
IOWA STATE UNIVERSITY

Serialization in Java ;Binary and XMLͿ

Kyle Woolcock

ComS 430

4/4/2014

2

Table of Contents
Introduction .. 3

Why Serialize? ... 3

How to Serialize .. 3

Serializable Interface ... 3

Externalizable Interface .. 3

Using These Interfaces to Serialize ... 5

What Is Not Serialized? ... 6

Problems with Serializing .. 6

Versioning ... 6

Object References ... 6

Serializing to XML .. 6

Creating Serializable Classes ... 7

Using These Classes to Serialize .. 8

Conclusion ... 8

Appendix A: Table of Figures .. 10

Appendix B: Acknowledgements .. 10

Works Cited ... 11

3

Introduction
Serialization is the process of converting objects to bytes that can then be used to reconstruct the

original object. This process has many applications including remote procedure calls and allowing for

persistent data. Serialization is a general programming concept, present in many object-oriented

languages. This tutorial will focus on implementations in Java, and how Java handles serialization

behind the scenes, but the general concepts can be applied to many languages. Alternatives to certain

problems serialization solves to exist. For data persistence, often times databases are used where we

just save the information the object stores instead of the object state itself. Java also supports the

ability to serialize to XML which is more human readable, and allows for communication between

programs written at different times and in different languages. To help read the document, it is

important to note that all variable names appear in a different typeset, all class names are bolded, all

exceptions are italicized, all method names are followed by parentheses, and all Java keywords appear

in bold and italics.

Why Serialize?
Serialization allows for a quick and easy way to store data after a program finishes execution. The

serialized data is independent of the Java virtual machine (JVM) that generated it. This means that as

long as a different computer has access to the class files and the serialized data, the object can be

reconstructed just as it originally was. It also allows for remote procedure calls. To call a method on

another machine, often an object is needed argument. Serialization converts an object to a byte stream

that can then be sent over a network and deserialized on the target machine.

How to Serialize

Serializable Interface

Java provides two different ways to allow a class to be serialized. The first is to implement the

Serializable interface. This is just a marker interface, meaning it contains no methods. Java will also

implement a serialVersionUID variable, although it is advised manual assign the variable. It is the

unique identifier Java uses to tell which class it is reconstructing from a byte stream (more on this later).

This is the quickest and easiest way but gives you very little control over how the data is written. Figure

1 shows an implementation of Serializable with an example of a serialVersionUID variable. The

one in the example was auto generated by Java, but set so that further changes to the class does not

affect it. There will be more on this when we talk about versioning in the section on serialization

problems.

Externalizable Interface

Externalizable is an interface that extends Serializable. Unlike Serializable, Externalizable is not a marker

interface. It requires an implementation of the methods readExternal() and writeExternal(). In addition

to these methods, the class must also have a default constructor. This is because when using

readExternal() and writeExternal(), a constructor is actually called for the object and then its variables

are updates. This allows for a faster execution time than Serializable. To implement readExternal() and

writeExternal() manually write the variables of the class to the output stream given. In Figure 2, there is

an implementation of the Externalizable Interface along with the readExternal() and writeExternal().

4

Figure 1

Figure 2

5

Using These Interfaces to Serialize

After implementing Serializable or Externalizable, Java provides two streams to read and write objects:

ObjectOutputStream and ObjectInputStream. To create these streams, give them an instance of a file

stream that was created with the file to be written to or read from. After doing that,

ObjectOutputStream has various methods to write different objects and primitives to the file, notably

writeObject(). In Figure 3, there is an example of a main method that is serializing and deserializing an

instance of the rectangle class in Figure 1. The yellow highlighting shows the serialization steps whereas

the teal highlighting shows the deserialization steps. Most of the exceptions are pretty standard, the

only new one of note is ClassNotFoundException. This is thrown if the JVM cannot find a class with a

serialVersionUID matching that of the one read from the file. This can happen if the class files

needed to reconstruct the object are not found (either not present on your machine or not in the build

path) or if there is a versioning problem, which will be discussed in a later section.

Figure 3

6

What Is Not Serialized?
Not eǀerythiŶg ĐaŶ ďe serialized, aŶd soŵetiŵes there is data that ǁe doŶ’t ǁant to be serialized for

various reasons. Some native Java classes (like Thread for example) cannot be serialized. This is

ďeĐause they really ǁouldŶ’t ŵake seŶse after they ǁere deserialized. //TODO EXPAND. Other thiŶgs
that are not serialized are the variables marked with the keyword transient. This means that the

variable should not be written to the byte stream. Transient is usually applied to variables that are do

not implement Serializable or to variables we do not want to write for privacy reasons (think credit card

data or social security numbers). Lastly, static variables are not serialized. This is because a static

variable is the property of the class and not the specific instance we are serializing. When we deserialize

the object, the statiĐ ǀariaďle is still preseŶt iŶ the Đlass so ǁe doŶ’t Ŷeed to iŶĐlude it ǁheŶ ǁe serialize.

Problems with Serializing

Versioning

There are a few problems that arise from serializing data. First, versioning can become a huge issue.

For example, if someone created a serialized object, and then wanted to make a change to that class

(say added another variable, or removed a method), Java might not know how to reconstruct that

object. This is why manually managing the serialVersionUID is advisable. This is the number the

JVM uses to decide which class it is trying to deserialize. If Java is left to manage the

serialVersionUID it will recalculate it after the changes to the class and come up with a different

number than was written with the serialized data. This results in a ClassNotFoundException. To avoid

this, manually manage the serialVersionUID number by picking a unique number amongst the

data to serialize to always represent that class. Now Java can always find the correct class but might

create the class with null values for variables we added after serializing the object. This can cause some

unexpected NullPointerExceptions if not properly accounted for.

Object References

Another common problem is object references within the object to be serialized. These are usually

poiŶters to a loĐatioŶ iŶ ŵeŵory ǁhere the oďjeĐt resides. It doesŶ’t ŵake seŶse to store these
pointers sense when the data is deserialized, there is no guarantee that that object still exists there.

This means that all the objects the objects to serialize depends on also need to be serialized (or marked

transient). This happens through a process called pointer unswizzling which means we follow all the

pointers the object to serialize, and serialize those objects as well. In Java, this is taken care of

automatically, we just need to check that all the objects in our class are either serializable or marked as

transient.

Serializing to XML
While standard serialization is extremely simple and effective for data storage and sending objects

across a network, sometimes communication across programs or languages is desired. By converting an

object to XML instead of bytes, we can then deserialize it in a wide variety of programs. It also has the

added benefit of making the data human readable. There are many third party libraries that add

support for XML serialization to Java, but Java has adopted one to come with the Java Development Kit

(JDK). Since Java 1.6, Java Architecture for XML Binding has been included in the JDK. It provides a quick

7

and easy way to produce a schema that we can use to convert objects to XML. To do this it uses Java

annotations to mark out the elements. Since this is a basic introduction to XML serialization, only a few

of the basic annotations are given; see Table 1.

@XmlRootElement Specifies the root element

@XmlType Allows you to specify the order of elements in the

XML, among other things

@XmlElement Allows you to rename an element (the default is

the variable name)

@XmlElementWrapper Creates a wrapper element to assist in schema

building

Table 1

Creating Serializable Classes

Figure 4 and Figure 5, show an example of two classes that use the XML annotations. Figure 4 is a

CompactDisc class that shows how to use the @XmlType annotation to change the order the variables

are written (default is the order they appear in the code) as well as how to use the @XmlElement

annotation to change the name of a variable in the XML code. Figure 5 is a CDPlayer class which

contains a deck of CompactDiscs. It demonstrates the @XmlElementWrapper to assist with our schema.

Both of these examples have a default constructor. This default constructor is necessary to deserialize

the data, just like in the Externalizable interface implementation in Figure 2. Both of these figures are

just partial implementations with all of the getters and setters left off to save space. There is nothing

special about these methods and they would be written normally.

Figure 4

8

Figure 5

Using These Classes to Serialize

After creating and annotating the classes above, the final step is to create a main method to actually

serialize the data. To do this, create an instance of CDPlayer as well as some CompactDiscs to put in the

deck. After setting up the objects, create a JAXBContext. Again this is an introduction to serialization so

a lot of what the class does will be left for more advanced discussions, but for now, give it the class we

plan on serializing (in this example CDPlayer.class). After creating a JAXBContext we need to create a

Marshaller. To do this, just call createMarshaller() on the JAXBContext created above. In this example,

also use the setProperty() method of the marshaller to set Marshaller.JAXB_FORMATTED_OUTPUT to

true. This step is optional but it automatically adds newlines and tabs to the XML code making it easier

to read. Lastly, use the marshal() method of the marshaller to serialize the given object to the given

output stream (in this example, System.out). While technically not synonymous, for the purposes of this

tutorial, serialize and marshal are equivalent. Figure 6 shows the entire main method for serializing our

CompactDisc and CDPlayer classes to XML.

Conclusion
Serialization is a quick and easy way to keep persistant data as well as use remote procedure calls. Java

has very good native support for serialization and a class can be made serializable in a matter of

minutes. When cross program and/or cross language communication is necessary, serialization to XML

is a better option. This allows for the data to be stored in a standardized way that other programs and

languages can understand.

9

Figure 6

10

Appendix A: Table of Figures

Figure 1 ... 4

Figure 2 ... 4

Figure 3 ... 5

Figure 4 ... 7

Figure 5 ... 8

Figure 6 ... 9

Appendix B: Acknowledgements
Most examples are adapted from similar examples from Lars Vogel’s articles.

11

Works Cited
Mandliya, Arpit. Java Tutorial for Beginners. 10 March 2013. 31 March 2014.

Oracle. The Java Tutorials: Serializable Objects. n.d. 1 April 2014.

Paul, Javin. Javarevisited: Top 10 Java Serialization Intervew Questions and Answers. 16 April 2011. 2

April 2014.

Vogel, Lars. Vogel/a: Java Object Serialization - Tutorial. 4 Febuary 2014. 1 April 2014.

—. Vogel/a: JAXB - Tutorial. 23 November 2012. 1 April 2014.

	Introduction
	Why Serialize?
	How to Serialize
	Serializable Interface
	Externalizable Interface
	Using These Interfaces to Serialize

	What Is Not Serialized?
	Problems with Serializing
	Versioning
	Object References

	Serializing to XML
	Creating Serializable Classes
	Using These Classes to Serialize

	Conclusion
	Appendix A: Table of Figures
	Appendix B: Acknowledgements
	Works Cited

