
Java Collections Framework

17 April 2014 OSU CSE 1

Overview

• The Java Collections Framework (JCF)

is a group of interfaces and classes similar

to the OSU CSE components

– The similarities will become clearly evident

from examples

– See Java libraries package java.util

• There are some important differences, too,

however, that deserve mention (at the

end)

17 April 2014 OSU CSE 2

Overview of Interfaces

17 April 2014 OSU CSE 3

Set List Queue

Collection

Sorted-

Set

Sorted-

Map

Iterable

Deque

Navigable-

Set

Map

Navigable-

Map

Overview of Interfaces

17 April 2014 OSU CSE 4

Set List Queue

Collection

Sorted-

Set

Sorted-

Map

Iterable

Deque

Navigable-

Set

Map

Navigable-

MapNote: Map does not

extend Collection;

but it is a “collection”.

Overview of Interfaces

17 April 2014 OSU CSE 5

Set List Queue

Collection

Sorted-

Set

Sorted-

Map

Iterable

Deque

Navigable-

Set

Map

Navigable-

Map

Iterable is in java.lang

(because of its intimate

connection to for-each loops),
but Iterator is in java.util.

Overview of Interfaces

17 April 2014 OSU CSE 6

Set List Queue

Collection

Sorted-

Set

Sorted-

Map

Iterable

Deque

Navigable-

Set

Map

Navigable-

Map

Subsequent slides

discuss only certain

interfaces.

The Collection<E> Interface

• Essentially a finite multiset of E

• No direct/efficient way to ask how many

“copies” of a given element there are

• Two interesting methods to create arrays of

the elements

• Many methods (including add, remove,

clear) are “optional”

17 April 2014 OSU CSE 7

The Set<E> Interface

• Essentially a finite set of E

• No removeAny or similar method, so you

must use iterator to iterate over a Set

– Recall (from Iterator): “The behavior of an

iterator is unspecified if the underlying

collection is modified while the iteration is in
progress [except using Iterator.remove].”

• Many methods (including add, remove,

clear) are “optional”

17 April 2014 OSU CSE 8

The List<E> Interface

• Essentially a string of E

• Access by position (similar to Sequence

from OSU CSE components)

• Many methods (including add, remove,

clear) are “optional”

• Two interesting additional features:

– Sublist “views” of a List

– A special two-way ListIterator

17 April 2014 OSU CSE 9

The List<E> Interface

• Essentially a string of E

• Access by position (similar to Sequence

from OSU CSE components)

• Many methods (including add, remove,

clear) are “optional”

• Two interesting additional features:

– Sublist “views” of a List

– A special two-way ListIterator

17 April 2014 OSU CSE 10

How do you move forward
and backward through a List

from OSU CSE components?

The Queue<E> Interface

• Essentially a string of E

• Access at ends (similar to Queue from

OSU CSE components)

• Here, add and remove are not “optional”

– add is similar to enqueue for OSU CSE

components’ Queue

– remove is similar to dequeue

• Curious names for other methods, e.g.,
offer, peek, poll

17 April 2014 OSU CSE 11

The Map<K,V> Interface

• Essentially a finite set of (K,V)

with the function property

• No removeAny or similar method, so you

must use iterator (somewhat indirectly)

to iterate over a Map

• Many methods (including put, remove,

clear) are “optional”

• Like List, a Map supports “views” of its

elements

17 April 2014 OSU CSE 12

Views in the JCF

• A view is a “subcollection” of a collection

– Not a copy of some of the elements, but rather

“a collection within a collection” that is

manipulated “in place”

• Views for Map:

– Keys: Set<K> keySet()

– Values: Collection<V> values()

– Pairs: Set<Map.Entry<K,V>> entrySet()

17 April 2014 OSU CSE 13

Views in the JCF

• A view is a “subcollection” of a collection

– Not a copy of some of the elements, but rather

“a collection within a collection” that is

manipulated “in place”

• Views for Map:

– Keys: Set<K> keySet()

– Values: Collection<V> values()

– Pairs: Set<Map.Entry<K,V>> entrySet()

17 April 2014 OSU CSE 14

Map.Entry<K,V> in the JCF is

very similar to Map.Pair<K,V>

in the OSU CSE components.

Example: Map<String, Integer> m

17 April 2014 OSU CSE 15

Code State
m = {("PB", 99),

("BK", 42),

("SA", 42)}

Set<String> s =

m.keySet();

m = {("PB", 99),

("BK", 42),

("SA", 42)}

s = {"SA", "BK",

"PB"}

Example: Map<String, Integer> m

17 April 2014 OSU CSE 16

Code State
m = {("PB", 99),

("BK", 42),

("SA", 42)}

Set<String> s =

m.keySet();

m = {("PB", 99),

("BK", 42),

("SA", 42)}

s = {"SA", "BK",

"PB"}

Note all the aliases here!

There is no problem in this case
because String is immutable,

but consider the potential

problems if it were not.

17 April 2014 OSU CSE 17

Code State
m = {("PB", 99),

("BK", 42),

("SA", 42)}

Collection<Integer> c =

m.values();

m = {("PB", 99),

("BK", 42),

("SA", 42)}

c = {42, 99, 42}

Example: Map<String, Integer> m

17 April 2014 OSU CSE 18

Code State

m = {("PB", 99),

("BK", 42)}

Set<Map.Entry<String,

Integer>> s =

m.entrySet();

m = {("PB", 99),

("BK", 42)}

s = {("BK", 42),

("PB", 99)}

Example: Map<String, Integer> m

View “Backed By” Collection

• A view is backed by the underlying

collection, which means that if the view is

modified then the underlying (“backing”)

collection is also modified, and vice versa

– See Javadoc for supported modifications

– Be especially careful when iterating over a

view of a collection and trying to modify it

17 April 2014 OSU CSE 19

Example: List<Integer> s

17 April 2014 OSU CSE 20

Code State

s = <10, 7, 4, –2>

s.subList(1,3).clear();

s = <10, –2>

17 April 2014 OSU CSE 21

Code State

m = {("PB", 99),

("BK", 42),

("SA", 42)}

m.values().remove(42);

m = {("PB", 99),

("SA", 42)}

Example: Map<String, Integer> m

17 April 2014 OSU CSE 22

Code State

m = {("PB", 99),

("BK", 42),

("SA", 42)}

m.values().remove(42);

m = {("PB", 99),

("SA", 42)}

Example: Map<String, Integer> m

Because remove for

Collection (assuming it is

available for m.values!)

removes one copy, we do not
know which pair remains in m.

Could remove Cause Trouble?

• The object (dynamic) type of
m.values()in the above code might be

an implementation of List or of Queue

– But not of Set; why not?

• The remove being called is “optional” if

the object type of m.values() is a List

implementation, but not if it is a Queue

– How can the client know what interface it

implements?

17 April 2014 OSU CSE 23

Could remove Cause Trouble?

• The object (dynamic) type of
m.values()in the above code might be

an implementation of List or of Queue

– But not of Set; why not?

• The remove being called is “optional” if

the object type of m.values() is a List

implementation, but not if it is a Queue

– How can the client know what interface it

implements?

17 April 2014 OSU CSE 24

The informal Javadoc for the values method says:

“The collection supports element removal, which

removes the corresponding mapping from the map, via
the Iterator.remove, Collection.remove,

removeAll, retainAll and clear operations. It does

not support the add or addAll operations.”

Could remove Cause Trouble?

• The object (dynamic) type of
m.values()in the above code might be

an implementation of List or of Queue

– But not of Set; why not?

• The remove being called is “optional” if

the object type of m.values() is a List

implementation, but not if it is a Queue

– How can the client know what interface it

implements?

17 April 2014 OSU CSE 25

Since values returns an object whose dynamic type

“supports” remove but not add, apparently that return

type implements a fictitious (phantom?) interface that is
stronger than Collection, but different than all of Set,

List, and Queue.

Iterating Over a Map

• Because Map does not extend Iterable,

but Collection (hence Set) does

extend Iterable, you can (only) iterate

over a Map using one of its three views:

– Keys: Set<K> keySet()

– Values: Collection<V> values()

– Pairs: Set<Map.Entry<K,V>> entrySet()

17 April 2014 OSU CSE 26

Overview of Collection Classes

17 April 2014 OSU CSE 27

Collection

Iterable

Abstract-

Collection

There are no classes

that directly and fully

implement
Collection.

Object

AbstractCollection

• Has code for many methods (shared, and

possibly overridden, by all later
implementations of Collection) :

– add

– remove

– clear

– ...

17 April 2014 OSU CSE 28

AbstractCollection

• Has code for many methods (shared, and

possibly overridden, by all later
implementations of Collection) :

– add

– remove

– clear

– ...

17 April 2014 OSU CSE 29

This method’s implementation here, for

example, “always throws an
UnsupportedOperationException”.

Overview of Set Classes

17 April 2014 OSU CSE 30

Set

HashSet

AbstractSet

TreeSet

Collection

Iterable

Abstract-

Collection

Object

AbstractSet

• Has code for these methods (shared, and

possibly overridden, by all later
implementations of Set):

– equals

– hashCode

– removeAll

17 April 2014 OSU CSE 31

HashSet

• Uses hashing in the Set representation

• Has code for these methods (overriding
those in AbstractSet):

– add

– remove

– clear

– clone

17 April 2014 OSU CSE 32

HashSet

• Uses hashing in the Set representation

• Has code for these methods (overriding
those in AbstractSet):

– add

– remove

– clear

– clone

17 April 2014 OSU CSE 33

The first three methods,

though “optional”, are

implemented here and do what

you should expect.

HashSet

• Uses hashing in the Set representation

• Has code for these methods (overriding
those in AbstractSet):

– add

– remove

– clear

– clone

17 April 2014 OSU CSE 34

The clone method “makes a

shallow copy”, i.e., the

elements are not “cloned”;

which raises many questions.

Best practice: do not use it!

TreeSet

• Uses a balanced binary search tree as
the Set representation

• Has code for several methods (overriding
those in AbstractSet)

17 April 2014 OSU CSE 35

Overview of List Classes

17 April 2014 OSU CSE 36

List

ArrayList

AbstractList

LinkedList

Collection

Iterable

Abstract-

Collection

Object

AbstractList

• Has code for many methods (shared, and

possibly overridden, by all later
implementations of List)

• Similar to AbstractSet but with code for

many more methods (because List has

many more potentially layered methods
than Set)

17 April 2014 OSU CSE 37

ArrayList

• Uses arrays in the List representation

• Has code for many methods (overriding
those in AbstractList)

17 April 2014 OSU CSE 38

LinkedList

• Uses a doubly-linked list as the List

representation

• Has code for many methods (overriding
those in AbstractList)

• There is even more detail to the interfaces

and abstract classes related to
LinkedList, which you can look up if

interested

17 April 2014 OSU CSE 39

Overview of Map Classes

17 April 2014 OSU CSE 40

HashMap TreeMap

Map

AbstractMap

Object

AbstractMap

• Has code for many methods (shared, and

possibly overridden, by all later
implementations of Map)

• Similar to AbstractSet but with code for

many more methods (because Map has

many more potentially layered methods
than Set)

17 April 2014 OSU CSE 41

HashMap

• Uses hashing in the Map representation

• Has code for many methods (overriding
those in AbstractMap)

17 April 2014 OSU CSE 42

TreeMap

• Uses a balanced binary search tree as
the Map representation

• Has code for several methods (overriding
those in AbstractMap)

17 April 2014 OSU CSE 43

JCF Algorithms: Collections

• A number of useful algorithms (and simple

but convenient utilities) to process

collections are static methods in the
class Collections, e.g.:

– sort

– reverse

– min, max

– shuffle

– frequency

17 April 2014 OSU CSE 44

JCF Algorithms: Collections

• A number of useful algorithms (and simple

but convenient utilities) to process

collections are static methods in the
class Collections, e.g.:

– sort

– reverse

– min, max

– shuffle

– frequency

17 April 2014 OSU CSE 45

Notice that the class
Collections is different

from the interface
Collection, and in

particular it does not

implement that interface!

JCF Utilities: Arrays

• A number of useful algorithms (and simple

but convenient utilities) to process built-in

arrays are static methods in the class
Arrays, e.g.:

– sort

– fill

– deepEquals

– deepHashCode

– deepToString

17 April 2014 OSU CSE 46

OSU CSE vs. JCF Components

• The OSU CSE components are similar in

design to the JCF interfaces and classes

• Though some differences can be

attributed to pedagogical concerns, there

are other important technical differences,

too!

17 April 2014 OSU CSE 47

Difference #1: Level of Formalism

• JCF interfaces include only informal

Javadoc comments for contracts (rather

than using explicit mathematical models

and requires/ensures clauses)

– JCF descriptions and contracts use similar

terms, though; e.g.,“collections” may:

• be “ordered” or “unordered”

• “have duplicates” or “not have duplicates”

17 April 2014 OSU CSE 48

Difference #1: Level of Formalism

• JCF interfaces include only informal

Javadoc comments for contracts (rather

than using explicit mathematical models

and requires/ensures clauses)

– JCF descriptions and contracts use similar

terms, though; e.g.,“collections” may:

• be “ordered” or “unordered”

• “have duplicates” or “not have duplicates”

17 April 2014 OSU CSE 49

set

JCF java.util.Set<E>:

boolean add(E e)
Adds the specified element to this set if it is not already present (optional operation). More formally, adds the
specified element e to this set if the set contains no element e2 such that

(e==null ? e2==null : e.equals(e2)). If this set already contains the element, the call leaves the set

unchanged and returns false. In combination with the restriction on constructors, this ensures that sets never

contain duplicate elements.

The stipulation above does not imply that sets must accept all elements; sets may refuse to add any particular
element, including null, and throw an exception, as described in the specification for Collection.add.

Individual set implementations should clearly document any restrictions on the elements that they may contain.

Throws:
UnsupportedOperationException - if the add operation is not supported by this set

ClassCastException - if the class of the specified element prevents it from being added to this set

NullPointerException - if the specified element is null and this set does not permit null elements

IllegalArgumentException - if some property of the specified element prevents it from being added to this

set

Difference #1: Level of Formalism

• JCF interfaces include only informal

Javadoc comments for contracts (rather

than using explicit mathematical models

and requires/ensures clauses)

– JCF descriptions and contracts use similar

terms, though; e.g.,“collections” may:

• be “ordered” or “unordered”

• “have duplicates” or “not have duplicates”

17 April 2014 OSU CSE 50

this

OSU CSE components.set.Set<T>:

void add(T x)

Adds x to this.

Aliases:
reference x

Updates:
this

Requires:
x is not in this

Ensures:
this = #this union {x}

Difference #1: Level of Formalism

• JCF interfaces include only informal

Javadoc comments for contracts (rather

than using explicit mathematical models

and requires/ensures clauses)

– JCF descriptions and contracts use similar

terms, though; e.g.,“collections” may:

• be “ordered” or “unordered”

• “have duplicates” or “not have duplicates”

17 April 2014 OSU CSE 51

Hypothetical OSU CSE components.set.Set<T>:

boolean add(T x)

Can you write a formal contract for the add method as it

is designed in java.util.Set?

Difference #1: Level of Formalism

• JCF interfaces include only informal

Javadoc comments for contracts (rather

than using explicit mathematical models

and requires/ensures clauses)

– JCF descriptions and contracts use similar

terms, though; e.g.,“collections” may:

• be “ordered” or “unordered”

• “have duplicates” or “not have duplicates”

17 April 2014 OSU CSE 52

Warning about the JCF documentation:

The interface/class “summary” at the top of the

Javadoc-generated page sometimes contains

information that is missing from, or even apparently

contradictory to, the method descriptions; e.g.:
• iterator for SortedSet

• a few methods for PriorityQueue

Difference #2: Parameter Modes

• JCF interfaces do not have any notion of

parameter modes (rather than using them

in contracts to help clarify and simplify

behavioral descriptions)

– If the JCF used parameter modes, though, the

default mode also would be “restores”, as with

the OSU CSE components

17 April 2014 OSU CSE 53

Difference #3: Aliasing

• JCF interfaces almost never explicitly

mention aliasing (rather than advertising

aliasing when it may arise)

– JCF components also are not designed to try

to avoid aliasing whenever possible, as the

OSU CSE components are

17 April 2014 OSU CSE 54

Difference #4: Null

• JCF interfaces generally permit null

references to be stored in collections

(rather than having a blanket prohibition

against null references)

– JCF components do, however, sometimes

include warnings against null references,

which the OSU components always prohibit

17 April 2014 OSU CSE 55

Difference #5: Optional Methods

• JCF interfaces generally have “optional”

methods (rather than requiring all methods

to behave according to their specifications

in all implementations)

– JCF implementations of the same interface

are therefore not plug-compatible: “optional”

methods have bodies, but calling one might

simply throw an exception:
UnsupportedOperationException

17 April 2014 OSU CSE 56

Difference #6: Copy Constructors

• By convention, every class in the JCF has

two “standard” constructors:

– A default constructor

– A conversion constructor that “copies”

references to the elements of its argument,

which is another JCF collection

17 April 2014 OSU CSE 57

Difference #6: Copy Constructors

• By convention, every class in the JCF has

two “standard” constructors:

– A default constructor

– A conversion constructor that “copies”

references to the elements of its argument,

which is another JCF collection

17 April 2014 OSU CSE 58

This no-argument constructor

creates an empty collection.

Difference #6: Copy Constructors

• By convention, every class in the JCF has

two “standard” constructors:

– A default constructor

– A conversion constructor that “copies”

references to the elements of its argument,

which is another JCF collection

17 April 2014 OSU CSE 59

Presumably, “copying” from a

collection that may have

duplicates, to one that may not,

simply removes extra copies.

Difference #7: Exceptions

• Violation of what might have been

considered a precondition leads to a

specific exception being thrown (rather

than simply a conceptual contract

violation, which might or might not be
checked using assert)

– Example: an attempt to remove an element
from an empty Queue is specified to result in

a NoSuchElementException

17 April 2014 OSU CSE 60

Difference #8: Kernel Methods

• A single JCF interface usually contains all

methods applicable to a type (rather than

“kernel” methods being separated into a

separate interface from all other methods)

– JCF uses abstract classes, however, to

provide default implementations of methods

that presumably would be implemented in

abstract classes in the OSU CSE components

– Other JCF methods are like “kernel” methods

17 April 2014 OSU CSE 61

Resources

• The Collections Framework (from Oracle)
– http://docs.oracle.com/javase/7/docs/technotes/guides/collections/index.

html

• Effective Java, Second Edition
– http://proquest.safaribooksonline.com.proxy.lib.ohio-

state.edu/book/programming/java/9780137150021

17 April 2014 OSU CSE 62

