB API.

• Applications can shift responsibility for the Object-Relational-Mapping (ORM) to a 3rd
party JPA solution (for example, Hibernate, Toplink or OpenJPA). While this frees the
Java developer from having to work with a relational data model, performance can still
be limited if the JPA layer is having to access the data via JDBC.

• MySQL Cluster 7.1 introduces a plug-in for OpenJPA (ClusterJPA_ which allows most
JPA operations to be performed through the NDB API (via a new “ClusterJ” layer) with
the remainder using JDBC. This gives the Java developer the luxury of working purely
with objects while still getting much of the performance benefits of using the NDB API.

 Copyright © 2010, Oracle and/or its affiliates. All rights reserved. 49/81

• Application developers can choose to bypass the JPA layer and instead go directly to the
ClusterJ layer. This introduces some limitations but it may be appropriate for developers
wanting to get the best possible performance and/or wanting to avoid introducing
additional 3rd party components (OpenJPA). ClusterJ is introduced by MySQL Cluster
7.1.

• Finally, Java application developers still have the option to implement their own wrapper
(typically using JNI) to act as the Java/C++ mediator.

ClusterJ

ClusterJ is designed to provide a high performance method for Java applications to store
and access data in a MySQL Cluster database. It is also designed to be easy for Java
developers to use and is “in the style of” Hibernate/Java Data Objects (JDO) and JPA. It
uses the Domain Object Model DataMapper pattern:

• Data is represented as domain objects

• Domain objects are separate from business logic

• Domain objects are mapped to database tables

The purpose of ClusterJ is to provide a mapping from the relational view of the data stored
in MySQL Cluster to the Java objects used by the application. This is achieved by
annotating interfaces representing the Java objects; where each persistent interface is
mapped to a table and each property in that interface to a column. By default, the table
name will match the interface name and the column names match the property names but
this can be overwritten using the annotations.

Figure 2: ClusterJ Annotation example

If the table does not already exist (for example, this is a brand new application with new
data) then the table must be created manually - unlike OpenJPA, ClusterJ will not create
the table automatically.
Figure 2 shows an example of an interface that has been created in order to represent the
data held in the ‘employee’ table.

ClusterJ uses the following concepts:

 Copyright © 2010, Oracle and/or its affiliates. All rights reserved. 50/81

• SessionFactory: There is one instance per MySQL Cluster instance for each Java
Virtual Machine (JVM). The SessionFactory object is used by the application to get hold
of sessions. The configuration details for the ClusterJ instance are defined in the
Configuration properties which is an artifact associated with the SessionFactory.

• Session: There is one instance per user (per Cluster, per JVM) and represents a Cluster
connection

• Domain Object: Objects representing the data from a table. The domain objects (and
their relationships to the Cluster tables) are defined by annotated interfaces (as shown in
the right-hand side of Figure 2.

Figure 3: ClusterJ terminology

• Transaction: There is one transaction per session at any point in time. By default, each
query is run under its own transaction.

ClusterJ will be suitable for many Java developers but it has some restrictions which may
make OpenJPA with the ClusterJPA plug-in more appropriate. These ClusterJ restrictions
are:

• Persistent Interfaces rather than persistent classes. The developer provides the
signatures for the getter/setter methods rather than the properties and no extra methods
can be added.

• No Relationships between properties or between objects can be defined in the domain
objects. Properties are primitive types.

• No Multi-table inheritance; there is a single table per persistent interface

• No joins in queries (all data being queried must be in the same table/interface)

• No Table creation - user needs to create tables and indexes

• No Lazy Loading - entire record is loaded at one time, including large object (LOBs).

 Copyright © 2010, Oracle and/or its affiliates. All rights reserved. 51/81

ClusterJPA

JPA is the Java standard for persistence and different vendors can implement their own
implementation of this API and they can (and do) add proprietary extensions. Three of the
most common implementations are OpenJPA, Hibernate and Toplink. JPA can be used
within server containers or outside of them (i.e. with either J2EE or J2SE).

OpenJPA > ClusterJ > NDB API OpenJPA > Connector/J > MySQL > NDB API

Insert

Delete

Find (Primary Key reads)

Update

Other queries

Typically a JPA implementation would access the database (for example, MySQL Cluster)
using JDBC. JDBC gives a great deal of flexibility to the JPA implementer but it cannot
give the best performance when using MySQL Cluster as there is an internal conversion to
SQL by Connector/J and a subsequent translation from SQL to the C++ NDB API by the
MySQL Server. As of MySQL Cluster 7.1, OpenJPA can be configured to use the high
performance NDB API (via ClusterJ) for most operations but fall back on JDBC for more
complex queries.

The first implementation of ClusterJPA is as an OpenJPA BrokerFactory but in the future,
it may be extended to work with other JPA implementations.

ClusterJPA overcomes ClusterJ limitations, notably:

• Persistent classes

• Relationships

• Joins in queries

• Lazy loading

• Table and index creation from object model

Typically users base their selection of a JPA solution on factors such as proprietary
extensions, what existing applications already use and (increasingly with ClusterJPA)
performance.

The performance of ClusterJPA (OpenJPA using ClusterJ) has been compared with
OpenJPA using JDBC in Figure 4. It should be noted that the performance is significantly
better when using ClusterJPA (the yellow bar). It is hoped that in the future the
performance can be improved even further for finds, updates and deletes.

 Copyright © 2010, Oracle and/or its affiliates. All rights reserved. 52/81

Figure 4: Performance of OpenJPA

Adapting an OpenJPA based application to use ClusterJPA with MySQL Cluster should be
fairly straight-forward with the main change being in the definition of the persistence unit
in persistence.xml:

<persistence xmlns=http://java.sun.com/xml/ns/persistence xmlns:xsi="http://www.w3.org/2001/
XMLSchema-instance" version="1.0">
 <persistence-unit name="clusterdb" transaction-type="RESOURCE_LOCAL“>
 <provider> org.apache.openjpa.persistence.PersistenceProviderImpl </provider>
 <class>Employee</class>
 <class>Department</class>
 <properties>
 <property name="openjpa.jdbc.SynchronizeMappings" value="buildSchema" />
 <property name="openjpa.ConnectionDriverName"
 value="com.mysql.jdbc.Driver" />
 <property name="openjpa.ConnectionURL" value="jdbc:mysql://localhost:3306/clusterdb" />
 <property name="openjpa.ConnectionUserName" value="root" />
 <property name="openjpa.ConnectionPassword" value="" />
 <property name="openjpa.BrokerFactory" value="ndb" />
 <property name="openjpa.ndb.connectString" value="localhost:1186" />
 <property name="openjpa.jdbc.DBDictionary" value="TableType=ndb"/>
 <property name="openjpa.ndb.database" value="clusterdb" /
 </properties>
 </persistence-unit>
</persistence>

Defining the object to table mappings is performed by annotating the persistent class for
the domain object. If not already in existence, OpenJPA will create the table (although the
user is responsible for changing the storage engine for the table to NDB so that ClusterJPA
can perform correctly).

This paper does not go into the use of JPA in great depth – focusing instead on the
specifics of using OpenJPA with MySQL Cluster/ClusterJPA. For more information on the
use of JPA and OpenJPA, refer to http://openjpa.apache.org/ .

 Copyright © 2010, Oracle and/or its affiliates. All rights reserved. 53/81

http://openjpa.apache.org/
http://openjpa.apache.org/

Figure 5: ClusterJPA Class annotation.

Pre-requisites for Tutorial

The tutorials are using MySQL Cluster 7.1.2 on Fedora 12. If using more recent versions of
MySQL Cluster then you may need to change the class-paths as explained in http://
dev.mysql.com/doc/ndbapi/en/mccj-using-clusterj.html and http://dev.mysql.com/doc/
ndbapi/en/mccj-using-jpa.html

For both of these tutorials, it is necessary to have MySQL Cluster up and running. For
simplicity all of the nodes (processes) making up the Cluster will be run on the same
physical host, along with the application.

Although most of the database access is performed through the NDB API, the Cluster
includes a MySQL Server process for OpenJPA to use for complex queries and to allow the
user to check the contents of the database manually.

These are the MySQL Cluster configuration files being used (during the tutorial, you can
use the Cluster that has already been created):

 Copyright © 2010, Oracle and/or its affiliates. All rights reserved. 54/81

http://dev.mysql.com/doc/ndbapi/en/mccj-using-clusterj.html
http://dev.mysql.com/doc/ndbapi/en/mccj-using-clusterj.html
http://dev.mysql.com/doc/ndbapi/en/mccj-using-clusterj.html
http://dev.mysql.com/doc/ndbapi/en/mccj-using-clusterj.html
http://dev.mysql.com/doc/ndbapi/en/mccj-using-jpa.html
http://dev.mysql.com/doc/ndbapi/en/mccj-using-jpa.html
http://dev.mysql.com/doc/ndbapi/en/mccj-using-jpa.html
http://dev.mysql.com/doc/ndbapi/en/mccj-using-jpa.html

config.ini:

[ndbd default]noofreplicas=2
datadir=/home/billy/mysql/my_cluster/data

[ndbd]
hostname=localhost
id=3

[ndbd]
hostname=localhost
id=4

[ndb_mgmd]
id = 1
hostname=localhost
datadir=/home/billy/mysql/my_cluster/data

[mysqld]
hostname=localhost
id=101

[api]
hostname=localhost

my.cnf:

[mysqld]
ndbcluster
datadir=/home/billy/mysql/my_cluster/data
basedir=/usr/local/mysql

These tutorials focus on ClusterJ and ClusterJPA rather than on running MySQL Cluster; if
you are new to MySQL Cluster then refer to http://www.clusterdb.com/mysql-cluster/
creating-a-simple-cluster-on-a-single-linux-host/ before trying these tutorials.

ClusterJ Tutorial

ClusterJ needs to be told how to connect to our MySQL Cluster database; including the
connect string (the address/port for the management node), the database to use, the user
to login as and attributes for the connection such as the timeout values. If these
parameters aren’t defined then ClusterJ will fail with run-time exceptions. This
information represents the “configuration properties” shown in Figure 3.
These parameters can be hard coded in the application code but it is more maintainable to
create a clusterj.properties file that will be imported by the application. This file should be
stored in the same directory as your application source code.

clusterj.properties:

com.mysql.clusterj.connectstring=localhost:1186
com.mysql.clusterj.database=clusterdb
com.mysql.clusterj.connect.retries=4
com.mysql.clusterj.connect.delay=5
com.mysql.clusterj.connect.verbose=1
com.mysql.clusterj.connect.timeout.before=30
com.mysql.clusterj.connect.timeout.after=20
com.mysql.clusterj.max.transactions=1024

As ClusterJ will not create tables automatically, the next step is to create ‘clusterdb’
database (referred to in clusterj.properties) and the ‘employee’ table:

 Copyright © 2010, Oracle and/or its affiliates. All rights reserved. 55/81

http://www.clusterdb.com/mysql-cluster/creating-a-simple-cluster-on-a-single-linux-host/
http://www.clusterdb.com/mysql-cluster/creating-a-simple-cluster-on-a-single-linux-host/
http://www.clusterdb.com/mysql-cluster/creating-a-simple-cluster-on-a-single-linux-host/
http://www.clusterdb.com/mysql-cluster/creating-a-simple-cluster-on-a-single-linux-host/

[billy@ws1 ~]$ mysql -u root -h 127.0.0.1 -P 3306 -u root
mysql> create database clusterdb;use clusterdb;
mysql> CREATE TABLE employee (
 -> id INT NOT NULL PRIMARY KEY,
 -> first VARCHAR(64) DEFAULT NULL,
 -> last VARCHAR(64) DEFAULT NULL,
 -> municipality VARCHAR(64) DEFAULT NULL,
 -> started VARCHAR(64) DEFAULT NULL,
 -> ended VARCHAR(64) DEFAULT NULL,
 -> department INT NOT NULL DEFAULT 1,
 -> UNIQUE KEY idx_u_hash (first,last) USING HASH,
 -> KEY idx_municipality (municipality)
 ->) ENGINE=NDBCLUSTER;

The next step is to create the annotated interface:

Employee.java:

import com.mysql.clusterj.annotation.Column;
import com.mysql.clusterj.annotation.Index;
import com.mysql.clusterj.annotation.PersistenceCapable;
import com.mysql.clusterj.annotation.PrimaryKey;

@PersistenceCapable(table="employee")
@Index(name="idx_uhash")
public interface Employee {

 @PrimaryKey
 int getId();
 void setId(int id);

 String getFirst();
 void setFirst(String first);
 String getLast();
 void setLast(String last);

 @Column(name="municipality")
 @Index(name="idx_municipality")
 String getCity();
 void setCity(String city);

 String getStarted();
 void setStarted(String date);

 String getEnded();
 void setEnded(String date);

 Integer getDepartment();
 void setDepartment(Integer department);
}

The name of the table is specified in the annotation @PersistenceCapable

(table="employee") and then each column from the employee table has an associated

getter and setter method defined in the interface. By default, the property name in the
interface is the same as the column name in the table – that has been overridden for the
City property by explicitly including the @Column(name="municipality") annotation just

before the associated getter/setter methods. The @PrimaryKey annotation is used to

identify the property who’s associated column is the Primary Key in the table. ClusterJ is
made aware of the existence of indexes in the database using the @Index annotation.

 Copyright © 2010, Oracle and/or its affiliates. All rights reserved. 56/81

The next step is to write the application code which we step through here block by block;
the first of which simply contains the import statements and then loads the contents of the
clusterj.properties defined above (Note – refer to section 3.1.1 for details on compiling and
running the tutorial code):

Main.java (part 1):

import com.mysql.clusterj.ClusterJHelper;
import com.mysql.clusterj.SessionFactory;
import com.mysql.clusterj.Session;
import com.mysql.clusterj.Query;
import com.mysql.clusterj.query.QueryBuilder;
import com.mysql.clusterj.query.QueryDomainType;

import java.io.File;
import java.io.InputStream;
import java.io.FileInputStream;
import java.io.*;

import java.util.Properties;
import java.util.List;

public class Main {

public static void main (String[] args) throws
java.io.FileNotFoundException,java.io.IOException {

 // Load the properties from the clusterj.properties file

 File propsFile = new File("clusterj.properties");
 InputStream inStream = new FileInputStream(propsFile);
 Properties props = new Properties();
 props.load(inStream);

 //Used later to get userinput
 BufferedReader br = new BufferedReader(new
 InputStreamReader(System.in));

The next step is to get a handle for a SessionFactory from the ClusterJHelper class and

then use that factory to create a session (based on the properties imported from
clusterj.properties file.

Main.java (part 2):

 // Create a session (connection to the database)
 SessionFactory factory = ClusterJHelper.getSessionFactory(props);
 Session session = factory.getSession();

Now that we have a session, it is possible to instantiate new Employee objects and then
persist them to the database. Where there are no transaction begin() or commit()

statements, each operation involving the database is treated as a separate transaction.

 Copyright © 2010, Oracle and/or its affiliates. All rights reserved. 57/81

Main.java (part 3):

 // Create and initialise an Employee
 Employee newEmployee = session.newInstance(Employee.class);
 newEmployee.setId(988);
 newEmployee.setFirst("John");
 newEmployee.setLast("Jones");
 newEmployee.setStarted("1 February 2009");
 newEmployee.setDepartment(666);

 // Write the Employee to the database
 session.persist(newEmployee);

At this point, a row will have been added to the ‘employee’ table. To verify this, a new
Employee object is created and used to read the data back from the ‘employee’ table using

the primary key (Id) value of 998:

Main.java (part 4):

 // Fetch the Employee from the database
 Employee theEmployee = session.find(Employee.class, 988);

 if (theEmployee == null)
 {System.out.println("Could not find employee");}
 else
 {System.out.println ("ID: " + theEmployee.getId() + "; Name: " +
 theEmployee.getFirst() + " " + theEmployee.getLast());
	 System.out.println ("Location: " + theEmployee.getCity());
	 System.out.println ("Department: " + theEmployee.getDepartment());
	 System.out.println ("Started: " + theEmployee.getStarted());
	 System.out.println ("Left: " + theEmployee.getEnded());
 }

This is the output seen at this point:

ID: 988; Name: John Jones
Location: null
Department: 666
Started: 1 February 2009
Left: null
Check the database before I change the Employee - hit return when you are done

The next step is to modify this data but it does not write it back to the database yet:

Main.java (part 5):

 // Make some changes to the Employee & write back to the database
 theEmployee.setDepartment(777);
 theEmployee.setCity("London");

 System.out.println("Check the database before I change the Employee -
 hit return when you are done");
 String ignore = br.readLine();

The application will pause at this point and give you chance to check the database to
confirm that the original data has been added as a new row but the changes have not been
written back yet:

 Copyright © 2010, Oracle and/or its affiliates. All rights reserved. 58/81

mysql> select * from clusterdb.employee;
+-----+-------+-------+--------------+-----------------+-------+------------+
| id | first | last | municipality | started | ended | department |
+-----+-------+-------+--------------+-----------------+-------+------------+
| 988 | John | Jones | NULL | 1 February 2009 | NULL | 666 |
+-----+-------+-------+--------------+-----------------+-------+------------+

After hitting return, the application will continue and write the changes to the table.

Main.java (part 6):

 session.updatePersistent(theEmployee);

 System.out.println("Check the change in the table before I bulk add
 Employees - hit return when you are done");
 ignore = br.readLine();

The application will again pause so that we can now check that the change has been written
back (persisted) to the database:

mysql> select * from clusterdb.employee;
+-----+-------+-------+--------------+-----------------+-------+------------+
| id | first | last | municipality | started | ended | department |
+-----+-------+-------+--------------+-----------------+-------+------------+
| 988 | John | Jones | London | 1 February 2009 | NULL | 777 |
+-----+-------+-------+--------------+-----------------+-------+------------+

The application then goes onto create and persist 100 new employees. To improve
performance, a single transaction is used to that all of the changes can be written to the
database at once when the commit() statement is run:

Main.java (part 7):

 // Add 100 new Employees - all as part of a single transaction
 newEmployee.setFirst("Billy");
 newEmployee.setStarted("28 February 2009");

 session.currentTransaction().begin();

 for (int i=700;i<800;i++) {
 newEmployee.setLast("No-Mates"+i);
	 newEmployee.setId(i+1000);
 newEmployee.setDepartment(i);
 session.persist(newEmployee);
 }

 session.currentTransaction().commit();

The 100 new employees will now have been persisted to the database. The next step is to
create and execute a query that will search the database for all employees in department
777 by using a QueryBuilder and using that to build a QueryDomain that compares the

‘department’ column with a parameter. After creating the, the department parameter is set
to 777 (the query could subsequently be reused with different department numbers). The

application then runs the query and iterates through and displays each of employees in the
result set:

 Copyright © 2010, Oracle and/or its affiliates. All rights reserved. 59/81

Main.java (part 8):

 // Retrieve the set all of Employees in department 777
 QueryBuilder builder = session.getQueryBuilder();
 QueryDomainType<Employee> domain =
 builder.createQueryDefinition(Employee.class);
 domain.where(domain.get("department").equal(domain.param(
 "department")));
 Query<Employee> query = session.createQuery(domain);
 query.setParameter("department",777);

 List<Employee> results = query.getResultList();
 for (Employee deptEmployee: results) {
 System.out.println ("ID: " + deptEmployee.getId() + "; Name: " +
 deptEmployee.getFirst() + " " + deptEmployee.getLast());
 System.out.println ("Location: " + deptEmployee.getCity());
 System.out.println ("Department: " + deptEmployee.getDepartment());
 System.out.println ("Started: " + deptEmployee.getStarted());
 System.out.println ("Left: " + deptEmployee.getEnded());
 }

 System.out.println("Last chance to check database before emptying table
 - hit return when you are done");
 ignore = br.readLine();

At this point, the application will display the following and prompt the user to allow it to
continue:

ID: 988; Name: John Jones
Location: London
Department: 777
Started: 1 February 2009
Left: null
ID: 1777; Name: Billy No-Mates777
Location: null
Department: 777
Started: 28 February 2009
Left: null

We can compare that output with an SQL query performed on the database:

mysql> select * from employee where department=777;
+------+-------+-------------+--------------+------------------+-------+------------+
| id | first | last | municipality | started | ended | department |
+------+-------+-------------+--------------+------------------+-------+------------+
| 988 | John | Jones | London | 1 February 2009 | NULL | 777 |
| 1777 | Billy | No-Mates777 | NULL | 28 February 2009 | NULL | 777 |
+------+-------+-------------+--------------+------------------+-------+------------+

Finally, after pressing return again, the application will remove all employees:

Main.java (part 8):

 session.deletePersistentAll(Employee.class);
 }
 }

As a final check, an SQL query confirms that all of the rows have been deleted from the
‘employee’ table.

mysql> select * from employee;
Empty set (0.00 sec)

 Copyright © 2010, Oracle and/or its affiliates. All rights reserved. 60/81

Compiling and running the ClusterJ tutorial code

cd /usr/local/clusterj_example_wp_7_1_2a

javac -classpath /usr/local/mysql/share/mysql/java/clusterj-api.jar:. Main.java
Employee.java

java -classpath /usr/local/mysql/share/mysql/java/clusterj.jar:. -
Djava.library.path=/usr/local/mysql/lib Main

OpenJPA/ClusterJPA Tutorial

JPA/OpenJPA/ClusterJPA can be used within or outside a container (i.e. it can be used
with J2EE or J2SE) – for simplicity, this tutorial does not use a container (i.e. it is written
using J2SE).

Before being able to run any ClusterJPA code, you first need to download and install
OpenJPA from http://openjpa.apache.org/ - this tutorial uses OpenJPA 1.2.1. Simply
extract the contents of the binary tar ball to the host you want to run your application on;
for this tutorial, I use /usr/local/openjpa.

Additionally, ClusterJPA must sometimes use JDBC to satisfy certain queries and so
“JDBC Driver for MySQL (Connector/J)” should also be installed – this can be
downloaded from http://dev.mysql.com/downloads/connector/j/ Again, simply extract
the contents of the tar ball, for this tutorial the files are stored in /usr/local/connectorj and
version 5.1.12 is used.

If the ClusterJ tutorial has already been run on this MySQL Cluster database then drop the
tables from the cluster so that you can observe them being created automatically – though
in a real application, you may prefer to create them manually.

A configuration file is required to indicate how persistence is to be handled for the
application. Create a new directory called META-INF in the application source directory
and within there create a file called persistence.xml:

<persistence xmlns="http://java.sun.com/xml/ns/persistence"
	 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" version="1.0">
 <persistence-unit name="clusterdb" transaction-type="RESOURCE_LOCAL">
 <provider>
 org.apache.openjpa.persistence.PersistenceProviderImpl
 </provider>
 <class>Employee</class>
 <class>Department</class>
 <properties>
 <property name="openjpa.jdbc.SynchronizeMappings" value="buildSchema" />
 <property name="openjpa.ConnectionDriverName"
 value="com.mysql.jdbc.Driver" />
 <property name="openjpa.ConnectionURL"
 value="jdbc:mysql://localhost:3306/clusterdb" />
 <property name="openjpa.ConnectionUserName" value="root" />
 <property name="openjpa.ConnectionPassword" value="" />
 <property name="openjpa.BrokerFactory" value="ndb" />
 <property name="openjpa.jdbc.DBDictionary" value="TableType=ndb"/>
 <property name="openjpa.ndb.connectString" value="localhost:1186" />
 <property name="openjpa.ndb.database" value="clusterdb" />
 </properties>
 </persistence-unit>
</persistence>

 Copyright © 2010, Oracle and/or its affiliates. All rights reserved. 61/81

http://openjpa.apache.org/
http://openjpa.apache.org/
http://dev.mysql.com/downloads/connector/j/
http://dev.mysql.com/downloads/connector/j/

A persistence unit called ‘clusterdb’ is created; the provider (implementation for the

persistence) is set to openjpa (as opposed for example to hibernate). Two classes are

specified – ‘Employee’ and ‘Department’ which relate to the persistent classes that the

application will define. Connector/J is defined as the JDBC connection (together with the
host and the port of the MySQL Server to be used). The key to having OpenJPA use
ClusterJPA is to set the BrokerFactory to ndb and specify the connect string (host:port) for

the MySQL Cluster management node. The database is defined to be ‘clusterdb’ for both
the JDBC and ClusterJ connections.

If not already done so, create the ‘clusterdb’ database (if it already contains tables from

the ClusterJ tutorial then drop them):

mysql> create database clusterdb;

The next step is to create the persistent class definitions for the Department and Employee
Entities:

Department.java:

 import javax.persistence.*;

 @Entity(name = "department")
 public class Department {

 private int Id;
 private String Site;

 public Department(){}

 @Id public int getId() {return Id;}
 public void setId(int id) {Id=id;}

 @Column(name="location")
 public String getSite() {return Site;}
 public void setSite(String site) {Site=site;}

 public String toString() {
 	 return "Department: " + getId() + " based in " + getSite();
 }
 }

Using the @Entity tag, the table name is specified to be ‘department’. Note that unlike

ClusterJ, ClusterJPA uses persistent classes (rather than interfaces) and so it is necessary
to define the properties as well as the getter/setter methods. The primary key is defined
using the @Id tag and we specify that the column associated with the Site property should

be called ‘location’ using the @Column tag.

As this is a class, it is possible to add other useful methods – in this case toString().

 Copyright © 2010, Oracle and/or its affiliates. All rights reserved. 62/81

Employee.java:

 import javax.persistence.*;

 @Entity(name = "employee") //Name of the table

 public class Employee {

 private int Id;
 private String First;
 private String Last;
 private String City;
 private String Started;
 private String Ended;
 private int Department;

 public Employee(){}

 @Id public int getId() {return Id;}
 public void setId(int id) {Id=id;}

 public String getFirst() {return First;}
 public void setFirst(String first) {First=first;}

 public String getLast() {return Last;}
 public void setLast(String last) {Last=last;}

 @Column(name="municipality")
 public String getCity() {return City;}
 public void setCity(String city) {City=city;}

 public String getStarted() {return Started;}
 public void setStarted(String date) {Started=date;}

 public String getEnded() {return Ended;}
 public void setEnded(String date) {Ended=date;}

 public int getDepartment() {return Department;}
 public void setDepartment(int department) {Department=department;}

 public String toString() {
 	 return getFirst() + " " + getLast() + " (Dept " +
 getDepartment()+ ") from " + getCity() +
 " started on " + getStarted() + " & left on " + getEnded();
 }
 }

The next step is to write the application code which we step through here block by block;
the first of which simply contains the import statements and then (Note – refer to section
3.1.2 for details on compiling and running the tutorial code):

 Copyright © 2010, Oracle and/or its affiliates. All rights reserved. 63/81

Main.java (part 1):

 import java.util.List;
 import javax.persistence.EntityManager;
 import javax.persistence.EntityManagerFactory;
 import javax.persistence.EntityTransaction;
 import javax.persistence.Persistence;
 import javax.persistence.Query;
 import java.io.*;

 public class Main {

 public static void main (String[] args) throws java.io.IOException {

 EntityManagerFactory entityManagerFactory =
Persistence.createEntityManagerFactory("clusterdb");
 EntityManager em = entityManagerFactory.createEntityManager();
 EntityTransaction userTransaction = em.getTransaction();

 BufferedReader br = new BufferedReader(new InputStreamReader(System.in));

 System.out.println("The tables will now have been created - check through
SQL.");
 System.out.println("mysql> use clusterdb;");
 System.out.println("mysql> show tables;");
 System.out.println("Hit return when you are done");
 String ignore = br.readLine();

As part of creating the EntityManagerFactory and EntityManager, OpenJPA creates the
tables for the two classes specified for the ‘clusterdb’ persistence unit. While the

application waits for the user to press return, this can be checked:

mysql> use clusterdb
mysql> show tables;
+---------------------+
| Tables_in_clusterdb |
+---------------------+
| department |
| employee |
+---------------------+

After hitting return, the application can create an Employee object and then persist it – at
which point it will be stored in the ‘employee’ table. A second Employee object is then
created and populated with the data read back from the database (using a primary key look
up on the Id property with a value of 1):

 Copyright © 2010, Oracle and/or its affiliates. All rights reserved. 64/81

Main.java (part 2):

 userTransaction.begin();
 Employee emp = new Employee();
 emp.setId(1);
 emp.setDepartment(666);
 emp.setFirst("Billy");
 emp.setLast("Fish");
 emp.setStarted("1st February 2009");
 em.persist(emp);
 userTransaction.commit();

 userTransaction.begin();
 Employee theEmployee = em.find(Employee.class, 1);
 userTransaction.commit();

 System.out.println(theEmployee.toString());

 System.out.println("Chance to check the database before City is set");
 System.out.println("Hit return when you are done");
 ignore = br.readLine();

The Employee object read back from the database is displayed:

Billy Fish (Dept 666) from null started on 1st February 2009 & left on null
Chance to check the database before City is set
Hit return when you are done

At this point, the application waits to give the user a chance to confirm that the Employee
really has been written to the database:

mysql> select * from employee;
+----+--------------+------------+-------+-------+------+-------------------+
| id | municipality | department | ended | first | last | started |
+----+--------------+------------+-------+-------+------+-------------------+
| 1 | NULL | 666 | NULL | Billy | Fish | 1st February 2009 |
+----+--------------+------------+-------+-------+------+-------------------+

After hitting return, the application continues and an update is made to the persisted
Employee object – note that there is no need to explicitly ask for the changes to be

persisted, this happens automatically when the transaction is committed:

Main.java (part 3):

 userTransaction.begin();
 theEmployee.setCity("London");
 theEmployee.setDepartment(777);
 userTransaction.commit();

 System.out.println("Chance to check the City is set in the database");
 System.out.println("Hit return when you are done");
 ignore = br.readLine();

At this point, the application again waits while the user has a chance to confirm that the
changes did indeed get written through to the database:

 Copyright © 2010, Oracle and/or its affiliates. All rights reserved. 65/81

mysql> select * from employee;
+----+--------------+------------+-------+-------+------+-------------------+
| id | municipality | department | ended | first | last | started |
+----+--------------+------------+-------+-------+------+-------------------+
| 1 | London | 777 | NULL | Billy | Fish | 1st February 2009 |
+----+--------------+------------+-------+-------+------+-------------------+

When allowed to continue, the application creates and persists an additional 100
Employee & Department entities. It then goes on to create and execute a query to find all
employees with a department number of 777 and then looks up the location of the site for
that department.

 Department dept;

 userTransaction.begin();
 for (int i=700;i<800;i++) {
	 emp = new Employee();
	 dept = new Department();
	 emp.setId(i+1000);
	 emp.setDepartment(i);
	 emp.setFirst("Billy");
	 emp.setLast("No-Mates-"+i);
	 emp.setStarted("1st February 2009");
	 em.persist(emp);
	 dept.setId(i);
	 dept.setSite("Building-"+i);
	 em.persist(dept);
 }

 userTransaction.commit();

 userTransaction.begin();

 Query q = em.createQuery("select x from Employee x where x.department=777");
 Query qd;

 for (Employee m : (List<Employee>) q.getResultList()) {
	 System.out.println(m.toString());
	 qd = em.createQuery("select x from Department x where x.id=777");
	 for (Department d : (List<Department>) qd.getResultList()) {
	 System.out.println(d.toString());
	 }
 }

 userTransaction.commit();

These are the results displayed:

Billy No-Mates-777 (Dept 777) from null started on 1st February 2009 & left on
null
Department: 777 based in Building-777
Billy Fish (Dept 777) from London started on 1st February 2009 & left on null
Department: 777 based in Building-777

Note that joins between tables are possible with JPA but that is beyond the scope of this
tutorial.

Finaly, the EntityManager and EntityManagerFactory are closed:

 Copyright © 2010, Oracle and/or its affiliates. All rights reserved. 66/81

Main.java (part 4):

 em.close();
 entityManagerFactory.close();
 }
}

Compiling and running the ClusterJPA tutorial code

javac -classpath /usr/local/mysql/share/mysql/java/clusterjpa.jar:/usr/local/
openjpa/openjpa-1.2.1.jar:/usr/local/openjpa/lib/geronimo-jpa_3.0_spec-1.0.jar:.
Main.java Employee.java Department.java

java -Djava.library.path=/usr/local/mysql/lib/ -classpath /usr/local/mysql/
share/mysql/java/clusterjpa.jar:/usr/local/openjpa/openjpa-1.2.1.jar:/usr/local/
openjpa/lib/*:/usr/local/connectorj/mysql-connector-java-5.1.12-bin.jar:. Main

Exercise

1. Move to the folder containing the ClusterJPA example:
 cd /usr/local/clusterj_example_wp_7_1_2a

2. Compile the software:

javac -classpath /usr/local/mysql/share/mysql/java/clusterj-api.jar:.

Main.java Employee.java

3. Run the software:

java -classpath /usr/local/mysql/share/mysql/java/clusterj.jar:. -

Djava.library.path=/usr/local/mysql/lib Main

4. Check the contents of the database at each opportunity

 Copyright © 2010, Oracle and/or its affiliates. All rights reserved. 67/81

Schema considerations

Develop for MySQL Cluster

Going from one storage engine is relatively easy with MySQL, but it usually isn't the best
way forward. If you go for example from MyISAM to InnoDB, you'll need to tune a
completely different set of options to make run smoothly. The same is true when you alter
tables to use the NDBCluster storage engine:

ALTER TABLE employees ENGINE=NDBCluster

One example where it can go wrong are with some of the restrictions and limitations found
in MySQL Cluster. The following table compares a few differences between NDBCluster,
InnoDB and MyISAM:

NDBCluster InnoDB MyISAM

Columns per table 128 1000 4096

Row size 8052 bytes ±8kB* 64kB

(*Excluding variable-lenght columns)

If one of your tables would have 200 columns, it would not be possible to store it in
MySQL Cluster.

Re-normalization

When you have an existing project, you probably did normalize your data. If you want to
get your project into MySQL Cluster, you'll have to check if your schema still fits.

The Row Size is a common pitfall. As we seen earlier, it is limited to 8052 bytes. Your
InnoDB tables will not work.
To demonstrate, lets create a table with two rather big VARCHAR fields:

CREATE TABLE t1 (
 c1 INT NOT NULL KEY,
 c2 VARCHAR(4000),
 c3 VARCHAR(4000)
) ENGINE=NDBCluster DEFAULT CHARSET=Latin1

This works, as we keep under the 8052 bytes. Notice also that we use a 1-byte character set,
latin1. If we would use UTF-8 as character set, it would fail:

CREATE TABLE t1 (
 c1 INT NOT NULL KEY,
 c2 VARCHAR(4000),
 c3 VARCHAR(4000)
) ENGINE=NDBCluster DEFAULT CHARSET=UTF-8

More on limitations within MySQL and MySQL Cluster in the MySQL Manual:
http://dev.mysql.com/doc/refman/5.1/en/restrictions.html
http://dev.mysql.com/doc/refman/5.1/en/mysql-cluster-limitations.html
http://dev.mysql.com/doc/refman/5.1/en/innodb-restrictions.html
http://dev.mysql.com/doc/refman/5.1/en/myisam-storage-engine.html

 Copyright © 2010, Oracle and/or its affiliates. All rights reserved. 68/81

http://dev.mysql.com/doc/refman/5.1/en/restrictions.html
http://dev.mysql.com/doc/refman/5.1/en/restrictions.html
http://dev.mysql.com/doc/refman/5.1/en/mysql-cluster-limitations.html
http://dev.mysql.com/doc/refman/5.1/en/mysql-cluster-limitations.html
http://dev.mysql.com/doc/refman/5.1/en/innodb-restrictions.html
http://dev.mysql.com/doc/refman/5.1/en/innodb-restrictions.html
http://dev.mysql.com/doc/refman/5.1/en/myisam-storage-engine.html
http://dev.mysql.com/doc/refman/5.1/en/myisam-storage-engine.html

This fails with an error saying the maximum row size could be reached. In MySQL a UTF-8
character can take up to 3 bytes. If we do the calculation for only the c2 VARCHAR
column, an application would be allowed to store data as big as 12000 bytes, or 4000 x 3.

When you have such tables, you'll probably need to redo some normalization steps. You
might need to split up bigger table, putting data you rarely need in another table.

A solution for the table in the example above would be to use TEXT, but it is good to limit
the usuage of LOB-fields as much as possible. We'll say why later.

Denormalization

Normalization is good, but with MySQL Cluster you might want to denormalize.

One reasons you would denormalize is limiting queries joining tables. Lets look at some
typical (simplistic) normalized situation where we store the location of a subscriber in a
separate table:

uid username fullname

1 andrewh Andrew Hutchings

2 andrewm Andrew Morgan

3 geertv Geert Vanderkelen

uid location

1 UK

2 UK

3 BE

To get the subscribers username and location of Geert Vanderkelen, you'll do the following
join:

SELECT s.uid, l.location
FROM subscribers AS s LEFT JOIN locations AS l
WHERE s.uid = 3

This works fine with MySQL Cluster, but in a busy system and with more data involved, it
might cause to much network traffic. When you always need the location for the
subscriber, you better put the location back into the subscriber table:

uid username fullname location

1 andrewh Andrew Hutchings UK

2 andrewm Andrew Morgan UK

3 geertv Geert Vanderkelen BE

 Copyright © 2010, Oracle and/or its affiliates. All rights reserved. 69/81

This would allow us to make a much simpler query:

SELECT uid, location FROM subscribers WHERE uid = 3

Primary Keys and Unique Indexes

You should define a Primary Key for every MySQL Cluster table. If you don’t, one will be
created automatically, but that’s considered bad practice.

Both the Primary Key and Unique Indexes will use data and index memory, unless you give
the USE HASH option when you create the table. This way, only the hash part will be created

and no data memory will be consumed. Updating data will be faster, less data memory will
be used, but queries doing range scans might be slower.

Historical Data

Remove redundant even quicker within MySQL. Only the data that is hot when you have
lots of changes and new records coming.

Disk-Based Tables

Tables can be created so non-indexed fields are going to disk instead of memory. This will
allow you to store much more data in MySQL Cluster, but you have to also consider some
possible performance penalty.
One of the reasons why MySQL Cluster is storing in memory is to compensate for the
possible network latency. Hard drives could possibly add more latency.

You will need to create a ‘logfile group’, and ‘tablespaces’. We are not covering this in the
tutorial, but the MySQL Manual has a nice example will get you going. Note that you might
need to configure your MySQL Cluster to get it actually working well.

Some external links:
http://dev.mysql.com/doc/refman/5.1/en/mysql-cluster-disk-data.html
http://johanandersson.blogspot.com/2008/12/disk-data-summary.html

 Copyright © 2010, Oracle and/or its affiliates. All rights reserved. 70/81

http://dev.mysql.com/doc/refman/5.1/en/mysql-cluster-disk-data.html
http://dev.mysql.com/doc/refman/5.1/en/mysql-cluster-disk-data.html
http://johanandersson.blogspot.com/2008/12/disk-data-summary.html
http://johanandersson.blogspot.com/2008/12/disk-data-summary.html

Scaling and Performance

MySQL Nodes

MySQL Cluster is not designed for the single thread / single query performance. In fact
you can be almost certain that it will perform worse in this scenario than any other storage
engine type. It is designed for multiple simultaneous queries.
By default a mysqld server only has a single connection to the cluster to process queries

which can be a bottleneck. There are two ways around this. First, you could add more
mysqld nodes and have your application load-balance between them.
Or alternatively you could use the --ndb-cluster-connection-pool setting to add more

connections between mysqld and the cluster. Please note that to do this you will need to
add more [mysqld] slots to your my.cnf to account for each connection in the pool.

NDBAPI

Of course, direct NDBAPI is going to give much better performance than using SQL.
Not only do you eliminate the SQL overhead but there are some things in NDBAPI which
cannot be defined using SQL.

Data Nodes

MySQL Cluster was originally designed for primary key equality lookups, and it excels at
this. When running an SQL query with this kind of lookup mysqld will try to go directly to
the node with the data and the data will be retrieved very quickly.

Ordered index lookups are, in general, a lot slower. This is because the query has to be
sent to all nodes to be processed simultaneous and then the results are collected and sent
back. When adding more nodes there is more network traffic and round trips required for
this. So performance can degrade with more nodes when ordered indexes are used.

Other Issues

Blobs

Blobs (text columns are blob columns too) in MySQL Cluster are stored using a hidden
table.
Each blob is split up into many rows for this table (depending on the size of the blob). This
not only causes performance problems but can cause locking problems too because MySQL
needs to keep the blob table consistent with the main table.
Where possible a large VARCHAR or VARBINARY may be a better option.

Joins

At the moment joins require a lot of excessive overhead to process. The second table in the
join is effectively queried for every matching row in the first table. This is a lot of network
overhead.
There is a work-in-progress solution to this called pushed-down joins. This is where the
joins are processed directly in the data nodes. This is currently an in-development feature
with no scheduled release date (or any guarantee it will ever be released).

 Copyright © 2010, Oracle and/or its affiliates. All rights reserved. 71/81

Online Add Node

One of the newer features in MySQL Cluster is online add node. This lets you add data
nodes to an running cluster without having to rebuild it from scratch.

To do this the following procedure must be followed:

1. Add the necessary [ndbd] sections to config.ini

2. Restart all management nodes with --initial or --reload

3. Restart all data nodes
4. Restart all MySQL or API nodes
5. Start the new data nodes with --initial

6. Run CREATE NODEGROUP x,y (where x and y are new nodes) to create a new data node

group with the new nodes.
7. Run ALTER TABLE … REORGANIZE PARTITION in MySQL to reorganize the data into the

new nodes
8. Run OPTIMZE TABLE … in MySQL to reclaim space after the reorganization

 Copyright © 2010, Oracle and/or its affiliates. All rights reserved. 72/81

Geographical Replication

The MySQL Server comes with Replication built in. It allows you to duplicate your data
from one machine to another for failover or backup purposes.

This section we will show how MySQL Cluster takes advantage of this feat.

First, lets look at the binary logging of the MySQL Server, which is a prerequisite for
replication.

Binary Log Format

Before MySQL 5.1, the only available option for binary logging was Statement Based. This
means that each successful SQL statement that changes data gets logged.
Another MySQL server, the Slave, will read these statements and apply them.

MySQL 5.1 brings 2 new formats in addition to Statement-Based binary logging: Row-
Based and Mixed. The latter is a format where the storage engine will be able to choose
whether it does Statement or Row-Based binary logging. Mixed is also default for MySQL
Cluster installations. (Note that for the ‘normal’ MySQL 5.1 server, Statement-Based
logging is the default.)

Row-Based binary logging was needed to allow replication of one cluster to another. The
reason is that there can be multiple SQL and API nodes doing changes simultaneously.

Since API Nodes don’t talk SQL, statements can’t be logged. With Row-Based logging, the
data that changed goes to the binary logs, from all SQL and API Nodes.

 Copyright © 2010, Oracle and/or its affiliates. All rights reserved. 73/81

The above picture shows one MySQL server doing binary logging. It does does by listening
for events through NDB Injector-Thread.
The above shown setup has one flaw, we’ll see later what.

Enabling Binary Logging

You can enable the binary logging in any SQL Node. Here is an example from the
configuration files used in this tutorial:

[mysqld]
ndbcluster
log_bin = master_A_binlog
server_id = 1
binlog_format = MIXED

The --log-bin option enables the binary logging into files named master_A_binlog. The --

binlog-format is not really needed, but it’s good to be explicit. Here is how the files look

like:

master_A_binlog.000011
master_A_binlog.000012
master_A_binlog.index

Don’t forget to set the --server-id option to a value unique to each SQL Node

participating in the MySQL Cluster. If you don’t do this, replication will not work.

You can check the content of a binary log using the mysqlbinlog tool. Reading Row-Based

or Mixed binary logs might be a bit difficult. Take for example the following table:

CREATE TABLE attendees (
id INT UNSIGNED NOT NULL AUTO_INCREMENT,
 email VARCHAR(200),
PRIMARY KEY (id)
) ENGINE=NDBCluster;

Lets insert some data:

INSERT INTO attendees (email) VALUES ('geert@localhost')

Reading the binary log, you don’t get the SQL statement:

shell> mysqlbinlog master_A_binlog.00001
..
BINLOG '
Xz/CSxMBAAAAMwAAAO8DAAAAACUAAAAAAAEABHRlc3QACWF0dGVuZGVlcwACAw8CyAAC
Xz/CSxMBAAAAPgAAAC0EAAAAABAAAAAAAAEABW15c3FsABBuZGJfYXBwbHlfc3RhdHVzAAUDCA8I
CAL/AAA=
Xz/CSxcBAAAAOwAAAGgEAAAAABAAAAAAAAAABR/gAQAAAA8AAACiAAAAAAAAAAAAAAAAAAAAAAAA
AAA=
Xz/CSxcBAAAAMgAAAJoEAAAQACUAAAAAAAEAAgP8AQAAAA9nZWVydEBsb2NhbGhvc3Q=
'/*!*/;
..

 Copyright © 2010, Oracle and/or its affiliates. All rights reserved. 74/81

You can, however, have a more readable output using the --verbose option:

shell> mysqlbinlog -vv master_A_binlog.00001
BINLOG '
Xz/CSxMBAAAAMwAAAO8DAAAAACUAAAAAAAEABHRlc3QACWF0dGVuZGVlcwACAw8CyAAC
Xz/CSxMBAAAAPgAAAC0EAAAAABAAAAAAAAEABW15c3FsABBuZGJfYXBwbHlfc3RhdHVzAAUDCA8I
CAL/AAA=
Xz/CSxcBAAAAOwAAAGgEAAAAABAAAAAAAAAABR/gAQAAAA8AAACiAAAAAAAAAAAAAAAAAAAAAAAA
AAA=
INSERT INTO mysql.ndb_apply_status
SET
@1=1 /* INT meta=0 nullable=0 is_null=0 */
@2=695784701967 /* LONGINT meta=0 nullable=0 is_null=0 */
@3='' /* VARSTRING(255) meta=255 nullable=0 is_null=0 */
@4=0 /* LONGINT meta=0 nullable=0 is_null=0 */
@5=0 /* LONGINT meta=0 nullable=0 is_null=0 */
Xz/CSxcBAAAAMgAAAJoEAAAQACUAAAAAAAEAAgP8AQAAAA9nZWVydEBsb2NhbGhvc3Q=
'/*!*/;
INSERT INTO test.attendees
SET
@1=1 /* INT meta=0 nullable=0 is_null=0 */
@2='geert@localhost' /* VARSTRING(200) meta=200 nullable=1 is_null=0 */

The mysqlbinlog tool will try to make a more readable SQL statement out of the data that

was logged.

The LOST_EVENT incident & solution

We saw previously a setup which had one MySQL Server (or SQL Node) doing binary
logging. This is a problem. Imagine that the machine where this node writing the binlogs is
suddenly failing. All other SQL and API nodes still continue to do changes, but there is no
MySQL Server able record them.

When a MySQL Server starts and it finds out it did do binary logging earlier, it will report
the LOST_EVENTS incident in the binary logs. Slaves reading from this binary log will
stop replicating and show an error. They will report that the Master was down and might
miss data. If a Slave would continue, your data will probably be inconsistent. You do not
want that.

shell> mysqlbinlog master_A_binlog.00001
..
#020411 22:48:47 server id 1 end_log_pos 143
Incident: LOST_EVENTS
RELOAD DATABASE; # Shall generate syntax error
..

 Copyright © 2010, Oracle and/or its affiliates. All rights reserved. 75/81

Luckily, the solution is rather simple. Just configure another SQL Node to do binary
logging.

Setting up Replication between Clusters

Setting up Geographical Replication between two Cluster is as simple as setting it up
between two ‘normal’ MySQL servers.

We’ll need to start a second Cluster for this.

shell> ndb_mgmd --initial -f /opt/mysqlcluster/config_Slave.ini --configdir=/
opt/mysqlcluster/ndb_Slave
shell> ndbd -c localhost:1187
shell> mysqld_safe --defaults-file=/opt/mysqlcluster/my_Slave.cnf &

To access the Slave MySQL Cluster using the ndb_mgm and mysql tool, use the following:

shell> ndb_mgm -c localhost:1187
shell> mysql -S /tmp/mysql_Slave

On the Master Cluster you create a MySQL user which has the REPLICATION USER privilege.

You have to do this on every SQL Node which you are doing binary logging:

shell> mysql
mysql_A> GRANT REPLICATION SLAVE ON *.* TO repl@127.0.0.1;

shell> mysql -S /tmp/mysql_B
mysql_B> GRANT REPLICATION SLAVE ON *.* TO repl@127.0.0.1;

The reason you need to do it on both is because the grant tables in MySQL are local to each
node. They are MyISAM and are not part of Cluster.

Now we need to the binary log position from which we are going to start the replication.
We will use the SQL Node A to start with.

 Copyright © 2010, Oracle and/or its affiliates. All rights reserved. 76/81

shell> mysql
mysql_A:(none)> SHOW MASTER STATUS;
+------------------------+----------+-..
| File | Position | ..
+------------------------+----------+-..
| master_A_binlog.000012 | 214 | ..
+------------------------+----------+-..

Using this information we can go to the Slave and issue the CHANGE MASTER command.

mysql_Slave> CHANGE MASTER TO
	 MASTER_HOST='127.0.0.1',MASTER_PORT=3306,
	 MASTER_USER='repl',
	 MASTER_LOG_FILE='master_A_binlog.000012',
	 MASTER_LOG_POS=214;

Then start the slave, and use SHOW SLAVE STATUS to see if it is working:

mysql_Slave> START SLAVE;
mysql_Slave> SHOW SLAVE STATUS\G
..
 Slave_IO_State: Waiting for master to send event
..
 Slave_IO_Running: Yes
 Slave_SQL_Running: Yes
..
 Master_Server_Id: 1

You create the table on the Master side, using the NDBCluster engine. It should get created
on the Slave as well:

mysql_A> CREATE TABLE attendees (
	 id INT UNSIGNED NOT NULL AUTO_INCREMENT,
	 email VARCHAR(200),
	 PRIMARY KEY (id)
) ENGINE=NDBCluster;

Now you can simply insert data and see it replicating.

Handling LOST_EVENTS

Lets see what happens when we shutdown the mysql_A server and start again.

shell> mysqladmin -S /tmp/mysql shutdown
shell> mysqld_safe --defaults-file=/opt/mysqlcluster/my_A.cnf &

Now, check the Slave:

shell> mysql -S /tmp/mysql_Slave
mysql_Slave> SHOW SLAVE STATUS\G
..
 Last_Errno: 1590
 Last_Error: The incident LOST_EVENTS occured on the master.
 Message: mysqld startup
..

It is now up to you do decide whether you can continue skipping the error, knowing that
you might have lost data or switch to the other replication channel.
Skipping can be done doing this:

 Copyright © 2010, Oracle and/or its affiliates. All rights reserved. 77/81

mysql_Slave> SET GLOBAL SQL_SLAVE_SKIP_COUNTER = 1;
mysql_Slave> START SLAVE;

Exercise: Switching Replication Channel

Switching replication channels is needed when the MySQL Server from which the Slave is
reading changes, went down. It is also useful when doing a rolling upgrade of Cluster.

For the tutorial we will be starting a second MySQL Cluster which will be reading changes
from the first (Master) MySQL Cluster. We will be switching the MySQL Server from which
the Slave Cluster is reading from.

Starting Master and Slave Cluster

Start the Master MySQL Cluster. We will start it empty for this exercise:

shell> cd /opt/mysqlcluster
shell> ndb_mgmd -f config.ini
shell> ndbd -c localhost:1186 --initial
shell> ndbd -c localhost:1186 --initial
shell> mysqld_safe --defaults-file=my_A.cnf &
shell> mysqld_safe --defaults-file=my_B.cnf &

Lets start the Slave MySQL Cluster, note that it has only 1 data node:

shell> cd /opt/mysqlcluster
shell> ndb_mgmd -f config_Slave.ini --configdir=/opt/mysqlcluster/ndb_Slave
shell> ndbd -c localhost:1187
shell> mysqld_safe --defaults-file=my_Slave.cnf &

You can check the Slave Cluster and connect to the MySQL Server using following:

shell> ndb_mgm -c localhost:1187
shell> mysql -S /tmp/mysql_Slave

Setting up the Replication Users on the Master

We have to create the replication users on both MySQL Servers. The grant tables are local
to each MySQL Server and are not stored in the Data Nodes:

shell> mysql
mysql_A> GRANT REPLICATION SLAVE ON *.* TO repl@127.0.0.1;
shell> mysql -S /tmp/mysql_B
mysql_B> GRANT REPLICATION SLAVE ON *.* TO repl@127.0.0.1;

Starting Replication

To start the replication we will need the actual position of the binary log. Initially the Slave
will be reading from the first MySQL Server of the master, mysql_A:

shell> mysql
mysql_A:(none)> SHOW MASTER STATUS;
+------------------------+----------+-..
| File | Position | ..
+------------------------+----------+-..
| master_A_binlog.000012 | 214 | ..
+------------------------+----------+-..

 Copyright © 2010, Oracle and/or its affiliates. All rights reserved. 78/81

On the Slave we now issue the CHANGE MASTER TO command using the information we
got from the Master MySQL Server above:

mysql_Slave> CHANGE MASTER TO
MASTER_HOST='127.0.0.1',MASTER_PORT=3306,
MASTER_USER='repl',
MASTER_LOG_FILE='master_A_binlog.000012',
MASTER_LOG_POS=214;

Start the Slave and check the status for any errors. The IO_Thread and SQL_Thread should

be running, saying ‘Yes’:

mysql_Slave> START SLAVE;
mysql_Slave> SHOW SLAVE STATUS\G

Creating table, inserting data, checking:

mysql_A> CREATE TABLE attendees (
id INT UNSIGNED NOT NULL AUTO_INCREMENT,
email VARCHAR(200),
PRIMARY KEY (id)
) ENGINE=NDBCluster;

mysql_A> INSERT INTO attendees (email) VALUES ('geertv@localhost'),
('andrewh@localhost'),('andrewm@localhost');

Check the data in the table attendees on mysql_A and compare it with the content
of using mysql_Slave.

Shut down MySQL from Master Cluster

For this exercise we just shutdown the mysql_A MySQL Server. This means that the Slave
will not be able to read from the Master anymore:

shell> mysqladmin -S /tmp/mysql shutdown

We are not starting it again, but if you would, you’ll notice that the Slave side will have a
LOST_EVENTS error.

After the MySQL Server mysql_A is down, you can insert some data using mysql_B. This is
a control. The Slave will not get it, but will when we switched it.

mysql_B> insert into attendees (email) values ('marta@localhost');

mysql_Slave> SELECT * FROM attendees;
+----+-------------------+
| id | email |
+----+-------------------+
3	andrewm@localhost
1	geertv@localhost
2	andrewh@localhost
+----+-------------------+

 Copyright © 2010, Oracle and/or its affiliates. All rights reserved. 79/81

The Switch

We now have to tell the Slave MySQL Server it has to use the other MySQL server of the
Master to read changes from. We have to find out what was the last ‘epoch’ or event from
the Master that it applied. You do this with the following query:

mysql_Slave> SELECT MAX(epoch) FROM mysql.ndb_apply_status;
+---------------+
| MAX(epoch) |
+---------------+
| 1915555414023 |
+---------------+

mysql_B> SELECT
 SUBSTRING_INDEX(File, '/', -1) AS BinLog,
 Position
 FROM mysql.ndb_binlog_index
 WHERE epoch >= 1915555414023
 ORDER BY epoch ASC LIMIT 1;
+------------------------+----------+
| BinLog | Position |
+------------------------+----------+
| master_B_binlog.000006 | 405 |
+------------------------+----------+

Back to the Slave, we’re using the CHANGE MASTER TO command to point it to the mysql_B

server:

mysql_Slave> STOP SLAVE;
mysql_Slave> CHANGE MASTER TO
 MASTER_LOG_FILE = 'master_B_binlog.000006',
 MASTER_LOG_POS = 405,
 MASTER_HOST='127.0.0.1',
 MASTER_PORT=3307;

You should now be able to start the Slave and previously done changes should get
replicated:

mysql_Slave> START SLAVE;
mysql_Slave> SELECT * FROM attendees;
+----+-------------------+
| id | email |
+----+-------------------+
3	andrewm@localhost
1	geertv@localhost
2	andrewh@localhost
4	marta@localhost
+----+-------------------+

 Copyright © 2010, Oracle and/or its affiliates. All rights reserved. 80/81

Security

It should be noted right from the start that MySQL Cluster nodes have no security in their
communications. This is because the overhead required would cause a very large
performance hit. So all nodes should be on a private LAN. The added advantage is having
the cluster on a private LAN can stop any other network chatter from delaying node
communications.

MySQL Authentication

The privileges system used by MySQL is stored using MyISAM tables. Due to some
internal restrictions changing these to the NDB engine will cause many complications,
therefore all privileges should be synchronized externally (using a script for instance).

 Copyright © 2010, Oracle and/or its affiliates. All rights reserved. 81/81

