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Before we begin

• This session introduces basic GPU programming using CUDA

• The audience should be familiar with C/C++

• The session contains CUDA examples that we will run live

• Slides and example source codes will be available online
• http://www.hpc.kaust.edu.sa/training/2013/GPU/materials/
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What is CUDA?

”CUDATMis a parallel computing platform and programming model
that enables dramatic increases in computing performance by
harnessing the power of the graphics processing unit (GPU) ... ”

NVIDIA Website

• CUDA = Compute Unified Device Architecture

• It is a model that combines both hardware and software. GPU
has to be CUDA-enabled

• Through CUDA, you can program GPUs using C, C++,
Fortran, Java, Python, and more

• We will talk about CUDA C/C++

• From now on: CPU = Host and GPU = Device
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CUDA C/C++

• CUDA provides some extensions to the standard C/C++
languages

• These extensions
• define the GPU tasks (kernels)
• control CPU/GPU interaction
• handle parallelism (many-thread execution)
• control execution sequence on the GPU (in case of concurrent

kernel execution)

• GPU code (CUDA code) is usually written in .cu files, and
compiled with the NVIDIA compiler nvcc

• Almost every CUDA accelerated code is linked with the CUDA
runtime library (-lcudart)
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CUDA Software Development
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CUDA C/C++ Extensions

• The host always initiates work for the device
• For Kepler GPUs, device can generate work for itself (Dynamic

Parallelism)

• Examples for common extensions are
• global defines a GPU kernel that is callable by the CPU
• device defines a GPU function that is callable by a GPU

kernel or by another device function, but not callable by a CPU
(host)

• host or no qualifier marks a CPU function
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CUDA Kernel Organization

• A CUDA kernel is a grid of thread blocks
• The grid can be 1D, 2D or 3D

• A thread block is, in turn, a 1D, 2D, or 3D array of threads

• A thread is executed by exactly one stream processor or
CUDA core

• A thread block is executed by exactly one Streaming
Multiprocessor (SM)

• However, CUDA cores and SM can interleave execution of
multiple threads and thread blocks
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CUDA Execution Model
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Transparent Scalability

• There is no relation between the number of thread blocks and
the number of SMs

• No matter how many thread blocks are launched, the CUDA
runtime will automatically schedule them to run on the
available SMs

• To guarantee such scalability, CUDA does NOT allow
communication/synchronization among thread blocks

• Only threads within the same thread block can
communicate/synchronize

Ahmad Abdelfattah 12 / 54



Session Overview Introduction Examples Streams and Concurrency Summary

Block/Thread Indexing

• CUDA maintains special variables that store:
• thread index within a thread block threadIdx(.x, .y, .z)
• block index within a kernel grid blockIdx(.x, .y, .z)

• dimension of a thread block blockDim(.x, .y, .z)
• dimension of a kernel grid gridDim(.x, .y, .z)

• These variables are used without declaration

• Mainly used in assigning the work per block/thread

• The maximum values of the (x, y, z) in both blockDim

and gridDim are GPU-dependent

• At least the x component needs to be declared. The default
value for the y and z components is 1
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Block/Thread Indexing Example
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Basic CPU Code Skeleton

int main() {

// Allocate and initialize memory on CPU

// Allocate memory on GPU using cudaMalloc()

// Off-load input data from CPU to GPU using cudaMemcpy()

// Launch the GPU kernel(s)

// Copy the results back from GPU to CPU using cudaMemcpy()

// Free CPU resources

// Free GPU resources using cudaFree()

}
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Example 1: Hello World

• This example shows how to launch a very simple kernel that
prints some text on the screen

• printf() is natively supported on CUDA

• No data copies are needed between CPU and GPU

• Each thread will print its own ID

• The example also shows how to reorganize threads

Ahmad Abdelfattah 17 / 54



Session Overview Introduction Examples Streams and Concurrency Summary

Hello World 1

global void helloworld 1()

{
// compute local thread ID

int tx = threadIdx.x;

int ty = threadIdx.y;

int tz = threadIdx.z;

// compute local block ID

int bx = blockIdx.x;

int by = blockIdx.y;

int bz = blockIdx.z;

printf("Hello from thread (%d, %d, %d) in block (%d, %d, %d) \n"
, tx, ty, tz, bx, by, bz);

}
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Hello World 2

global void helloworld 2()

{
int tx = threadIdx.x;

int ty = threadIdx.y;

// move from 2D to 1D

int tid = ty * blockDim.x + tx;

printf("Hello from thread (%d, %d) => %d \n", tx, ty, tid);

}
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Helloworld: Live Demo

• We are going to
• have a look at the code structure
• see how to the compile the code (only one .cu file)
• learn the syntax for kernel launch

• kernel-name<<<grid, block>>>(arguments)

• see the output for different kernel configuration
• introduce the concept of per-warp execution

• Threads are packed into groups of 32 (called warps)
• Threads in the same warps share the same instruction stream
• Hardware always rounds up to execute full warps
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Example 2: Data Copies

• The example shows how to copy data between CPU and GPU,
and inside the GPU memory

• The key function is cudaMemcpy(dst, src, size, kind),
where

• dst: pointer to destination memory
• dst: pointer to source memory
• size: size of the data in bytes
• kind: direction of the memory copy, which is

• cudaMemcpyHostToHost: CPU to CPU
• cudaMemcpyHostToDevice: CPU to GPU (off-load input

data)
• cudaMemcpyDeviceToHost: GPU to CPU (read results back)
• cudaMemcpyDeviceToDevice: GPU to GPU
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Example 2: Data Copies

• No compute tasks (kernels) are launched

• We are going to try the following scenario
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Data Copies: Sample Code

{

.

.

.

// allocate gpu memory

cudaMalloc((void**)&da, length * sizeof(float));

cudaMalloc((void**)&db, length * sizeof(float));

// Copying from host to device

cudaMemcpy(da, ha, length * sizeof(float), cudaMemcpyHostToDevice);

// Copying inside device memory

cudaMemcpy(db, da, length * sizeof(float), cudaMemcpyDeviceToDevice);

// Copying back from device to host

cudaMemcpy(hb, db, length * sizeof(float), cudaMemcpyDeviceToHost);

// Compare data pointed to by ha & hb . . . should be the same

.

.

.

}
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Example 3: Timing GPU Tasks

• Timing is essential for measuring performance
• Timing GPU tasks is done using CUDA events (cudaEvent t)
• A CUDA event can record a certain moment in time
• Timing, therefore, requires at least 2 events

float time = 0.0; cudaEvent t start, stop;

// create events

cudaEventCreate(&start);

cudaEventCreate(&stop);

. . .

cudaEventRecord(start, 0);

// launch GPU kernel / data copy

cudaEventRecord(stop, 0);

cudaEventSynchronize(stop);

cudaEventElapsedTime(&time, start, stop);

. . .

// destroy events

cudaEventDestroy(start);

cudaEventDestroy(stop);
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Comprehensive Example: Matrix-Matrix(MM)
Multiplication

• Example can be found in
this book

• Recommended for more
illustration and details
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Comprehensive Example: Matrix-Matrix(MM)
Multiplication

• Cm×n = Am×p × Bp×n

• Compute intensive, embarrassingly parallel, and regular
computation pattern

• Best suited for GPUs

• A general standard kernel exists in level-3 BLAS: GEMM

• A common benchmark to measure the sustained peak
performance

• We will start with a simple implementation, and add
incremental optimization

• We will study 4 versions in total
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MM Multiplication: CPU version

void matmul(float *A, float *B, float *C, int dim)

{
for(int i = 0; i < dim; i++)

for(int j = 0; j < dim; j++)

{
float sum = 0.0;

for(int k = 0; k < dim; k++)

{
float a = A[i * dim + k];

float b = B[k * dim + j];

sum += a * b;

}
C[i * dim + j] = sum;

}
}

• #flops = 2n3, where n = dim

• On GPU, we will assign a thread per output element in C

• The two outer loops will, then, disappear in the GPU version
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MM Multiplication: GPU version 1

• Key design approach: Each thread will compute exactly one
element in the output matrix C

• How should we configure the kernel?
• A Kepler GPU supports up to 1024 threads in one thread block
• Obviously, a kernel with one thread block will not work if the

matrix dimension > 32
• Alternatively, we will divide the output matrix C into square

submatrices, each with dimension = block size
• Each thread block in the GPU kernel will be responsible for a

square submatrix (one thread per element)
• block size can be 32 at maximum, for a Kepler GPU
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MM Multiplication: GPU version 1

• Kernel configuration: 2D grid with dimension = dim ÷

block size
• achieves a simple mapping from thread block to submatrix

• Each thread will have to compute its global (x, y) coordinates
• i.e., with respect to the whole grid, not to the thread block
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MM Multiplication: GPU version 1

global void matrixmul 1(float* A, float* B, float*

C, int dim, int block size)

{
const int bx = blockIdx.x;

const int by = blockIdx.y;

const int tx = threadIdx.x;

const int ty = threadIdx.y;

// identify (row, col) position of output element

const int row = by * block size + ty;

const int col = bx * block size + tx;

// compute the output element

float sum = 0.0;

for(int k = 0; k < dim; k++)

sum += A[row * dim + k] * B[ k * dim + col];

// store the result

C[row * dim + col] = sum;

}
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MM Mult. ver 1: Live Demo

• We will run the kernel for different block sizes (1, 2, 4, 8, 16,
and 32)

• You will see that performance increases with increasing the
block size

• We increase parallelism as we increase block size
• Only the 32×32 configuration makes use of full warps
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What is wrong with ver 1?

• The kernel is compute bound, meaning that flops O(n3)
dominate memory accesses O(n2)

• A compute bound kernel should score a peak performance
that is close to the GPU theoretical peak performance

• ≈ 3 Tflop/s (single precision) for a K20c GPU

• In the following slides, we will enhance ver 1 step by step
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MM Multiplication ver 2: Exploit Data Reuse

• Consider the 4×4 matrix, processed by a 4×4 thread block
• Since each thread works independently, every row in the
submatrix will be read 4 times from global memory

• This causes extra unnecessary global memory traffic
• Plus, global memory accesses has the biggest penalty (in
terms of latency) throughout the whole memory system

• Threads should cooperate to exploit data reuse from a fast
memory rather than from global memory
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MM Multiplication ver 2: Exploit Data Reuse

• A thread should to be able to access an element that has been
fetched by another thread

• We need some sort of shared resources which all threads can
access

• This is where shared memory (SHMEM) comes into play

• SHMEM is user-controlled cache. It is as fast as L1 cache

• Each thread will read one element of the submatrix and load
it into shared memory

• A thread x should now be able to read an element that has
been fetched by another thread y

• But thread x needs to make sure that y has already loaded the
element into shared memory

• For that, we use the barrier function syncthreads()
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MM Multiplication ver 2: Exploit Data Reuse

template<int block size>

global void matrixmul 2(float* A, float* B, float* C, int dim)

{
// compute tx, ty, bx, by as before

shared float as[block size][block size];

shared float bs[block size][block size];

const int row = by * block size + ty;

const int col = bx * block size + tx;

float sum = 0.0;

for(int m = 0; m < dim/block size; m++)

{
as[ty][tx] = A[row * dim + (m * block size + tx)];

bs[ty][tx] = B[(m * block size + ty) * dim + col];

syncthreads();

for(int k = 0; k < block size; k++)

sum += as[ty][k] * bs[k][tx];

syncthreads(); // Why?

}
C[row * dim + col] = sum;

}
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MM Mult. ver 2: Live Demo

• Investigate the differences between ver 2 and ver 1

• We will run the kernel for different block sizes (1, 2, 4, 8, 16,
and 32)

• Compare performance against version 1
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MM Mult. ver 3: Instruction Mix

• Now we pay attention to useful computation
• Performance is measured in flops/s. Only floating point
operations count

• However, integer and branch instructions are necessary to
handle array indexing, address calculation, for loop counter
updates, . . . etc

• Loop unrolling is an optimization that increases the ratio of
floating point instructions to integer and branch ”unuseful”
instructions

• It is usually a compiler technology (# pragma unroll)
• It helps eliminate the branch instruction and the counter
update of a loop

• The ideal case is when the loop is fully unrolled
• This needs the loop interval to be known at compile time
• Luckily, we can fully unroll the inner most loop in the MM

Multiplication example
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MM Mult. ver 3: Live Demo

• Investigate the differences between ver 3 and ver 2

• We will run the kernel for different block sizes (1, 2, 4, 8, 16,
and 32)

• Compare performance against versions 1 and 2
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MM Mult. ver 4: Data Prefetching

• Processors are much faster than memory systems. This is true
for GPUs too

• For better performance, processors (cores) should not wait for
data

• In order to hide memory latency, we will use data prefetching
• Prefetch the next data block while the current is being

processed

Load first tile from global memory into registers

Loop

{
Deposit tile from registers to shared memory

syncthreads()

Load next tile from global memory into registers

Compute current tile

syncthreads()

}
Compute the last tile
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MM Mult. ver 4: Live Demo

• Investigate the changes made to ver 3 to apply data
prefetching

• Run the kernel for different block sizes (1, 2, 4, 8, 16, and 32)

• Compare performance against versions 1, 2, and 3
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Cublas GEMM vs MKL GEMM: Live Demo

• Standard implementations provided by NVIDIA and Intel

• Both comfortably outperform the 4 versions explained earlier
• We tried only basic optimizations
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SGEMM Sample Results
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CUDA Streams

”A stream is a sequence of commands (possibly issued by different host threads) that

execute in order. Different streams, on the other hand, may execute their commands

out of order with respect to one another or concurrently; this behavior is not

guaranteed and should therefore not be relied upon for correctness (e.g., inter-kernel

communication is undefined). . . ”

CUDA C Programming Guide

• If there is a dependency between two kernels (or more) in
different streams, the developer has to manually handle it

• Using synchronization
• Using CUDA events

• Any kernel or data copy operation is submitted to a stream
• If no stream is defined, the default is stream 0

• In multi-GPU programming, communication and computation
are usually submitted into different stream to hide
communication penalty
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Submitting Commands to Streams

cudaStream t strema 1, stream 2;

cudaStreamCreate(&stream 1);

cudaStreamCreate(&stream 2);
.
.
.

kernel 1<<<grid, block, 0, stream 1>>>(. . . );

kernel 2<<<grid, block, 0, stream 2>>>(. . . );

kernel 3<<<grid, block, 0, stream 1>>>(. . . );

// kernel 3 depends on kernel 1. Both are independent from kernel 2

.

.

.

cudaStreamDestroy(stream 1);

cudaStreamDestroy(stream 2);

• Communication can overlap computation through
• cudaMemcpyAsync() for CPU-GPU interactions
• cudaMemcpyPeerAsync() for GPU-GPU interactions (must be

on the same node)
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Inter-stream Dependencies

• Approach 1: Using synchronization
• cudaDeviceSynchronize(): Sync against everything on GPU
• cudaStreamSynchronize(): Sync against a specific stream
• cudaEventSynchronize(): Sync against a specific event that

has been recorded in a certain stream
• All these calls block the CPU thread

• Approach 2: Using asynchronous calls
• Using cudaStreamWaitEvent()

kernel 1<<<. . . , . . . , . . . , stream x>>>(. . . );

cudaEventRecord(event 1, stream x);
.
.
.

cudaStreamWaitEvent(stream y, event 1, 0);

kernel 2<<<. . . , . . . , . . . , stream y>>>(. . . );

// kernel 2 in stream y depends on kernel 1 in stream x

// CPU is free to do concurrent computation

.

.

.

Ahmad Abdelfattah 46 / 54



Session Overview Introduction Examples Streams and Concurrency Summary

Toy Example: Concurrency

• Three kernels: process 1(), process 2(), and
postprocess()

• postprocess() depends on process 1() and process 2()

• process 1() and process 1() are mutually independent

• We have multiple inputs and want to pipeline the execution of
all kernels in a batch execution
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Toy Example: Two Scenarios

• Scenario 1: offload, compute, and then copy back

• Scenario 2: offload with concurrent compute and copy back
• Hides the communication time from GPU to CPU
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Toy Example: Scenario 1

process 1<<<. . . , . . . , . . . , stream 1>>>(. . . );

process 2<<<. . . , . . . , . . . , stream 2>>>(. . . );

Loop

{
// wait for both stream then post-process;
cudaStreamSynchronize(stream 1);
cudaStreamSynchronize(stream 2);
postprocess<<<. . . , . . . , . . . , stream 3>>>(. . . );

.

.

.

// process next input in the batch;
process 1<<<. . . , . . . , . . . , stream 1>>>(. . . );

process 2<<<. . . , . . . , . . . , stream 2>>>(. . . );

}
// finalize last iteration;
cudaStreamSynchronize(stream 1);

cudaStreamSynchronize(stream 2);

postprocess<<<. . . , . . . , . . . , stream 3>>>(. . . );

// Wait for GPU to finish then copy back;

cudaDeviceSynchronize();

cudaMemcpy(. . . , . . . , . . . , cudaMemcpyDeviceToHost);
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Toy Example: Scenario 2

process 1<<<. . . , . . . , . . . , stream 1>>>(. . . );

process 2<<<. . . , . . . , . . . , stream 2>>>(. . . );

Loop {
// wait for both stream then post-process;
cudaStreamSynchronize(stream 1);
cudaStreamSynchronize(stream 2);
postprocess<<<. . . , . . . , . . . , stream 3>>>(. . . );

// schedule a D2H copy right after post process;

cudaEventRecord(processing done, stream 3);

cudaStreamWaitEvent(stream 4, processing done, 0);

cudaMemcpyAsync(. . . , . . . , . . . , cudaMemcpyDeviceToHost, stream 4);

// process next input in the batch;
process 1<<<. . . , . . . , . . . , stream 1>>>(. . . );

process 2<<<. . . , . . . , . . . , stream 2>>>(. . . );

}
cudaStreamSynchronize(stream 1);

cudaStreamSynchronize(stream 2);

postprocess<<<. . . , . . . , . . . , stream 3>>>(. . . );

// schedule a D2H copy right after post process;

cudaEventRecord(processing done, stream 3);

cudaStreamWaitEvent(stream 4, processing done, 0);

cudaMemcpyAsync(. . . , . . . , . . . , cudaMemcpyDeviceToHost, stream 4);
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Profiling the Toy Example: Live Demo

• Profile the toy example using NVIDIA profiler (nvprof, nvvp)

• Investigate the time lines produced by nvvp

• Real timelines generated by nvvp

• Scenario 1

• Scenario 2
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Session Summary

• You should now be familiar with
• How GPUs are programmed for general purposes
• How a CPU can drive a GPU as an accelerator
• The CUDA execution model
• Basic optimizations to CUDA kernels
• Measuring performance of a CUDA kernel
• Concurrent kernel-execution/data-communication on a single

GPU
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Thank You
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