
C++ for statisticians,

with a focus on interfacing from R and R packages

Chris Paciorek

February 6, 2014

These notes are the basis for a set of three 1.5 hour workshops on using C++ for statistical

work. The first workshop focuses on the basics of C++ useful for statistical work. I don’t expect

to teach you C++ in that time, but to give you an overview so that you can go learn what you need

more easily, or for those who know a bit of C or C++ already to help round out your knowledge.

The second workshop focuses on calling C++ from R via a variety of methods. The third workshop

focuses on creating R packages.

A few things to note in advance:

• My examples here will be silly toy examples for the purpose of keeping things simple and

focused.

• I’ll try to use italics to indicate names of things and typewriter font to indicate actual

syntax. I’ll likely slip up occasionally.

• A comment about the speed of R compared to C/C++. Oftentimes one will hear comparisons

where R is orders of magnitude slower than C/C++ or some other software. I think these

comparisons sometimes use R in naive ways (for example, avoidable for loops instead of

vectorized calculations) and other times are not recognizing that a lot of the heavy numerical

lifting in R, such as linear algebra, is done in compiled code and is likely to be comparable to

doing it directly in compiled code. That said, there are lots of cases where you will want to

use C/C++ to get substantial speedups. The motivation of this set of workshops is to enable

you to use C/C++ from R for the slow parts and use R for the parts that don’t involve serious

computation, taking advantage of R’s rapid coding, ease of use, input/output capabilities,

and graphics.

• Also, most of this is focused on Linux as this is the environment in which most heavy-duty

scientific computation gets done. Much of this should work on Macs since they run a variant

1

of UNIX under the hood. You’ll need xcode installed on the Mac.

Resources

• Statistical Computing in C++ and R by Randall Eubank and Ana Kupresanin

• R extensions manual

• Dirk Eddelbuettel’s Rcpp tutorial at useR! 2012 and Rcpp paper

• Hadley Wickham’s guide to packages as part of his devtools package:

https://github.com/hadley/devtools/wiki/Package-basics

• Papers on RcppArmadillo (http://www.sciencedirect.com/science/article/pii/S0167947313000492)

and RcppEigen (http://www.jstatsoft.org/v52/i05/) [both also linked from Dirk’s website]

1 C and C++ basics

1.1 C vs. C++

C++ builds on standard C in a number of ways. These include:

• additional functionality such as function overloading

• object-oriented programming

• the Standard Template Library that provides a variety of data structures and algorithms to

operate on them

• templates, which allow you to more easily write functions that deal with multiple types

In the following, I’ll describe the basics of coding in C and C++. I’ll mix together standard C with

features specific to C++ below, without being explicit about it and will generally refer to it as C++

even if I’m just using pure C functionality

1.2 Structure of a C/C++ program

A program consists of several pieces. Let’s look though the example program below and see what

the main pieces are.

2

http://www.cran.r-project.org/doc/manuals/r-release/R-exts.pdf
http://dirk.eddelbuettel.com/bio/presentations.html
http://www.jstatsoft.org/v40/i08/
https://github.com/hadley/devtools/wiki/Package-basics
http://www.sciencedirect.com/science/article/pii/S0167947313000492
http://www.jstatsoft.org/v52/i05/
http://dirk.eddelbuettel.com/bio/papers.html

This program does my favorite numerically intensive calculation, calculating the Cholesky

decomposition of X⊤
X for random square X . dsyrk is Lapack’s crossproduct function and dpotrf

is Lapack’s Cholesky decomposition.

// this is test.cpp

#include <iostream>

#include <iomanip>

#include <vector>

#include <math.h>

#include <time.h>

#include <R.h>

#include <Rmath.h>

#define PI 3.14159

using namespace std;

// these declarations are needed as I don't think there is a lapack.h

extern "C" int dpotrf_(char* uplo, int* n, double* a, int* lda, int* info);

extern "C" int dsyrk_(char* uplo, char* trans, int* n, int* k,

double* alpha, double* a, int* lda, double* beta, double* c, int* ldc);

// this is a one-line comment

/* This is

a multi-line

comment.

*/

// compilation:

// g++ -o test test.cpp -I/usr/share/R/include -llapack -lblas

// -lRmath -lR -O3 -Wall

int main(){

int size = 8000;

int info = 0;

char uplo = 'U';

char trans = 'N';

double alpha = 1.0;

3

double beta = 0.0;

double* x = new double[size*size];

double* C = new double[size*size];

for(int i = 0; i < size*size; i++){

x[i] = rnorm(0.0, 1.0);

C[i] = 0.0;

}

cout << "done with rnorm" << endl;

dsyrk_(&uplo, &trans, &size, &size, &alpha, x, &size, &beta, C, &size);

cout << "done crossprod" << endl;

dpotrf_(&uplo,&size,C,&size,&info);

cout << "done chol" << endl;

return 0;

}

At the top are ’preprocessor’ directives that provide information to the the preprocessor that

runs before compilation. In particular, if you call functions from other libraries, you need to

include the header files that contain the function prototypes (the definition of the function without

the body) so that the compiler can check that you are calling the functions correctly (i.e., in terms

of the arguments) in your code. You include standard system header files using <>, e.g.,

#include <iostream>

#include <Rmath.h>

For C++ system header files, you generally don’t need the .h.

For non-standard header files (e.g., for external libraries obtained from other sources and your

own user-written files), you put the file name in double quotes and you need the full filename with

.h, e.g.,

include “myheader.h”

You can define constants with #define. This allows one to avoid having “magic” numbers

sprinkled around your code and then having to remember what they mean. However you may want

to do this via const variables (more later).

You can do lots of other stuff with preprocessor directives, but we won’t go into them here.

The “using namespace” tells the compiler that you’ll make use of objects and functions from

the standard template library (STL). This is akin to saying library(pkgName) in R, which

loads objects and functions from the package into your workspace so they’re accessible to you,

and to Python’s import statement.

The strangely named dpotrf_ is the Lapack Cholesky routine and dsyrk_ the crossproduct func-

tion. Calling Lapack routines involves a bunch of strange stuff, including the use of extern, which

4

has to do with scoping issues that I don’t fully understand. the _ occurs because a Fortran function

is being called behind the scenes and typically an underscore is attached to the name of Fortran

functions during their compilation.

If you’re creating a full-fledged program that you call from the command line, you need a

main() function that is where your execution begins and ends. From main(), you can of course

call other functions. The return value of main() can just default to 0 as below or you could have it

indicate whether the program executed correctly and finished without errors (0 is standard) or not

(1 is standard in this case). If you’re just going to create a library file that contains functions you’ll

call from R, you don’t need main(). Just create your functions and compile as discussed below

when we talk about calling C++ from R.

One line comments begin with “//”. Multi-line comments can be enclose in the following

syntax, e.g.: /* THIS is a comment */

1.3 Compiling and linking

Creating a program from C++ code involves compiling the program into a binary executable. The

standard C++ compiler is g++. The standard C compiler is gcc. You can use g++ for purely C

code, so I’ll just use g++ throughout. Also for code that includes MPI calls, there is mpicxx for

C++ and mpicc for C.

When you compile code, a couple things happen. The code gets compiled into binary and code

from different binaries gets linked together.

Often your program will use code from other libraries (e.g., BLAS and LAPACK). In this case

you need to link the other libraries into your executable. There are two options for linking. You

can link in a static version of the library, called an archive. Such files have names of the form:

lib{libName}.a. The binary is included directly in your executable at linking time. Alternatively,

you can link to dynamically to a shared object library (also called a dynamic link library - such

files in Windows are DLLs). In this case the binary is not included directly in the executable at

linking time, but is only referenced, and when your program is run, the code is obtained from the

lib{libName}.so file. This reduces the size of your binary and allows one to use updated versions of

the .so without changing the program, but it also means that the .so files that are linked to need to

be available at run-time. In general this is not an issue, so using dynamic linking is very common.

There are a number of dependencies that need to be accounted for in compiling and linking. In

the first step, code is compiled (creating a .o file). At this stage, you need to make sure that the

compiler can find the necessary header files (.h) containing the signatures of any external library

functions that you call in your code. Often these files are in standard places on your filesystem

and the compiler can find them, but sometimes you need to add a flag pointing to the directory(ies)

5

containing the header files that are in your #include statements in your code, e.g.:

g++ -c test.cpp -o test.o -I/usr/share/R/include

(Here I’m forcing compilation and linking to be in two steps using the -c flag, which says to

compile but not to link.)

In the second step, the various binaries are linked together into a program that can run. At this

stage you need to make sure the compiler (and for dynamic linking, the program at run-time) is

able to find all of the necessary libraries. You need to indicate the libraries being linked in via -l

flags. And, once again, the libraries are often in standard places on your file system and the com-

piler can find them, but sometimes you need to add a -L flag pointing to the directory containing

the library. E.g.,

g++ -o test test.o -L/opt/acml5.2.0/gfortran64_mp/lib -lacml_mp -lR

where the -L points to the directory containing the .so file and -l to the actual .so file, libacml_mp.so.

Note that the “lib” part of libacml.so is excluded. The compiler adds it automatically. Finally note

that sometimes the order of the libraries in your linking invocation matter. Unsurprisingly, this

can lead to headaches. Finally finally note that in the compilation above I link to a different

BLAS/Lapack than my comment in the actual code file. So in certain cases I can link to different

libraries providing the same underlying functions.

Oftentimes you’ll do the compiling and linking all in one step, e.g.,

g++ test.cpp -o test -I/usr/share/R/include

-L/opt/acml5.2.0/gfortran64_mp/lib -lacml_mp -lR

For openMP, you need to include -fopenmp when compiling.

To run your program, you’ll generally need to tell the operating system that it’s an executable:

chmod guo+x test

Also, the directory your program is in will generally not be in your path, so you need to do:

./test

1.4 Variables, types, and pointers

First a bit of preparatory material.

An address in memory is stored as a 32-bit value on 32-bit processors and a 64-bit value on 64-

bit processors. Usually addresses are written in base 16 (hexadecimal) so 32 bits can be represented

as 8 digits, e.g., 0x13fe36a7. Before 64-bit processors, the number of locations in memory that

could be uniquely addressed limited the amount of physical memory that could be used to about 4

Gb.

Variables are stored in memory at these various addresses. So for example, a numeric value

6

named y might be stored as a double precision floating point (a ’double’) at address 0x13fe36a7.

When you tell the computer to do something with y, it goes to the memory location, grabs the

value there and then manipulates it as you have requested. The compiler tries to optimize things

such that it doesn’t have to do a lot of fetching, so values are often stored in intermediate locations

(e.g., registers) that can be accessed more quickly. Also, it’s faster to access contiguous locations

in memory than locations spread all around. So if you, as in C++, often have matrices stored as a

vector, row-wise, it’s faster to grab a row than to grab a column.

In R and other scripting languages, you do not have to define variables before using them and

variables are not associated with a particular type (e.g., double, integer, character) until they are

assigned a value. In compiled languages such as C++, before you use a variable, you need to

declare the variable and give it a type. You have to declare the variable earlier in the code file than

the variable is used. Here are some examples of declaring variables, as well as defining them (see

also types.cpp). Defining a variable also involves allocating memory for it, which occurs when you

assign a value to the variable here.

int i;

int i = 7;

double x, y;

double x=0.0;

To get the value of a variable in your code, we just use the name, e.g.:

y = 2.3 * x;

To switch between types, you need to cast the variable, e.g.,

x = (double) i;

To get the address of a variable, we can do the following using the address operator:

&x;

Suppose we did:

z = &x;

What type does z have? Well, first we have to declare z, of course. The type of z needs to be a

double pointer. A pointer is a special variable whose value is an address.

double* z;

z = &x;

If we want to get the value stored in x via z, we can use the ’*’ operator, the dereferencing

operator:

y = *z;

Or for assignment to x:

*z = y;

Next note that if we change what is stored in x, *z refers to the new value, because z is just the

7

address of x (which is unchanged) and we have changed the value of x:

x = 9.0;

*z == 9.0; // this should now be True

Similarly if I modify *z, then x is modified.

To store the address of i we would need to declare an int pointer:

int* iptr = &i;

Note you can do either of the following:

double* x;

double *x;

I prefer double* x because I can think of x as being a pointer, instead of thinking of *x as being

a double.

C++ provides string operations through the string class. You’ll need #include <string>.

This code is in the string.cpp file:

string s = “Hi there.\nWelcome.”;

cout << “Length of s: “ << s.size() << endl; // s is an object of

class string, which has a size() method

cout << “First element: “ << s[0] << “ and fourth element “ << s[3]

<< endl;

s = s + “ And goodbye.”; // overloaded operator!

cout << s << endl;

C++ has lots of different types, but we’ll stick with those for now; assuming you’re primarily

doing numeric computation in C++, you may not need to know that much more. If you’re going to

do a lot of work with text, I’d suggest you use Python. Doubles are stored as 8 bytes (64 bits), ints

as 4 bytes, characters (char) as 1 byte. There are also long doubles, stored as 16 bytes for doing

high-precision calculations. Doubles have about 16 digits of accuracy, while long doubles have

twice as many digits of accuracy.

1.5 Scoping

Just like R, C++ has rules for variable scoping, which just means the locations in your code in

which a particular variable or function name has meaning (i.e., can be understood by the compiler).

Variables are generally local to a specific scope and can’t be accessed outside that scope. Variables

that are declared ouside a set of curly braces (a code block) will act as global variables. Here’s an

example:

#include<iostream>

using namespace std;

8

double z; // z is available throughout

void myfun(double* input, double* output) {

double x = 3.0; // x is only available w/in the function and below here

{ // new code block

double y = 5.0; // y is only available within this set of braces

// other code here

}

// y no longer available here

}

You don’t have to include using namespace std;, but it does allow one to access the std

functions/objects without the :: operator.

You could instead directly access, e.g., cout as std::cout;

std::cout << “hi” << std::endl;

Or you could just provide direct access to cout and endl, but not all of the std namespace:

using std::cout; using std::endl;

Note that in C++ variables can be declared anywhere in a block of code, provided they are

declared before being used, while in C they need to be at the start of the block.

Global variables also need to be declared before they are used.

1.6 Input/output (I/O)

I won’t go into this much because I’ll assume that C++ is being called from R or another language.

Dealing with I/O in C++ is a hassle, and if you can leave it to a higher-level language and just

use C++ for the heavy-duty number crunching, that’s usually a good strategy. However, you may

need to insert print statements in your code, both to give informative messages and for your own

debugging. We’ve basically already seen the syntax in C++, which is as follows.

Make sure to include #include <iostream> as a preprocessor directive. Then do things

like the following:

cout << “The value of x is: “ << x << “, and it should be 7.” <<

endl;

Basically you can just glom together with << anything you want to print out. The endl means to

print out a newline (i.e., a return (“\n”)).

You can also set up output to a file by creating a ’file stream’ and printing to the stream rather

than to cout, which goes to stdout.

9

1.7 Arrays and memory allocation

What about vectors, matrices, etc? In C++, these are called arrays. A basic one-dimensional array

can be created as follows:

double data[10];

You can refer to a value in the array as: data[0], data[1], ..., data[9]. C++, unlike R, is

0-indexed, so the first element is the 0th and the last is the (n-1)th.

It’s useful to know that an array is the same as a pointer to the beginning of the array. So data

is just the address of data[0].

One construct that programmers use is something called pointer arithmetic, which is illustrated

in ptrArith.cpp.

Suppose I do this:

*(data + 1)

The +1 says to add 1 to the address stored as data. This basically moves the pointer along to the

next memory location (jumping 8 bytes since data refers to an array of doubles – because it’s a

double pointer). So *(data+1) is the same as data[1]. *data is the same as data[0].

We can do so-called pointer arithmetic:

double* next = data + 1

next is now a pointer to data[1]. It’s the same as if we did &(data[1]).

Variables declared as we have done so far, such as int i=7; double x=0.0; double

data[10]; are allocated from the stack. As soon as they go out of scope, the memory for these

variables is freed up.

You can also dynamically allocate memory for arrays, e.g., when you are not sure at compile

time how big the array needs to be. In C++, we do this as:

double* data = new double[n];

Or with some error checking

if ((double* data = new double[n]) == NULL)

cerr << “Error allocating memory for ’data’.” << endl;

The length of data will depend on the value of n. Such memory is allocated from the heap

and is not freed unless you explicitly free it (or the program ends). If you don’t free it, and if you

use new within a loop, you will keep using up memory without freeing it, resulting in potentially

massive memory use. This is called a memory leak. To avoid this; when you are done with the

array, in particular before the function in which the array was allocated finishes, do

delete[] data;

A basic and important check of your code is to make sure there is a delete for every new. Sometimes

this is a bit tricky because you may allocate memory in a function to hold the output and forget to

free it later outside of the function.

10

You can create multi-dimensional arrays with of fixed sizes as follows:

double x[N][N];

Here’s a program (array.cpp) that shows this and demonstrates that matrices are stored by row

(row major), unlike in R. It also demonstrates that the two dimensional array is actually stored as

a one-dimensional array of pointers to rows of the 2-d array.

#include <iostream>

#include <iomanip>

using namespace std;

// g++ -o array array.cpp

int main() {

const int N=3;

double x[N][N];

x[0][0]=0.0; x[0][1]=1.0; x[0][2]=2.0;

x[1][0]=3.0; x[1][1]=4.0; x[1][2]=5.0;

x[2][0]=6.0; x[2][1]=7.0; x[2][2]=8.0;

cout << x << ' ' << *x << ' ' << **x << endl;

cout << x[0] << ' ' << x[1] << ' ' << x[2] << endl;

cout << x[0][0] << ' ' << x[0][1] << ' ' << x[0][2] << ' '

<< x[1][0] << endl;

cout << &(x[0][0]) << ' ' << &(x[0][1]) << ' ' << &(x[0][2])

<< ' ' << &(x[1][0]) << endl;

cout << *(*x) << ' ' << *(*x+1) << ' ' << *(*x+2) << ' ' << *(*x+3)

<< endl;

cout << **x << ' ' << **(x+1) << ' ' << **(x+2) << ' ' << **(x+3)

<< endl;

return 0;

}

That code produces the following, which we can interpret based on a bit of base-16 arithmetic:

paciorek@smeagol:~/staff/workshops/CfromR> ./array

0x7fff6cb1b6f0 0x7fff6cb1b6f0 0

0x7fff6cb1b6f0 0x7fff6cb1b708 0x7fff6cb1b720

0 1 2 3

0x7fff6cb1b6f0 0x7fff6cb1b6f8 0x7fff6cb1b700 0x7fff6cb1b708

11

0 1 2 3

0 3 6 6.36599e-314

1.8 Functions

In general, all variables are local to the function in which they are defined (there are ways around

this but it’s often not good practice).

1.8.1 Pass by reference vs. pass by value

A key distinction between C++ and R is that in C++ you can pass variables into a function either

by value (as with R – but notes that R often cleverly avoids or delays copying inputs and outputs

from a function) or by reference. Passing by reference just means that you pass a pointer into the

function. When you modify the value pointed to by that pointer, the value is changed globally in

the sense that if you later access the value in that memory location outside the function, the value

reflects the changes made inside the function.

Here is an example (func.cpp) of passing by reference vs. value and the implications of doing

so:

#include <iostream>

#include <iomanip>

using namespace std;

// g++ -o func func.cpp

void myfun (double f_xval, double* f_xref, double* f_aval,

const double* f_aref) {

f_xval = 5.0;

*f_xref = 5.0;

f_aval[1] = 5.0;

// f_aref[1] = 5.0; // compilation error: "assignment of

// read-only location '*(f_aref + 8u)' "

}

int main() {

const int N = 3;

double x[N] = {0.0, 0.0, 0.0};

double y[N] = {0.0, 0.0, 0.0};

12

double xval = 0.0;

double* xref = new double(0.0);

// why does this fail?:

// double* xref;

// *xref = 0.0;

myfun(xval, xref, x, y);

cout << xval << ' ' << *xref << ' ' << x[1] << ' ' << y[1] << endl;

*xref = 0.0; xval = 0.0; x[1] = 0.0; y[1] = 0.0;

myfun(*xref, &xval, x, y);

cout << *xref << ' ' << xval << ' ' << x[1] << ' ' << y[1] << endl;

return 0;

}

Note that even the static array is treated as a pointer.

1.8.2 Default parameter values

You can use default parameter values, e.g.:

void myfun (double a = 0.0, double b = 1.0, double c = 2.0)

Unlike in R, if a user omits one of the arguments, they must omit all of the following arguments

as well. Also note that C++ matches by position and not by name (unlike in R, which does both).

In the code below (funcArgs.cpp), we haven’t called myfun() with arguments ’a’ and ’c’, rather

we’ve assigned to ’a’, and ’c’ and then called myfun()with the values stored in ’a’ and ’c’, which

are taken to be the ’a’ and ’b’ arguments to myfun().

#include <iostream>

#include <iomanip>

using namespace std;

// g++ -o funcArgs funcArgs.cpp

void myFun (double a = 0.0, double b = 1.0, double c = 2.0){

cout << "a is" << a << ", b is " << b << ",c is " << c << endl;

}

int main() {

double a, c;

myFun();

13

myFun(10.0);

myFun(a = 10.0);

cout << "In main(): a is " << a << ", c is " << c << endl;

myFun(a = 10.0, c = 30.0);

cout << "In main(): a is " << a << ", c is " << c << endl;

return 0;

}

Here’s the result:

a is 0, b is 1, c is 2

a is 10, b is 1, c is 2

a is 10, b is 1, c is 2

In main(): a is 10, c is 0

a is 10, b is 30, c is 2

In main(): a is 10, c is 30

1.8.3 Some other syntax stuff

If we want to pass by reference for efficiency, but protect the object passed in from being modified,

here’s good standard practice:

int myFun(const double* x)

This prevents modification of what ’x’ points to (the scalar or array of doubles).

The static and extern keywords, e.g.,

static double x;

extern double x;

are used for messing around with scoping, such as creating global variables and variables declared

in a function that do not die when a function finishes.

Functions need to be defined before they are used. You can have a function be defined below

where it is used, but in this case you need to have the function declared (e.g. with the line, int

myFun(double x);) above where it is used.

1.9 Basic syntax: math and flow control

Here’s a basic for loop:

int i; int n=30; double x = new double[n];

for(i = 0; i < n; i++){

14

x[i] = (double) i * 3.0;

}

and a basic while loop:

int i = 0; int n = 30; double x = new double[n];

while(i < n) {

x[i] = (double) i*3.0;

i++;

}

Here’s a basic if-then-else statement. Note that the boolean operators &&, ||, ==, and != are as

they are in R.

if((i < 7) && (i > 3)) {

cout << medium << end;

}

else if((i > 12) || (i < 0)){

cout << extreme << endl;

}

else{

cout << something else << endl;

}

Ok, what about basic mathematical calculations? See

http://en.wikipedia.org/wiki/C_mathematical_functions. Unlike in R, you need an explicit function

(not the ^ operator) to take the power of a number: pow(x, power).

For generating random numbers, I recommend using the C functions provided by R. More

details in a bit.

1.10 Standard template library

The standard template library (STL) provides a lot of tools for easing your coding.

First, add the stl namespace (just below your preprocessor directives and before any function

definitions) so that you can refer directly to the objects that you want (otherwise you’d need to

refer to them as std::object (as with an R package that you haven’t loaded)):

using namespace std;

The STL provides container types that can represent objects containing other objects. One of

these is a vector class that is like an array but can also grow itself. Here’s basic usage of the vector

15

http://en.wikipedia.org/wiki/C_mathematical_functions

class (but I’m not showing how to grow the vector). Note you need #include <vector> as a

preprocessor directive:

vector<double> myvec(N);

for(int i = 0; i < myvec.size(); i++) {

myvec[i] = (double) i;

}

There are also related containers called lists and deques - which you use depends on whether

you want to be able to insert/delete elements anywhere or just at the endpoints and whether you

want access to any element anytime or always do this in sequential order.

STL provides something called iterators that allow you to index through your container. Itera-

tors behave like pointers:

int index = 0;

for(vector<double>::iterator iter = myvec.begin();

iter != myvec.end(); iter++) {

*iter = *iter + 3.0;

cout << index++ << ": " << *iter << endl;

}

STL provides algorithms for searching, sorting, applying an operation to each element (like an

R apply), and insertion/deletion, among other things.

As you could guess, there are lots more details here; I just wanted to make you aware of the

STL.

1.11 Structs and classes, plus function/operator overloading

In C, the variable type that allows you to aggregate a variety of disparate objects (like an R list) is a

struct. In C++, one generally uses objects since an emphasis in C++ is on OOP. An object is a data

structure with methods (i.e., functions) that operate on that structure. Unlike R, C++ emphasizes

that some members and functions are private and can’t be accessed from outside the object, while

others are public.

One nice feature in C++ is the ability to overload functions and operators. That is you can

define functions that work with different types for one’s inputs. You can do the same sort of thing

with operators. Note that operators might be member functions of a class. Here’s an example of

function/operator overloading:

16

void foo (int i) { cout << “You sent me an int: “ << i << endl; }

void foo (double d) { cout << “You sent me a double: “ << d << endl;}

Here’s an example (class.cpp) of defining a class, with a constructor and overloading the (

operator to access private member objects.

#include <iostream>

#include <iomanip>

using namespace std;

// g++ -o class class.cpp

class badMatrix {

// 'bad' because you wouldn't want reinvent the wheel

// with your own matrix class!

private:

int n_rows, n_cols;

double* vals;

public:

// declarations w/o actually defining the member functions

badMatrix(int n_rows, int n_cols, double* vals); //constructor

~badMatrix(void); // destructor

// overload the (operator to do subsetting

double operator() (int row, int col);

};

// here are the method definitions

badMatrix::badMatrix(int n_rows, int n_cols, double* vals) :

n_rows(n_rows), n_cols(n_cols) //succinct initialization

{

badMatrix::vals = new double[n_rows * n_cols];

for(int i = 0; i < n_rows*n_cols; i++)

badMatrix::vals[i] = vals[i];

}

badMatrix::~badMatrix(void) {

delete [] vals;

cout << "Deallocating memory" << endl;

}

17

double badMatrix::operator() (int row, int col) {

return vals[row*n_cols + col];

// note you could even write this to mimic 1-based indexing

}

int main() {

double vals[6] = {0.0, 1.0, 2.0, 3.0, 4.0, 5.0};

badMatrix mymat(2, 3, vals);

cout << "mymat(0,1): " << mymat(0,1) << endl;

cout << "mymat(1,0): " << mymat(1,0) << endl;

return 0;

}

We can access members of a class with the . operator:

myObject.myMethod() or myObject.myMember

Or if we have a pointer to the object:

badMatrix* myObjectPtr = new badMatrix(2, 3, vals);

myObjectPtr->myMethod() or myObjectPtr->myMember

That’s just shorthand for (*myObjectPtr).myMethod() or (*myObjectPtr).myMember.

1.12 Linear algebra and multi-dimensional arrays

There are a variety of ways for dealing with matrices and arrays of more than one dimension. One

approach is just to have the matrix strung out as a 1-d array. This is the approach needed if you

are using Lapack and BLAS calls. You’ll have to be careful about row-major vs. column-major

ordering (from R, this generally works without much thought as R and Fortran store matrices

column-major and the underlying Lapack routines are Fortran, but from C++ directly you may

need to do more).

In addition to Lapack, other options for doing linear algebra are the Eigen and Armadillo

packages, which have connections to Rcpp via RcppEigen and RcppArmadillo (more later). These

provide C++ class structures with linear algebra methods.

18

1.12.1 BLAS and Lapack calls

In the initial example, we’ve already seen the basics of making BLAS/Lapack calls.

BLAS is the Basic Linear Algebra Subroutines, which carry out things like matrix-vector mul-

tiplication. Lapack is the Linear Algebra PACKage, which carries out more complicated linear

algebra operations such as Cholesky and SVD factorization. So long as you have a threaded BLAS

on your system that you are linking against, your linear algebra calls will be able to use multiple

cores.

The basic steps in a C++ program are:

1. declare the BLAS/Lapack function you want to use; noting the use of extern and inclusion

of the _, which has to do with the functions being actually written in Fortran:

extern "C" int dpotrf_(char* uplo, int* n, double* a, int* lda,

int* info);

2. Call the function appropriately, including passing in the required arguments as the right

types (e.g., pointers in many cases – here I just pass in the address of anything not already a

pointer):

dpotrf_(&uplo, &size, C, &size, &info);

3. Make sure to link appropriately when compiling your code:

g++ -o prog prog.cpp -llapack -lblas -O3 -Wall

Alternatively to link against non-standard BLAS or Lapack (here against ACML, which is a

good choice on the SCF Linux cluster):

g++ -o prog prog.cpp -L/opt/acml5.2.0/gfortran64_ mp/lib -lacml_mp

-lgfortran

But, you might comment, this all seems a bit antiquated. We’re talking about C++, but are calling

obscurely-named functions with matrices as one-dimensional arrays. There are a number of ways

to work with linear algebra in a more modern fashion that have better APIs (the interface you use

to interact with the functionality).

1.12.2 Eigen and Armadillo

One nice package is Eigen. It does not use the BLAS or Lapack, but is advertised as being fast.

It can use threading for some of its algorithms, via openMP, so just use the -fopenmp flag when

compiling with g++/gcc. It has some functionality for sparse matrices. Note that Eigen may not be

available on Macs.

19

The file EigenExample.cpp has an example of doing a Cholesky decomposition using Eigen in

two different ways. Note the use of OOP. Also note the use of templates (see the <> syntax), which

allow programmers to easily write a method that can be used on multiple different types of input.

Armadillo is another option. Armadillo has pretty straightforward syntax that looks like R and

Matlab (we’ll see this in the section on Rcpp). Behind the scenes it does rely on BLAS/Lapack,

unlike Eigen. From various mailing lists, the rough consensus is that Eigen may be a bit faster, but

this is heavily dependent on what BLAS/Lapack you have on your system (since Armadillo uses

those and Eigen does not), but Armadillo is probably easier to use. Armadillo is probably safer

since BLAS/Lapack have been used for decades and are very reliable. Armadillo does not have

much functionality for sparse matrices. We’ll see a bit of Armadillo in the context of calling it via

Rcpp from R.

Both Eigen and Armadillo make use of something called template meta-programming in which

the compiler optimizes the linear algebra steps at a high level before even getting to optimizing the

compilation of the explicit code. What do I mean by this? An example would be calculating

A-B+C without first doing A-B, storing it temporarily and then doing the addition.

1.13 Calling R’s C functions (such as rnorm, dnorm, etc.) and R’s BLAS/Lapack

One of R’s best features is the ease with which we can manipulate distributions and generate

random numbers. We can use this functionality in C++, remembering that R’s functions are just

C code, so all we need are the right header file (Rmath.h) and the right shared object library

(libRmath.so).

Here’s an example where I use R’s underlying C code distributional functions directly in C++.

Compilation is done with g++ -I/usr/share/R/include -lRmath. You might need

-lR in addition (or instead).

#include <Rmath.h>

#include <R.h>

void genRandN (int* size, double* x, double* dens) {

// this assumes space for 'x' and 'dens' are allocated outside

getRNGstate();

for(int i = 0; i <size; i++){

x[i] = rnorm(1.0, 3.0);

dens[i] = dnorm(x[i], 1.0, 3.0);

}

putRNGstate();

}

20

// would need a main() or would call this from R

// if call from R, allocate memory for 'x' and 'dens' in R

Note that R’s C distribution functions do not operate in a vectorized fashion - you need to explicitly

iterate as above.

The getting and putting of the RNG state involves reading in or creating .Random.seed and

writing it out. According to the R extensions manual there is no way to select the kind of RNG

or set the seed from C++. The default RNG when done from C++ should be the default in R,

the Mersenne twister. Note that if you are calling C++ from R, you can set the seed in R (with

set.seed()) and set the RNG type with RNGkind() and that propagates to the RNG in C++. This

seems like magic, and I don’t see it documented anywhere, but one can see that it works empiri-

cally.

R also provides C functions for a lot of useful mathematical functions: gammafn, beta, bessel_j,

choose, etc. And it provides a variety of mathematical constants in Rmath.h. For details see Section

6.7 of the R extensions manual. You can call the C code underlying R’s optim() function from C

too.

Finally, you can call R’s C interfaces to BLAS and Lapack based on the header files: R_ext/BLAS.h,

R_ext/Lapack.h. In particular, if you are calling C++ from R and then using BLAS/Lapack, this

may be easier than calling the system’s BLAS/Lapack directly, as (I believe) this will avoid linking

issues since R already links in the BLAS and Lapack. However, you’ll generally need a Makevars

file in the current directory (or in /src in an R package directory) with the contents:

PKG_LIBS = $(LAPACK_LIBS) $(BLAS_LIBS)

so that R CMD SHLIB can link properly.

Finally, if you are using Rmath functions in a stand-alone C++ program rather than calling

from R, you may need to have the line #define MATHLIB_STANDALONE at the top of your file,

before the #include preprocessing directives.

If calling C++ from R you can allocate memory either in R or in C++, but it’s generally safer

to do in R as you don’t need to worry about memory leaks.

1.14 Debugging

1.14.1 Debugging tools

Using debugging tools is much more important with a compiled language than a scripting lan-

guage because we can’t just step through the code line by line. The standard debuggers are gdb (a

command line debugger) and ddd (a GUI). Both are available on the SCF Linux machines.

First, you need to compile your program in a way that allows for debugging (this slows down

the execution, so don’t do this for production code), by using the -g flag, e.g.

21

g++ -g -o myProg myProg.cpp

To invoke gdb for a particular program:

gdb myProg

We’ll do a demo in the workshop but below I list the basic syntax used. The basic idea is to set

breakpoints inside your code at places where you think it will help to examine the state of the code

and then walk through your code and check the values of variables and see the flow of execution.

If you’re familiar with the R debugger invoked by browser(), many of the ideas/syntax are similar.

Here’s some example syntax for gdb.

• Set breakpoints at a particular line of code and/or a particular function call:

b myProg.cpp:123

b myFun

• Get info on the breakpoints that are set

info breakpoints

• Run your program (it will then stop at the breakpoints)

r

• Continue to the next break point:

c

• Continue to the next line:

n

• To step inside the function called on the next line:

s

• Printing values of variables

p non_pointer

p *pointer

p *myvec@20

• Setting variables’ values

set it=7

1.14.2 Common bugs

One standard bug is memory leaks. Another standard bug is to try to write to a location for which

memory has not been allocated. Here’s an example (bug.cpp):

22

const int N = 5;

double x[N] = {0.0, 0.0, 0.0, 0.0, 0.0};

for(int i = 0; i <= N; i++) {

cout << x[i] << endl;

x[i] = double(i);

cout << x[i] << endl;

}

1.14.3 Assertions and try

One way to insert checks in your code is with assert(). E.g., to check that a value is bigger than

zero:

assert(n > 0);

If n does not satisfy this, an error is thrown, with indication of where the error occurred.

C++ also has try/catch functionality, similar to try() in R, that can deal with errors gracefully.

1.15 Using make

It can be tedious to deal with the steps involved in compiling and linking a program, particularly

when you have your code across many files.

The make utility allows you to automate this. Here’s a basic example. The syntax is to define

in each block the target of that block (i.e., what will be produced) and the dependencies needed

to make that target, and then the commands that generate the target. Here’s an example. The file

should be called makefile, as that is where make looks for the file:

myProg : myProg.o auxil.o

g++ myProg.o auxil.o -o myProg

myProg.o : myProg.cpp auxil.h

g++ -c myProg.cpp -o myProg.o

auxil.o : auxil.cpp

g++ -c auxil.cpp -o auxil.o

Note that the code lines must be preceded by a tab. One nice feature is make checks if files

have been changed and only executes a block if any of the dependencies have changed. The -c flag

tells the compiler not to do any linking for those steps.

If you now invoke make it will carry out the operations using whatever file named makefile is

in the current directory.

23

In fact, you could even use make more generally to do reproducible research by defining each

task and its component operations as shell commands. Here are some ideas along those lines:

http://kbroman.github.io/minimal_make/.

2 Calling C/C++ from R

In general, the R extensions manual on CRAN is your guidance for all things related to calling

external code.

As a result of R being written in C, R provides a number of C types and functions/macros for

manipulating R objects within C. Most of these will come up in the context of .Call().

2.1 Compiling C++ code into a shared object library usable by R

Basically, you write one or more C++ functions that you will call from R. Note that your C++

code should not include a main() function, just the functions you want to call from R. It does

need to include the usual preprocessing directives, and in general should also have #include

<R.h>. For R to work with C++ code (or even C code compiled with g++), you need to wrap

your functions inside an an extern statement: extern “C” { yourC++_code_here....

}. However, I believe that any C++ class and class method definitions should be done outside of

the extern statement.

Once you have the C++ code, you need to compile it. A standard way to do this using an R

wrapper to the compiler is as follows:

R CMD SHLIB fancyPlus.cpp

This will automatically invoke something like this:

g++ -I/usr/share/R/include -DNDEBUG -fpic -O3 -pipe -g

-c fancyPlus.cpp -o fancyPlus.o

g++ -shared -o fancyPlus.so fancyPlus.o -L/usr/lib/R/lib -lR

If you need to link against additional libraries or use additional include flags, you can do the

compilation manually with g++ (mimicing the above but with the added flags), or you can just pass

the additional arguments directly to R CMD SHLIB, e.g., R CMD SHLIB fancyPlus.cpp

-I/usr/share/include -L/usr/lib. Note that you may need to ensure -fopenmp is

part of the first g++ call (the compilation step), and not just the linking step. You can also set

flags via a Makevars file (see Section 5.5 of the R extensions manual) if you’re compiling the code

within the context of an R package.

24

http://kbroman.github.io/minimal_make/
http://www.cran.r-project.org/doc/manuals/r-release/R-exts.pdf

2.2 The .C interface

This is the most basic interface. I’ve heard/read some people disparage it as being the ’old’ way of

doing things, but for basic functionality, it’s straightforward and may be quite useful. I’ll demon-

strate by calling a C++ function to add together two vectors, element-wise, with the C++ code in

fancyPlus.cpp and the R code that calls C++ in fancyPlus.R. The .C functionality is really only

intended for passing standard vectors (not including lists) and dealing with character vectors is a

bit tricky. For basic numerical vectors as arguments, the steps involved are:

1. Write a function (or functions) in C++ that returns void. All of your arguments for the C++

function should be pointers.

2. Compile that function into binary in a UNIX shell, creating a .so file (shared object library).

The compiled function will be an object in the .so file that can be accessed from R. R CMD

SHLIB does this for us, and can generally deal with the include files and library linking

automatically.

R CMD SHLIB fancyPlus.cpp

Note that you can check that the function you expect is in the .so file as follows:

nm fancyPlus.so | grep ’ T ’

3. Load the .so in R:

dyn.load("fancy.so")

4. Create a wrapper function that allows you to call the C++ code with minimal hassle (you can

just directly use .C(), but it’s often nice to have the wrapper)

fancyPlus <- function(in1, in2) {

R wrapper to the C function

if(length(in1) != length(in2))

stop("Lengths of vectors must match")

if(!is.numeric(in1) || !is.numeric(in2))

stop("Must provide numeric vector inputs")

25

return(.C('fancyPlus', length = as.integer(length(in1)),

input1andOutput = as.double(in1),

input2 = as.double(in2))$input1andOutput)

}

Note that you may not need the as.double(), as.integer(), etc. (and can avoid the extra com-

putation and memory use) if you are careful about setting up the R variable types in advance.

5. Now you can use the C++ function without even being aware that C++ is being called:

z <- fancyPlus(x, y)

Note that the .C call passes pointers into the C++ function (note that the C++ function arguments

are pointers). However, there actually are copies made of all the arguments. You can see this in the

demo code in fancyPlus.R, which uses R’s internal inspect function (.Internal(inspect(obj))

to examine memory addresses of R objects.

The main things to remember in using .C() are:

1. Make sure the R types match what the C++ function is expecting, with R’s numeric type

corresponding to C++’s double. Often this will involve using functions such as as.double()

and as.integer().

2. Figure out whether the output from C++ can just overwrite one of the inputs. Alternatively,

a good approach is to create a new output object in R and pass it as one of the arguments

to the C++ function. Returning output using pass by reference is the only way to get output

back from C++.

3. If you allocate memory in C++, make sure to free it so you don’t create a memory leak. This

is particularly important if you call the C++ function over and over again.

4. In your C++ code you may need to add particular header files that contain the function

definitions for external library functions that you use.

5. As noted previously, you may need to include some linking arguments or header arguments

to R CMD SHLIB

26

2.3 The .Call interface

This is a more modern approach than .C and allows you to handle R data structures inside of C++.

It’s a bit complicated because it involves understanding how R objects are stored in C. We’ll look

at the basics, but the general plan is to focus on Rcpp (see later sections of this document) which

allows you to ignore a lot of the messiness associated with .Call.

On the R side, things look like .C, but you can pass more general R objects:

.Call(’myFun’, a, b)

On the C++ side things look something like this:

#include <R.h>

#include <Rinternals.h>

SEXP myFun(SEXP a, SEXP b) {

...

}

Yikes, what’s a SEXP?

It stands for “S Expression”. It’s a pointer to a C struct, with the struct able to handle all types

of R objects. So at the C level, all R objects are SEXPs and all .Call’s look like:

SEXP myfun(SEXP in1, SEXP in2, ..., SEXP inp) // in C

.Call(’myfun’, var1, var2, ..., varp) # in R

Some of the types of SEXP’s are: REALSXP (numeric); INTSXP (integer); LGLSXP (logical);

VECSXP (list); CLOSXP (function/closure); ENVSXP (environment), among others (see Section

5.9.3 of R extensions manual).

If you create an R object in C, you need to tell R about the object by wrapping the creation

in PROTECT() in order to prevent R from garbage collecting it. Note that in simple cases R may

never be invoked, but the R extensions manual argues that in other cases, R calls might be made

while the C code is running, so it’s best to always use PROTECT(). Here’s a basic example of

creating an R object:

PROTECT(ab = allocVector(REALSXP, 2));

REAL(ab)[0] = 123.45;

REAL(ab)[1] = 67.89;

// now ab is a 2-vector of reals stored in the form of an R vector

UNPROTECT(1); // UNPROTECT unprotects the last n objects

//protected (so in this case just the last one)

UNPROTECT removes the protection and should be done at the point in the code at which you’re

done with the object. Note that we’ve referred to the values stored within the REALSXP using

27

REAL(ab). I believe this basically provides a pointer that accesses the storage of the vector within

the R object. If this code were used in a function called from R via .Call, you could pass ab directly

back to R and it would be a regular R vector.

Here’s a more extended example that shows some more type conversions as well as manipulat-

ing attributes of R objects.

#include <R.h>

#include <Rinternals.h>

SEXP out(SEXP x, SEXP y)

{

int i, j, nx = length(x), ny = length(y);

double tmp;

double* rx = REAL(x);

double* ry = REAL(y);

double* rans;

SEXP ans, dim, dimnames;

PROTECT(ans = allocVector(REALSXP, nx*ny));

rans = REAL(ans);

for(i = 0; i < nx; i++) {

tmp = rx[i];

for(j = 0; j < ny; j++)

rans[i + nx*j] = tmp * ry[j];

}

PROTECT(dim = allocVector(INTSXP, 2));

INTEGER(dim)[0] = nx; INTEGER(dim)[1] = ny;

setAttrib(ans, R_DimSymbol, dim);

PROTECT(dimnames = allocVector(VECSXP, 2));

SET_VECTOR_ELT(dimnames, 0, getAttrib(x, R_NamesSymbol));

SET_VECTOR_ELT(dimnames, 1, getAttrib(y, R_NamesSymbol));

setAttrib(ans, R_DimNamesSymbol, dimnames);

UNPROTECT(3);

return(ans);

}

Note that with .Call(), what is returned is an R object constructed in C++ and returned via

return() in your C++ function.

You can extract elements from list SEXPs (i.e. VECSXP’s) as follows. Suppose you have an

R list, a <- list(f = 1, g = 2, h = 3), that is passed into your C++ function as an

28

argument named ’a’ via .Call(). Then in C++ you can do the following (remembering to switch to

0-based indexing):

double g;

g = REAL(VECTOR_ELT(a, 1))[0]; // where the 1 is the 2nd element of

the list and the 0 is the first element of that.

The R extensions manual (p. 112) provides a wrapper function that can be called more easily as

g = REAL(getListElement(a, “g”))[0];

I suspect you’ll agree with me that this all seems pretty complicated and has us needing to

understand how R works at the C level more than we would like. It’s probably more than you need

for doing basic computation in C++, for which you might just use .C, but gives you an idea of

some of what is possible, and, indeed, of how R’s internal functions are written (e.g., things that

are called via .Internal()):

matrix

function (data = NA, nrow = 1, ncol = 1, byrow = FALSE, dimnames = NULL)

{

if (is.object(data) || !is.atomic(data))

data <- as.vector(data)

.Internal(matrix(data, nrow, ncol, byrow, dimnames, missing(nrow),

missing(ncol)))

}

<bytecode: 0x17d47e0>

<environment: namespace:base>

2.4 Allocating memory in C++

We’ve seen allocation of R objects (e.g., the allocVector() call in the code above). To allocate

standard C/C++ objects there are a couple options.

You can allocate memory with malloc (in C) and new (in C++), but of course being careful to

free it.

Alternatively, you can use the R_alloc() function, which causes memory to be freed when

.C/.Call finishes. Here’s the function signature (note it looks like malloc() and the like)

char *R_alloc(size_t n, int size);

and here’s a typical use (for 100 ints), noting the casting as an integer pointer:

x = (int *) R_alloc(100, sizeof(int));

29

2.5 Print statements

The R extensions manual suggests not using C++ iostreams (e.g., cout). In particular it’s suggested

to use the C function Rprintf() or REprintf() to write to stdout or stderr, respectively. You (may)

need the R_ext/Print.h header file. Here’s an example call:

REprintf("This is an error message.\n")

2.6 Evaluating R expressions in C++

It’s possible to evaluate R expressions in C++, which can be handy if we want to do something that

is easily expressed in R code.

For this we use a C function provided by R, expr(), which has the following prototype:

SEXP eval(SEXP expr, SEXP rho);

which is like eval(expr, envir = rho) in R. It evaluates R code (in the form of an expres-

sion) in the context of an environment in which to look for the objects involved in the expression.

Here’s a basic example of evaluating an R expression that we pass into C++, “calling back” to

R to evaluate the function. In R (see Ceval.R), we have the usual sort of stuff for calling C++, in

this case passing an expression (not a function) and an empty environment into C++.

system("R CMD SHLIB Ceval.cpp")

dyn.load("Ceval.so")

crazy <- function(x) {

(x^2 + 1) * (x - 1.5) + besselK(x, 1)

}

wrapper <- function(f) {

.Call('myfun', body(f), new.env())

}

wrapper(crazy)

[1] 275

crazy(7)

[1] 275

30

In C++ (see Ceval.cpp), I have my primary function, which calls a wrapper function that does

the evaluation of the R expression, as well as an auxiliary function for creating R vectors.

#include <R.h>

#include <Rinternals.h>

extern "C" {

SEXP mkans(double x) {

SEXP ans;

PROTECT(ans = allocVector(REALSXP, 1));

REAL(ans)[0] = x;

UNPROTECT(1);

return ans;

}

double feval(double x, SEXP f, SEXP rho) {

defineVar(install("x"), mkans(x), rho);

return(REAL(eval(f, rho))[0]);

}

SEXP myfun(SEXP f, SEXP rho) {

double x = 7.0;

double result = feval(x, f, rho);

return(mkans(result));

}

}

Note that there’s a bunch of overhead involved – starting with a C++ variable that we want to

use in the R expression, we need to make it into an R variable (a REALSXP) and we need to place

that R variable, named correctly (as ’x’ here) in an environment (rho here) in which the expression

will be evaluated. The code illustrates taking the result of the evaluation, which is an R variable and

pulling out the value as a C++ variable, which could then be used subsequently in the C++ code.

[Note that for the purpose of checking that things are working, I convert back to an R variable and

pass back to R as the result of .Call, so the conversion to a C++ variable and then to an R variable

is redundant.]

31

2.7 Using C++ code directly in R via inline

You actually don’t need to go to the trouble of creating a separate file of C++ code, compiling to a

shared object library, and loading the .so. The inline package can handle all that behind the scenes,

dealing with header files, compiling, linking, and loading the .so. inline allows you to use .C, .Call,

.Fortran, or Rcpp as the back-end interface to the compiled language. We’ll talk about Rcpp in the

next section.

The key functions are cfunction() (for C code, using either .C, .Call, or .Fortran) or cxxfunction

(for C++ code with .Call)

Here’s an example, using .C (because I don’t want to deal with .Call, which would be needed

for C++ code), from inline.R:

library(inline)

src <- '

for (int i = 0; i < *n; i++) {

x[i] = exp(x[i]);

}

'

sillyExp <- cfunction(signature(n = "integer", x = "numeric"),

src, convention = ".C")

n <- as.integer(100)

x <- rnorm(n)

out1 <- sillyExp(n, x = x)$x

out2 <- exp(x)

identical(out1, out2)

[1] TRUE

The timing seen by running the full code in inline.R is pretty encouraging both from the per-

spective that calling C is easy and quick and that R’s vectorized calculations are very fast.

You can take a look at help(cfunction) for an example with .Call.

Sometimes, you may need to specify specific #include statements (via the includes argument

to cfunction() or cxxfunction()), or -I flags (via cppargs) or library info (-l or -L flags via libargs).

32

2.8 Rcpp

Rcpp provides a bunch of tools that ease our interaction with C++ code. In particular we saw that

with .Call there was a lot of coding overhead involved with object types and memory management.

Rcpp provides a set of useful wrapper functions that allow us to work with R objects in C++ very

easily, thereby avoiding a lot of that overhead.

2.8.1 Basic Rcpp via the inline package

Both cfunction() and cxxfunction() allow you to work with Rcpp. Here’s a simple example (basi-

cRcpp.R):

library(inline)

src <- '

return wrap(as<int>(x) * as<double>(y)) ;

'

fx <- cxxfunction(signature(x = "integer", y = "numeric"),

body = src, plugin = "Rcpp")

fx(2L, 5) # fx(2, 5) works fine too

[1] 10

The as<int> / as<double> are dealing with the fact that x and y are passed as R objects, so

as in this case converts to standard C++ int and double types that can be easily manipulated with

standard C++ code. wrap() deals with passing back the result in the form of an R object, which is

what .Call (and therefore cxxfunction()) is equipped to handle.

Note that wrap and as are part of the Rcpp namespace, so in some cases you’d need Rcpp::wrap

and Rcpp::as or you’d need using namespace Rcpp in your C++ code.

2.8.2 Rcpp overview

Rcpp provides the Robject class, which is a wrapper around SEXPs that manages a lot of the ugli-

ness involved in working with them. There are a bunch of derived classes (C++ classes can inherit

from other classes) that build on the Robject class:

IntegerVector, IntegerMatrix, Numeric(Vector|Matrix), Logical(Vector|Matrix), Character(Vector|Matrix),

List, Expression(Vector|Matrix), Environment, and Function. The classes support NAs.

Rcpp provides a bunch of standard functions for operating on Robject variables:

33

• () operator – for multi-dimensional indexing

• [] operator – for single-dimensional indexing

• length()

• begin(), end() – gives a pointer to the beginning/end of vector

• push_back(), push_front(), insert(), erase() – these add or remove elements from vectors.

2.8.3 An example

Let’s see a simple implementation of our silly exp() function (see sillyExpRcpp.R). Surprisingly, it

will turn out to not be so silly after all.

library(inline)

src <- '

NumericVector vec(xin);

for(int i=0; i<vec.size(); i++) {

vec[i] = exp(vec[i]);

}

return(vec);

'

notSoSillyExp <- cxxfunction(signature(xin="numeric"), src,

plugin = "Rcpp")

x <- rnorm(1e7)

library(rbenchmark)

benchmark(

out <- exp(x),

out <- notSoSillyExp(x),

replications = 5,

columns = c("test", "elapsed", "replications"))

test elapsed replications

1 out <- exp(x) 1.425 5

2 out <- notSoSillyExp(x) 0.839 5

In repeated tests, the timing for the Rcpp code gave about a 25% reduction relative to simply

using exp(), which is somewhat less of a speedup than seen above. Regardless, I find this hard to

explain since R’s exp() just directly goes to C.

34

2.8.4 as and wrap

We’ve already seen as and wrap. as takes a SEXP and convert to a C++ type, including the various

Robject C++ classes provided by Rcpp, such as NumericVector and List. wrap takes a C++ type

and converts it to a SEXP that R can then interpret. Sometimes as and wrap are being used behind

the scenes, which is what happens in the example above. For example, the following does an

implicit as:

NumericVector x(vectorFromR);

which is equivalent to

NumericVector x = as<NumericVector>(vectorFromR);

And here’s an example of an implicit wrap:

return(List::create(Named(“x”, 3), Named(“y”, 5)));

equivalent to:

return(wrap(List::create(Named(“x”, 3), Named(“y”, 5))));

In contrast, in the example in the previous section, we didn’t need as and wrap explicitly

because we were using basic R vector types.

2.8.5 Some more details

An Robject is a pointer, as are SEXPs. We can make a complete (i.e., a deep) copy of Robjects or

SEXPs using clone(). Here’s an example (RcppCopying.R) that illustrates shallow vs. deep copies.

It also illustrates how we can create data frames via Rcpp.

library(inline)

src <- '

NumericVector x1(xs);

NumericVector x2(xs);

NumericVector x3(clone(xs));

x1[0] = 22;

x3[1] = 44;

return(DataFrame::create(Named("orig", xs),

Named("x1", x1),

Named("x2", x2),

Named("x3", x3)));

'

fun <- cxxfunction(signature(xs="numeric"), src, plugin = 'Rcpp')

fun(c(1,2,3))

35

orig x1 x2 x3

1 22 22 22 1

2 2 2 2 44

3 3 3 3 3

Here’s a test of your understanding (and of types in R). Why is this different?

fun(1:3)

orig x1 x2 x3

1 1 22 1 1

2 2 2 2 44

3 3 3 3 3

Here’s an example of manipulating and creating lists (RcppList.R). Note also the use of the

STL string class.

library(inline)

src <- '

List inputs(inp);

std::string method = as<std::string>(inputs["method"]);

double tol = as<double>(inputs["tol"]);

int nIts = as<int>(inputs["nIts"]);

return(List::create(Named("methodX", method),

Named("tolX", tol),

Named("nItsX", nIts)));

'

fun <- cxxfunction(signature(inp = "list"), src, plugin="Rcpp")

myList = list(method = "BFGS", tol = 1e-6, nIts = 100)

fun(myList)

$methodX

[1] "BFGS"

##

$tolX

[1] 1e-06

36

##

$nItsX

[1] 100

2.8.6 Calling R functions

Rcpp can run any functions defined in your R session from within C++. This can be handy if there

is functionality already written that you want to call or to use R code from a user without requiring

them to know C++. Here’s an example (RcppWithRFunctions.R).

library(inline)

using a built-in R function

src <- '

Function rt("rt"); // define the Rcpp Function via its constructor,

// based on the R rt() function

return(rt(as<int>(n), 1));

'

fun <- cxxfunction(signature(n="integer"), src, plugin = "Rcpp")

set.seed(0)

rt(5, 1)

[1] 0.722873 12.299773 -1.443844 -0.002051 2.149760

set.seed(0)

fun(5)

[1] 0.722873 12.299773 -1.443844 -0.002051 2.149760

using a user-defined function

myprodR <- function(a, b) return(a*b)

src <- ' Function myprodC("myprodR");

return(myprodC(3,5)); '

fun <- cxxfunction(signature(), src, plugin = "Rcpp")

fun()

[1] 15

37

For some reason that last bit didn’t work when called via the knitr package in creating this

document, but it does indeed work in general.

Note that Rcpp will make use of the RNG state and type as it currently exists in R.

Of course this is a bit convoluted; we’re in R, calling C++ to then run some R code. But there

are cases where being able to do this is useful.

Note that doing this has overhead; we’ll see an alternative in the Rcpp sugar section.

2.8.7 Stand-alone Rcpp

So far we’ve seen Rcpp via inline. Here’s the basic structure of a stand-alone Rcpp C++ file that

has two arguments:

#include <Rcpp.h>

RcppExport SEXP myfunction(SEXP input1, SEXP input2) {

...

}

The RcppExport business is an alias to extern “C” that handles the fact that we are calling

C++ code via .Call.

We can compile the .so as

R CMD SHLIB myfile.cpp

And then in R:

dyn.load(’myfile.so’)

2.8.8 Rcpp sugar

Rcpp provides a lot of C++ functions/operators that allow you to write code in C++ that looks

more like R code. This is called syntactic sugar.

Some of the functionality includes:

1. Using vectorized calculations (+, -, *, /, <, >, ==, !=, !, abs, exp, log, pow, sqrt among others)

on Rcpp vectors (NumericVector, IntegerVector, LogicalVector).

2. Functions such as any(), all(), seq_along(), ifelse(), sum(), and others.

3. Direct use of {d,p,q,r}{norm,exp,gamma,unif,...}. . Here’s an example. Note two things:

first, unlike the standard functions that R provides through its C API that we’ve already seen

(rnorm.cpp), these are vectorized; and second, we are not calling an R function. Here’s an

example (RcppSugar.R):

38

library(inline)

src <- '

return(rnorm(as<int>(n), as<double>(mean), as<double>(sd)));

'

rnormRcpp <- cxxfunction(signature(n="integer", mean="numeric",

sd="numeric"), src, plugin = "Rcpp")

rnormRcpp(5, 0, 1)

[1] -1.1477 -0.2895 -0.2992 -0.4115 0.2522

src2 <- '

Function rnorm("rnorm");

return(rnorm(as<int>(n), as<double>(mean), as<double>(sd)));

'

rnormRcppFunc <- cxxfunction(signature(n="integer", mean="numeric",

sd="numeric"), src2, plugin = "Rcpp")

n <- 1000000

library(rbenchmark)

benchmark(

rnorm(n),

rnormRcpp(n, 0, 1),

rnormRcppFunc(n, 0, 1),

replications = 5,

columns = c("test", "elapsed", "replications"))

test elapsed replications

1 rnorm(n) 0.390 5

3 rnormRcppFunc(n, 0, 1) 0.405 5

2 rnormRcpp(n, 0, 1) 0.289 5

Running the benchmarking code in RcppSugar.R, we see that as with the case of our ’silly’

exp() example, it looks like we can beat R’s internal call to C, which is surprising. Also, we see

that calling an R function via Rcpp involves some overhead (actually that’s not obvious from the

output above when R is run through knitr as for this document, but it did seem to be the case when

39

just running directly in R).

2.8.9 Rcpp Modules

The basic mode of using C++ from R with Rcpp is

1. Convert inputs (from SEXP) to Rcpp or C++ types via as

2. Do calculations in C++

3. Convert the result to a SEXP via wrap and return it

That’s a lot easier than using .Call, but still a bit of a hassle. Rcpp Modules allow you to do this in

a single step. Here’s an example from RcppModuleExample.R:

library(inline)

library(Rcpp)

fun <- cxxfunction(, "", includes = '

double norm(NumericVector x, NumericVector y) {

double sum = 0.0;

for(int i = 0; i < x.size(); i++) {

sum += x[i]*x[i] + y[i]*y[i];

}

return(sum);

}

RCPP_MODULE(mymodule){

function("norm", &norm);

}

', plugin = "Rcpp")

mymodule <- Module("mymodule", getDynLib(fun))

norm <- mymodule$norm

norm

internal C++ function <0x4072b90>

signature : double norm(Rcpp::NumericVector, Rcpp::NumericVector)

n <- 100

set.seed(0); u <- rnorm(n); v <- rnorm(n)

norm(u, v)

40

[1] 169.7

sum(u^2+v^2)

[1] 169.7

The sourceCpp() function in the Rcpp package allows you to do this easily with an external

C++ code file, simply as sourceCpp(file.cpp). In the case below it would automatically

produce a function convolveCpp() that you can call in R. Here’s an example of the C++ file:

#include <Rcpp.h>

using namespace Rcpp;

// [[Rcpp::export]]

NumericVector convolveCpp(NumericVector a, NumericVector b) {

int na = a.size(), nb = b.size();

int nab = na + nb - 1;

NumericVector xab(nab);

for (int i = 0; i < na; i++)

for (int j = 0; j < nb; j++)

xab[i + j] += a[i] * b[j];

return xab;

}

The // [[Rcpp::export]] is part of the Rcpp attributes functionality. Then in R, all we

do is

sourceCpp("convolve.cpp")

convolveCpp(x, y)

You can use module functionality within an R package by writing the same C++ code and then

loading the module when the package loads, so the R interface to the C++ function is automatically

available (details omitted).

Another use of Rcpp Modules is to easily access C++ classes. You can write your C++ ob-

ject with fields and methods and then expose the fields and methods to R. So you can basically

create a C++ object from R and manipulate it from R. This could serve as an alternative to using

ReferenceClasses. See Dirk Eddelbuettel’s Rcpp tutorial material (e.g., the useR! 2012 workshop).

2.8.10 Linear algebra: RcppArmadillo and RcppEigen

Let’s try an example with Armadillo via the RcppArmadillo interface (RcppArmadilloExample.R).

Note the use of object-oriented stuff in the C++ code, operator overloading, and the arma names-

41

http://dirk.eddelbuettel.com/bio/presentations.html

pace.

library(inline)

library(RcppArmadillo)

src <- '

arma::mat m1 = as<arma::mat>(mx);

arma::mat matMult = m1 * m1;

arma::mat crProd = m1.t() * m1;

arma::mat matScalMult = m1 * 2.0;

return(List::create(matMult, crProd, matScalMult));

'

fun <- cxxfunction(signature(mx = "numeric"), src,

plugin="RcppArmadillo")

mat <- matrix(as.double(1:9), 3)

identical(fun(mat), list(mat %*% mat, crossprod(mat), mat * 2))

[1] TRUE

src <- '

arma::mat m1 = as<arma::mat>(mx);

return(wrap(m1.t() * m1));

'

crossprodA = cxxfunction(signature(mx = "numeric"), src,

plugin="RcppArmadillo")

n = 3000

x = matrix(rnorm(n^2), n)

library(rbenchmark)

benchmark(

out <- crossprod(x),

out <- crossprodA(x),

out <- t(x) %*% x,

replications = 5,

columns = c("test", "elapsed", "replications"))

test elapsed replications

42

2 out <- crossprodA(x) 4.095 5

1 out <- crossprod(x) 3.901 5

3 out <- t(x) %*% x 7.998 5

Note that this test is (in some sense) unfair to Armadillo as Armadillo doesn’t have a matrix

crossproduct function, while R’s crossprod() exploits simplifications relative to t(X)%*%X.

Now let’s see a simple Eigen example via the RcppEigen interface (RcppEigenExample.R).

library(inline)

library(RcppEigen)

incl <- c("using namespace Eigen;")

src <- '

const Map<MatrixXd> mat(as<Map<MatrixXd> >(x));

LLT<MatrixXd> cholFactor(mat);

return(wrap(MatrixXd(cholFactor.matrixU())));

'

cholEigen = cxxfunction(signature(x = "matrix"), src,

plugin="RcppEigen", includes = incl, libargs="-fopenmp")

n = 4000

x = crossprod(matrix(rnorm(n^2), n))

library(rbenchmark)

benchmark(

out <- chol(x),

out <- cholEigen(x),

replications = 5,

columns = c("test", "elapsed", "replications")

)

test elapsed replications

2 out <- cholEigen(x) 9.185 5

1 out <- chol(x) 3.560 5

Note that the “R” version (i.e., R calling Lapack’s Cholesky function via R’s C interface to

Lapack) is faster because it is using a threaded BLAS, which Eigen does not do. With a single

thread, I got the following:

2 out <- cholEigen(x) 15.953 5

43

1 out <- chol(x) 17.496 5

2.9 Debugging C++ code called from R

Suppose we want to debug C++ code that is called from R. We need to know how to use a C/C++

debugger from within R. Here’s how one would do it with the rnorm.cpp code called from rnorm.R.

R -d gdb --vanilla

(gdb) b rnorm.cpp:7

(gdb) b genRandN

Note that it will say the symbol table is not loaded; answer ’y’ to have the breakpoint come into

effect when R loads your .so file

(gdb) r

> source(’rnorm.R’) # this runs the R code; the debugger will break

and put you in gdb at the breakpoint, at which point you can use gdb

as discussed previously when talking just about C++

As you’re working through things, when you’re in R, you can do Ctrl-C to return to gdb. When

you’re in gdb, you can type signal 0 and <enter> to return to R (you may need to hit a second

return to see the R prompt)

Comments on compilation You may also want to remove optimization from when your .so is

created (such a the -O3 flag) as the compiler may do strange things to your code such that variables

you expect do not exist, so you may want to use g++ manually rather than R CMD SHLIB. If you

just use the debugger on the example above, and do “p it”, it will say “optimized out”, which

has something to do with the compiler optimizing the execution of the loop. You would also see

that the lines of code seem to be executed in an odd order.

Note that if you do compile manually make sure to leave the -g flag so that debugging symbols

needed by gdb are left in the compiled code.

3 R packages

In general, the R extensions manual on CRAN is your guidance for all things related to R packages.

To develop R packages on a Mac, you need XCode, and on Windows you need Rtools (http://cran.r-

project.org/bin/windows/Rtools/).

There are three versions of R packages.

44

http://www.cran.r-project.org/doc/manuals/r-release/R-exts.pdf
http://cran.r-project.org/bin/windows/Rtools/
http://cran.r-project.org/bin/windows/Rtools/

• package bundle/package source: compressed version of the package that contain the raw

R code, any raw C/C++/Fortran code, help files, etc. This is produced by R CMD build.

Provided as “Package source” on the CRAN page for a package.

• installed package: the form of the package in the directory on your machine after it has been

installed. The contents are somewhat different than package bundles, with the R code stored

in an efficient manner, compiled C/C++/Fortran code, and the help files stored differently as

well.

• binary package: a single file that can be installed on a machine by simply unpacking/unzipping

and is operating system specific. This is for Mac OS X and Windows and binary packages

are on the CRAN page for a package.

3.1 Exploring (and modifying) R packages

When you install an R package, you end up with a directory for each package in a library, which

is a directory structure in your filesystem. On the SCF system, the packages for Linux that are

installed systemwide are at /usr/local/linux/lib/R/Current/x86_64/site-library and

/usr/local/mac/lib/10.8/R/Current/x86_64/site/library (this path will be relocated to

/usr/local/mac/lib/R/Current/x86_64/site/library soon). If you install a package locally in your

home directory, it will be at something like ~/R/x86_64-pc-linux-gnu-library/R-version-num. The

core R packages (those that are installed with R) on the SCF Linux machines are local to each

machine and are at /usr/lib/R/library.

You can look in this directory for some info on the package but all the raw R code will be

packaged up into a database file (.rdb/.rdx) and any C/Fortran code will already be compiled (in

the libs directory). To see (and possibly modify) the raw R and external code, download the .tar.gz

file (the package bundle) from CRAN. Here’s how we’d do it with the Matrix package.

wget http://www.cran.r-project.org/src/contrib/Matrix_1.0-12.tar.gz

tar -xzvf Matrix_1.0-12.tar.gz

Then in Matrix/R, you’ll see the R code files and in Matrix/src, you’ll see the raw C/Fortran

code.

If you want, you can modify the code and rebuild the package.

Suppose you are in /tmp and have untarred to /tmp/pkg (e.g., with pkg=Matrix and version=1.0-

12). Then from /tmp, do:

R CMD build pkg

R CMD INSTALL pkg_version.tar.gz -l /tmp

and in R load the (new) local version of the package:

45

library(pkg, lib.loc = ’/tmp’)

Note you don’t have to use the -l /tmp when installing – if you don’t it will install it in your

default library. But during testing you may want to do this in a place like /tmp.

As an example, Wayne and I found a memory leak in an isotonic regression package he was

using. I inserted the necessary commands in the C code in /src to delete memory allocated but never

freed, followed the steps above, and things worked fine. I then emailed the package maintainer to

suggest to that person that they fix their code; reporting bugs such as this is a good way to help the

general community.

In general you can install an R package in a directory of your choosing, either using R CMD

INSTALL with the -l flag as above or directly in R as install.packages(’pkg’, lib =

’/path/to/installation’). You can load a package from a specific location with the

lib.loc argument to library(), as shown above.

3.2 R package structure

The next few sections walk through the basic pieces of an R package, referring to a few example

packages on occasion, such as Matrix, plyr, lme4, and bigGP. bigGP is a package I’ve just created

recently, so the details are fairly fresh in my mind and (hopefully) correspond to the current R

standards for packages.

The following describes the components of a package before it is installed. In the installed

version, many of the pieces will be in a form not readily readable/accessible. E.g., the R code will

be bundled up in a database format and the C/C++/Fortran code will be compiled into the .so file

(in the libs directory).

The basic components are:

• DESCRIPTION: a file with metadata about the package

• NAMESPACE: a file indicating what objects should be publicly available, and which also

specifies the shared object library (if the package contains compiled code) to load

• R: one or more files of R code that make up the package

• man: help files for the R functions, objects, classes and datasets in the package

The additional optional stuff includes:

• data: data objects included in the package

• src: raw C/C++/Fortran code

46

• TODO: self-reminders to the maintainer/developer of stuff that still needs to be done

• NEWS: updates on changes to the package

• CITATION or inst/CITATION: how to cite your package

• README or INSTALL: info to help users install the package (generally when there is C/C++/Fortran

code and issues with linking) or alternatively (as suggested by Hadley Wickham for README),

an overview of your package

• tests or inst/tests: R code to test the package is operating correctly. These will get run during

package checking (if in tests) or with test() in devtools if in inst/tests.

• demo: R code that demonstrates the use of the package, potentially code for examples in

published papers about the package

You can run a demo as: demo(topic, package); e.g., with bigGP: demo(’article-example’,

’bigGP’).

• vignettes: tutorial material on using the package:

You can view a vignette as: vignette(topic, package).

The R function stopifnot() can be useful for inserting checks in code in tests and the examples

section of the man files.

3.3 Creating R packages

Let’s go through the basics of creating a package. In the workshop I’ll do this for a basic example

using the devtools package (see below for details). Here I describe how to do things in a basic way

without using devtools.

Note that looking at the package bundle for other packages is often very helpful. But remember

that lots of packages are created by people who don’t have much experience, so if you’re looking

for a good template package, it’s a good idea to figure out which package creators are experts - one

strategy is to look at packages created or maintained by an R core member. That’s why we’ll look

at Matrix and lme4.

3.3.1 Creating an initial package

The package.skeleton() function in the utils package will create an initial package using R code

that you specify. Here’s a basic usage. Suppose we have an R file that contains the R code we want

in the package:

package.skeleton(’mypkg’, code_files = ’method.R’)

47

The most basic package One good way to share code with someone, and even with yourself

as part of a project, is just to make a bare-bones package with R code in /R, a DESCRIPTION

file, and a basic NAMESPACE file. The easiest thing to do with the NAMESPACE is just export

everything:

exportPattern("^[^\\.]")

Then all you have to do is the steps above to build and install.

The basic build/install steps Once you have the guts of the package, you can build and install it.

You’ll probably do this a lot while you develop the package. The basic steps are as follows under

Linux. Suppose the directory that contains your package is /accounts/grads/user/Rpkgs/mypkg:

cd ~/Rpkgs

R CMD build mypkg

R CMD INSTALL mypkg_version.tar.gz

If you are installing locally on the SCF system you may need to do something like this:

R CMD INSTALL mypkg_version.tar.gz -l ~/R/x86_64/2.15

Or for a temporary install, you might use -l /tmp. In these cases you load the package in the

following manner (here with /tmp): library(mypkg, lib.loc = ’/tmp’).

3.3.2 R, src, and data directories

Put your R file or files in /R (this can occur after you use package.skeleton()). It’s best to use the

.R extension for these. Put your C++ code in a file or files in /src. In both cases, it’s a nice idea to

break up your code into separate files organized in a logical way.

You can create .RData/.rda files that you put in /data. These will become part of your package

as well. Remember to include help information for them. If you have data in your package it’s a

good idea to have the line

LazyData: yes

in your DESCRIPTION file. With this setting, R loads the data into memory only when the data

object is used. The alternative involves the user using data() to load the data in ’manually’.

3.3.3 Namespaces and the DESCRIPTION and NAMESPACE files

The DESCRIPTION file contains a number of required fields, described in the R extensions man-

ual. I give some details below on some of these.

Background There is a distinction between loading a package and attaching it. A package can

be loaded but not be attached. In this case you need to use :: to access the objects as they are not

48

on the search path. By analogy to C++ namespaces, attaching is like inserting using namespace

std; in your code, while simply loading requires you to explicitly specify the namespace of the

package. Here’s an example with the fields package:

tim.colors(32)

Error: could not find function "tim.colors"

fields::tim.colors(32) # this causes fields to be loaded but not attached,

[1] "#00008F" "#0000B0" "#0000D0" "#0000F1" "#0012FF"

[6] "#0033FF" "#0053FF" "#0074FF" "#0093FF" "#00B4FF"

[11] "#00D4FF" "#00F6FF" "#17FFE8" "#37FFC8" "#57FFA8"

[16] "#78FF88" "#97FF68" "#B8FF47" "#D8FF27" "#FAFF05"

[21] "#FFE400" "#FFC400" "#FFA400" "#FF8400" "#FF6400"

[26] "#FF4300" "#FF2300" "#FF0100" "#E00000" "#C00000"

[31] "#A00000" "#800000"

search()

[1] ".GlobalEnv" "package:Rcpp"

[3] "package:lattice" "package:Matrix"

[5] "package:RcppEigen" "package:inline"

[7] "package:methods" "package:RcppArmadillo"

[9] "package:rbenchmark" "package:knitr"

[11] "package:stats" "package:graphics"

[13] "package:grDevices" "package:utils"

[15] "package:datasets" "package:SCF"

[17] "Autoloads" "package:base"

tim.colors(32)

Error: could not find function "tim.colors"

fields::rdist # note this is accessed quickly, indicating fields is already

function (x1, x2)

{

if (!is.matrix(x1))

x1 <- as.matrix(x1)

49

if (missing(x2))

x2 <- x1

if (!is.matrix(x2))

x2 <- as.matrix(x2)

d <- ncol(x1)

n1 <- nrow(x1)

n2 <- nrow(x2)

par <- c(1/2, 0)

temp <- .Fortran("radbas", nd = as.integer(d), x1 = as.double(x1),

n1 = as.integer(n1), x2 = as.double(x2), n2 = as.integer(n2),

par = as.double(par), k = as.double(rep(0, n1 * n2)))$k

return(matrix(temp, ncol = n2, nrow = n1))

}

<environment: namespace:fields>

fields::image.plot(1:2, 1:2, matrix(1:4, 2)) # this works

but don't plot in the tutorial...

Note that if the entire package is not attached, there can be issues with finding relevant objects

in function calls, as you can see by running the following code (I don’t embed the output as I’m

having some trouble with knitr using this code when I try to create the tutorial pdf.

detach(package:stats)

lm(dist ~ speed, data = cars) # not found

stats::lm(dist ~ speed, data = cars) # fails to find model.frame()

You can access objects that are not exported from a package (i.e., private objects) by the :::

operator, e.g., stats:::secretMagicLM.

You can see what is in the search path (packages, attached data frames and lists, etc.) with

search() and where on the filesystem a package is stored using searchpaths():

search()

[1] ".GlobalEnv" "package:codetools"

[3] "package:Rcpp" "package:lattice"

[5] "package:Matrix" "package:RcppEigen"

[7] "package:inline" "package:methods"

50

[9] "package:RcppArmadillo" "package:rbenchmark"

[11] "package:knitr" "package:stats"

[13] "package:graphics" "package:grDevices"

[15] "package:utils" "package:datasets"

[17] "package:SCF" "Autoloads"

[19] "package:base"

searchpaths()

[1] ".GlobalEnv"

[2] "/usr/lib/R/library/codetools"

[3] "/server/linux/lib/R/3.0/x86_64/site-library/Rcpp"

[4] "/usr/lib/R/library/lattice"

[5] "/server/linux/lib/R/3.0/x86_64/site-library/Matrix"

[6] "/server/linux/lib/R/3.0/x86_64/site-library/RcppEigen"

[7] "/server/linux/lib/R/3.0/x86_64/site-library/inline"

[8] "/usr/lib/R/library/methods"

[9] "/server/linux/lib/R/3.0/x86_64/site-library/RcppArmadillo"

[10] "/server/linux/lib/R/3.0/x86_64/site-library/rbenchmark"

[11] "/server/linux/lib/R/3.0/x86_64/site-library/knitr"

[12] "/usr/lib/R/library/stats"

[13] "/usr/lib/R/library/graphics"

[14] "/usr/lib/R/library/grDevices"

[15] "/usr/lib/R/library/utils"

[16] "/usr/lib/R/library/datasets"

[17] "/server/linux/lib/R/3.0/x86_64/site-library/SCF"

[18] "Autoloads"

[19] "/usr/lib/R/library/base"

This can be useful if there is a version installed by the administrative user and a version you

have installed locally from your home directory.

NAMESPACE The lines of the NAMESPACE file indicate what objects should be accessible to

a user of your package. Anything else is objects you don’t expect a user to use and only accessible

via the ::: operator.

You can export all objects that don’t start with a period as

exportPattern("^[^\\.]")

51

However, it’s recommended that you only export objects that you expect/want users to use, e.g.,

export(x, y)

For S3 generics and S3 methods, here’s what you do:

export(myGeneric)

S3method(print, myClass)

S3method(myMethod, myClass)

The R extensions manual (and by example the Matrix package) indicate that one should even

export generics (suggesting the use of exportMethods() for S4) that are not local to your package

(such as print()), if you use them.

For S4 classes and methods:

exportClasses(myClass)

exportMethods(myMethod)

For ReferenceClasses:

exportClasses(myClass)

In NAMESPACE, you would also list any imported functions from other packages or entire

packages:

importFrom(fields, tim.colors)

You can also import the entire package:

import(fields)

This will cause the package to be loaded but not attached, so it doesn’t ’pollute’ the user’s workspace.

As an example, if your package used tim.colors() from fields, but that was all it used from fields,

you might do importFrom(fields, tim.colors). You can then use tim.colors() directly

without the :: operator.

If you’re using roxygen, you can add the @export tag in your roxygen comments and this will

automatically deal with the exporting and the necessary inclusion in the NAMESPACE file. You

can also include @import tags (either for an entire package, or @importFrom for specific functions

from a package) and this will set up the NAMESPACE file correctly. You still need to modify the

DESCRIPTION file manually in terms of specifying packages that are imported (see next section).

How to rely on other packages: depend, imports, suggests In your DESCRIPTION file, you

can choose to rely on other packages in several ways:

• Depends: packages that should be loaded and attached for your package to work; in this case

you do not need to use imports for these in NAMESPACE

• Imports: for packages for which variables are imported from (given in the NAMESPACE

file) but which do not need to be on the search path (i.e., don’t need to be attached). You

52

do not need to use :: within your package functions, but the imported functions will not be

attached for general use by the user.

• Suggests: for non-critical packages, such as those used in examples, tests, or vignettes. For

packages that are suggested, their use should be used conditionally via if(require(pkg))

such that the code does not fail if the package is not available.

You can indicate a dependence specific versions of packages (or a specific version of R itself). So

if you need version 2.14.1 of R then you would have R (>= 2.14.1) on the Depends line of

DESCRIPTION. Note that the dependence is checked on loading the package for ’depends’ but

not for ’imports’.

The R extensions guide says that Depends should be used for packages that need to be attached

for the package to be loaded, while Imports is for packages whose namespace is needed in order

to load the package. This is hard to understand (at least for me). Here’s my understanding of

the situation: If you want to be able to use functions from another package in the functions in

your package, you can use Imports and then in NAMESPACE import specific functions or the

entire package. If you want the user to have access to functions in the other package, e.g., in their

own coding, without having to load the package (either explicitly or implicitly via use of ::), then

use Depends. Depends also causes the package to be loaded and attached when your package

is loaded. In the devtools package documentation, Hadley Wickham strongly recommends using

Imports rather than Depends.

For base packages (e.g., stats), an advantage of importing rather than just relying on them being

in the search path by default is that R looks for the variables that are imported before looking in

the search path. However, any modest speedup from this is probably not particularly important...

Version numbering A convention is to number as X.Y-Z. X is the major version number. You

may want to start with X=0. Y indicates minor version numbers that don’t mark changes as major

as X. Z indicates patch numbers for fixes to problems. So as you create a package, you might start

with 0.1-0 and then as you develop it, use 0.2-0, 0.3-0, etc. Then you might release it on CRAN as

0.3-0 or the like and if you fix issues, use 0.3-1, 0.3-2, etc. If you have a version that is fully tested

and has been used by others, you might release that as 1.0-0.

Any modifications to a package that you have released on CRAN or to anyone else should

result in a new version number.

More info is available at http://semver.org/.

53

http://semver.org/

3.3.4 Hooks

You can have code that executes when a package is loaded (or when it is attached, but this is less

likely). This code could provide the user with necessary information or do some initialization

steps. Some info can be found via help(’.onLoad’).

Here’s an example with the bigGP package I’m writing. My goal is to warn the user that an

initialization function must be called before anything else is done:

\begin{verbatim}

.onLoad <- function(libname, pkgname){

packageStartupMessage(" ===

Loading bigGP.\n

Warning: before using bigGP, you must initialize the slave processes

using bigGP.init().\n

If R was started through mpirun/orterun/mpiexec, please quit by

using bigGP.quit(). ===

\n ")

}

\end{verbatim}

Using packageStartupMessage() allows for users to suppress such messages when loading

packages and is the recommended approach, as opposed to cat() or print().

3.3.5 Help pages

Help pages are given as .Rd files in the /man directory and are written in a Latex-like markup

language. One can create them by hand. An alternative is to include the relevant info in structured

comments accompanying your function and use the roxygen2 package (in particular using roxygen2

via devtools), as described later in this document.

For help pages for functions, the standard sections are:

• name: name of the function being documented

• alias: this allows you to specify related functions that will also use this help page, so you

don’t need help pages for every single function

• docType: not included for all help files, but specified as ’data’ for help on data objects,

’package’ for the package help file, ’class’ for classes, and ’methods’ for help files on class

methods.

54

• title: one line title for the function

• description: one paragraph description

• usage: should contain the exact call signature, including argument names and default values

• arguments: list of arguments, including information about the allowable classes or types of

the arguments, using \item.

• value: full description of what the function returns, including all the components of any list

that is returned (in which case, use \item)

• details: more info

• section: for specifying sections that you choose the name of, such as slots and methods for

S4 class help files (i.e., you’d have \section{slots}{...}

• author: optional, since this info is generally part of DESCRIPTION, but useful if the code

for a function was not written by the package author.

• references: journal articles, etc., that explain the use of or methodology behind the function

• seealso: other related functions that a user might find helpful (using \code{\link{...}})

• examples: these are important. Include examples that illustrate how the function is used.

These must run correctly or the package will not install, so they can be used as tests of

the package as well. You can avoid having some of the code run by wrapping the code in

\dontrun{code} – for example code that would take a long time to run so you wouldn’t

want it run when R installs the package and runs the examples.

• source and format: the original source and the format of the data set, for help files for

datasets.

Most of these are self-explanatory by looking at some examples in R.

The Latex-like markup language for the help pages has a number of keywords for various types

of special text:

• \code{text} and \pkg{package_name}: for referring to R code, including function

names, and R packages, respectively

• \link{text} and \linkS4class{className}: in the pdf versions of help pages,

make hyperlinks to other topics – this is particularly useful in the seealso section, e.g.,

\code{\link{relatedFunctionName}}.

55

• \item{name}{description}: for lists of items, in particular the arguments of func-

tions

• \eqn{text}: for inserting mathematical syntax using Latex math mode. This will be

translated into textual form for the plain text help and compiled for the pdf versions of the

help pages. You can use \deqn{text} for display equations.

• \emph{text} and \bold{text}: for making text italicized and bold, respectively

• \sQuote{text} and \dQuote{text}: for putting text in explicit single or double

quotes, but without hardwiring the type of quoting symbol used.

• \S3method{methodName}{className} and \S4method{methodName}{className}:

this is used to refer to the method, e.g. in the usage section

It’s a good idea to have an overall help page for the package, e.g., mypkg.Rd. You might need a

different name if you have function with the same name as the package. This help page could have

an example of overall usage of the package.

It’s also a good idea to have help pages for any datasets you include in the package.

For S3, S4, and ReferenceClass classes, it’s common to have a help page for the class, where the

name of the Rd file is yourClassName-class.Rd. You would probably then include \alias{yourClassName}.

For S4 classes, the help file will have a Slots section and a Methods section, where each slot or

method is listed using \item. The Matrix package has examples. For ReferenceClasses, this will

have a Fields and a Methods section. One generally also includes a line like the following for

methods from the class

\alias{myMethod, myClass-method}

so that R will allow the user to select help on your method (as opposed to other function with that

same name) when doing help(myMethod).

Note that for ReferenceClasses, you’ll have methods bound up in the class. To provide help

info on these, the best thing is to include a doc-string (similar to Python) in the method definition

itself. E.g.:

methods = list(

doCalc = function(x = 0) {

'Description: this method does blah.

Arguments:

x: numeric vector. The input value.

Value:

56

a numeric vector. The blah of the input.

Details:

more info

'

R code for doCalc() here

})

This can then be accessed with className$help(methodName).

3.3.6 Tests, demos, examples, and vignettes

You can put R code that serves as demo code in the form of one or more R files in the /demo folder.

These can then be run by the user as demo(’topic’), where topic is the file name, leaving off

the .R. It’s best to use the .R extension for test and demo R code files. The demo directory must

have a 00Index file as discussed in the R extensions manual.

It’s a good idea to put examples at the end of the help file for each of the non-trivial functions

or objects that you intend users to use. These examples get run during R CMD check to make sure

they run without error. Users can also run them via example(’topic’), where topic is the

name of the object of interest.

You can also set up tests that make sure the code runs correctly in /tests. Matrix and spam both

provide examples of this.

Finally you can include vignettes, which are expository documents intended to demonstrate the

use and usefulness of a package. You’ll likely want to write the vignette via Sweave (I’m not sure

if knitr will work) to enable production of a pdf document that embeds example R code and output

within the text. It appears that the vignette directory should contain the Rnw source code (and any

needed Latex style files or Bibtex files) that is then compiled to pdf during package installation.

3.3.7 Details for compiled code

For basic code that you write, you’ll generally just be able to include the files in /src and build and

install the package without any modifications.

You’ll need to load the necessary .so files with useDynLib() in the NAMESPACE file:

useDynLib(mypkg, .registration = TRUE)

where mypkg.so would be the name of the shared object file if the package name is mypkg.

If your code needs to link to other code, then you may need to do more to make sure the

package installs properly. The next level of complication involves using a file called Makevars

placed in /src. Makevars is a make file. Some of the common things to do in Makevars are

to specify PKG_CPPFLAGS for additional include/header paths and PKG_LIBS for additional

57

linking options. An example is if you have code that is written for openMP, your src/Makevars file

would have

PKG_CPPFLAGS = $(SHLIB_OPENMP_CXXFLAGS)

PKG_LIBS = $(SHLIB_OPENMP_CXXFLAGS)

Yet more complicated is to include a configure script that sets things up to allow the package

to link to other libraries on the system. There is a tool called Autoconf that generates configure

scripts automatically that can be useful in such cases.

This all gets complicated quickly and is beyond the scope of what we’ll go into here. One path

forward is to try to find a package that uses compiled code and add-on libraries in similar fashion

to what you are trying to do and see how they set up the configuration stuff.

Using Rcpp in a package Given the above, we’re lucky to have the Rcpp.package.skeleton()

function provided by Rcpp that allows us to easily create a package that uses C++ via Rcpp.

Rcpp.package.skeleton() deals with the details needed for linking, in particular setting up Makevars

and Makevars.win (for Windows version of the package) files, as well as giving an example of the

.h and .cpp files in /src. You can see an example of the skeleton package that gets created in the

Rcpp folder installed on your machine, /path/to/Rpackages/on/your/system/Rcpp/skeleton. Note

that that skeleton leaves out the line

PKG_CPPFLAGS=‘Rscript -e ’Rcpp:::CxxFlags()’‘

needed in Makevars (and the analogous line in Makevars.win).

For more details see this Rcpp package vignette:

http://www.cran.r-project.org/web/packages/Rcpp/vignettes/Rcpp-package.pdf.

3.3.8 Submitting to CRAN

You need to make sure your package passes all the checks. Often it will fail with messages about

your DESCRIPTION or about some syntax you have used, or about the structure of your help

pages. Before you submit, you should make sure that R CMD check returns no errors as well as

trying to avoid any warnings.

R CMD check mypkg_version.tgz

Then follow the instructions at http://cran.r-project.org/banner.shtml#submitting. Upon submis-

sion, CRAN will take care of building Linux, Mac and Windows versions, though if you have

compiled code, dealing with Windows is likely to be tricky.

58

http://www.cran.r-project.org/web/packages/Rcpp/vignettes/Rcpp-package.pdf
http://cran.r-project.org/banner.shtml#submitting

3.4 Using devtools to create a package

The devtools package (https://github.com/hadley/devtools/wiki/Package-basics) provides a lot of

tools for creating and working with packages from within R, avoiding the operating system com-

mand line. In the workshop, we’ll work through an example, the cjpUtils package, using devtools,

touching on various topics from the previous section as we do so.

Here are some of the basic things you can do with devtools functions:

• create(): create an initial package (analogous to package.skeleton())

• build(): analogous to R CMD build for creating the package bundle. You can create a binary

package with build(binary = TRUE).

• check(): analogous to R CMD check

• install() and install_github(): you can install a package from a file on your machine via

devtools with install(). And you can install a package from a github repository using in-

stall_github().

• release(): releases a package to CRAN!

As you develop your package, you’ll be iterating between changing your code and trying it out.

The load_all() function will load from a source package rather than having to build and install.

If you want to try out the help files or examples from a source package rather than an installed

package, you can use dev_help() and dev_example(). Here’s how your development cycle might

look:

create('mypkg')

load_all('mypkg')

document('mypkg')

test('mypkg')

dev_help('myfun.Rd')

dev_help('mypkg.Rd')

dev_example('myfun.Rd')

dev_example('mypkg.Rd')

This would generally involve a bunch of iteration amongst all the steps (except for create()).

59

https://github.com/hadley/devtools/wiki/Package-basics

Using devtools to create the cjpUtils example package

In the demo code accompanying this document, you will find the file makePkg.R that provides

an example of the development cycle for a package. If you use the commands in that file, and

with the files in pkgExample/files, you should be able to recreate the cjpUtils package. What you

produce should look like what is in the pkgExample/cjpUtilsExample folder in the demo code.

I.e., I created cjpUtilsExample by following the instructions in makePkg.R and then renaming the

resulting cjpUtils folder to be cjpUtilsExample.

3.5 Other tools for working with packages

roxygen2 This provides a way to generate the .Rd help files without ever having to touch them

directly. You put the necessary text as comments in your R code and then ’roxygenize’ the code

and the .Rd files are created. Some advantages are that the documentation is right there with the

code, that roxygen2 can fill in a bunch of stuff in the .Rd automatically, and it can deal with issues

in document S3 and S4 stuff. In the devtools approach above, it was using roxygen behind the

scenes of document().

You can see examples of how the comments are structured to work with roxygen at https://github.com/hadley/devtools/wiki/Documenting-

functions.

Here’s an example of making an R package from a single file by employing the roxyPackage

package: http://lamages.blogspot.com/2013/03/create-r-package-from-single-r-file.html#more.

Rstudio Rstudio provides tools for package development. See http://www.rstudio.com/ide/docs/.

One can create a package from within Rstudio, as well as rebuild/reinstall/reload it in one step:

http://www.rstudio.com/ide/docs/packages/overview. This allows you to easily modify your pack-

age and then try it out. Rstudio also includes the ability to generate the outline of a .Rd file and to

preview the appearance of a help page from a .Rd file.

60

https://github.com/hadley/devtools/wiki/Documenting-functions
https://github.com/hadley/devtools/wiki/Documenting-functions
http://lamages.blogspot.com/2013/03/create-r-package-from-single-r-file.html#more
http://www.rstudio.com/ide/docs/
http://www.rstudio.com/ide/docs/packages/overview

	C and C++ basics
	C vs. C++
	Structure of a C/C++ program
	Compiling and linking
	Variables, types, and pointers
	Scoping
	Input/output (I/O)
	Arrays and memory allocation
	Functions
	Pass by reference vs. pass by value
	Default parameter values
	Some other syntax stuff

	Basic syntax: math and flow control
	Standard template library
	Structs and classes, plus function/operator overloading
	Linear algebra and multi-dimensional arrays
	BLAS and Lapack calls
	Eigen and Armadillo

	Calling R's C functions (such as rnorm, dnorm, etc.) and R's BLAS/Lapack
	Debugging
	Debugging tools
	Common bugs
	Assertions and try

	Using make

	Calling C/C++ from R
	Compiling C++ code into a shared object library usable by R
	The .C interface
	The .Call interface
	Allocating memory in C++
	Print statements
	Evaluating R expressions in C++
	Using C++ code directly in R via inline
	Rcpp
	Basic Rcpp via the inline package
	Rcpp overview
	An example
	as and wrap
	Some more details
	Calling R functions
	Stand-alone Rcpp
	Rcpp sugar
	Rcpp Modules
	Linear algebra: RcppArmadillo and RcppEigen

	Debugging C++ code called from R

	R packages
	Exploring (and modifying) R packages
	R package structure
	Creating R packages
	Creating an initial package
	R, src, and data directories
	Namespaces and the DESCRIPTION and NAMESPACE files
	Hooks
	Help pages
	Tests, demos, examples, and vignettes
	Details for compiled code
	Submitting to CRAN

	Using devtools to create a package
	Other tools for working with packages

