
Ada Programming

Wikibooks.org

March 22, 2013

On the 28th of April 2012 the contents of the English as well as German Wikibooks and Wikipedia

projects were licensed under Creative Commons Attribution-ShareAlike 3.0 Unported license. An

URI to this license is given in the list of figures on page 397. If this document is a derived work

from the contents of one of these projects and the content was still licensed by the project under

this license at the time of derivation this document has to be licensed under the same, a similar or a

compatible license, as stated in section 4b of the license. The list of contributors is included in chapter

Contributors on page 393. The licenses GPL, LGPL and GFDL are included in chapter Licenses on

page 399, since this book and/or parts of it may or may not be licensed under one or more of these

licenses, and thus require inclusion of these licenses. The licenses of the figures are given in the list of

figures on page 397. This PDF was generated by the LATEX typesetting software. The LATEX source

code is included as an attachment (source.7z.txt) in this PDF file. To extract the source from the

PDF file, we recommend the use of http://www.pdflabs.com/tools/pdftk-the-pdf-toolkit/

utility or clicking the paper clip attachment symbol on the lower left of your PDF Viewer, selecting

Save Attachment. After extracting it from the PDF file you have to rename it to source.7z. To

uncompress the resulting archive we recommend the use of http://www.7-zip.org/. The LATEX

source itself was generated by a program written by Dirk Hünniger, which is freely available under

an open source license from http://de.wikibooks.org/wiki/Benutzer:Dirk_Huenniger/wb2pdf.

This distribution also contains a configured version of the pdflatex compiler with all necessary

packages and fonts needed to compile the LATEX source included in this PDF file.

http://www.pdflabs.com/tools/pdftk-the-pdf-toolkit/
http://www.7-zip.org/
http://de.wikibooks.org/wiki/Benutzer:Dirk_Huenniger/wb2pdf

Contents

1 Basic Ada 3
1.1 "Hello, world!"programs . 3
1.2 Compiling the "Hello, world!"program . 5
1.3 Things to look out for . 6
1.4 Where to ask for help . 8
1.5 Notes . 8

2 Installing 9
2.1 AdaMagic from SofCheck . 9
2.2 AdaMULTI from Green Hills Software . 9
2.3 DEC Ada from HP . 10
2.4 GNAT, the GNU Ada Compiler from AdaCore and the Free Software

Foundation . 10
2.5 ICC from Irvine Compiler Corporation . 25
2.6 Janus/Ada 83 and 95 from RR Software 25
2.7 MAXAda from Concurrent . 25
2.8 ObjectAda from Atego (formerly Aonix) 26
2.9 PowerAda from OC Systems . 26

26section.2.10
2.11 SCORE from DDC-I . 27
2.12 XD Ada from SWEP-EDS . 27
2.13 XGC Ada from XGC Software . 27
2.14 References . 28

3 Building 29
3.1 Building with various compilers . 29
3.2 Compiling our Demo Source . 33
3.3 External links . 36

4 Control Statements 37
4.1 Conditionals . 37
4.2 Unconditionals . 39
4.3 Loops . 41
4.4 See also . 44

5 Type System 45
5.1 Predefined types . 45
5.2 The Type Hierarchy . 47
5.3 Concurrency Types . 50
5.4 Limited Types . 50

III

Contents

5.5 Defining new types and subtypes . 51
5.6 Subtype categories . 54
5.7 Qualified expressions . 57
5.8 Type conversions . 58
5.9 Elaborated Discussion of Types for Signed Integer Types 65
5.10 Relations between types . 67
5.11 See also . 67

6 Integer types 69
6.1 Working demo . 69
6.2 See also . 70

7 Unsigned integer types 71
7.1 Description . 71
7.2 See also . 72

8 Enumerations 73
8.1 Operators and attributes . 73
8.2 Enumeration literals . 74
8.3 Enumeration subtypes . 75
8.4 See also . 76

9 Floating point types 77
9.1 Description . 77
9.2 See also . 77

10 Fixed point types 79
10.1 Description . 79
10.2 Ordinary Fixed Point . 79
10.3 Decimal Fixed Point . 80
10.4 Differences between Ordinary and Decimal Fixed Point Types 80
10.5 See also . 82

11 Arrays 83
11.1 Declaring arrays . 83
11.2 Using arrays . 87
11.3 See also . 88

12 Records 91
12.1 Basic record . 91
12.2 Null record . 91
12.3 Record Values . 91
12.4 Discriminated record . 93
12.5 Variant record . 93
12.6 Union . 95
12.7 Tagged record . 95
12.8 Abstract tagged record . 96
12.9 With aliased elements . 96
12.10 Limited Records . 97

IV

Contents

12.11 See also . 97

13 Access types 99
13.1 What's an Access Type? . 99
13.2 Pool access . 99
13.3 General access . 102
13.4 Anonymous access . 103
13.5 Implicit Dereference . 104
13.6 Null exclusions . 105
13.7 Access to Subprogram . 106
13.8 Access FAQ . 106
13.9 Thin and Fat Access Types . 109
13.10 See also . 110

14 Limited types 113
14.1 Limited Types . 113
14.2 Initialising Limited Types . 115
14.3 See also . 116
14.4 References . 117

15 Strings 119
15.1 Fixed-length string handling . 119
15.2 Bounded-length string handling . 120
15.3 Unbounded-length string handling . 122
15.4 See also . 123

16 Subprograms 125
16.1 Procedures . 126
16.2 Functions . 127
16.3 Named parameters . 129
16.4 Default parameters . 129
16.5 Renaming . 130
16.6 See also . 131

17 Packages 133
17.1 Separate compilation . 133
17.2 Parts of a package . 134
17.3 Using packages . 137
17.4 Package organisation . 141
17.5 Notes . 145
17.6 See also . 145

18 Input Output 147
18.1 Overview . 147
18.2 Text I/O . 148
18.3 Direct I/O . 148
18.4 Sequential I/O . 149
18.5 Stream I/O . 149
18.6 See also . 150

V

Contents

19 Exceptions 153
19.1 Robustness . 153
19.2 Modules, preconditions and postconditions 153
19.3 Predefined exceptions . 154
19.4 Input-output exceptions . 156
19.5 Exception declarations . 156
19.6 Raising exceptions . 157
19.7 Exception handling and propagation . 157
19.8 Information about an exception occurrence 158
19.9 See also . 159

20 Generics 161
20.1 Parametric polymorphism (generic units) 161
20.2 Generic parameters . 162
20.3 Instantiating generics . 168
20.4 Advanced generics . 168
20.5 See also . 172

21 Tasking 173
21.1 Tasks . 173
21.2 Protected types . 177
21.3 Entry families . 180
21.4 Termination . 180
21.5 Timeout . 181
21.6 Conditional entry calls . 183
21.7 Requeue statements . 183
21.8 Scheduling . 184
21.9 Interfaces . 184
21.10 See also . 184
21.11 Ada Quality and Style Guide . 185

22 Object Orientation 187
22.1 Object orientation in Ada . 187
22.2 Class names . 206
22.3 Object-Oriented Ada for C++ programmers 207
22.4 See also . 217

23 New in Ada 2005 219
23.1 Language features . 219
23.2 Language library . 222
23.3 Real-Time and High Integrity Systems . 223
23.4 Summary of what's new . 224
23.5 See also . 227
23.6 External links . 228

24 Containers 231
24.1 See also . 240

VI

Contents

25 Interfacing 243
25.1 Interfacing . 243
25.2 Other programming languages . 243
25.3 Hardware devices . 243
25.4 See also . 244

26 Coding Standards 245
26.1 Introduction . 245
26.2 Tools . 245
26.3 Coding guidelines . 246
26.4 See also . 246
26.5 External links . 247

27 Tips 249
27.1 Full declaration of a type can be deferred to the unit's body 249
27.2 Lambda calculus through generics . 250
27.3 Compiler Messages . 250
27.4 Universal integers . 251
27.5 I/O . 253
27.6 Quirks . 253
27.7 References . 254
27.8 See also . 254

28 Common Errors 255
28.1 pragma Atomic & Volatile . 255
28.2 References . 256
28.3 pragma Pack . 256
28.4 'Bit_Order attribute . 257
28.5 'Size attribute . 257
28.6 See also . 258
28.7 References . 258

29 Algorithms 259
29.1 Introduction . 259
29.2 Chapter 1: Introduction . 259
29.3 Chapter 6: Dynamic Programming . 261

30 Function overloading 267
30.1 Function overloading in Ada . 267
30.2 See also . 268

31 Mathematical calculations 269
31.1 Simple calculations . 269
31.2 Exponential calculations . 272
31.3 Higher math . 275
31.4 See also . 280

32 Statements 283

VII

Contents

33 Variables 285
33.1 Assignment statements . 285
33.2 Uses . 285
33.3 See also . 286

34 Lexical elements 287
34.1 Character set . 287
34.2 Lexical elements . 287
34.3 See also . 291

35 Keywords 293
35.1 Language summary keywords . 293
35.2 List of keywords . 293
35.3 See also . 294

36 Delimiters 297
36.1 Single character delimiters . 297
36.2 Compound character delimiters . 298
36.3 Others . 299
36.4 See also . 299

37 Operators 301
37.1 Standard operators . 301
37.2 Short-circuit control forms . 303
37.3 Membership tests . 303
37.4 See also . 304

38 Attributes 305
38.1 Language summary attributes . 305
38.2 List of language defined attributes . 305
38.3 List of implementation defined attributes 310
38.4 See also . 314
38.5 References . 315

39 Pragmas 317
39.1 Description . 317
39.2 List of language defined pragmas . 317
39.3 List of implementation defined pragmas 320
39.4 See also . 328
39.5 References . 329

40 Libraries 331
40.1 Predefined Language Libraries . 331
40.2 Other Language Libraries . 331
40.3 See also . 332

41 Libraries: Standard 333
41.1 Implementation . 333
41.2 Portability . 333

VIII

Contents

41.3 See also . 334

42 Libraries: Ada 337
42.1 List of language defined child units . 337
42.2 List of implementation defined child units 344
42.3 See also . 347

43 Libraries: Interfaces 349
43.1 Child Packages . 349
43.2 See also . 350

44 Libraries: System 351

45 Libraries: GNAT 353
45.1 Child packages . 353
45.2 See also . 356

46 Libraries: Multi-Purpose 357
46.1 See also . 357

47 Libraries: Container 359
47.1 See also . 359

48 Libraries: GUI 361
48.1 See also . 361

49 Libraries: Distributed Systems 363
49.1 See also . 363

50 Libraries: Databases 365

51 Libraries: Web 371
51.1 See also . 371

52 Libraries: Input Output 373
52.1 See also . 373

53 Platform Support 375
53.1 See also . 375

54 Platform: Linux 377
54.1 See also . 377

55 Platform: Windows 379
55.1 See also . 379

56 Platform: Virtual Machines 381
56.1 See also . 381

57 Portals 383
57.1 Forges of open-source projects . 383

IX

Contents

57.2 Directories of freely available tools and libraries 383
57.3 Collections of Ada source code . 384
57.4 See also . 384

58 Tutorials 387

59 Web 2.0 389

60 Contributors 393

List of Figures 397

61 Licenses 399
61.1 GNU GENERAL PUBLIC LICENSE . 399
61.2 GNU Free Documentation License . 400
61.3 GNU Lesser General Public License . 401

1

1 Basic Ada

1.1 "Hello, world!" programs

1.1.1 "Hello, world!"

A common example of a language's syntax1 is the Hello world program2. Here is a
straightforward Ada Implementation:

File: hello_world_1.adb

with Ada.Text_IO

procedure Hello is

begin

Ada.Text_IO.Put_Line("Hello, world!");

end Hello;

The with statement adds the package Ada.Text_IO to the program. This package comes
with every Ada compiler and contains all functionality needed for textual Input/Output.
The with statement makes the declarations of Ada.Text_IO available to procedure Hello.
This includes the types declared in Ada.Text_IO, the subprograms of Ada.Text_IO and
everything else that is declared in Ada.Text_IO for public use. In Ada, packages can be
used as toolboxes. Text_IO provides a collection of tools for textual input and output in
one easy-to-access module. Here is a partial glimpse at package Ada.Text_IO

package Ada.Text_IO is

type F ileT ype is limited private;

− − morestuff

procedure Open(F ile : in out F ileT ype;
Mode : F ileM ode;
Name : String;
F orm : String := ””);

− − morestuff

procedure P utLine (Item : String);

− − morestuff

1 http://en.wikipedia.org/wiki/Syntax_%28programming_languages%29

2 http://en.wikipedia.org/wiki/Hello_world_program

3

http://en.wikipedia.org/wiki/Syntax_%28programming_languages%29
http://en.wikipedia.org/wiki/Hello_world_program

Basic Ada

end Ada.T extIO;

Next in the program we declare a main procedure. An Ada main procedure does not need
to be called "main". Any simple name is fine so here it is Hello. Compilers might allow
procedures or functions to be used as main subprograms. 3

The call on Ada.Text_IO.Put_Line writes the text "Hello World" to the current output file.

A with clause makes the content of a package visible by selection: we need to prefix the
procedure name Put_Line from the Text_IO package with its full package name Ada.Text_-

IO. If you need procedures from a package more often some form of shortcut is needed.
There are two options open:

1.1.2 "Hello, world!" with renames

By renaming a package it is possible to give a shorter alias to any package name.4 This
reduces the typing involved while still keeping some of the readability.

File: hello_world_2.adb

with Ada.Text_IO

procedure Hello is

package IO renames Ada.Text_IO;

begin

IO.Put_Line("Hello, world!");

IO.New_Line;

IO.Put_Line("I am an Ada program with package rename.");

end Hello;

1.1.3 "Hello, world!" with use

The use clause makes all the content of a package directly visible. It allows even less typing
but removes some of the readability. One suggested "rule of thumb": use for the most used
package and renames for all other packages. You might have another rule (for example,
always use Ada.Text_IO. never use anything else).

3 Main subprograms may even have parameters; it is implementation-defined what kinds of subprograms
can be used as main subprograms. The reference manual explains the details in 10.2 LRM 10.2(29)
ˆ{http://www.adaic.org/resources/add_content/standards/05rm/html/RM-10-2.html} : “. . . , an
implementation is required to support all main subprograms that are public parameterless library
procedures.” Library means not nested in another subprogram, for example, and other things that
needn't concern us now.

4 renames can also be used for procedures, functions, variables, array elements. It can not be used for
types - a type rename can be accomplished with subtype.

4

http://www.adaic.org/resources/add_content/standards/05rm/html/RM-10-2.html

Compiling the "Hello, world!" program

File: hello_world_3.adb

with Ada.Text_IOuse Ada.Text_IO;

procedure Hello is

begin

Put_Line("Hello, world!");

New_Line;

Put_Line("I am an Ada program with package use.");

end Hello;

use can be used for packages and in the form of use type for types. use type makes only
the operators5 of the given type directly visible but not any other operations on the type.

1.2 Compiling the "Hello, world!" program

For information on how to build the "Hello, world!" program on various compilers, see the
Building6 chapter.

1.2.1 FAQ: Why is "Hello, world!" so big?

Ada beginners frequently ask how it can be that such a simple program as "Hello, world!"
results in such a large executable. The reason has nothing to do with Ada but can usually
be found in the compiler and linker options used — or better, not used.

Standard behavior for Ada compilers — or good compilers in general — is not to create the
best code possible but to be optimized for ease of use. This is done to ensure a system that
works "out of the box" and thus does not frighten away potential new users with unneeded
complexity.

The GNAT project files, which you can download7 alongside the example programs, use
better tuned compiler, binder and linker options. If you use those your "Hello, world!" will
be a lot smaller:

32K ./Linux-i686-Debug/hello_world_1

8.0K ./Linux-i686-Release/hello_world_1

36K ./Linux-x86_64-Debug/hello_world_1

12K ./Linux-x86_64-Release/hello_world_1

1.1M ./Windows_NT-i686-Debug/hello_world_1.exe

16K ./Windows_NT-i686-Release/hello_world_1.exe

32K ./VMS-AXP-Debug/hello_world_1.exe

12K ./VMS-AXP-Release/hello_world_1.exe

5 Chapter 37 on page 301
6 Chapter 3 on page 29
7 https://sourceforge.net/project/showfiles.php?group_id=124904

5

https://sourceforge.net/project/showfiles.php?group_id=124904

Basic Ada

For comparison the sizes for a plain gnat make compile:

497K hello_world_1 (Linux i686)

500K hello_world_1 (Linux x86_64)

1.5M hello_world_1.exe (Windows_NT i686)

589K hello_world_1.exe (VMS AXP)

Worth mentioning is that hello_world (Ada,C,C++) compiled with GNAT/MSVC
7.1/GCC(C) all produces executables with approximately the same size given comparable
optimisation and linker methods.

1.3 Things to look out for

It will help to be prepared to spot a number of significant features of Ada that are important
for learning its syntax and semantics.

1.3.1 Comb Format

There is a comb format in all the control structures and module structures. See the following
examples for the comb format. You don't have to understand what the examples do yet -
just look for the similarities in layout.

if Boolean expression then

statements

elsif Boolean expression then

statements

else

statements

end if;

while Boolean expression loop

statements

end loop;

for variable in range loop

statements

end loop;

declare

declarations

begin

statements

exception

handlers

end;

procedure P (parameters : in out type) is

declarations

begin

statements

6

Things to look out for

exception

handlers

end P;

function F (parameters : in type) return type is

declarations

begin

statements

exception

handlers

end F;

package P is

declarations

private

declarations

end P;

generic

declarations

package P is

declarations

private

declarations

end P;

generic

declarations

procedure P (parameters : in out type);

Note that semicolons consistently terminate statements and declarations; the empty line (or
a semicolon alone) is not a valid statement: the null statement is

null;

1.3.2 Type and subtype

There is an important distinction between type and subtype: a type is given by a set of
values and their operations. A subtype is given by a type, and a constraint that limits the
set of values. Values are always of a type. Objects (constants and variables) are of a subtype.
This generalizes, clarifies and systematizes a relationship, e.g. between Integer and 1..100,
that is handled ad hoc in the semantics of Pascal8.

1.3.3 Constrained types and unconstrained types

There is an important distinction between constrained types and unconstrained types. An
unconstrained type has one or more free parameters that affect its size or shape. A
constrained type fixes the values of these parameters and so determines its size and shape.

8 http://en.wikipedia.org/wiki/Pascal%20programming%20language

7

http://en.wikipedia.org/wiki/Pascal%20programming%20language

Basic Ada

Loosely speaking, objects must be of a constrained type, but formal parameters may be of
an unconstrained type (they adopt the constraint of any corresponding actual parameter).
This solves the problem of array parameters in Pascal (among other things).

1.3.4 Dynamic types

Where values in Pascal9 or C10 must be static (e.g. the subscript bounds of an array) they
may be dynamic in Ada. However, static expressions are required in certain cases where
dynamic evaluation would not permit a reasonable implementation (e.g. in setting the
number of digits of precision of a floating point type).

1.3.5 Separation of concerns

Ada consistently supports a separation of interface and mechanism. You can see this in the
format of a package11, which separates its declaration from its body; and in the concept of
a private type, whose representation in terms of Ada data structures is inaccessible outside
the scope containing its definition.

1.4 Where to ask for help

Most Ada experts lurk on the Usenet newsgroups12 comp.lang.ada (English) and
fr.comp.lang.ada (French); they are accessible either with a newsreader13 or through one of
the many web interfaces. This is the place for all questions related to Ada.

People on these newsgroups are willing to help but will not do students' homework for them;
they will not post complete answers to assignments. Instead, they will provide guidance for
students to find their own answers.

For more online resources, see the External links14 section in this wikibook's introduction.

1.5 Notes

9 http://en.wikipedia.org/wiki/Pascal%20programming%20language

10 http://en.wikipedia.org/wiki/C%20programming%20language

11 Chapter 17 on page 133
12 http://en.wikipedia.org/wiki/Newsgroup

13 http://en.wikipedia.org/wiki/News_client

14 http://en.wikibooks.org/wiki/Ada%20Programming%23External%20links

8

http://en.wikipedia.org/wiki/Pascal%20programming%20language
http://en.wikipedia.org/wiki/C%20programming%20language
http://en.wikipedia.org/wiki/Newsgroup
http://en.wikipedia.org/wiki/News_client
http://en.wikibooks.org/wiki/Ada%20Programming%23External%20links

2 Installing

Ada compilers1 are available from several vendors, on a variety of host and target platforms.
The Ada Resource Association2 maintains a list of available compilers3.

Below is an alphabetical list of available compilers with additional comments.

2.1 AdaMagic from SofCheck

SofCheck4 produces an Ada 95 front-end that can be plugged into a code generating back-end
to produce a full compiler. This front-end is offered for licensing to compiler vendors.

Based on this front-end, SofCheck offers:

• AdaMagic, an Ada-to-C translator
• AppletMagic, an Ada-to-Java5 bytecode compiler

Commercial; proprietary.

2.2 AdaMULTI from Green Hills Software

Green Hills Software sells development environments for multiple languages and multiple
targets (including DSP6s), primarily to embedded software developers.

Languages supported Ada 83, Ada 95, C, C++, Fortran

License for the run-time
library

proprietary

Native platforms GNU/Linux on i386, Microsoft Windows on i386,
and Solaris on SPARC

Cross platforms INTEGRITY, INTEGRITY-178B and velOSity
from Green Hills; VxWorks from Wind River; sev-
eral bare board targets. Safety-critical GMART
and GSTART run-time libraries certified to DO-
178B level A.

Available from http://www.ghs.com/

1 http://en.wikipedia.org/wiki/Compiler

2 http://www.adaic.com

3 http://www.adaic.com/compilers/comp-tool.html

4 http://www.sofcheck.com/

5 http://en.wikibooks.org/wiki/Ada_Programming%2FPlatform%2FVM%2FJava

6 http://en.wikipedia.org/wiki/Digital%20signal%20processor

9

http://www.ghs.com/
http://en.wikipedia.org/wiki/Compiler
http://www.adaic.com
http://www.adaic.com/compilers/comp-tool.html
http://www.sofcheck.com/
http://en.wikibooks.org/wiki/Ada_Programming%2FPlatform%2FVM%2FJava
http://en.wikipedia.org/wiki/Digital%20signal%20processor

Installing

Support Commercial

Add-ons included IDE, debugger, TimeMachine, integration with
various version control systems, source browsers,
other utilities

GHS claims to make great efforts to ensure that their compilers produce the most efficient
code and often cites the EEMBC7 benchmark results as evidence, since many of the results
published by chip manufacturers use GHS compilers to show their silicon in the best light,
although these benchmarks are not Ada specific.

GHS has no publicly announced plans to support the new Ada standard published in 2007
but they do continue to actively market and develop their existing Ada products.

2.3 DEC Ada from HP

DEC Ada is an Ada 83 compiler for OpenVMS8. While “DEC Ada” is probably the name
most users know, the compiler is now called “ HP Ada9”. It had previously been known also
by names of "VAX Ada" and "Compaq Ada".

• Ada for OpenVMS Alpha Installation Guide10 (PDF)
• Ada for OpenVMS VAX Installation Guide11 (PDF)

2.4 GNAT, the GNU Ada Compiler from AdaCore and the
Free Software Foundation

GNAT12 is the free GNU Ada compiler, which is part of the GNU Compiler Collection13.
It is the only Ada compiler that supports all of the optional annexes of the language
standard. The original authors formed the company AdaCore14 to offer professional support,
consulting, training and custom development services. It is thus possible to obtain GNAT
from many different sources, detailed below.

GNAT is always licensed under the terms of the GNU General Public License15.

However, the run-time library uses either the GPL16, or the GNAT Modified GPL17,
depending on where you obtain it.

7 http://www.eembc.com

8 http://en.wikipedia.org/wiki/OpenVMS

9 http://h71000.www7.hp.com/commercial/ada/ada_index.html

10 http://h71000.www7.hp.com/commercial/ada/ada_avms_ig.pdf

11 http://h71000.www7.hp.com/commercial/ada/ada_vvms_ig.pdf

12 http://en.wikipedia.org/wiki/GNAT

13 http://en.wikipedia.org/wiki/GNU_Compiler_Collection

14 http://www.adacore.com

15 http://en.wikipedia.org/wiki/GNU%20General%20Public%20License

16 http://en.wikipedia.org/wiki/GNU%20General%20Public%20License

17 http://en.wikipedia.org/wiki/GNAT%20Modified%20General%20Public%20License

10

http://www.eembc.com
http://en.wikipedia.org/wiki/OpenVMS
http://h71000.www7.hp.com/commercial/ada/ada_index.html
http://h71000.www7.hp.com/commercial/ada/ada_avms_ig.pdf
http://h71000.www7.hp.com/commercial/ada/ada_vvms_ig.pdf
http://en.wikipedia.org/wiki/GNAT
http://en.wikipedia.org/wiki/GNU_Compiler_Collection
http://www.adacore.com
http://en.wikipedia.org/wiki/GNU%20General%20Public%20License
http://en.wikipedia.org/wiki/GNU%20General%20Public%20License
http://en.wikipedia.org/wiki/GNAT%20Modified%20General%20Public%20License

GNAT, the GNU Ada Compiler from AdaCore and the Free Software Foundation

Several optional add-ons are available from various places:

• ASIS, the Ada Semantic Interface Specification18, is a library that allows Ada programs
to examine and manipulate other Ada programs.

• FLORIST19 is a library that provides a POSIX programming interface to the operating
system.

• GDB, the GNU Debugger, with Ada extensions.
• GLADE implements Annex E, the Distributed Systems Annex. With it, one can write

distributed programs in Ada, where partitions of the program running on different
computers communicate over the network with one another and with shared objects.

• GPS, the GNAT Programming Studio, is a full-featured integrated development environ-
ment, written in Ada. It allows you to code in Ada, C and C++.

Many Free Software libraries are also available.

2.4.1 GNAT GPL Edition

This is a source and binary release from AdaCore, intended for use by Free Software
developers only. If you want to distribute your binary programs linked with the GPL
run-time library, then you must do so under terms compatible with the GNU General Public
License.

As of GNAT GPL Edition 2011:

Languages supported Ada 83, Ada 95, Ada 2005, Ada 2012, C, C++

License for the run-time
library

pure GPL

Native platforms GNU/Linux on i386 and x86_64; Microsoft Win-
dows on i386; Microsoft .NET on i386; Mac OS X
(Darwin, x86_64); Solaris on SPARC.

Cross platforms AVR, hosted on Windows; Java VM, hosted on
Windows; Mindstorms NXT, hosted on Windows

Compiler back-end GCC 4.5.3

Available from http://libre.adacore.com/ (requires free regis-
tration)

Support None

Add-ons included GDB, GNATbench (Eclipse plug-in), GPS in
source and binary form; many more in source-only
form.

2.4.2 GNAT Modified GPL releases

With these releases of GNAT, you can distribute your programs in binary form under
licensing terms of your own choosing; you are not bound by the GPL.

18 http://en.wikipedia.org/wiki/Ada%20Semantic%20Interface%20Specification

19 http://en.wikibooks.org/wiki/Ada%20Programming%2FPlatform%2FPOSIX

11

http://libre.adacore.com/
http://en.wikipedia.org/wiki/Ada%20Semantic%20Interface%20Specification
http://en.wikibooks.org/wiki/Ada%20Programming%2FPlatform%2FPOSIX

Installing

GNAT 3.15p

This is the last public release of GNAT from AdaCore that uses the GNAT Modified General
Public License20.

GNAT 3.15p has passed the Ada Conformity Assessment Test Suite21 (ACATS22). It was
released in October 2002.

The binary distribution from AdaCore also contains an Ada-aware version of the GNU
Debugger (GDB23), and a graphical front-end to GDB called the GNU Visual Debugger
(GVD).

Languages supported Ada 83, Ada 95, C

License for the run-time
library

GNAT-modified GPL

Native platforms GNU/Linux on i386 (with glibc 2.1 or later),
Microsoft Windows on i386, OS/2 2.0 or later on
i386, Solaris 2.5 or later on SPARC

Cross platforms none

Compiler back-end GCC 2.8.1

Available from ftp://ftp.cs.kuleuven.ac.be/pub/Ada-
Belgium/mirrors/gnu-ada/3.15p/

Support None

Add-ons included ASIS, Florist, GLADE, GDB, Gnatwin (on Win-
dows only), GtkAda 1.2, GVD

GNAT Pro

GNAT Pro is the professional version of GNAT, offered as a subscription package by
AdaCore. The package also includes professional consulting, training and maintenance
services. AdaCore can provide custom versions of the compiler for native or cross development.
For more information, see http://www.adacore.com/.

Languages supported Ada 83, Ada 95, Ada 2005, Ada 2012, C, and
optionally C++

License for the run-time
library

GNAT-modified GPL

Native platforms many, see http://www.adacore.com/home/

products/gnatpro/supported_platforms/

Cross platforms many, see http://www.adacore.com/home/

products/gnatpro/supported_platforms/;

even more on request

20 http://en.wikipedia.org/wiki/GNAT%20Modified%20General%20Public%20License

21 http://en.wikipedia.org/wiki/ISO%2018009

22 http://en.wiktionary.org/wiki/ACATS

23 http://en.wikipedia.org/wiki/GDB

12

http://www.adacore.com/.
http://www.adacore.com/home/products/gnatpro/supported_platforms/
http://www.adacore.com/home/products/gnatpro/supported_platforms/
http://www.adacore.com/home/products/gnatpro/supported_platforms/;
http://www.adacore.com/home/products/gnatpro/supported_platforms/;
http://en.wikipedia.org/wiki/GNAT%20Modified%20General%20Public%20License
http://en.wikipedia.org/wiki/ISO%2018009
http://en.wiktionary.org/wiki/ACATS
http://en.wikipedia.org/wiki/GDB

GNAT, the GNU Ada Compiler from AdaCore and the Free Software Foundation

Compiler back-end GCC 4.3

Available from http://www.adacore.com/ by subscription (com-
mercial)

Support Commercial; customer-only bug database

Add-ons included ASIS, Florist, GDB, GLADE, GPS, GtkAda,
XML/Ada, and many more in source and, on
request, binary form.

GCC

GNAT has been part of the Free Software Foundation24's GCC25 since October 2001.
The Free Software Foundation does not distribute binaries, only sources. Its licensing of
the run-time library for Ada (and other languages) allows the development of proprietary
software without necessarily imposing the terms of the GPL26.

Most GNU/Linux distributions and several distributions for other platforms include prebuilt
binaries; see below.

For technical reasons, we recommend against using the Ada compilers included in GCC 3.1,
3.2, 3.3 and 4.0. Instead, we recommend using GCC 3.4, 4.1 or later, or one of the releases
from AdaCore27 (3.15p, GPL Edition or Pro).

Since October 2003, AdaCore merge most of their changes from GNAT Pro into GCC during
Stage 128; this happens once for each major release. Since GCC 3.4, AdaCore has gradually
added support for revised language standards, first Ada 2005 and now Ada 2012.

GCC version 4.4 switched to version 3 of the GNU General Public License29 and grants
a Runtime Library Exception30 similar in spirit to the GNAT Modified General Public
License31 used in all previous versions. This Runtime Library Exception applies to run-time
libraries for all languages, not just Ada.

As of GCC 4.7, released on 2012-03-22:

Languages supported Ada 83, Ada 95, Ada 2005, parts of Ada 2012, C,
C++, Fortran 95, Java, Objective-C, Objective-
C++ (and others)

License for the run-time
library

GPL version 332 with Runtime Library Excep-
tion33

Native platforms none (source only)

24 http://www.fsf.org/

25 http://gcc.gnu.org/

26 http://en.wikipedia.org/wiki/GNU%20General%20Public%20License

27 http://www.adacore.com

28 http://gcc.gnu.org/develop.html#stage1

29 http://www.gnu.org/licenses/gpl.html

30 http://www.gnu.org/licenses/gcc-exception.html

31 http://en.wikipedia.org/wiki/GNAT%20Modified%20General%20Public%20License

32 http://www.gnu.org/licenses/gpl.html

33 http://www.gnu.org/licenses/gcc-exception.html

13

http://www.adacore.com/
http://www.fsf.org/
http://gcc.gnu.org/
http://en.wikipedia.org/wiki/GNU%20General%20Public%20License
http://www.adacore.com
http://gcc.gnu.org/develop.html#stage1
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gcc-exception.html
http://en.wikipedia.org/wiki/GNAT%20Modified%20General%20Public%20License
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gcc-exception.html

Installing

Cross platforms none (source only)

Compiler back-end GCC 4.7

Available from http://gcc.gnu.org/ in source only form.

Support Volunteer; public bug database

Add-ons included none

2.4.3 The GNU Ada Project

The GNU Ada Project34 provides source and binary packages of various GNAT versions for
several operating systems, and, importantly, the scripts used to create the packages. This
may be helpful if you plan to port the compiler to another platform or create a cross-compiler;
there are instructions for building your own GNAT compiler for GNU/Linux35 and Mac
OS X36 users.

Both GPL37 and GMGPL38 or GCC Runtime Library Exception39 versions of GNAT are
available.

Languages supported Ada 83, Ada 95, Ada 2005, C. (Some distributions

also support Ada 2012, Fortran 90, Java, Objective C

and Objective C++)

License for the run-time
library

pure, GNAT-modified GPL, or GCC Runtime
Library Exception

Native platforms Fedora Core 4 and 5, MS-DOS, OS/2, Solaris 10,
SuSE 10, MacOS X, (more?)

Cross platforms none

Compiler back-end GCC 2.8.1, 3.4, 4.0, 4.1, 4.2, 4.3, 4.4, 4.5, 4.6
(various binary packages)

Available from Sourceforge40

Support Volunteer; public bug database

Add-ons included AdaBrowse, ASIS, Booch Components, Charles,
GPS, GtkAda (more?)

2.4.4 A# (A-Sharp, a.k.a. Ada for .NET)

This compiler is historical as it has now been merged into GNAT GPL Edition41 and GNAT
Pro42.

34 http://gnuada.sourceforge.net

35 http://ada.krischik.com/index.php/Articles/CompileGNAT

36 http://forward-in-code.blogspot.com/2011/11/building-gcc-again.html

37 http://en.wikipedia.org/wiki/GNU%20General%20Public%20License

38 http://en.wikipedia.org/wiki/GNAT%20Modified%20General%20Public%20License

39 http://www.gnu.org/licenses/gcc-exception.html

40 http://sourceforge.net/projects/gnuada/files/

41 Chapter 2.4.1 on page 11
42 Chapter 2.4.2 on page 12

14

http://gcc.gnu.org/
http://gnuada.sourceforge.net
http://ada.krischik.com/index.php/Articles/CompileGNAT
http://forward-in-code.blogspot.com/2011/11/building-gcc-again.html
http://en.wikipedia.org/wiki/GNU%20General%20Public%20License
http://en.wikipedia.org/wiki/GNAT%20Modified%20General%20Public%20License
http://www.gnu.org/licenses/gcc-exception.html
http://sourceforge.net/projects/gnuada/files/

GNAT, the GNU Ada Compiler from AdaCore and the Free Software Foundation

A# is a port of Ada to the .NET Platform43. A# was originally developed at the Department
of Computer Science at the United States Air Force Academy which distribute A# as a
service to the Ada community under the terms of the GNU general public license. A#
integrates well with Microsoft Visual Studio 2005, AdaGIDE and the RAPID open-source
GUI Design tool. As of 2006-06-06:

Languages supported Ada 83, Ada 95, C

License for the run-time
library

pure GPL

Native platforms Microsoft .NET

Cross platforms none

Compiler back-end GCC 3.4 (GNAT GPL 2006 Edition?)

Available from http://sourceforge.net/projects/asharp/

Support None (but see GNAT Pro)

Add-ons included none.

2.4.5 GNAT for AVR microcontrollers

Rolf Ebert and others provide a version of GNAT configured as a cross-compiler to various
AVR microcontrollers44, as well as an experimental Ada run-time library suitable for use on
the microcontrollers. As of Version 1.1.0 (2010-02-25):

Languages supported Ada 83, Ada 95, Ada 2005, C

License for the run-time
library

GNAT-Modified GPL

Host platforms GNU/Linux and Microsoft Windows on i386

Target platforms Various AVR 8-bit microcontrollers

Compiler back-end GCC 4.3

Available from http://avr-ada.sourceforge.net/

Support Volunteer; public bug database

Add-ons included partial Ada run time system, AVR peripherals
support library

2.4.6 GNAT for LEON

The Real-Time Research Group of the Technical University of Madrid (UPM, Universidad
Politécnica de Madrid) wrote a Ravenscar45-compliant real-time kernel for execution on
LEON processors46 and a modified run-time library. They also provide a GNAT cross-
compiler. As of version 2.0.1:

43 http://www.microsoft.com/net/

44 http://en.wikipedia.org/wiki/Atmel_AVR

45 http://en.wikipedia.org/wiki/Ravenscar%20profile

46 http://en.wikipedia.org/wiki/LEON

15

http://sourceforge.net/projects/asharp/
http://avr-ada.sourceforge.net/
http://www.microsoft.com/net/
http://en.wikipedia.org/wiki/Atmel_AVR
http://en.wikipedia.org/wiki/Ravenscar%20profile
http://en.wikipedia.org/wiki/LEON

Installing

Languages supported Ada 83, Ada 95, Ada 2005, C

License for the run-time
library

pure GPL

Native platforms none

Cross platforms GNU/Linux on i686 to LEON2 bare boards

Compiler back-end GCC 4.1 (GNAT GPL 2007 Edition)

Available from http://www.dit.upm.es/ork/

Support ?

Add-ons included OpenRavenscar real-time kernel; minimal run-
time library

2.4.7 GNAT for Macintosh (Mac OS X)

GNAT for Macintosh47 provides both FSF (GMGPL) and AdaCore (GPL) versions of
GNAT48 with Xcode49 and Carbon50 integration and bindings.

Note that this site was last updated for GCC 4.3 and Mac OS X Leopard (both PowerPC
and Intel-based). Aside from the work on integration with Apple’s Carbon graphical user
interface and with Xcode 3.1 it may be preferable to see above51.

There is also support at MacPorts52; the last update (at 25 Nov 2011) was for GCC 4.4.2.

2.4.8 Prebuilt packages as part of larger distributions

Many distributions contain prebuilt binaries of GCC or various public releases of GNAT
from AdaCore. Quality varies widely between distributions. The list of distributions below
is in alphabetical oder. (Please keep it that way.)

AIDE (for Microsoft Windows)

AIDE — Ada Instant Development Environment53 is a complete one-click, just-works Ada
distribution for Windows, consisting of GNAT, comprehensive documentation, tools and
libraries. All are precompiled, and source code is also available. The installation procedure
is particularly easy. AIDE is intended for beginners and teachers, but can also be used by
advanced users.

Languages supported Ada 83, Ada 95, C

License for the run-time
library

GNAT-modified GPL

47 http://www.macada.org/

48 http://en.wikipedia.org/wiki/GNAT

49 http://en.wikipedia.org/wiki/Xcode

50 http://en.wikipedia.org/wiki/Carbon%20%28API%29

51 Chapter 2.4.3 on page 14
52 https://trac.macports.org/browser/trunk/dports/lang/gnat-gcc

53 http://sr.sriviere.info/aide/aide.html

16

http://www.dit.upm.es/ork/
http://www.macada.org/
http://en.wikipedia.org/wiki/GNAT
http://en.wikipedia.org/wiki/Xcode
http://en.wikipedia.org/wiki/Carbon%20%28API%29
https://trac.macports.org/browser/trunk/dports/lang/gnat-gcc
http://sr.sriviere.info/aide/aide.html

GNAT, the GNU Ada Compiler from AdaCore and the Free Software Foundation

Native platforms Microsoft Windows on i386

Cross platforms none

Compiler back-end GCC 2.8.1

Available from http://www.ada-france.org/

AIDE/ftp://ftp.cs.kuleuven.ac.be/pub/Ada-
Belgium/mirrors/aide/

Support ?

Add-ons included ASIS, GDB, GPS, GtkAda (more?)

Blastwave (for Solaris on SPARC and x86)

Blastwave54 has binary packages of GCC 3.4.5 and 4.0.2 with Ada support. The package
names are gcc3ada and gcc4ada respectively.

Languages supported Ada 83, Ada 95, parts of Ada 2005, C, C++,
Fortran 95, Java, Objective-C, Objective-C++

License for the run-time
library

GNAT-modified GPL

Native platforms Solaris and OpenSolaris on SPARC

Cross platforms none

Compiler back-end GCC 3.4.5 and 4.0.2 (both available)

Support ?

Available from http://www.blastwave.org/

Add-ons included none (?)

OpenCSW (for Solaris on SPARC and x86)

OpenCSW55 has binary packages of GCC 3.4.6 and 4.6.2 with Ada support. The package
names are gcc3ada and gcc4ada respectively.

Languages supported Ada 83, Ada 95, parts of Ada 2005, C, C++,
Fortran 95, Java, Objective-C, Objective-C++

License for the run-time
library

GNAT-modified GPL

Native platforms Oracle Solaris and OpenSolaris on SPARC and
x86

Cross platforms none

Compiler back-end GCC 3.4.6 and 4.6.2 (both available)

Support ?

Available from http://www.opencsw.org/

Add-ons included none (?)

54 http://www.blastwave.org

55 http://www.opencsw.org

17

http://www.ada-france.org/AIDE/
http://www.ada-france.org/AIDE/
http://www.blastwave.org/
http://www.opencsw.org/
http://www.blastwave.org
http://www.opencsw.org

Installing

Cygwin (for Microsoft Windows)

Cygwin56, the Linux-like environment for Windows, also contains a version of the GNAT57

compiler. The Cygwin58 version of GNAT59 is older than the MinGW60 version and does
not support DLLs and Multi-Threading (as of 11.2004).

Debian (GNU/Linux and GNU/kFreeBSD)

There is a Debian Policy for Ada61 which tries to make Debian the best Ada development and
deployment platform. The development platform includes the compiler and many libraries,
pre-packaged and integrated so as to be easy to use in any program. The deployment platform
is the renowned stable62 distribution, which is suitable for mission-critical workloads and
enjoys long life cycles, typically 3 to 4 years. Because Debian is a binary distribution, it is
possible to deploy non-free, binary-only programs on it while enjoying all the benefits of a
stable platform. Compiler choices are conservative for this reason, and the Policy mandates
that all Ada programs and libraries be compiled with the same version of GNAT. This makes
it possible to use all libraries in the same program. Debian separates run-time libraries from
development packages, so that end users do not have to install the development system just
to run a program.

The GNU Ada compiler can be installed on a Debian system with this command:

aptitude install gnat

This will also give you a list of related packages, which are likely to be useful for an Ada
programmer.

Debian is unique in that it also allows programmers to use some of GNAT's internal
components by means of two libraries:

• libgnatvsn (licensed under GNAT-Modified GPL) and
• libgnatprj (the project manager, licensed under pure GPL).

Debian packages make use of these libraries.

In the table below, the information about the future Debian 7.0 Wheezy is accurate as of
July 2012 but may change.

56 http://www.cygwin.com

57 Chapter 2.4 on page 10
58 http://en.wikipedia.org/wiki/Cygwin

59 http://en.wikipedia.org/wiki/GNAT

60 http://en.wikipedia.org/wiki/MinGW

61 http://people.debian.org/~lbrenta/debian-ada-policy.html

62 http://www.debian.org/releases/stable/

18

http://www.cygwin.com
http://en.wikipedia.org/wiki/Cygwin
http://en.wikipedia.org/wiki/GNAT
http://en.wikipedia.org/wiki/MinGW
http://people.debian.org/~lbrenta/debian-ada-policy.html
http://www.debian.org/releases/stable/

GNAT, the GNU Ada Compiler from AdaCore and the Free Software Foundation

3
.1

S
a

rg
e

4
.0

E
tc

h
5

.0
L

e
n

n
y

6
.0

S
q
u

e
e
z
e

7
.0

W
h

e
e
z
y

R
e
le

a
se

d
a
te

J
u
n
e

20
0
5

A
p
ri

l
20

07
F

eb
ru

ar
y

20
09

F
eb

ru
ar

y
20

11
20

13
?

L
a
n

g
u

a
g

e
s

su
p

p
o

rt
e
d

A
d
a

8
3
,

A
d
a

9
5
,

C
A

d
a

8
3
,

A
d
a

9
5
,

A
d
a

2
0
0
5
,

p
a
rt

s
o
f

A
d
a

2
0
1
2
,

C
,

C
+

+
,

F
o
rt

ra
n

9
5
,

J
av

a
,

O
b

je
ct

iv
e-

C
,

O
b

je
ct

iv
e-

C
+

+

L
ic

e
n

se
fo

r
th

e
ru

n
-t

im
e

li
b

ra
ry

G
N

A
T

-m
o
d
ifi

ed
G

P
L

(b
o
th

Z
C

X
a
n
d

S
J
L

J
v
er

si
o
n
s

st
a
rt

in
g

fr
om

5.
0

L
en

n
y)

G
P

L
v
er

si
o
n

3
w

it
h

R
u
n
-t

im
e

li
b
ra

ry
ex

ce
p
ti

on

N
a
ti

v
e

p
la

t-
fo

rm
s:

3
.1

S
a

rg
e

4
.0

E
tc

h
5

.0
L

e
n

n
y

6
.0

S
q
u

e
e
z
e

7
.0

W
h

e
e
z
y

a
l
p
h
a

ye
s

ye
s

a
m
d
6
4

ye
s

ye
s

ye
s

ye
s

a
r
m
e
l

p
re

li
m

in
ar

y
ye

s

a
r
m
h
f

ye
s

h
p
p
a

ye
s

ye
s

ye
s

h
u
r
d
-
i
3
8
6

p
re

li
m

in
ar

y

i
3
8
6

ye
s

ye
s

ye
s

ye
s

ye
s

i
a
6
4

ye
s

ye
s

ye
s

ye
s

k
f
r
e
e
b
s
d
-
a
m
d
6
4

ye
s

ye
s

k
f
r
e
e
b
s
d
-
i
3
8
6

ye
s

ye
s

ye
s

ye
s

m
i
p
s

ye
s

ye
s

ye
s

ye
s

m
i
p
s
e
l

ye
s

ye
s

ye
s

ye
s

p
o
w
e
r
p
c

ye
s

ye
s

ye
s

ye
s

ye
s

p
p
c
6
4

ye
s

ye
s

ye
s

s
3
9
0

ye
s

ye
s

ye
s

ye
s

s
p
a
r
c

ye
s

ye
s

ye
s

ye
s

ye
s

C
ro

ss
p

la
t-

fo
rm

s
n
o
n
e

C
o

m
p

il
e
r

b
a
ck

-e
n

d
G

C
C

2.
8
.1

G
C

C
4.

1
G

C
C

4.
3

G
C

C
4.

4
G

C
C

4.
6

A
v
a
il

a
b

le
fr

o
m

h
t
t
p
:
/
/
w
w
w
.
d
e
b
i
a
n
.
o
r
g
/

19

http://www.debian.org/

Installing

3
.1

S
a

rg
e

4
.0

E
tc

h
5

.0
L

e
n

n
y

6
.0

S
q
u

e
e
z
e

7
.0

W
h

e
e
z
y

R
e
le

a
se

d
a
te

J
u
n
e

20
0
5

A
p
ri

l
20

07
F

eb
ru

ar
y

20
09

F
eb

ru
ar

y
20

11
20

13
?

L
a
n

g
u

a
g

e
s

su
p

p
o

rt
e
d

A
d
a

8
3
,

A
d
a

9
5
,

C
A

d
a

8
3
,

A
d
a

9
5
,

A
d
a

2
0
0
5
,

p
a
rt

s
o
f

A
d
a

2
0
1
2
,

C
,

C
+

+
,

F
o
rt

ra
n

9
5
,

J
av

a
,

O
b

je
ct

iv
e-

C
,

O
b

je
ct

iv
e-

C
+

+

L
ic

e
n

se
fo

r
th

e
ru

n
-t

im
e

li
b

ra
ry

G
N

A
T

-m
o
d
ifi

ed
G

P
L

(b
o
th

Z
C

X
a
n
d

S
J
L

J
v
er

si
o
n
s

st
a
rt

in
g

fr
om

5.
0

L
en

n
y)

G
P

L
v
er

si
o
n

3
w

it
h

R
u
n
-t

im
e

li
b
ra

ry
ex

ce
p
ti

on

N
a
ti

v
e

p
la

t-
fo

rm
s:

3
.1

S
a

rg
e

4
.0

E
tc

h
5

.0
L

e
n

n
y

6
.0

S
q
u

e
e
z
e

7
.0

W
h

e
e
z
y

S
u

p
p

o
rt

V
o
lu

n
te

er
;

p
u
b
li
c

b
u
g

d
at

ab
as

e;
p
ai

d
su

p
p

or
t

av
ai

la
b
le

fr
om

th
ir

d
p
ar

ti
es

;
p
u
b
li
c

m
ai

li
n
g

li
st

6
3

A
d

d
-o

n
s

in
-

c
lu

d
e
d

3
.1

S
a

rg
e

4
.0

E
tc

h
5

.0
L

e
n

n
y

6
.0

S
q
u

e
e
z
e

7
.0

W
h

e
e
z
y

a
d
a
-r

ef
er

en
ce

-
m

an
u
a
l

1
99

5
19

95
19

95
20

05
20

12

A
d
aB

in
d
X

0
.7

.2

A
d
aB

ro
w

se
4
.0

.2
4.

0.
2

4.
0.

2
4.

0.
3

4.
0.

3

A
d
aC

G
I

1
.6

1.
6

1.
6

1.
6

1.
6

A
d
aC

on
tr

ol
1.

6r
8

1.
9r

4
1.

12
r3

1.
12

r3

A
P

Q
(w

it
h

P
o
st

-
gr

eS
Q

L
)

3.
0

3.
2

A
d
aS

o
ck

et
s

1
.8

.4
.7

1.
8.

4.
7

1.
8.

4.
7

1.
8.

8
1.

8.
10

A
h
ve

n
1.

2
1.

7
2.

1

A
lo

g
0.

1
0.

3
0.

4.
1

an
et

0.
1

A
S
IS

3
.1

5p
20

05
20

07
20

08
20

10

A
U

n
it

1
.0

1
1.

03
1.

03
1.

03
1.

03

A
W

S
2
.0

2.
2

2.
5

p
re

re
le

as
e

2.
7

2.
10

.2

C
h
a
rl

es
2
00

5
-0

2
-1

7
(s

u
p

er
se

d
ed

b
y

A
d
a.

C
on

ta
in

er
s

in
gn

at
)

F
lo

ri
st

3
.1

5p
20

06
20

06
20

09
20

11

6
3

h
t
t
p
:
/
/
l
i
s
t
s
.
d
e
b
i
a
n
.
o
r
g
/
d
e
b
i
a
n
-

a
d
a

20

http://lists.debian.org/debian-ada

GNAT, the GNU Ada Compiler from AdaCore and the Free Software Foundation

3
.1

S
a

rg
e

4
.0

E
tc

h
5

.0
L

e
n

n
y

6
.0

S
q
u

e
e
z
e

7
.0

W
h

e
e
z
y

R
e
le

a
se

d
a
te

J
u
n
e

20
0
5

A
p
ri

l
20

07
F

eb
ru

ar
y

20
09

F
eb

ru
ar

y
20

11
20

13
?

L
a
n

g
u

a
g

e
s

su
p

p
o

rt
e
d

A
d
a

8
3
,

A
d
a

9
5
,

C
A

d
a

8
3
,

A
d
a

9
5
,

A
d
a

2
0
0
5
,

p
a
rt

s
o
f

A
d
a

2
0
1
2
,

C
,

C
+

+
,

F
o
rt

ra
n

9
5
,

J
av

a
,

O
b

je
ct

iv
e-

C
,

O
b

je
ct

iv
e-

C
+

+

L
ic

e
n

se
fo

r
th

e
ru

n
-t

im
e

li
b

ra
ry

G
N

A
T

-m
o
d
ifi

ed
G

P
L

(b
o
th

Z
C

X
a
n
d

S
J
L

J
v
er

si
o
n
s

st
a
rt

in
g

fr
om

5.
0

L
en

n
y)

G
P

L
v
er

si
o
n

3
w

it
h

R
u
n
-t

im
e

li
b
ra

ry
ex

ce
p
ti

on

N
a
ti

v
e

p
la

t-
fo

rm
s:

3
.1

S
a

rg
e

4
.0

E
tc

h
5

.0
L

e
n

n
y

6
.0

S
q
u

e
e
z
e

7
.0

W
h

e
e
z
y

G
D

B
5
.3

6.
4

6.
8

7.
0.

1
7.

4.
1

G
L

A
D

E
3
.1

5p
20

06
(s

ee
P

ol
y
O

R
B

)

G
M

P
A

d
a

0.
0.

20
09

11
24

0.
0.

20
12

03
31

G
N

A
D

E
1
.5

.1
1.

6.
1

1.
6.

1
1.

6.
2

1.
6.

2

G
N

A
T

C
h
ec

ke
r

1
99

9
-0

5
-1

9
(s

u
p

er
se

d
ed

b
y

A
d
aC

on
tr

ol
)

G
P

R
B

u
il
d

1.
3.

0w
20

11

G
P

S
2
.1

4.
0.

1
4.

0.
1

4.
3

5.
0

G
tk

A
d
a

2
.4

2.
8.

1
2.

8.
1

2.
14

.2
2.

24
.0

L
o
g4

A
d
a

1.
0

1.
2

N
ar

va
l

1.
10

.2

O
p

en
T

o
k
en

3
.0

b
3.

0b
3.

0b
4.

0b
4.

0b

P
C

/S
C

A
d
a

0.
6

0.
7.

1

P
ol

y
O

R
B

2.
6

p
re

re
le

as
e

2.
8

p
re

re
le

as
e

P
L

P
lo

t
5.

9.
0

5.
9.

5
5.

9.
5

T
em

p
la

te
s

P
ar

se
r

10
.0

+
20

06
05

22
11

.1
11

.5
11

.6

T
ex

tT
o
o
ls

2
.0

.3
2.

0.
3

2.
0.

5
2.

0.
6

X
M

L
/A

d
a

1
.0

2.
2

3.
0

3.
2

4.
1

X
M

L
-E

Z
-o

u
t

1.
06

1.
06

.1

21

Installing

The ADT plugin for Eclipse (see section ObjectAda from Aonix64) can be used with GNAT
as packaged for Debian Etch. Specify "/usr" as the toolchain path.

DJGPP (for MS-DOS)

DJGPP has GNAT65 as part of their GCC66 distribution.

DJGPP67 is a port of a comprehensive collection of GNU utilities to MS-DOS with 32-bit
extensions, and is actively supported (as of 1.2005). It includes the whole GCC68 compiler
collection, that now includes Ada. See the DJGPP69 website for installation instructions.

DJGPP programs run also in a DOS command box in Windows, as well as in native MS-DOS
systems.

FreeBSD

FreeBSD70's ports collection71 contains GNAT GPL 2006 Edition (package gnat-2006),
GNAT 3.15p, GCC 4.1, 4.2 and 4.3 with support for Ada. The usual way to install a package
on FreeBSD is to compile it from source; not all add-ons are compatible with all versions of
GNAT provided.

You can also use the Debian packages described above in a jail, thanks to Debian GNU/k-
FreeBSD.

As of 2008-11-10:

Languages supported Ada 83, Ada 95, parts of Ada 2005, C

License for the run-time
library

both pure and modified GPL available

Native platforms FreeBSD on i386 (more?)

Cross platforms none

Compiler back-end GCC 2.8.1, 3.4, 4.1, 4.2, 4.3

Available from http://www.freebsd.org

Support Volunteer; public bug database

Add-ons included AdaBindX, AdaCurses, AdaSDL, AdaSockets,
AFlex+AYACC, ASIS, AUnit, Booch Compo-
nents, CBind, Florist, GLADE, GtkAda, SGL,
XML/Ada (more?)

64 Chapter 2.4.8 on page 24
65 http://en.wikipedia.org/wiki/GNAT

66 http://en.wikipedia.org/wiki/GCC

67 http://www.delorie.com/djgpp/

68 http://en.wikipedia.org/wiki/GCC

69 http://www.delorie.com/djgpp/

70 http://www.freebsd.org

71 http://www.freebsd.org/ports

22

http://www.freebsd.org
http://en.wikipedia.org/wiki/GNAT
http://en.wikipedia.org/wiki/GCC
http://www.delorie.com/djgpp/
http://en.wikipedia.org/wiki/GCC
http://www.delorie.com/djgpp/
http://www.freebsd.org
http://www.freebsd.org/ports

GNAT, the GNU Ada Compiler from AdaCore and the Free Software Foundation

Gentoo GNU/Linux

The GNU Ada compiler can be installed on a Gentoo system using emerge:

emerge dev-lang/gnat

In contrast to Debian, Gentoo is primarily a source distribution, so many packages are
available only in source form, and require the user to recompile them (using emerge).

Also in contrast to Debian, Gentoo supports several versions of GNAT in parallel on the
same system. Be careful, because not all add-ons and libraries are available with all versions
of GNAT.

Languages supported Ada 83, Ada 95, Ada 2005, C (more?)

License for the run-time
library

pure or GNAT-modified GPL (both available)

Native platforms Gentoo GNU/Linux on amd64, powerpc and i386

Cross platforms none

Compiler back-end GCC 3.4, 4.1 (various binary packages)

Available from http://www.gentoo.org/ (see other Gentoo
dev-ada72 packages)

Support Volunteer; public bug database

Add-ons included AdaBindX, AdaBroker, AdaDoc, AdaOpenGL,
AdaSockets, ASIS, AUnit, Booch Components,
CBind, Charles, Florist, GLADE, GPS, GtkAda,
XML/Ada

Mandriva Linux

The GNU Ada compiler can be installed on a Mandriva system with this command:

urpmi gnat

MinGW (for Microsoft Windows)

MinGW — Minimalist GNU for Windows73 contains a version of the GNAT compiler.

The current version of MinGW (5.1.6) contains gcc-4.5.0. This includes a fully functional
GNAT compiler. If the automatic downloader does not work correctly you can download
the compiler directly: pick gcc-4.5.0-1 from MinGW/BaseSystem/GCC/Version4/

72 http://es.znurt.org/dev-ada

73 http://mingw.sourceforge.net

23

http://www.gentoo.org/
http://es.znurt.org/dev-ada
http://mingw.sourceforge.net

Installing

old instructions
The following list should help you with the installation. (I may have forgotten something —

but this is wiki, just add to the list)

1. Install MinGW-3.1.0-1.exe
a) extract binutils-2.15.91-20040904-1.tar.gz
b) extract mingw-runtime-3.5.tar.gz
c) extract gcc-core-3.4.2-20040916-1.tar.gz
d) extract gcc-ada-3.4.2-20040916-1.tar.gz
e) extract gcc-g++-3.4.2-20040916-1.tar.gz (Optional)
f) extract gcc-g77-3.4.2-20040916-1.tar.gz (Optional)
g) extract gcc-java-3.4.2-20040916-1.tar.gz (Optional)
h) extract gcc-objc-3.4.2-20040916-1.tar.gz (Optional)
i) extract w32api-3.1.tar.gz

2. Install mingw32-make-3.80.0-3.exe (Optional)
3. Install gdb-5.2.1-1.exe (Optional)
4. Install MSYS-1.0.10.exe (Optional)
5. Install msysDTK-1.0.1.exe (Optional)

a) extract msys-automake-1.8.2.tar.bz2 (Optional)
b) extract msys-autoconf-2.59.tar.bz2 (Optional)
c) extract msys-libtool-1.5.tar.bz2 (Optional)

I have made good experience in using D:\MinGW as target directory for all installations
and extractions.

Also noteworthy is that the Windows version for GNAT from Libre is also based on MinGW.

In gcc-3.4.2-release_notes.txt from MinGW site reads: please check that the files in the
/lib/gcc/mingw32/3.4.2/adainclude and adalib directories are flagged as read-only. This
attribute is necessary to prevent them from being deleted when using gnatclean to clean a
project.

So be sure to do this.

SuSE Linux

All versions of SuSE Linux have a GNAT compiler included. SuSE versions 9.2 and higher
also contains ASIS, Florist and GLADE libraries. The following two packages are needed:

gnat

gnat-runtime

For SuSE version 12.1, the compiler is in the package

gcc46-ada

libada46

For 64 bit system you will need the 32 bit compatibility packages as well:

24

ICC from Irvine Compiler Corporation

gnat-32bit

gnat-runtime-32bit

Ubuntu

Ubuntu (and derivatives like Kubuntu, Xubuntu...) is a Debian-based Linux distribution,
thus the installation process described above74 can be used. Graphical package managers
like Synaptic or Adept can also be employed to select the Ada packages.

2.5 ICC from Irvine Compiler Corporation

Irvine Compiler Corporation75 provides native and cross compilers for various platforms.http:

//www.irvine.com/products.html The compiler and run-time system support development
of certified, safety-critical software.

Commercial, proprietary. No-cost evaluation is possible on request. Royalty-free redistribu-
tion of the run-time system is allowed.

2.6 Janus/Ada 83 and 95 from RR Software

RR Software76 offers native compilers for MS-DOS, Microsoft Windows and various Unix
and Unix-like systems, and a library for Windows GUI programming called CLAW. There
are academic, personal and professional editions, as well as support options.

Commercial but relatively cheap; proprietary.

2.7 MAXAda from Concurrent

Concurrent77 offers MAXAda78, an Ada 95 compiler for Linux/Xeon and PowerPC platforms,
and Ada bindings to POSIX and X/Motif.http://www.ccur.com/pdf/cpb-sw-maxada.pdf

Commercial, proprietary.

74 Chapter 2.4.8 on page 18
75 http://www.irvine.com/

76 http://www.rrsoftware.com

77 http://www.ccur.com/

78 http://www.ccur.com/products_rt_maxada.aspx

25

http://www.irvine.com/products.html
http://www.irvine.com/products.html
http://www.ccur.com/pdf/cpb-sw-maxada.pdf
http://www.irvine.com/
http://www.rrsoftware.com
http://www.ccur.com/
http://www.ccur.com/products_rt_maxada.aspx

Installing

2.8 ObjectAda from Atego (formerly Aonix)

Atego79 offers native and cross compilers for various platforms. They come with an IDE,
a debugger, a plug-in for Eclipse and a POSIX binding80 http://www.aonix.com/pdf/

oa-linux.pdf.

On Microsoft Windows and GNU/Linux on i386, Aonix offers two pricing models, at the
customer's option: either a perpetual license fee with optional support, or just the yearly
support fee: For Linux, that's $3000 for a single user or $12,000 for a 5-user service pack.
See the full press release81.

In addition, they offer "ObjectAda Special Edition": a no-cost evaluation version of ObjectAda
that limits the size of programs that can be compiled with it, but is otherwise fully functional,
with IDE and debugger. Free registration required82.

A recent contribution by Atego is ADT83 for Eclipse84. The Ada Development Tools add
Ada language support to the Eclipse open source development platform. ADT can be used
with Aonix compilers, and with GNAT. An open source vendor supported project is outlined
for ADT at Eclipse85. Codenamed Hibachi and showcased at the Ada Conference UK 2007
and during Ada-Europe 2007, the project has now been officially created86.

Commercial, proprietary.

2.9 PowerAda from OC Systems

OC Systems87 offers Ada compilers and bindings to POSIX and X-11:

• PowerAda88, an Ada 95 compiler for Linux and AIX,
• LegacyAda/39089, an Ada 83 compiler for IBM System 370 and 390 mainframes

Commercial, proprietary.

2.10 Rational Apex from Atego (formerly IBM Rational90)

Rational Apex91 for native and embedded development.

79 http://www.atego.com/

80 http://en.wikibooks.org/wiki/Ada%20Programming%2FPlatform%2FPOSIX

81 http://www.atego.com/pressreleases/pressitem/aonix-shatters-ada-price-barrier-for-linux

82 http://www.atego.com/support/eval-aonix-objectada/

83 http://www.aonix.com/adt.html

84 http://www.eclipse.org

85 http://www.eclipse.org/proposals/adt/

86 http://www.eclipse.org/hibachi/

87 http://www.ocsystems.com/

88 http://www.ocsystems.com/prod_powerada.html

89 http://www.ocsystems.com/prod_legacyada.html

90 Atego acquires IBM Rational Apex Ada Developer product family
91 http://www-306.ibm.com/software/awdtools/developer/ada/

26

http://www.aonix.com/pdf/oa-linux.pdf
http://www.aonix.com/pdf/oa-linux.pdf
http://www.atego.com/
http://en.wikibooks.org/wiki/Ada%20Programming%2FPlatform%2FPOSIX
http://www.atego.com/pressreleases/pressitem/aonix-shatters-ada-price-barrier-for-linux
http://www.atego.com/support/eval-aonix-objectada/
http://www.aonix.com/adt.html
http://www.eclipse.org
http://www.eclipse.org/proposals/adt/
http://www.eclipse.org/hibachi/
http://www.ocsystems.com/
http://www.ocsystems.com/prod_powerada.html
http://www.ocsystems.com/prod_legacyada.html
http://www-306.ibm.com/software/awdtools/developer/ada/

Commercial, proprietary.

2.11 SCORE from DDC-I

SCORE from DDC-I

DDC-I92 offers its SCORE cross-compilers for embedded development. SCORE stands for
Safety-Critical, Object-oriented, Real-time Embedded.

Commercial, proprietary.

2.12 XD Ada from SWEP-EDS

XD Ada from SWEP-EDS

XD Ada93 is an Ada 83 cross-compiler for embedded development. Hosts include VAX,
Alpha and Integrity Servers running OpenVMS. Targets include Motorola 68000 and MIL-
STD-1750A processors.

Commercial, proprietary.

2.13 XGC Ada from XGC Software

XGC Ada from XGC Software

XGC compilers are GCC with custom run-time libraries suitable for avionics and space
applications. The run-time kernels are very small and do not support exception propagation
(i.e. you can handle an exception only in the subprogram that raised it).

Commercial but some versions are also offered as free downloads. Free Software.

Languages supported Ada 83, Ada 95, C

License for the run-time
library

GNAT-Modified GPL

Native platforms none

92 http://www.ddci.com/

93 http://www.swep-eds.com/XD%20Ada/Xd%20ada.htm

27

http://www.ddci.com/
http://www.swep-eds.com/XD%20Ada/Xd%20ada.htm

Installing

Cross platforms Hosts: sun-sparc-solaris, pc-linux2.*; targets are
bare boards with ERC3294, MIL-STD-1750A95,
Motorola 6800096 family or Intel 32-bit97 proces-
sors. PowerPC98 and Intel 8018699 targets on
request.

Compiler back-end GCC 2.8.1

Available from http://www.xgc.com/

Support Commercial

Add-ons included Ravenscar-compliant run-time kernels, certified
for avionics and space applications; gdb cross-
debugger; target simulator.

2.14 References

References

94 http://en.wikipedia.org/wiki/ERC32

95 http://en.wikipedia.org/wiki/MIL-STD-1750A

96 http://en.wikipedia.org/wiki/Motorola_68000

97 http://en.wikipedia.org/wiki/IA_32

98 http://en.wikipedia.org/wiki/PowerPC

99 http://en.wikipedia.org/wiki/Intel_80186

28

http://www.xgc.com/
http://en.wikipedia.org/wiki/ERC32
http://en.wikipedia.org/wiki/MIL-STD-1750A
http://en.wikipedia.org/wiki/Motorola_68000
http://en.wikipedia.org/wiki/IA_32
http://en.wikipedia.org/wiki/PowerPC
http://en.wikipedia.org/wiki/Intel_80186

3 Building

Ada programs are usually easier to build than programs written in other languages like C
or C++, which frequently require a makefile. This is because an Ada source file already
specifies the dependencies of its source unit. See the with keyword1 for further details.

Building an Ada program is not defined by the Reference Manual, so this process is absolutely
dependent on the compiler. Usually the compiler kit includes a make tool which compiles a
main program and all its dependencies, and links an executable file.

3.1 Building with various compilers

Building with various compilers

This list is incomplete. You can help Wikibooks by adding the build information2 for other
compilers.

3.1.1 GNAT

With GNAT3, you can run this command:

gnat make <your_unit_file>

If the file contains a procedure, gnatmake will generate an executable file with the procedure
as main program. Otherwise, e.g. a package, gnatmake will compile the unit and all its
dependencies.

GNAT command line

gnatmake can be written as one word gnatmake or two words gnat make. For a full list
of gnat commands just type gnat without any command options. The output will look
something like this:

1 http://en.wikibooks.org/wiki/Ada%20Programming%2FKeywords%2Fwith

2 http://en.wikibooks.org/w/index.php?title=Ada_Programming/Building&action=edit

3 http://en.wikipedia.org/wiki/GNAT

29

http://en.wikibooks.org/wiki/Ada%20Programming%2FKeywords%2Fwith
http://en.wikibooks.org/w/index.php?title=Ada_Programming/Building&action=edit
http://en.wikipedia.org/wiki/GNAT

Building

GNAT 3.4.3 Copyright 1996-2004 Free Software Foundation, Inc.

List of available commands

GNAT BIND gnatbind

GNAT CHOP gnatchop

GNAT CLEAN gnatclean

GNAT COMPILE gnatmake -c -f -u

GNAT ELIM gnatelim

GNAT FIND gnatfind

GNAT KRUNCH gnatkr

GNAT LINK gnatlink

GNAT LIST gnatls

GNAT MAKE gnatmake

GNAT NAME gnatname

GNAT PREPROCESS gnatprep

GNAT PRETTY gnatpp

GNAT STUB gnatstub

GNAT XREF gnatxref

Commands FIND, LIST, PRETTY, STUB and XREF accept project file

switches -vPx, -Pprj and -Xnam=val

For further help on the option just type the command (one word or two words — as you
like) without any command options.

GNAT IDE

The GNAT toolchain comes with an IDE4 called GPS5. You need to download and install it
separately. The GPS features a graphical user interface6.

There are also GNAT plugins for Emacs7 (Ada Mode8), KDevelop9 and Vim10 (Ada
Mode11) available.

Both Emacs and Vim Ada-Mode are maintained by The GNU Ada project12.

GNAT with Xcode

Apple's free (gratis) IDE, Xcode, is included with every Macintosh but requires an explicit
installation step from DVD-ROM or CD-ROM. It is also downloadable from http://

developer.apple.com/. Xcode uses the GNU Compiler Collection13 and thus supports
Ada, GDB14, etc... and also includes myriad tools for optimizing code which are unique to

4 http://en.wikipedia.org/wiki/Integrated%20development%20environment

5 http://en.wikipedia.org/wiki/GNAT%20Programming%20Studio

6 http://en.wikipedia.org/wiki/Graphical%20user%20interface

7 http://en.wikipedia.org/wiki/Emacs

8 http://stephe-leake.org/emacs/ada-mode/emacs-ada-mode.html

9 http://en.wikipedia.org/wiki/KDevelop

10 http://en.wikipedia.org/wiki/Vim%20%28text%20editor%29

11 http://www.vim.org/scripts/script.php?script_id=1609

12 http://gnuada.sourceforge.net

13 http://en.wikipedia.org/wiki/GNU%20Compiler%20Collection

14 http://en.wikipedia.org/wiki/GNU%20Debugger

30

http://developer.apple.com/.
http://developer.apple.com/.
http://en.wikipedia.org/wiki/Integrated%20development%20environment
http://en.wikipedia.org/wiki/GNAT%20Programming%20Studio
http://en.wikipedia.org/wiki/Graphical%20user%20interface
http://en.wikipedia.org/wiki/Emacs
http://stephe-leake.org/emacs/ada-mode/emacs-ada-mode.html
http://en.wikipedia.org/wiki/KDevelop
http://en.wikipedia.org/wiki/Vim%20%28text%20editor%29
http://www.vim.org/scripts/script.php?script_id=1609
http://gnuada.sourceforge.net
http://en.wikipedia.org/wiki/GNU%20Compiler%20Collection
http://en.wikipedia.org/wiki/GNU%20Debugger

the Macintosh platform. However, GNAT must be installed separately as it is (as of 2008) not
distributed as part of Xcode. Get the binary and/or sources at http://www.macada.org/,

along with numerous tools and bindings including bindings to Apple's Carbon frameworks
which allow the development of complete, "real" Mac programs, all in Ada.

3.1.2 Rational APEX

Rational APEX is a complete development environment comprising a language sensitive
editor, compiler, debugger, coverage analyser, configuration management and much more.
You normally work with APEX running a GUI.

APEX has been built for the development of big programs. Therefore the basic entity
of APEX is a subsystem, a directory with certain traits recognized by APEX. All Ada
compilation units have to reside in subsystems.

You can define an export set, i.e. the set of Ada units visible to other subsystems. However for
a subsystem A to gain visibility to another subsystem B, A has to import B. After importing,
A sees all units in B's export set. (This is much like the with-clauses, but here visibility
means only potential visibility for Ada: units to be actually visible must be mentioned in
a with-clause of course; units not in the export set cannot be used in with-clauses of Ada
units in external subsystems.)

Normally subsystems should be hierarchically ordered, i.e. form a directed graph. But for
special uses, subsystems can also mutually import one another.

For configuration management, a subsystem is decomposed in views, subdirectories of the
subsystem. Views hold different development versions of the Ada units. So actually it's not
subsystems which import other subsystems, rather subsystem views import views of other
subsystems. (Of course, the closure of all imports must be consistent — it cannot be the
case that e.g. subsystem (A, view A1) imports subsystems (B, B1) and (C, C1), whereas (B,
B1) imports (C, C2)).

A view can be defined to be the development view. Other views then hold releases at
different stages.

Each Ada compilation unit has to reside in a file of its own. When compiling an Ada unit,
the compiler follows the with-clauses. If a unit is not found within the subsystem holding
the compile, the compiler searches the import list (only the direct imports are considered,
not the closure).

Units can be taken under version control. In each subsystem, a set of histories can be
defined. An Ada unit can be taken under control in a history. If you want to edit it, you first
have to check it out — it gets a new version number. After the changes, you can check it in
again, i.e. make the changes permanent (or you abandon your changes, i.e. go back to the
previous version). You normally check out units in the development view only; check-outs
in release views can be forbidden.

You can select which version shall be the active one; normally it is the one latest checked in.
You can even switch histories to get different development paths. e.g. different bodies of the
same specification for different targets.

31

http://www.macada.org/,

Building

3.1.3 ObjectAda

ObjectAda is a set of tools for editing, compiling, navigating and debugging programs
written in Ada. There are various editions of ObjectAda. With some editions you compile
programs for the same platform and operating systems on which you run the tools. These
are called native. With others, you can produce programs for different operating systems
and platforms. One possible platform is the Java virtual machine.

These remarks apply to the native Microsoft Windows edition. You can run the translation
tools either from the IDE or from the command line.

Whether you prefer to work from the IDE, or from the command line, a little bookkeeping is
required. This is done by creating a project. Each project consists of a number of source files,
and a number of settings like search paths for additional Ada libraries and other dependences.
Each project also has at least one target. Typically, there is a debug target, and a release
target. The names of the targets indicate their purpose. At one time you compile for
debugging, typically during development, at other times you compile with different settings,
for example when the program is ready for release. Some (all commercial?) editions of
ObjectAda permit a Java (VM) target.

3.1.4 DEC Ada for VMS

DEC Ada is an Ada 83 compiler for VMS15. While “DEC Ada” is probably the name most
users know, the compiler is now called “ HP Ada16”. It had previously been known also by
names of "VAX Ada" and "Compaq Ada".

DEC Ada uses a true library management system — so the first thing you need to do is
create and activate a library:

ACS Library Create [MyLibrary]

ACS Set Library [MyLibrary]

When creating a library you already set some constraints like support for Long_Float or
the available memory size. So carefully read

HELP ACS Library Create *

Then next step is to load your Ada sources into the library:

ACS Load [Source]*.ada

The sources don't need to be perfect at this stage but syntactically correct enough for the
compiler to determine the packages declared and analyze the with statements. Dec Ada
allows you to have more than one package in one source file and you have any filename

15 http://en.wikipedia.org/wiki/OpenVMS

16 http://h71000.www7.hp.com/commercial/ada/ada_index.html

32

http://en.wikipedia.org/wiki/OpenVMS
http://h71000.www7.hp.com/commercial/ada/ada_index.html

convention you like. The purpose of ACS Load is the creation of the dependency tree between
the source files.

Next you compile them:

ACS Compile *

Note that compile take the package name and not the filename. The wildcard * means all
packages loaded. The compiler automatically determines the right order for the compilation
so a make17 tool is not strictly needed.

Last but not least you link your file into an

ACS Link /Executable=[Executables]Main.exe Main

On large systems you might want to break sources down into several libraries — in which
case you also need

ACS Merge /Keep *

to merge the content of the current library with the library higher up the hierarchy. The
larger libraries should then be created with:

ACS Library Create /Large

This uses a different directory layout more suitable for large libraries.

DEC Ada IDE

Dec Ada comes without an IDE, however the DEC LSE18 as well as the Ada Mode19 of the
Vim text editor20 support DEC Ada.

3.2 Compiling our Demo Source

Compiling our Demo Source

Once you have downloaded21 our example programs you might wonder how to compile
them.

17 http://en.wikipedia.org/wiki/make%20%28software%29

18 http://en.wikipedia.org/wiki/Language-Sensitive_Editor

19 http://www.vim.org/scripts/script.php?script_id=1609

20 http://en.wikipedia.org/wiki/Vim%20%28text%20editor%29

21 https://sourceforge.net/project/showfiles.php?group_id=124904

33

http://en.wikipedia.org/wiki/make%20%28software%29
http://en.wikipedia.org/wiki/Language-Sensitive_Editor
http://www.vim.org/scripts/script.php?script_id=1609
http://en.wikipedia.org/wiki/Vim%20%28text%20editor%29
https://sourceforge.net/project/showfiles.php?group_id=124904

Building

First you need to extract the sources. Use your favorite zip tool22 to achieve that. On
extraction a directory with the same name as the filename is created. Beware: WinZip might
also create a directory equaling the filename so Windows users need to be careful using the
right option otherwise they end up with wikibook-ada-1_2_0.src\wikibook-ada-1_2_0.

Once you extracted the files you will find all sources in wikibook-ada-1_2_0/Source. You
could compile them right there. For your convenience we also provide ready made project
files for the following IDEs (If you find a directory for an IDEs not named it might be in the
making and not actually work).

3.2.1 GNAT

You will find multi-target GNAT Project files and a multi-make Makefile file in wikibook-
ada-2_0_0/GNAT. For i686 Linux and Windows you can compile any demo using:

gnat make -P project_file

You can also open them inside the GPS with

gps -P project_file

For other target platform it is a bit more difficult since you need to tell the project files
which target you want to create. The following options can be used:

style ("Debug", "Release")

you can define if you like a debug or release version so you can compare how the options
affect size and speed.

os ("Linux", "OS2", "Windows_NT", "VMS")

choose your operating system. Since there is no Ada 2005 available for OS/2 don't expect
all examples to compile.

target ("i686", "x86_64", "AXP")

choose your CPU — "i68623" is any form of 32bit Intel or AMD CPU, "x86_6424" is an 64
bit Intel or AMD CPU and if you have an "AXP25" then you know it.

Remember to type all options as they are shown. To compile a debug version on x86-64
Linux you type:

gnat make -P project_file -Xstyle=Debug -Xos=Linux -Xtarget=x86_64

22 http://en.wikipedia.org/wiki/ZIP%20%28file%20format%29

23 http://en.wikipedia.org/wiki/x86

24 http://en.wikipedia.org/wiki/x86-64

25 http://en.wikipedia.org/wiki/DEC%20Alpha

34

http://en.wikipedia.org/wiki/ZIP%20%28file%20format%29
http://en.wikipedia.org/wiki/x86
http://en.wikipedia.org/wiki/x86-64
http://en.wikipedia.org/wiki/DEC%20Alpha

As said in the beginning there is also a makefile available that will automatically determine
the target used. So if you have a GNU make you can save yourself a lot of typing by using:

make project

or even use

make all

to make all examples in debug and release in one go.

Each compile is stored inside its own directory which is created in the form of wikibook-ada-
2_0_0/GNAT/OS-Target-Style. Empty directories are provided inside the archive.

3.2.2 Rational APEX

APEX uses the subsystem and view directory structure, so you will have to create those first
and copy the source files into the view. After creating a view using the architecture model
of your choice, use the menu option "Compile -> Maintenance -> Import Text Files". In the
Import Text Files dialog, add "wikibook-ada-2_0_0/Source/*.ad?" to select the Ada source
files from the directory you originally extracted to. Apex uses the file extensions .1.ada for
specs and .2.ada for bodies — don't worry, the import text files command will change these
automatically.

To link an example, select its main subprogram in the directory viewer and click the link
button in the toolbar, or "Compile -> Link" from the menu. Double-click the executable to
run it. You can use the shift-key modifier to bypass the link or run dialog.

3.2.3 ObjectAda

ObjectAda command-line

The following describes using the ObjectAda tools for Windows in a console window.

Before you can use the ObjectAda tools from the command line, make sure the PATH

environment variable lists the directory containing the ObjectAda tools. Something like

set path=%path%;P:\Programs\Aonix\ObjectAda\bin

A minimal ObjectAda project can have just one source
file. like the Hello World program provided in

File: hello_world_1.adb

To build an executable from this source file, follow these steps (assuming the current directory
is a fresh one and contains the above mentioned source file):

35

Building

• Register your source files:

X:\some\directory> adareg hello_world_1.adb

This makes your sources known to the ObjectAda tools. Have a look at the file UNIT.MAP
created by adareg in the current directory if you like seeing what is happening under the
hood.

• Compile the source file:

X:\some\directory> adacomp hello_world_1.adb

Front end of hello_world_1.adb succeeded with no errors.

• Build the executable program:

X:\some\directory> adabuild hello_world_1

ObjectAda Professional Edition Version 7.2.2: adabuild

Copyright (c) 1997-2002 Aonix. All rights reserved.

Linking...

Link of hello completed successfully

Notice that you specify the name of the main unit as argument to adabuild, not the name
of the source file. In this case, it is Hello_World_1 as in

procedure Hello_World_1 is

More information about the tools can be found in the user guide Using the command line
interface, installed with the ObjectAda tools.

3.3 External links

External links

• GNAT Online Documentation:
• GNAT User's Guide26

• DEC Ada:
• Developing Ada Products on OpenVMS27 (PDF)
• DEC Ada — Language Reference Manual28 (PDF)
• DEC Ada — Run-Time Reference29 (PDF)

26 http://gcc.gnu.org/onlinedocs/gcc-4.0.1/gnat_ugn_unw/

27 http://h71000.www7.hp.com/commercial/ada/ada_dap.pdf

28 http://h71000.www7.hp.com/commercial/ada/ada_lrm.pdf

29 http://h71000.www7.hp.com/commercial/ada/ada_rtr.pdf

36

http://gcc.gnu.org/onlinedocs/gcc-4.0.1/gnat_ugn_unw/
http://h71000.www7.hp.com/commercial/ada/ada_dap.pdf
http://h71000.www7.hp.com/commercial/ada/ada_lrm.pdf
http://h71000.www7.hp.com/commercial/ada/ada_rtr.pdf

4 Control Statements

4.1 Conditionals

Conditionals

Conditional clauses are blocks of code that will only execute if a particular expression (the
condition) is true1.

4.1.1 if-else

The if-else statement is the simplest of the conditional statements. They are also called
branches, as when the program arrives at an if statement during its execution, control will
"branch" off into one of two or more "directions". An if-else statement is generally in the
following form:

if condition then

statement;

else

other statement;

end if;

If the original condition is met, then all the code within the first statement is executed.
The optional else section specifies an alternative statement that will be executed if the
condition is false. Exact syntax will vary between programming languages, but the majority
of programming languages (especially procedural2 and structured3 languages) will have some
form of if-else conditional statement built-in. The if-else statement can usually be extended
to the following form:

if condition then

statement;

elsif condition then

other statement;

elsif condition then

other statement;

...

else

another statement;

end if;

1 http://en.wikipedia.org/wiki/Truth%20function

2 http://en.wikibooks.org/wiki/Computer%20Programming%2FProcedural%20programming

3 http://en.wikibooks.org/wiki/Computer%20Programming%2FStructured%20programming

37

http://en.wikipedia.org/wiki/Truth%20function
http://en.wikibooks.org/wiki/Computer%20Programming%2FProcedural%20programming
http://en.wikibooks.org/wiki/Computer%20Programming%2FStructured%20programming

Control Statements

Only one statement in the entire block will be executed. This statement will be the first one
with a condition which evaluates to be true. The concept of an if-else-if structure is easier
to understand with the aid of an example:

with Ada ;

use Ada ;

...

type Degrees is new Float range -273.15 .. Float'Last;

...

Temperature : Degrees;

...

if Temperature >= 40.0 then

Put_Line ("Wow!");

Put_Line ("It's extremely hot");

elsif Temperature >= 30.0 then

Put_Line ("It's hot");

elsif Temperature >= 20.0 then

Put_Line ("It's warm");

elsif Temperature >= 10.0 then

Put_Line ("It's cool");

elsif Temperature >= 0.0 then

Put_Line ("It's cold");

else

Put_Line ("It's freezing");

end if;

4.1.2 Optimizing hints

When this program executes, the computer will check all conditions in order until one of
them matches its concept of truth. As soon as this occurs, the program will execute the
statement immediately following the condition and continue on, without checking any other
condition for truth. For this reason, when you are trying to optimize4 a program, it is a
good idea to sort your if-else conditions in descending probability5. This will ensure that in
the most common scenarios, the computer has to do less work, as it will most likely only
have to check one or two "branches" before it finds the statement which it should execute.
However, when writing programs for the first time, try not to think about this too much
lest you find yourself undertaking premature optimization6.

Having said all that, you should be aware that an optimizing compiler7 might rearrange
your if statement at will when the statement in question is free from side effects8. Among
other techniques optimizing compilers might even apply jump tables9 and binary searches10.

In Ada, conditional statements with more than one conditional do not use short-circuit
evaluation by default. In order to mimic C/C++'s short-circuit evaluation, use and then

or or else between the conditions.

4 http://en.wikipedia.org/wiki/Optimization_%2528computer_science%2529

5 http://en.wikibooks.org/wiki/Probability%2FIntroduction

6 http://en.wikipedia.org/wiki/Premature_optimization%23When_to_optimize

7 http://en.wikipedia.org/wiki/Optimizing_compiler

8 http://en.wikipedia.org/wiki/Side-effect_%28computer_science%29

9 http://en.wikipedia.org/wiki/Jump_table

10 http://en.wikipedia.org/wiki/Binary_search

38

http://en.wikipedia.org/wiki/Optimization_%2528computer_science%2529
http://en.wikibooks.org/wiki/Probability%2FIntroduction
http://en.wikipedia.org/wiki/Premature_optimization%23When_to_optimize
http://en.wikipedia.org/wiki/Optimizing_compiler
http://en.wikipedia.org/wiki/Side-effect_%28computer_science%29
http://en.wikipedia.org/wiki/Jump_table
http://en.wikipedia.org/wiki/Binary_search

4.1.3 case

Often it is necessary to compare one specific variable against several constant expressions.
For this kind of conditional expression the case statement exists. For example:

case X is

when 1 =>

Walk_The_Dog;

when 5 =>

Launch_Nuke;

when 8 | 10 =>

Sell_All_Stock;

when others =>

Self_Destruct;

end case;

The subtype of X must be a discrete type, i.e. an enumeration or integer type.

In Ada, one advantage of the case statement is that the compiler will check the coverage of
the choices, that is, all the values of the subtype of variable X must be present or a default
branch when others must specify what to do in the remaining cases.

4.2 Unconditionals

Unconditionals

Unconditionals let you change the flow of your program without a condition. You should be
careful when using unconditionals. Often they make programs difficult to understand. Read
Isn't goto evil?11 for more information.

4.2.1 return

End a function and return to the calling procedure or function.

For procedures:

return;

For functions:

11 Chapter 4.2 on page 39

39

Control Statements

return Value;

4.2.2 goto

Goto transfers control to the statement after the label.

goto Label;

Dont_Do_Something;

<< Label>>

...

Isn't goto evil?

One often hears that goto is evil and one should avoid using goto. But it is often overlooked
that any return which is not the last statement inside a procedure or function is also an
unconditional statement — a goto in disguise. There is an important difference though: a
return is a forward only use of goto. Exceptions are also a type of goto statement; worse,
they need not specify where they are going to!

Therefore if you have functions and procedures with more than one return statement you
can just as well use goto. When it comes down to readability the following two samples are
almost the same:

procedure Use_Return is

begin

Do_Something;

if Test then

return;

end if;

Do_Something_Else;

return;

end Use_Return;

procedure Use_Goto is

begin

Do_Something;

if Test then

goto Exit_Use_Goto;

end if;

Do_Something_Else;

<< Exit_Use_Goto>>

return;

end Use_Goto;

Because the use of a goto needs the declaration of a label, the goto is in fact twice as readable
than the use of return. So if readability is your concern and not a strict "don't use goto"

40

programming rule then you should rather use goto than multiple returns. Best, of course, is
the structured approach where neither goto nor multiple returns are needed:

procedure Use_If is

begin

Do_Something;

if not Test then

Do_Something_Else;

end if;

return;

end Use_If;

4.3 Loops

Loops

Loops allow you to have a set of statements repeated over and over again.

4.3.1 Endless Loop

The endless loop is a loop which never ends and the statements inside are repeated forever.
Never is meant as a relative term here — if the computer is switched off then even endless
loops will end very abruptly.

Endless_Loop :

loop

Do_Something;

end loop Endless_Loop;

The loop name (in this case, "Endless_Loop") is an optional feature of Ada. Naming loops
is nice for readability but not strictly needed. Loop names are useful though if the program
should jump out of an inner loop, see below.

4.3.2 Loop with condition at the beginning

This loop has a condition at the beginning. The statements are repeated as long as the
condition is met. If the condition is not met at the very beginning then the statements
inside the loop are never executed.

While_Loop :

while X <= 5 loop

X := Calculate_Something;

end loop While_Loop;

41

Control Statements

4.3.3 Loop with condition at the end

This loop has a condition at the end and the statements are repeated until the condition is
met. Since the check is at the end the statements are at least executed once.

Until_Loop :

loop

X := Calculate_Something;

exit Until_Loop when X > 5;

end loop Until_Loop;

4.3.4 Loop with condition in the middle

Sometimes you need to first make a calculation and exit the loop when a certain criterion is
met. However when the criterion is not met there is something else to be done. Hence you
need a loop where the exit condition is in the middle.

Exit_Loop :

loop

X := Calculate_Something;

exit Exit_Loop when X > 5;

Do_Something (X);

end loop Exit_Loop;

In Ada the exit condition can be combined with any other loop statement as well. You can
also have more than one exit statement. You can also exit a named outer loop if you have
several loops inside each other.

4.3.5 for loop

Quite often one needs a loop where a specific variable is counted from a given start value up
or down to a specific end value. You could use the while12 loop here — but since this is a
very common loop there is an easier syntax available.

For_Loop :

for I in Integer range 1 .. 10 loop

Do_Something (I)

end loop For_Loop;

You don't have to declare both type and range as seen in the example. If you leave out the
type then the compiler will determine the type by context and leave out the range then the
loop will iterate over every valid value for the type given.

12 Chapter 4.3.5 on page 42

42

As always with Ada: when "determine by context" gives two or more possible options then
an error will be displayed and then you have to name the type to be used. Ada will only do
"guess-works" when it is safe to do so.

for loop on arrays

Another very common situation is the need for a loop which iterates over every element of
an array. The following sample code shows you how to achieve this:

Array_Loop :

for I in X'Range loop

X (I) := Get_Next_Element;

end loop Array_Loop;

With X being an array. Note: This syntax is mostly used on arrays — hence the name —
but will also work with other types when a full iteration is needed.

Unlike other loop counters, the loop counter i, in the for loop statement the value cannot be
changed. The following is illegal.

for i in 1 .. 10 loop

i := i + 1;

end loop;

Also the declaration of the loop counter ceases after the body of the loop.

Working Demo

The following Demo shows how to iterate over every element of an integer type.

File: range_1.adb

with Ada ;

procedure Range_1 is

type Range_Type is range -5 .. 10;

package T_IO renames Ada ;

package I_IO is new Ada (Range_Type);

begin

for A in Range_Type loop

I_IO.Put (Item => A,

Width => 3,

Base => 10);

if A < Range_Type'Last then

T_IO.Put (",");

else

T_IO.New_Line;

end if;

43

Control Statements

end loop;

end Range_1;

4.4 See also

See also

4.4.1 Wikibook

• Ada Programming13

4.4.2 Ada Reference Manual

• 5.3 If Statements ˆ{http://www.adaic.org/resources/add_content/standards/

05rm/html/RM-5-3.html}

• 5.4 Case Statements ˆ{http://www.adaic.org/resources/add_content/standards/

05rm/html/RM-5-4.html}

• 5.5 Loop Statements ˆ{http://www.adaic.org/resources/add_content/standards/

05rm/html/RM-5-5.html}

• 5.6 Block Statements ˆ{http://www.adaic.org/resources/add_content/standards/

05rm/html/RM-5-6.html}

• 5.7 Exit Statements ˆ{http://www.adaic.org/resources/add_content/standards/

05rm/html/RM-5-7.html}

• 5.8 Goto Statements ˆ{http://www.adaic.org/resources/add_content/standards/

05rm/html/RM-5-8.html}

• 6.5 Return Statements ˆ{http://www.adaic.org/resources/add_content/

standards/05rm/html/RM-6-5.html}

13 http://en.wikibooks.org/wiki/Ada%20Programming

44

http://www.adaic.org/resources/add_content/standards/05rm/html/RM-5-3.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-5-3.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-5-4.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-5-4.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-5-5.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-5-5.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-5-6.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-5-6.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-5-7.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-5-7.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-5-8.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-5-8.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-6-5.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-6-5.html
http://en.wikibooks.org/wiki/Ada%20Programming

5 Type System

Ada's type system allows the programmer to construct powerful abstractions that represent
the real world, and to provide valuable information to the compiler, so that the compiler can
find many logic or design errors before they become bugs. It is at the heart of the language,
and good Ada programmers learn to use it to great advantage. Four principles govern the
type system:

• Strong typing: types are incompatible with one another, so it is not possible to mix
apples and oranges. There are, however, ways to convert between types.

• Static typing: type checked while compiling, this allows type errors to be found earlier.
• Abstraction: types represent the real world or the problem at hand; not how the

computer represents the data internally. There are ways to specify exactly how a type
must be represented at the bit level, but we will defer that discussion to another chapter.

• Name equivalence, as opposed to structural equivalence used in most other languages.
Two types are compatible if and only if they have the same name; not if they just happen
to have the same size or bit representation. You can thus declare two integer types with
the same ranges that are totally incompatible, or two record types with exactly the same
components, but which are incompatible.

Types are incompatible with one another. However, each type can have any number of
subtypes, which are compatible with one another, and with their base type.

5.1 Predefined types

Predefined types

There are several predefined types, but most programmers prefer to define their own,
application-specific types. Nevertheless, these predefined types are very useful as interfaces
between libraries developed independently. The predefined library, obviously, uses these
types too.

These types are predefined in the Standard package:

Integer

This type covers at least the range −215 +1 .. +215 −1 (RM 3.5.4 (21) ˆ{http://www.adaic.

org/resources/add_content/standards/05rm/html/RM-3-5-4.html}). The Standard
also defines Natural and Positive subtypes of this type.

Float

There is only a very weak implementation requirement on this type (RM 3.5.7 (14) ˆ{http:

//www.adaic.org/resources/add_content/standards/05rm/html/RM-3-5-7.html});

45

http://www.adaic.org/resources/add_content/standards/05rm/html/RM-3-5-4.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-3-5-4.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-3-5-7.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-3-5-7.html

Type System

most of the time you would define your own floating-point types, and specify your precision
and range requirements.

Duration

A fixed point type1 used for timing. It represents a period of time in sec-
onds (RM A.1 (43) ˆ{http://www.adaic.org/resources/add_content/standards/

05rm/html/RM-A-1.html}).

Character

A special form of Enumerations2. There are three predefined kinds of character types:
8-bit characters (called Character), 16-bit characters (called Wide_Character), and 32-bit
characters (Wide_Wide_Character). Character has been present since the first version of
the language (Ada 833), Wide_Character was added in Ada 954, while the type Wide_-
Wide_Character is available with Ada 20055.

String6

Three indefinite array types7, of Character, Wide_Character, and Wide_Wide_Character
respectively. The standard library contains packages for handling strings in three variants:
fixed length (Ada), with varying length below a certain upper bound (Ada), and unbounded
length (Ada). Each of these packages has a Wide_and a Wide_Wide_variant.

Boolean

A Boolean in Ada is an Enumeration8 of False and True with special semantics.

Packages System and System predefine some types which are primarily useful for low-level
programming and interfacing to hardware.

System.Address

An address in memory.

System.Storage_Elements.Storage_Offset

An offset, which can be added to an address to obtain a new address. You can also
subtract one address from another to get the offset between them. Together, Address,
Storage_Offset and their associated subprograms provide for address arithmetic.

System.Storage_Elements.Storage_Count

A subtype of Storage_Offset which cannot be negative, and represents the memory size of
a data structure (similar to C's size_t).

System.Storage_Elements.Storage_Element

1 Chapter 10 on page 79
2 Chapter 8 on page 73
3 http://en.wikibooks.org/wiki/Ada%20Programming%2FAda%2083

4 http://en.wikibooks.org/wiki/Ada%20Programming%2FAda%2095

5 Chapter 23 on page 219
6 Chapter 15 on page 119
7 Chapter 11 on page 83
8 Chapter 8 on page 73

46

http://www.adaic.org/resources/add_content/standards/05rm/html/RM-A-1.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-A-1.html
http://en.wikibooks.org/wiki/Ada%20Programming%2FAda%2083
http://en.wikibooks.org/wiki/Ada%20Programming%2FAda%2095

In most computers, this is a byte. Formally, it is the smallest unit of memory that has an
address.

System.Storage_Elements.Storage_Array

An array of Storage_Elements without any meaning, useful when doing raw memory access.

5.2 The Type Hierarchy

The Type Hierarchy

Types are organized hierarchically. A type inherits properties from types above it in the
hierarchy. For example, all scalar types (integer, enumeration, modular, fixed-point and
floating-point types) have operators9 "<", ">" and arithmetic operators defined for them, and
all discrete types can serve as array indexes.

Figure 1 Ada type hierarchy

9 Chapter 37 on page 301

47

Type System

Here is a broad overview of each category of types; please follow the links for detailed
explanations. Inside parenthesis there are equivalences in C and Pascal for readers familiar
with those languages.

Signed Integers10 (int, INTEGER)

Signed Integers are defined via the range11 of values needed.

Unsigned Integers12 (unsigned, CARDINAL)

Unsigned Integers are called Modular Types13. Apart from being unsigned they also have
wrap-around functionality.

Enumerations14 (enum, char, bool, BOOLEAN)

Ada Enumeration15 types are a separate type family.

Floating point16 (float, double, REAL)

Floating point types are defined by the digits17 needed, the relative error bound.

Ordinary and Decimal Fixed Point18 (DECIMAL)

Fixed point types are defined by their delta19, the absolute error bound.

Arrays20 ([], ARRAY [] OF, STRING)

Arrays with both compile-time and run-time determined size are supported.

Record21 (struct, class, RECORD OF)

A record is a composite type22 that groups one or more fields.

Access23 (*, ˆ, POINTER TO)

Ada's Access24 types may be more than just a simple memory address.

Task & Protected25 (no equivalence in C or Pascal)

Task and Protected types allow the control of concurrency

Interfaces26 (no equivalence in C or Pascal)

10 Chapter 6 on page 69
11 Chapter 6 on page 69
12 Chapter 7 on page 71
13 Chapter 7 on page 71
14 Chapter 8 on page 73
15 Chapter 8 on page 73
16 Chapter 9 on page 77
17 Chapter 9 on page 77
18 Chapter 10 on page 79
19 Chapter 10 on page 79
20 Chapter 11 on page 83
21 Chapter 12 on page 91
22 http://en.wikibooks.org/wiki/Ada%20Programming%2FTypes%23List%20of%20types

23 Chapter 13 on page 99
24 Chapter 13 on page 99
25 Chapter 21 on page 173
26 http://en.wikibooks.org/wiki/Ada%20Programming%2FKeywords%2Finterface

48

http://en.wikibooks.org/wiki/Ada%20Programming%2FTypes%23List%20of%20types
http://en.wikibooks.org/wiki/Ada%20Programming%2FKeywords%2Finterface

New in Ada 2005, these types are similar to the Java interfaces.

5.2.1 Classification of Types

The types of this hierarchy can be classified as follows.

Specific vs. Class-wide

type T is ... -- specific

T'Class -- class-wide

Operations of specific types are non-dispatching, those on class-wide types are dispatching.

New types can be declared by deriving from specific types; primitive operations are inherited
by derivation. You cannot derive from class-wide types.

Constrained vs. Unconstrained

type I is range 1 .. 10; -- constrained

type AC is array (1 .. 10) of ... -- constrained

type AU is array (I range <>) of ... -- unconstrained

type R (X: Discriminant [:= Default]) is ... -- unconstrained

By giving a constraint to an unconstrained subtype, a subtype or object becomes constrained:

subtype RC is R (Value); -- constrained subtype of R

OC: R (Value); -- constrained object of anonymous

constrained subtype of R

OU: R; -- unconstrained object

Declaring an unconstrained object is only possible if a default value is given in the type
declaration above. The language does not specify how such objects are allocated. GNAT
allocates the maximum size, so that size changes that might occur with discriminant changes
present no problem. Another possibility is implicit dynamic allocation on the heap and
deallocation followed be a re-allocation when the size changes.

Definite vs. Indefinite

type I is range 1 .. 10; -- definite

type RD (X: Discriminant := Default) is ... -- definite

type T (<>) is ... -- indefinite

type AU is array (I range <>) of ... -- indefinite

type RI (X: Discriminant) is ... -- indefinite

Definite subtypes allow the declaration of objects without initial value, since objects of
definite subtypes have constraints that are known at creation-time. Object declarations of
indefinite subtypes need an initial value to supply a constraint; they are then constrained by

49

Type System

the constraint delivered by the initial value.

OT: T := Expr; -- some initial expression

(object, function call, etc.)

OA: AU := (3 => 10, 5 => 2, 4 => 4); -- index range is now 3 .. 5

OR: RI := Expr; -- again some initial

expression as above

Unconstrained vs. Indefinite

Note that unconstrained subtypes are not necessarily indefinite as can be seen above with
RD: it is a definite unconstrained subtype.

5.3 Concurrency Types

Concurrency Types

The Ada language uses types for one more purpose in addition to classifying data + operations.
The type system integrates concurrency (threading, parallelism). Programmers will use
types for expressing the concurrent threads of control of their programs.

The core pieces of this part of the type system, the task types and the protected types
are explained in greater depth in a section on tasking27.

5.4 Limited Types

Limited Types

Limiting a type means disallowing assignment. The “concurrency types” described above
are always limited. Programmers can define their own types to be limited, too, like this:

type T is limited . . .;

(The ellipsis stands for private, or for a record definition, see the corresponding subsection
on this page.) A limited type also doesn't have an equality operator unless the programmer
defines one.

You can learn more in the limited types28 chapter.

5.5 Defining new types and subtypes

27 Chapter 21 on page 173
28 Chapter 14 on page 113

50

Defining new types and subtypes

You can define a new type with the following syntax:

type T is...

followed by the description of the type, as explained in detail in each category of type.

Formally, the above declaration creates a type and its first subtype named T. The type itself,
correctly called the "type of T", is anonymous; the RM refers to it as T (in italics), but often
speaks sloppily about the type T. But this is an academic consideration; for most purposes,
it is sufficient to think of T as a type. For scalar types, there is also a base type called
T'Base, which encompasses all values of T.

For signed integer types, the type of T comprises the (complete) set of mathematical integers.
The base type is a certain hardware type, symmetric around zero (except for possibly one
extra negative value), encompassing all values of T.

As explained above, all types are incompatible; thus:

type Integer_1 is range 1 .. 10;

type Integer_2 is range 1 .. 10;

A : Integer_1 := 8;

B : Integer_2 := A; --illegal!

is illegal, because Integer_1 and Integer_2 are different and incompatible types. It is this
feature which allows the compiler to detect logic errors at compile time, such as adding a
file descriptor to a number of bytes, or a length to a weight. The fact that the two types
have the same range does not make them compatible: this is name equivalence in action,
as opposed to structural equivalence. (Below, we will see how you can convert between
incompatible types; there are strict rules for this.)

5.5.1 Creating subtypes

You can also create new subtypes of a given type, which will be compatible with each other,
like this:

type Integer_1 is range 1 .. 10;

subtype Integer_2 is Integer_1 range 7 .. 11; --bad

subtype Integer_3 is Integer_1'Base range 7 .. 11; --OK

A : Integer_1 := 8;

B : Integer_3 := A; --OK

The declaration of Integer_2 is bad because the constraint 7 .. 11 is not compatible
with Integer_1; it raises Contraint_Error at subtype elaboration time.

Integer_1 and Integer_3 are compatible because they are both subtypes of the same type,
namely Integer_1'Base.

51

Type System

It is not necessary that the subtype ranges overlap, or be included in one another. The
compiler inserts a run-time range check when you assign A to B; if the value of A, at that
point, happens to be outside the range of Integer_3, the program raises Constraint_Error.

There are a few predefined subtypes which are very useful:

subtype Natural is Integer range 0 .. Integer'Last;

subtype Positive is Integer range 1 .. Integer'Last;

5.5.2 Derived types

A derived type is a new, full-blown type created from an existing one. Like any other type,
it is incompatible with its parent; however, it inherits the primitive operations defined for
the parent type.

type Integer_1 is range 1 .. 10;

type Integer_2 is new Integer_1 range 2 .. 8;

A : Integer_1 := 8;

B : Integer_2 := A; --illegal!

Here both types are discrete; it is mandatory that the range of the derived type be included
in the range of its parent. Contrast this with subtypes. The reason is that the derived type
inherits the primitive operations defined for its parent, and these operations assume the
range of the parent type. Here is an illustration of this feature:

procedure Derived_Types is

package Pak is

type Integer_1 is range 1 .. 10;

procedure P (I: in Integer_1); --primitive operation, assumes 1 .. 10

type Integer_2 is new Integer_1 range 8 .. 10; --must not break P's assumption

--procedure P (I: in Integer_2); inherited P implicitly defined here

end Pak;

package body Pak is

--omitted

end Pak;

use Pak;

A: Integer_1 := 4;

B: Integer_2 := 9;

begin

P (B); --OK, call the inherited operation

end Derived_Types;

When we call P (B), the parameter B is converted to Integer_1; this conversion of course
passes since the set of acceptable values for the derived type (here, 8 .. 10) must be included
in that of the parent type (1 .. 10). Then P is called with the converted parameter.

52

Consider however a variant of the example above:

procedure Derived_Types is

package Pak is

type Integer_1 is range 1 .. 10;

procedure P (I: in Integer_1; J: out Integer_1);

type Integer_2 is new Integer_1 range 8 .. 10;

end Pak;

package body Pak is

procedure P (I: in Integer_1; J: out Integer_1) is

begin

J := I - 1;

end P;

end Pak;

use Pak;

A: Integer_1 := 4; X: Integer_1;

B: Integer_2 := 8; Y: Integer_2;

begin

P (A, X);

P (B, Y);

end Derived_Types;

When P (B, Y) is called, both parameters are converted to Integer_1. Thus the range
check on J (7) in the body of P will pass. However on return parameter Y is converted back
to Integer_2 and the range check on Y will of course fail.

With the above in mind, you will see why in the following program Constraint_Error will
be called at run time.

procedure Derived_Types is

package Pak is

type Integer_1 is range 1 .. 10;

procedure P (I: in Integer_1; J: out Integer_1);

type Integer_2 is new Integer_1'Base range 8 .. 12;

end Pak;

package body Pak is

procedure P (I: in Integer_1; J: out Integer_1) is

begin

J := I - 1;

end P;

end Pak;

use Pak;

B: Integer_2 := 11; Y: Integer_2;

begin

P (B, Y);

end Derived_Types;

53

Type System

5.6 Subtype categories

Subtype categories

Ada supports various categories of subtypes which have different abilities. Here is an overview
in alphabetical order.

5.6.1 Anonymous subtype

A subtype which does not have a name assigned to it. Such a subtype is created with a
variable declaration:

X : String (1 .. 10) := (others => ' ');

Here, (1 .. 10) is the constraint. This variable declaration is equivalent to:

subtype Anonymous_String_Type is String (1 .. 10);

X : Anonymous_String_Type := (others => ' ');

5.6.2 Base type

In Ada, all types are anonymous29 and only subtypes may be named30. For scalar types,
there is a special subtype of the anonymous type, called the base type, which is nameable
with the 'Base attribute. The base type comprises all values of the first subtype. Some
examples:

type Int is range 0 .. 100;

The base type Int'Base is a hardware type selected by the compiler that comprises
the values of Int. Thus it may have the range -27 .. 27-1 or -215 .. 215-1 or any other such type.

type Enum is (A, B, C, D);

type Short is new Enum range A .. C;

Enum'Base is the same as Enum, but Short'Base also holds the literal D.

29 Chapter 5.11.1 on page 67
30 Chapter 5.6.6 on page 56

54

5.6.3 Constrained subtype

A subtype of an indefinite subtype31 that adds constraints. The following example defines a
10 character string sub-type.

subtype String_10 is String (1 .. 10);

You cannot partially constrain an unconstrained subtype:

type My_Array is array (Integer range <>, Integer range <>) of Some_Type;

-- subtype Constr is My_Array (1 .. 10, Integer range <>); illegal

subtype Constr is My_Array (1 .. 10, -100 .. 200);

Constraints for all indices must be given, the result is necessarily a definite subtype32.

5.6.4 Definite subtype

A definite subtype33 is a subtype whose size is known at compile-time. All subtypes which
are not indefinite subtypes34 are, by definition, definite subtypes35.

Objects of definite subtypes may be declared without additional constraints.

5.6.5 Indefinite subtype

An indefinite subtype is a subtype whose size is not known at compile-time but is
dynamically calculated at run-time. An indefinite subtype does not by itself provide enough
information to create an object; an additional constraint or explicit initialization expression
is necessary in order to calculate the actual size and therefore create the object.

X : String := "This is a string";

X is an object of the indefinite (sub)type String. Its constraint is derived implicitly from its
initial value. X may change its value, but not its bounds.

It should be noted that it is not necessary to initialize the object from a literal. You can
also use a function. For example:

31 http://en.wikibooks.org/wiki/ada%20Programming%2FSubtypes%23indefinite_subtype

32 http://en.wikibooks.org/wiki/ada%20Programming%2FSubtypes%23definite_subtype

33 http://en.wikibooks.org/wiki/ada%20Programming%2FSubtypes%23definite_subtype

34 http://en.wikibooks.org/wiki/ada%20Programming%2FSubtypes%23indefinite_subtype

35 http://en.wikibooks.org/wiki/ada%20Programming%2FSubtypes%23definite_subtype

55

http://en.wikibooks.org/wiki/ada%20Programming%2FSubtypes%23indefinite_subtype
http://en.wikibooks.org/wiki/ada%20Programming%2FSubtypes%23definite_subtype
http://en.wikibooks.org/wiki/ada%20Programming%2FSubtypes%23definite_subtype
http://en.wikibooks.org/wiki/ada%20Programming%2FSubtypes%23indefinite_subtype
http://en.wikibooks.org/wiki/ada%20Programming%2FSubtypes%23definite_subtype

Type System

X : String := Ada.Command_Line.Argument (1);

This statement reads the first command-line argument and assigns it to X.

5.6.6 Named subtype

A subtype which has a name assigned to it. “First subtypes” are created with
the keyword type (remember that types are always anonymous, the name in a type
declaration is the name of the first subtype), others with the keyword subtype. For example:

type Count_To_Ten is range 1 .. 10;

Count_to_Ten is the first subtype of a suitable integer base type. However, if you would
like to use this as an index constraint on String, the following declaration is illegal:

subtype Ten_Characters is String (Count_to_Ten);

This is because String has Positive as index, which is a subtype of Integer (these declarations
are taken from package Standard):

subtype Positive is Integer range 1 .. Integer'Last;

type String is (Positive range <>) of Character;

So you have to use the following declarations:

subtype Count_To_Ten is Integer range 1 .. 10;

subtype Ten_Characters is String (Count_to_Ten);

Now Ten_Characters is the name of that subtype of String which is constrained to Count_-
To_Ten. You see that posing constraints on types versus subtypes has very different
effects.

5.6.7 Unconstrained subtype

A subtype of an indefinite subtype that does not add a constraint only introduces a new
name for the original subtype.

subtype My_String is String;

My_String and String are interchangeable.

56

5.7 Qualified expressions

Qualified expressions

In most cases, the compiler is able to infer the type of an expression; for example:

type Enum is (A, B, C);

E : Enum := A;

Here the compiler knows that A is a value of the type Enum. But consider:

procedure Bad is

type Enum_1 is (A, B, C);

procedure P (E : in Enum_1) is... --omitted

type Enum_2 is (A, X, Y, Z);

procedure P (E : in Enum_2) is... --omitted

begin

P (A); --illegal: ambiguous

end Bad;

The compiler cannot choose between the two versions of P; both would be equally valid. To
remove the ambiguity, you use a qualified expression:

P (Enum_1'(A)); --OK

As seen in the following example, this syntax is often used when creating new objects. If
you try to compile the example, it will fail with a compilation error since the compiler will
determine that 256 is not in range of Byte.

File: convert_evaluate_as.adb

with Ada ;

procedure Convert_Evaluate_As is

type Byte is mod 2**8;

type Byte_Ptr is access Byte;

package T_IO renames Ada ;

package M_IO is new Ada (Byte);

A : constant Byte_Ptr := new Byte'(256);

begin

T_IO.Put ("A = ");

M_IO.Put (Item => A.all,

Width => 5,

Base => 10);

end Convert_Evaluate_As;

5.8 Type conversions

57

Type System

Type conversions

Data do not always come in the format you need them. You must, then, face the task of
converting them. As a true multi-purpose language with a special emphasis on "mission
critical", "system programming" and "safety", Ada has several conversion techniques. The
most difficult part is choosing the right one, so the following list is sorted in order of utility.
You should try the first one first; the last technique is a last resort, to be used if all others
fail. There are also a few related techniques that you might choose instead of actually
converting the data.

Since the most important aspect is not the result of a successful conversion, but how the
system will react to an invalid conversion, all examples also demonstrate faulty conversions.

5.8.1 Explicit type conversion

An explicit type conversion looks much like a function call; it does not use the tick
(apostrophe, ') like the qualified expression does.

Type_Name (Expression)

The compiler first checks that the conversion is legal, and if it is, it inserts a run-time
check at the point of the conversion; hence the name checked conversion. If the conversion
fails, the program raises Constraint_Error. Most compilers are very smart and optimise
away the constraint checks; so, you need not worry about any performance penalty. Some
compilers can also warn that a constraint check will always fail (and optimise the check with
an unconditional raise).

Explicit type conversions are legal:

• between any two numeric types
• between any two subtypes of the same type
• between any two types derived from the same type (note special rules for tagged types)
• between array types under certain conditions (see RM 4.6(24.2/2..24.7/2))
• and nowhere else

(The rules become more complex with class-wide and anonymous access types.)

I: Integer := Integer (10); --Unnecessary explicit type conversion

J: Integer := 10; --Implicit conversion from universal integer

K: Integer := Integer'(10); --Use the value 10 of type Integer: qualified expression

--(qualification not necessary here).

This example illustrates explicit type conversions:

File: convert_checked.adb

58

with Ada ;

procedure Convert_Checked is

type Short is range -128 .. +127;

type Byte is mod 256;

package T_IO renames Ada ;

package I_IO is new Ada (Short);

package M_IO is new Ada (Byte);

A : Short := -1;

B : Byte;

begin

B := Byte (A); -- range check will lead to Constraint_Error

T_IO.Put ("A = ");

I_IO.Put (Item => A,

Width => 5,

Base => 10);

T_IO.Put (", B = ");

M_IO.Put (Item => B,

Width => 5,

Base => 10);

end Convert_Checked;

Explicit conversions are possible between any two numeric types: integers, fixed-point and
floating-point types. If one of the types involved is a fixed-point or floating-point type,
the compiler not only checks for the range constraints (thus the code above will raise
Constraint_Error), but also performs any loss of precision necessary.

Example 1: the loss of precision causes the procedure to only ever print "0" or "1", since P /

100 is an integer and is always zero or one.

with Ada.Text_IO;

procedure Naive_Explicit_Conversion is

type Proportion is digits 4 range 0.0 .. 1.0;

type Percentage is range 0 .. 100;

function To_Proportion (P : in Percentage) return Proportion is

begin

return Proportion (P / 100);

end To_Proportion;

begin

Ada.Text_IO.Put_Line (Proportion'Image (To_Proportion (27)));

end Naive_Explicit_Conversion;

Example 2: we use an intermediate floating-point type to guarantee the precision.

with Ada.Text_IO;

procedure Explicit_Conversion is

type Proportion is digits 4 range 0.0 .. 1.0;

type Percentage is range 0 .. 100;

function To_Proportion (P : in Percentage) return Proportion is

type Prop is digits 4 range 0.0 .. 100.0;

begin

return Proportion (Prop (P) / 100.0);

end To_Proportion;

begin

Ada.Text_IO.Put_Line (Proportion'Image (To_Proportion (27)));

end Explicit_Conversion;

59

Type System

You might ask why you should convert between two subtypes of the same type. An example
will illustrate this.

subtype String_10 is String (1 .. 10);

X: String := "A line long enough to make the example valid";

Slice: constant String := String_10 (X (11 .. 20));

Here, Slice has bounds 1 and 10, whereas X (11 .. 20) has bounds 11 and 20.

5.8.2 Change of Representation

Type conversions can be used for packing and unpacking of records or arrays.

type Unpacked is record

--any components

end record;

type Packed is new Unpacked;

for Packed use record

--component clauses for some or for all components

end record;

P: Packed;

U: Unpacked;

P := Packed (U); --packs U

U := Unpacked (P); --unpacks P

5.8.3 Checked conversion for non-numeric types

The examples above all revolved around conversions between numeric types; it is possible to
convert between any two numeric types in this way. But what happens between non-numeric
types, e.g. between array types or record types? The answer is two-fold:

• you can convert explicitly between a type and types derived from it, or between types
derived from the same type,

• and that's all. No other conversions are possible.

Why would you want to derive a record type from another record type? Because of
representation clauses. Here we enter the realm of low-level systems programming, which is
not for the faint of heart, nor is it useful for desktop applications. So hold on tight, and
let's dive in.

Suppose you have a record type which uses the default, efficient representation. Now you
want to write this record to a device, which uses a special record format. This special
representation is more compact (uses fewer bits), but is grossly inefficient. You want to
have a layered programming interface: the upper layer, intended for applications, uses
the efficient representation. The lower layer is a device driver that accesses the hardware
directly and uses the inefficient representation.

60

package Device_Driver is

type Size_Type is range 0 .. 64;

type Register is record

A, B : Boolean;

Size : Size_Type;

end record;

procedure Read (R : out Register);

procedure Write (R : in Register);

end Device_Driver;

The compiler chooses a default, efficient representation for Register. For example, on
a 32-bit machine, it would probably use three 32-bit words, one for A, one for B and
one for Size. This efficient representation is good for applications, but at one point
we want to convert the entire record to just 8 bits, because that's what our hardware requires.

package body Device_Driver is

type Hardware_Register is new Register; --Derived type.

for Hardware_Register use record

A at 0 range 0 .. 0;

B at 0 range 1 .. 1;

Size at 0 range 2 .. 7;

end record;

function Get return Hardware_Register; --Body omitted

procedure Put (H : in Hardware_Register); --Body omitted

procedure Read (R : out Register) is

H : Hardware_Register := Get;

begin

R := Register (H); --Explicit conversion.

end Read;

procedure Write (R : in Register) is

begin

Put (Hardware_Register (R)); --Explicit conversion.

end Write;

end Device_Driver;

In the above example, the package body declares a derived type with the inefficient, but
compact representation, and converts to and from it.

This illustrates that type conversions can result in a change of representation.

5.8.4 View conversion, in object-oriented programming

Within object-oriented programming36 you have to distinguish between specific types and
class-wide types.

With specific types, only conversions to ancestors are possible and, of course, are checked.
During the conversion, you do not "drop" any components that are present in the derived
type and not in the parent type; these components are still present, you just don't see them
anymore. This is called a view conversion.

36 Chapter 22 on page 187

61

Type System

There are no conversions to derived types (where would you get the further components from?);
extension aggregates have to be used instead.

type Parent_Type is tagged null record;

type Child_Type is new Parent_Type with null record;

Child_Instance : Child_Type;

--View conversion from the child type to the parent type:

Parent_View : Parent_Type := Parent_Type (Child_Instance);

Since, in object-oriented programming, an object of child type is an object of the parent
type, no run-time check is necessary.

With class-wide types, conversions to ancestor and child types are possible and are checked
as well. These conversions are also view conversions, no data is created or lost.

procedure P (Parent_View : Parent_Type'Class) is

--View conversion to the child type:

One : Child_Type := Child_Type (Parent_View);

--View conversion to the class-wide child type:

Two : Child_Type'Class := Child_Type'Class (Parent_View);

This view conversion involves a run-time check to see if Parent_View is indeed a view of an
object of type Child_Type. In the second case, the run-time check accepts objects of type
Child_Type but also any type derived from Child_Type.

View renaming

A renaming declaration does not create any new object and performs no conversion; it
only gives a new name to something that already exists. Performance is optimal since the
renaming is completely done at compile time. We mention it here because it is a common
idiom in object oriented programming37 to rename the result of a view conversion.

type Parent_Type is tagged record

<components>;

end record;

type Child_Type is new Parent_Type with record

<further components>;

end record;

Child_Instance : Child_Type;

Parent_View : Parent_Type'Class renames Parent_Type'Class (Child_Instance);

Now, Parent_View is not a new object, but another name for Child_Instance viewed as
the parent, i.e. only the parent components are visible, the further child components are
hidden.

37 Chapter 22 on page 187

62

5.8.5 Address conversion

Ada's access type38 is not just a memory location (a thin pointer). Depending on imple-
mentation and the access type39 used, the access40 might keep additional information (a fat
pointer). For example GNAT keeps two memory addresses for each access41 to an indefinite
object — one for the data and one for the constraint informations (Size, First, Last).

If you want to convert an access to a simple memory location you can use the package
System . Note however that an address and a fat pointer cannot be converted reversibly
into one another.

The address of an array object is the address of its first component. Thus the bounds get
lost in such a conversion.

type My_Array is array (Positive range <>) of Something;

A: My_Array (50 .. 100);

A'Address = A(A'First)'Address

5.8.6 Unchecked conversion

One of the great criticisms of Pascal was "there is no escape". The reason was that
sometimes you have to convert the incompatible. For this purpose, Ada has the generic
function Unchecked_Conversion:

generic

type Source (<>) is limited private;

type Target (<>) is limited private;

function Ada (S : Source) return Target;

Unchecked_Conversion will bit-copy the source data and reinterprete them under the target
type without any checks. It is your chore to make sure that the requirements on unchecked
conversion as stated in RM 13.9 ˆ{http://www.adaic.org/resources/add_content/

standards/05rm/html/RM-13-9.html} are fulfilled; if not, the result is implementation
dependent and may even lead to abnormal data. Use the 'Valid attribute after the conversion
to check the validity of the data in problematic cases.

A function call to (an instance of) Unchecked_Conversion will copy the source to the
destination. The compiler may also do a conversion in place (every instance has the
convention Intrinsic).

To use Unchecked_Conversion you need to instantiate the generic.

38 Chapter 13 on page 99
39 Chapter 13 on page 99
40 Chapter 13 on page 99
41 Chapter 13 on page 99

63

http://www.adaic.org/resources/add_content/standards/05rm/html/RM-13-9.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-13-9.html

Type System

In the example below, you can see how this is done. When run, the example will output "A
= -1, B = 255". No error will be reported, but is this the result you expect?

File: convert_unchecked.adb

with Ada ;

with Ada ;

procedure Convert_Unchecked is

type Short is range -128 .. +127;

type Byte is mod 256;

package T_IO renames Ada ;

package I_IO is new Ada (Short);

package M_IO is new Ada (Byte);

function Convert is new Ada (Source => Short,

Target =>

Byte);

A : constant Short := -1;

B : Byte;

begin

B := Convert (A);

T_IO.Put ("A = ");

I_IO.Put (Item => A,

Width => 5,

Base => 10);

T_IO.Put (", B = ");

M_IO.Put (Item => B,

Width => 5,

Base => 10);

end Convert_Unchecked;

There is of course a range check in the assignment B := Convert (A);. Thus if B were
defined as B: Byte range 0 .. 10;, Constraint_Error would be raised.

5.8.7 Overlays

If the copying of the result of Unchecked_Conversion is too much waste in terms of
performance, then you can try overlays, i.e. address mappings. By using overlays, both
objects share the same memory location. If you assign a value to one, the other changes as
well. The syntax is:

for Target'Address use expression;

pragma (Ada, Target);

where expression defines the address of the source object.

While overlays might look more elegant than Unchecked_Conversion, you should be aware
that they are even more dangerous and have even greater potential for doing something very

64

wrong. For example if Source'Size < Target'Size and you assign a value to Target, you
might inadvertently write into memory allocated to a different object.

You have to take care also of implicit initializations of objects of the target type, since they
would overwrite the actual value of the source object. The Import pragma with convention
Ada can be used to prevent this, since it avoids the implicit initialization, RM B.1 ˆ{http:

//www.adaic.org/resources/add_content/standards/05rm/html/RM-B-1.html} .

The example below does the same as the example from "Unchecked Conversion".

File: convert_address_mapping.adb

with Ada ;

procedure Convert_Address_Mapping is

type Short is range -128 .. +127;

type Byte is mod 256;

package T_IO renames Ada ;

package I_IO is new Ada (Short);

package M_IO is new Ada (Byte);

A : aliased Short;

B : aliased Byte;

for B'Address use A'Address;

pragma (Ada, B);

begin

A := -1;

T_IO.Put ("A = ");

I_IO.Put (Item => A,

Width => 5,

Base => 10);

T_IO.Put (", B = ");

M_IO.Put (Item => B,

Width => 5,

Base => 10);

end Convert_Address_Mapping;

5.8.8 Export / Import

Just for the record: There is still another method using the pragma and pragma pragmas.
However, since this method completely undermines Ada's visibility and type concepts even
more than overlays, it has no place here in this language introduction and is left to experts.

5.9 Elaborated Discussion of Types for Signed Integer Types

Elaborated Discussion of Types for Signed Integer Types

As explained before, a type declaration

65

http://www.adaic.org/resources/add_content/standards/05rm/html/RM-B-1.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-B-1.html

Type System

type T is range 1 .. 10;

declares an anonymous type T and its first subtype T (please note the italicization). T

encompasses the complete set of mathematical integers. Static expressions and named
numbers make use of this fact.

All numeric integer literals are of type Universal_Integer. They are converted to the
appropriate specific type where needed. Universal_Integer itself has no operators.

Some examples with static named numbers:

S1: constant := Integer'Last + Integer'Last; --"+" of Integer

S2: constant := Long_Integer'Last + 1; --"+" of Long_Integer

S3: constant := S1 + S2; --"+" of root_integer

S4: constant := Integer'Last + Long_Integer'Last; --illegal

Static expressions are evaluated at compile-time on the appropriate types with no overflow
checks, i.e. mathematically exact (only limited by computer store). The result is then
implicitly converted to Universal_Integer.

The literal 1 in S2 is of type Universal_Integer and implicitly converted to Long_Integer.

S3 implicitly converts the summands to root_integer, performs the calculation and converts
back to Universal_Integer.

S4 is illegal because it mixes two different types. You can however write this as

S5: constant := Integer'Pos (Integer'Last) + Long_Integer'Pos

(Long_Integer'Last); --"+" of root_integer

where the Pos attributes convert the values to Universal_Integer, which are then further
implicitly converted to root_integer, added and the result converted back to Universal_-

Integer.

root_integer is the anonymous greatest integer type representable by the hardware. It has
the range System.Min_Integer .. System.Max_Integer. All integer types are rooted
at root_integer, i.e. derived from it. Universal_Integer can be viewed as root_-

integer'Class.

During run-time, computations of course are performed with range checks and overflow
checks on the appropriate subtype. Intermediate results may however exceed the range
limits. Thus with I, J, K of the subtype T above, the following code will return the correct
result:

I := 10;

J := 8;

K := (I + J) - 12;

--I := I + J; -- range check would fail, leading to Constraint_Error

66

Real literals are of type Universal_Real, and similar rules as the ones above apply accord-
ingly.

5.10 Relations between types

Relations between types

Types can be made from other types. Array types, for example, are made from two types,
one for the arrays' index and one for the arrays' components. An array, then, expresses an as-
sociation, namely that between one value of the index type and a value of the component type.

type Color is (Red, Green, Blue);

type Intensity is range 0 .. 255;

type Colored_Point is array (Color) of Intensity;

The type Color is the index type and the type Intensity is the component type of the
array type Colored_Point. See array42.

5.11 See also

See also

5.11.1 Wikibook

• Ada Programming43

5.11.2 Ada Reference Manual

• 3.2.1 Type Declarations ˆ{http://www.adaic.org/resources/add_content/

standards/05rm/html/RM-3-2-1.html}

• 3.3 Objects and Named Numbers ˆ{http://www.adaic.org/resources/add_content/

standards/05rm/html/RM-3-3.html}

• 3.7 Discriminants ˆ{http://www.adaic.org/resources/add_content/standards/

05rm/html/RM-3-7.html}

• 3.10 Access Types ˆ{http://www.adaic.org/resources/add_content/standards/

05rm/html/RM-3-10.html}

• 4.9 Static Expressions and Static Subtypes ˆ{http://www.adaic.org/resources/add_

content/standards/05rm/html/RM-4-9.html}

• 13.9 Unchecked Type Conversions ˆ{http://www.adaic.org/resources/add_content/

standards/05rm/html/RM-13-9.html}

42 Chapter 11 on page 83
43 http://en.wikibooks.org/wiki/Ada%20Programming

67

http://www.adaic.org/resources/add_content/standards/05rm/html/RM-3-2-1.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-3-2-1.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-3-3.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-3-3.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-3-7.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-3-7.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-3-10.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-3-10.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-4-9.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-4-9.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-13-9.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-13-9.html
http://en.wikibooks.org/wiki/Ada%20Programming

Type System

• 13.3 Operational and Representation Attributes ˆ{http://www.adaic.org/resources/

add_content/standards/05rm/html/RM-13-3.html}

• Annex K (informative) Language-Defined Attributes ˆ{http://www.adaic.org/

resources/add_content/standards/05rm/html/RM-K.html}

68

http://www.adaic.org/resources/add_content/standards/05rm/html/RM-13-3.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-13-3.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-K.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-K.html

6 Integer types

A range is a signed integer value which ranges from a First to a last Last. It is defined as

range First .. Last

When a value is assigned to an object with such a range constraint, the value is checked for
validity and Constraint_Error exception1 is raised when the value is not within First to
Last.

When declaring a range type, the corresponding mathematical operators are implicitly
declared by the language at the same place.

The compiler is free to choose a suitable underlaying hardware type for this user defined
type.

6.1 Working demo

Working demo

The following Demo defines a new range from -5 to 10 and then prints the whole range out.

File: range_1.adb

with Ada ;

procedure Range_1 is

type Range_Type is range -5 .. 10;

package T_IO renames Ada.Text_IO;

package I_IO is new Ada.Text_IO.Integer_IO (Range_Type);

begin

for A in Range_Type loop

I_IO.Put (

Item => A,

Width => 3,

Base => 10);

if A < Range_Type'Last then

T_IO.Put (",");

else

T_IO.New_Line;

1 Chapter 19 on page 153

69

Integer types

end if;

end loop;

end Range_1;

6.2 See also

See also

6.2.1 Wikibook

• Ada Programming2

• Ada Programming/Types3

• Ada Programming/Keywords/range4

6.2.2 Ada Reference Manual

• 4.4 Expressions ˆ{http://www.adaic.org/resources/add_content/standards/05rm/

html/RM-4-4.html}

• 3.5.4 Integer Types ˆ{http://www.adaic.org/resources/add_content/standards/

05rm/html/RM-3-5-4.html}

es:Programación en Ada/Tipos/Enteros5

2 http://en.wikibooks.org/wiki/Ada%20Programming

3 http://en.wikibooks.org/wiki/Ada%20Programming%2FTypes

4 http://en.wikibooks.org/wiki/Ada%20Programming%2FKeywords%2Frange

5 http://es.wikibooks.org/wiki/Programaci%F3n%20en%20Ada%2FTipos%2FEnteros

70

http://www.adaic.org/resources/add_content/standards/05rm/html/RM-4-4.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-4-4.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-3-5-4.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-3-5-4.html
http://en.wikibooks.org/wiki/Ada%20Programming
http://en.wikibooks.org/wiki/Ada%20Programming%2FTypes
http://en.wikibooks.org/wiki/Ada%20Programming%2FKeywords%2Frange
http://es.wikibooks.org/wiki/Programaci%F3n%20en%20Ada%2FTipos%2FEnteros

7 Unsigned integer types

7.1 Description

Description

Unsigned integers in Ada have a value range from 0 to some positive number (not necessarily
1 subtracted from some power of 2). They are defined using the mod keyword because they
implement a wrap-around arithmetic.

mod Modulus

where 'First is 0 and 'Last is Modulus - 1.

Wrap-around arithmetic means that 'Last + 1 = 0 = 'First, and 'First - 1 = 'Last. Addi-
tionally to the normal arithmetic operators, bitwise and, or and xor are defined for the
type.

The predefined package Interfaces (RM B.2 ˆ{http://www.adaic.org/resources/add_

content/standards/05rm/html/RM-B-2.html}) presents unsigned integers based on
powers of 2

type Unsigned_n is mod 2**n;

for which also shift and rotate operations are defined. The values of n depend on compiler
and target architecture.

You can use range to sub-range a modular type:

type Byte is mod 256;

subtype Half_Byte is Byte range 0 .. 127;

But beware: the Modulus of Half_Byte is still 256! Arithmetic with such a type is interesting
to say the least.

7.2 See also

71

http://www.adaic.org/resources/add_content/standards/05rm/html/RM-B-2.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-B-2.html

Unsigned integer types

See also

7.2.1 Wikibook

• Ada Programming1

• Ada Programming/Types2

• Ada Programming/Keywords/mod3

7.2.2 Ada Reference Manual

• 4.4 Expressions ˆ{http://www.adaic.org/resources/add_content/standards/05rm/

html/RM-4-4.html}

• 3.5.4 Integer Types ˆ{http://www.adaic.org/resources/add_content/standards/

05rm/html/RM-3-5-4.html}

1 http://en.wikibooks.org/wiki/Ada%20Programming

2 http://en.wikibooks.org/wiki/Ada%20Programming%2FTypes

3 http://en.wikibooks.org/wiki/Ada%20Programming%2FKeywords%2Fmod

72

http://www.adaic.org/resources/add_content/standards/05rm/html/RM-4-4.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-4-4.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-3-5-4.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-3-5-4.html
http://en.wikibooks.org/wiki/Ada%20Programming
http://en.wikibooks.org/wiki/Ada%20Programming%2FTypes
http://en.wikibooks.org/wiki/Ada%20Programming%2FKeywords%2Fmod

8 Enumerations

An enumeration type is defined as a list of possible values:

type Primary_Color is (Red, Green, Blue);

Like for numeric types, where e.g. 1 is an integer literal, Red, Green and Blue are called the
literals of this type. There are no other values assignable to objects of this type.

8.1 Operators and attributes

Operators and attributes

Apart from equality ("="), the only operators on enumeration types are the ordering
operators1: "<", "<=", "=", "/=", ">=", ">", where the order relation is given implicitly by
the sequence of literals: Each literal has a position, starting with 0 for the first, incremented
by one for each successor. This position can be queried via the 'Pos attribute2; the inverse
is 'Val, which returns the corresponding literal. In our example:

Primary_Color'Pos (Red) = 0

Primary_Color'Val (0) = Red

There are two other important attributes: Image and Value (don't confuse Val with Value).
Image returns the string representation of the value (in capital letters), Value is the inverse:

Primary_Color'Image (Red) = "RED"

Primary_Color'Value ("Red") = Red

These attributes are important for simple IO3 (there are more elaborate IO facilities in Ada
for enumeration types). Note that, since Ada is case-insensitive, the string given to 'Value
can be in any case.

8.2 Enumeration literals

1 Chapter 37 on page 301
2 Chapter 38 on page 305
3 Chapter 18 on page 147

73

Enumerations

Enumeration literals

Literals are overloadable, i.e. you can have another type with the same literals.

type Traffic_Light is (Red, Yellow, Green);

Overload resolution within the context of use of a literal normally resolves which Red is
meant. Only if you have an unresolvable overloading conflict, you can qualify with special
syntax which Red is meant:

Primary_Color'(Red)

Like many other declarative items, enumeration literals can be renamed. In fact, such a
literal is a actually function4, so it has to be renamed as such:

function Red return P.Primary_Color renames P.Red;

Here, Primary_Color is assumed to be defined in package P, which is visible at the place of
the renaming declaration. Renaming makes Red directly visible without necessity to resort
the use-clause.

Note that redeclaration as a function does not affect the staticness of the literal.

8.2.1 Characters as enumeration literals

Rather unique to Ada is the use of character literals as enumeration literals:

type ABC is ('A', 'B', 'C');

This literal 'A' has nothing in common with the literal 'A' of the predefined type Character
(or Wide_Character).

Every type that has at least one character literal is a character type. For every character
type, string literals and the concatenation operator "&"5 are also implicitly defined.

type My_Character is (No_Character, 'a', Literal, 'z');

type My_String is array (Positive range <>) of My_Character;

S: My_String := "aa" & Literal & "za" & 'z';

T: My_String := ('a', 'a', Literal, 'z', 'a', 'z');

In this example, S and T have the same value.

4 Chapter 16.2 on page 127
5 http://en.wikibooks.org/wiki/Ada%20Programming%2FDelimiters%2F%26

74

http://en.wikibooks.org/wiki/Ada%20Programming%2FDelimiters%2F%26

Ada's Character type is defined that way. See Ada Programming/Libraries/Standard6.

8.2.2 Booleans as enumeration literals

Also Booleans are defined as enumeration types:

type Boolean is (False, True);

There is special semantics implied with this declaration in that objects and expressions
of this type can be used as conditions. Note that the literals False and True are not Ada
keywords.

Thus it is not sufficient to declare a type with these literals and then hope objects of this
type can be used like so:

type My_Boolean is (False, True);

Condition: My_Boolean;

if Condition then -- wrong, won't compile

If you need your own Booleans (perhaps with special size requirements), you have to derive
from the predefined Boolean:

type My_Boolean is new Boolean;

Condition: My_Boolean;

if Condition then -- OK

8.3 Enumeration subtypes

Enumeration subtypes

You can use range to subtype an enumeration type:

subtype Capital_Letter is Character range 'A' .. 'Z';

type Day_Of_Week is (Sunday, Monday, Tuesday, Wednesday, Thursday,

Friday, Saturday);

subtype Working_Day is Day_Of_Week range Monday .. Friday;

8.4 See also

6 Chapter 41 on page 333

75

Enumerations

See also

8.4.1 Wikibook

• Ada Programming7

• Ada Programming/Types8

• Ada Programming/Libraries/Standard9

8.4.2 Ada Reference Manual

• 3.5.1 Enumeration Types ˆ{http://www.adaic.org/resources/add_content/

standards/05rm/html/RM-3-5-1.html}

es:Programación en Ada/Tipos/Enumeraciones10

7 http://en.wikibooks.org/wiki/Ada%20Programming

8 http://en.wikibooks.org/wiki/Ada%20Programming%2FTypes

9 Chapter 41 on page 333
10 http://es.wikibooks.org/wiki/Programaci%F3n%20en%20Ada%2FTipos%2FEnumeraciones

76

http://www.adaic.org/resources/add_content/standards/05rm/html/RM-3-5-1.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-3-5-1.html
http://en.wikibooks.org/wiki/Ada%20Programming
http://en.wikibooks.org/wiki/Ada%20Programming%2FTypes
http://es.wikibooks.org/wiki/Programaci%F3n%20en%20Ada%2FTipos%2FEnumeraciones

9 Floating point types

9.1 Description

Description

w:Floating point1

To define a floating point type, you only have to say how many digits2 are needed, i.e. you
define the relative precision:

digits Num_Digits

If you like, you can declare the minimum range needed as well:

digits Num_Digits range3 Low .. High

This facility is a great benefit of Ada over (most) other programming languages. In other
languages, you just choose between "float" and "long float", and what most people do is:

• choose float if they don't care about accuracy
• otherwise, choose long float, because it is the best you can get

In either case, you don't know what accuracy you get.

In Ada, you specify the accuracy you need, and the compiler will choose an appropriate
floating point type with at least the accuracy you asked for. This way, your requirement is
guaranteed. Moreover, if the computer has more than two floating point types available, the
compiler can make use of all of them.

9.2 See also

See also

9.2.1 Wikibook

• Ada Programming4

1 http://en.wikipedia.org/wiki/Floating%20point

2 http://en.wikibooks.org/wiki/Ada%20Programming%2FKeywords%2Fdigits

4 http://en.wikibooks.org/wiki/Ada%20Programming

77

http://en.wikipedia.org/wiki/Floating%20point
http://en.wikibooks.org/wiki/Ada%20Programming%2FKeywords%2Fdigits
http://en.wikibooks.org/wiki/Ada%20Programming

Floating point types

• Ada Programming/Types5

• Ada Programming/Types/range6

• Ada Programming/Types/delta7

• Ada Programming/Types/mod8

• Ada Programming/Keywords/digits9

9.2.2 Ada Reference Manual

• 3.5.7 Floating Point Types ˆ{http://www.adaic.org/resources/add_content/

standards/05rm/html/RM-3-5-7.html}

es:Programación en Ada/Tipos/Coma flotante10

5 http://en.wikibooks.org/wiki/Ada%20Programming%2FTypes

6 Chapter 6 on page 69
7 Chapter 10 on page 79
8 Chapter 7 on page 71
9 http://en.wikibooks.org/wiki/Ada%20Programming%2FKeywords%2Fdigits

10 http://es.wikibooks.org/wiki/Programaci%F3n%20en%20Ada%2FTipos%2FComa%20flotante

78

http://www.adaic.org/resources/add_content/standards/05rm/html/RM-3-5-7.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-3-5-7.html
http://en.wikibooks.org/wiki/Ada%20Programming%2FTypes
http://en.wikibooks.org/wiki/Ada%20Programming%2FKeywords%2Fdigits
http://es.wikibooks.org/wiki/Programaci%F3n%20en%20Ada%2FTipos%2FComa%20flotante

10 Fixed point types

10.1 Description

Description

w:Fixed-point arithmetic1 A fixed point type defines a set of values that are evenly spaced
with a given absolute precision. In contrast, floating point values are all spaced according to
a relative precision.

The absolute precision is given as the delta of the type. There are two kinds of fixed point
types, ordinary and decimal.

For Ordinary Fixed Point types, the delta gives a hint to the compiler how to choose the
small value if it is not specified: It can be any integer power of two not greater than delta.
You may specify the small via an attribute clause to be any value not greater than delta. (If
the compiler cannot conform to this small value, it has to reject the declaration.)

For Decimal Fixed Point types, the small is defined to be the delta, which in turn must
be an integer power of ten. (Thus you cannot specify the small by an attribute clause.)

For example, if you define a decimal fixed point type with a delta of 0.1, you will be able to
accurately store the values 0.1, 1.0, 2.2, 5.7, etc. You will not be able to accurately store
the value 0.01. Instead, the value will be rounded down to 0.0.

If the compiler accepts your fixed point type definition, it guarantees that values represented
by that type will have at least the degree of accuracy specified (or better). If the compiler
cannot support the type definition (e.g. due to limited hardware) then a compile-time error
will result.

10.2 Ordinary Fixed Point

Ordinary Fixed Point

For an ordinary fixed point, you just define the delta and a range:

delta Delta range Low .. High

The delta can be any real value — for example you may define a circle with one arcsecond
resolution with:

1 http://en.wikipedia.org/wiki/Fixed-point%20arithmetic

79

http://en.wikipedia.org/wiki/Fixed-point%20arithmetic

Fixed point types

delta 1 / (60 * 60) range 0.0 .. 360.0

[There is one rather strange rule about fixed point types: Because of the way they are
internally represented, the range might only go up to 'Last - Delta. This is a bit like a
circle — the 0° and 360° mark is also the same.]

It should be noted that in the example above the smallest possible value used is not 1
602 = 1

3600 .
The compiler will choose a smaller value which, by default, is an integer power of 2 not
greater than the delta. In our example this could be 2−12 = 1

4096 . In most cases this should
render better performance but sacrifices precision for it.

If this is not what you wish and precision is indeed more important, you can choose your
own small value via the attribute clause 'Small.

type Angle is delta Pi/2.0**31 range -Pi .. Pi;

for Angle'Small use Pi/2.0**31;

As internal representation, you will get a 32 bit signed integer type.

10.3 Decimal Fixed Point

Decimal Fixed Point

You define a decimal fixed point by defining the delta and the number of digits needed:

delta Delta digits Num_Digits

Delta must be a positive or negative integer power of 10 — otherwise the declaration is illegal.

delta 10.0**(+2) digits 12

delta 10.0**(-2) digits 12

If you like, you can also define the range needed:

delta Delta_Value digits Num_Digits range Low .. High

10.4 Differences between Ordinary and Decimal Fixed Point
Types

Differences between Ordinary and Decimal Fixed Point Types

There is an alternative way of declaring a "decimal" fixed point: You declare an ordinary
fixed point and use an integer power of 10 as 'Small. The following two declarations are

80

equivalent with respect to the internal representation:

-- decimal fixed point

type Duration is delta 10.0**(-9) digits 9;

-- ordinary fixed point

type Duration is delta 10.0**(-9) range -1.0 .. 1.0;

for Duration'Small use 10.0**(-9);

You might wonder what the difference then is between these two declarations. The answer
is:

None with respect to precision, addition, subtraction, multiplication with integer values.

The following is an incomplete list of differences between ordinary and decimal fixed point
types.

• Decimal fixed point types are intended to reflect typical COBOL declarations with a
given number of digits.

• Truncation is required for decimal, not for ordinary, fixed point in multiplication and di-
vision (RM 4.5.5 (21) ˆ{http://www.adaic.org/resources/add_content/standards/

95lrm/ARM_HTML/RM-4-5-5.html}) and type conversions. Operations on decimal fixed
point are fully specified, which is not true for ordinary fixed point.

• The following attributes are only defined for decimal fixed point: T'Digits (RM
3.5.10 (10) ˆ{http://www.adaic.org/resources/add_content/standards/95lrm/

ARM_HTML/RM-3-5-10.html}) corresponds to the number of decimal digits that
are representable; T'Scale (RM 3.5.10 (11) ˆ{http://www.adaic.org/resources/

add_content/standards/95lrm/ARM_HTML/RM-3-5-10.html} , taken from COBOL)
indicates the position of the point relative to the rightmost significant dig-
its; T'Round (RM 3.5.10 (12) ˆ{http://www.adaic.org/resources/add_content/

standards/95lrm/ARM_HTML/RM-3-5-10.html}) can be used to specify rounding on
conversion.

• Package Decimal (RM F.2 ˆ{http://www.adaic.org/resources/add_content/

standards/95lrm/ARM_HTML/RM-F-2.html}), which of course applies only to decimal
fixed point, defines the decimal Divide generic procedure. If annex F is supported (GNAT
does), at least 18 digits must be supported (there is no such rule for fixed point).

• Decimal_IO (RM A.10.1 (73) ˆ{http://www.adaic.org/resources/add_content/

standards/95lrm/ARM_HTML/RM-A-10-1.html}) has semantics different from Fixed_-
IO (RM A.10.1 (68) ˆ{http://www.adaic.org/resources/add_content/standards/

95lrm/ARM_HTML/RM-A-10-1.html}).

• Static expressions must be a multiple of the Small for decimal fixed point.

Conclusion: For normal numeric use, an ordinary fixed point (probably with 'Small
defined) should be defined. Only if you are interested in COBOL like use, i.e. well defined
deterministic decimal semantics (especially for financial computations, but that might apply
to cases other than money) should you take decimal fixed point.

81

http://www.adaic.org/resources/add_content/standards/95lrm/ARM_HTML/RM-4-5-5.html
http://www.adaic.org/resources/add_content/standards/95lrm/ARM_HTML/RM-4-5-5.html
http://www.adaic.org/resources/add_content/standards/95lrm/ARM_HTML/RM-3-5-10.html
http://www.adaic.org/resources/add_content/standards/95lrm/ARM_HTML/RM-3-5-10.html
http://www.adaic.org/resources/add_content/standards/95lrm/ARM_HTML/RM-3-5-10.html
http://www.adaic.org/resources/add_content/standards/95lrm/ARM_HTML/RM-3-5-10.html
http://www.adaic.org/resources/add_content/standards/95lrm/ARM_HTML/RM-3-5-10.html
http://www.adaic.org/resources/add_content/standards/95lrm/ARM_HTML/RM-3-5-10.html
http://www.adaic.org/resources/add_content/standards/95lrm/ARM_HTML/RM-F-2.html
http://www.adaic.org/resources/add_content/standards/95lrm/ARM_HTML/RM-F-2.html
http://www.adaic.org/resources/add_content/standards/95lrm/ARM_HTML/RM-A-10-1.html
http://www.adaic.org/resources/add_content/standards/95lrm/ARM_HTML/RM-A-10-1.html
http://www.adaic.org/resources/add_content/standards/95lrm/ARM_HTML/RM-A-10-1.html
http://www.adaic.org/resources/add_content/standards/95lrm/ARM_HTML/RM-A-10-1.html

Fixed point types

10.5 See also

See also

10.5.1 Wikibook

• Ada Programming2

• Ada Programming/Types3

• Ada Programming/Types/range4

• Ada Programming/Types/digits5

• Ada Programming/Types/mod6

• Ada Programming/Keywords/delta7

• Ada Programming/Attributes/'Small8

10.5.2 Ada 95 Reference Manual

• 3.5.9 Fixed Point Types ˆ{http://www.adaic.org/resources/add_content/

standards/95lrm/ARM_HTML/RM-3-5-9.html}

10.5.3 Ada 2005 Reference Manual

• 3.5.9 Fixed Point Types ˆ{http://www.adaic.org/resources/add_content/

standards/05rm/html/RM-3-5-9.html}

es:Programación en Ada/Tipos/Coma fija9

2 http://en.wikibooks.org/wiki/Ada%20Programming

3 http://en.wikibooks.org/wiki/Ada%20Programming%2FTypes

4 Chapter 6 on page 69
5 Chapter 9 on page 77
6 Chapter 7 on page 71
7 http://en.wikibooks.org/wiki/Ada%20Programming%2FKeywords%2Fdelta

8 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Small

9 http://es.wikibooks.org/wiki/Programaci%F3n%20en%20Ada%2FTipos%2FComa%20fija

82

http://www.adaic.org/resources/add_content/standards/95lrm/ARM_HTML/RM-3-5-9.html
http://www.adaic.org/resources/add_content/standards/95lrm/ARM_HTML/RM-3-5-9.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-3-5-9.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-3-5-9.html
http://en.wikibooks.org/wiki/Ada%20Programming
http://en.wikibooks.org/wiki/Ada%20Programming%2FTypes
http://en.wikibooks.org/wiki/Ada%20Programming%2FKeywords%2Fdelta
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Small
http://es.wikibooks.org/wiki/Programaci%F3n%20en%20Ada%2FTipos%2FComa%20fija

11 Arrays

An array1 is a collection of elements which can be accessed by one or more index values. In
Ada any definite type is allowed as element and any discrete type, i.e. Range2, Modular3 or
Enumeration4, can be used as an index.

11.1 Declaring arrays

Declaring arrays

Ada's arrays are quite powerful and so there are quite a few syntax variations, which are
presented below.

11.1.1 Basic syntax

The basic form of an Ada array is:

array (Index_Range) of Element_Type

where Index_Range is a range of values within a discrete index type, and Element_Type is
a definite subtype. The array consists of one element of "Element_Type" for each possible
value in the given range. If you for example want to count how often a specific letter
appears inside a text, you could use:

type Character_Counter is array (Character) of Natural;

As a general advice, do not use Integer as the index range, since most of the time negative
indices do not make sense. It is also a good style when using numeric indices, to define them
starting in 1 instead of 0, since it is more intuitive for humans and avoids off-by-one error5s.

1 http://en.wikipedia.org/wiki/array

2 Chapter 6 on page 69
3 Chapter 7 on page 71
4 Chapter 8 on page 73
5 http://en.wikipedia.org/wiki/off-by-one%20error

83

http://en.wikipedia.org/wiki/array
http://en.wikipedia.org/wiki/off-by-one%20error

Arrays

11.1.2 With known subrange

Often you don't need an array of all possible values of the index type. In this case you can
subtype your index type to the actually needed range.

subtype Index_Sub_Type is Index_Type range First .. Last

array (Index_Sub_Type) of Element_Type

Since this may involve a lot of typing and you may also run out of useful names for new
subtypes6, the array declaration allows for a shortcut:

array (Index_Type range First .. Last) of Element_Type

Since First and Last are expressions of Index_Type, a simpler form of the above is:

array (First .. Last) of Element_Type

Note that if First and Last are numeric literals, this implies the index type Integer.

If in the example above the character counter should only count upper case characters and
discard all other characters, you can use the following array type:

type Character_Counter is array (Character range 'A' .. 'Z') of Natural;

11.1.3 With unknown subrange

Sometimes the range actually needed is not known until runtime or you need ob-
jects of different lengths. In some languages you would resort to pointers to element
types. Not with Ada. Here we have the box '<>', which allows us to declare indefinite arrays:

array (Index_Type range <>) of Element_Type;

When you declare objects of such a type, the bounds must of course be given and the object
is constrained to them.

The predefined type String7 is such a type. It is defined as

type String is array (Positive range <>) of Character;

6 http://en.wikibooks.org/wiki/ada%20Programming%2FSubtypes

7 Chapter 15 on page 119

84

http://en.wikibooks.org/wiki/ada%20Programming%2FSubtypes

You define objects of such an unconstrained type in several ways (the extrapolation to other
arrays than String should be obvious):

Text : String (10 .. 20);

Input: String := Read_from_some_file;

(These declarations additionally define anonymous subtypes of String.) In the first example,
the range of indices is explicitly given. In the second example, the range is implicitly defined
from the initial expression, which here could be via a function reading data from some file.
Both objects are constrained to their ranges, i.e. they cannot grow nor shrink.

11.1.4 With aliased elements

If you come from C8/C++9, you are probably used to the fact that every element of an
array has an address. The C10/C++11 standards actually demand that.

In Ada, this is not true. Consider the following array:

type Day_Of_Month is range 1 .. 31;

type Day_Has_Appointment is array (Day_Of_Month) of Boolean;

pragma (Day_Has_Appointment);

Since we have packed the array, the compiler will use as little storage as possible. And in
most cases this will mean that 8 boolean values will fit into one byte.

So Ada knows about arrays where more than one element shares one address. So what
if you need to address each single element. Just not using pragma12 Pack13 is not
enough. If the CPU14 has very fast bit access, the compiler might pack the array without
being told. You need to tell the compiler that you need to address each element via an access.

type Day_Of_Month is range 1 .. 31;

type Day_Has_Appointment is array (Day_Of_Month) of aliased Boolean;

11.1.5 Arrays with more than one dimension

Arrays can have more than one index. Consider the following 2-dimensional array:

8 http://en.wikibooks.org/wiki/Programming%3AC

9 http://en.wikibooks.org/wiki/Programming%3AC_plus_plus

10 http://en.wikibooks.org/wiki/Programming%3AC

11 http://en.wikibooks.org/wiki/Programming%3AC_plus_plus

12 http://en.wikibooks.org/wiki/Ada%20Programming%2FKeywords%2Fpragma

13 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FPack

14 http://en.wikipedia.org/wiki/CPU

85

http://en.wikibooks.org/wiki/Programming%3AC
http://en.wikibooks.org/wiki/Programming%3AC_plus_plus
http://en.wikibooks.org/wiki/Programming%3AC
http://en.wikibooks.org/wiki/Programming%3AC_plus_plus
http://en.wikibooks.org/wiki/Ada%20Programming%2FKeywords%2Fpragma
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FPack
http://en.wikipedia.org/wiki/CPU

Arrays

type Character_Display is

array (Positive range <> , Positive range <>) of Character;

This type permits declaring rectangular arrays of characters. Example:

Magic_Square: constant Character_Display :=

((' S' , ' A' , ' T' , ' O' , ' R') ,

(' A' , ' R' , ' E' , ' P' , ' O') ,

(' T' , ' E' , ' N' , ' E' , ' T') ,

(' O' , ' P' , ' E' , ' R' , ' A') ,

(' R' , ' O' , ' T' , ' A' , ' S')) ;

Or, stating some index values explicitly,

Magic_Square: constant Character_Display(1 .. 5, 1 .. 5) :=

(1 => (' S' , ' A' , ' T' , ' O' , ' R') ,

2 => (' A' , ' R' , ' E' , ' P' , ' O') ,

3 => (' T' , ' E' , ' N' , ' E' , ' T') ,

4 => (' O' , ' P' , ' E' , ' R' , ' A') ,

5 => (' R' , ' O' , ' T' , ' A' , ' S')) ;

The index values of the second dimension, those indexing the characters in each row, are
in 1 .. 5 here. By choosing a different second range, we could change these to be in 11 .. 15:

Magic_Square: constant Character_Display(1 .. 5, 11 .. 15) :=

(1 => (' S' , ' A' , ' T' , ' O' , ' R') ,

...

By adding more dimensions to an array type, we could have squares, cubes (or « bricks »),
etc., of homogenous data items.

Finally, an array of characters is a string (see Ada Programming/Strings15). Therefore,
Magic_Square may simply be declared like this:

Magic_Square: constant Character_Display :=

("SATOR",

"AREPO",

"TENET",

"OPERA",

"ROTAS") ;

11.2 Using arrays

15 Chapter 15 on page 119

86

Using arrays

11.2.1 Assignment

When accessing elements, the index is specified in parentheses. It is also possible to access
slices in this way:

Vector_A (1 .. 3) := Vector_B (3 .. 5);

Note that the index range slides in this example: After the assignment, Vector_A (1) =
Vector_B (3) and similarly for the other indices.

Also note that the ranges overlap, nevertheless Vector_A (3) /= Vector_B (3); a compiler
delivering such a result would be severely broken.

11.2.2 Concatenate

The operator "&" can be used to concatenate arrays:

Name := First_Name & ' ' & Last_Name;

In both cases, if the resulting array does not fit in the destination array, Constraint_Error
is raised.

If you try to access an existing element by indexing outside the array bounds, Constraint_-
Error is raised (unless checks are suppressed).

11.2.3 Array Attributes

There are four Attributes which are important for arrays: 'First, 'Last, 'Length and 'Range.
Lets look at them with an example. Say we have the following three strings:

Hello_World : constant String := "Hello World!";

World : constant String := Hello_World (7 .. 11);

Empty_String : constant String := "";

Then the four attributes will have the following values:

Array 'First 'Last 'Length 'Range

Hello_World 1 12 12 1 .. 12

World 7 11 5 7 .. 11

Empty_String 1 0 0 1 .. 0

The example was chosen to show a few common beginner's mistakes:

1. The assumption that strings begin with the index value 1 is wrong.

87

Arrays

2. The assumption (which follows from the first one) that X'Length = X'Last is wrong.
3. And last the assumption that X'Last >= X'First; this is not true for empty strings.

The attribute 'Range is a little special as it does not return a discrete value but an abstract
description of the array. One might wonder what it is good for. The most common use is in
the for loop on arrays16 but 'Range can also be used in declaring a name for the index subtype:

subtype Hello_World_Index is Integer range Hello_World'Range;

The Range attribute can be convenient when programming index checks:

if K in World' Range then

return World(K) ;

else

return Substitute;

end if;

11.2.4 Empty or Null Arrays

As you have seen in the section above, Ada allows for empty arrays. And — of course —
you can have empty arrays of all sorts, not just String:

type Some_Array is array (Positive range <>) of Boolean;

Empty_Some_Array : constant Some_Array (1 .. 0) := (others => False);

Note: If you give an initial expression to an empty array (which is a must for a constant),
the expression in the aggregate will of course not be evaluated since there are no elements
actually stored.

11.3 See also

See also

11.3.1 Wikibook

• Ada Programming17

• Ada Programming/Types18

• Data Structures19

• Data Structures/Arrays20

16 Chapter 4 on page 37
17 http://en.wikibooks.org/wiki/Ada%20Programming

18 http://en.wikibooks.org/wiki/Ada%20Programming%2FTypes

19 http://en.wikibooks.org/wiki/Data%20Structures

20 http://en.wikibooks.org/wiki/Data%20Structures%2FArrays

88

http://en.wikibooks.org/wiki/Ada%20Programming
http://en.wikibooks.org/wiki/Ada%20Programming%2FTypes
http://en.wikibooks.org/wiki/Data%20Structures
http://en.wikibooks.org/wiki/Data%20Structures%2FArrays

11.3.2 Ada 95 Reference Manual

• 3.6 Array Types ˆ{http://www.adaic.org/resources/add_content/standards/

95lrm/ARM_HTML/RM-3-6.html}

11.3.3 Ada 2005 Reference Manual

• 3.6 Array Types ˆ{http://www.adaic.org/resources/add_content/standards/

05rm/html/RM-3-6.html}

11.3.4 Ada Quality and Style Guide

• 10.5.7 Packed Boolean Array Shifts ˆ{http://www.adaic.org/resources/add_

content/docs/95style/html/sec_10/10-5-7.html}

es:Programación en Ada/Tipos/Arrays21

21 http://es.wikibooks.org/wiki/Programaci%F3n%20en%20Ada%2FTipos%2FArrays

89

http://www.adaic.org/resources/add_content/standards/95lrm/ARM_HTML/RM-3-6.html
http://www.adaic.org/resources/add_content/standards/95lrm/ARM_HTML/RM-3-6.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-3-6.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-3-6.html
http://www.adaic.org/resources/add_content/docs/95style/html/sec_10/10-5-7.html
http://www.adaic.org/resources/add_content/docs/95style/html/sec_10/10-5-7.html
http://es.wikibooks.org/wiki/Programaci%F3n%20en%20Ada%2FTipos%2FArrays

12 Records

A record is a composite type1 that groups one or more fields. A field can be of any type,
even a record.

12.1 Basic record

Basic record

type Basic_Record is

record

A : Integer;

end record;

12.2 Null record

Null record

The null record is when a type without data is needed. There are two ways to declare a null
record:

type Null_Record is

record

null;

end record;

type Null_Record is null record;

For the compiler they are the same. However, programmers often use the first variant if the
type is not finished yet to show that they are planning to expand the type later, or they
usually use the second if the (tagged) record is a base class in object oriented programming.

12.3 Record Values

Record Values

Values of a record type can be specified using a record aggregate, giving a list of named
components thus

1 http://en.wikibooks.org/wiki/ada%20Programming%2FTypes%23List%20of%20types

91

http://en.wikibooks.org/wiki/ada%20Programming%2FTypes%23List%20of%20types

Records

A_Basic_Record : Basic_Record := Basic_Record' (A =>

42) ;

Another_Basic_Record : Basic_Record := (A => 42) ;

Nix : constant Null_Record := (null record) ;

Given a somewhat larger record type,

type Car is record

Identity : Long_Long_Integer;

Number_Wheels : Positive range 1 .. 10;

Paint : Color;

Horse_Power_kW : Float range 0. 0 .. 2_000. 0;

Consumption : Float range 0. 0 .. 100. 0;

end record;

a value may be specified using positional notation, that is, specifying a value for each record
component in declaration order

BMW : Car := (2007_752_83992434, 5, Blue, 190. 0, 10. 1) ;

However, naming the components of a Car aggregate offers a number of advantages.

1. Easy identification of which value is used for which component. (After all, named
components are the raison d'être of records.)

2. Reordering the components is allowed—you only have to remember the component
names, not their position.

3. Improved compiler diagnostic messages.

Reordering components is possible because component names will inform the compiler
(and the human reader!) of the intended value associations. Improved compiler messages
are also in consequence of this additional information passed to the compiler. While
an omitted component will always be reported due to Ada's coverage rules2, messages
can be much more specific when there are named associations. Considering the Car

type from above, suppose a programmer by mistake specifies only one of the two
floating point values for BMW in positional notation. The compiler, in search of another
component value, will then not be able to decide whether the specified value is intended
for Horse_Power_kW or for Consumption. If the programmer instead uses named asso-
ciation, say Horse_Power_kW => 190. 0, it will be clear which other component is missing.

BMW : Car :=

(Identity => 2007_752_83992434,

Number_Wheels => 5,

Horse_Power_kW => 190. 0,

Consumption => 10. 1,

Paint => Blue) ;

In order to access a component of a record instance, use the dot delimiter (.), as in BMW.

Number_Wheels.

2 http://www.adacore.com/2007/05/14/gem-1/

92

http://www.adacore.com/2007/05/14/gem-1/

12.4 Discriminated record

Discriminated record

type Discriminated_Record (Size : Natural) is

record

A : String (1 .. Size);

end record;

12.5 Variant record

Variant record

The variant record is a special type of discriminated record where the presence of some
components depend on the value of the discriminant.

type Traffic_Light is (Red, Yellow, Green);

type Variant_Record (Option : Traffic_Light) is

record

--common components

case Option is

when Red =>

--components for red

when Yellow =>

--components for yellow

when Green =>

--components for green

end case;

end record;

12.5.1 Mutable and immutable variant records

You can declare variant record types such that its discriminant, and thus its variant structure,
can be changed during the lifetime of the variable. Such a record is said to be mutable.
When "mutating" a record, you must assign all components of the variant structure which
you are mutating at once, replacing the record with a complete variant structure. Although
a variant record declaration may allow objects of its type to be mutable, there are certain
restrictions on whether the objects will be mutable. Reasons restricting an object from being
mutable include:

• the object is declared with a discriminant (see Immutable_Traffic_Light below)
• the object is aliased (either by use of aliased in the object declaration, or by allocation

on the heap using new)

type Traffic_Light is (Red, Yellow, Green);

type Mutable_Variant_Record (Option : Traffic_Light := Red) is --the discriminant must

have a default value

record

--common components

Location : Natural;

93

Records

case Option is

when Red =>

--components for red

Flashing : Boolean := True;

when Yellow =>

--components for yellow

Timeout : Duration := 0.0;

when Green =>

--components for green

Whatever : Positive := 1;

end case;

end record;

...

Mutable_Traffic_Light : Mutable_Variant_Record;

--not declaring a discriminant makes this record mutable

--it has the default discriminant/variant

--structure and values

Immutable_Traffic_Light : Mutable_Variant_Record (Option => Yellow);

--this record is immutable, the discriminant cannot be changed

--even though the type declaration allows for mutable objects

--with different discriminant values

...

Mutable_Traffic_Light := (Option => Yellow,

--mutation requires assignment of all components

Location => 54,

--for the given variant structure

Timeout => 2.3);

...

--restrictions on objects, causing them to be immutable

type Traffic_Light_Access is access Mutable_Variant_Record;

Any_Traffic_Light : Traffic_Light_Access :=

new Mutable_Variant_Record;

Aliased_Traffic_Light : aliased Mutable_Variant_Record;

Conversely, you can declare record types so that the discriminant along with the structure
of the variant record may not be changed. To make a record type declaration immutable,
the discriminant must not have a default value.

type Traffic_Light is (Red, Yellow, Green);

type Immutable_Variant_Record (Option : Traffic_Light) is --no default value makes the record

type immutable

record

--common components

Location : Natural := 0;

case Option is

when Red =>

--components for red

Flashing : Boolean := True;

when Yellow =>

--components for yellow

Timeout : Duration;

when Green =>

--components for green

Whatever : Positive := 1;

end case;

end record;

94

...

Default_Traffic_Light : Immutable_Variant_Record;

--ILLEGAL!

Immutable_Traffic_Light : Immutable_Variant_Record (Option =>

Yellow); --this record is immutable, since the type declaration is immutable

12.6 Union

Union

This language feature is only available in Ada 2005

type Traffic_Light is (Red, Yellow, Green);

type Union (Option : Traffic_Light := Traffic_Light'First) is

record

--common components

case Option is

when Red =>

--components for red

when Yellow =>

--components for yellow

when Green =>

--components for green

end case;

end record;

pragma (Union);

pragma (C, Union); --optional

The difference to a variant record is such that Option is not actually stored inside the record
and never checked for correctness - it's just a dummy.

This kind of record is usually used for interfacing with C but can be used for other purposes
as well (then without pragma (C, Union);).

12.7 Tagged record

Tagged record

The tagged record is one part of what in other languages is called a class. It is the basic
foundation of object orientated programming in Ada3. The other two parts a class in Ada
needs is a package4 and primitive operations5.

3 Chapter 22 on page 187
4 Chapter 22.4.2 on page 217
5 Chapter 22.1.2 on page 188

95

Records

type Person is tagged

record

Name : String (1 .. 10);

Gender : Gender_Type;

end record;

type Programmer is new Person with

record

Skilled_In : Language_List;

end record;

Ada 2005 only:

type Programmer is new Person

and Printable

with

record

Skilled_In : Language_List;

end record;

12.8 Abstract tagged record

Abstract tagged record

An abstract type has at least an abstract primitive operation, i.e. one of its operations is
not defined and then its derivative types has to provide an implementation.

12.9 With aliased elements

With aliased elements

If you come from C6/C++7, you are probably used to the fact that every element of a
record - which is not part of a bitset - has an address. In Ada, this is not true because
records, just like arrays, can be packed. And just like arrays you can use aliased to ensure
that an element can be accessed via an access type.

type Basic_Record is

record

A : aliased Integer;

end record ;

Please note: each element needs its own aliased.

6 http://en.wikibooks.org/wiki/C%20Programming

7 http://en.wikibooks.org/wiki/C%2B%2B%20Programming

96

http://en.wikibooks.org/wiki/C%20Programming
http://en.wikibooks.org/wiki/C%2B%2B%20Programming

12.10 Limited Records

Limited Records

In addition to being variant, tagged, and abstract, records may also be limited (no assignment,
and no predefined equality operation for Limited Types8). In object oriented programming,
when tagged objects are handled by references instead of copying them, this blends well
with making objects limited.

12.11 See also

See also

12.11.1 Wikibook

• Ada Programming9

• Ada Programming/Types10

• Ada Programming/Keywords/record11

• Ada Programming/Keywords/null12

• Ada Programming/Keywords/abstract13

• Ada Programming/Keywords/case14

• Ada Programming/Keywords/when15

• Ada Programming/Pragmas/Unchecked_Union16

12.11.2 Ada Reference Manual

Ada 95

• 3.8 Record Types ˆ{http://www.adaic.org/resources/add_content/standards/

95lrm/ARM_HTML/RM-3-8.html}

Ada 2005

• 3.8 Record Types ˆ{http://www.adaic.org/resources/add_content/standards/

05rm/html/RM-3-8.html}

• Annex B.3.3 Pragma Unchecked_Union ˆ{http://www.adaic.org/resources/add_

content/standards/05rm/html/RM-B-3-3.html}

8 Chapter 14 on page 113
9 http://en.wikibooks.org/wiki/Ada%20Programming

10 http://en.wikibooks.org/wiki/Ada%20Programming%2FTypes

11 http://en.wikibooks.org/wiki/Ada%20Programming%2FKeywords%2Frecord

12 http://en.wikibooks.org/wiki/Ada%20Programming%2FKeywords%2Fnull

13 http://en.wikibooks.org/wiki/Ada%20Programming%2FKeywords%2Fabstract

14 http://en.wikibooks.org/wiki/Ada%20Programming%2FKeywords%2Fcase

15 http://en.wikibooks.org/wiki/Ada%20Programming%2FKeywords%2Fwhen

16 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FUnchecked_Union

97

http://www.adaic.org/resources/add_content/standards/95lrm/ARM_HTML/RM-3-8.html
http://www.adaic.org/resources/add_content/standards/95lrm/ARM_HTML/RM-3-8.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-3-8.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-3-8.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-B-3-3.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-B-3-3.html
http://en.wikibooks.org/wiki/Ada%20Programming
http://en.wikibooks.org/wiki/Ada%20Programming%2FTypes
http://en.wikibooks.org/wiki/Ada%20Programming%2FKeywords%2Frecord
http://en.wikibooks.org/wiki/Ada%20Programming%2FKeywords%2Fnull
http://en.wikibooks.org/wiki/Ada%20Programming%2FKeywords%2Fabstract
http://en.wikibooks.org/wiki/Ada%20Programming%2FKeywords%2Fcase
http://en.wikibooks.org/wiki/Ada%20Programming%2FKeywords%2Fwhen
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FUnchecked_Union

Records

Ada Issues

• AI95-00216-01 Unchecked unions — variant records with no run-time discriminant ˆ{http:

//www.ada-auth.org/cgi-bin/cvsweb.cgi/AIs/AI-00216.TXT}

98

http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AIs/AI-00216.TXT
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AIs/AI-00216.TXT

13 Access types

13.1 What's an Access Type?

What's an Access Type?

Access types in Ada are what other languages call pointers. They point to objects located
at certain addresses. So normally one can think of access types as simple addresses (there
are exceptions from this simplified view). Ada instead of saying points to talks of granting
access to or designating an object.

Objects of access types are implicitly initialized with null, i.e. they point to nothing when
not explicitly initialized.

Access types should be used rarely in Ada. In a lot of circumstances where pointers are
used in other languages, there are other ways without pointers. If you need dynamic
data structures, first check whether you can use the Ada Container library. Especially
for indefinite record or array components, the Ada 2012 package Indefinite_Holders (RM
A.18.18) can be used instead of pointers.

There are four kinds of access types in Ada: Pool access types - General access types -
Anonymous access types - Access to subprogram types.

13.2 Pool access

Pool access

A pool access type handles accesses to objects which were created on some specific heap (or
storage pool as it is called in Ada). A pointer of these types cannot point to a stack or
library level (static) object or an object in a different storage pool. Therefore, conversion
between pool access types is illegal. (Unchecked_Conversion may be used, but note that
deallocation via an access object with a storage pool different from the one it was allocated
with is erroneous.)

type Person is record

First_Name : String (1..30);

Last_Name : String (1..20);

end record;

type Person_Access is access Person;

99

Access types

A size clause may be used to limit the corresponding (implementation defined anonymous)
storage pool. A size clause of 0 disables calls of an allocator.

for Person_Access'Size use 0;

The storage pool is implementation defined if not specified. Ada supports user defined
storage pools, so you can define the storage pool with

for Person_Access'Storage_Pool use Pool_Name;

Objects in a storage pool are created with the keyword new:

Father: Person_Access := new Person;

-- uninitialized

Mother: Person_Access := new Person'(Mothers_First_Name,

Mothers_Last_Name); -- initialized

You access the object in the storage pool by appending .all. Mother.all is the complete
record; components are denoted as usual with the dot notation: Mother.all.First_Name.
When accessing components, implicit dereferencing (i.e. omitting all) can serve as a
convenient shorthand:

Mother.all := (Last_Name => Father.Last_Name, First_Name =>

Mother.First_Name); -- marriage

Implicit dereferencing also applies to arrays:

type Vector is array (1 .. 3) of Complex;

type Vector_Access is access Vector;

VA: Vector_Access := new Vector;

VB: array (1 .. 3) of Vector_Access := (others => new Vector);

C1: Complex := VA (3); -- a shorter equivalent for VA .all (3)

C2: Complex := VB (3)(1); -- a shorter equivalent for VB(3).all (1)

Be careful to discriminate between deep and shallow copies when copying with access objects:

Obj1.all := Obj2.all; -- Deep copy: Obj1 still refers to an object

-- different from Obj2, but it has the same

content

Obj1 := Obj2; -- Shallow copy: Obj1 now refers to the same

object as Obj2

100

13.2.1 Deleting objects from a storage pool

Although the Ada standard mentions a garbage collector, which would automatically remove
all unneeded objects that have been created on the heap (when no storage pool has been
defined), only Ada compilers targeting a virtual machine like Java or .NET actually have
garbage collectors. There is also a pragma Controlled, which, when applied to such an
access type, prevents automatic garbage collection of objects created with it. Note that
pragma Controlled will be dropped from Ada 2012, see RM 2012 13.11.3.

Therefore in order to delete an object from the heap, you need the generic unit Ada . Apply
utmost care to not create dangling pointers when deallocating objects as is shown in the
example below. (And note that deallocating objects with a different access type than the one
with which they were created is erroneous when the corresponding storage pools are different.)

with Ada ;

procedure Deallocation_Sample is

type Vector is array (Integer range <>) of Float;

type Vector_Ref is access Vector;

procedure Free_Vector is new Ada

(Object => Vector, Name => Vector_Ref);

VA, VB: Vector_Ref;

V : Vector;

begin

VA := new Vector (1 .. 10);

VB := VA; -- points to the same location as VA

VA.all := (others => 0.0);

-- ... Do whatever you need to do with the vector

Free_Vector (VA); -- The memory is deallocated and VA is now null

V := VB.all; -- VB is not null, access to a dangling pointer is

erroneous

end Deallocation_Sample;

It is exactly because of this problem with dangling pointers that the deallocation operation
is called unchecked. It is the chore of the programmer to take care that this does not
happen.

Since Ada allows for user defined storage pools, you could also try a garbage collector
library1.

1
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FMultiPurpose%2FAdaCL%

23Garbage_Collector

101

http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FMultiPurpose%2FAdaCL%23Garbage_Collector
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FMultiPurpose%2FAdaCL%23Garbage_Collector

Access types

13.2.2 Constructing Reference Counting Pointers

You can find some implementations of reference counting pointers, called Safe or Smart
Pointers, on the net. Using such a type prevents caring about deallocation, since this will
automatically be done when there are no more pointers to an object. But be careful - most of
those implementations do not prevent deliberate deallocation, thus undermining the alledged
safety attained with their use.

A nice tutorial how to construct such a type can be found in a series of Gems on the AdaCore
web site.

Gem #97: Reference Counting in Ada – Part 12 This little gem constructs a simple reference
counted pointer that does not prevent deallocation, i.e. is inherently unsafe.

Gem #107: Preventing Deallocation for Reference-counted Types3 This further gem describes
how to arrive at a pointer type whose safety cannot be compromised (tasking issues aside).
The cost of this improved safety is awkward syntax.

Gem #123: Implicit Dereferencing in Ada 20124 This gem shows how to simplify the syntax
with the new Ada 2012 generation. (Admittedly, this gem is a bit unrelated to reference
counting since the new language feature can be applied to any kind of container.)

13.3 General access

General access

General access types grant access to objects created on any storage pool, on the stack or
at library level (static). They come in two versions, granting either read-write access or
read-only access. Conversions between general access types are allowed, but subject to
certain access level checks.

Dereferencing is like for pool access types. Objects (other than pool objects) to be referenced
have to be declared aliased, and references to them are created with the attribute 'Access.
Access level restrictions prevent accesses to objects from outliving the accessed object,
which would make the program erroneous. The attribute 'Unchecked_Access omits the
corresponding checks.

13.3.1 Access to Variable

When the keyword all is used in their definition, they grant read-write access.

type Day_Of_Month is range 1 .. 31;

type Day_Of_Month_Access is access all Day_Of_Month;

2 http://www.adacore.com/2011/01/17/gem-97-reference-counting-in-ada-part-1/

3 http://www.adacore.com/2011/06/06/gem-107-preventing-deallocation-for-reference-counted-types/

4 http://www.adacore.com/adaanswers/gems/gem-123-implicit-dereferencing-in-ada-2012/

102

http://www.adacore.com/2011/01/17/gem-97-reference-counting-in-ada-part-1/
http://www.adacore.com/2011/06/06/gem-107-preventing-deallocation-for-reference-counted-types/
http://www.adacore.com/adaanswers/gems/gem-123-implicit-dereferencing-in-ada-2012/

13.3.2 Access to Constant

General access types granting read-only access to the referenced object use the keyword
constant in their definition. The referenced object may be a constant or a variable.

type Day_Of_Month is range 1 .. 31;

type Day_Of_Month_Access is access constant Day_Of_Month;

13.3.3 Some examples

type General_Pointer is access all Integer;

type Constant_Pointer is access constant Integer;

I1: aliased constant Integer := 10;

I2: aliased Integer;

P1: General_Pointer := I1'Access; -- illegal

P2: Constant_Pointer := I1'Access; -- OK, read only

P3: General_Pointer := I2'Access; -- OK, read and write

P4: Constant_Pointer := I2'Access; -- OK, read only

P5: constant General_Pointer := I2'Access; -- read and write only to I2

13.4 Anonymous access

Anonymous access

Also Anonymous access types come in two versions like general access types, granting either
read-write access or read-only access depending on whether the keyword constant appears.

An anonymous access can be used as a parameter to a subprogram or as a discriminant.
Here are some examples:

procedure Modify (Some_Day: access Day_Of_Month);

procedure Test (Some_Day: access constant Day_Of_Month); -- Ada 2005 only

task type Thread (Execute_For_Day: access Day_Of_Month) is

...

end Thread;

type Day_Data (Store_For_Day: access Day_Of_Month) is record

-- components

end record;

Before using an anonymous access, you should consider a named access type or, even better,
consider if the "out" or "in out" modifier is not more appropriate.

This language feature is only available in Ada 2005

In Ada 2005, anonymous accesses are allowed in more circumstances:

103

Access types

type Object is record

M : Integer;

Next: access Object;

end record;

X: access Integer;

function F return access constant Float;

13.5 Implicit Dereference

Implicit Dereference

Ada 2012 will simplify accesses to objects via pointers with new syntax.

Imagine you have a container holding some kind of elements.

type Container is private;

type Element_Ptr is access Element;

procedure Put (X: Element; Into: in out Container);

Now how do you access elements stored in the container. Of course you can retrieve them by

function Get (From: Container) return Element;

This will however copy the element, which is unfortunate if the element is big. You get
direct access with

function Get (From: Container) return Element_Ptr;

Now pointers are dangerous since you might easily create dangling pointers like so:

P: Element_Ptr := Get (Cont);

P.all := E;

Free (P);

... Get (Cont) -- this is now a dangling pointer

Use of an accessor object instead of an access type can prevent inadvertant deallocation
(this is still Ada 2005):

type Accessor (Data: not null access Element) is limited private; -- read/write access

function Get (From: Container) return Accessor;

(For the null exclusion not null in the declaration of the discriminant, see below). Access
via such an accessor is safe: The discriminant can only be used for dereferencing, it cannot
be copied to an object of type Element_Ptr because its accessibility level is deeper. In the

104

form above, the accessor provides read and write access. If the keyword constant is added,
only read access is possible.

type Accessor (Data: not null access constant Element) is limited private; -- only read access

Access to the container object now looks like so:

Get (Cont).all := E; -- via access type: dangerous

Get (Cont).Data.all := E; -- via accessor: safe, but ugly

Here the new Ada 2012 feature of aspects comes along handy; for the case at hand, the
aspect Implicit_Dereference is the one we need:

type Accessor (Data: not null access Element) is limited private

with Implicit_Dereference => Data;

Now rather than writing the long and ugly function call of above, we can just omit the
discriminant and its dereference like so:

Get (Cont).Data.all := E; -- Ada 2005 via accessor: safe, but ugly

Get (Cont) := E; -- Ada 2012 implicit dereference

Note that the call Get (Cont) is overloaded — it can denote the accessor object or the
element, the compiler will select the correct interpretation depending on context.

13.6 Null exclusions

Null exclusions

This language feature is only available in Ada 2005

All access subtypes can be modified with not null, objects of such a subtype can then never
have the value null, so initializations are compulsory.

type Day_Of_Month_Access is access Day_Of_Month;

subtype Day_Of_Month_Not_Null_Access is not null Day_Of_Month_Access;

The language also allows to declare the first subtype directly with a null exclusion:

type Day_Of_Month_Access is not null access Day_Of_Month;

However, in nearly all cases this is not a good idea because it renders objects of this type nearly
unusable (for example, you are unable to free the allocated memory). Not null accesses
are intended for access subtypes, object declarations, and subprogram parameters.http:

//groups.google.com/group/comp.lang.ada/msg/13a41ced7af75192

105

http://groups.google.com/group/comp.lang.ada/msg/13a41ced7af75192
http://groups.google.com/group/comp.lang.ada/msg/13a41ced7af75192

Access types

13.7 Access to Subprogram

Access to Subprogram

An access to subprogram allows to call a subprogram5 without knowing its name nor its
declaration location. One of the uses of this kind of access is the well known callbacks.

type Callback_Procedure is access procedure (Id : Integer;

Text: String);

type Callback_Function is access function (The_Alarm: Alarm) return Natural;

For getting an access to a subprogram, the attribute Access is applied to a subprogram
name with the proper parameter and result profile.

procedure Process_Event (Id : Integer;

Text: String);

My_Callback: Callback_Procedure := Process_Event'Access;

13.7.1 Anonymous access to Subprogram

This language feature is only available in Ada 2005

procedure Test (Call_Back: access procedure (Id: Integer; Text: String));

There is now no limit on the number of keyword in a sequence:

function F return access function return access function return access Some_Type;

This is a function that returns the access to a function that in turn returns an access to a
function returning an access to some type.

13.8 Access FAQ

Access FAQ

A few "Frequently Asked Question" and "Frequently Encountered Problems" (mostly from
C6 users) regarding Ada's access types.

5 Chapter 16 on page 125
6 http://en.wikibooks.org/wiki/Programming%3AC

106

http://en.wikibooks.org/wiki/Programming%3AC

13.8.1 Access vs. access all

An access all can do anything a simple access can do. So one might ask: "Why use simple
access at all?" - And indeed some programmers never use simple access.

Unchecked_Deallocation is always dangerous if misused. It is just as easy to deallocate
a pool-specific object twice, and just as dangerous as deallocating a stack object. The
advantage of "access all" is that you may not need to use Unchecked_Deallocation at all.

Moral: if you have (or may have) a valid reason to store an 'Access or 'Unchecked_Access
into an access object, then use "access all" and don't worry about it. If not, the mantra of
"least privilege" suggests that the "all" should be left out (don't enable capabilities that you
are not going to use).

The following (perhaps disastrous) example will try to deallocate a stack object:

declare

type Day_Of_Month is range 1 .. 31;

type Day_Of_Month_Access is access all Day_Of_Month;

procedure Free is new Ada.Unchecked_Deallocation

(Object => Day_Of_Month

Name => Day_Of_Month_Access);

A : aliased Day_Of_Month;

Ptr: Day_Of_Month_Access := A'Access;

begin

Free(Ptr);

end;

With a simple access you know at least that you won't try to deallocate a stack object.

13.8.2 Access vs. System.Address

An access can be something different from a mere memory address, it may be something
more. For example, an "access to String" often needs some way of storing the string size
as well. If you need a simple address and are not concerned about strong typing, use the
System.Address type.

13.8.3 C compatible pointer

The correct way to create a C compatible access is to use pragma :

type Day_Of_Month is range 1 .. 31;

for Day_Of_Month'Size use Interfaces.C.int'Size;

pragma (Convention => C,

Entity => Day_Of_Month);

107

Access types

type Day_Of_Month_Access is access Day_Of_Month;

pragma (Convention => C,

Entity => Day_Of_Month_Access);

pragma should be used on any type you want to use in C. The compiler will warn you if
the type cannot be made C compatible.

You may also consider the following - shorter - alternative when declaring Day_Of_Month:

type Day_Of_Month is new Interfaces.C.int range 1 .. 31;

Before you use access types in C, you should consider using the normal "in", "out" and "in
out" modifiers. pragma and pragma know how parameters are usually passed in C and
will use a pointer to pass a parameter automatically where C would have used them as
well. Of course the RM contains precise rules on when to use a pointer for "in", "out", and
"in out" - see "B.3 Interfacing with C ˆ{http://www.adaic.org/resources/add_content/

standards/05rm/html/RM-B-3.html} ".

13.8.4 Where is void*?

While actually a problem for "interfacing with C", here are some possible solutions:

procedure Test is

subtype Pvoid is System.Address;

-- the declaration in C looks like this:

-- int C_fun(int *)

function C_fun (pv: Pvoid) return Integer;

pragma (Convention => C,

Entity => C_fun, -- any Ada name

External_Name => "C_fun"); -- the C name

Pointer: Pvoid;

Input_Parameter: aliased Integer := 32;

Return_Value : Integer;

begin

Pointer := Input_Parameter'Address;

Return_Value := C_fun (Pointer);

end Test;

Less portable but perhaps more usable (for 32 bit CPUs):

type void is mod 2 ** 32;

for void'Size use 32;

108

http://www.adaic.org/resources/add_content/standards/05rm/html/RM-B-3.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-B-3.html

With GNAT you can get 32/64 bit portability by using:

type void is mod System.Memory_Size;

for void'Size use System.Word_Size;

Closer to the true nature of void - pointing to an element of zero size is a pointer to a null
record. This also has the advantage of having a representation for void and void*:

type Void is null record;

pragma (C, Void);

type Void_Ptr is access all Void;

pragma (C, Void_Ptr);

13.9 Thin and Fat Access Types

Thin and Fat Access Types

The difference between an access type and an address will be detailed in the following. The
term pointer is used because this is usual terminology.

There is a predefined unit System.Address_to_Access_Conversion converting back and
forth between access values and addresses. Use these conversions with care, as is explained
below.

13.9.1 Thin Pointers

Thin pointers grant access to constrained subtypes.

type Int is range -100 .. +500;

type Acc_Int is access Int;

type Arr is array (1 .. 80) of Character;

type Acc_Arr is access Arr;

Objects of subtypes like these have a static size, so a simple address suffices to access them.
In the case of arrays, this is generally the address of the first element.

For pointers of this kind, use of System.Address_to_Access_Conversion is safe.

13.9.2 Fat Pointers

type Unc is array (Integer range <>) of Character;

type Acc_Unc is access Unc;

109

Access types

Objects of subtype Unc need a constraint, i.e. a start and a stop index, thus pointers to
them need also to include those. So a simple address like the one of the first component is
not sufficient. Note that A'Address is the same as A(A'First)'Address for any array object.

For pointers of this kind, System.Address_to_Access_Conversion will probably not work
satisfactorily.

13.9.3 Example

CO: aliased Unc (-1 .. +1) := (-1 .. +1 => ' ');

UO: aliased Unc := (-1 .. +1 => ' ');

Here, CO is a nominally constrained object, a pointer to it need not store the constraint, i.e.
a thin pointer suffices. In contrast, UO is an object of a nominally unconstrained subtype,
its actual subtype is constrained by the initial value.

A: Acc_Unc := CO'Access; -- illegal

B: Acc_Unc := UO'Access; -- OK

C: Acc_Unc (CO'Range) := CO'Access; -- also illegal

The relevant paragraphs in the RM are difficult to understand. In short words:

An access type's target type is called the designated subtype, in our example Unc. RM
3.10.2(27.1/2) requires that Unc_Acc's designated subtype statically match the nominal
subtype of the object.

Now the nominal subtype of CO is the constrained anonymous subtype Unc (-1 .. +1), the
nominal subtype of UO is the unconstrained subtype Unc. In the illegal cases, the designated
and nominal subtypes do not statically match.

13.10 See also

See also

13.10.1 Wikibook

• Ada Programming7

• Ada Programming/Types8

7 http://en.wikibooks.org/wiki/Ada%20Programming

8 http://en.wikibooks.org/wiki/Ada%20Programming%2FTypes

110

http://en.wikibooks.org/wiki/Ada%20Programming
http://en.wikibooks.org/wiki/Ada%20Programming%2FTypes

13.10.2 Ada Reference Manual

Ada 95

• 4.8 Allocators ˆ{http://www.adaic.org/resources/add_content/standards/95lrm/

ARM_HTML/RM-4-8.html}

• 13.11 Storage Management ˆ{http://www.adaic.org/resources/add_content/

standards/95lrm/ARM_HTML/RM-13-11.html}

• 13.11.2 Unchecked Storage Deallocation ˆ{http://www.adaic.org/resources/add_

content/standards/95lrm/ARM_HTML/RM-13-11-2.html}

• 3.7 Discriminants ˆ{http://www.adaic.org/resources/add_content/standards/

95lrm/ARM_HTML/RM-3-7.html}

• 3.10 Access Types ˆ{http://www.adaic.org/resources/add_content/standards/

95lrm/ARM_HTML/RM-3-10.html}

• 6.1 Subprogram Declarations ˆ{http://www.adaic.org/resources/add_content/

standards/95lrm/ARM_HTML/RM-6-1.html}

• B.3 Interfacing with C ˆ{http://www.adaic.org/resources/add_content/standards/

95lrm/ARM_HTML/RM-B-3.html}

Ada 2005

• 4.8 Allocators ˆ{http://www.adaic.org/resources/add_content/standards/05rm/

html/RM-4-8.html}

• 13.11 Storage Management ˆ{http://www.adaic.org/resources/add_content/

standards/05rm/html/RM-13-11.html}

• 13.11.2 Unchecked Storage Deallocation ˆ{http://www.adaic.org/resources/add_

content/standards/05rm/html/RM-13-11-2.html}

• 3.7 Discriminants ˆ{http://www.adaic.org/resources/add_content/standards/

05rm/html/RM-3-7.html}

• 3.10 Access Types ˆ{http://www.adaic.org/resources/add_content/standards/

05rm/html/RM-3-10.html}

• 6.1 Subprogram Declarations ˆ{http://www.adaic.org/resources/add_content/

standards/05rm/html/RM-6-1.html}

• B.3 Interfacing with C ˆ{http://www.adaic.org/resources/add_content/standards/

05rm/html/RM-B-3.html}

13.10.3 Ada Quality and Style Guide

• 5.4.5 Dynamic Data ˆ{http://www.adaic.org/resources/add_content/docs/

95style/html/sec_5/5-4-5.html}

• 5.9.2 Unchecked Deallocation ˆ{http://www.adaic.org/resources/add_content/

docs/95style/html/sec_5/5-9-2.html}

111

http://www.adaic.org/resources/add_content/standards/95lrm/ARM_HTML/RM-4-8.html
http://www.adaic.org/resources/add_content/standards/95lrm/ARM_HTML/RM-4-8.html
http://www.adaic.org/resources/add_content/standards/95lrm/ARM_HTML/RM-13-11.html
http://www.adaic.org/resources/add_content/standards/95lrm/ARM_HTML/RM-13-11.html
http://www.adaic.org/resources/add_content/standards/95lrm/ARM_HTML/RM-13-11-2.html
http://www.adaic.org/resources/add_content/standards/95lrm/ARM_HTML/RM-13-11-2.html
http://www.adaic.org/resources/add_content/standards/95lrm/ARM_HTML/RM-3-7.html
http://www.adaic.org/resources/add_content/standards/95lrm/ARM_HTML/RM-3-7.html
http://www.adaic.org/resources/add_content/standards/95lrm/ARM_HTML/RM-3-10.html
http://www.adaic.org/resources/add_content/standards/95lrm/ARM_HTML/RM-3-10.html
http://www.adaic.org/resources/add_content/standards/95lrm/ARM_HTML/RM-6-1.html
http://www.adaic.org/resources/add_content/standards/95lrm/ARM_HTML/RM-6-1.html
http://www.adaic.org/resources/add_content/standards/95lrm/ARM_HTML/RM-B-3.html
http://www.adaic.org/resources/add_content/standards/95lrm/ARM_HTML/RM-B-3.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-4-8.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-4-8.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-13-11.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-13-11.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-13-11-2.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-13-11-2.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-3-7.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-3-7.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-3-10.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-3-10.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-6-1.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-6-1.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-B-3.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-B-3.html
http://www.adaic.org/resources/add_content/docs/95style/html/sec_5/5-4-5.html
http://www.adaic.org/resources/add_content/docs/95style/html/sec_5/5-4-5.html
http://www.adaic.org/resources/add_content/docs/95style/html/sec_5/5-9-2.html
http://www.adaic.org/resources/add_content/docs/95style/html/sec_5/5-9-2.html

14 Limited types

14.1 Limited Types

Limited Types

When a type is declared limited this means that objects of the type cannot be assigned
values of the same type. An Object b of limited type LT cannot be copied into an object a

of same type LT.

Additionally, there is no predefined equality operation for objects of a limited type.

The desired effects of declaring a type limited include prevention of shallow copying. Also,
the (unique) identity of an object is retained: once declared, a name of a variable of type LT

will continue to refer to the same object.

The following example will use a rather simplifying type Boat.

type Boat is limited private;

function Choose

(Load : Sailors_Units;

Speed : Sailors_Units)

return Boat;

procedure Set_Sail (The_Boat : in out Boat) ;

When we declare a variable to be of type Boat, its name will denote one boat from then on.
Boats will not be copied into one another.

The full view of a boat might be implemented as a record such as

type Boat is limited record

Max_Sail_Area : Sailors_Units;

Max_Freight : Sailors_Units;

Sail_Area : Sailors_Units;

Freight : Sailors_Units;

end record;

The Choose function returns a Boat object depending on the parameters Load and Speed.
If we now declare a variable of type Boat we will be better off Choosing an initial Boat (or
else we might be dropping into uninitialized waters!). But when we do so, the initialization
looks suspiciously like assignment which is not available with limited types:

113

Limited types

procedure Travel (People : Positive; Average_Speed : Sailors_Units) is

Henrietta : Boat := --assignment?

Choose

(Load => People * Average_Weight * 1. 5,

Speed => Average_Speed * 1. 5) ;

begin

Set_Sail (Henrietta) ;

end Travel;

Fortunately, current Ada distinguishes initialization from copying. Objects of a limited type
may be initialized by an initialization expression on the right of the delimiter := .

(Just to prevent confusion: The Ada Reference Manual discriminates between assignment
and assignment statement, where assignment is part of the assignment statement. An
initialisation is of course an assignment which, for limited types, is done in place. An
assignment statement involves copying, which is forbidden for limited types.)

Related to this feature are aggregates of limited types1 and “constructor functions”
for limited types. Internally, the implementation of the Choose function will return
a limited record. However, since the return type Boat is limited, there must be no
copying anywhere. Will this work? A first attempt might be to declare a result variable
local to Choose, manipulate result, and return it. The result object needs to be
“transported” into the calling environment. But result is a variable local to Choose.
When Choose returns, result will no longer be in scope. Therefore it looks like result

must be copied but this is not permitted for limited types. There are two solutions
provided by the language: extended return statements (see 6.5 Return Statements ˆ{http:

//www.adaic.org/resources/add_content/standards/05rm/html/RM-6-5.html}) and
aggregates of limited types. The following body of Choose returns an aggregate of limited
type Boat, after finding the initial values for its components.

function Choose

(Load : Sailors_Units;

Speed : Sailors_Units)

return Boat

is

Capacity : constant Sailors_Units := Capacity_Needed (Load) ;

begin

return Boat'

(Max_Freight => Capacity,

Max_Sail_Area => Sail_Needed (Capacity) ,

Freight => Load,

Sail_Area => 0. 0) ;

end Choose;

The object that is returned is at the same time the object that is to have the returned value.
The function therefore initializes Henrietta in place.

In parallel to the predefined type Ada .Controlled, Ada provides the type Limited_-

Controlled in the same package. It is a limited version of the former.

1 http://www.adacore.com/2007/05/14/gem-1/

114

http://www.adaic.org/resources/add_content/standards/05rm/html/RM-6-5.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-6-5.html
http://www.adacore.com/2007/05/14/gem-1/

14.2 Initialising Limited Types

Initialising Limited Types

A few methods to initialise such types are presented.

package Limited_Private_Samples is

type Uninitialised is limited private;

type Preinitialised is limited private;

type Dynamic_Initialisation is limited private;

function Constructor (X: Integer) --any kind of parameters

return Dynamic_Initialisation;

type Needs_Constructor (<>) is limited private;

function Constructor (X: Integer) --any kind of parameters

return Needs_Constructor;

private

type Uninitialised is record

I: Integer;

end record;

type Preinitialised is record

I: Integer := 0; --can also be a function call

end record;

type Void is null record;

function Constructor (Object: access Dynamic_Initialisation) return Void;

type Dynamic_Initialisation is limited record

Hook: Void := Constructor (Dynamic_Initialisation'Access);

Bla : Integer; --any needed components

end record;

type Needs_Constructor is record

I: Integer;

end record;

end Limited_Private_Samples;

package body Limited_Private_Samples is

function Constructor (Object: access Dynamic_Initialisation) return Void is

begin

Object.Bla := 5; --may be any value only known at run time

return (null record);

end Constructor;

function Constructor (X: Integer) return Dynamic_Initialisation is

begin

return (Hook => (null record),

Bla => 42);

end Constructor;

function Constructor (X: Integer) return Needs_Constructor is

begin

return (I => 42);

end Constructor;

end Limited_Private_Samples;

115

Limited types

with Limited_Private_Samples;

use Limited_Private_Samples;

procedure Try is

U: Uninitialised; --very bad

P: Preinitialised; --has initial value (good)

D1: Dynamic_Initialisation; --has initial value (good)

D2: Dynamic_Initialisation := Constructor (0) ; --Ada 2005 initialisation

D3: Dynamic_Initialisation renames Constructor (0) ; --already Ada 95

--I: Needs_Constructor; -- Illegal without initialisation

N: Needs_Constructor := Constructor (0) ; --Ada 2005 initialisation

begin

null;

end Try;

Note that D3 is a constant, whereas all others are variables.

Also note that the initial value that is defined for the component of Preinitialised is
evaluated at the time of object creation, i.e. if an expression is used instead of the literal,
the value can be run-time dependent.

X, Y: Preinitialised;

In this declaration of two objects, the initial expression will be evaluated twice and can
deliver different values, because it is equivalent to the sequence2:

X: Preinitialised;

Y: Preinitialised;

So X is initialised before Y.

14.3 See also

See also

14.3.1 Ada 95 Reference Manual

• 7.5 Limited Types ˆ{http://www.adaic.org/resources/add_content/standards/

95lrm/ARM_HTML/RM-7-5.html}

2 ISO/IEC 8652:2007. 3.3.1 Object Declarations (7). Ada 2005 Reference Manual. Any declaration
[...] with more than one defining_identifier is equivalent to a series of declarations each containing
one defining_identifier from the list, [...] in the same order as the list. ˆ{http://www.adaic.org/

resources/add_content/standards/05rm/html/RM-3-3-1.html}

116

http://www.adaic.org/resources/add_content/standards/95lrm/ARM_HTML/RM-7-5.html
http://www.adaic.org/resources/add_content/standards/95lrm/ARM_HTML/RM-7-5.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-3-3-1.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-3-3-1.html

14.3.2 Ada 2005 Reference Manual

• 7.5 Limited Types ˆ{http://www.adaic.org/resources/add_content/standards/

05rm/html/RM-7-5.html}

14.3.3 Ada Quality and Style Guide

• 5.3.3 Private Types ˆ{http://www.adaic.org/resources/add_content/docs/

95style/html/sec_5/5-3-3.html}

• 8.3.3 Formal Private and Limited Private Types ˆ{http://www.adaic.org/resources/

add_content/docs/95style/html/sec_8/8-3-3.html}

14.4 References

References

117

http://www.adaic.org/resources/add_content/standards/05rm/html/RM-7-5.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-7-5.html
http://www.adaic.org/resources/add_content/docs/95style/html/sec_5/5-3-3.html
http://www.adaic.org/resources/add_content/docs/95style/html/sec_5/5-3-3.html
http://www.adaic.org/resources/add_content/docs/95style/html/sec_8/8-3-3.html
http://www.adaic.org/resources/add_content/docs/95style/html/sec_8/8-3-3.html

15 Strings

Ada supports three different types of strings. Each string type is designed to solve a different
problem.

In addition, every string type is implemented for each available Characters type (Character,

Wide_Character, Wide_Wide_Character) giving a complement of nine combinations.

15.1 Fixed-length string handling

Fixed-length string handling

Fixed-Length Strings are arrays1 of Character, and consequently of a fixed length. Since
a fixed length string is an indefinite subtype2 the length does not need to be known at
compile time — the length may well be calculated at run time. In the following example
the length is calculated from command-line argument 1:

X : String := Ada.Command_Line.Argument (1);

However once the length has been calculated and the strings have been created the length
stays constant. Try the following program which shows a typical mistake:

File: show_commandline_1.adb

with Ada ;

with Ada ;

procedure Show_Commandline_1 is

package T_IO renames Ada ;

package CL renames Ada ;

X : String := CL.Argument (1);

begin

T_IO.Put ("Argument 1 = ");

T_IO.Put_Line (X);

X := CL.Argument (2);

T_IO.Put ("Argument 2 = ");

1 Chapter 11 on page 83
2 http://en.wikibooks.org/wiki/ada%20Programming%2FSubtypes%23indefinite%20subtype

119

http://en.wikibooks.org/wiki/ada%20Programming%2FSubtypes%23indefinite%20subtype

Strings

T_IO.Put_Line (X);

end Show_Commandline_1;

The program will only work when the 1st and 2nd parameter have the same length. This
is even true when the 2nd parameter is shorter. There is neither an automatic padding of
shorter strings nor an automatic truncation of longer strings.

Having said that, the package Ada contains a set of procedures and functions for Fixed-
Length String Handling which allows padding of shorter strings and truncation of longer
strings.

Try the following example to see how it works:

File: show_commandline_2.adb

with Ada ;

with Ada ;

with Ada ;

procedure Show_Commandline_2 is

package T_IO renames Ada ;

package CL renames Ada ;

package S renames Ada ;

package SF renames Ada ;

X : String := CL.Argument (1);

begin

T_IO.Put ("Argument 1 = ");

T_IO.Put_Line (X);

SF.Move (

Source => CL.Argument (2),

Target => X,

Drop => S.Right,

Justify => S.Left,

Pad => S.Space);

T_IO.Put ("Argument 2 = ");

T_IO.Put_Line (X);

end Show_Commandline_2;

15.2 Bounded-length string handling

Bounded-length string handling

Bounded-Length Strings can be used when the maximum length of a string is known and/or
restricted. This is often the case in database applications where only a limited number of
characters can be stored.

120

Like Fixed-Length Strings the maximum length does not need to be known at compile time
— it can also be calculated at runtime — as the example below shows:

File: show_commandline_3.adb

with Ada ;

with Ada ;

with Ada ;

procedure Show_Commandline_3 is

package T_IO renames Ada.Text_IO;

package CL renames Ada.Command_Line;

function Max_Length (

Value_1 : Integer;

Value_2 : Integer)

return

Integer

is

Retval : Integer;

begin

if Value_1 > Value_2 then

Retval := Value_1;

else

Retval := Value_2;

end if;

return Retval;

end Max_Length;

pragma Inline (Max_Length);

package SB

is new Ada.Strings.Bounded.Generic_Bounded_Length (

Max => Max_Length (

Value_1 => CL.Argument (1)'Length,

Value_2 => CL.Argument (2)'Length));

X : SB.Bounded_String

:= SB.To_Bounded_String (CL.Argument (1));

begin

T_IO.Put ("Argument 1 = ");

T_IO.Put_Line (SB.To_String (X));

X := SB.To_Bounded_String (CL.Argument (2));

T_IO.Put ("Argument 2 = ");

T_IO.Put_Line (SB.To_String (X));

end Show_Commandline_3;

You should know that Bounded-Length Strings have some distinct disadvantages. Most
noticeable is that each Bounded-Length String is a different type which makes converting
them rather cumbersome. Also a Bounded-Length String type always allocates memory for
the maximum permitted string length for the type. The memory allocation for a Bounded-
Length String is equal to the maximum number of string "characters" plus an implementation
dependent number containing the string length (each character can require allocation of
more than one byte per character, depending on the underlying character type of the string,

121

Strings

and the length number is 4 bytes long for the Windows GNAT Ada compiler v3.15p, for
example).

15.3 Unbounded-length string handling

Unbounded-length string handling

Last but not least there is the Unbounded-Length String. In fact: If you are not doing
embedded or database programming this will be the string type you are going to use most
often as it gives you the maximum amount of flexibility.

As the name suggest the Unbounded-Length String can hold strings of almost any length —
limited only to the value of Integer'Last or your available heap memory. This is because
Unbounded_String type is implemented using dynamic memory allocation behind the
scenes, providing lower efficiency but maximum flexibility.

File: show_commandline_4.adb

with Ada ;

with Ada ;

with Ada ;

procedure Show_Commandline_4 is

package T_IO renames Ada.Text_IO;

package CL renames Ada.Command_Line;

package SU renames Ada.Strings.Unbounded;

X : SU.Unbounded_String

:= SU.To_Unbounded_String (CL.Argument (1));

begin

T_IO.Put ("Argument 1 = ");

T_IO.Put_Line (SU.To_String (X));

X := SU.To_Unbounded_String (CL.Argument (2));

T_IO.Put ("Argument 2 = ");

T_IO.Put_Line (SU.To_String (X));

end Show_Commandline_4;

As you can see the Unbounded-Length String example is also the shortest (discarding the

first example, which is buggy) — this makes using Unbounded-Length Strings very appealing.

15.4 See also

122

See also

15.4.1 Wikibook

• Ada Programming3

15.4.2 Ada 95 Reference Manual

• 2.6 String Literals ˆ{http://www.adaic.org/resources/add_content/standards/

95lrm/ARM_HTML/RM-2-6.html}

• 3.6.3 String Types ˆ{http://www.adaic.org/resources/add_content/standards/

95lrm/ARM_HTML/RM-3-6-3.html}

• A.4.3 Fixed-Length String Handling ˆ{http://www.adaic.org/resources/add_

content/standards/95lrm/ARM_HTML/RM-A-4-3.html}

• A.4.4 Bounded-Length String Handling ˆ{http://www.adaic.org/resources/add_

content/standards/95lrm/ARM_HTML/RM-A-4-4.html}

• A.4.5 Unbounded-Length String Handling ˆ{http://www.adaic.org/resources/add_

content/standards/95lrm/ARM_HTML/RM-A-4-5.html}

15.4.3 Ada 2005 Reference Manual

• 2.6 String Literals ˆ{http://www.adaic.org/resources/add_content/standards/

05rm/html/RM-2-6.html}

• 3.6.3 String Types ˆ{http://www.adaic.org/resources/add_content/standards/

05rm/html/RM-3-6-3.html}

• A.4.3 Fixed-Length String Handling ˆ{http://www.adaic.org/resources/add_

content/standards/05rm/html/RM-A-4-3.html}

• A.4.4 Bounded-Length String Handling ˆ{http://www.adaic.org/resources/add_

content/standards/05rm/html/RM-A-4-4.html}

• A.4.5 Unbounded-Length String Handling ˆ{http://www.adaic.org/resources/add_

content/standards/05rm/html/RM-A-4-5.html}

3 http://en.wikibooks.org/wiki/Ada%20Programming

123

http://www.adaic.org/resources/add_content/standards/95lrm/ARM_HTML/RM-2-6.html
http://www.adaic.org/resources/add_content/standards/95lrm/ARM_HTML/RM-2-6.html
http://www.adaic.org/resources/add_content/standards/95lrm/ARM_HTML/RM-3-6-3.html
http://www.adaic.org/resources/add_content/standards/95lrm/ARM_HTML/RM-3-6-3.html
http://www.adaic.org/resources/add_content/standards/95lrm/ARM_HTML/RM-A-4-3.html
http://www.adaic.org/resources/add_content/standards/95lrm/ARM_HTML/RM-A-4-3.html
http://www.adaic.org/resources/add_content/standards/95lrm/ARM_HTML/RM-A-4-4.html
http://www.adaic.org/resources/add_content/standards/95lrm/ARM_HTML/RM-A-4-4.html
http://www.adaic.org/resources/add_content/standards/95lrm/ARM_HTML/RM-A-4-5.html
http://www.adaic.org/resources/add_content/standards/95lrm/ARM_HTML/RM-A-4-5.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-2-6.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-2-6.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-3-6-3.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-3-6-3.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-A-4-3.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-A-4-3.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-A-4-4.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-A-4-4.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-A-4-5.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-A-4-5.html
http://en.wikibooks.org/wiki/Ada%20Programming

16 Subprograms

In Ada the subprograms are classified into two categories: procedures1 and functions2. A
procedures call is a statement and does not return any value, whereas a function returns a
value and must therefore be a part of an expression.

Subprogram parameters may have three modes.

in

The actual parameter value goes into the call and is not changed there. The formal
parameter is a constant and allows only reading. This is the default when no mode is given.
The actual parameter is an expression.

in out

The actual parameter goes into the call and may be redefined. The formal parameter is a
variable and can be read and written.

out

The actual parameter's value before the call is irrelevant, it will get a value in the call. The
formal parameter can be read and written. (In Ada 83 out parameters were write-only.)

A parameter of any mode may also be explicitly aliased.

access

The formal parameter is an access (a pointer) to some variable. (This is not a parameter
mode from the reference manual point of view.)

Note that parameter modes do not specify the parameter passing method. Their purpose is
to document the data flow.

The parameter passing method depends on the type of the parameter. A rule of thumb is
that parameters fitting into a register are passed by copy, others are passed by reference.
For certain types, there are special rules, for others the parameter passing mode is left to
the compiler (which you can assume to do what is most sensible). Tagged types are always
passed by reference.

Explicitly aliased parameters and access parameters specify pass by reference.

Unlike in the C class of programming languages, Ada subprogram calls cannot have empty
parameters parentheses () when there are no parameters.

1 Chapter 16.1 on page 126
2 Chapter 16.2 on page 127

125

Subprograms

16.1 Procedures

Procedures

A procedure call in Ada constitutes a statement by itself.

For example:

procedure A_Test (A, B: in Integer; C: out Integer) is

begin

C := A + B;

end A_Test;

When the procedure is called with the statement

A_Test (5 + P, 48, Q);

the expressions 5 + P and 48 are evaluated (expressions are only allowed for in parameters),
and then assigned to the formal parameters A and B, which behave like constants. Then,
the value A + B is assigned to formal variable C, whose value will be assigned to the actual
parameter Q when the procedure finishes.

C, being an out parameter, is an uninitialized variable before the first assignment. (Therefore
in Ada 83, there existed the restriction that out parameters are write-only. If you wanted to
read the value written, you had to declare a local variable, do all calculations with it, and
finally assign it to C before return. This was awkward and error prone so the restriction
was removed in Ada 95.)

Within a procedure, the return statement can be used without arguments to exit the
procedure and return the control to the caller.

For example, to solve an equation of the kind ax2 + bx+ c = 0:

with Ada ;

use Ada ;

procedure Quadratic_Equation

(A, B, C : Float; --By default it is "in".

R1, R2 : out Float;

Valid : out Boolean)

is

Z : Float;

begin

Z := B**2 - 4.0 * A * C;

if Z < 0.0 or A = 0.0 then

Valid := False; --Being out parameter, it should be modified at least once.

R1 := 0.0;

R2 := 0.0;

else

Valid := True;

R1 := (-B + Sqrt (Z)) / (2.0 * A);

R2 := (-B - Sqrt (Z)) / (2.0 * A);

end if;

end Quadratic_Equation;

126

The function SQRT calculates the square root of non-negative values. If the roots are real,
they are given back in R1 and R2, but if they are complex or the equation degenerates (A
= 0), the execution of the procedure finishes after assigning to the Valid variable the False
value, so that it is controlled after the call to the procedure. Notice that the out parameters
should be modified at least once, and that if a mode is not specified, it is implied in.

16.2 Functions

Functions

A function is a subprogram that can be invoked as part of an expression. Until Ada 2005,
functions can only take in (the default) or access parameters; the latter can be used as a
work-around for the restriction that functions may not have out parameters. Ada 2012 has
removed this restriction.

Here is an example of a function body:

function Minimum (A, B: Integer) return Integer is

begin

if A <= B then

return A;

else

return B;

end if;

end Minimum;

Or in Ada2012:

function Minimum (A, B: Integer) return Integer is

begin

return (if A <= B then A else B);

end Minimum;

or even shorter as an expression function

function Minimum (A, B: Integer) return Integer is (if A <= B then A else B);

The formal parameters with mode in behave as local constants whose values are provided by
the corresponding actual parameters. The statement return is used to indicate the value
returned by the function call and to give back the control to the expression that called
the function. The expression of the return statement may be of arbitrary complexity and
must be of the same type declared in the specification. If an incompatible type is used, the
compiler gives an error. If the restrictions of a subtype are not fulfilled, e.g. a range, it
raises a Constraint_Error exception.

The body of the function can contain several return statements and the execution of any
of them will finish the function, returning control to the caller. If the flow of control within
the function branches in several ways, it is necessary to make sure that each one of them is
finished with a return statement. If at run time the end of a function is reached without

127

Subprograms

encountering a return statement, the exception Program_Error is raised. Therefore, the
body of a function must have at least one such return statement.

Every call to a function produces a new copy of any object declared within it. When
the function finalizes, its objects disappear. Therefore, it is possible to call the function
recursively. For example, consider this implementation of the factorial function:

function Factorial (N : Positive) return Positive is

begin

if N = 1 then

return 1;

else

return (N * Factorial (N - 1));

end if;

end Factorial;

When evaluating the expression Factorial (4); the function will be called with parameter
4 and within the function it will try to evaluate the expression Factorial (3), calling itself
as a function, but in this case parameter N would be 3 (each call copies the parameters)
and so on until N = 1 is evaluated which will finalize the recursion and then the expression
will begin to be completed in the reverse order.

A formal parameter of a function can be of any type, including vectors or records. Never-
theless, it cannot be an anonymous type, that is, its type must be declared before, for example:

type Float_Vector is array (Positive range <>) of Float;

function Add_Components (V: Float_Vector) return Float is

Result : Float := 0.0;

begin

for I in V'Range loop

Result := Result + V(I);

end loop;

return Result;

end Add_Components;

In this example, the function can be used on a vector of arbitrary dimension. Therefore,
there are no static bounds in the parameters passed to the functions. For example, it is
possible to be used in the following way:

V4 : Float_Vector (1 .. 4) := (1.2, 3.4, 5.6, 7.8);

Sum : Float;

Sum := Add_Components (V4);

In the same way, a function can also return a type whose bounds are not known a priori.
For example:

function Invert_Components (V : Float_Vector) return Float_Vector is

Result : Float_Vector(V'Range); --Fix the bounds of the vector to be returned.

begin

for I in V'Range loop

128

Result(I) := V (V'First + V'Last - I);

end loop;

return Result;

end Invert_Components;

The variable Result has the same bounds as V, so the returned vector will always have the
same dimension as the one passed as parameter.

A value returned by a function can be used without assigning it to a variable, it can be
referenced as an expression. For example, Invert_Components (V4) (1), where the first
element of the vector returned by the function would be obtained (in this case, the last
element of V4, i.e. 7.8).

16.3 Named parameters

Named parameters

In subprogram calls, named parameter notation (i.e. the name of the formal parameter
followed of the symbol => and then the actual parameter) allows the rearrangement of the
parameters in the call. For example:

Quadratic_Equation (Valid => OK, A => 1.0, B => 2.0, C => 3.0, R1 =>

P, R2 => Q);

F := Factorial (N => (3 + I));

This is especially useful to make clear which parameter is which.

Phi := Arctan (A, B);

Phi := Arctan (Y => A, X => B);

The first call (from Ada.Numerics.Elementary_Functions) is not very clear. One might easily
confuse the parameters. The second call makes the meaning clear without any ambiguity.

Another use is for calls with numeric literals:

Ada.Float_Text_IO.Put_Line (X, 3, 2, 0); -- ?

Ada.Float_Text_IO.Put_Line (X, Fore => 3, Aft => 2, Exp => 0); --

OK

16.4 Default parameters

Default parameters

On the other hand, formal parameters may have default values. They can, therefore, be
omitted in the subprogram call. For example:

129

Subprograms

procedure By_Default_Example (A, B: in Integer := 0);

can be called in these ways:

By_Default_Example (5, 7); --A = 5, B = 7

By_Default_Example (5); --A = 5, B = 0

By_Default_Example; --A = 0, B = 0

By_Default_Example (B => 3); --A = 0, B = 3

By_Default_Example (1, B => 2); --A = 1, B = 2

In the first statement, a "regular call" is used (with positional association); the second
also uses positional association but omits the second parameter to use the default; in the
third statement, all parameters are by default; the fourth statement uses named association
to omit the first parameter; finally, the fifth statement uses mixed association, here the
positional parameters have to precede the named ones.

Note that the default expression is evaluated once for each formal parameter that has no
actual parameter. Thus, if in the above example a function would be used as defaults for A
and B, the function would be evaluated once in case 2 and 4; twice in case 3, so A and B
could have different values; in the others cases, it would not be evaluated.

16.5 Renaming

Renaming

Subprograms may be renamed. The parameter and result profile for a renaming-as-
declaration must be mode conformant.

procedure Solve

(A, B, C: in Float;

R1, R2 : out Float;

Valid : out Boolean) renames Quadratic_Equation;

This may be especially comfortable for tagged types.

package Some_Package is

type Message_Type is tagged null record;

procedure Print (Message: in Message_Type);

end Some_Package;

with Some_Package;

procedure Main is

Message: Some_Package.Message_Type;

procedure Print renames Message.Print; --this has convention intrinsic, see RM 6.3.1(10.1/2)

Method_Ref: access procedure := Print'Access; --thus taking 'Access should be illegal; GNAT

GPL 2012 allows this

begin --All these calls are equivalent:

Some_Package.Print (Message); --traditional call without use clause

Message.Print; --Ada 2005 method.object call - note: no use clause necessary

Print; --Message.Print is a parameterless procedure and can be renamed

130

as such

Method_Ref.all; --GNAT GPL 2012 allows illegal call via an access to the renamed

procedure Print

--This has been corrected in the current version (as of Nov 22,

2012)

end Main;

But note that Message.Print'Access; is illegal, you have to use a renaming declaration
as above.

Since only mode conformance is required (and not full conformance as between specification
and body), parameter names and default values may be changed with renamings:

procedureP (X: inInteger := 0);

procedureR (A: inInteger := -1) renamesP;

16.6 See also

See also

16.6.1 Wikibook

• Ada Programming3

• Ada Programming/Operators4

16.6.2 Ada 95 Reference Manual

• Section 6: Subprograms ˆ{http://www.adaic.org/resources/add_content/

standards/05rm/html/RM-6.html}

• 4.4 Expressions ˆ{http://www.adaic.org/resources/add_content/standards/05rm/

html/RM-4-4.html}

16.6.3 Ada 2005 Reference Manual

• Section 6: Subprograms ˆ{http://www.adaic.org/resources/add_content/

standards/05rm/html/RM-6.html}

• 4.4 Expressions ˆ{http://www.adaic.org/resources/add_content/standards/05rm/

html/RM-4-4.html}

3 http://en.wikibooks.org/wiki/Ada%20Programming

4 Chapter 37 on page 301

131

http://www.adaic.org/resources/add_content/standards/05rm/html/RM-6.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-6.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-4-4.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-4-4.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-6.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-6.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-4-4.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-4-4.html
http://en.wikibooks.org/wiki/Ada%20Programming

Subprograms

16.6.4 Ada Quality and Style Guide

• 4.1.3 Subprograms ˆ{http://www.adaic.org/resources/add_content/docs/

95style/html/sec_4/4-1-3.html}

es:Programación en Ada/Subprogramas5

5 http://es.wikibooks.org/wiki/Programaci%F3n%20en%20Ada%2FSubprogramas

132

http://www.adaic.org/resources/add_content/docs/95style/html/sec_4/4-1-3.html
http://www.adaic.org/resources/add_content/docs/95style/html/sec_4/4-1-3.html
http://es.wikibooks.org/wiki/Programaci%F3n%20en%20Ada%2FSubprogramas

17 Packages

Ada encourages the division of code into separate modules called packages. Each package
can contain any combination of items.

Some of the benefits of using packages are:

• package contents are placed in a separate namespace, preventing naming collisions,
• implementation details of the package can be hidden from the programmer (information

hiding),
• object orientation requires defining a type and its primitive subprograms within a package,

and
• packages can be separately compiled.

Some of the more common package usages are:

• a group of related subprograms along with their shared data, with the data not visible
outside the package,

• one or more data types along with subprograms for manipulating those data types, and
• a generic package that can be instantiated under varying conditions.

The following is a quote from the current Ada Reference Manual 7. Packages. RM
7(1) ˆ{http://www.adaic.org/resources/add_content/standards/05rm/html/RM-7-.

html}

Packages are program units that allow the specification of groups of logically related
entities. Typically, a package contains the declaration of a type (often a private type
or private extension) along with the declaration of primitive subprograms of the type,
which can be called from outside the package, while their inner workings remain hidden
from outside users.

17.1 Separate compilation

Separate compilation

It is very common for package declarations and package bodies to be coded into separate
files and separately compiled. Doing so places the package at the library level where it will
be accessible to all other code via the with statement—if a more restricted scope is desired,
simply declare the package (and package body, if needed) within the appropriate scope.
The package body can itself be divided into multiple files by specifying that one or more
subprogram implementations are separate.

133

http://www.adaic.org/resources/add_content/standards/05rm/html/RM-7-.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-7-.html

Packages

One of the biggest advantages of Ada over most other programming languages is its well
defined system of modularization and separate compilation. Even though Ada allows
separate compilation, it maintains the strong type checking among the various compilations
by enforcing rules of compilation order and compatibility checking. Ada uses separate
compilation (like Modula-21, Java2 and C#3), and not independent compilation (as C4/C++5

does), in which the various parts are compiled with no knowledge of the other compilation
units with which they will be combined.

A note to C/C++ users: Yes, you can use the preprocessor to emulate separate compilation
— but it is only an emulation and the smallest mistake leads to very hard to find bugs. It
is telling that all C/C++ successor languages including D6 have turned away from the
independent compilation and the use of the preprocessor.

So it's good to know that Ada has had separate compilation ever since Ada-83 and is
probably the most sophisticated implementation around.

17.2 Parts of a package

Parts of a package

A package generally consists of two parts, the specification and the body. A package
specification can be further divided in two logical parts, the visible part and the private
part. Only the visible part of the specification is mandatory. The private part of the
specification is optional, and a package specification might not have a package body—the
package body only exists to complete any incomplete items in the specification. Subprogram
declarations are the most common incomplete items. There must not be a package body if
there is no incomplete declarations and there has to be a package body if there is incomplete
declarations in the specification.

To understand the value of the three-way division, consider the case of a package that has
already been released and is in use. A change to the visible part of the specification will
require that the programmers of all using software verify that the change does not affect the
using code. A change to the private part of the declaration will require that all using code be
recompiled but no review is normally needed. Some changes to the private part can change
the meaning of the client code however. An example is changing a private record type into
a private access type. This change can be done with changes in the private part, but change
the semantic meaning of assignment in the clients code. A change to the package body
will only require that the file containing the package body be recompiled, because nothing
outside of the package body can ever access anything within the package body (beyond the
declarations in the specification part).

A common usage of the three parts is to declare the existence of a record type and some
subprograms that operate on that type in the visible part, define the actual structure of the

1 http://en.wikipedia.org/wiki/Modula-2

2 http://en.wikipedia.org/wiki/Java_programming_language

3 http://en.wikipedia.org/wiki/C%20Sharp%20programming%20language

4 http://en.wikipedia.org/wiki/C%20programming%20language

5 http://en.wikipedia.org/wiki/C%2B%2B

6 http://en.wikipedia.org/wiki/D_programming_language

134

http://en.wikipedia.org/wiki/Modula-2
http://en.wikipedia.org/wiki/Java_programming_language
http://en.wikipedia.org/wiki/C%20Sharp%20programming%20language
http://en.wikipedia.org/wiki/C%20programming%20language
http://en.wikipedia.org/wiki/C%2B%2B
http://en.wikipedia.org/wiki/D_programming_language

record type in the private part, and provide the code to implement the subprograms in the
package body.

17.2.1 The package specification — the visible part

The visible part of a package specification describes all the subprogram specifications,
variables, types, constants etc. that are visible to anyone who wishes to use the package.

package Public_Only_Package is

type Range_10 is range 1 .. 10;

end Public_Only_Package;

17.2.2 The private part

The private part of a package serves two purposes:

• To complete the deferred definition of private types and constants.
• To export entities only visible to the children of the package

package Package_With_Private is

type Private_Type is private;

private

type Private_Type is array (1 .. 10) of Integer;

end Package_With_Private;

17.2.3 The package body

The package body defines the implementation of the package. All the subprograms defined
in the specification have to be implemented in the body. New subprograms, types and
objects can be defined in the body that are not visible to the users of the package.

package Package_With_Body is

type Basic_Record is private;

procedure Set_A (This : in out Basic_Record;

An_A : in Integer);

function Get_A (This : Basic_Record) return Integer;

private

type Basic_Record is

record

A : Integer;

135

Packages

end record ;

pragma (Get_A);

pragma (Get_A);

pragma (Set_A);

end Package_With_Body;

package body Package_With_Body is

procedure Set_A (This : in out Basic_Record;

An_A : in Integer)

is

begin

This.A := An_A;

end Set_A;

function Get_A (This : Basic_Record) return Integer is

begin

return This.A;

end Get_A;

end Package_With_Body;

pragma

Only available when using GNAT7.

17.2.4 Two Flavors of Package

The packages above each define a type together with operations of the type. When the
type's composition is placed in the private part of a package, the package then exports what
is known to be an Abstract Data Type8 or ADT for short. Objects of the type are then
constructed by calling one of the subprograms associated with the respective type.

A different kind of package is the Abstract State Machine. A package will be modeling a
single item of the problem domain, such as the motor of a car. If a program controls one car,
there is typically just one motor, or the motor. The public part of the package specification
only declares the operations of the module (of the motor, say), but no type. All data of
the module are hidden in the body of the package where they act as state variables to be
queried, or manipulated by the subprograms of the package. The initialization part sets the
state variables to their initial values.

package Package_With_Body is

procedure Set_A (An_A : in Integer) ;

function Get_A return Integer;

private

7 http://en.wikipedia.org/wiki/GNAT

8 http://en.wikipedia.org/wiki/Abstract_data_type

136

http://en.wikipedia.org/wiki/GNAT
http://en.wikipedia.org/wiki/Abstract_data_type

pragma Pure_Function (Get_A) ;

end Package_With_Body;

package body Package_With_Body is

The_A: Integer;

procedure Set_A (An_A : in Integer) is

begin

The_A := An_A;

end Set_A;

function Get_A return Integer is

begin

return The_A;

end Get_A;

begin

The_A := 0;

end Package_With_Body;

(A note on construction: The package initialization part after begin corresponds to a
construction subprogram of an ADT package. However, as a state machine is an “object”
already, “construction” is happening during package initialization. (Here it sets the state
variable The_A to its initial value.) An ASM package can be viewed as a singleton9.)

17.3 Using packages

Using packages

To utilize a package it's needed to name it in a with clause, whereas to have direct visibility
of that package it's needed to name it in a use clause.

For C++ programmers, Ada's with clause is analogous to the C++ preprocessor's #include
and Ada's use is similar to the using namespace statement in C++. In particular, use
leads to the same namespace pollution problems as using namespace and thus should be
used sparingly. Renaming can shorten long compound names to a manageable length, while
the use type clause makes a type's operators visible. These features reduce the need for
plain use.

17.3.1 Standard with

The standard with clause provides visibility for the public part of a unit to the following
defined unit. The imported package can be used in any part of the defined unit, including
the body when the clause is used in the specification.

9 http://en.wikipedia.org/wiki/Singleton_pattern

137

http://en.wikipedia.org/wiki/Singleton_pattern

Packages

17.3.2 Private with

This language feature is only available in Ada 2005

private with Ada.Strings.Unbounded;

package Private_With is

--The package Ada.String.Unbounded is not visible at this point

type Basic_Record is private;

procedure Set_A (This : in out Basic_Record;

An_A : in String);

function Get_A (This : Basic_Record) return String;

private

--The visibility of package Ada.String.Unbounded starts here

package Unbounded renames Ada.Strings.Unbounded;

type Basic_Record is

record

A : Unbounded.Unbounded_String;

end record;

pragma (Get_A);

pragma (Get_A);

pragma (Set_A);

end Private_With;

package body Private_With is

--The private withed package is visible in the body too

procedure Set_A (This : in out Basic_Record;

An_A : in String)

is

begin

This.A := Unbounded.To_Unbounded_String (An_A);

end Set_A;

function Get_A (This : Basic_Record) return String is

begin

return Unbounded.To_String (This.A);

end Get_A;

end Private_With;

17.3.3 Limited with

This language feature is only available in Ada 2005

limited with Departments;

package Employees is

138

type Employee is tagged private;

procedure Assign_Employee

(E : in out Employee;

D : access Departments.Department'Class);

type Dept_Ptr is access all Departments.Department'Class;

function Current_Department(E : in Employee) return Dept_Ptr;

...

end Employees;

limited with Employees;

package Departments is

type Department is tagged private;

procedure Choose_Manager

(Dept : in out Department;

Manager : access Employees.Employee'Class);

...

end Departments;

17.3.4 Making operators visible

Suppose you have a package Universe that defines some numeric type T.

with Universe;

procedure P is

V: Universe. T := 10. 0;

begin

V := V * 42. 0; --illegal

end P;

This program fragment is illegal since the operators implicitly defined in Universe are not
directly visible.

You have four choices to make the program legal.

Use a use_package_clause. This makes all declarations in Universe directly visible
(provided they are not hidden because of other homographs).

with Universe;

use Universe;

procedure P is

V: Universe. T := 10. 0;

begin

V := V * 42. 0;

end P;

Use renaming. This is error prone since if you rename many operators, cut and paste errors
are probable.

139

Packages

with Universe;

procedure P is

function "*" (Left, Right: Universe. T) return Universe. T renames Universe. "*";

function "/" (Left, Right: Universe. T) return Universe. T renames Universe. "*";

--oops

V: Universe. T := 10. 0;

begin

V := V * 42. 0;

end P;

Use qualification. This is extremely ugly and unreadable.

with Universe;

procedure P is

V: Universe. T := 10. 0;

begin

V := Universe. "*" (V, 42. 0) ;

end P;

Use the use_type_clause. This makes only the operators in Universe directly visible.

with Universe;

procedure P is

V: Universe. T := 10. 0;

use type Universe. T;

begin

V := V * 42. 0;

end P;

There is a special beauty in the use_type_clause. Suppose you have a set of packages like
so:

with Universe;

package Pack is

subtype T is Universe. T;

end Pack;

with Pack;

procedure P is

V: Pack. T := 10. 0;

begin

V := V * 42. 0; --illegal

end P;

Now you've got into trouble. Since Universe is not made visible, you cannot use a use_-
package_clause for Universe to make the operator directly visible, nor can you use qualifi-
cation for the same reason. Also a use_package_clause for Pack does not help, since the
operator is not defined in Pack. The effect of the above construct means that the operator
is not nameable, i.e. it cannot be renamed in a renaming statement.

Of course you can add Universe to the context clause, but this may be impossible due to
some other reasons (e.g. coding standards); also adding the operators to Pack may be
forbidden or not feasible. So what to do?

140

The solution is simple. Use the use_type_clause for Pack.T and all is well!

with Pack;

procedure P is

V: Pack. T := 10. 0;

use type Pack. T;

begin

V := V * 42. 0;

end P;

17.4 Package organisation

Package organisation

17.4.1 Nested packages

A nested package is a package declared inside a package. Like a normal package, it has a
public part and a private part. From outside, items declared in a nested package N will
have visibility as usual; the programmer may refer to these items using a full dotted name
like P.N.X. (But not P.M.Y.)

package P is

D: Integer;

--a nested package:

package N is

X: Integer;

private

Foo: Integer;

end N;

E: Integer;

private

--another nested package:

package M is

Y: Integer;

private

Bar: Integer;

end M;

end P;

Inside a package, declarations become visible as they are introduced, in textual order. That
is, a nested package N that is declared after some other declaration D can refer to this
declaration D. A declaration E following N can refer to items of N10. But neither can “look
ahead” and refer to any declaration that goes after them. For example, spec N above cannot
refer to M in any way.

In the following example, a type is derived in both of the two nested packages Disks and
Books. Notice that the full declaration of parent type Item appears before the two nested

10 For example, E: Integer := D + N.X;

141

Packages

packages.

with Ada ; use Ada ;

package Shelf is

pragma Elaborate_Body;

--things to put on the shelf

type ID is range 1_000 .. 9_999;

type Item (Identifier : ID) is abstract tagged limited null record;

type Item_Ref is access constant Item' class;

function Next_ID return ID;

--a fresh ID for an Item to Put on the shelf

package Disks is

type Music is (

Jazz,

Rock,

Raga,

Classic,

Pop,

Soul) ;

type Disk (Style : Music; Identifier : ID) is new Item (Identifier)

with record

Artist : Unbounded_String;

Title : Unbounded_String;

end record;

end Disks;

package Books is

type Literature is (

Play,

Novel,

Poem,

Story,

Text,

Art) ;

type Book (Kind : Literature; Identifier : ID) is new Item

(Identifier)

with record

Authors : Unbounded_String;

Title : Unbounded_String;

Year : Integer;

end record;

end Books;

--shelf manipulation

procedure Put (it: Item_Ref) ;

function Get (identifier : ID) return Item_Ref;

function Search (title : String) return ID;

private

142

--keeping private things private

package Boxes is

type Treasure(Identifier: ID) is limited private;

private

type Treasure(Identifier: ID) is new Item(Identifier) with null record;

end Boxes;

end Shelf;

A package may also be nested inside a subprogram. In fact, packages can be declared in any
declarative part, including those of a block.

17.4.2 Child packages

Ada allows one to extend the functionality of a unit (package) with so-called children (child
packages). With certain exceptions, all the functionality of the parent is available to a child.
This means that all public and private declarations of the parent package are visible to all
child packages.

The above example, reworked as a hierarchy of packages, looks like this. Notice that the
package Ada is not needed by the top level package Shelf, hence its with clause doesn't
appear here. (We have added a match function for searching a shelf, though):

package Shelf is

pragma Elaborate_Body;

type ID is range 1_000 .. 9_999;

type Item (Identifier : ID) is abstract tagged limited null record;

type Item_Ref is access constant Item' Class;

function Next_ID return ID;

--a fresh ID for an Item to Put on the shelf

function match (it : Item; Text : String) return Boolean is abstract;

--see whether It has bibliographic information matching Text

--shelf manipulation

procedure Put (it: Item_Ref) ;

function Get (identifier : ID) return Item_Ref;

function Search (title : String) return ID;

end Shelf;

The name of a child package consists of the parent unit's name followed by the child
package's identifier, separated by a period (dot) ‘. '.

with Ada ; use Ada ;

package Shelf. Books is

type Literature is (

Play,

143

Packages

Novel,

Poem,

Story,

Text,

Art) ;

type Book (Kind : Literature; Identifier : ID) is new Item (Identifier)

with record

Authors : Unbounded_String;

Title : Unbounded_String;

Year : Integer;

end record;

function match(it: Book; text: String) return Boolean;

end Shelf. Books;

Book has two components of type Unbounded_String, so Ada appears in a with clause of
the child package. This is unlike the nested packages case which requires that all units
needed by any one of the nested packages be listed in the context clause of the enclosing
package (see 10.1.2 Context Clauses - With Clauses ˆ{http://www.adaic.org/resources/

add_content/standards/05rm/html/RM-10-1-2.html}). Child packages thus give better
control over package dependences. With clauses are more local.

The new child package Shelf.Disks looks similar. The Boxes package which was a nested
package in the private part of the original Shelf package is moved to a private child
package:

private package Shelf. Boxes is

type Treasure(Identifier: ID) is limited private;

private

type Treasure(Identifier: ID) is new Item(Identifier) with null record;

function match(it: Treasure; text: String) return Boolean;

end Shelf. Boxes;

The privacy of the package means that it can only be used by equally private client units.
These clients include private siblings and also the bodies of siblings (as bodies are never
public).

Child packages may be listed in context clauses just like normal packages. A with of a child
also 'withs' the parent.

17.4.3 Subunits

A subunit is just a feature to move a body into a place of its own when otherwise the
enclosing body will become too large. It can also be used for limiting the scope of context
clauses.

The subunits allow to physically divide a package into different compilation units without
breaking the logical unity of the package. Usually each separated subunit goes to a different
file allowing separate compilation of each subunit and independent version control history
for each one.

144

http://www.adaic.org/resources/add_content/standards/05rm/html/RM-10-1-2.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-10-1-2.html

package body Pack is

procedure Proc is separate;

end Pack;

with Some_Unit;

separate (Pack)

procedure Proc is

begin

...

end Proc;

17.5 Notes

Notes

17.6 See also

See also

17.6.1 Wikibook

• Ada Programming11

17.6.2 Wikipedia

• Module12

17.6.3 Ada 95 Reference Manual

• Annex 7: Packages13

17.6.4 Ada 2005 Reference Manual

• Annex 7: Packages14

11 http://en.wikibooks.org/wiki/Ada%20Programming

12 http://en.wikipedia.org/wiki/Module%20%28programming%29

13 http://www.adaic.org/resources/add_content/standards/95lrm/ARM_HTML/RM-7.html

14 http://www.adaic.org/resources/add_content/standards/05rm/html/RM-2-7.html

145

http://en.wikibooks.org/wiki/Ada%20Programming
http://en.wikipedia.org/wiki/Module%20%28programming%29
http://www.adaic.org/resources/add_content/standards/95lrm/ARM_HTML/RM-7.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-2-7.html

18 Input Output

18.1 Overview

Overview

The standard Ada libraries provide several Input/Output facilities, each one adapted to
specific needs. Namely, the language defines the following dedicated packages:

• Text_IO
• Sequential_IO
• Direct_IO
• Stream_IO

The programmer must choose the adequate package depending on the application needs.
For example, the following properties of the data handled by the application should be
considered:

• Data contents: plain text, or binary data?
• Accessing the data: random access, or sequential access?
• Medium: data file, console, network/data-bus?
• Data structure: homogeneous file (sequence of the same data field), heterogeneous file

(different data fields)?
• Data format: adherence to an existing data format, or the application can freely choose

a new one?

For example, Stream_IO is very powerful and can handle complex data structures but can
be heavier than other packages; Sequential_IO is lean and easy to use but cannot be used
by applications requiring random data access; Text_IO can handle just textual data, but it
is enough for handling the command-line console.

The following table gives some advices for choosing the more adequate one:

Simple heuristics for choosing an I/O package

Data access Plain text
Binary data
Homogeneous Heterogeneous

Sequential Text_IO Sequential_IO Stream_IO

Random Text_IO Direct_IO Stream_IO

So the most important lesson to learn is choosing the right one. This chapter will describe
more in detail these standard packages, explaining how to use them effectively. Besides
these Ada-defined packages for general I/O operations each Ada compiler usually has other

147

Input Output

implementation-defined Input-Output facilities, and there are also other external libraries
for specialized I/O needs1 like XML processing or interfacing with databases.

18.2 Text I/O

Text I/O

Text I/O2 is probably the most used Input/Output package. All data inside the file are
represented by human readable text. Text I/O provides support for line and page layout
but the standard is free form text.

with Ada ;

use Ada ;

with Ada ;

use Ada ;

procedure Main is

Str : String (1.. 5) ;

Last : Natural;

begin

Ada. Text_IO. Get_Line (Str, Last) ;

Ada. Text_IO. Put_Line (Str (1.. Last)) ;

end;

It also contains several generic packages for converting numeric and enumeration types to
character strings, or for handling Bounded and Unbounded strings, allowing the program-
mer to read and write different data types in the same file easily (there are ready-to-use
instantiations of these generic packages for the Integer, Float, and Complex types). Finally,
the same family of Ada.Text_IO packages (including the several children and instantiation
packages) for the type Wide_Character and Wide_Wide_Character.

It is worth noting that the family of Text_IO packages provide some automatic text
processing. For example, the Get_Line ignores white spaces at the beginning of a line
(Get_Immediate does not present this behavior), or adding a newline character when closing
the file. This is thus adequate for applications handling simple textual data, but users
requiring direct management of text (e.g. raw access to the character encoding) must
consider other packages like Sequential_IO.

18.3 Direct I/O

Direct I/O

Direct I/O is used for random access files which contain only elements of one specific type.
With Direct_IO you can position the file pointer to any element of that type (random access),
however you can't freely choose the element type, the element type needs to be a definite
subtype3.

1 http://en.wikibooks.org/wiki/Ada%20Programming%23Other%20Language%20Libraries

2 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Text_IO

3 http://en.wikibooks.org/wiki/ada%20Programming%2FSubtypes%23definite_subtype

148

http://en.wikibooks.org/wiki/Ada%20Programming%23Other%20Language%20Libraries
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Text_IO
http://en.wikibooks.org/wiki/ada%20Programming%2FSubtypes%23definite_subtype

18.4 Sequential I/O

Sequential I/O

Direct I/O is used for random access files which contain only elements of one specific
type. With Sequential_IO it is the other way round: you can choose between definite4 and
indefinite5 element types but you have to read and write the elements one after the other.

18.5 Stream I/O

Stream I/O

Stream I/O is the most powerful input/output package which Ada provides. Stream I/O
allows you to mix objects from different element types in one sequential file. In order to
read/write from/to a stream each type provides a 'Read6 and 'Write7 attribute as well as
an 'Input8 and 'Output9 attribute. These attributes are automatically generated for each
type you declare.

The 'Read10 and 'Write11 attributes treat the elements as raw data. They are suitable for
low level input/output as well as interfacing with other programming languages.

The 'Input12 and 'Output13 attribute add additional control informations to the file, like for
example the 'First14 and 'Last15 attributes from an array.

In object orientated programming you can also use the 'Class16'Input17 and 'Class18'Output19

attributes - they will store and recover the actual object type as well.

Stream I/O is also the most flexible input/output package. All I/O attributes can be
replaced with user defined functions or procedures using representation clauses and you can
provide your own Stream I/O types using flexible object oriented techniques.

18.6 See also

4 http://en.wikibooks.org/wiki/ada%20Programming%2FSubtypes%23definite_subtype

5
http://en.wikibooks.org/wiki/ada%20Programming%2FSubtypes%23Ada%20Programming%

2FSubtypes%23indefinite_subtype
6 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Read

7 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Write

8 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Input

9 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Output

10 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Read

11 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Write

12 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Input

13 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Output

14 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27First

15 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Last

16 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Class

17 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Input

18 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Class

19 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Output

149

http://en.wikibooks.org/wiki/ada%20Programming%2FSubtypes%23definite_subtype
http://en.wikibooks.org/wiki/ada%20Programming%2FSubtypes%23Ada%20Programming%2FSubtypes%23indefinite_subtype
http://en.wikibooks.org/wiki/ada%20Programming%2FSubtypes%23Ada%20Programming%2FSubtypes%23indefinite_subtype
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Read
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Write
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Input
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Output
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Read
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Write
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Input
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Output
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27First
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Last
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Class
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Input
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Class
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Output

Input Output

See also

18.6.1 Wikibook

• Ada Programming20

• Ada Programming/Libraries/Ada.Direct_IO21

• Ada Programming/Libraries/Ada.Sequential_IO22

• Ada Programming/Libraries/Ada.Streams23

• Ada Programming/Libraries/Ada.Streams.Stream_IO24

• Ada Programming/Libraries/Ada.Text_IO.Text_Streams25

• Ada Programming/Libraries/Ada.Text_IO26

• Ada Programming/Libraries/Ada.Text_IO.Enumeration_IO27 (nested package)
• Ada Programming/Libraries/Ada.Text_IO.Integer_IO28 (nested package)
• Ada Programming/Libraries/Ada.Text_IO.Modular_IO29 (nested package)
• Ada Programming/Libraries/Ada.Text_IO.Float_IO30 (nested package)
• Ada Programming/Libraries/Ada.Text_IO.Fixed_IO31 (nested package)
• Ada Programming/Libraries/Ada.Text_IO.Decimal_IO32 (nested package)
• Ada Programming/Libraries/Ada.Text_IO.Bounded_IO33

• Ada Programming/Libraries/Ada.Text_IO.Unbounded_IO34

• Ada Programming/Libraries/Ada.Text_IO.Complex_IO35 (specialized needs annex)
• Ada Programming/Libraries/Ada.Text_IO.Editing36 (specialized needs annex)

• Ada Programming/Libraries/Ada.Integer_Text_IO37

• Ada Programming/Libraries/Ada.Float_Text_IO38

• Ada Programming/Libraries/Ada.Complex_Text_IO39 (specialized needs annex)
• Ada Programming/Libraries/Ada.Storage_IO40 (not a general-purpose I/O package)
• Ada Programming/Libraries/Ada.IO_Exceptions41

• Ada Programming/Libraries/Ada.Command_Line42

20 http://en.wikibooks.org/wiki/Ada%20Programming

21 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Direct_IO

22 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Sequential_IO

23 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Streams

24 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Streams.Stream_IO

25 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Text_IO.Text_Streams

26 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Text_IO

27
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Text_IO.Enumeration_

IO
28 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Text_IO.Integer_IO

29 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Text_IO.Modular_IO

30 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Text_IO.Float_IO

31 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Text_IO.Fixed_IO

32 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Text_IO.Decimal_IO

33 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Text_IO.Bounded_IO

34 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Text_IO.Unbounded_IO

35 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Text_IO.Complex_IO

36 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Text_IO.Editing

37 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Integer_Text_IO

38 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Float_Text_IO

39 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Complex_Text_IO

40 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Storage_IO

41 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.IO_Exceptions

42 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Command_Line

150

http://en.wikibooks.org/wiki/Ada%20Programming
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Direct_IO
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Sequential_IO
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Streams
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Streams.Stream_IO
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Text_IO.Text_Streams
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Text_IO
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Text_IO.Enumeration_IO
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Text_IO.Enumeration_IO
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Text_IO.Integer_IO
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Text_IO.Modular_IO
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Text_IO.Float_IO
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Text_IO.Fixed_IO
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Text_IO.Decimal_IO
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Text_IO.Bounded_IO
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Text_IO.Unbounded_IO
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Text_IO.Complex_IO
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Text_IO.Editing
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Integer_Text_IO
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Float_Text_IO
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Complex_Text_IO
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Storage_IO
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.IO_Exceptions
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Command_Line

• Ada Programming/Libraries/Ada.Directories43

• Ada Programming/Libraries/Ada.Environment_Variables44

• Ada Programming/Libraries/GNAT.IO45 (implementation defined)
• Ada Programming/Libraries/GNAT.IO_Aux46 (implementation defined)
• Ada Programming/Libraries/GNAT.Calendar.Time_IO47 (implementation defined)
• Ada Programming/Libraries/System.IO48 (implementation defined)
• Ada Programming/Libraries49

• Ada Programming/Libraries/GUI50

• Ada Programming/Libraries/Web51

• Ada Programming/Libraries/Database52

• Ada Programming/Platform53

• Ada Programming/Platform/Linux54

• Ada Programming/Platform/Windows55

18.6.2 Ada Reference Manual

• A.6 Input-Output ˆ{http://www.adaic.org/resources/add_content/standards/

05rm/html/RM-A-6.html}

• A.7 External Files and File Objects ˆ{http://www.adaic.org/resources/add_

content/standards/05rm/html/RM-A-7.html}

• A.8 Sequential and Direct Files ˆ{http://www.adaic.org/resources/add_content/

standards/05rm/html/RM-A-8.html}

• A.10 Text Input-Output ˆ{http://www.adaic.org/resources/add_content/

standards/05rm/html/RM-A-10.html}

• A.11 Wide Text Input-Output and Wide Wide Text Input-Output ˆ{http://www.adaic.

org/resources/add_content/standards/05rm/html/RM-A-11.html}

• A.12 Stream Input-Output ˆ{http://www.adaic.org/resources/add_content/

standards/05rm/html/RM-A-12.html}

• A.13 Exceptions in Input-Output ˆ{http://www.adaic.org/resources/add_content/

standards/05rm/html/RM-A-13.html}

• A.14 File Sharing ˆ{http://www.adaic.org/resources/add_content/standards/

05rm/html/RM-A-14.html}

43 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Directories

44
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Environment_

Variables
45 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGNAT.IO

46 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGNAT.IO_Aux

47 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGNAT.Calendar.Time_IO

48 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FSystem.IO

49 Chapter 40 on page 331
50 Chapter 48 on page 361
51 Chapter 51 on page 371
52 Chapter 50 on page 365
53 Chapter 53 on page 375
54 Chapter 54 on page 377
55 Chapter 55 on page 379

151

http://www.adaic.org/resources/add_content/standards/05rm/html/RM-A-6.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-A-6.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-A-7.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-A-7.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-A-8.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-A-8.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-A-10.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-A-10.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-A-11.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-A-11.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-A-12.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-A-12.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-A-13.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-A-13.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-A-14.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-A-14.html
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Directories
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Environment_Variables
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Environment_Variables
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGNAT.IO
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGNAT.IO_Aux
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGNAT.Calendar.Time_IO
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FSystem.IO

Input Output

18.6.3 Ada 95 Quality and Style Guide

• 7.7 Input/Output ˆ{http://www.adaic.org/resources/add_content/docs/95style/

html/sec_7/7-7.html}

• 7.7.1 Name and Form Parameters ˆ{http://www.adaic.org/resources/add_

content/docs/95style/html/sec_7/7-7-1.html}

• 7.7.2 File Closing ˆ{http://www.adaic.org/resources/add_content/docs/

95style/html/sec_7/7-7-2.html}

• 7.7.3 Input/Output on Access Types ˆ{http://www.adaic.org/resources/add_

content/docs/95style/html/sec_7/7-7-3.html}

• 7.7.4 Package Ada.Streams.Stream_IO ˆ{http://www.adaic.org/resources/add_

content/docs/95style/html/sec_7/7-7-4.html}

• 7.7.5 Current Error Files ˆ{http://www.adaic.org/resources/add_content/docs/

95style/html/sec_7/7-7-5.html}

152

http://www.adaic.org/resources/add_content/docs/95style/html/sec_7/7-7.html
http://www.adaic.org/resources/add_content/docs/95style/html/sec_7/7-7.html
http://www.adaic.org/resources/add_content/docs/95style/html/sec_7/7-7-1.html
http://www.adaic.org/resources/add_content/docs/95style/html/sec_7/7-7-1.html
http://www.adaic.org/resources/add_content/docs/95style/html/sec_7/7-7-2.html
http://www.adaic.org/resources/add_content/docs/95style/html/sec_7/7-7-2.html
http://www.adaic.org/resources/add_content/docs/95style/html/sec_7/7-7-3.html
http://www.adaic.org/resources/add_content/docs/95style/html/sec_7/7-7-3.html
http://www.adaic.org/resources/add_content/docs/95style/html/sec_7/7-7-4.html
http://www.adaic.org/resources/add_content/docs/95style/html/sec_7/7-7-4.html
http://www.adaic.org/resources/add_content/docs/95style/html/sec_7/7-7-5.html
http://www.adaic.org/resources/add_content/docs/95style/html/sec_7/7-7-5.html

19 Exceptions

19.1 Robustness

Robustness

Robustness is the ability of a system or system component to behave “reasonably” when it
detects an anomaly, e.g.:

• It receives invalid inputs.
• Another system component (hardware or software) malfunctions.

Take as example a telephone exchange control program. What should the control program
do when a line fails? It is unacceptable simply to halt — all calls will then fail. Better would
be to abandon the current call (only), record that the line is out of service, and continue.
Better still would be to try to reuse the line — the fault might be transient. Robustness
is desirable in all systems, but it is essential in systems on which human safety or welfare
depends, e.g., hospital patient monitoring, aircraft fly-by-wire, nuclear power station control,
etc.

19.2 Modules, preconditions and postconditions

Modules, preconditions and postconditions

A module may be specified in terms of its preconditions and postconditions. A precondition
is a condition that the module’s inputs are supposed to satisfy. A postcondition is a condition
that the module’s outputs are required to satisfy, provided that the precondition is satisfied.
What should a module do if its precondition is not satisfied?

• Halt? Even with diagnostic information, this is generally unacceptable.
• Use a global result code? The result code can be set to indicate an anomaly. Subsequently

it may be tested by a module that can effect error recovery. Problem: this induces tight
coupling among the modules concerned.

• Each module has its own result code? This is a parameter (or function result) that may
be set to indicate an anomaly, and is tested by calling modules. Problems: (1) setting
and testing result codes tends to swamp the normal-case logic and (2) the result codes
are normally ignored.

• Exception handling — Ada’s solution. A module detecting an anomaly raises an exception.
The same, or another, module may handle that exception.

The exception mechanism permits clean, modular handling of anomalous situations:

153

Exceptions

• A unit (e.g., block or subprogram body) may raise an exception, to signal that an anomaly
has been detected. The computation that raised the exception is abandoned (and can
never be resumed, although it can be restarted).

• A unit may propagate an exception that has been raised by itself (or propagated out of
another unit it has called).

• A unit may alternatively handle such an exception, allowing programmer-defined recovery
from an anomalous situation. Exception handlers are segregated from normal-case code.

19.3 Predefined exceptions

Predefined exceptions

The predefined exceptions are those defined in package Standard . Every language-defined
run-time error causes a predefined exception to be raised. Some examples are:

• Constraint_Error, raised when a subtype’s constraint is not satisfied
• Program_Error, when a protected operation is called inside a protected object, e.g.
• Storage_Error, raised by running out of storage
• Tasking_Error, when a task cannot be activated because the operating system has not

enough resources, e.g.

Ex.1

Name : String (1 .. 10);

...

Name := "Hamlet"; --Raises Constraint_Error,

--because the "Hamlet" has bounds (1 .. 6).

Ex.2

loop

P := new Int_Node'(0, P);

end loop; --Soon raises Storage_Error,

--because of the extreme memory leak.

Ex.3 Compare the following approaches:

procedure Compute_Sqrt (X : in Float;

Sqrt : out Float;

OK : out Boolean)

is

begin

if X >= 0 then

OK := True;

--compute √X

...

else

OK := False;

end if;

end Compute_Sqrt;

154

...

procedure Triangle (A, B, C : in Float;

Area, Perimeter : out Float;

Exists : out Boolean)

is

S : Float := 0.5 * (A + B + C);

OK : Boolean;

begin

Compute_Sqrt (S * (S-A) * (S-B) * (S-C), Area, OK);

Perimeter := 2.0 * S;

Exists := OK;

end Triangle;

A negative argument to Compute_Sqrt causes OK to be set to False. Triangle uses it to
determine its own status parameter value, and so on up the calling tree, ad nauseam.

versus

function Sqrt (X : Float) return Float is

begin

if X < 0.0 then

raise Constraint_Error;

end if;

--compute √X

...

end Sqrt;

...

procedure Triangle (A, B, C : in Float;

Area, Perimeter : out Float)

is

S : Float := 0.5 * (A + B + C);

OK : Boolean;

begin

Area := Sqrt (S * (S-A) * (S-B) * (S-C));

Perimeter := 2.0 * S;

end Triangle;

A negative argument to Sqrt causes Constraint_Error to be explicitly raised inside Sqrt,
and propagated out. Triangle simply propagates the exception (by not handling it).

Alternatively, we can catch the error by using the type system:

subtype Pos_Float is Float range 0.0 .. Float'Last;

function Sqrt (X : Pos_Float) return Pos_Float is

begin

--compute √X

...

end Sqrt;

A negative argument to Sqrt now raises Constraint_Error at the point of call. Sqrt is never
even entered.

19.4 Input-output exceptions

155

Exceptions

Input-output exceptions

Some examples of exceptions raised by subprograms of the predefined package Ada.Text_-
IO are:

• End_Error, raised by Get, Skip_Line, etc., if end-of-file already reached.
• Data_Error, raised by Get in Integer_IO, etc., if the input is not a literal of the expected

type.
• Mode_Error, raised by trying to read from an output file, or write to an input file, etc.
• Layout_Error, raised by specifying an invalid data format in a text I/O operation

Ex. 1

declare

A : Matrix (1 .. M, 1 .. N);

begin

for I in 1 .. M loop

for J in 1 .. N loop

begin

Get (A(I,J));

exception

when Data_Error =>

Put ("Ill-formed matrix element");

A(I,J) := 0.0;

end;

end loop;

end loop;

exception

when End_Error =>

Put ("Matrix element(s) missing");

end;

19.5 Exception declarations

Exception declarations

Exceptions are declared rather like objects, but they are not objects. For example, recursive
re-entry to a scope where an exception is declared does not create a new exception of the
same name; instead the exception declared in the outer invocation is reused.

Ex.1

Line_Failed : exception;

Ex.2

package Directory_Enquiries is

procedure Insert (New_Name : in Name;

New_Number : in Number);

procedure Lookup (Given_Name : in Name;

156

Corr_Number : out Number);

Name_Duplicated : exception;

Name_Absent : exception;

Directory_Full : exception;

end Directory_Enquiries;

19.6 Raising exceptions

Raising exceptions

The raise statement explicitly raises a specified exception.

Ex. 1

package body Directory_Enquiries is

procedure Insert (New_Name : in Name;

New_Number : in Number)

is

...

begin

...

if New_Name = Old_Entry.A_Name then

raise Name_Duplicated;

end if;

...

New_Entry := new Dir_Node'(New_Name, New_Number,...);

...

exception

when Storage_Error => raise Directory_Full;

end Insert;

procedure Lookup (Given_Name : in Name;

Corr_Number : out Number)

is

...

begin

...

if not Found then

raise Name_Absent;

end if;

...

end Lookup;

end Directory_Enquiries;

19.7 Exception handling and propagation

Exception handling and propagation

Exception handlers may be grouped at the end of a block, subprogram body, etc. A handler
is any sequence of statements that may end:

157

Exceptions

• by completing;
• by executing a return statement;
• by raising a different exception (raise e;);
• by re-raising the same exception (raise;).

Suppose that an exception e is raised in a sequence of statements U (a block, subprogram
body, etc.).

• If U contains a handler for e: that handler is executed, then control leaves U.
• If U contains no handler for e: e is propagated out of U; in effect, e is raised at the "point

of call” of U.

So the raising of an exception causes the sequence of statements responsible to be abandoned
at the point of occurrence of the exception. It is not, and cannot be, resumed.

Ex. 1

...

exception

when Line_Failed =>

begin --attempt recovery

Log_Error;

Retransmit (Current_Packet);

exception

when Line_Failed =>

Notify_Engineer; --recovery failed!

Abandon_Call;

end;

...

19.8 Information about an exception occurrence

Information about an exception occurrence

Ada provides information about an exception in an object of type Exception_Occurrence,
defined in Ada.Exceptions along with subprograms taking this type as parameter:

• Exception_Name: return the full exception name using the dot notation and in uppercase
letters. For example, Queue.Overflow.

• Exception_Message: return the exception message associated with the occurrence.
• Exception_Information: return a string including the exception name and the associated

exception message.

For getting an exception occurrence object the following syntax is used:

with Ada ; use Ada ;

...

exception

when Error: High_Pressure | High_Temperature =>

Put ("Exception: ");

Put_Line (Exception_Name (Error));

Put (Exception_Message (Error));

when Error: others =>

Put ("Unexpected exception: ");

158

Put_Line (Exception_Information(Error));

end;

The exception message content is implementation defined when it is not set by the user who
raises the exception. It usually contains a reason for the exception and the raising location.

The user can specify a message using the procedure Raise_Exception.

declare

Valve_Failure : exception;

begin

...

Raise_Exception (Valve_Failure'Identity, "Failure while opening");

...

Raise_Exception (Valve_Failure'Identity, "Failure while closing");

...

exception

when Fail: Valve_Failure =>

Put (Exception_Message (Fail));

end;

Starting with Ada 2005, a simpler syntax can be used to associate a string message with
exception occurrence.

-- This language feature is only available in Ada 2005

declare

Valve_Failure : exception;

begin

...

raise Valve_Failure with "Failure while opening";

...

raise Valve_Failure with "Failure while closing";

...

exception

when Fail: Valve_Failure =>

Put (Exception_Message (Fail));

end;

The Ada.Exceptions package also provides subprograms for saving exception occurrences
and re-raising them.

19.9 See also

See also

19.9.1 Wikibook

• Ada Programming1

1 http://en.wikibooks.org/wiki/Ada%20Programming

159

http://en.wikibooks.org/wiki/Ada%20Programming

Exceptions

19.9.2 Ada 95 Reference Manual

• Section 11: Exceptions ˆ{http://www.adaic.org/resources/add_content/

standards/95lrm/ARM_HTML/RM-11.html}

• 11.4.1 The Package Exceptions ˆ{http://www.adaic.org/resources/add_content/

standards/95lrm/ARM_HTML/RM-11-4-1.html}

19.9.3 Ada 2005 Reference Manual

• Section 11: Exceptions ˆ{http://www.adaic.org/resources/add_content/

standards/05rm/html/RM-11.html}

• 11.4.1 The Package Exceptions ˆ{http://www.adaic.org/resources/add_content/

standards/05rm/html/RM-11-4-1.html}

19.9.4 Ada Quality and Style Guide

• Chapter 4: Program Structure
• 4.3 Exceptions ˆ{http://www.adaic.org/resources/add_content/docs/95style/

html/sec_4/4-3.html}

• 4.3.1 Using Exceptions to Help Define an Abstraction ˆ{http://www.adaic.org/

resources/add_content/docs/95style/html/sec_4/4-3-1.html}

• Chapter 5: Programming Practices
• 5.8 Using Exceptions ˆ{http://www.adaic.org/resources/add_content/docs/

95style/html/sec_5/5-8.html}

• 5.8.1 Handling Versus Avoiding Exceptions ˆ{http://www.adaic.org/resources/

add_content/docs/95style/html/sec_5/5-8-1.html}

• 5.8.2 Handling for Others ˆ{http://www.adaic.org/resources/add_content/

docs/95style/html/sec_5/5-8-2.html}

• 5.8.3 Propagation ˆ{http://www.adaic.org/resources/add_content/docs/

95style/html/sec_5/5-8-3.html}

• 5.8.4 Localizing the Cause of an Exception ˆ{http://www.adaic.org/resources/

add_content/docs/95style/html/sec_5/5-8-4.html}

• Chapter 7: Portability
• 7.5 Exceptions ˆ{http://www.adaic.org/resources/add_content/docs/95style/

html/sec_7/7-5.html}

• 7.5.1 Predefined and User-Defined Exceptions ˆ{http://www.adaic.org/

resources/add_content/docs/95style/html/sec_7/7-5-1.html}

• 7.5.2 Implementation-Specific Exceptions ˆ{http://www.adaic.org/resources/

add_content/docs/95style/html/sec_7/7-5-2.html}

160

http://www.adaic.org/resources/add_content/standards/95lrm/ARM_HTML/RM-11.html
http://www.adaic.org/resources/add_content/standards/95lrm/ARM_HTML/RM-11.html
http://www.adaic.org/resources/add_content/standards/95lrm/ARM_HTML/RM-11-4-1.html
http://www.adaic.org/resources/add_content/standards/95lrm/ARM_HTML/RM-11-4-1.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-11.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-11.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-11-4-1.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-11-4-1.html
http://www.adaic.org/resources/add_content/docs/95style/html/sec_4/4-3.html
http://www.adaic.org/resources/add_content/docs/95style/html/sec_4/4-3.html
http://www.adaic.org/resources/add_content/docs/95style/html/sec_4/4-3-1.html
http://www.adaic.org/resources/add_content/docs/95style/html/sec_4/4-3-1.html
http://www.adaic.org/resources/add_content/docs/95style/html/sec_5/5-8.html
http://www.adaic.org/resources/add_content/docs/95style/html/sec_5/5-8.html
http://www.adaic.org/resources/add_content/docs/95style/html/sec_5/5-8-1.html
http://www.adaic.org/resources/add_content/docs/95style/html/sec_5/5-8-1.html
http://www.adaic.org/resources/add_content/docs/95style/html/sec_5/5-8-2.html
http://www.adaic.org/resources/add_content/docs/95style/html/sec_5/5-8-2.html
http://www.adaic.org/resources/add_content/docs/95style/html/sec_5/5-8-3.html
http://www.adaic.org/resources/add_content/docs/95style/html/sec_5/5-8-3.html
http://www.adaic.org/resources/add_content/docs/95style/html/sec_5/5-8-4.html
http://www.adaic.org/resources/add_content/docs/95style/html/sec_5/5-8-4.html
http://www.adaic.org/resources/add_content/docs/95style/html/sec_7/7-5.html
http://www.adaic.org/resources/add_content/docs/95style/html/sec_7/7-5.html
http://www.adaic.org/resources/add_content/docs/95style/html/sec_7/7-5-1.html
http://www.adaic.org/resources/add_content/docs/95style/html/sec_7/7-5-1.html
http://www.adaic.org/resources/add_content/docs/95style/html/sec_7/7-5-2.html
http://www.adaic.org/resources/add_content/docs/95style/html/sec_7/7-5-2.html

20 Generics

20.1 Parametric polymorphism (generic units)

Parametric polymorphism (generic units)

The idea of code reuse arises from the necessity for constructing large software systems
combining well-established building blocks. The reusability of code improves the productivity
and the quality of software. The generic units are one of the ways in which the Ada language
supports this characteristic. A generic unit is a subprogram or package that defines algorithms
in terms of types and operations that are not defined until the user instantiates them.

Note to C++ programmers: generic units are similar to C++ templates.

For example, to define a procedure for swapping variables of any (non-limited) type:

generic

type Element_T is private; --Generic formal type parameter

procedure Swap (X, Y : in out Element_T);

procedure Swap (X, Y : in out Element_T) is

Temporary : constant Element_T := X;

begin

X := Y;

Y := Temporary;

end Swap;

The Swap subprogram is said to be generic. The subprogram specification is preceded by
the generic formal part consisting of the reserved word generic followed by a list of generic
formal parameters which may be empty. The entities declared as generic are not directly
usable, it is necessary to instantiate them.

To be able to use Swap, it is necessary to create an instance for the wanted type. For example:

procedure Swap_Integers is new Swap (Integer);

Now the Swap_Integers procedure can be used for variables of type Integer.

The generic procedure can be instantiated for all the needed types. It can be instantiated
with different names or, if the same identifier is used in the instantiation, each declaration
overloads the procedure:

161

Generics

procedure Instance_Swap is new Swap (Float);

procedure Instance_Swap is new Swap (Day_T);

procedure Instance_Swap is new Swap (Element_T => Stack_T);

Similarly, generic packages can be used, for example, to implement a stack of any kind of
elements:

generic

Max: Positive;

type Element_T is private;

package Generic_Stack is

procedure Push (E: Element_T);

function Pop return Element_T;

end Generic_Stack;

package body Generic_Stack is

Stack: array (1 .. Max) of Element_T;

Top : Integer range 0 .. Max := 0; --initialise to empty

--...

end Generic_Stack;

A stack of a given size and type could be defined in this way:

declare

package Float_100_Stack is new Generic_Stack (100, Float);

use Float_100_Stack;

begin

Push (45.8);

--...

end;

20.2 Generic parameters

Generic parameters

The generic unit declares generic formal parameters, which can be:

• objects (of mode in or in out but never out)
• types
• subprograms
• instances of another, designated, generic unit.

When instantiating the generic, the programmer passes one actual parameter for each formal.
Formal values and subprograms can have defaults, so passing an actual for them is optional.

20.2.1 Generic formal objects

Formal parameters of mode in accept any value, constant, or variable of the designated
type. The actual is copied into the generic instance, and behaves as a constant inside the
generic; this implies that the designated type cannot be limited. It is possible to specify a

162

default value, like this:

generic

Object : in Natural := 0;

For mode in out, the actual must be a variable.

One limitation with generic formal objects is that they are never considered static, even if
the actual happens to be static. If the object is a number, it cannot be used to create a new
type. It can however be used to create a new derived type, or a subtype:

generic

Size : in Natural := 0;

package P is

type T1 is mod Size; --illegal!

type T2 is range 1 .. Size; --illegal!

type T3 is new Integer range 1 .. Size; --OK

subtype T4 is Integer range 1 .. Size; --OK

end P;

The reason why formal objects are nonstatic is to allow the compiler to emit the object code
for the generic only once, and to have all instances share it, passing it the address of their
actual object as a parameter. This bit of compiler technology is called shared generics. If
formal objects were static, the compiler would have to emit one copy of the object code,
with the object embedded in it, for each instance, potentially leading to an explosion in
object code size (code bloat).

(Note to C++ programmers: in C++, since formal objects can be static, the compiler cannot
implement shared generics in the general case; it would have to examine the entire body of
the generic before deciding whether or not to share its object code. In contrast, Ada generics
are designed so that the compiler can instantiate a generic without looking at its body.)

20.2.2 Generic formal types

The syntax allows the programmer to specify which type categories are acceptable as actuals.
As a rule of thumb: The syntax expresses how the generic sees the type, i.e. it assumes the
worst, not how the creator of the instance sees the type.

This is the syntax of RM 12.5:

formal_type_declaration ::=

type defining_identifier[discriminant_part] is

formal_type_definition;

formal_type_definition ::= formal_private_type_definition

| formal_derived_type_definition

| formal_discrete_type_definition

| formal_signed_integer_type_definition

| formal_modular_type_definition

| formal_floating_point_definition

| formal_ordinary_fixed_point_definition

| formal_decimal_fixed_point_definition

163

Generics

| formal_array_type_definition

| formal_access_type_definiton

| formal_interface_type_definition

This is quite complex, so some examples are given below. A type declared with the syntax
type T (<>) denotes a type with unknown discriminants. This is the Ada vernacular for
indefinite types, i.e. types for which objects cannot be declared without giving an initial
expression. An example of such a type is one with a discriminant without default, another
example is an unconstrained array type.

Generic formal type Acceptable actual types

type T (<>) is limited private; Any type at all. The actual type can
be limited1 or not, indefinite or definite,
but the generic treats it as limited and
indefinite, i.e. does not assume that as-
signment is available for the type.

type T (<>) is private; Any nonlimited type: the generic knows
that it is possible to assign to variables
of this type, but it is not possible to de-
clare objects of this type without initial
value.

type T is private; Any nonlimited definite type: the
generic knows that it is possible to assign
to variables of this type and to declare
objects without initial value.

type T (<>) is abstract tagged

limited private;

Any tagged type2, abstract or concrete,
limited or not.

type T (<>) is tagged limited

private;

Any concrete tagged type, limited or
not.

type T (<>) is abstract tagged

private;

Any nonlimited tagged type, abstract or
concrete.

type T (<>) is tagged private; Any nonlimited, concrete tagged type.

type T (<>) is new Parent; Any type derived from Parent. The
generic knows about Parent's operations,
so can call them. Neither T nor Parent

can be abstract.

type T (<>) is abstract new Parent

with private;

Any type, abstract or concrete, derived
from Parent, where Parent is a tagged
type, so calls to T's operations can dis-
patch dynamically.

type T (<>) is new Parent with

private;

Any concrete type, derived from the
tagged type Parent.

1 Chapter 14 on page 113
2 Chapter 22 on page 187

164

Generic formal type Acceptable actual types
type T is (<>); Any discrete type: integer3, modular4,

or enumeration5.

type T is range <>; Any signed integer type

type T is mod <>; Any modular type

type T is delta <>; Any (non-decimal) fixed point type6

type T is delta <> digits <>; Any decimal fixed point type

type T is digits <>; Any floating point type7

type T is array (I) of E; Any array type8 with index of type I

and elements of type E (I and E could be
formal parameters as well)

type T is access O; Any access type9 pointing to objects of
type O (O could be a formal parameter as
well)

In the body we can only use the operations predefined for the type category of the formal
parameter. That is, the generic specification is a contract between the generic implementor
and the client instantiating the generic unit. This is different to the parametric features of
other languages, such as C++.

It is possible to further restrict the set of acceptable actual types like so:

Generic formal type Acceptable actual types

type T (<>) is... Definite or indefinite types (loosely speaking: types
with or without discriminants, but other forms of indef-
initeness exist)

type T (D : DT) is... Types with a discriminant of type DT (it is possible
to specify several discriminants, too)

type T is... Definite types (loosely speaking types without a dis-
criminant or with a discriminant with default value)

20.2.3 Generic formal subprograms

It is possible to pass a subprogram as a parameter to a generic. The generic specifies a
generic formal subprogram, complete with parameter list and return type (if the subprogram
is a function). The actual must match this parameter profile. It is not necessary that the
names of parameters match, though.

3 Chapter 6 on page 69
4 Chapter 7 on page 71
5 Chapter 8 on page 73
6 Chapter 10 on page 79
7 Chapter 9 on page 77
8 Chapter 11 on page 83
9 Chapter 13 on page 99

165

Generics

Here is the specification of a generic subprogram that takes another subprogram as its
parameter:

generic

type Element_T is private;

with function "*" (X, Y: Element_T) return Element_T;

function Square (X : Element_T) return Element_T;

And here is the body of the generic subprogram; it calls parameter as it would any other
subprogram.

function Square (X: Element_T) return Element_T is

begin

return X * X; --The formal operator "*".

end Square;

This generic function could be used, for example, with matrices, having defined the matrix
product.

with Square;

with Matrices;

procedure Matrix_Example is

function Square_Matrix is new Square

(Element_T => Matrices.Matrix_T, "*" => Matrices.Product);

A : Matrices.Matrix_T := Matrices.Identity;

begin

A := Square_Matrix (A);

end Matrix_Example;

It is possible to specify a default with "the box" (is <>), like this:

generic

type Element_T is private;

with function "*" (X, Y: Element_T) return Element_T is <>;

This means that if, at the point of instantiation, a function "*" exists for the actual type,
and if it is directly visible, then it will be used by default as the actual subprogram.

One of the main uses is passing needed operators. The following example shows this (follow

download links for full example):

File: Algorithms/binary_search.adb

generic

type Element_Type is private;

...

with function "<"

(Left : in Element_Type;

Right : in Element_Type)

return Boolean

166

is <> ;

procedure Search

(Elements : in Array_Type;

Search : in Element_Type;

Found : out Boolean;

Index : out Index_Type'Base)

...

20.2.4 Generic instances of other generic packages

A generic formal can be a package; it must be an instance of a generic package, so that the
generic knows the interface exported by the package:

generic

with package P is new Q (<>);

This means that the actual must be an instance of the generic package Q. The box after Q
means that we do not care which actual generic parameters were used to create the actual
for P. It is possible to specify the exact parameters, or to specify that the defaults must be
used, like this:

generic

--P1 must be an instance of Q with the specified actual parameters:

with package P1 is new Q (Param1 => X, Param2 => Y);

--P2 must be an instance of Q where the actuals are the defaults:

with package P2 is new Q;

It is all or nothing: if you specify the generic parameters, you must specify all of them.
Similarly, if you specify no parameters and no box, then all the generic formal parameters of
Q must have defaults. The actual package must, of course, match these constraints.

The generic sees both the public part and the generic parameters of the actual package
(Param1 and Param2 in the above example).

This feature allows the programmer to pass arbitrarily complex types as parameters to a
generic unit, while retaining complete type safety and encapsulation. (example needed)

It is not possible for a package to list itself as a generic formal, so no generic recursion is
possible. The following is illegal:

with A;

generic

with package P is new A (<>);

package A; --illegal: A references itself

In fact, this is only a particular case of:

167

Generics

with A; --illegal: A does not exist yet at this point!

package A;

which is also illegal, despite the fact that A is no longer generic.

20.3 Instantiating generics

Instantiating generics

To instantiate a generic unit, use the keyword new:

function Square_Matrix is new Square

(Element_T => Matrices.Matrix_T, "*" => Matrices.Product);

Notes of special interest to C++ programmers:

• The generic formal types define completely which types are acceptable as actuals; therefore,
the compiler can instantiate generics without looking at the body of the generic.

• Each instance has a name and is different from all other instances. In particular, if a
generic package declares a type, and you create two instances of the package, then you
will get two different, incompatible types, even if the actual parameters are the same.

• Ada requires that all instantiations be explicit.
• It is not possible to create special-case instances of a generic (known as "template

specialisation" in C++).

As a consequence of the above, Ada does not permit template metaprogramming. However,
this design has significant advantages:

• the object code can be shared by all instances of a generic, unless of course the programmer
has requested that subprograms be inlined; there is no danger of code bloat.

• when reading programs written by other people, there are no hidden instantiations, and
no special cases to worry about. Ada follows the Law of Least Astonishment.

20.4 Advanced generics

Advanced generics

20.4.1 Generics and nesting

A generic unit can be nested inside another unit, which itself may be generic. Even though
no special rules apply (just the normal rules about generics and the rules about nested
units), novices may be confused. It is important to understand the difference between a
generic unit and instances of a generic unit.

Example 1. A generic subprogram nested in a nongeneric package.

168

package Bag_Of_Strings is

type Bag is private;

generic

with procedure Operator (S : in out String);

procedure Apply_To_All (B : in out Bag);

private

--omitted

end Bag_Of_Strings;

To use Apply_To_All, you first define the procedure to be applied to each String in the
Bag. Then, you instantiate Apply_To_All, and finally you call the instance.

with Bag_Of_Strings;

procedure Example_1 is

procedure Capitalize (S : in out String) is separate; --omitted

procedure Capitalize_All is

new Bag_Of_Strings.Apply_To_All (Operator => Capitalize);

B : Bag_Of_Strings.Bag;

begin

Capitalize_All (B);

end Example_1;

Example 2. A generic subprogram nested in a generic package

This is the same as above, except that now the Bag itself is generic:

generic

type Element_Type (<>) is private;

package Generic_Bag is

type Bag is private;

generic

with procedure Operator (S : in out Element_Type);

procedure Apply_To_All (B : in out Bag);

private

--omitted

end Generic_Bag;

As you can see, the generic formal subprogram Operator takes a parameter of the generic
formal type Element_Type. This is okay: the nested generic sees everything that is in its
enclosing unit.

You cannot instantiate Generic_Bag.Apply_To_All directly, so you must first
create an instance of Generic_Bag, say Bag_Of_Strings, and then instantiate
Bag_Of_Strings.Apply_To_All.

with Generic_Bag;

procedure Example_2 is

procedure Capitalize (S : in out String) is separate; --omitted

package Bag_Of_Strings is

new Generic_Bag (Element_Type => String);

procedure Capitalize_All is

new Bag_Of_Strings.Apply_To_All (Operator => Capitalize);

B : Bag_Of_Strings.Bag;

begin

169

Generics

Capitalize_All (B);

end Example_2;

20.4.2 Generics and child units

Example 3. A generic unit that is a child of a nongeneric unit.

Each instance of the generic child is a child of the parent unit, and so it can see the parent's
public and private parts.

package Bag_Of_Strings is

type Bag is private;

private

--omitted

end Bag_Of_Strings;

generic

with procedure Operator (S : in out String);

procedure Bag_Of_Strings.Apply_To_All (B : in out Bag);

The differences between this and Example 1 are:

• Bag_Of_Strings.Apply_To_All is compiled separately. In particular, Bag_Of_-
Strings.Apply_To_All might have been written by a different person who did not
have access to the source text of Bag_Of_Strings.

• Before you can use Bag_Of_Strings.Apply_To_All, you must with it explicitly;
withing the parent, Bag_Of_Strings, is not sufficient.

• If you do not use Bag_Of_Strings.Apply_To_All, your program does not contain
its object code.

• Because Bag_Of_Strings.Apply_To_All is at the library level, it can declare con-
trolled types; the nested package could not do that in Ada 95. In Ada 2005, one can
declare controlled types at any level.

with Bag_Of_Strings.Apply_To_All; --implicitly withs Bag_Of_Strings, too

procedure Example_3 is

procedure Capitalize (S : in out String) is separate; --omitted

procedure Capitalize_All is

new Bag_Of_Strings.Apply_To_All (Operator => Capitalize);

B : Bag_Of_Strings.Bag;

begin

Capitalize_All (B);

end Example_3;

Example 4. A generic unit that is a child of a generic unit

This is the same as Example 3, except that now the Bag is generic, too.

generic

type Element_Type (<>) is private;

package Generic_Bag is

type Bag is private;

private

170

--omitted

end Generic_Bag;

generic

with procedure Operator (S : in out Element_Type);

procedure Generic_Bag.Apply_To_All (B : in out Bag);

with Generic_Bag.Apply_To_All;

procedure Example_4 is

procedure Capitalize (S : in out String) is separate; --omitted

package Bag_Of_Strings is

new Generic_Bag (Element_Type => String);

procedure Capitalize_All is

new Bag_Of_Strings.Apply_To_All (Operator => Capitalize);

B : Bag_Of_Strings.Bag;

begin

Capitalize_All (B);

end Example_4;

Example 5. A parameterless generic child unit

Children of a generic unit must be generic, no matter what. If you think about it, it is
quite logical: a child unit sees the public and private parts of its parent, including the
variables declared in the parent. If the parent is generic, which instance should the child
see? The answer is that the child must be the child of only one instance of the parent,
therefore the child must also be generic.

generic

type Element_Type (<>) is private;

type Hash_Type is (<>);

with function Hash_Function (E : Element_Type) return Hash_Type;

package Generic_Hash_Map is

type Map is private;

private

--omitted

end Generic_Hash_Map;

Suppose we want a child of a Generic_Hash_Map that can serialise the map to disk;
for this it needs to sort the map by hash value. This is easy to do, because we know that
Hash_Type is a discrete type, and so has a less-than operator. The child unit that does
the serialisation does not need any additional generic parameters, but it must be generic
nevertheless, so it can see its parent's generic parameters, public and private part.

generic

package Generic_Hash_Map.Serializer is

procedure Dump (Item : in Map; To_File : in String);

procedure Restore (Item : out Map; From_File : in String);

end Generic_Hash_Map.Serializer;

To read and write a map to disk, you first create an instance of Generic_Hash_Map,
for example Map_Of_Unbounded_Strings, and then an instance of Map_Of_-
Unbounded_Strings.Serializer:

171

Generics

with Ada.Strings.Unbounded;

with Generic_Hash_Map.Serializer;

procedure Example_5 is

use Ada.Strings.Unbounded;

function Hash (S : in Unbounded_String) return Integer is separate; --omitted

package Map_Of_Unbounded_Strings is

new Generic_Hash_Map (Element_Type => Unbounded_String,

Hash_Type => Integer,

Hash_Function => Hash);

package Serializer is

new Map_Of_Unbounded_Strings.Serializer;

M : Map_Of_Unbounded_Strings.Map;

begin

Serializer.Restore (Item => M, From_File => "map.dat");

end Example_5;

20.5 See also

See also

20.5.1 Wikibook

• Ada Programming10

• Ada Programming/Object Orientation11: tagged types provides other mean of polymor-
phism in Ada.

20.5.2 Wikipedia

• Generic programming12

20.5.3 Ada Reference Manual

• Section 12: Generic Units ˆ{http://www.adaic.org/resources/add_content/

standards/05rm/html/RM-12.html}

es:Programación en Ada/Unidades genéricas13

10 http://en.wikibooks.org/wiki/Ada%20Programming

11 Chapter 22 on page 187
12 http://en.wikipedia.org/wiki/Generic%20programming

13 http://es.wikibooks.org/wiki/Programaci%F3n%20en%20Ada%2FUnidades%20gen%E9ricas

172

http://www.adaic.org/resources/add_content/standards/05rm/html/RM-12.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-12.html
http://en.wikibooks.org/wiki/Ada%20Programming
http://en.wikipedia.org/wiki/Generic%20programming
http://es.wikibooks.org/wiki/Programaci%F3n%20en%20Ada%2FUnidades%20gen%E9ricas

21 Tasking

21.1 Tasks

Tasks

A task unit is a program unit that is obeyed concurrently with the rest of an Ada program.
The corresponding activity, a new locus of control, is called a task in Ada terminology, and
is similar to a thread, for example in Java Threads1. The execution of the main program is
also a task, the anonymous environment task. A task unit has both a declaration and a
body, which is mandatory. A task body may be compiled separately as a subunit, but a task
may not be a library unit, nor may it be generic. Every task depends on a master, which is
the immediately surrounding declarative region - a block, a subprogram, another task, or a
package. The execution of a master does not complete until all its dependent tasks have
terminated. The environment task is the master of all other tasks; it terminates only when
all other tasks have terminated.

Task units are similar to packages in that a task declaration defines entities exported from
the task, whereas its body contains local declarations and statements of the task.

A single task is declared as follows:

task Single is

declarations of exported identifiers

end Single;

...

task body Single is

local declarations and statements

end Single;

A task declaration can be simplified, if nothing is exported, thus:

task No_Exports;

Ex. 1

procedure Housekeeping is

task Check_CPU;

task Backup_Disk;

1 http://en.wikibooks.org/wiki/Java%3AThreads

173

http://en.wikibooks.org/wiki/Java%3AThreads

Tasking

task body Check_CPU is

...

end Check_CPU;

task body Backup_Disk is

...

end Backup_Disk;

--the two tasks are automatically created and begin execution

begin --Housekeeping

null;

--Housekeeping waits here for them to terminate

end Housekeeping;

It is possible to declare task types, thus allowing task units to be created dynamically, and
incorporated in data structures:

task type T is

...

end T;

...

Task_1, Task_2 : T;

...

task body T is

...

end T;

Task types are limited, i.e. they are restricted in the same way as limited private types, so
assignment and comparison are not allowed.

21.1.1 Rendezvous

The only entities that a task may export are entries. An entry looks much like a procedure.
It has an identifier and may have in, out or in out parameters. Ada supports communication
from task to task by means of the entry call. Information passes between tasks through
the actual parameters of the entry call. We can encapsulate data structures within tasks
and operate on them by means of entry calls, in a way analogous to the use of packages for
encapsulating variables. The main difference is that an entry is executed by the called task,
not the calling task, which is suspended until the call completes. If the called task is not
ready to service a call on an entry, the calling task waits in a (FIFO) queue associated with
the entry. This interaction between calling task and called task is known as a rendezvous.
The calling task requests rendezvous with a specific named task by calling one of its entries. A
task accepts rendezvous with any caller of a specific entry by executing an accept statement
for the entry. If no caller is waiting, it is held up. Thus entry call and accept statement
behave symmetrically. (To be honest, optimized object code may reduce the number of
context switches below the number implied by this naive description.)

Ex. 2 The following task type implements a single-slot buffer, i.e. an encapsulated variable
that can have values inserted and removed in strict alternation. Note that the buffer
task has no need of state variables to implement the buffer protocol: the alternation of
insertion and removal operations is directly enforced by the control structure in the body of
Encapsulated_Buffer_Task_Type which is, as is typical, a loop.

174

task type Encapsulated_Buffer_Task_Type is

entry Insert (An_Item : in Item);

entry Remove (An_Item : out Item);

end Encapsulated_Buffer_Task_Type;

...

Buffer_Pool : array (0 .. 15) of Encapsulated_Buffer_Task_Type;

This_Item : Item;

...

task body Encapsulated_Buffer_Task_Type is

Datum : Item;

begin

loop

accept Insert (An_Item : in Item) do

Datum := An_Item;

end Insert;

accept Remove (An_Item : out Item) do

An_Item := Datum;

end Remove;

end loop;

end Encapsulated_Buffer_Task_Type;

...

Buffer_Pool(1).Remove (This_Item);

Buffer_Pool(2).Insert (This_Item);

21.1.2 Selective Wait

To avoid being held up when it could be doing productive work, a server task often needs
the freedom to accept a call on any one of a number of alternative entries. It does this by
means of the selective wait statement, which allows a task to wait for a call on any of two or
more entries.

If only one of the alternatives in a selective wait statement has a pending entry call, then
that one is accepted. If two or more alternatives have calls pending, the implementation is
free to accept any one of them. For example, it could choose one at random. This introduces
bounded non-determinism into the program. A sound Ada program should not depend on a
particular method being used to choose between pending entry calls. (However, there are
facilities to influence the method used, when that is necessary.)

Ex. 3

task type Encapsulated_Variable_Task_Type is

entry Store (An_Item : in Item);

entry Fetch (An_Item : out Item);

end Encapsulated_Variable_Task_Type;

...

task body Encapsulated_Variable_Task_Type is

Datum : Item;

begin

accept Store (An_Item : in Item) do

Datum := An_Item;

end Store;

loop

select

accept Store (An_Item : in Item) do

Datum := An_Item;

end Store;

or

175

Tasking

accept Fetch (An_Item : out Item) do

An_Item := Datum;

end Fetch;

end select;

end loop;

end Encapsulated_Variable_Task_Type;

x, y : Encapsulated_Variable_Task_Type;

creates two variables of type Encapsulated_Variable_Task_Type. They can be used thus:

it : Item;

...

x.Store(Some_Expression);

...

x.Fetch (it);

y.Store (it);

Again, note that the control structure of the body ensures that an Encapsulated_Variable_-
Task_Type must be given an initial value by a first Store operation before any Fetch
operation can be accepted.

21.1.3 Guards

Depending on circumstances, a server task may not be able to accept calls for some of
the entries that have accept alternatives in a selective wait statement. The acceptance of
any alternative can be made conditional by using a guard, which is Boolean2 precondition
for acceptance. This makes it easy to write monitor-like server tasks, with no need for an
explicit signaling mechanism, nor for mutual exclusion. An alternative with a True guard is
said to be open. It is an error if no alternative is open when the selective wait statement is
executed, and this raises the Program_Error exception.

Ex. 4

task Cyclic_Buffer_Task_Type is

entry Insert (An_Item : in Item);

entry Remove (An_Item : out Item);

end Cyclic_Buffer_Task_Type;

...

task body Cyclic_Buffer_Task_Type is

Q_Size : constant := 100;

subtype Q_Range is Positive range 1 .. Q_Size;

Length : Natural range 0 .. Q_Size := 0;

Head, Tail : Q_Range := 1;

Data : array (Q_Range) of Item;

begin

loop

select

when Length < Q_Size =>

accept Insert (An_Item : in Item) do

2 http://en.wikibooks.org/wiki/Ada%20Programming%2FTypes%23Boolean

176

http://en.wikibooks.org/wiki/Ada%20Programming%2FTypes%23Boolean

Data(Tail) := An_Item;

end Insert;

Tail := Tail mod Q_Size + 1;

Length := Length + 1;

or

when Length > 0 =>

accept Remove (An_Item : out Item) do

An_Item := Data(Head);

end Remove;

Head := Head mod Q_Size + 1;

Length := Length - 1;

end select;

end loop;

end Cyclic_Buffer_Task_Type;

21.2 Protected types

Protected types

Tasks allow for encapsulation and safe usage of variable data without the need for any
explicit mutual exclusion and signaling mechanisms. Ex. 4 shows how easy it is to write
server tasks that safely manage locally-declared data on behalf of multiple clients. There is
no need for mutual exclusion of access to the managed data, because it is never accessed
concurrently. However, the overhead of creating a task merely to serve up some data may be
excessive. For such applications, Ada 95 provides protected modules. A protected module
encapsulates a data structure and exports subprograms that operate on it under automatic
mutual exclusion. It also provides automatic, implicit signaling of conditions between client
tasks. Again, a protected module can be either a single protected object or a protected type,
allowing many protected objects to be created.

A protected module can export only procedures, functions and entries, and its body may
contain only the bodies of procedures, functions and entries. The protected data is declared
after private in its specification, but is accessible only within the protected module's
body. Protected procedures and entries may read and/or write its encapsulated data, and
automatically exclude each other. Protected functions may only read the encapsulated data,
so that multiple protected function calls can be concurrently executed in the same protected
object, with complete safety; but protected procedure calls and entry calls exclude protected
function calls, and vice versa. Exported entries and subprograms of a protected object are
executed by its calling task, as a protected object has no independent locus of control. (To
be honest, optimized object code may reduce the number of context switches below the
number implied by this naive description.)

Like a task entry, a protected entry can employ a guard to control admission. This provides
automatic signaling, and ensures that when a protected entry call is accepted, its guard
condition is True, so that a guard provides a reliable precondition for the entry body.

Ex. 5 The following is a simple protected type analogous to the Encapsulated_Buffer task
in Ex. 2.

177

Tasking

protected type Protected_Buffer_Type is

entry Insert (An_Item : in Item);

entry Remove (An_Item : out Item);

private

Buffer : Item;

Empty : Boolean := True;

end Protected_Buffer_Type;

...

protected body Protected_Buffer_Type is

entry Insert (An_Item : in Item)

when Empty is

begin

Buffer := An_Item;

Empty := False;

end Insert;

entry Remove (An_Item : out Item)

when not Empty is

begin

An_Item := Buffer;

Empty := True;

end Remove;

end Protected_Buffer_Type;

Note how the guards, using the state variable Empty, ensure that messages are alternately
inserted and removed, and that no attempt can be made to take data from an empty buffer.
All this is achieved without explicit signaling or mutual exclusion constructs, whether in the
calling task or in the protected type itself.

The notation for calling a protected entry or procedure is exactly the same as that for calling
a task entry. This makes it easy to replace one implementation of the abstract type by the
other, the calling code being unaffected.

Ex. 6 The following task type implements Dijkstra's semaphore ADT, with FIFO scheduling
of resumed processes. The algorithm will accept calls to both Wait and Signal, so long as
the semaphore invariant would not be violated. When that circumstance approaches, calls
to Wait are ignored for the time being.

task type Semaphore_Task_Type is

entry Initialize (N : in Natural);

entry Wait;

entry Signal;

end Semaphore_Task_Type;

...

task body Semaphore_Task_Type is

Count : Natural;

begin

accept Initialize (N : in Natural) do

Count := N;

end Initialize;

loop

select

when Count > 0 =>

accept Wait do

Count := Count - 1;

end Wait;

or

accept Signal;

Count := Count + 1;

end select;

178

end loop;

end Semaphore_Task_Type;

This task could be used as follows:

nr_Full, nr_Free : Semaphore_Task_Type;

...

nr_Full.Initialize (0); nr_Free.Initialize (nr_Slots);

...

nr_Free.Wait; nr_Full.Signal;

Alternatively, semaphore functionality can be provided by a protected object, with major
efficiency gains.

Ex. 7 The Initialize and Signal operations of this protected type are unconditional, so they
are implemented as protected procedures, but the Wait operation must be guarded and is
therefore implemented as an entry.

protected type Semaphore_Protected_Type is

procedure Initialize (N : in Natural);

entry Wait;

procedure Signal;

private

Count : Natural := 0;

end Semaphore_Protected_Type;

...

protected body Semaphore_Protected_Type is

procedure Initialize (N : in Natural) is

begin

Count := N;

end Initialize;

entry Wait

when Count > 0 is

begin

Count := Count - 1;

end Wait;

procedure Signal is

begin

Count := Count + 1;

end Signal;

end Semaphore_Protected_Type;

Unlike the task type above, this does not ensure that Initialize is called before Wait or
Signal, and Count is given a default initial value instead. Restoring this defensive feature of
the task version is left as an exercise for the reader.

21.3 Entry families

179

Tasking

Entry families

Sometimes we need a group of related entries. Entry families, indexed by a discrete type3,
meet this need.

Ex. 8 This task provides a pool of several buffers.

type Buffer_Id is Integer range 1 .. nr_Bufs;

...

task Buffer_Pool_Task is

entry Insert (Buffer_Id) (An_Item : in Item);

entry Remove (Buffer_Id) (An_Item : out Item);

end Buffer_Pool_Task;

...

task body Buffer_Pool_Task is

Data : array (Buffer_Id) of Item;

Filled : array (Buffer_Id) of Boolean := (others => False);

begin

loop

for I in Data'Range loop

select

when not Filled(I) =>

accept Insert (I) (An_Item : in Item) do

Data(I) := An_Item;

end Insert;

Filled(I) := True;

or

when Filled(I) =>

accept Remove (I) (An_Item : out Item) do

An_Item := Data(I);

end Remove;

Filled(I) := False;

else

null; --N.B. "polling" or "busy waiting"

end select;

end loop;

end loop;

end Buffer_Pool_Task;

...

Buffer_Pool_Task.Remove(K)(This_Item);

Note that the busy wait else null is necessary here to prevent the task from being suspended
on some buffer when there was no call pending for it, because such suspension would delay
serving requests for all the other buffers (perhaps indefinitely).

21.4 Termination

Termination

Server tasks often contain infinite loops to allow them to service an arbitrary number of
calls in succession. But control cannot leave a task's master until the task terminates, so
we need a way for a server to know when it should terminate. This is done by a terminate
alternative in a selective wait.

3 http://en.wikibooks.org/wiki/ada%20Programming%2FTypes%23List%20of%20Types

180

http://en.wikibooks.org/wiki/ada%20Programming%2FTypes%23List%20of%20Types

Ex. 9

task type Terminating_Buffer_Task_Type is

entry Insert (An_Item : in Item);

entry Remove (An_Item : out Item);

end Terminating_Buffer_Task_Type;

...

task body Terminating_Buffer_Task_Type is

Datum : Item;

begin

loop

select

accept Insert (An_Item : in Item) do

Datum := An_Item;

end Insert;

or

terminate;

end select;

select

accept Remove (An_Item : out Item) do

An_Item := Datum;

end Remove;

or

terminate;

end select;

end loop;

end Terminating_Buffer_Task_Type;

The task terminates when:

1. at least one terminate alternative is open, and
2. there are no pending calls to its entries, and
3. all other tasks of the same master are in the same state (or already terminated), and
4. the task's master has completed (i.e. has run out of statements to execute).

Conditions (1) and (2) ensure that the task is in a fit state to stop. Conditions (3) and (4)
ensure that stopping cannot have an adverse effect on the rest of the program, because no
further calls that might change its state are possible.

21.5 Timeout

Timeout

A task may need to avoid being held up by calling to a slow server. A timed entry call lets a
client specify a maximum delay before achieving rendezvous, failing which the attempted
entry call is withdrawn and an alternative sequence of statements is executed.

Ex. 10

task Password_Server is

entry Check (User, Pass : in String; Valid : out Boolean);

entry Set (User, Pass : in String);

end Password_Server;

...

User_Name, Password : String (1 .. 8);

...

181

Tasking

Put ("Please give your new password:");

Get_Line (Password);

select

Password_Server.Set (User_Name, Password);

Put_Line ("Done");

or

delay 10.0;

Put_Line ("The system is busy now, please try again later.");

end select;

To time out the functionality provided by a task, two distinct entries are needed: one to
pass in arguments, and one to collect the result. Timing out on rendezvous with the latter
achieves the desired effect.

Ex. 11

task Process_Data is

entry Input (D : in Datum);

entry Output (D : out Datum);

end Process_Data;

Input_Data, Output_Data : Datum;

loop

collect Input_Data from sensors;

Process_Data.Input (Input_Data);

select

Process_Data.Output (Output_Data);

pass Output_Data to display task;

or

delay 0.1;

Log_Error ("Processing did not complete quickly enough.");

end select;

end loop;

Symmetrically, a delay alternative in a selective wait statement allows a server task to
withdraw an offer to accept calls after a maximum delay in achieving rendezvous with any
client.

Ex. 12

task Resource_Lender is

entry Get_Loan (Period : in Duration);

entry Give_Back;

end Resource_Lender;

...

task body Resource_Lender is

Period_Of_Loan : Duration;

begin

loop

select

accept Get_Loan (Period : in Duration) do

Period_Of_Loan := Period;

end Get_Loan;

select

accept Give_Back;

or

delay Period_Of_Loan;

Log_Error ("Borrower did not give up loan soon

182

enough.");

end select;

or

terminate;

end select;

end loop;

end Resource_Lender;

21.6 Conditional entry calls

Conditional entry calls

An entry call can be made conditional, so that it is withdrawn if the rendezvous is not immedi-
ately achieved. This uses the select statement notation with an else part. Thus the constructs

select

Callee.Rendezvous;

else

Do_something_else;

end select;

and

select

Callee.Rendezvous;

or

delay 0.0;

Do_something_else;

end select;

seem to be conceptually equivalent. However, the attempt to start the rendezvous may
take some time, especially if the callee is on another processor, so the delay 0.0; may expire
although the callee would be able to accept the rendezvous, whereas the else construct is
safe.

21.7 Requeue statements

Requeue statements

A requeue statement allows an accept statement or entry body to be completed while
redirecting to a different or the same entry queue. The called entry has to share the same
parameter list or be parameter-less.

21.8 Scheduling

183

Tasking

Scheduling

FIFO, priority, priority inversion avoidance, ... to be completed

21.9 Interfaces

Interfaces

This language feature is only available in Ada 2005

Task and Protected types can also implement interfaces4.

type Printable is task interface;

procedure Input (D : in Printable);

task Process_Data is new Printable with

entry Input (D : in Datum);

entry Output (D : out Datum);

end Process_Data;

21.10 See also

See also

21.10.1 Wikibook

• Ada Programming5

• Ada Programming/Libraries/Ada.Storage_IO6

21.10.2 Ada Reference Manual

Ada 95

• Section 9: Tasks and Synchronization ˆ{http://www.adaic.org/resources/add_

content/standards/95lrm/ARM_HTML/RM-9.html}

Ada 2005

• 3.9.4 Interface Types ˆ{http://www.adaic.org/resources/add_content/standards/

05rm/html/RM-3-9-4.html}

4 http://en.wikibooks.org/wiki/Ada%20Programming%2FKeywords%2Finterface

5 http://en.wikibooks.org/wiki/Ada%20Programming

6 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Storage_IO

184

http://www.adaic.org/resources/add_content/standards/95lrm/ARM_HTML/RM-9.html
http://www.adaic.org/resources/add_content/standards/95lrm/ARM_HTML/RM-9.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-3-9-4.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-3-9-4.html
http://en.wikibooks.org/wiki/Ada%20Programming%2FKeywords%2Finterface
http://en.wikibooks.org/wiki/Ada%20Programming
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Storage_IO

• Section 9: Tasks and Synchronization ˆ{http://www.adaic.org/resources/add_

content/standards/05rm/html/RM-9.html}

21.11 Ada Quality and Style Guide

Ada Quality and Style Guide

• Chapter 4: Program Structure
• 4.1.9 Tasks ˆ{http://www.adaic.org/resources/add_content/docs/95style/

html/sec_4/4-1-9.html}

• 4.1.10 Protected Types ˆ{http://www.adaic.org/resources/add_content/docs/

95style/html/sec_4/4-1-10.html}

• Chapter 6: Concurrency7

es:Programación en Ada/Tareas8

7 http://www.adaic.org/docs/95style/html/sec_6/toc.html

8 http://es.wikibooks.org/wiki/Programaci%F3n%20en%20Ada%2FTareas

185

http://www.adaic.org/resources/add_content/standards/05rm/html/RM-9.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-9.html
http://www.adaic.org/resources/add_content/docs/95style/html/sec_4/4-1-9.html
http://www.adaic.org/resources/add_content/docs/95style/html/sec_4/4-1-9.html
http://www.adaic.org/resources/add_content/docs/95style/html/sec_4/4-1-10.html
http://www.adaic.org/resources/add_content/docs/95style/html/sec_4/4-1-10.html
http://www.adaic.org/docs/95style/html/sec_6/toc.html
http://es.wikibooks.org/wiki/Programaci%F3n%20en%20Ada%2FTareas

22 Object Orientation

22.1 Object orientation in Ada

Object orientation in Ada

Object oriented programming consists in building the software in terms of "objects". An
"object" contains data and has a behavior. The data, normally, consists in constants and
variables as seen in the rest of this book but could also, conceivably, reside outside the
program entirely, i.e. on disk or on the network. The behavior consists in subprograms
that operate on the data. What makes Object Orientation unique, compared to procedural
programming, is not a single feature but the combination of several features:

• encapsulation, i.e. the ability to separate the implementation of an object from its
interface; this in turn separates "clients" of the object, who can only use the object in
certain predefined ways, from the internals of the object, which have no knowledge of the
outside clients.

• inheritance, the ability for one type of objects to inherit the data and behavior (subpro-
grams) of another, without necessarily needing to break encapsulation;

• type extension, the ability for an object to add new data components and new subprograms
on top of the inherited ones and to replace some inherited subprograms with its own
versions; this is called overriding.

• polymorphism, the ability for a "client" to use the services of an object without knowing
the exact type of the object, i.e. in an abstract way. The actual type of the object can
indeed change at run time from one invocation to the next.

It is possible to do object-oriented programming in any language, even assembly. However,
type extension and polymorphism are very difficult to get right without language support.

In Ada, each of these concepts has a matching construct; this is why Ada supports object-
oriented programming directly.

• Packages provide encapsulation;
• Derived types provide inheritance;
• Record extensions, described below, provide for type extension;
• Class-wide types, also described below, provide for polymorphism.

Ada has had encapsulation and derived types since the first version (MIL-STD-1815 in 1980),
which led some to qualify the language as "object-oriented" in a very narrow sense. Record
extensions and class-wide types were added in Ada 95. Ada 2005 further adds interfaces.
The rest of this chapter covers these aspects.

187

Object Orientation

22.1.1 The simplest object: the Singleton

package Directory is

function Present (Name_Pattern: String) return Boolean;

generic

with procedure Visit (Full_Name, Phone_Number, Address: String;

Stop: out Boolean);

procedure Iterate (Name_Pattern: String);

end Directory;

The Directory is an object consisting of data (the telephone numbers and addresses, presum-
ably held in an external file or database) and behavior (it can look an entry up and traverse
all the entries matching a Name_Pattern, calling Visit on each).

A simple package provides for encapsulation (the inner workings of the directory are hidden)
and a pair of subprograms provide the behavior.

This pattern is appropriate when only one object of a certain type must exist; there is,
therefore, no need for type extension or polymorphism.

22.1.2 Primitive operations

For the following, we need the definition of primitive operations:

The set of primitive operations of a type T consists of those subprograms that:

• are declared immediately within the same package as the type (not within a nested
package nor a child package);

• take a parameter of the type or, for functions, return an object of the type;
• take an access parameter of the type or, for functions, return an access value of the type.

(Also predefined operators like equality "=" are primitive operations.)

An operation can be primitive on two or more types, but only on one tagged type. The
following example would be illegal if also B were tagged.

package P is

type A is tagged private;

type B is private;

procedure Proc (This: A; That: B); --primitive on A and B

end P;

22.1.3 Derived types

Type derivation has been part of Ada since the very start.

package P is

type T is private;

function Create (Data: Boolean) return T; --primitive

procedure Work (Object : in out T); --primitive

procedure Work (Pointer: access T); --primitive

188

type Acc_T is access T;

procedure Proc (Pointer: Acc_T); --not primitive

private

type T is record

Data: Boolean;

end record;

end P;

The above example creates a type T that contains data (here just a Boolean but it could be
anything) and behavior consisting of some subprograms. It also demonstrates encapsulation
by placing the details of the type T in the private part of the package.

The primitive operations of T are the function Create, the overloaded procedures
Work, and the predefined "=" operator; Proc is not primitive, since it has an ac-
cess type on T as parameter — don't confuse this with an access parameter, as used
in the second procedure Work. When deriving from T, the primitive operations are inherited.

with P;

package Q is

type Derived is new P.T;

end Q;

The type Q.Derived has the same data and the same behavior as P.T; it inherits both the
data and the subprograms. Thus it is possible to write:

with Q;

procedure Main is

Object: Q.Derived := Q.Create (Data => False);

begin

Q.Work (Object);

end Main;

Admittedly, the reasons for writing this may seem obscure. The purpose of this kind of code
is to have objects of types P.T and Q.Derived, which are not compatible:

Ob1: P.T;

Ob2: Q.Derived;

Ob1 := Ob2; -- illegal

Ob1 := P.T (Ob2); -- but convertible

This feature is not used very often (it's used e.g. for declaring types reflecting physical
dimensions) but I present it here to introduce the next step: type extension.

22.1.4 Type extensions

Type extensions are an Ada 95 amendment.

A tagged type provides support for dynamic polymorphism and type extension. A tagged
type bears a hidden tag that identifies the type at run-time. Apart from the tag, a tagged

189

Object Orientation

record is like any other record, so it can contain arbitrary data.

package Person is

type Object is tagged

record

Name : String (1 .. 10);

Gender : Gender_Type;

end record;

procedure Put (O : Object);

end Person;

As you can see, a Person.Object is an object in the sense that it has data and behavior
(the procedure Put). However, this object does not hide its data; any program unit
that has a with Person clause can read and write the data in a Person.Object directly.
This breaks encapsulation and also illustrates that Ada completely separates the con-
cepts of encapsulation and type. Here is a version of Person.Object that encapsulates its data:

package Person is

type Object is tagged private;

procedure Put (O : Object);

private

type Object is tagged

record

Name : String (1 .. 10);

Gender : Gender_Type;

end record;

end Person;

Because the type Person.Object is tagged, it is possible to create a record extension, which
is a derived type with additional data.

with Person;

package Programmer is

type Object is new Person.Object with private;

private

type Object is new Person.Object with

record

Skilled_In : Language_List;

end record;

end Programmer;

The type Programmer.Object inherits the data and behavior, i.e. the type's primitive
operations, from Person.Object; it is thus possible to write:

with Programmer;

procedure Main is

Me : Programmer.Object;

begin

Programmer.Put (Me);

Me.Put; --equivalent to the above, Ada 2005 only

end Main;

So the declaration of the type Programmer.Object, as a record extension of Person.Object,
implicitly declares a procedure Put that applies to a Programmer.Object.

190

Like in the case of untagged types, objects of type Person and Programmer are convertible.
However, where untagged objects are convertible in either direction, conversion of tagged
types only works in the direction to the root. (Conversion away from the root would have
to add components out of the blue.) Such a conversion is called a view conversion, because
components are not lost, they only become invisible.

Extension aggregates have to be used if you go away from the root.

22.1.5 Overriding

Now that we have introduced tagged types, record extensions and primitive operations,
it becomes possible to understand overriding. In the examples above, we introduced
a type Person.Object with a primitive operation called Put. Here is the body of the package:

with Ada.Text_IO;

package body Person is

procedure Put (O : Object) is

begin

Ada.Text_IO.Put (O.Name);

Ada.Text_IO.Put (" is a ");

Ada.Text_IO.Put_Line (Gender_Type'Image (O.Gender));

end Put;

end Person;

As you can see, this simple operation prints both data components of the record type to
standard output. Now, remember that the record extension Programmer.Object has an
additional data member. If we write:

with Programmer;

procedure Main is

Me : Programmer.Object;

begin

Programmer.Put (Me);

Me.Put; --equivalent to the above, Ada 2005 only

end Main;

then the program will call the inherited primitive operation Put, which will print the name
and gender but not the additional data. In order to provide this extra behavior, we must
override the inherited procedure Put like this:

with Person;

package Programmer is

type Object is new Person.Object with private;

overriding --Optional keyword, new in Ada 2005

procedure Put (O : Object);

private

type Object is new Person.Object with

record

Skilled_In : Language_List;

end record;

end Programmer;

package body Programmer is

191

Object Orientation

procedure Put (O : Object) is

begin

Person.Put (Person.Object (O)); --view conversion to the ancestor type

Put (O.Skilled_In); --presumably declared in the same package as Language_List

end Put;

end Programmer;

Programmer.Put overrides Person.Put; in other words it replaces it completely. Since
the intent is to extend the behavior rather than replace it, Programmer.Put calls
Person.Put as part of its behavior. It does this by converting its parameter from the
type Programmer.Object to its ancestor type Person.Object. This construct is a view
conversion; contrary to a normal type conversion, it does not create a new object and does
not incur any run-time cost. Of course, it is optional that an overriding operation call its
ancestor; there are cases where the intent is indeed to replace, not extend, the inherited
behavior.

(Note that also for untagged types, overriding of inherited operations is possible. The reason
why it's discussed here is that derivation of untagged types is done rather seldom.)

22.1.6 Polymorphism, class-wide programming and dynamic dispatching

The full power of object orientation is realized by polymorphism, class-wide programming
and dynamic dispatching, which are different words for the same, single concept. To explain
this concept, let us extend the example from the previous sections, where we declared a
base tagged type Person.Object with a primitive operation Put and a record extension
Programmer.Object with additional data and an overriding primitive operation Put.

Now, let us imagine a collection of persons. In the collection, some of the persons are
programmers. We want to traverse the collection and call Put on each person. When the
person under consideration is a programmer, we want to call Programmer.Put; when the
person is not a programmer, we want to call Person.Put. This, in essence, is polymorphism,
class-wide programming and dynamic dispatching.

Ada implements this concept by means of class-wide types.

Each tagged type, such as Person.Object, has a corresponding class of types which is the set
of types comprising the type Person.Object itself and all types that extend Person.Object.
In our example, this class consists of two types:

• Person.Object

• Programmer.Object

Ada 95 defines the Person.Object'Class attribute to denote the corresponding class-wide
type. In other words:

declare

Someone : Person.Object'Class := ...; --to be expanded later

begin

Someone.Put; --dynamic dispatching

end;

192

The declaration of Someone denotes an object that may be of either type, Person.Object

or Programmer.Object. Consequently, the call to the primitive operation Put dispatches
dynamically to either Person.Put or Programmer.Put.

The only problem is that, since we don't know whether Someone is a programmer or not,
we don't know how many data components Someone has, either, and therefore we don't
know how many bytes Someone takes in memory. For this reason, the class-wide type
Person.Object'Class is indefinite1. It is impossible to declare an object of this type
without giving some constraint. It is, however, possible to:

• declare an object of a class-wide with an initial value (as above). The object is then
constrained by its initial value.

• declare an access value to such an object (because the access value has a known size);
• pass objects of a class-wide type as parameters to subprograms
• assign an object of a specific type (in particular, the result of a function call) to a variable

of a class-wide type.

With this knowledge, we can now build a polymorphic collection of persons; in this example
we will quite simply create an array of access values to persons:

with Person;

procedure Main is

type Person_Access is access Person.Object'Class;

type Array_Of_Persons is array (Positive range <>) of Person_Access;

function Read_From_Disk return Array_Of_Persons is separate;

Everyone : constant Array_Of_Persons := Read_From_Disk;

begin --Main

for K in Everyone'Range loop

Everyone (K).all.Put; --dereference followed by dynamic dispatching

end loop;

end Main;

The above procedure achieves our desired goal: it traverses the array of Persons and calls
the procedure Put that is appropriate for each person.

Advanced topic: How dynamic dispatching works

You don't need to know how dynamic dispatching works in order to use it effectively but, in
case you are curious, here is an explanation.

The first component of each object in memory is the tag; this is why objects are of a tagged
type rather than plain records. The tag really is an access value to a table; there is one table
for each specific type. The table contains access values to each primitive operation of the
type. In our example, since there are two types Person.Object and Programmer.Object,
there are two tables, each containing a single access value. The table for Person.Object

contains an access value to Person.Put and the table for Programmer.Object contains an
access value to Programmer.Put. When you compile your program, the compiler constructs
both tables and places them in the program executable code.

1 http://en.wikibooks.org/wiki/ada%20Programming%2FSubtypes%23Indefinite_subtype

193

http://en.wikibooks.org/wiki/ada%20Programming%2FSubtypes%23Indefinite_subtype

Object Orientation

Each time the program creates a new object of a specific type, it automatically sets its tag
to point to the appropriate table.

Each time the program calls a primitive operation, the compiler inserts object code that:

• dereferences the tag to find the table of primitive operations for the specific type of the
object at hand

• dereferences the access value to the primitive operation
• calls the primitive operation.

When you perform a view conversion to an ancestor type, the compiler performs these two
dereferences at compile time rather than run time: this is static dispatching; the compiler
emits code that directly calls the primitive operation of the ancestor type specified in the
view conversion.

Redispatching

Dispatching works on the (hidden) tag of the object. So what happens when a primitive
operation Op1 calls another primitive operation Op2? Which operation will be called when
Op1 is called by dispatching?

type Root is tagged private;

procedure Op1 (R: Root);

procedure Op2 (R: Root);

type Derived is new Root with private;

-- Derived inherits Op1

overriding procedure Op2 (D: Derived);

procedure Op1 (R: Root) is

begin

...

Op2 (R); -- not redispatching

Op2 (Root'Class (R)); -- redispatching

...

end Op1;

D: Derived;

C: Root'Class := D;

Op1 (D); -- static call

Op1 (C); -- dispatching call

In this fragment, Op1 is not overridden, whereas Op2 is overridden. The body of Op1 calls
Op2, thus which Op2 will be called for a call of Op1 with a parameter of type Derived?

The answer is: Ada gives complete control over dispatching and redispatching. If you want
redispatching, it has to be required explicitly by converting the parameter to the class-wide
type again. (Remember: View conversions never lose components, they just hide them. A
conversion to the class-wide type makes them visible again.)

Thus the first call of Op1 (statically linked, i.e. not dispatching) calls the inherited Op1
— and within Op1, the first call to Op2 is therefore also a static call to the inherited Op2
(there is no redispatching). However the second call, since the parameter R is converted to
the class-wide type, dispatches to the overriding Op2.

194

The second call of Op1 is a dispatching call to the inherited Op1 and behaves exactly as the
first.

To understand what happens here, the implicitly defined inherited Op1 is just the parent
operation called with a view conversion of the parameter:

procedure Op1 (D: Derived) is

begin

Op1 (Root (R)); -- view conversion

end Op1;

Run-time type identification

Run-time type identification allows the program to (indirectly or directly) query the tag of
an object at run time to determine which type the object belongs to. This feature, obviously,
makes sense only in the context of polymorphism and dynamic dispatching, so works only
on tagged types.

You can determine whether an object belongs to a certain class of types, or to a specific
type, by means of the membership test in, like this:

type Base is tagged private;

type Derived is new Base with private;

type Leaf is new Derived with private;

...

procedure Explicit_Dispatch (This : in Base'Class) is

begin

if This in Leaf then ... end if;

if This in Derived'Class then ... end if;

end Explicit_Dispatch;

Thanks to the strong typing rules of Ada, run-time type identification is in fact rarely
needed; the distinction between class-wide and specific types usually allows the programmer
to ensure objects are of the appropriate type without resorting to this feature.

Additionally, the reference manual defines package Ada.Tags (RM 3.9(6/2)), attribute
'Tag (RM 3.9(16,18)), and function Ada.Tags.Generic_Dispatching_Constructor (RM
3.9(18.2/2)), which enable direct manipulation with tags.

22.1.7 Creating Objects

The Language Reference Manual's section on 3.3 Objects and Named Numbers ˆ{http://www.

adaic.org/resources/add_content/standards/05rm/html/RM-3-3.html} states when
an object is created, and destroyed again. This subsection illustrates how objects are created.

The LRM section starts,
Objects are created at run time and contain a value of a given type. An object
be created and initialized as part of elaborating a declaration, evaluating an allocator,
aggregate, or function_call.

195

http://www.adaic.org/resources/add_content/standards/05rm/html/RM-3-3.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-3-3.html

Object Orientation

For example, assume a typical hierarchy of object oriented types: a top-level type Person, a
Programmer type derived from Person, and possibly more kinds of persons. Each person
has a name; assume Person objects to have a Name component. Likewise, each Person has
a Gender component. The Programmer type inherits the components and the operations
of the Person type, so Programmer objects have a Name and a Gender component, too.
Programmer objects may have additional components specific to programmers.

Objects of a tagged type are created the same way as objects of any type. The second LRM
sentence says, for example, that an object will be created when you declare a variable or a
constant of a type. For the tagged type Person,

declare

P: Person;

begin

Text_IO. Put_Line("The name is " & P. Name) ;

end;

Nothing special so far. Just like any ordinary variable declaration this O-O one is elaborated.
The result of elaboration is an object named P of type Person. However, P has only default
name and gender value components. These are likely not useful ones. One way of giving
initial values to the object's components is to assign an aggregate.

declare

P: Person := (Name => "Scorsese", Gender => Male) ;

begin

Text_IO. Put_Line("The name is " & P. Name) ;

end;

The parenthesized expression after := is called an aggregate (4.3 Aggregates ˆ{http://www.

adaic.org/resources/add_content/standards/05rm/html/RM-4-3.html}).

Another way to create an object that is mentioned in the LRM paragraph is to call a function.
An object will be created as the return value of a function call. Therefore, instead of using
an aggregate of initial values, we might call a function returning an object.

Introducing proper O-O information hiding, we change the package containing the
Person type so that Person becomes a private type. To enable clients of the package
to construct Person objects we declare a function that returns them. (The function
may do some interesting construction work on the objects. For instance, the aggregate
above will most probably raise the exception Constraint_Error depending on the
name string supplied; the function can mangle the name so that it matches the decla-
ration of the component.) We also declare a function that returns the name of Person objects.

package Persons is

type Person is tagged private;

function Make (Name: String; Sex: Gender_Type) return Person;

function Name (P: Person) return String;

private

196

http://www.adaic.org/resources/add_content/standards/05rm/html/RM-4-3.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-4-3.html

type Person is tagged

record

Name : String (1 .. 10) ;

Gender : Gender_Type;

end record;

end Persons;

Calling the Make function results in an object which can be used for initialization. Since the
Person type is private we can no longer refer to the Name component of P. But there is
a corresponding function Name declared with type Person making it a socalled primitive
operation. (The component and the function in this example are both named Name However,
we can choose a different name for either if we want.)

declare

P: Person := Make (Name => "Orwell", Sex => Male) ;

begin

Text_IO. Put_Line("The name is " & Name(P)) ;

end;

Objects can be copied into another. The target object is first destroyed. Then the
component values of the source object are assigned to the corresponding components of the
target object. In the following example, the default initialized P gets a copy of one of the
objects created by the Make calls.

declare

P: Person;

begin

if 2001 > 1984 then

P := Make (Name => "Kubrick", Sex => Male) ;

else

P := Make (Name => "Orwell", Sex => Male) ;

end if;

Text_IO. Put_Line("The name is " & Name(P)) ;

end;

So far there is no mention of the Programmer type derived from Person. There is no
polymorphism yet, and likewise initialization does not yet mention inheritance. Before
dealing with Programmer objects and their initialization a few words about class-wide types
are in order.

22.1.8 More details on primitive operations

Remember what we said before about "Primitive Operations"2. Primitive operations are:

• subprograms taking a parameter of the tagged type;
• functions returning an object of the tagged type;
• subprograms taking a parameter of an anonymous access type to the tagged type;

2 Chapter 22.1.2 on page 188

197

Object Orientation

• In Ada 2005 only, functions returning an anonymous access type to the tagged type;

Additionally, primitive operations must be declared before the type is frozen (the concept of
freezing will be explained later):

Examples:

package X is

type Object is tagged null record;

procedure Primitive_1 (This : in Object);

procedure Primitive_2 (That : out Object);

procedure Primitive_3 (Me : in out Object);

procedure Primitive_4 (Them : access Object);

function Primitive_5 return Object;

function Primitive_6 (Everyone : Boolean) return access Object;

end X;

All of these subprograms are primitive operations.

A primitive operation can also take parameters of the same or other types; also, the
controlling operand does not have to be the first parameter:

package X is

type Object is tagged null record;

procedure Primitive_1 (This : in Object; Number : in Integer);

procedure Primitive_2 (You : in Boolean; That : out Object);

procedure Primitive_3 (Me, Her : in out Object);

end X;

The definition of primitive operations specifically excludes named access types and
class-wide types as well as operations not defined immediately in the same declarative
region. Counter-examples:

package X is

type Object is tagged null record;

type Object_Access is access Object;

type Object_Class_Access is access Object'Class;

procedure Not_Primitive_1 (This : in Object'Class);

procedure Not_Primitive_2 (This : in out Object_Access);

procedure Not_Primitive_3 (This : out Object_Class_Access);

function Not_Primitive_4 return Object'Class;

package Inner is

procedure Not_Primitive_5 (This : in Object);

end Inner;

end X;

198

Advanced topic: Freezing rules

Freezing rules (http://www.adaic.com/standards/05rm/html/RM-13-14.html ARM
13.143) are perhaps the most complex part of the Ada language definition; this is be-
cause the standard tries to describe freezing as unambiguously as possible. Also, that
part of the language definition deals with freezing of all entities, including complicated
situations like generics and objects reached by dereferencing access values. You can, however,
get an intuitive understanding of freezing of tagged types if you understand how dynamic
dispatching works4. In that section, we saw that the compiler emits a table of primitive
operations for each tagged type. The point in the program text where this happens is the
point where the tagged type is frozen, i.e. the point where the table becomes complete.
After the type is frozen, no more primitive operations can be added to it.

This point is the earliest of:

• the end of the package spec where the tagged type is declared
• the appearance of the first type derived from the tagged type

Example:

package X is

type Object is tagged nullrecord;

procedure Primitive_1 (This: in Object);

-- this declaration freezes Object

type Derived is new Object with null record;

-- illegal: declared after Object is frozen

procedure Primitive_2 (This: in Object);

end X;

Intuitively: at the point where Derived is declared, the compiler starts a new table of
primitive operations for the derived type. This new table, initially, is equal to the table of
the primitive operations of the parent type, Object. Hence, Object must freeze.

• the declaration of a variable of the tagged type

Example:

package X is

type Object is tagged null record;

procedure Primitive_1 (This: in Object);

V: Object; -- this declaration freezes Object

-- illegal: declared after Object is frozen

procedure Primitive_2 (This: in Object);

end X;

3 http://en.wikibooks.org/wiki/%20ARM%2013.14

4 Chapter 22.1.6 on page 193

199

http://www.adaic.com/standards/05rm/html/RM-13-14.html
http://en.wikibooks.org/wiki/%20ARM%2013.14

Object Orientation

Intuitively: after the declaration of V, it is possible to call any of the primitive operations of
the type on V. Therefore, the list of primitive operations must be known and complete, i.e.
frozen.

• The completion (not the declaration, if any) of a constant of the tagged type:

package X is

type Object is tagged null record;

procedure Primitive_1 (This: in Object);

-- this declaration does NOT freeze Object

Deferred_Constant: constant Object;

procedure Primitive_2 (This : in Object); -- OK

private

-- only the completion freezes Object

Deferred_Constant: constant Object := (null record);

-- illegal: declared after Object is frozen

procedure Primitive_3 (This: in Object);

end X;

22.1.9 New features of Ada 2005

This language feature is only available in Ada 2005

Ada 2005 adds overriding indicators, allows anonymous access types in more places and
offers the object.method notation.

Overriding indicators

The new keyword overriding can be used to indicate whether an operation overrides an
inherited subprogram or not. Its use is optional because of upward-compatibility with Ada
95. For example:

package X is

type Object is tagged null record;

function Primitive return access Object; --new in Ada 2005

type Derived_Object is new Object with null record;

not overriding --new optional keywords in Ada 2005

procedure Primitive (This : in Derived_Object); --new primitive operation

overriding

function Primitive return access Derived_Object;

end X;

The compiler will check the desired behaviour.

200

This is a good programming practice because it avoids some nasty bugs like not overriding
an inherited subprogram because the programmer spelt the identifier incorrectly, or because
a new parameter is added later in the parent type.

It can also be used with abstract operations, with renamings, or when instantiating a
generic subprogram:

not overriding

procedure Primitive_X (This : in Object) is abstract;

overriding

function Primitive_Y return Object renames Some_Other_Subprogram;

not overriding

procedure Primitive_Z (This : out Object)

is new Generic_Procedure (Element => Integer);

Object.Method notation

We have already seen this notation:

package X is

type Object is tagged null record;

procedure Primitive_1 (This: in Object; That: in Boolean);

end X;

with X;

procedure Main is

Obj : X.Object;

begin

Obj.Primitive (That => True); --Ada 2005 object.method notation

end Main;

This notation is only available for primitive operations where the controlling parameter is
the first parameter.

22.1.10 Abstract types

A tagged type can also be abstract (and thus can have abstract operations):

package X is

type Object is abstract tagged . . .;

procedure One_Class_Member (This : in Object);

procedure Another_Class_Member (This : in out Object);

function Abstract_Class_Member return Object is abstract;

end X;

201

Object Orientation

An abstract operation cannot have any body, so derived types are forced to override it
(unless those derived types are also abstract). See next section about interfaces for more
information about this.

The difference with a non-abstract tagged type is that you cannot declare any variable of
this type. However, you can declare an access to it, and use it as a parameter of a class-wide
operation.

22.1.11 Multiple Inheritance via Interfaces

This language feature is only available in Ada 2005

Interfaces allow for a limited form of multiple inheritance (taken from Java). On a semantic
level they are similar to an "abstract tagged null record" as they may have primitive operations
but cannot hold any data and thus these operations cannot have a body, they are either
declared abstract or null. Abstract means the operation has to be overridden, null means
the default implementation is a null body, i.e. one that does nothing.

An interface is declared with:

package Printable is

type Object is interface;

procedure Class_Member_1 (This : in Object) is abstract;

procedure Class_Member_2 (This : out Object) is null;

end Printable;

You implement an interface by adding it to a concrete class:

with Person;

package Programmer is

type Object is new Person.Object

and Printable.Object

with

record

Skilled_In : Language_List;

end record;

overriding

procedure Class_Member_1 (This : in Object);

not overriding

procedure New_Class_Member (This : Object; That : String);

end Programmer;

As usual, all inherited abstract operations must be overridden although null subprograms
ones need not.

202

Such a type may implement a list of interfaces (called the progenitors), but can have only
one parent. The parent may be a concrete type or also an interface.

type Derived is new Parent and Progenitor_1 and Progenitor_2 ... with ...;

22.1.12 Multiple Inheritance via Mix-in

Ada supports multiple inheritance of interfaces (see above), but only single inheritance of
implementation. This means that a tagged type can implement multiple interfaces but can
only extend a single ancestor tagged type.

This can be problematic if you want to add behavior to a type that already extends another
type; for example, suppose you have

type Base is tagged private;

type Derived is new Base with private;

and you want to make Derived controlled, i.e. add the behavior that Derived controls its
initialization, assignment and finalization. Alas you cannot write:

type Derived is new Base and Ada.Finalization.Controlled with private; --illegal

since Ada.Finalization for historical reasons does not define interfaces Controlled and
Limited_Controlled, but abstract types.

If your base type is not limited, there is no good solution for this; you have to go back to
the root of the class and make it controlled. (The reason will become obvious presently.)

For limited types however, another solutions is the use of a mix-in:

type Base is tagged limited private;

type Derived;

type Controlled_Mix_In (Enclosing: access Derived) is

new Ada.Finalization.Limited_Controlled with null record;

overriding procedure Initialize (This: in out Controlled_Mix_In);

overriding procedure Finalize (This: in out Controlled_Mix_In);

type Derived is new Base with record

Mix_In: Controlled_Mix_In (Enclosing => Derived'Access); --special syntax here

--other components here...

end record;

This special kind of mix-in is an object with an access discriminant that references its
enclosing object (also known as Rosen trick). In the declaration of the Derived type, we
initialize this discriminant with a special syntax: Derived'Access really refers to an a
access value to the current instance of type Derived. Thus the access discriminant allows
the mix-in to see its enclosing object and all its components; therefore it can initialize and

203

Object Orientation

finalize its enclosing object:

overriding procedure Initialize (This: in out Controlled_Mix_In) is

Enclosing: Derived renames This.Enclosing.all;

begin

--initialize Enclosing...

end Initialize;

and similarly for Finalize.

The reason why this does not work for non-limited types is the self-referentiality via the
discriminant. Imagine you have two variables of such a non-limited type and assign one to
the other:

X := Y;

In an assignment statement, Adjust is called only after Finalize of the target X and
so cannot provide the new value of the discriminant. Thus X.Mixin_In.Enclosing will
inevitably reference Y.

Now let's further extend our hierarchy:

type Further is new Derived with null record;

overriding procedure Initialize (This: in out Further);

overriding procedure Finalize (This: in out Further);

Oops, this does not work because there are no corresponding procedures for Derived, yet -
so let's quickly add them.

type Base is tagged limited private;

type Derived;

type Controlled_Mix_In (Enclosing: access Derived) is

new Ada.Finalization.Limited_Controlled with null record;

overriding procedure Initialize (This: in out Controlled_Mix_In);

overriding procedure Finalize (This: in out Controlled_Mix_In);

type Derived is new Base with record

Mix_In: Controlled_Mix_In (Enclosing => Derived'Access); --special syntax here

--other components here...

end record;

not overriding procedure Initialize (This: in out Derived); --sic, they are new

not overriding procedure Finalize (This: in out Derived);

type Further is new Derived with null record;

overriding procedure Initialize (This: in out Further);

overriding procedure Finalize (This: in out Further);

204

We have of course to write not overriding for the procedures on Derived because there is
indeed nothing they could override. The bodies are

not overriding procedure Initialize (This: in out Derived) is

begin

--initialize Derived...

end Initialize;

overriding procedure Initialize (This: in out Controlled_Mix_In) is

Enclosing: Derived renames This.Enclosing.all;

begin

Initialize (Enclosing);

end Initialize;

To our dismay, we have to learn that Initialize/Finalize for objects of type Further

will not be called, instead those for the parent Derived. Why?

declare

X: Further; -- Initialize (Derived (X)) is called here

begin

null;

end; -- Finalize (Derived (X)) is called here

The reason is that the mix-in defines the local object Enclosing to be of type Derived

in the renames-statement above. To cure this, we have necessarily to use the dreaded
redispatch (shown in different but equivalent notations):

overriding procedure Initialize (This: in out Controlled_Mix_In) is

Enclosing: Derived renames This.Enclosing.all;

begin

Initialize (Derived'Class (Enclosing));

end Initialize;

overriding procedure Finalize (This: in out Controlled_Mix_In) is

Enclosing: Derived'Class renames Derived'Class (This.Enclosing.all);

begin

Enclosing.Finalize;

end Finalize;

declare

X: Further; -- Initialize (X) is called here

begin

null;

end; -- Finalize (X) is called here

Alternatively (and presumably better still) is to write

type Controlled_Mix_In (Enclosing: access Derived'Class) is

new Ada.Finalization.Limited_Controlled with null record;

Then we automatically get redispatch and can omit the type conversions on Enclosing.

22.2 Class names

205

Object Orientation

Class names

Both the class package and the class record need a name. In theory they may have the
same name, but in practice this leads to nasty (because of unintutive error messages) name
clashes when you use the use clause. So over time three de facto naming standards have
been commonly used.

22.2.1 Classes/Class

The package is named by a plural noun and the record is named by the corresponding
singular form.

package Persons is

type Person is tagged

record

Name : String (1 .. 10);

Gender : Gender_Type;

end record;

end Persons;

This convention is the usually used in Ada's built-in libraries.

Disadvantage: Some "multiples" are tricky to spell, especially for those of us who aren't
native English speakers.

22.2.2 Class/Object

The package is named after the class, the record is just named Object.

package Person is

type Object is tagged

record

Name : String (1 .. 10);

Gender : Gender_Type;

end record;

end Person;

Most UML5 and IDL6 code generators use this technique.

Disadvantage: You can't use the use clause on more than one such class packages at any
one time. However you can always use the "type" instead of the package.

5 http://en.wikipedia.org/wiki/Unified%20Modeling%20Language

6 http://en.wikipedia.org/wiki/Interface%20description%20language

206

http://en.wikipedia.org/wiki/Unified%20Modeling%20Language
http://en.wikipedia.org/wiki/Interface%20description%20language

22.2.3 Class/Class_Type

The package is named after the class, the record is postfixed with _Type.

package Person is

type Person_Type is tagged

record

Name : String (1 .. 10);

Gender : Gender_Type;

end record;

end Person;

Disadvantage: lots of ugly "_Type" postfixes.

22.3 Object-Oriented Ada for C++ programmers

Object-Oriented Ada for C++ programmers

In C++, the construct

class C {

virtual void v();

void w();

static void u();

};

is strictly equivalent to the following in Ada:

package P is

type C is tagged null record;

procedure V (This : C); --primitive operation, will be inherited upon derivation

procedure W (This : C'Class); --not primitive, will not be inherited upon derivation

procedure U;

end P;

In C++, member functions implicitly take a parameter this which is of type C*. In Ada,
all parameters are explicit. As a consequence, the fact that u() does not take a parameter
is implicit in C++ but explicit in Ada.

In C++, this is a pointer. In Ada, the explicit This parameter does not have to be a
pointer; all parameters of a tagged type are implicitly passed by reference anyway.

22.3.1 Static dispatching

In C++, function calls dispatch statically in the following cases:

• the target of the call is an object type
• the member function is non-virtual

207

Object Orientation

For example:

C object;

object.v();

object.w();

both dispatch statically. In particular, the static dispatch for v() may be confusing; this is
because object is neither a pointer nor a reference. Ada behaves exactly the same in this
respect, except that Ada calls this static binding rather than dispatching:

declare

Object : P.C;

begin

Object.V; --statically bound

Object.W; --statically bound

end;

22.3.2 Dynamic dispatching

In C++, a function call dispatches dynamically if the two following conditions are met
simultaneously:

• the target of the call is a pointer or a reference
• the member function is virtual.

For example:

C* object;

object->v(); // dynamic dispatch

object->w(); // static, non-virtual member function

object->u(); // illegal: static member function

C::u(); // static dispatch

In Ada, a primitive subprogram call dispatches (dynamically) if and only if:

• the target object is of a class-wide type;

Note: In Ada vernacular, the term dispatching always means dynamic.

For example:

declare

Object : P.C'Class := ...;

begin

P.V (Object); --dispatching

P.W (Object); --statically bound: not a primitive operation

P.U; --statically bound

end;

As can be seen there is no need for access types or pointers to do dispatching in Ada. In
Ada, tagged types are always passed by-reference to subprograms without the need for explicit
access values.

208

Also note that in C++, the class serves as:

• the unit of encapsulation (Ada uses packages and visibility for this)
• the type, like in Ada.

As a consequence, you call C::u() in C++ because u() is encapsulated in C, but P.U in Ada
since U is encapsulated in the package P, not the type C.

22.3.3 Class-wide and specific types

The most confusing part for C++ programmers is the concept of a "class-wide type". To
help you understand:

• pointers and references in C++ are really, implicitly, class-wide;
• object types in C++ are really specific;
• C++ provides no way to declare the equivalent of:

type C_Specific_Access is access C;

• C++ provides no way to declare the equivalent of:

type C_Specific_Access_One is access C;

type C_Specific_Access_Two is access C;

which, in Ada, are two different, incompatible types, possibly allocating their memory from
different storage pools!

• In Ada, you do not need access values for dynamic dispatching.
• In Ada, you use access values for dynamic memory management (only) and class-wide

types for dynamic dispatching (only).
• In C++, you use pointers and references both for dynamic memory management and for

dynamic dispatching.
• In Ada, class-wide types are explicit (with 'Class).
• In C++, class-wide types are implicit (with * or &).

22.3.4 Constructors

in C++, a special syntax declares a constructor:

class C {

C(/* optional parameters */); // constructor

};

A constructor cannot be virtual. A class can have as many constructors, differentiated by
their parameters, as necessary.

Ada does not have such constructors. Perhaps they were not deemed necessary since in Ada,
any function that returns an object of the tagged type can serve as a kind of constructor.
This is however not the same as a real constructor like the C++ one; this difference is
most striking in cases of derivation trees (see Finalization below). The Ada constructor

209

Object Orientation

subprograms do not have to have a special name and there can be as many constructors as
necessary; each function can take parameters as appropriate.

package P is

type T is tagged private;

function Make return T; -- constructor

function To_T (From: Integer) return T; -- another constructor

-- procedure Make (This: out T); -- not a constructor

private

...

end P;

If an Ada constructor function is also a primitive operation (as in the example above), it
becomes abstract upon derivation and has to be overridden if the derived type is not itself
abstract. If you do not want this, declare such functions in a nested scope.

In C++, one idiom is the copy constructor and its cousin the assignment operator:

class C {

C(const C& that); // copies "that" into "this"

C& operator= (const C& right); // assigns "right" to "this",

which is "left"

};

This copy constructor is invoked implicitly on initialization, e.g.

C a = b; // calls the copy constructor

C c;

a = c; // calls the assignment operator

Ada provides a similar functionality by means of controlled types. A controlled type is one
that extends the predefined type Ada.Finalization.Controlled:

with Ada.Finalization;

package P is

type T is new Ada.Finalization.Controlled with private;

function Make return T; -- constructor

private

type T is ... end record;

overriding procedure Initialize (This: in out T);

overriding procedure Adjust (This: in out T); -- copy contructor

end P;

Note that Initialize is not a constructor; it resembles the C++ constructor in some way, but
is also very different. Suppose you have a type T1 derived from T with an appropriate
overriding of Initialize. A real constructor (like the C++ one) would automatically first
construct the parent components (T), then the child components. In Ada, this is not
automatic. In order to mimic this in Ada, we have to write:

procedure Initialize (This: in out T1) is

begin

210

Initialize (T (This)); -- Don't forget this part!

... -- handle the new components here

end Initialize;

The compiler inserts a call to Initialize after each object of type T is allocated when no
initial value is given. It also inserts a call to Adjust after each assignment to the object.
Thus, the declarations:

A: T;

B: T := X;

will:

• allocate memory for A
• call Initialize (A)
• allocate memory for B
• copy the contents of X to B
• call Adjust (B)

Initialize (B) will not be called because of the explicit initialization.

So, the equivalent of a copy constructor is an overriding of Adjust.

If you would like to provide this functionality to a type that extends another, non-controlled
type, see "Multiple Inheritance"7.

22.3.5 Destructors

In C++, a destructor is a member function with only the implicit this parameter:

class C {

virtual ˜C(); // destructor

}

While a constructor cannot be virtual, a destructor must be virtual. Unfortunately, the rules
of the C++ language do not enforce this, so it is quite easy for a programmer to wreak
havoc in their programs by simply forgetting the keyword virtual.

In Ada, the equivalent functionality is again provided by controlled types, by overriding the
procedure Finalize:

with Ada.Finalization;

package P is

type T is new Ada.Finalization.Controlled with private;

function Make return T; -- constructor

private

type T is ... end record;

7 Chapter 22.4.2 on page 217

211

Object Orientation

overriding procedure Finalize (This: in out T); -- destructor

end P;

Because Finalize is a primitive operation, it is automatically "virtual"; you cannot, in Ada,
forget to make a destructor virtual.

22.3.6 Encapsulation: public, private and protected members

In C++, the unit of encapsulation is the class; in Ada, the unit of encapsulation is the
package. This has consequences on how an Ada programmer places the various components
of an object type.

class C {

public:

int a;

void public_proc();

protected:

int b;

int protected_func();

private:

bool c;

void private_proc();

};

A way to mimic this C++ class in Ada is to define a hierarchy of types, where the base type
is the public part, which must be abstract so that no stand-alone objects of this base type
can be defined. It looks like so:

private with Ada.Finalization;

package CPP is

type Public_Part is abstract tagged record -- no objects of this type

A: Integer;

end record;

procedure Public_Proc (This: in out Public_Part);

type Complete_Type is new Public_Part with private;

-- procedure Public_Proc (This: in out Complete_Type); --

inherited, implicitly defined

private -- visible for children

type Private_Part; -- declaration stub

type Private_Part_Pointer is access Private_Part;

type Private_Component is new Ada.Finalization.Controlled with record

P: Private_Part_Pointer;

end record;

overriding procedure Initialize (X: in out Private_Component);

overriding procedure Adjust (X: in out Private_Component);

overriding procedure Finalize (X: in out Private_Component);

212

type Complete_Type is new Public_Part with record

B: Integer;

P: Private_Component; -- must be controlled to avoid storage

leaks

end record;

not overriding procedure Protected_Proc (This: Complete_Type);

end CPP;

The private part is defined as a stub only, its completion is hidden in the body. In order
to make it a component of the complete type, we have to use a pointer since the size of
the component is still unknown (the size of a pointer is known to the compiler). With
pointers, unfortunately, we incur the danger of memory leaks, so we have to make the private
component controlled.

For a little test, this is the body, where the subprogram bodies are provided with identifying
prints:

with Ada.Unchecked_Deallocation;

with Ada.Text_IO;

package body CPP is

procedure Public_Proc (This: in out Public_Part) is -- primitive

begin

Ada.Text_IO.Put_Line ("Public_Proc" & Integer'Image (This.A));

end Public_Proc;

type Private_Part is record -- complete declaration

C: Boolean;

end record;

overriding procedure Initialize (X: in out Private_Component) is

begin

X.P := new Private_Part'(C => True);

Ada.Text_IO.Put_Line ("Initialize " & Boolean'Image (X.P.C));

end Initialize;

overriding procedure Adjust (X: in out Private_Component) is

begin

Ada.Text_IO.Put_Line ("Adjust " & Boolean'Image (X.P.C));

X.P := new Private_Part'(C => X.P.C); -- deep copy

end Adjust;

overriding procedure Finalize (X: in out Private_Component) is

procedure Free is new Ada.Unchecked_Deallocation (Private_Part,

Private_Part_Pointer);

begin

Ada.Text_IO.Put_Line ("Finalize " & Boolean'Image (X.P.C));

Free (X.P);

end Finalize;

procedure Private_Proc (This: in out Complete_Type) is -- not primitive

begin

Ada.Text_IO.Put_Line ("Private_Proc" & Integer'Image (This.A) &

Integer'Image (This.B) & ' ' & Boolean'Image (This.P.P.C));

end Private_Proc;

not overriding procedure Protected_Proc (This: Complete_Type) is -- primitive

X: Complete_Type := This;

213

Object Orientation

begin

Ada.Text_IO.Put_Line ("Protected_Proc" & Integer'Image (This.A)

& Integer'Image (This.B));

Private_Proc (X);

end Protected_Proc;

end CPP;

We see that, due to the construction, the private procedure is not a primitive operation.

Let's define a child class so that the protected operation can be reached:

package CPP.Child is

procedure Do_It (X: Complete_Type); -- not primitive

end CPP.Child;

A child can look inside the private part of the parent and thus can see the protected procedure:

with Ada.Text_IO;

package body CPP.Child is

procedure Do_It (X: Complete_Type) is

begin

Ada.Text_IO.Put_Line ("Do_It" & Integer'Image (X.A) &

Integer'Image (X.B));

Protected_Proc (X);

end Do_It;

end CPP.Child;

This is a simple test program, its output is shown below.

with CPP.Child;

use CPP.Child, CPP;

procedure Test_CPP is

X, Y: Complete_Type;

begin

X.A := +1;

Y.A := -1;

Public_Proc (X); Do_It (X);

Public_Proc (Y); Do_It (Y);

X := Y;

Public_Proc (X); Do_It (X);

end Test_CPP;

214

This is the commented output of the test program:

Initialize TRUE Test_CPP: Initialize X

Initialize TRUE and Y

Public_Proc 1 | Public_Proc (X): A=1

Do_It 1-1073746208 | Do_It (X): B

uninitialized

Adjust TRUE | | Protected_Proc (X): Adjust

local copy X of This

Protected_Proc 1-1073746208 | | |

Private_Proc 1-1073746208 TRUE | | | Private_Proc on local

copy of This

Finalize TRUE | | Protected_Proc (X):

Finalize local copy X

Public_Proc-1 | ditto for Y

Do_It-1 65536 | |

Adjust TRUE | |

Protected_Proc-1 65536 | |

Private_Proc-1 65536 TRUE | |

Finalize TRUE | |

Finalize TRUE | Assignment: Finalize target

X.P.C

Adjust TRUE | | Adjust: deep copy

Public_Proc-1 | again for X, i.e. copy of Y

Do_It-1 65536 | |

Adjust TRUE | |

Protected_Proc-1 65536 | |

Private_Proc-1 65536 TRUE | |

Finalize TRUE | |

Finalize TRUE Finalize Y

Finalize TRUE and X

You see that a direct translation of the C++ behaviour into Ada is difficult, if feasible at
all. Methinks, the primitive Ada subprograms corresponds more to virtual C++ methods
(in the example, they are not). Each language has its own idiosyncrasies which have to be
taken into account, so that attempts to directly translate code from one into the other may
not be the best approach.

22.3.7 De-encapsulation: friends and stream input-output

In C++, a friend function or class can see all members of the class it is a friend of. Friends
break encapsulation and are therefore to be discouraged. In Ada, since packages and not
classes are the unit of encapsulation, a "friend" subprogram is simply one that is declared in
the same package as the tagged type.

In C++, stream input and output are the particular case where friends are usually necessary:

#include <iostream>

class C {

public:

C();

friend ostream& operator<<(ostream& output, C& arg);

private:

int a, b;

bool c;

};

215

Object Orientation

#include <iostream>

int main() {

C object;

cout << object;

return 0;

};

Ada does not need this construct because it defines stream input and output operations by
default:

package P is

pragma Elaborate_Body; -- explained below

type C is tagged private;

private

type C is tagged record

A, B : Integer;

C : Boolean;

end record;

end P;

with Ada.Text_IO.Text_Streams;

with P;

procedure Main is

Object : P.C;

begin

P.C'Output (Stream => Ada.Text_IO.Text_Streams.Stream

(Ada.Text_IO.Default_Output),

Item => Object);

end Main;

By default, the Output attribute sends the tag of the object to the stream then calls the
more basic Write attribute, which sends the components to the stream in the same order as
the declaration, i.e. A, B then C. It is possible to override the default implementation of the
Input, Output, Read and Write attributes like this:

with Ada.Streams;

package body P is

procedure My_Write (Stream : not null access

Ada.Streams.Root_Stream_Type'Class;

Item : in C) is

begin

-- The default is to write A then B then C; here we change the

ordering.

Boolean'Write (Stream, Item.C);

Integer'Write (Stream, Item.B);

Integer'Write (Stream, Item.A);

end My_Write;

for C'Write use My_Write; -- override the default attribute

end P;

In the above example, P.C'output calls P.C'Write which is overridden in the body of the
package. Since the specification of package P does not define any subprograms, it does not
normally need a body, so a package body is forbidden. The pragma Elaborate_Body tells
the compiler that this package does have a body that is needed for other reasons.

216

Note that the stream IO attributes are not primitive operations of the tagged type; this is
also the case in C++ where the friend operators are not, in fact, member functions of the
type.

22.3.8 Terminology

Ada C++

Package class (as a unit of encapsulation)

Tagged type class (of objects) (as a type) (not pointer or
reference, which are class-wide)

Primitive operation virtual member function

Tag pointer to the virtual table

Class (of types) -

Class-wide type -

Class-wide operation static member function

Access value to a specific tagged
type

-

Access value to a class-wide type Pointer or reference to a class

22.4 See also

See also

22.4.1 Wikibook

• Ada Programming8

• Ada Programming/Types/record9

• record10

• interface11

• tagged12

22.4.2 Wikipedia

• Object-oriented programming13

8 http://en.wikibooks.org/wiki/Ada%20Programming

9 Chapter 12 on page 91
10 http://en.wikibooks.org/wiki/Ada%20Programming%2FKeywords%2Frecord

11 http://en.wikibooks.org/wiki/Ada%20Programming%2FKeywords%2Finterface

12 http://en.wikibooks.org/wiki/Ada%20Programming%2FKeywords%2Ftagged

13 http://en.wikipedia.org/wiki/Object-oriented%20programming

217

http://en.wikibooks.org/wiki/Ada%20Programming
http://en.wikibooks.org/wiki/Ada%20Programming%2FKeywords%2Frecord
http://en.wikibooks.org/wiki/Ada%20Programming%2FKeywords%2Finterface
http://en.wikibooks.org/wiki/Ada%20Programming%2FKeywords%2Ftagged
http://en.wikipedia.org/wiki/Object-oriented%20programming

Object Orientation

22.4.3 Ada Reference Manual

Ada 95

• 3.8 Record Types ˆ{http://www.adaic.org/resources/add_content/standards/

95lrm/ARM_HTML/RM-3-8.html}

• 3.9 Tagged Types and Type Extensions ˆ{http://www.adaic.org/resources/add_

content/standards/95lrm/ARM_HTML/RM-3-9.html}

• 3.9.1 Type Extensions ˆ{http://www.adaic.org/resources/add_content/standards/

95lrm/ARM_HTML/RM-3-9-1.html}

• 3.9.2 Dispatching Operations of Tagged Types ˆ{http://www.adaic.org/resources/

add_content/standards/95lrm/ARM_HTML/RM-3-9-2.html}

• 3.9.3 Abstract Types and Subprograms ˆ{http://www.adaic.org/resources/add_

content/standards/95lrm/ARM_HTML/RM-3-9-3.html}

• 3.10 Access Types ˆ{http://www.adaic.org/resources/add_content/standards/

95lrm/ARM_HTML/RM-3-10.html}

Ada 2005

• 3.8 Record Types ˆ{http://www.adaic.org/resources/add_content/standards/

05rm/html/RM-3-8.html}

• 3.9 Tagged Types and Type Extensions ˆ{http://www.adaic.org/resources/add_

content/standards/05rm/html/RM-3-9.html}

• 3.9.1 Type Extensions ˆ{http://www.adaic.org/resources/add_content/standards/

05rm/html/RM-3-9-1.html}

• 3.9.2 Dispatching Operations of Tagged Types ˆ{http://www.adaic.org/resources/

add_content/standards/05rm/html/RM-3-9-2.html}

• 3.9.3 Abstract Types and Subprograms ˆ{http://www.adaic.org/resources/add_

content/standards/05rm/html/RM-3-9-3.html}

• 3.9.4 Interface Types ˆ{http://www.adaic.org/resources/add_content/standards/

05rm/html/RM-3-9-4.html}

• 3.10 Access Types ˆ{http://www.adaic.org/resources/add_content/standards/

05rm/html/RM-3-10.html}

22.4.4 Ada Quality and Style Guide

• Chapter 9: Object-Oriented Features ˆ{http://www.adaic.org/resources/add_

content/docs/95style/html/sec_9/}

es:Programación en Ada/Tipos etiquetados14

14 http://es.wikibooks.org/wiki/Programaci%F3n%20en%20Ada%2FTipos%20etiquetados

218

http://www.adaic.org/resources/add_content/standards/95lrm/ARM_HTML/RM-3-8.html
http://www.adaic.org/resources/add_content/standards/95lrm/ARM_HTML/RM-3-8.html
http://www.adaic.org/resources/add_content/standards/95lrm/ARM_HTML/RM-3-9.html
http://www.adaic.org/resources/add_content/standards/95lrm/ARM_HTML/RM-3-9.html
http://www.adaic.org/resources/add_content/standards/95lrm/ARM_HTML/RM-3-9-1.html
http://www.adaic.org/resources/add_content/standards/95lrm/ARM_HTML/RM-3-9-1.html
http://www.adaic.org/resources/add_content/standards/95lrm/ARM_HTML/RM-3-9-2.html
http://www.adaic.org/resources/add_content/standards/95lrm/ARM_HTML/RM-3-9-2.html
http://www.adaic.org/resources/add_content/standards/95lrm/ARM_HTML/RM-3-9-3.html
http://www.adaic.org/resources/add_content/standards/95lrm/ARM_HTML/RM-3-9-3.html
http://www.adaic.org/resources/add_content/standards/95lrm/ARM_HTML/RM-3-10.html
http://www.adaic.org/resources/add_content/standards/95lrm/ARM_HTML/RM-3-10.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-3-8.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-3-8.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-3-9.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-3-9.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-3-9-1.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-3-9-1.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-3-9-2.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-3-9-2.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-3-9-3.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-3-9-3.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-3-9-4.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-3-9-4.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-3-10.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-3-10.html
http://www.adaic.org/resources/add_content/docs/95style/html/sec_9/
http://www.adaic.org/resources/add_content/docs/95style/html/sec_9/
http://es.wikibooks.org/wiki/Programaci%F3n%20en%20Ada%2FTipos%20etiquetados

23 New in Ada 2005

This is an overview of the major features that are available in Ada 2005, the version of
the Ada standard that was accepted by ISO in January 2007 (to differentiate it from its
predecessors Ada 831 and Ada 952, the informal name Ada 2005 is generally agreed on). For
the rationale and a more detailed (and very technical) description, see the Amendment3

to the Ada Reference Manual following the links to the last version of every Ada Issue
document (AI).

Although the standard is now published, not all compilers will be able to handle it. Many
of these additions are already implemented by the following Free Software4 compilers:

• GNAT GPL Edition5

• GCC 4.16

• GNAT Pro 6.0.27 (the AdaCore supported version) is a complete implementation.

After downloading and installing any of them, remember to use the -gnat05 switch when
compiling Ada 2005 code. Note that Ada 2005 is the default mode in GNAT GPL 2007
Edition.

23.1 Language features

Language features

23.1.1 Character set

Not only does Ada 2005 now support a new 32-bit character type — called Wide_Wide_-

Character — but the source code itself may be of this extended character set as well. Thus
Russians and Indians, for example, will be able to use their native language in identifiers
and comments. And mathematicians will rejoice: The whole Greek and fractur character
sets are available for identifiers. For example, Ada.Numerics8 will be extended with a new
constant:

1 http://en.wikibooks.org/wiki/Ada%20Programming%2FAda%2083

2 http://en.wikibooks.org/wiki/Ada%20Programming%2FAda%2095

3 http://www.ada-auth.org/AI-XREF.HTML#Amend_Doc

4 http://en.wikipedia.org/wiki/Free%20Software

5 http://libre.adacore.com/

6 http://gcc.gnu.org/

7 http://www.adacore.com/home/gnatpro/

8 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Numerics

219

http://en.wikibooks.org/wiki/Ada%20Programming%2FAda%2083
http://en.wikibooks.org/wiki/Ada%20Programming%2FAda%2095
http://www.ada-auth.org/AI-XREF.HTML#Amend_Doc
http://en.wikipedia.org/wiki/Free%20Software
http://libre.adacore.com/
http://gcc.gnu.org/
http://www.adacore.com/home/gnatpro/
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Numerics

New in Ada 2005

π : constant := Pi;

This is not a new idea — GNAT9 always had the -gnatic compiler option to specify the
character set http://gcc.gnu.org/onlinedocs/gnat_ugn_unw/Character-Set-Control.

html. But now this idea has become standard, so all Ada compilers will need to support
Unicode 4.010 for identifiers — as the new standard requires.

See also:

• AI95-00285-01 Support for 16-bit and 32-bit characters ˆ{http://www.ada-auth.org/

cgi-bin/cvsweb.cgi/AIs/AI-00285.TXT}

• AI95-00388-01 Add Greek pi to Ada.Numerics ˆ{http://www.ada-auth.org/cgi-bin/

cvsweb.cgi/AIs/AI-00388.TXT}

23.1.2 Interfaces

Interfaces allow for a limited form of multiple inheritance similar to Java and C#.

You find a full description here: Ada Programming/OO11.

See also:

• AI95-00251-01 Abstract Interfaces to provide multiple inheritance ˆ{http://www.

ada-auth.org/cgi-bin/cvsweb.cgi/AIs/AI-00251.TXT}

• AI95-00345-01 Protected and task interfaces ˆ{http://www.ada-auth.org/cgi-bin/

cvsweb.cgi/AIs/AI-00345.TXT}

23.1.3 Union

In addition to Ada's safe variant record an unchecked C style union is now available.

You can find a full description here: Ada Programming/Types/record#Union12.

See also:

• AI95-00216-01 Unchecked unions -- variant records with no run-time discriminant ˆ{http:

//www.ada-auth.org/cgi-bin/cvsweb.cgi/AIs/AI-00216.TXT}

• Annex B.3.3 Pragma Unchecked_Union ˆ{http://www.adaic.org/resources/add_

content/standards/05rm/html/RM-B-3-3.html}

9 http://en.wikipedia.org/wiki/GNAT

10 http://en.wikipedia.org/wiki/Unicode

11 Chapter 22.4.2 on page 217
12 Chapter 12.6 on page 95

220

http://gcc.gnu.org/onlinedocs/gnat_ugn_unw/Character-Set-Control.html
http://gcc.gnu.org/onlinedocs/gnat_ugn_unw/Character-Set-Control.html
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AIs/AI-00285.TXT
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AIs/AI-00285.TXT
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AIs/AI-00388.TXT
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AIs/AI-00388.TXT
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AIs/AI-00251.TXT
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AIs/AI-00251.TXT
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AIs/AI-00345.TXT
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AIs/AI-00345.TXT
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AIs/AI-00216.TXT
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AIs/AI-00216.TXT
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-B-3-3.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-B-3-3.html
http://en.wikipedia.org/wiki/GNAT
http://en.wikipedia.org/wiki/Unicode

23.1.4 With

The with statement got a massive upgrade. First there is the new limited with13 which
allows two packages to with each other. Then there is private with14 to make a package only
visible inside the private part of the specification.

See also:

• AI95-00217-01 Limited With Clauses ˆ{http://www.ada-auth.org/cgi-bin/cvsweb.

cgi/AIs/AI-00217.TXT}

• AI95-00262-01 Access to private units in the private part ˆ{http://www.ada-auth.org/

cgi-bin/cvsweb.cgi/AIs/AI-00262.TXT}

23.1.5 Access types

Not null access

An access type definition can specify that the access type can never be null.

See Ada Programming/Types/access#Not null access15.

See also: AI95-00231-01 Access-to-constant parameters and null-excluding access subtypes
ˆ{http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AIs/AI-00231.TXT}

Anonymous access

The possible uses of anonymous access types are extended. They are allowed virtually in
every type or object definition, including access to subprogram parameters. Anonymous
access types may point to constant objects as well. Also, they could be declared to be not
null.

With the addition of the following operations in package Standard , it is possible to test the
equality of anonymous access types.

function "=" (Left, Right : universal_access) return Boolean;

function "/="(Left, Right : universal_access) return Boolean;

See Ada Programming/Types/access#Anonymous access16.

See also:

• AI95-00230-01 Generalized use of anonymous access types ˆ{http://www.ada-auth.org/

cgi-bin/cvsweb.cgi/AIs/AI-00230.TXT}

• AI95-00385-01 Stand-alone objects of anonymous access types ˆ{http://www.ada-auth.

org/cgi-bin/cvsweb.cgi/AIs/AI-00385.TXT}

13 Chapter 17.3.3 on page 138
14 Chapter 17.3.2 on page 138
15 Chapter 13.10.1 on page 110
16 Chapter 13.4 on page 103

221

http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AIs/AI-00217.TXT
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AIs/AI-00217.TXT
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AIs/AI-00262.TXT
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AIs/AI-00262.TXT
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AIs/AI-00231.TXT
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AIs/AI-00230.TXT
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AIs/AI-00230.TXT
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AIs/AI-00385.TXT
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AIs/AI-00385.TXT

New in Ada 2005

• AI95-00318-01 Limited and anonymous access return types ˆ{http://www.ada-auth.

org/cgi-bin/cvsweb.cgi/AIs/AI-00318.TXT}

23.2 Language library

Language library

23.2.1 Containers

A major addition to the language library is the generic packages for containers. If you are
familiar with the C++ STL, you will likely feel very much at home using Ada . One thing,
though: Ada is a block structured language. Many ideas of how to use the STL employ
this feature of the language. For example, local subprograms can be supplied to iteration
schemes.

The original Ada Issue text AI95-00302-01 Container library ˆ{http://www.ada-auth.org/

cgi-bin/cvsweb.cgi/AIs/AI-00302.TXT} has now been transformed into A.18 Contain-
ers ˆ{http://www.adaic.org/resources/add_content/standards/05rm/html/RM-A-18.

html} .

If you know how to write Ada programs, and have a need for vectors, lists, sets, or maps
(tables), please have a look at the AI95-00302-01 AI Text ˆ{http://www.ada-auth.org/

cgi-bin/cvsweb.cgi/AIs/AI-00302.TXT} mentioned above. There is an !example section
in the text explaining the use of the containers in some detail. Matthew Heaney provides
a number of demonstration programs with his reference implementation of AI-302 (Ada)
which you can find at tigris17.

In Ada Programming/Containers18 you will find a demo using containers.

Historical side note: The C++ STL draws upon the work of David R. Musser and
Alexander A. Stepanov. For some of their studies of generic programming, they had been
using Ada 83. The Stepanov Papers Collection19 has a few publications available.

23.2.2 Scan Filesystem Directories and Environment Variables

See also:

• AI95-00248-01 Directory Operations ˆ{http://www.ada-auth.org/cgi-bin/cvsweb.

cgi/AIs/AI-00248.TXT}

• AI95-00370-01 Environment variables ˆ{http://www.ada-auth.org/cgi-bin/cvsweb.

cgi/AIs/AI-00370.TXT}

17 http://charles.tigris.org

18 Chapter 24 on page 231
19 http://www.stepanovpapers.com/

222

http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AIs/AI-00318.TXT
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AIs/AI-00318.TXT
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AIs/AI-00302.TXT
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AIs/AI-00302.TXT
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-A-18.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-A-18.html
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AIs/AI-00302.TXT
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AIs/AI-00302.TXT
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AIs/AI-00248.TXT
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AIs/AI-00248.TXT
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AIs/AI-00370.TXT
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AIs/AI-00370.TXT
http://charles.tigris.org
http://www.stepanovpapers.com/

23.2.3 Numerics

Besides the new constant of package Ada.Numerics (see Character Set20 above), the most
important addition are the packages to operate with vectors and matrices.

See also:

• AI95-00388-01 Add Greek pi (π) to Ada.Numerics ˆ{http://www.ada-auth.org/

cgi-bin/cvsweb.cgi/AIs/AI-00388.TXT}

• AI95-00296-01 Vector and matrix operations ˆ{http://www.ada-auth.org/cgi-bin/

cvsweb.cgi/AIs/AI-00296.TXT}

(Related note on Ada programming tools: AI-388 contains an interesting assessment of how
compiler writers are bound to perpetuate the lack of handling of international characters in
programming support tools for now. As an author of Ada programs, be aware that your
tools provider or Ada consultant could recommend that the program text be 7bit ASCII
only.)

23.3 Real-Time and High Integrity Systems

Real-Time and High Integrity Systems

See also:

• AI95-00297-01 Timing events ˆ{http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AIs/

AI-00297.TXT}

• AI95-00307-01 Execution-Time Clocks ˆ{http://www.ada-auth.org/cgi-bin/cvsweb.

cgi/AIs/AI-00307.TXT}

• AI95-00354-01 Group execution-time budgets ˆ{http://www.ada-auth.org/cgi-bin/

cvsweb.cgi/AIs/AI-00354.TXT}

• AI95-00266-01 Task termination procedure ˆ{http://www.ada-auth.org/cgi-bin/

cvsweb.cgi/AIs/AI-00266.TXT}

• AI95-00386-01 Further functions returning Time_Span values ˆ{http://www.ada-auth.

org/cgi-bin/cvsweb.cgi/AIs/AI-00386.TXT}

23.3.1 Ravenscar profile

See also:

• AI95-00249-01 Ravenscar profile for high-integrity systems ˆ{http://www.ada-auth.

org/cgi-bin/cvsweb.cgi/AIs/AI-00249.TXT}

• AI95-00305-01 New pragma and additional restriction identifiers for real-time systems
ˆ{http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AIs/AI-00305.TXT}

• AI95-00347-01 Title of Annex H ˆ{http://www.ada-auth.org/cgi-bin/cvsweb.cgi/

AIs/AI-00347.TXT}

20 Chapter 23.1.1 on page 219

223

http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AIs/AI-00388.TXT
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AIs/AI-00388.TXT
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AIs/AI-00296.TXT
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AIs/AI-00296.TXT
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AIs/AI-00297.TXT
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AIs/AI-00297.TXT
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AIs/AI-00307.TXT
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AIs/AI-00307.TXT
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AIs/AI-00354.TXT
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AIs/AI-00354.TXT
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AIs/AI-00266.TXT
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AIs/AI-00266.TXT
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AIs/AI-00386.TXT
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AIs/AI-00386.TXT
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AIs/AI-00249.TXT
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AIs/AI-00249.TXT
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AIs/AI-00305.TXT
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AIs/AI-00347.TXT
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AIs/AI-00347.TXT

New in Ada 2005

• AI95-00265-01 Partition Elaboration Policy for High-Integrity Systems ˆ{http://www.

ada-auth.org/cgi-bin/cvsweb.cgi/AIs/AI-00265.TXT}

23.3.2 New scheduling policies

See also:

• AI95-00355-01 Priority Specific Dispatching including Round Robin ˆ{http://www.

ada-auth.org/cgi-bin/cvsweb.cgi/AIs/AI-00355.TXT}

• AI95-00357-01 Support for Deadlines and Earliest Deadline First Scheduling ˆ{http:

//www.ada-auth.org/cgi-bin/cvsweb.cgi/AIs/AI-00357.TXT}

• AI95-00298-01 Non-Preemptive Dispatching ˆ{http://www.ada-auth.org/cgi-bin/

cvsweb.cgi/AIs/AI-00298.TXT}

23.3.3 Dynamic priorities for protected objects

See also: AI95-00327-01 Dynamic ceiling priorities ˆ{http://www.ada-auth.org/cgi-bin/

cvsweb.cgi/AIs/AI-00327.TXT}

23.4 Summary of what's new

Summary of what's new

23.4.1 New keywords

Added 3 keywords (72 total)

• interface
• overriding
• synchronized

23.4.2 New pragmas

Added 11 pragmas:

• pragma

• pragma

• pragma

• pragma

• pragma

• pragma

• pragma

• pragma

• pragma

• pragma

• pragma

224

http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AIs/AI-00265.TXT
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AIs/AI-00265.TXT
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AIs/AI-00355.TXT
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AIs/AI-00355.TXT
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AIs/AI-00357.TXT
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AIs/AI-00357.TXT
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AIs/AI-00298.TXT
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AIs/AI-00298.TXT
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AIs/AI-00327.TXT
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AIs/AI-00327.TXT

23.4.3 New attributes

Added 7 attributes:

• Machine_Rounding
• Mod
• Priority
• Stream_Size
• Wide_Wide_Image
• Wide_Wide_Value
• Wide_Wide_Width

23.4.4 New packages

• Assertions:
• Ada.Assertions

• Container library:
• Ada.Containers
• Ada.Containers.Vectors
• Ada.Containers.Doubly_Linked_Lists
• Ada.Containers.Generic_Array_Sort (generic procedure)
• Ada.Containers.Generic_Constrained_Array_Sort (generic procedure)
• Ada.Containers.Hashed_Maps
• Ada.Containers.Ordered_Maps
• Ada.Containers.Hashed_Sets
• Ada.Containers.Ordered_Sets
• Ada.Containers.Indefinite_Vectors
• Ada.Containers.Indefinite_Doubly_Linked_Lists
• Ada.Containers.Indefinite_Hashed_Maps
• Ada.Containers.Indefinite_Ordered_Maps
• Ada.Containers.Indefinite_Hashed_Sets
• Ada.Containers.Indefinite_Ordered_Sets

• Vector and matrix manipulation:
• Ada.Numerics.Real_Arrays
• Ada.Numerics.Complex_Arrays
• Ada.Numerics.Generic_Real_Arrays
• Ada.Numerics.Generic_Complex_Arrays

• General OS facilities:
• Ada.Directories
• Ada.Directories.Information
• Ada.Environment_Variables

• String hashing:
• Ada.Strings.Hash (generic function)
• Ada.Strings.Fixed.Hash (generic function)
• Ada.Strings.Bounded.Hash (generic function)

225

New in Ada 2005

• Ada.Strings.Unbounded.Hash (generic function)
• Ada.Strings.Wide_Hash (generic function)
• Ada.Strings.Wide_Fixed.Wide_Hash (generic function)
• Ada.Strings.Wide_Bounded.Wide_Hash (generic function)
• Ada.Strings.Wide_Unbounded.Wide_Hash (generic function)
• Ada.Strings.Wide_Wide_Hash (generic function)
• Ada.Strings.Wide_Wide_Fixed.Wide_Wide_Hash (generic function)
• Ada.Strings.Wide_Wide_Bounded.Wide_Wide_Hash (generic function)
• Ada.Strings.Wide_Wide_Unbounded.Wide_Wide_Hash (generic function)

• Time operations:
• Ada.Calendar.Time_Zones
• Ada.Calendar.Arithmetic
• Ada.Calendar.Formatting

• Tagged types:
• Ada.Tags.Generic_Dispatching_Constructor (generic function)

• Text packages:
• Ada.Complex_Text_IO
• Ada.Text_IO.Bounded_IO
• Ada.Text_IO.Unbounded_IO
• Ada.Wide_Text_IO.Bounded_IO
• Ada.Wide_Text_IO.Unbounded_IO
• Ada.Wide_Characters
• Ada.Wide_Wide_Characters

• Wide_Wide_Character packages:
• Ada.Strings.Wide_Wide_Bounded
• Ada.Strings.Wide_Wide_Fixed
• Ada.Strings.Wide_Wide_Maps
• Ada.Strings.Wide_Wide_Maps.Wide_Wide_Constants
• Ada.Strings.Wide_Wide_Unbounded
• Ada.Wide_Wide_Text_IO
• Ada.Wide_Wide_Text_IO.Complex_IO
• Ada.Wide_Wide_Text_IO.Editing
• Ada.Wide_Wide_Text_IO.Text_Streams
• Ada.Wide_Wide_Text_IO.Unbounded_IO

• Execution-time clocks:
• Ada.Execution_Time
• Ada.Execution_Time.Timers
• Ada.Execution_Time.Group_Budgets

• Dispatching:
• Ada.Dispatching
• Ada.Dispatching.EDF
• Ada.Dispatching.Round_Robin

• Timing events:
• Ada.Real_Time.Timing_Events

226

• Task termination procedures:
• Ada.Task_Termination

23.5 See also

See also

23.5.1 Wikibook

• Ada Programming/Ada 8321

• Ada Programming/Ada 9522

• Ada Programming/Ada 201223

• Ada Programming/Object Orientation24

• Ada Programming/Types/access25

• Ada Programming/Keywords26

• Ada Programming/Keywords/and27

• Ada Programming/Keywords/interface28

• Ada Programming/Attributes29

• Ada Programming/Pragmas30

• Ada Programming/Pragmas/Restrictions31

• Ada Programming/Libraries/Ada.Containers32

• Ada Programming/Libraries/Ada.Directories33

23.5.2 Pages in the category Ada 2005

• Category:Ada Programming/Ada 2005 feature34

23.6 External links

21 http://en.wikibooks.org/wiki/Ada%20Programming%2FAda%2083

22 http://en.wikibooks.org/wiki/Ada%20Programming%2FAda%2095

23 http://en.wikibooks.org/wiki/Ada%20Programming%2FAda%202012

24 Chapter 22 on page 187
25 Chapter 13 on page 99
26 Chapter 35 on page 293
27 http://en.wikibooks.org/wiki/Ada%20Programming%2FKeywords%2Fand

28 http://en.wikibooks.org/wiki/Ada%20Programming%2FKeywords%2Finterface

29 Chapter 38 on page 305
30 Chapter 39 on page 317
31 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FRestrictions

32 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Containers

33 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Directories

34 http://en.wikibooks.org/wiki/%3ACategory%3AAda%20Programming%2FAda%202005%20feature

227

http://en.wikibooks.org/wiki/Ada%20Programming%2FAda%2083
http://en.wikibooks.org/wiki/Ada%20Programming%2FAda%2095
http://en.wikibooks.org/wiki/Ada%20Programming%2FAda%202012
http://en.wikibooks.org/wiki/Ada%20Programming%2FKeywords%2Fand
http://en.wikibooks.org/wiki/Ada%20Programming%2FKeywords%2Finterface
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FRestrictions
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Containers
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Directories
http://en.wikibooks.org/wiki/%3ACategory%3AAda%20Programming%2FAda%202005%20feature

New in Ada 2005

External links

23.6.1 Papers and presentations

• Ada 2005: Putting it all together35 (SIGAda 2004 presentation)
• GNAT and Ada 200536 (SIGAda 2004 paper)
• An invitation to Ada 200537, and the presentation of this paper38 at Ada-Europe 2004

23.6.2 Rationale

• Rationale for Ada 200539 by John Barnes40:
1. Introduction
2. Object Oriented Model
3. Access Types
4. Structure and Visibility
5. Tasking and Real-Time
6. Exceptions, Generics, Etc.
7. Predefined Library
8. Containers
9. Epilogue

References

Index

Available as a single document for printing41.

23.6.3 Language Requirements

• Instructions to the Ada Rapporteur Group from SC22/WG9 for Preparation of the
Amendment to ISO/IEC 865242 (10 October 2002), and a presentation of this document43

at SIGAda 2002

23.6.4 Ada Reference Manual

• Ada Reference Manual, ISO/IEC 8652:1995(E) with COR.1:2001 and AMD.1:200744

35
http://www.sigada.org/conf/sigada2004/SIGAda2004-CDROM/SIGAda2004-Proceedings/

Ada2005Panel.pdf
36 http://www.adacore.com/wp-content/files/attachments/Ada_2005_and_GNAT.pdf

37 http://sigada.org/ada_letters/sept2003/Invitation_to_Ada_2005.pdf

38 http://www.cs.kuleuven.ac.be/~dirk/ada-belgium/events/04/040616-aec-ada2005.pdf

39 http://www.adaic.com/standards/05rat/html/Rat-TTL.html

40 http://en.wikipedia.org/wiki/John%20Barnes%20%28computer%20scientist%29

41 http://www.adaic.com/standards/05rat/Rationale05.pdf

42 http://www.open-std.org/jtc1/sc22/WG9/n412.pdf

43 http://std.dkuug.dk/JTC1/sc22/wg9/n423.pdf

44 http://www.adaic.com/standards/05rm/html/RM-TTL.html

228

http://www.sigada.org/conf/sigada2004/SIGAda2004-CDROM/SIGAda2004-Proceedings/Ada2005Panel.pdf
http://www.sigada.org/conf/sigada2004/SIGAda2004-CDROM/SIGAda2004-Proceedings/Ada2005Panel.pdf
http://www.adacore.com/wp-content/files/attachments/Ada_2005_and_GNAT.pdf
http://sigada.org/ada_letters/sept2003/Invitation_to_Ada_2005.pdf
http://www.cs.kuleuven.ac.be/~dirk/ada-belgium/events/04/040616-aec-ada2005.pdf
http://www.adaic.com/standards/05rat/html/Rat-TTL.html
http://en.wikipedia.org/wiki/John%20Barnes%20%28computer%20scientist%29
http://www.adaic.com/standards/05rat/Rationale05.pdf
http://www.open-std.org/jtc1/sc22/WG9/n412.pdf
http://std.dkuug.dk/JTC1/sc22/wg9/n423.pdf
http://www.adaic.com/standards/05rm/html/RM-TTL.html

• Annotated Ada Reference Manual, ISO/IEC 8652:1995(E) with COR.1:2001 and
AMD.1:200745 (colored diffs)

• List of Ada Amendment drafts46

23.6.5 Ada Issues

• Amendment 200Y47

• AI95-00387-01 Introduction to Amendment ˆ{http://www.ada-auth.org/cgi-bin/

cvsweb.cgi/AIs/AI-00387.TXT}

• AI95-00284-01 New reserved words ˆ{http://www.ada-auth.org/cgi-bin/cvsweb.

cgi/AIs/AI-00284.TXT}

• AI95-00252-01 Object.Operation notation ˆ{http://www.ada-auth.org/cgi-bin/

cvsweb.cgi/AIs/AI-00252.TXT}

• AI95-00218-01 Accidental overloading when overriding ˆ{http://www.ada-auth.org/

cgi-bin/cvsweb.cgi/AIs/AI-00218.TXT}

• AI95-00348-01 Null procedures ˆ{http://www.ada-auth.org/cgi-bin/cvsweb.cgi/

AIs/AI-00348.TXT}

• AI95-00287-01 Limited aggregates allowed ˆ{http://www.ada-auth.org/cgi-bin/

cvsweb.cgi/AIs/AI-00287.TXT}

• AI95-00326-01 Incomplete types ˆ{http://www.ada-auth.org/cgi-bin/cvsweb.

cgi/AIs/AI-00326.TXT}

• AI95-00317-01 Partial parameter lists for formal packages ˆ{http://www.ada-auth.

org/cgi-bin/cvsweb.cgi/AIs/AI-00317.TXT}

• AI95-00376-01 Interfaces.C works for C++ as well ˆ{http://www.ada-auth.org/

cgi-bin/cvsweb.cgi/AIs/AI-00376.TXT}

• AI95-00368-01 Restrictions for obsolescent features ˆ{http://www.ada-auth.org/

cgi-bin/cvsweb.cgi/AIs/AI-00368.TXT}

• AI95-00381-01 New Restrictions identifier No_Dependence ˆ{http://www.ada-auth.

org/cgi-bin/cvsweb.cgi/AIs/AI-00381.TXT}

• AI95-00224-01 pragma Unsuppress ˆ{http://www.ada-auth.org/cgi-bin/cvsweb.

cgi/AIs/AI-00224.TXT}

• AI95-00161-01 Default-initialized objects ˆ{http://www.ada-auth.org/cgi-bin/

cvsweb.cgi/AIs/AI-00161.TXT}

• AI95-00361-01 Raise with message ˆ{http://www.ada-auth.org/cgi-bin/cvsweb.

cgi/AIs/AI-00361.TXT}

• AI95-00286-01 Assert pragma ˆ{http://www.ada-auth.org/cgi-bin/cvsweb.cgi/

AIs/AI-00286.TXT}

• AI95-00328-01 Preinstantiations of Complex_IO ˆ{http://www.ada-auth.org/

cgi-bin/cvsweb.cgi/AIs/AI-00328.TXT}

• AI95-00301-01 Operations on language-defined string types ˆ{http://www.ada-auth.

org/cgi-bin/cvsweb.cgi/AIs/AI-00301.TXT}

• AI95-00340-01 Mod attribute ˆ{http://www.ada-auth.org/cgi-bin/cvsweb.cgi/

AIs/AI-00340.TXT}

45 http://www.adaic.com/standards/05aarm/html/AA-TTL.html

46 http://www.ada-auth.org/amendment.html

47 http://www.ada-auth.org/AI-XREF.HTML#Amend_Doc

229

http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AIs/AI-00387.TXT
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AIs/AI-00387.TXT
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AIs/AI-00284.TXT
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AIs/AI-00284.TXT
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AIs/AI-00252.TXT
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AIs/AI-00252.TXT
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AIs/AI-00218.TXT
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AIs/AI-00218.TXT
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AIs/AI-00348.TXT
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AIs/AI-00348.TXT
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AIs/AI-00287.TXT
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AIs/AI-00287.TXT
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AIs/AI-00326.TXT
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AIs/AI-00326.TXT
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AIs/AI-00317.TXT
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AIs/AI-00317.TXT
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AIs/AI-00376.TXT
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AIs/AI-00376.TXT
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AIs/AI-00368.TXT
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AIs/AI-00368.TXT
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AIs/AI-00381.TXT
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AIs/AI-00381.TXT
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AIs/AI-00224.TXT
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AIs/AI-00224.TXT
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AIs/AI-00161.TXT
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AIs/AI-00161.TXT
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AIs/AI-00361.TXT
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AIs/AI-00361.TXT
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AIs/AI-00286.TXT
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AIs/AI-00286.TXT
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AIs/AI-00328.TXT
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AIs/AI-00328.TXT
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AIs/AI-00301.TXT
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AIs/AI-00301.TXT
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AIs/AI-00340.TXT
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AIs/AI-00340.TXT
http://www.adaic.com/standards/05aarm/html/AA-TTL.html
http://www.ada-auth.org/amendment.html
http://www.ada-auth.org/AI-XREF.HTML#Amend_Doc

New in Ada 2005

• AI95-00364-01 Fixed-point multiply/divide ˆ{http://www.ada-auth.org/cgi-bin/

cvsweb.cgi/AIs/AI-00364.TXT}

• AI95-00267-01 Fast float-to-integer conversions ˆ{http://www.ada-auth.org/

cgi-bin/cvsweb.cgi/AIs/AI-00267.TXT}

• AI95-00321-01 Definition of dispatching policies ˆ{http://www.ada-auth.org/

cgi-bin/cvsweb.cgi/AIs/AI-00321.TXT}

• AI95-00329-01 pragma No_Return -- procedures that never return ˆ{http://www.

ada-auth.org/cgi-bin/cvsweb.cgi/AIs/AI-00329.TXT}

• AI95-00362-01 Some predefined packages should be recategorized ˆ{http://www.

ada-auth.org/cgi-bin/cvsweb.cgi/AIs/AI-00362.TXT}

• AI95-00351-01 Time operations ˆ{http://www.ada-auth.org/cgi-bin/cvsweb.

cgi/AIs/AI-00351.TXT}

• AI95-00427-01 Default parameters and Calendar operations ˆ{http://www.ada-auth.

org/cgi-bin/cvsweb.cgi/AIs/AI-00427.TXT}

• AI95-00270-01 Stream item size control ˆ{http://www.ada-auth.org/cgi-bin/

cvsweb.cgi/AIs/AI-00270.TXT}

230

http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AIs/AI-00364.TXT
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AIs/AI-00364.TXT
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AIs/AI-00267.TXT
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AIs/AI-00267.TXT
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AIs/AI-00321.TXT
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AIs/AI-00321.TXT
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AIs/AI-00329.TXT
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AIs/AI-00329.TXT
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AIs/AI-00362.TXT
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AIs/AI-00362.TXT
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AIs/AI-00351.TXT
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AIs/AI-00351.TXT
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AIs/AI-00427.TXT
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AIs/AI-00427.TXT
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AIs/AI-00270.TXT
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AIs/AI-00270.TXT

24 Containers

What follows is a simple demo of some of the container types. It does not cover everything,
but should get you started.

This language feature is only available in Ada 2005

First Example: Maps

The program below prints greetings to the world in a number of human languages. The
greetings are stored in a table, or hashed map. The map associates every greeting (a value)
with a language code (a key). That is, you can use language codes as keys to find greeting
values in the table.

The elements in the map are constant strings of international characters, or really, pointers
to such constant strings. A package Regional is used to set up both the language IDs and
an instance of Ada .

File: regional.ads

with Ada.Containers.Hashed_Maps; use Ada.Containers;

package Regional is

type Language_ID is (DE, EL, EN, ES, FR, NL);

--a selection from the two-letter codes for human languages

type Hello_Text is access constant Wide_String;

--objects will contain a «hello»-string in some language

function ID_Hashed (id: Language_ID) return Hash_Type;

--you need to provide this to every hashed container

package Phrases is new Ada.Containers.Hashed_Maps

(Key_Type => Language_ID,

Element_Type => Hello_Text,

Hash => ID_Hashed,

Equivalent_Keys => "=");

end Regional;

Here is the program, details will be explained later.

231

Containers

File: hello_world_extended.ads

with Regional; use Regional;

with Ada.Wide_Text_IO; use Ada;

procedure Hello_World_Extended is

--print greetings in different spoken languages

greetings: Phrases.Map;

--the dictionary of greetings

begin -- Hello_World_Extended

Phrases.Insert(greetings,

Key => EN,

New_Item => new Wide_String'("Hello, World!"));

--or, shorter,

greetings.Insert(DE, new Wide_String'("Hallo, Welt!"));

greetings.Insert(NL, new Wide_String'("Hallo, Wereld!"));

greetings.Insert(ES, new Wide_String'("¡Hola mundo!"));

greetings.Insert(FR, new Wide_String'("Bonjour, Monde!"));

greetings.Insert(EL, new Wide_String'("Γειάσου κόσμος"));

--Καλημέρα κόσμε?

declare

use Phrases;

speaker: Cursor := First(greetings);

begin

while Has_Element(speaker) loop

Wide_Text_IO.Put_Line(Element(speaker).all);

Next(speaker);

end loop;

end;

end Hello_World_Extended;

The first of the Insert statements is written in an Ada 95 style:

Phrases.Insert(greetings,

Key => EN,

New_Item => new Wide_String'("Hello, World!"));

The next insertions use so called distinguished receiver notation which you can use in
Ada 2005. (It's O-O parlance. While the Insert call involves all of: a Container object
(greetings), a Key object (EN), and a New_Item object (new Wide_String'("Hello,
World!")), the Container object is distinguished from the others in that the Insert
call provides it (and only it) with the other objects. In this case the Container object
will be modified by the call, using arguments named Key and New_Item for the modification.)

232

greetings.Insert(ES, new Wide_String'("¡Hola mundo!"));

After the table is set up, the program goes on to print all the greetings contained in the
table. It does so employing a cursor that runs along the elements in the table in some order.
The typical scheme is to obtain a cursor, here using First, and then to iterate the following
calls:

1. Has_Element, for checking whether the cursor is at an element
2. Element, to get the element and
3. Next, to move the cursor to another element

When there is no more element left, the cursor will have the special value No_Element.
Actually, this is an iteration scheme that can be used with all containers in child packages
of Ada .

A slight variation: picking an element

The next program shows how to pick a value from the map, given a key. Actually, you will
provide the key. The program is like the previous one, except that it doesn't just print all
the elements in the map, but picks one based on a Language_ID value that it reads from
standard input.

File: hello_world_pick.adb

with Regional; use Regional;

with Ada.Wide_Text_IO; use Ada;

procedure Hello_World_Pick is

... as before ...

declare

use Phrases;

package Lang_IO is new Wide_Text_IO.Enumeration_IO(Language_ID);

lang: Language_ID;

begin

Lang_IO.Get(lang);

Wide_Text_IO.Put_Line(greetings.Element(lang).all);

end;

end Hello_World_Pick;

This time the Element function consumes a Key (lang) not a Cursor. Actually, it consumes
two values, the other value being greetings, in distinguished receiver notation.

233

Containers

Second Example: Vectors and Maps

Let's take bean counting literally. Red beans, green beans, and white beans. (Yes, white
beans really do exist.) Your job will be to collect a number of beans, weigh them, and
then determine the average weight of red, green, and white beans, respectively. Here is one
approach.

Again, we need a package, this time for storing vegetable related information. Introducing
the Beans package (the Grams type doesn't belong in a vegetable package, but it's there to
keep things simple):

File: 1/beans.ads

with Ada ;

package Beans is

type Bean_Color is (R, G, W) ;

--red, green, and white beans

type Grams is delta 0. 01 digits 7;

--enough to weigh things as light as beans but also as heavy as

--many of them

type Bean is

--info about a single bean

record

kind: Bean_Color;

weight: Grams;

end record;

subtype Bean_Count is Positive range 1 .. 1_000;

--numbers of beans to count (how many has Cinderella have to count?)

package Bean_Vecs is new Ada. Containers. Vectors

(Element_Type => Bean,

Index_Type => Bean_Count) ;

end Beans;

The Vectors instance offers a data structure similar to an array that can change its size at run
time. It is called Vector. Each bean that is read will be appended to a Bean_Vecs.Vector

object.

The following program first calls read_input to fill a buffer with beans. Next, it calls a
function that computes the average weight of beans having the same color. This function:

with Beans; use Beans;

function average_weight

(buffer: Bean_Vecs. Vector; desired_color: Bean_Color) return Grams;

--scan ‘buffer‘ for all beans that have ‘desired_color‘. Compute the

--mean of their ‘.weight‘ components

234

Then the average value is printed for beans of each color and the program stops.

File: 1/bean_counting.adb

with Beans;

with average_weight;

with Ada ;

procedure bean_counting is

use Beans, Ada;

buffer: Bean_Vecs. Vector;

procedure read_input(buf: in out Bean_Vecs. Vector) is separate;

--collect information from a series of bean measurements into ‘buf‘

begin --bean_counting

read_input(buffer) ;

--now everything is set up for computing some statistical data.

--For every bean color in ‘Bean_Color‘, the function ‘average_weight‘

--will scan ‘buffer‘ once, and accumulate statistical data from

--each element encountered.

for kind in Bean_Color loop

Wide_Text_IO. Put_Line

(Bean_Color' Wide_Image(kind) &

" ø =" & Grams' Wide_Image(average_weight(buffer, kind))) ;

end loop;

end bean_counting;

All container operations take place in function average_weight. To find the mean weight
of beans of the same color, the function is looking at all beans in order. If a bean has the
right color, average_weight adds its weight to the total weight, and increases the number
of beans counted by 1.

The computation visits all beans. The iteration that is necessary for going from one bean to
the next and then performing the above steps is best left to the Iterate procedure which is
part of all container packages. To do so, wrap the above steps inside some procedure and
pass this procedure to Iterate. The effect is that Iterate calls your procedure for each
element in the vector, passing a cursor value to your procedure, one for each element.

Having the container machinery do the iteration can also be faster than moving and
checking the cursor yourself, as was done in the Hello_World_Extended example.

File: average_weight.adb

with Beans; use Beans. Bean_Vecs;

function average_weight

235

Containers

(buffer: Bean_Vecs. Vector; desired_color: Bean_Color) return Grams

is

total: Grams := 0. 0;

--weight of all beans in ‘buffer‘ having ‘desired_color‘

number: Natural := 0;

--number of beans in ‘buffer‘ having ‘desired_color‘

procedure accumulate(c: Cursor) is

--if the element at ‘c‘ has the ‘desired_color‘, measure it

begin

if Element(c) . kind = desired_color then

number := number + 1;

total := total + Element(c) . weight;

end if;

end accumulate;

begin --average_weight

Iterate(buffer, accumulate' Access) ;

if number > 0 then

return total / number;

else

return 0. 0;

end if;

end average_weight;

This approach is straightforward. However, imagine larger vectors. average_weight will
visit all elements repeatedly for each color. If there are M colors and N beans, average_-

weight will be called M * N times, and with each new color, N more calls are necessary. A
possible alternative is to collect all information about a bean once it is visited. However,
this will likely need more variables, and you will have to find a way to return more than one
result (one average for each color), etc. Try it!

A different approach might be better. One is to copy beans of different colors to separate vec-
tor objects. (Remembering Cinderella.) Then average_weight must visit each element only
one time. The following procedure does this, using a new type from Beans, called Bean_Pots.

...

type Bean_Pots is array(Bean_Color) of Bean_Vecs. Vector;

...

Note how this plain array associates colors with Vectors. The procedure for getting the
beans into the right bowls uses the bean color as array index for finding the right bowl (vector).

File: 2/gather_into_pots.adb

procedure gather_into_pots(buffer: Bean_Vecs. Vector; pots: in out Bean_Pots) is

use Bean_Vecs;

procedure put_into_right_pot(c: Cursor) is

--select the proper bowl for the bean at ‘c‘ and «append»

236

--the bean to the selected bowl

begin

Append(pots(Element(c) . kind) , Element(c)) ;

end put_into_right_pot;

begin --gather_into_pots

Iterate(buffer, put_into_right_pot' Access) ;

end gather_into_pots;

Everything is in place now.

File: 2/bean_counting.adb

with Beans;

with average_weight;

with gather_into_pots;

with Ada. Wide_Text_IO;

procedure bean_counting is

use Beans, Ada;

buffer: Bean_Vecs. Vector;

bowls: Bean_Pots;

procedure read_input(buf: in out Bean_Vecs. Vector) is separate;

--collect information from a series of bean measurements into ‘buf‘

begin --bean_counting

read_input(buffer) ;

--now everything is set up for computing some statistical data.

--Gather the beans into the right pot by color.

--Then find the average weight of beans in each pot.

gather_into_pots(buffer, bowls) ;

for color in Bean_Color loop

Wide_Text_IO. Put_Line

(Bean_Color' Wide_Image(color)

& " ø ="

& Grams' Wide_Image(average_weight(bowls(color) , color))) ;

end loop;

end bean_counting;

As a side effect of having chosen one vector per color, we can determine the number of beans
in each vector by calling the Length function. But average_weight, too, computes the
number of elements in the vector. Hence, a summing function might replace average_weight

here.

All In Just One Map!

The following program first calls read_input to fill a buffer with beans. Then, information
about these beans is stored in a table, mapping bean properties to numbers of occurrence.

237

Containers

The processing that starts at Iterate uses chained procedure calls typical of the Ada
iteration mechanism.

The Beans package in this example instantiates another generic library unit, Ada . Where
the Ada require a hashing function, Ada require a comparison function. We provide one,
"<", which sorts beans first by color, then by weight. It will automatically be associated
with the corresponding generic formal function, as its name, "<", matches that of the
generic formal function, "<".

...

function "<"(a, b: Bean) return Boolean;

--order beans, first by color, then by weight

package Bean_Statistics

--instances will map beans of a particular color and weight to the

--number of times they have been inserted.

is new Ada. Containers. Ordered_Maps

(Element_Type => Natural,

Key_Type => Bean) ;

...

Where the previous examples have withed subprograms, this variation on bean_counting

packs them all as local subprograms.

File: 3/bean_counting.adb

with Beans;

with Ada. Wide_Text_IO;

procedure bean_counting is

use Beans, Ada;

buffer: Bean_Vecs. Vector;

stats_cw: Bean_Statistics. Map;

--maps beans to numbers of occurrences, grouped by color, ordered by

--weight

procedure read_input(buf: in out Bean_Vecs. Vector) is separate;

--collect information from a series of bean measurements into ‘buf‘

procedure add_bean_info(specimen: in Bean) ;

--insert bean ‘specimen‘ as a key into the ‘stats_cw‘ table unless

--present. In any case, increase the count associated with this key

--by 1. That is, count the number of equal beans.

procedure add_bean_info(specimen: in Bean) is

procedure one_more(b: in Bean; n: in out Natural) is

--increase the count associated with this kind of bean

begin

n := n + 1;

end one_more;

c : Bean_Statistics. Cursor;

inserted: Boolean;

begin

stats_cw. Insert(specimen, 0, c, inserted) ;

Bean_Statistics. Update_Element(c, one_more' Access) ;

238

end add_bean_info;

begin --bean_counting

read_input(buffer) ;

--next, for all beans in the vector ‘buffer‘ just filled, store

--information about each bean in the ‘stats_cw‘ table.

declare

use Bean_Vecs;

procedure count_bean(c: Cursor) is

begin

add_bean_info(Element(c)) ;

end count_bean;

begin

Iterate(buffer, count_bean' Access) ;

end;

--now everything is set up for computing some statistical data. The

--keys of the map, i.e. beans, are ordered by color and then weight.

--The ‘First‘, and ‘Ceiling‘ functions will find cursors

--denoting the ends of a group.

declare

use Bean_Statistics;

--statistics is computed groupwise:

q_sum: Grams;

q_count: Natural;

procedure q_stats(lo, hi: Cursor) ;

--‘q_stats‘ will update the ‘q_sum‘ and ‘q_count‘ globals with

--the sum of the key weights and their number, respectively. ‘lo‘

--(included) and ‘hi‘ (excluded) mark the interval of keys

--to use from the map.

procedure q_stats(lo, hi: Cursor) is

k: Cursor := lo;

begin

q_count := 0; q_sum := 0. 0;

loop

exit when k = hi;

q_count := q_count + Element(k) ;

q_sum := q_sum + Key(k) . weight * Element(k) ;

Next(k) ;

end loop;

end q_stats;

--precondition

pragma assert(not Is_Empty(stats_cw) , "container is empty") ;

lower, upper: Cursor := First(stats_cw) ;

--denoting the first key of a group, and the first key of a

--following group, respectively

begin

--start reporting and trigger the computations

Wide_Text_IO. Put_Line("Summary:") ;

239

Containers

for color in Bean_Color loop

lower := upper;

if color = Bean_Color' Last then

upper := No_Element;

else

upper := Ceiling(stats_cw, Bean' (Bean_Color' Succ(color) ,

0. 0)) ;

end if;

q_stats(lower, upper) ;

if q_count > 0 then

Wide_Text_IO. Put_Line

(Bean_Color' Wide_Image(color) & " group:" &

" ø =" & Grams' Wide_Image(q_sum / q_count) &

", # =" & Natural' Wide_Image(q_count) &

", Σ =" & Grams' Wide_Image(q_sum)) ;

end if;

end loop;

end;

end bean_counting;

Like in the greetings example, you can pick values from the table. This time the values tell
the number of occurrences of beans with certain properties. The stats_cw table is ordered
by key, that is by bean properties. Given particular properties, you can use the Floor

and Ceiling functions to approximate the bean in the table that most closely matches the
desired properties.

It is now easy to print a histogram showing the frequency with which each kind of bean has
occurred. If N is the number of beans of a kind, then print N characters on a line, or draw
a graphical bar of length N, etc. A histogram showing the number of beans per color can
be drawn after computing the sum of beans of this color, using groups like in the previous
example. You can delete beans of a color from the table using the same technique.

Finally, think of marshalling the beans in order starting at the least frequently occurring
kind. That is, construct a vector appending first beans that have occurred just once, followed
by beans that have occurred twice, if any, and so on. Starting from the table is possible, but
be sure to have a look at the sorting functions of Ada .

24.1 See also

See also

24.1.1 Wikibook

• Ada Programming1

• Ada Programming/Libraries/Ada.Containers2

1 http://en.wikibooks.org/wiki/Ada%20Programming

2 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Containers

240

http://en.wikibooks.org/wiki/Ada%20Programming
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Containers

24.1.2 Ada 2005 Reference Manual

• A.18.1 The Package Containers ˆ{http://www.adaic.org/resources/add_content/

standards/05rm/html/RM-A-18-1.html}

241

http://www.adaic.org/resources/add_content/standards/05rm/html/RM-A-18-1.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-A-18-1.html

25 Interfacing

25.1 Interfacing

Interfacing

Ada is one of the few languages where interfacing is part of the language standard. The
programmer can interface with other programming languages, or with the hardware.

25.2 Other programming languages

Other programming languages

The language standard defines the interfaces for C1, Cobol2 and Fortran3. Of course any
implementation might define further interfaces — GNAT4 for example defines an interface
to C++5.

Interfacing with other languages is actually provided by pragma Export6, Import7 and
Convention8.

25.3 Hardware devices

Hardware devices

Embedded programmers usually have to write device drivers. Ada provides extensive
support for interfacing with hardware, like using representation clauses9 to specify the exact
representation of types used by the hardware, or standard interrupt handling for writing
Interrupt service routine10s.

1 http://en.wikibooks.org/wiki/C%20Programming

2 http://en.wikibooks.org/wiki/COBOL

3 http://en.wikibooks.org/wiki/Programming%3AFortran

4 http://en.wikibooks.org/wiki/Ada%20Programming%2FGNAT

5 http://en.wikibooks.org/wiki/C%2B%2B%20Programming

6 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FExport

7 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FImport

8 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FConvention

9 http://en.wikibooks.org/wiki/Ada%20Programming%2FRepresentation%20clauses

10 http://en.wikipedia.org/wiki/Interrupt%20service%20routine

243

http://en.wikibooks.org/wiki/C%20Programming
http://en.wikibooks.org/wiki/COBOL
http://en.wikibooks.org/wiki/Programming%3AFortran
http://en.wikibooks.org/wiki/Ada%20Programming%2FGNAT
http://en.wikibooks.org/wiki/C%2B%2B%20Programming
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FExport
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FImport
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FConvention
http://en.wikibooks.org/wiki/Ada%20Programming%2FRepresentation%20clauses
http://en.wikipedia.org/wiki/Interrupt%20service%20routine

Interfacing

25.4 See also

See also

25.4.1 Wikibook

• Ada Programming11

• Ada Programming/Libraries/Interfaces12

25.4.2 Ada Reference Manual

• Annex B Interface to Other Languages ˆ{http://www.adaic.org/resources/add_

content/standards/05rm/html/RM-B.html}

• Annex C Systems Programming ˆ{http://www.adaic.org/resources/add_content/

standards/05rm/html/RM-C.html}

25.4.3 Ada 95 Rationale

• bInterface to Other Languages3

25.4.4 Ada Quality and Style Guide

• 7.6.4 Interfacing to Foreign Languages ˆ{http://www.adaic.org/resources/add_

content/docs/95style/html/sec_7/7-6-4.html}

11 http://en.wikibooks.org/wiki/Ada%20Programming

12 Chapter 43 on page 349

244

http://www.adaic.org/resources/add_content/standards/05rm/html/RM-B.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-B.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-C.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-C.html
http://www.adaic.org/resources/add_content/docs/95style/html/sec_7/7-6-4.html
http://www.adaic.org/resources/add_content/docs/95style/html/sec_7/7-6-4.html
http://en.wikibooks.org/wiki/Ada%20Programming

26 Coding Standards

26.1 Introduction

Introduction

Each project should follow a specific coding standard1 to ease readability and maintenance
of the source code, and reduce the insertion of errors. Depending on the requirements of the
project, a set of guidelines can help to achieve the desired level of performance, portability,
code complexity...

There are many ASIS2 tools that can be used to check automatically the adherence of Ada
source code to the guidelines.

26.2 Tools

Tools

• AdaControl3 (Rules4)
• gnatcheck5 (Rules6)
• GNAT Pretty-Printer7

• The GNAT Metric Tool gnatmetric8

• RainCode Engine9

• RainCode Checker10

• AdaSTAT11

26.3 Coding guidelines

1 http://en.wikipedia.org/wiki/coding%20standard

2 http://en.wikipedia.org/wiki/Ada%20Semantic%20Interface%20Specification

3 http://www.adalog.fr/adacontrol2.htm

4 http://www.adalog.fr/compo/adacontrol_ug.html#Rules-reference

5 http://gcc.gnu.org/onlinedocs/gnat_ugn_unw/Verifying-Properties-Using-gnatcheck.html

6 http://gcc.gnu.org/onlinedocs/gnat_ugn_unw/Predefined-Rules.html

7 http://gcc.gnu.org/onlinedocs/gnat_ugn_unw/The-GNAT-Pretty_002dPrinter-gnatpp.html

8 http://gcc.gnu.org/onlinedocs/gnat_ugn_unw/The-GNAT-Metric-Tool-gnatmetric.html

9 http://www.raincode.com/adaengine.html

10 http://www.raincode.com/adachecker.html

11 http://www.adastat.com/

245

http://en.wikipedia.org/wiki/coding%20standard
http://en.wikipedia.org/wiki/Ada%20Semantic%20Interface%20Specification
http://www.adalog.fr/adacontrol2.htm
http://www.adalog.fr/compo/adacontrol_ug.html#Rules-reference
http://gcc.gnu.org/onlinedocs/gnat_ugn_unw/Verifying-Properties-Using-gnatcheck.html
http://gcc.gnu.org/onlinedocs/gnat_ugn_unw/Predefined-Rules.html
http://gcc.gnu.org/onlinedocs/gnat_ugn_unw/The-GNAT-Pretty_002dPrinter-gnatpp.html
http://gcc.gnu.org/onlinedocs/gnat_ugn_unw/The-GNAT-Metric-Tool-gnatmetric.html
http://www.raincode.com/adaengine.html
http://www.raincode.com/adachecker.html
http://www.adastat.com/

Coding Standards

Coding guidelines

• Ada Quality & Style Guide12: Guidelines for Professional Programmers
• ISO/IEC TR 15942:2000, Guide for the use of the Ada programming language in high

integrity systems13, First edition (2000-03-01). ISO Freely Available Standards14

• Stephen Leake, NASA Flight Software Branch — Ada Coding Standard15 (2004-01-30)
• ESA16 BSSC

| title = Ada Coding Standard

. , ,

| edition = BSSC(98)3 Issue 1

| year = 1998

| month = October

| url = ftp://ftp.estec.esa.nl/pub/wm/wme/bssc/bssc983.pdf

| accessdate = 2009-01-19

. , ,

• GNAT Coding Style: A Guide for GNAT Developers

| work = GCC online documentation

17. . Retrieved

| publisher = Free Software Foundation

| url = http://gcc.gnu.org/onlinedocs/gnat-style/

| accessdate = 2009-01-19

18. . Retrieved (PDF19)

26.4 See also

See also

26.4.1 Other wikibooks

• Ada Style Guide20

12 http://en.wikibooks.org/wiki/Ada%20Style%20Guide

13 http://www.dit.upm.es/ork/documents/adahis.pdf

14 http://standards.iso.org/ittf/PubliclyAvailableStandards/

15 http://software.gsfc.nasa.gov/AssetsApproved/PA2.4.1.1.1.pdf

16 http://en.wikipedia.org/wiki/European%20Space%20Agency

17
18
19 http://gcc.gnu.org/onlinedocs/gnat-style.pdf

20 http://en.wikibooks.org/wiki/Ada%20Style%20Guide

246

http://en.wikibooks.org/wiki/Ada%20Style%20Guide
http://www.dit.upm.es/ork/documents/adahis.pdf
http://standards.iso.org/ittf/PubliclyAvailableStandards/
http://software.gsfc.nasa.gov/AssetsApproved/PA2.4.1.1.1.pdf
http://en.wikipedia.org/wiki/European%20Space%20Agency
http://gcc.gnu.org/onlinedocs/gnat-style.pdf
http://en.wikibooks.org/wiki/Ada%20Style%20Guide

26.4.2 Wikibook

• Ada Programming21

26.4.3 Ada Quality and Style Guide

• Chapter 1: Introduction ˆ{http://www.adaic.org/resources/add_content/docs/

95style/html/sec_1/}

26.5 External links

External links

• Introduction to Coding Standards22

21 http://en.wikibooks.org/wiki/Ada%20Programming

22
http://geekswithblogs.net/sdorman/archive/2007/06/13/Introduction-to-Coding-Standards.

aspx

247

http://www.adaic.org/resources/add_content/docs/95style/html/sec_1/
http://www.adaic.org/resources/add_content/docs/95style/html/sec_1/
http://en.wikibooks.org/wiki/Ada%20Programming
http://geekswithblogs.net/sdorman/archive/2007/06/13/Introduction-to-Coding-Standards.aspx
http://geekswithblogs.net/sdorman/archive/2007/06/13/Introduction-to-Coding-Standards.aspx

27 Tips

27.1 Full declaration of a type can be deferred to the unit's
body

Full declaration of a type can be deferred to the unit's body

Often, you'll want to make changes to the internals of a private type. This, in turn, will
require the algorithms that act on it to be modified. If the type is completed in the unit
specification, it is a pain to edit and recompile both files, even with an IDE1, but it's
something some programmers learn to live with.

It turns out you don't have to. Nonchalantly mentioned in the ARM2, and generally skipped
over in tutorials, is the fact that private types can be completed in the unit's body itself,
making them much closer to the relevant code, and saving a recompile of the specification,
as well as every unit depending on it. This may seem like a small thing, and, for small
projects, it is. However, if you have one of those uncooperative types that requires dozens of
tweaks, or if your dependence graph has much depth, the time and annoyance saved add up
quickly.

Also, this construction is very useful when coding a shared library, because it permits to
change the implementation of the type while still providing a compatible ABI3.

Code sample:

package Private_And_Body is

type Private_Type is limited private;

--Operations...

private

type Body_Type; --Defined in the body

type Private_Type is access Body_Type;

end Private_And_Body;

The type in the public part is an access4 to the hidden type. This has the drawback that
memory management has to be provided by the package implementation. That is the reason
why Private_Type is a limited type, the client will not be allowed to copy the access values,
in order to prevent dangling references.

1 http://en.wikipedia.org/wiki/Integrated%20development%20environment

2 http://www.adaic.org/standards/95lrm/html/RM-TTL.html

3 http://en.wikipedia.org/wiki/Application_binary_interface

4 Chapter 13 on page 99

249

http://en.wikipedia.org/wiki/Integrated%20development%20environment
http://www.adaic.org/standards/95lrm/html/RM-TTL.html
http://en.wikipedia.org/wiki/Application_binary_interface

Tips

These types are sometimes called "Taft types" —named after Tucker Taft, the main designer
of Ada 95— because were introduced in the so-called Taft Amendment to Ada 83. In other
programming languages, this technique is called "opaque pointer5s".

27.2 Lambda calculus through generics

Lambda calculus through generics

Suppose you've decided to roll your own set6 type. You can add things to it, remove things
from it, and you want to let a user apply some arbitrary function to all of its members. But
the scoping rules seem to conspire against you, forcing nearly everything to be global.

The mental stumbling block is that most examples given of generics7 are packages,
and the Set package is already generic. In this case, the solution is to make the
Apply_To_All procedure generic as well; that is, to nest the generics. Generic pro-
cedures inside packages exist in a strange scoping limbo, where anything in scope at
the instantiation can be used by the instantiation, and anything normally in scope at
the formal can be accessed by the formal. The end result is that the relevant scoping
roadblocks no longer apply. It isn't the full lambda calculus, just one of the most useful parts.

generic

type Element is private;

package Sets is

type Set is private;

[..]

generic

with procedure Apply_To_One (The_Element : in out Element);

procedure Apply_To_All (The_Set : in out Set);

end Sets;

For a view of Functional Programming in Ada see 8.

27.3 Compiler Messages

Compiler Messages

Different compilers can diagnose different things differently, or the same thing using different
messages, etc.. Having two compilers at hand can be useful.

selected component

When a source program contains a construct such as Foo.Bar, you may see messages
saying something like «selected component "Bar"» or maybe like «selected component
"Foo"». The phrases may seem confusing, because one refers to Foo, while the other refers

5 http://en.wikipedia.org/wiki/opaque%20pointer

6 http://en.wikipedia.org/wiki/Set%20%28computer%20science%29

7 Chapter 20 on page 161
8 Functional Programming in...Ada? ˆ{http://okasaki.blogspot.com/2008/07/

functional-programming-inada.html} , by Chris Okasaki

250

http://en.wikipedia.org/wiki/opaque%20pointer
http://en.wikipedia.org/wiki/Set%20%28computer%20science%29
http://okasaki.blogspot.com/2008/07/functional-programming-inada.html
http://okasaki.blogspot.com/2008/07/functional-programming-inada.html

to Bar. But they are both right. The reason is that selected_component is an item from
Ada's grammar (4.1.3 Selected Components ˆ{http://www.adaic.org/resources/add_

content/standards/05rm/html/RM-4-1-3.html}). It denotes all of: a prefix, a dot, and
a selector_name. In the Foo.Bar example these correspond to Foo, '.', and Bar. Look for
more grammar words in the compiler messages, e.g. «prefix», and associate them with
identifiers quoted in the messages.

For example, if you submit the following code to the compiler,

with Pak;

package Foo is

type T is new Pak. Bar; --Oops, Pak is generic!

end Foo;

the compiler may print a diagnostic message about a prefixed component: Foo's author
thought that Pak denotes a package, but actually it is the name of a generic package.
(Which needs to be instantiated first; and then the instance name is a suitable prefix.)

27.4 Universal integers

Universal integers

All integer literals and also some attributes like 'Length are of the anonymous type
universal_integer, which comprises the infinite set of mathematical integers. Named
numbers are of this type and are evaluated exactly (no overlow except for machine storage
limitations), e.g.

Very_Big: constant := 10**1_000_000 - 1;

Since universal_integer has no operators, its values are converted in this example to root_-
integer, another anonymous type, the calcuation is performed and the result again converted
back in universal_integer.

Generally values of universal_integer are implicitly converted to the appropriate type when
used in some expression. So the expression not A' Length is fine; the value of A' Length

is interpreted as a modular integer since not can only be applied to modular integers (of
course a context is needed to decide which modular integer type is meant). This feature can
lead to pitfalls. Consider

type Ran_6 is range 1 .. 6;

type Mod_6 is mod 6;

and then

if A' Length in Ran_6 then --OK

. . .

if not A' Length in Ran_6 then --not OK

251

http://www.adaic.org/resources/add_content/standards/05rm/html/RM-4-1-3.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-4-1-3.html

Tips

. . .
--this is the same as

if (not A' Length) in Ran_6 then --not OK

. . .

if A' Length in 1 .. 6 then --OK

. . .

if not A' Length in 1 .. 6 then --not OK

. . .

if A' Length in Mod_6 then --OK?

. . .

if not A' Length in Mod_6 then --OK?

. . .

The second conditional cannot be compiled because the expressions to the left of in is
incompatible to the type at the right. Note that not has precedence over in. It does not
negate the entire membership test but only A' Length.

The fourth conditional fails in various ways.

The sixth conditional might be fine because not turns A' Length into a modular value
which is OK if the value is covered by modular type Mod_6.

GNAT GPL 2009 gives these diagnoses respectively:

error: incompatible types

error: operand of not must be enclosed in parentheses

warning: not expression should be parenthesized here

A way to avoid these problems is to use not in for the membership test,

if A' Length not in Ran_6 then --OK

. . .

See

• 2.4 Numeric Literals ˆ{http://www.adaic.org/resources/add_content/standards/

05rm/html/RM-2-4.html} ,
• 3.6.2 Operations of Array Types ˆ{http://www.adaic.org/resources/add_content/

standards/05rm/html/RM-3-6-2.html}), and
• 4.5 Operators and Expression Evaluation ˆ{http://www.adaic.org/resources/add_

content/standards/05rm/html/RM-4-5.html} ,
• 4.5.2 Relational Operators and Membership Tests ˆ{http://www.adaic.org/

resources/add_content/standards/05rm/html/RM-4-5-2.html} ,
• Membership Tests9

27.5 I/O

9 Chapter 37.3 on page 303

252

http://www.adaic.org/resources/add_content/standards/05rm/html/RM-2-4.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-2-4.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-3-6-2.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-3-6-2.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-4-5.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-4-5.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-4-5-2.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-4-5-2.html

I/O

27.5.1 Text_IO Issues

A canonical method of reading a sequence of lines from a text file uses the standard procedure
Ada .Get_Line. When the end of input is reached, Get_Line will fail, and exception End_-
Error is raised. Some programs will use another function from Ada to prevent this and test
for End_of_Input. However, this isn't always the best choice, as has been explained for
example in a Get_Line news group discussion on comp.lang.ada10.

A working solution uses an exception handler instead:

declare

The_Line: String(1.. 100) ;

Last: Natural;

begin

loop

Text_IO. Get_Line(The_Line, Last) ;

--do something with The_Line ...

end loop;

exception

when Text_IO. End_Error =>

null;

end;

27.6 Quirks

Quirks

Using GNAT on Windows, calls to subprograms from Ada might need special attention.
(For example, the Real_Time.Clock function might seem to return values indicating that
no time has passed between two invocations when certainly some time has passed.) The
cause is reported to be a missing initialization of the run-time support when no other
real-time features are present in the program.11 As a provisional fix, it is suggested to insert

delay 0. 0;

before any use of Real_Time services.

27.6.1 Stack Size

With some implementations, notably GNAT, knowledge of stack size manipulation will be
to your advantage. Executables produced with GNAT tools and standard settings can hit
the stack size limit. If so, the operating system might allow setting higher limits. Using

10 http://groups.google.com/group/comp.lang.ada/browse_thread/thread/5afe598156615c8b#

11 Vincent Celier . Timing code blocks Timing code blocks ˆ{groups.google.es/group/comp.lang.ada/

browse_thread/thread/c8acfc87fbb1813d} . , Usenet article forwards this information from AdaCore.

253

http://groups.google.com/group/comp.lang.ada/browse_thread/thread/5afe598156615c8b#
 groups.google.es/group/comp.lang.ada/browse_thread/thread/c8acfc87fbb1813d
 groups.google.es/group/comp.lang.ada/browse_thread/thread/c8acfc87fbb1813d

Tips

GNU/Linux and the Bash command shell, try

$ ulimit -s [some number]

The current value is printed when only -s is given to ulimit.

27.7 References

References

27.8 See also

See also

27.8.1 Wikibook

• Ada Programming12

• Ada Programming/Errors13

27.8.2 Ada Reference Manual

• 3.10.1 Incomplete Type Declarations ˆ{http://www.adaic.org/resources/add_

content/standards/05rm/html/RM-3-10-1.html}

12 http://en.wikibooks.org/wiki/Ada%20Programming

13 Chapter 28 on page 255

254

http://www.adaic.org/resources/add_content/standards/05rm/html/RM-3-10-1.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-3-10-1.html
http://en.wikibooks.org/wiki/Ada%20Programming

28 Common Errors

Some language features are often misunderstood, resulting in common programming errors,
performance degradation and portability problems. The following incorrect usages of the
Ada language are often seen in code written by Ada beginners.

28.1 pragma Atomic & Volatile

pragma Atomic & Volatile

It is almost always incorrect to use atomic1 or volatile2 variables for tasking3.4

When an object is atomic it just means that it will be read from or written to memory
atomically. The compiler will not generate atomic instructions or memory barriers when
accessing to that object, it will just:

• check that the architecture guarantees atomic memory loads and stores,
• disallow some compiler optimizations, like reordering or suppressing redundant accesses

to the object.

For example, the following code, where A is an atomic object can be misunderstood:

A := A + 1; --Not an atomic increment!

The compiler will not (and is not allowed by the Standard to) generate an atomic increment
instruction to directly increment and update from memory the variable A.6 This is the code
generated by the compiler:

A := A + 1;

804969f: a1 04 95 05 08 mov 0x8059504,%eax

80496a4: 40 inc %eax

80496a5: a3 04 95 05 08 mov %eax,0x8059504

As can be seen, no atomic increment instruction or test-and-set opcode will be generated.
Like in other programming languages, if these specific instructions are required in the
program they must be written explicitly using machine code insertions.8

1 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FAtomic

2 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FVolatile

3 Chapter 21 on page 173

4 Volatile: Almost Useless for Multi-Threaded Programming 5. Intel Software Network . Retrieved
2008-05-30

6 Volatile 7. . Retrieved 2008-05-28
8 Laurent Guerby Ada 95 Rationale . Intermetrics , , 1995

255

http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FAtomic
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FVolatile

Common Errors

The above code snippet is equivalent to the following code (both code sequences generates
exactly the same object code), where T is a (non-atomic) temporary variable:

T := A; --A is copied atomically to local variable T

T := T + 1; --local variable T is incremented

A := T; --A is stored atomically

Thus it is incorrect to modify an atomic variable at the same time from multiple tasks.
For example, two tasks incrementing a counter in parallel. Even in an uniprocessor, other
Ada tasking features like a protected object should be used instead. In multiprocessors,
depending on the memory consistency model9, using various atomic or volatile variables for
task communication can have surprising consequences.1012 Therefore, extreme care should
be taken when using atomic objects for task data sharing or synchronization, specially in a
multiprocessor.

28.2 References

References

28.3 pragma Pack

pragma Pack

28.3.1 Exact data representation

It is important to realize that pragma Pack13 must not be used to specify the exact
representation of a data type, but to help the compiler to improve the efficiency of
the generated code.14 The compiler is free to ignore the pragma, therefore if a specific
representation of a type is required, representation clauses15 should be used instead (record
representation clauses, and/or attributes 'Size16 or 'Component_Size17).

9 http://en.wikipedia.org/wiki/Memory%20model%20%28programming%29

10 Volatile 11. . Retrieved 2008-05-28
12 Sarita V. Adve, Kourosh Gharachorloo . Shared Memory Consistency Models: A Tutorial Shared Mem-

ory Consistency Models: A Tutorial ˆ{www.hpl.hp.com/techreports/Compaq-{}DEC/WRL-{}95-{}7.

pdf} . IEEE Computer , 29 : 66−76 December 1996

13 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FPack

14 Adam Beneschan . Pragma Pack vs. Convention C, portability issue? Pragma Pack vs. Convention C,
portability issue? ˆ{groups.google.es/group/comp.lang.ada/msg/6698960624779ec7} . ,

15 http://en.wikibooks.org/wiki/Ada%20Programming%2FRepresentation%20clauses

16 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Size

17 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Component_Size

256

http://en.wikipedia.org/wiki/Memory%20model%20%28programming%29
 www.hpl.hp.com/techreports/Compaq-{}DEC/WRL-{}95-{}7.pdf
 www.hpl.hp.com/techreports/Compaq-{}DEC/WRL-{}95-{}7.pdf
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FPack
 groups.google.es/group/comp.lang.ada/msg/6698960624779ec7
http://en.wikibooks.org/wiki/Ada%20Programming%2FRepresentation%20clauses
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Size
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Component_Size

28.3.2 Bit-wise operations

Although in Ada 83 packed boolean arrays were used for bit-wise operations,18 since Ada 95
modular types19 are more adequate for these operations.20 The argument may be weighed
against the advantages of named Boolean array indexes such as Traffic_Lights' (Red

=> True, others => False) , depending on use case.

28.4 'Bit_Order attribute

'Bit_Order attribute

The 'Bit_Order21 attribute is not intended to convert data between a big-endian
and a little-endian machine (it affects bit numbering, not byte order). The compiler will
not generate code to reorder multi-byte fields when a non-native bit order is specified.222324

28.5 'Size attribute

'Size attribute

A common Ada programming mistake is to assume that specifying 'Size for a type T forces
the compiler to allocate exactly this number of bits for objects of this type. This is not true.
The specified T'Size26 will force the compiler to use this size for components in
packed arrays and records and in Unchecked_Conversion, but the compiler is still
free to allocate more bits for stand-alone objects.

Use 'Size on the object itself to force the object to the specified value.

28.6 See also

18 Software Productivity Consortium (October 1995). Ada 95 Quality and Style Guide, "10.5.7 Packed
Boolean Array Shifts ˆ{http://www.adaic.org/resources/add_content/docs/95style/html/sec_10/

10-5-7.html} "
19 Chapter 7 on page 71
20 Software Productivity Consortium (October 1995). Ada 95 Quality and Style Guide, "10.6.3 Bit Op-

erations on Modular Types ˆ{http://www.adaic.org/resources/add_content/docs/95style/html/

sec_10/10-6-3.html} "
21 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Bit%20Order

22 . . ,
23 ISO/IEC 8652:2007. 13.5.3 Bit Ordering (9/2). Ada 2005 Reference Manual. Bit_Order clauses

make it possible to write record_representation_clauses that can be ported between machines having
different bit ordering. They do not guarantee transparent exchange of data between such machines.
ˆ{http://www.adaic.org/resources/add_content/standards/05rm/html/RM-13-5-3.html}

24 25. . Retrieved
26 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Size

257

http://www.adaic.org/resources/add_content/docs/95style/html/sec_10/10-5-7.html
http://www.adaic.org/resources/add_content/docs/95style/html/sec_10/10-5-7.html
http://www.adaic.org/resources/add_content/docs/95style/html/sec_10/10-6-3.html
http://www.adaic.org/resources/add_content/docs/95style/html/sec_10/10-6-3.html
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Bit%20Order
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-13-5-3.html
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Size

Common Errors

See also

28.6.1 Wikibook

• Ada Programming27

• Ada Programming/Tips28

28.7 References

References

27 http://en.wikibooks.org/wiki/Ada%20Programming

28 Chapter 27 on page 249

258

http://en.wikibooks.org/wiki/Ada%20Programming

29 Algorithms

29.1 Introduction

Introduction

Welcome to the Ada implementations of the Algorithms1 Wikibook. For those who are new
to Ada Programming2 a few notes:

• All examples are fully functional with all the needed input and output operations.
However, only the code needed to outline the algorithms at hand is copied into the text -
the full samples are available via the download links. (Note: It can take up to 48 hours
until the cvs is updated).

• We seldom use predefined types in the sample code but define special types suitable for
the algorithms at hand.

• Ada allows for default function parameters; however, we always fill in and name all
parameters, so the reader can see which options are available.

• We seldom use shortcuts - like using the attributes Image or Value for String <=> Integer
conversions.

All these rules make the code more elaborate than perhaps needed. However, we also hope
it makes the code easier to understand

Category:Ada Programming3

29.2 Chapter 1: Introduction

Chapter 1: Introduction

The following subprograms are implementations of the Inventing an Algorithm examples4.

29.2.1 To Lower

The Ada example code does not append to the array as the algorithms. Instead we create
an empty array of the desired length and then replace the characters inside.

1 http://en.wikibooks.org/wiki/Algorithms

2 http://en.wikibooks.org/wiki/Ada%20Programming

3 http://en.wikibooks.org/wiki/Category%3AAda%20Programming

4 http://en.wikibooks.org/wiki/Algorithms%2FIntroduction%23Inventing%20an%20Algorithm

259

http://en.wikibooks.org/wiki/Algorithms
http://en.wikibooks.org/wiki/Ada%20Programming
http://en.wikibooks.org/wiki/Category%3AAda%20Programming
http://en.wikibooks.org/wiki/Algorithms%2FIntroduction%23Inventing%20an%20Algorithm

Algorithms

File: to_lower_1.adb

function To_Lower (C : Character) return Character renames

Ada.Characters.Handling.To_Lower;

-- tolower - translates all alphabetic, uppercase characters

-- in str to lowercase

function To_Lower (Str : String) return String is

Result : String (Str'Range);

begin

for C in Str'Range loop

Result (C) := To_Lower (Str (C));

end loop;

return Result;

end To_Lower;

Would the append approach be impossible with Ada? No, but it would be significantly more
complex and slower.

29.2.2 Equal Ignore Case

File: to_lower_2.adb

-- equal-ignore-case -- returns true if s or t are equal,

-- ignoring case

function Equal_Ignore_Case

(S : String;

T : String)

return Boolean

is

O : constant Integer := S'First - T'First;

begin

if T'Length /= S'Length then

return False; -- if they aren't the same length, they

-- aren't equal

else

for I in S'Range loop

if To_Lower (S (I)) /=

To_Lower (T (I + O))

then

return False;

end if;

end loop;

end if;

return True;

end Equal_Ignore_Case;

29.3 Chapter 6: Dynamic Programming

260

Chapter 6: Dynamic Programming

29.3.1 Fibonacci numbers

The following codes are implementations of the Fibonacci-Numbers examples5.

Simple Implementation

File: fibonacci_1.adb

...

To calculate Fibonacci numbers negative values are not needed so we define an integer type
which starts at 0. With the integer type defined you can calculate up until Fib (87). Fib

(88) will result in an Constraint_Error.

type Integer_Type is range 0 .. 999_999_999_999_999_999;

You might notice that there is not equivalence for the assert (n >= 0) from the original
example. Ada will test the correctness of the parameter before the function is called.

function Fib (n : Integer_Type) return Integer_Type is

begin

if n = 0 then

return 0;

elsif n = 1 then

return 1;

else

return Fib (n - 1) + Fib (n - 2);

end if;

end Fib;

...

Cached Implementation

File: fibonacci_2.adb

...

For this implementation we need a special cache type can also store a -1 as "not calculated"
marker

5 http://en.wikibooks.org/wiki/Algorithms%2FDynamic%20Programming%23Fibonacci_Numbers

261

http://en.wikibooks.org/wiki/Algorithms%2FDynamic%20Programming%23Fibonacci_Numbers

Algorithms

type Cache_Type is range -1 .. 999_999_999_999_999_999;

The actual type for calculating the fibonacci numbers continues to start at 0. As it is a
subtype of the cache type Ada will automatically convert between the two. (the conversion

is - of course - checked for validity)

subtype Integer_Type is Cache_Type range

0 .. Cache_Type'Last;

In order to know how large the cache need to be we first read the actual value from the
command line.

Value : constant Integer_Type :=

Integer_Type'Value (Ada.Command_Line.Argument (1));

The Cache array starts with element 2 since Fib (0) and Fib (1) are constants and ends
with the value we want to calculate.

type Cache_Array is

array (Integer_Type range 2 .. Value) of Cache_Type;

The Cache is initialized to the first valid value of the cache type — this is -1.

F : Cache_Array := (others => Cache_Type'First);

What follows is the actual algorithm.

function Fib (N : Integer_Type) return Integer_Type is

begin

if N = 0 or else N = 1 then

return N;

elsif F (N) /= Cache_Type'First then

return F (N);

else

F (N) := Fib (N - 1) + Fib (N - 2);

return F (N);

end if;

end Fib;

...

This implementation is faithful to the original from the Algorithms6 book. However, in Ada
you would normally do it a little different:

File: fibonacci_3.adb

6 http://en.wikibooks.org/wiki/Algorithms

262

http://en.wikibooks.org/wiki/Algorithms

when you use a slightly larger array which also stores the elements 0 and 1 and initializes
them to the correct values

type Cache_Array is

array (Integer_Type range 0 .. Value) of Cache_Type;

F : Cache_Array :=

(0 => 0,

1 => 1,

others => Cache_Type'First);

and then you can remove the first if path.

return N;

els

263

Algorithms

if F (N) /= Cache_Type'First then

. .

264

This will save about 45% of the execution-time (measured on Linux i686) while needing only
two more elements in the cache array.

Memory Optimized Implementation

This version looks just like the original in WikiCode.

File: fibonacci_4.adb

type Integer_Type is range 0 .. 999_999_999_999_999_999;

function Fib (N : Integer_Type) return Integer_Type is

U : Integer_Type := 0;

V : Integer_Type := 1;

begin

for I in 2 .. N loop

Calculate_Next : declare

T : constant Integer_Type := U + V;

begin

U := V;

V := T;

end Calculate_Next;

end loop;

return V;

end Fib;

No 64 bit integers

Your Ada compiler does not support 64 bit integer numbers? Then you could try to use
decimal numbers7 instead. Using decimal numbers results in a slower program (takes about

three times as long) but the result will be the same.

The following example shows you how to define a suitable decimal type. Do experiment
with the digits and range parameters until you get the optimum out of your Ada compiler.

File: fibonacci_5.adb

type Integer_Type is delta 1.0 digits 18 range

0.0 .. 999_999_999_999_999_999.0;

You should know that floating point numbers are unsuitable for the calculation of fibonacci
numbers. They will not report an error condition when the number calculated becomes too
large — instead they will lose in precision which makes the result meaningless.

7 Chapter 10 on page 79

265

30 Function overloading

File: function_overloading.adb

function Generate_Number (MaxValue : Integer) return Integer is

subtype Random_Type is Integer range 0 .. MaxValue;

package Random_Pack is new Ada.Numerics.Discrete_Random (Random_Type);

G : Random_Pack.Generator;

begin

Random_Pack.Reset (G);

return Random_Pack.Random (G);

end Generate_Number;

function Generate_Number (MinValue : Integer;

MaxValue : Integer) return Integer

is

subtype Random_Type is Integer range MinValue .. MaxValue;

package Random_Pack is new Ada.Numerics.Discrete_Random (Random_Type);

G : Random_Pack.Generator;

begin

Random_Pack.Reset (G);

return Random_Pack.Random (G);

end Generate_Number;

Number_1 : Integer := Generate_Number (10);

Number_2 : Integer := Generate_Number (6, 10);

30.1 Function overloading in Ada

Function overloading in Ada

Ada supports all six signature options but if you use the arguments' name as option you
will always have to name the parameter when calling the function. i.e.:

Number_2 : Integer := Generate_Number (MinValue => 6,

MaxValue => 10);

Note that you cannot overload a generic procedure or generic function within the same
package. The following example will fail to compile:

267

Function overloading

package myPackage

generic

type Value_Type is (<>);

--The first declaration of a generic subprogram

--with the name "Generic_Subprogram"

procedure Generic_Subprogram (Value : in out Value_Type);

...

generic

type Value_Type is (<>);

--This subprogram has the same name, but no

--input or output parameters. A non-generic

--procedure would be overloaded here.

--Since this procedure is generic, overloading

--is not allowed and this package will not compile.

procedure Generic_Subprogram;

...

generic

type Value_Type is (<>);

--The same situation.

--Even though this is a function and not

--a procedure, generic overloading of

--the name "Generic_Subprogram" is not allowed.

function Generic_Subprogram (Value : Value_Type) return Value_Type;

end myPackage;

30.2 See also

See also

30.2.1 Wikibook

• Ada Programming1

• Ada Programming/Subprograms2

30.2.2 Ada 95 Reference Manual

• 6.6 Overloading of Operators ˆ{http://www.adaic.org/resources/add_content/

standards/95lrm/ARM_HTML/RM-6-6.html}

• 8.6 The Context of Overload Resolution ˆ{http://www.adaic.org/resources/add_

content/standards/95lrm/ARM_HTML/RM-8-6.html}

30.2.3 Ada 2005 Reference Manual

• 6.6 Overloading of Operators ˆ{http://www.adaic.org/resources/add_content/

standards/05rm/html/RM-6-6.html}

• 8.6 The Context of Overload Resolution ˆ{http://www.adaic.org/resources/add_

content/standards/05rm/html/RM-8-6.html}

1 http://en.wikibooks.org/wiki/Ada%20Programming

2 Chapter 16 on page 125

268

http://www.adaic.org/resources/add_content/standards/95lrm/ARM_HTML/RM-6-6.html
http://www.adaic.org/resources/add_content/standards/95lrm/ARM_HTML/RM-6-6.html
http://www.adaic.org/resources/add_content/standards/95lrm/ARM_HTML/RM-8-6.html
http://www.adaic.org/resources/add_content/standards/95lrm/ARM_HTML/RM-8-6.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-6-6.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-6-6.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-8-6.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-8-6.html
http://en.wikibooks.org/wiki/Ada%20Programming

31 Mathematical calculations

Ada is very well suited for all kind of calculations. You can define you own fixed point
and floating point types and — with the aid of generic packages call all the mathematical
functions you need. In that respect Ada is on par with Fortran1. This module will show you
how to use them and while we progress we create a simple RPN2 calculator.

31.1 Simple calculations

Simple calculations

31.1.1 Addition

Additions can be done using the predefined operator + . The operator is predefined for all
numeric types and the following, working code, demonstrates its use:

File: numeric_1.adb

-- The Package Text_IO3

with Ada ;

procedure Numeric_1 is

type Value_Type is digits 12

range -999_999_999_999.0e999 .. 999_999_999_999.0e999;

package T_IO renames Ada.Text_IO;

package F_IO is new Ada.Text_IO.Float_IO (Value_Type);

Value_1 : Value_Type;

Value_2 : Value_Type;

begin

T_IO.Put ("First Value : ");

F_IO.Get (Value_1);

T_IO.Put ("Second Value : ");

F_IO.Get (Value_2);

F_IO.Put (Value_1);

T_IO.Put (" + ");

F_IO.Put (Value_2);

T_IO.Put (" = ");

F_IO.Put (Value_1 + Value_2);

end Numeric_1;

1 http://en.wikibooks.org/wiki/Programming%3AFortran

2 http://en.wikipedia.org/wiki/Reverse%20Polish%20notation

269

http://en.wikibooks.org/wiki/Programming%3AFortran
http://en.wikipedia.org/wiki/Reverse%20Polish%20notation

Mathematical calculations

31.1.2 Subtraction

Subtractions can be done using the predefined operator - . The following extended demo
shows the use of + and - operator together:

File: numeric_2.adb

-- The Package Text_IO4

with Ada ;

procedure Numeric_2

is

type Value_Type

is digits

12

range

-999_999_999_999.0e999 .. 999_999_999_999.0e999;

package T_IO renames Ada ;

package F_IO is new Ada.Text_IO.Float_IO (Value_Type);

Value_1 : Value_Type;

Value_2 : Value_Type;

Result : Value_Type;

Operation : Character;

begin

T_IO.Put ("First Value : ");

F_IO.Get (Value_1);

T_IO.Put ("Second Value : ");

F_IO.Get (Value_2);

T_IO.Put ("Operation : ");

T_IO.Get (Operation);

case Operation is

when '+' =>

Result := Value_1 + Value_2;

when '-' =>

Result := Value_1 - Value_2;

when others =>

T_IO.Put_Line ("Illegal Operation.");

goto Exit_Numeric_2;

end case;

F_IO.Put (Value_1);

T_IO.Put (" ");

T_IO.Put (Operation);

T_IO.Put (" ");

F_IO.Put (Value_2);

T_IO.Put (" = ");

F_IO.Put (Result);

<< Exit_Numeric_2>>

return;

end Numeric_2;

270

Purists might be surprised about the use of goto — but some people prefer the use of goto
over the use of multiple return statements if inside functions — given that, the opinions on
this topic vary strongly. See the isn't goto evil5 article.

31.1.3 Multiplication

Multiplication can be done using the predefined operator * . For a demo see the next chapter
about Division.

31.1.4 Division

Divisions can be done using the predefined operators / , mod , rem . The operator /
performs a normal division, mod returns a modulus division and rem returns the remainder
of the modulus division.

The following extended demo shows the use of the + , - , * and / operators together as
well as the use of a four number wide stack to store intermediate results:

The operators mod and rem are not part of the demonstration as they are only defined for
integer types.

File: numeric_3.adb

with Ada ;

procedure Numeric_3 is

procedure Pop_Value;

procedure Push_Value;

type Value_Type is digits 12 range

-999_999_999_999.0e999 .. 999_999_999_999.0e999;

type Value_Array is array (Natural range 1 .. 4) of Value_Type;

package T_IO renames Ada.Text_IO;

package F_IO is new Ada.Text_IO.Float_IO (Value_Type);

Values : Value_Array := (others => 0.0);

Operation : String (1 .. 40);

Last : Natural;

procedure Pop_Value is

begin

Values (Values'First + 1 .. Values'Last) :=

Values (Values'First + 2 .. Values'Last) & 0.0;

end Pop_Value;

procedure Push_Value is

begin

Values (Values'First + 1 .. Values'Last) :=

Values (Values'First .. Values'Last - 1);

end Push_Value;

5 Chapter 4 on page 37

271

Mathematical calculations

begin

Main_Loop:

loop

T_IO.Put (">");

T_IO.Get_Line (Operation, Last);

if Last = 1 and then Operation (1) = '+' then

Values (1) := Values (1) + Values (2);

Pop_Value;

elsif Last = 1 and then Operation (1) = '-' then

Values (1) := Values (1) + Values (2);

Pop_Value;

elsif Last = 1 and then Operation (1) = '*' then

Values (1) := Values (1) * Values (2);

Pop_Value;

elsif Last = 1 and then Operation (1) = '/' then

Values (1) := Values (1) / Values (2);

Pop_Value;

elsif Last = 4 and then Operation (1 .. 4) = "exit" then

exit Main_Loop;

else

Push_Value;

F_IO.Get (From => Operation, Item => Values (1), Last =>

Last);

end if;

Display_Loop:

for I in reverse Value_Array'Range loop

F_IO.Put

(Item => Values (I),

Fore => F_IO.Default_Fore,

Aft => F_IO.Default_Aft,

Exp => 4);

T_IO.New_Line;

end loop Display_Loop;

end loop Main_Loop;

return;

end Numeric_3;

31.2 Exponential calculations

Exponential calculations

All exponential functions are defined inside the generic package Ada .

31.2.1 Power of

Calculation of the form xy are performed by the operator ** . Beware: There are two
versions of this operator. The predefined operator ** allows only for Standard.Integer to be
used as exponent. If you need to use a floating point type as exponent you need to use the
** defined in Ada .

272

31.2.2 Root

The square root
√

x is calculated with the function Sqrt(). There is no function defined to
calculate an arbitrary root n

√
x. However you can use logarithms to calculate an arbitrary

root using the mathematical identity: b
√

a = eloge(a)/b which will become root := Exp (Log

(a) / b) in Ada. Alternatively, use b
√

a = a
1

b which, in Ada, is root := a**(1.0/b).

31.2.3 Logarithm

Ada defines a function for both the arbitrary logarithm logn(x) and the natural logarithm
loge(x), both of which have the same name Log() distinguished by the number of parameters.

31.2.4 Demonstration

The following extended demo shows the how to use the exponential functions in Ada. The
new demo also uses Unbounded_String6 instead of Strings which make the comparisons
easier.

Please note that from now on we won't copy the full sources any more. Do follow the
download links to see the full program.

File: numeric_4.adb

with Ada ;

with Ada ;

with Ada ;

procedure Numeric_4 is

package Str renames Ada.Strings.Unbounded;

package T_IO renames Ada.Text_IO;

procedure Pop_Value;

procedure Push_Value;

function Get_Line return Str.Unbounded_String;

type Value_Type is digits 12 range

-999_999_999_999.0e999 .. 999_999_999_999.0e999;

type Value_Array is array (Natural range 1 .. 4) of Value_Type;

package F_IO is new Ada.Text_IO.Float_IO (Value_Type);

package Value_Functions is new Ada.Numerics.Generic_Elementary_Functions (

Value_Type);

use Value_Functions;

use type Str.Unbounded_String;

Values : Value_Array := (others => 0.0);

Operation : Str.Unbounded_String;

Dummy : Natural;

6 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Strings.Unbounded

273

http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Strings.Unbounded

Mathematical calculations

function Get_Line return Str.Unbounded_String is

BufferSize : constant := 2000;

Retval : Str.Unbounded_String := Str.Null_Unbounded_String;

Item : String (1 .. BufferSize);

Last : Natural;

begin

Get_Whole_Line :

loop

T_IO.Get_Line (Item => Item, Last => Last);

Str.Append (Source => Retval, New_Item => Item (1 ..

Last));

exit Get_Whole_Line when Last < Item'Last;

end loop Get_Whole_Line;

return Retval;

end Get_Line;

...

begin

Main_Loop :

loop

T_IO.Put (">");

Operation := Get_Line;

...

elsif Operation = "e" then

-- insert e

Push_Value;

Values (1) := Ada.Numerics.e;

elsif Operation = "**" or else Operation = "ˆ" then

-- power of xˆy

Values (1) := Values (1) ** Values (2);

Pop_Value;

elsif Operation = "sqr" then

-- square root

Values (1) := Sqrt (Values (1));

elsif Operation = "root" then

-- arbritary root

Values (1) :=

Exp (Log (Values (2)) / Values (1));

Pop_Value;

elsif Operation = "ln" then

-- natural logarithm

Values (1) := Log (Values (1));

elsif Operation = "log" then

-- based logarithm

Values (1) :=

Log (Base => Values (1), X => Values (2));

Pop_Value;

elsif Operation = "exit" then

exit Main_Loop;

else

Push_Value;

F_IO.Get

(From => Str.To_String (Operation),

Item => Values (1),

Last => Dummy);

end if;

...

end loop Main_Loop;

274

return;

end Numeric_4;

31.3 Higher math

Higher math

31.3.1 Trigonometric calculations

The full set of trigonometric7 functions are defined inside the generic package Ada . All
functions are defined for 2 and an arbitrary cycle value (a full cycle of revolution).

Please note the difference of calling the Arctan () function.

File: numeric_5.adb

with Ada ;

with Ada ;

with Ada ;

procedure Numeric_5 is

...

procedure Put_Line (Value : in Value_Type);

use Value_Functions;

use type Str.Unbounded_String;

Values : Value_Array := (others => 0.0);

Cycle : Value_Type := Ada.Numerics.Pi;

Operation : Str.Unbounded_String;

Dummy : Natural;

...

procedure Put_Line (Value : in Value_Type) is

begin

if abs Value_Type'Exponent (Value) >=

abs Value_Type'Exponent (10.0 ** F_IO.Default_Aft)

then

F_IO.Put

(Item => Value,

Fore => F_IO.Default_Aft,

Aft => F_IO.Default_Aft,

Exp => 4);

else

F_IO.Put

(Item => Value,

Fore => F_IO.Default_Aft,

Aft => F_IO.Default_Aft,

Exp => 0);

end if;

7 http://en.wikibooks.org/wiki/%2FTrigonometry

275

http://en.wikibooks.org/wiki/%2FTrigonometry

Mathematical calculations

T_IO.New_Line;

return;

end Put_Line;

...

begin

Main_Loop :

loop

Display_Loop :

for I in reverse Value_Array'Range loop

Put_Line (Values (I));

end loop Display_Loop;

T_IO.Put (">");

Operation := Get_Line;

...

elsif Operation = "deg" then

-- switch to degrees

Cycle := 360.0;

elsif Operation = "rad" then

-- switch to degrees

Cycle := Ada.Numerics.Pi;

elsif Operation = "grad" then

-- switch to degrees

Cycle := 400.0;

elsif Operation = "pi" or else Operation = "" then

-- switch to degrees

Push_Value;

Values (1) := Ada.Numerics.Pi;

elsif Operation = "sin" then

-- sinus

Values (1) := Sin (X => Values (1), Cycle => Cycle);

elsif Operation = "cos" then

-- cosinus

Values (1) := Cos (X => Values (1), Cycle => Cycle);

elsif Operation = "tan" then

-- tangents

Values (1) := Tan (X => Values (1), Cycle => Cycle);

elsif Operation = "cot" then

-- cotanents

Values (1) := Cot (X => Values (1), Cycle => Cycle);

elsif Operation = "asin" then

-- arc-sinus

Values (1) := Arcsin (X => Values (1), Cycle => Cycle);

elsif Operation = "acos" then

-- arc-cosinus

Values (1) := Arccos (X => Values (1), Cycle => Cycle);

elsif Operation = "atan" then

-- arc-tangents

Values (1) := Arctan (Y => Values (1), Cycle => Cycle);

elsif Operation = "acot" then

-- arc-cotanents

Values (1) := Arccot (X => Values (1), Cycle => Cycle);

...

end loop Main_Loop;

return;

end Numeric_5;

The Demo also contains an improved numeric output which behaves more like a normal
calculator.

276

31.3.2 Hyperbolic calculations

You guessed it: The full set of hyperbolic functions is defined inside the generic package Ada .

File: numeric_6.adb

with Ada ;

with Ada ;

with Ada ;

with Ada ;

procedure Numeric_6 is

package Str renames Ada.Strings.Unbounded;

package T_IO renames Ada.Text_IO;

package Exept renames Ada.Exceptions;

...

begin

Main_Loop :

loop

Try :

begin

Display_Loop :

...

elsif Operation = "sinh" then

-- sinus hyperbolic

Values (1) := Sinh (Values (1));

elsif Operation = "cosh" then

-- cosinus hyperbolic

Values (1) := Coth (Values (1));

elsif Operation = "tanh" then

-- tangents hyperbolic

Values (1) := Tanh (Values (1));

elsif Operation = "coth" then

-- cotanents hyperbolic

Values (1) := Coth (Values (1));

elsif Operation = "asinh" then

-- arc-sinus hyperbolic

Values (1) := Arcsinh (Values (1));

elsif Operation = "acosh" then

-- arc-cosinus hyperbolic

Values (1) := Arccosh (Values (1));

elsif Operation = "atanh" then

-- arc-tangents hyperbolic

Values (1) := Arctanh (Values (1));

elsif Operation = "acoth" then

-- arc-cotanents hyperbolic

Values (1) := Arccoth (Values (1));

...

exception

when An_Exception : others =>

T_IO.Put_Line

(Exept.Exception_Information (An_Exception));

end Try;

end loop Main_Loop;

return;

end Numeric_6;

277

Mathematical calculations

As added bonus this version supports error handling and therefore won't just crash when an
illegal calculation is performed.

31.3.3 Complex arithmethic

For complex arithmetic8 Ada provides the package Ada . This package is part of the "special
need Annexes" which means it is optional. The open source Ada compiler GNAT implements
all "special need Annexes" and therefore has complex arithmetic available.

Since Ada supports user defined operators, all (+ , - , *) operators have their usual meaning
as soon as the package Ada has been instantiated (package ... is new ...) and the type has
been made visible (use type ...)

Ada also provides the packages Ada and Ada which provide similar functionality to their
normal counterparts. But there are some differences:

• Ada supports only the exponential and trigonometric functions which make sense in
complex arithmetic.

• Ada is a child package of Ada and therefore needs its own with. Note: the Ada Get ()

function is pretty fault tolerant - if you forget the "," or the "()" pair it will still parse the
input correctly.

So, with only a very few modifications you can convert your "normals" calculator to a
calculator for complex arithmetic:

File: numeric_7.adb

with Ada.Text_IO.Complex_IO;

with Ada.Numerics.Generic_Complex_Types;

with Ada.Numerics.Generic_Complex_Elementary_Functions;

with Ada.Strings.Unbounded;

with Ada.Exceptions;

procedure Numeric_7 is

...

package Complex_Types is new Ada.Numerics.Generic_Complex_Types (

Value_Type);

package Complex_Functions is new

Ada.Numerics.Generic_Complex_Elementary_Functions (

Complex_Types);

package C_IO is new Ada.Text_IO.Complex_IO (Complex_Types);

type Value_Array is

array (Natural range 1 .. 4) of Complex_Types.Complex;

procedure Put_Line (Value : in Complex_Types.Complex);

use type Complex_Types.Complex;

use type Str.Unbounded_String;

8 http://en.wikibooks.org/wiki/Algebra%2FComplex%20Numbers

278

http://en.wikibooks.org/wiki/Algebra%2FComplex%20Numbers

use Complex_Functions;

Values : Value_Array :=

(others => Complex_Types.Complex'(Re => 0.0, Im => 0.0));

...

procedure Put_Line (Value : in Complex_Types.Complex) is

begin

if (abs Value_Type'Exponent (Value.Re) >=

abs Value_Type'Exponent (10.0 ** C_IO.Default_Aft))

or else (abs Value_Type'Exponent (Value.Im) >=

abs Value_Type'Exponent (10.0 ** C_IO.Default_Aft))

then

C_IO.Put

(Item => Value,

Fore => C_IO.Default_Aft,

Aft => C_IO.Default_Aft,

Exp => 4);

else

C_IO.Put

(Item => Value,

Fore => C_IO.Default_Aft,

Aft => C_IO.Default_Aft,

Exp => 0);

end if;

T_IO.New_Line;

return;

end Put_Line;

begin

...

elsif Operation = "e" then

-- insert e

Push_Value;

Values (1) :=

Complex_Types.Complex'(Re => Ada.Numerics.e, Im

=> 0.0);

...

elsif Operation = "pi" or else Operation = "" then

-- insert pi

Push_Value;

Values (1) :=

Complex_Types.Complex'(Re => Ada.Numerics.Pi, Im

=> 0.0);

elsif Operation = "sin" then

-- sinus

Values (1) := Sin (Values (1));

elsif Operation = "cos" then

-- cosinus

Values (1) := Cot (Values (1));

elsif Operation = "tan" then

-- tangents

Values (1) := Tan (Values (1));

elsif Operation = "cot" then

-- cotanents

Values (1) := Cot (Values (1));

elsif Operation = "asin" then

-- arc-sinus

Values (1) := Arcsin (Values (1));

elsif Operation = "acos" then

-- arc-cosinus

279

Mathematical calculations

Values (1) := Arccos (Values (1));

elsif Operation = "atan" then

-- arc-tangents

Values (1) := Arctan (Values (1));

elsif Operation = "acot" then

-- arc-cotanents

Values (1) := Arccot (Values (1));

...

return;

end Numeric_7;

31.3.4 Vector and Matrix Arithmetic

Ada supports vector9 and matrix10 Arithmetic for both normal real types and com-
plex types. For those, the generic packages Ada.Numerics.Generic_Real_Arrays and
Ada.Numerics.Generic_Complex_Arrays are used. Both packages offer the usual set of
operations, however there is no I/O package and understandably, no package for elementary
functions.

Since there is no I/O package for vector and matrix I/O creating a demo is by far more
complex — and hence not ready yet. You can have a look at the current progress which will
be a universal calculator merging all feature.

Status: Stalled - for a Vector and Matrix stack we need Indefinite_Vectors — which are
currently not part of GNAT/Pro. Well I could use the booch components ...

File: numeric_8-complex_calculator.ada

File: numeric_8-get_line.ada

File: numeric_8-real_calculator.ada

File: numeric_8-real_vector_calculator.ada

31.4 See also

See also

31.4.1 Wikibook

• Ada Programming11

9 http://en.wikibooks.org/wiki/Linear%20Algebra%2FVectors%20in%20Space

10 http://en.wikibooks.org/wiki/Linear_Algebra%2FDescribing_the_Solution_Set%23matrix

11 http://en.wikibooks.org/wiki/Ada%20Programming

280

http://en.wikibooks.org/wiki/Linear%20Algebra%2FVectors%20in%20Space
http://en.wikibooks.org/wiki/Linear_Algebra%2FDescribing_the_Solution_Set%23matrix
http://en.wikibooks.org/wiki/Ada%20Programming

• Ada Programming/Delimiters/-12

• Ada Programming/Libraries/Ada.Numerics.Generic_Complex_Types13

• Ada Programming/Libraries/Ada.Numerics.Generic_Elementary_Functions14

31.4.2 Ada 95 Reference Manual

• 4.4 Expressions ˆ{http://www.adaic.org/resources/add_content/standards/

95lrm/ARM_HTML/RM-4-4.html}

• Annex A.5-1 Elementary Functions ˆ{http://www.adaic.org/resources/add_

content/standards/95lrm/ARM_HTML/RM-A-5-1.html}

• Annex A.10-1 The Package Text_IO ˆ{http://www.adaic.org/resources/add_

content/standards/95lrm/ARM_HTML/RM-A-10-1.html}

• Annex G.1 Complex Arithmetic ˆ{http://www.adaic.org/resources/add_content/

standards/95lrm/ARM_HTML/RM-G-1.html} Annex G.3 Vector and Matrix Manip-
ulation ˆ{http://www.adaic.org/resources/add_content/standards/95lrm/ARM_

HTML/RM-G-3.html} myitemize

31.4.3 Ada 2005 Reference Manual

• 4.4 Expressions ˆ{http://www.adaic.org/resources/add_content/standards/

05rm/html/RM-4-4.html}

• Annex A.5.1 Elementary Functions ˆ{http://www.adaic.org/resources/add_

content/standards/05rm/html/RM-A-5-1.html}

• Annex A.10.1 The Package Text_IO ˆ{http://www.adaic.org/resources/add_

content/standards/05rm/html/RM-A-10-1.html}

• G1Complex Arithmetic
• G3Vector and Matrix Manipulation

12 http://en.wikibooks.org/wiki/Ada%20Programming%2FDelimiters%2F-

13
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Numerics.Generic_

Complex_Types

14
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Numerics.Generic_

Elementary_Functions

281

http://www.adaic.org/resources/add_content/standards/95lrm/ARM_HTML/RM-4-4.html
http://www.adaic.org/resources/add_content/standards/95lrm/ARM_HTML/RM-4-4.html
http://www.adaic.org/resources/add_content/standards/95lrm/ARM_HTML/RM-A-5-1.html
http://www.adaic.org/resources/add_content/standards/95lrm/ARM_HTML/RM-A-5-1.html
http://www.adaic.org/resources/add_content/standards/95lrm/ARM_HTML/RM-A-10-1.html
http://www.adaic.org/resources/add_content/standards/95lrm/ARM_HTML/RM-A-10-1.html
http://www.adaic.org/resources/add_content/standards/95lrm/ARM_HTML/RM-G-1.html
http://www.adaic.org/resources/add_content/standards/95lrm/ARM_HTML/RM-G-1.html
http://www.adaic.org/resources/add_content/standards/95lrm/ARM_HTML/RM-G-3.html
http://www.adaic.org/resources/add_content/standards/95lrm/ARM_HTML/RM-G-3.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-4-4.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-4-4.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-A-5-1.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-A-5-1.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-A-10-1.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-A-10-1.html
http://en.wikibooks.org/wiki/Ada%20Programming%2FDelimiters%2F-
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Numerics.Generic_Complex_Types
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Numerics.Generic_Complex_Types
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Numerics.Generic_Elementary_Functions
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Numerics.Generic_Elementary_Functions

32 Statements

Note: there are some simplifications in the explanations below. Don't take anything too
literally.
Most programming languages have the concept of a statement. A statement is a
command that the programmer gives to the computer. For example:

Ada.Text_IO.Put_Line ("Hi there!");

This command has a verb ("") and other details (what to print). In this case, the command
"" means "show on the screen," not "print on the printer." The programmer either gives
the statement directly to the computer (by typing it while running a special program),
or creates a text file with the command in it. You could create a file called "hi.txt", put
the above command in it, and give the file to the computer.
If you have more than one command in the file, each will be performed in order, top to
bottom. So the file could contain:

Ada.Text_IO.Put_Line ("Hi there!");

Ada.Text_IO.Put_Line ("Strange things are afoot...");

This does seem like a lot of typing but don't worry: Ada allows you to declare shorter
aliasnames if you need a long statement very often.

283

33 Variables

Variables are references that stand in for a value that is contained at a certain memory
address.
Variables are said to have a value and may have a data type1. If a variable has a type,
then only values of this type may be assigned to it. Variables do not always have a type.
A value can have many values of many different types: integers (7), ratios (1/2), (approx-
imations of) reals (10.234), complex numbers (4+2i), characters ('a'), strings ("hello"),
and much more.
Different languages use different names for their types and may not include any of the
above.

33.1 Assignment statements
Assignment statements

An assignment statement is used to set a variable to a new value.
Assignment statements are written as name =2 value.

X =3 10;

1. REDIRECT Template:Computer Programming/Variables/24

Ada is the same. The declaration is as follows:

declare

X : Integer =5 10;

begin

Do_Something (X);

end;

33.2 Uses
Uses

Variables store everything in your program. The purpose of any useful program is to
modify variables.

33.3 See also

1 http://en.wikibooks.org/wiki/Computer%20Programming%2FTypes

2 http://en.wikibooks.org/wiki/Ada%20Programming%2FDelimiters%2F%3A%3D

4 http://en.wikibooks.org/wiki/Template%3AComputer%20Programming%2FVariables%2F2

285

http://en.wikibooks.org/wiki/Computer%20Programming%2FTypes
http://en.wikibooks.org/wiki/Ada%20Programming%2FDelimiters%2F%3A%3D
http://en.wikibooks.org/wiki/Template%3AComputer%20Programming%2FVariables%2F2

Variables

See also

33.3.1 Ada Reference Manual

• 3.3 Objects and Named Numbers ˆ{http://www.adaic.org/resources/add_

content/standards/05rm/html/RM-3-3.html}

286

http://www.adaic.org/resources/add_content/standards/05rm/html/RM-3-3.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-3-3.html

34 Lexical elements

34.1 Character set
Character set

The character set used in Ada programs is composed of:
• Upper-case letters: A, ..., Z and lower-case letters: a, ..., z.
• Digits: 0, ..., 9.
• Special characters.
Take into account that in Ada 95 the letter range includes accented characters and other
letters used in Western Europe languages, those belonging to the ISO Latin-11 character
set, as ç, ñ, ð, etc.
In Ada 20052 the character set has been extended to the full Unicode3 set, so the identifiers
and comments can be written in almost any language in the world.
Ada is a case-insensitive language, i. e. the upper-case set is equivalent to the lower-case
set except in character string literals and character literals.

34.2 Lexical elements
Lexical elements

In Ada we can find the following lexical elements:
• Identifiers
• Numeric Literals
• Character Literals
• String Literals
• Delimiters4

• Comments
• Reserved Words5

Example:

Temperature_In_Room := 25; --Temperature to be preserved in the room.

This line contains 5 lexical elements:
• The identifier Temperature_In_Room.
• The compound delimiter :=.
• The number 25.
• The single delimiter ;.

1 http://en.wikipedia.org/wiki/ISO%208859-1

2 Chapter 23 on page 219
3 http://en.wikipedia.org/wiki/Unicode

4 Chapter 36 on page 297
5 Chapter 35 on page 293

287

http://en.wikipedia.org/wiki/ISO%208859-1
http://en.wikipedia.org/wiki/Unicode

Lexical elements

• The comment --Temperature to be preserved in the room..

34.2.1 Identifiers

Definition in BNF6:

identifier ::= letter { [underscore] letter | digit }

letter ::= A | ... | Z | a | ... | z

digit ::= 0 | ... | 9

underscore ::= _

From this definition we must exclude the keywords that are reserved words in the language
and cannot be used as identifiers.
Examples:
The following words are legal Ada identifiers:

Time_Of_Day TimeOfDay El_Niño_Forecast Façade counter ALARM

The following ones are NOT legal Ada identifiers:

_Time_Of_Day 2nd_turn Start_ Access Price_In_$ General__Alarm

Exercise: could you give the reason for not being legal for each one of them?

34.2.2 Numbers

The numeric literals are composed of the following characters:
• digits 0 .. 9

• the decimal separator .,
• the exponentiation sign e or E,
• the negative sign - (in exponents only) and
• the underscore _.
The underscore is used as separator for improving legibility for humans, but it is ignored
by the compiler. You can separate numbers following any rationale, e.g. decimal integers
in groups of three digits, or binary integers in groups of eight digits.
For example, the real number such as 98.4 can be represented as: 9.84E1, 98.4e0,
984.0e-1 or 0.984E+2, but not as 984e-1.
For integer numbers, for example 1900, it could be written as 1900, 19E2, 190e+1 or
1_900E+0.
A numeric literal could also be expressed in a base different to 10, by enclosing the number
between # characters, and preceding it by the base, which can be a number between 2
and 16. For example, 2#101# is 1012, that is 510; a hexadecimal number with exponent
is 16#B#E2, that is 11 × 162 = 2,816.
Note that there are no negative literals; e.g. -1 is not a literal, rather it is the literal 1
preceded by the unary minus operator.

6 http://en.wikipedia.org/wiki/Backus-Naur%20form

288

http://en.wikipedia.org/wiki/Backus-Naur%20form

34.2.3 Character literals

Their type is Standard .Character, Wide_Character or Wide_Wide_Character. They
are delimited by an apostrophe (')7.
Examples:

'A' 'n' '%'

34.2.4 String literals

String8 literals are of type Standard .String, Wide_String or Wide_Wide_String. They
are delimited by the quotation mark (")9.
Example:

"This is a string literal"

34.2.5 Delimiters

Single delimiters are one of the following special characters:

& ' () * + , - . / : ; < =

>

Compound delimiters are composed of two special characters, and they are the following
ones:

=> .. ** := /= >= <= << >> <>

You can see a full reference of the delimiters in Ada Programming/Delimiters10.

34.2.6 Comments

Comments in Ada start with two consecutive hyphens (--) and end in the end of line.

--This is a comment in a full line

My_Savings := My_Savings * 10.0; --This is a comment in a line after a sentece

My_Savings := My_Savings * --This is a comment inserted inside a sentence

1_000_000.0;

A comment can appear where an end of line can be inserted.

7 http://en.wikibooks.org/wiki/Ada%20Programming%2FDelimiters%2F%27

8 Chapter 15 on page 119
9 http://en.wikibooks.org/wiki/Ada%20Programming%2FSpecial%2F%22

10 Chapter 36 on page 297

289

http://en.wikibooks.org/wiki/Ada%20Programming%2FDelimiters%2F%27
http://en.wikibooks.org/wiki/Ada%20Programming%2FSpecial%2F%22

Lexical elements

34.2.7 Reserved words

Reserved words are equivalent in upper-case and lower-case letters, although the typical
style is the one from the Reference Manual, that is to write them in all lower-case letters.
In Ada some keywords have a different meaning depending on context. You can refer to
Ada Programming/Keywords11 and the following pages for each keyword.

Ada Keywords12

abort else new return

abs elsif not reverse

abstract (Ada 95) end null

accept entry select

access exception of separate

aliased (Ada 95) exit or some

(Ada 2012)
all others subtype

and for out synchronized

(Ada 2005)
array function overriding

(Ada 2005)
at tagged

(Ada 95)
generic package task

begin goto pragma terminate

body private then

if procedure type

case in protected

(Ada 95)
constant interface

(Ada 2005)
until

(Ada 95)
is raise use

declare range

delay limited record when

delta loop rem while

digits renames with

do mod requeue

(Ada 95)
xor

34.3 See also

11 Chapter 35 on page 293
12 http://en.wikibooks.org/wiki/Ada%20Programming%2FAll%20Keywords

290

http://en.wikibooks.org/wiki/Ada%20Programming%2FAll%20Keywords

See also

34.3.1 Wikibook

• Ada Programming13

• Ada Programming/Delimiters14

• Ada Programming/Keywords15

34.3.2 Ada Reference Manual

• Section 2: Lexical Elements ˆ{http://www.adaic.org/resources/add_content/

standards/05rm/html/RM-2.html}

• 2.1 Character Set ˆ{http://www.adaic.org/resources/add_content/standards/

05rm/html/RM-2-1.html}

• 2.2 Lexical Elements, Separators, and Delimiters ˆ{http://www.adaic.org/

resources/add_content/standards/05rm/html/RM-2-2.html}

es:Programación en Ada/Elementos del lenguaje16

13 http://en.wikibooks.org/wiki/Ada%20Programming

14 Chapter 36 on page 297
15 Chapter 35 on page 293
16 http://es.wikibooks.org/wiki/Programaci%F3n%20en%20Ada%2FElementos%20del%20lenguaje

291

http://www.adaic.org/resources/add_content/standards/05rm/html/RM-2.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-2.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-2-1.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-2-1.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-2-2.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-2-2.html
http://en.wikibooks.org/wiki/Ada%20Programming
http://es.wikibooks.org/wiki/Programaci%F3n%20en%20Ada%2FElementos%20del%20lenguaje

35 Keywords

35.1 Language summary keywords
Language summary keywords

Most Ada “keywords” have different functions depending on where they are used. A good
example is for1 which controls the representation clause when used within a declaration
part and controls a loop when used within an implementation.
In Ada, a keyword is a reserved word, so it cannot be used as an identifier. Some of
them are used as attribute2 names.

35.2 List of keywords
List of keywords

Ada Keywords3

1 http://en.wikibooks.org/wiki/Ada%20Programming%2FKeywords%2Ffor

2 Chapter 38 on page 305
3 http://en.wikibooks.org/wiki/Ada%20Programming%2FAll%20Keywords

293

http://en.wikibooks.org/wiki/Ada%20Programming%2FKeywords%2Ffor
http://en.wikibooks.org/wiki/Ada%20Programming%2FAll%20Keywords

Keywords

abort else new return

abs elsif not reverse

abstract (Ada 95) end null

accept entry select

access exception of separate

aliased (Ada 95) exit or some

(Ada 2012)
all others subtype

and for out synchronized

(Ada 2005)
array function overriding

(Ada 2005)
at tagged

(Ada 95)
generic package task

begin goto pragma terminate

body private then

if procedure type

case in protected

(Ada 95)
constant interface

(Ada 2005)
until

(Ada 95)
is raise use

declare range

delay limited record when

delta loop rem while

digits renames with

do mod requeue

(Ada 95)
xor

35.3 See also
See also

35.3.1 Wikibook

• Ada Programming4

• Ada Programming/Aspects5

• Ada Programming/Attributes6

• Ada Programming/Pragmas7

4 http://en.wikibooks.org/wiki/Ada%20Programming

5 http://en.wikibooks.org/wiki/Ada%20Programming%2FAspects

6 Chapter 38 on page 305
7 Chapter 39 on page 317

294

http://en.wikibooks.org/wiki/Ada%20Programming
http://en.wikibooks.org/wiki/Ada%20Programming%2FAspects

35.3.2 Ada Reference Manual

Ada 83

• Annex 2: Reserved Words ˆ{http://archive.adaic.com/standards/83lrm/html/

lrm-2.html}

• Annex E: Syntax Summary ˆ{http://archive.adaic.com/standards/83lrm/html/

lrm-E.html}

Ada 95

• 2.9 Reserved Words8

• Annex P: (informative) Syntax Summary9

Ada 2005

• 2.9 Reserved Words10

• Annex P: (informative) Syntax Summary11

Ada 2012

• 2.9 Reserved Words12

• Annex P: (informative) Syntax Summary13

35.3.3 Ada Quality and Style Guide

• 3.1.3 Capitalization ˆ{http://www.adaic.org/resources/add_content/docs/

95style/html/sec_3/3-1-3.html}

8 http://www.adaic.org/resources/add_content/standards/95lrm/ARM_HTML/RM-2-9.html

9 http://www.adaic.org/resources/add_content/standards/95lrm/ARM_HTML/RM-P.html

10 http://www.adaic.org/resources/add_content/standards/05rm/html/RM-2-2-9.html

11 http://www.adaic.org/resources/add_content/standards/05rm/html/RM-2-P.html

12 http://www.ada-auth.org/standards/12rm/html/RM-2-9.html

13 http://www.ada-auth.org/standards/12rm/html/RM-P.html

295

http://archive.adaic.com/standards/83lrm/html/lrm-2.html
http://archive.adaic.com/standards/83lrm/html/lrm-2.html
http://archive.adaic.com/standards/83lrm/html/lrm-E.html
http://archive.adaic.com/standards/83lrm/html/lrm-E.html
http://www.adaic.org/resources/add_content/docs/95style/html/sec_3/3-1-3.html
http://www.adaic.org/resources/add_content/docs/95style/html/sec_3/3-1-3.html
http://www.adaic.org/resources/add_content/standards/95lrm/ARM_HTML/RM-2-9.html
http://www.adaic.org/resources/add_content/standards/95lrm/ARM_HTML/RM-P.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-2-2-9.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-2-P.html
http://www.ada-auth.org/standards/12rm/html/RM-2-9.html
http://www.ada-auth.org/standards/12rm/html/RM-P.html

36 Delimiters

36.1 Single character delimiters
Single character delimiters

&1

ampersand (also operator &2)
'3

apostrophe, tick
(4

left parenthesis
)5

right parenthesis
*6

asterisk, multiply (also operator *7)
+8

plus sign (also operator +9)
,10

comma
-11

hyphen, minus (also operator -12)
.13

full stop, point, dot
/14

solidus, divide (also operator /15)
16

colon
;17

1 http://en.wikibooks.org/wiki/Ada%20Programming%2FDelimiters%2F%26

2 http://en.wikibooks.org/wiki/Ada%20Programming%2FDelimiters%2F%26

3 http://en.wikibooks.org/wiki/Ada%20Programming%2FDelimiters%2F%27

4 http://en.wikibooks.org/wiki/Ada%20Programming%2FDelimiters%2F%28

5 http://en.wikibooks.org/wiki/Ada%20Programming%2FDelimiters%2F%29

6 http://en.wikibooks.org/wiki/Ada%20Programming%2FDelimiters%2F%2A

7 http://en.wikibooks.org/wiki/Ada%20Programming%2FOperators%2F%2A

8 http://en.wikibooks.org/wiki/Ada%20Programming%2FDelimiters%2F%2B

9 http://en.wikibooks.org/wiki/Ada%20Programming%2FDelimiters%2F%2B

10 http://en.wikibooks.org/wiki/Ada%20Programming%2FDelimiters%2F%2C

11 http://en.wikibooks.org/wiki/Ada%20Programming%2FDelimiters%2F-

12 http://en.wikibooks.org/wiki/Ada%20Programming%2FOperators%2F-

13 http://en.wikibooks.org/wiki/Ada%20Programming%2FDelimiters%2Fdot

14 http://en.wikibooks.org/wiki/Ada%20Programming%2FDelimiters%2F%2F

15 http://en.wikibooks.org/wiki/Ada%20Programming%2FOperators%2F%2F

16 http://en.wikibooks.org/wiki/Ada%20Programming%2FDelimiters%2F%3A

17 http://en.wikibooks.org/wiki/Ada%20Programming%2FDelimiters%2F%3B

297

http://en.wikibooks.org/wiki/Ada%20Programming%2FDelimiters%2F%26
http://en.wikibooks.org/wiki/Ada%20Programming%2FDelimiters%2F%26
http://en.wikibooks.org/wiki/Ada%20Programming%2FDelimiters%2F%27
http://en.wikibooks.org/wiki/Ada%20Programming%2FDelimiters%2F%28
http://en.wikibooks.org/wiki/Ada%20Programming%2FDelimiters%2F%29
http://en.wikibooks.org/wiki/Ada%20Programming%2FDelimiters%2F%2A
http://en.wikibooks.org/wiki/Ada%20Programming%2FOperators%2F%2A
http://en.wikibooks.org/wiki/Ada%20Programming%2FDelimiters%2F%2B
http://en.wikibooks.org/wiki/Ada%20Programming%2FDelimiters%2F%2B
http://en.wikibooks.org/wiki/Ada%20Programming%2FDelimiters%2F%2C
http://en.wikibooks.org/wiki/Ada%20Programming%2FDelimiters%2F-
http://en.wikibooks.org/wiki/Ada%20Programming%2FOperators%2F-
http://en.wikibooks.org/wiki/Ada%20Programming%2FDelimiters%2Fdot
http://en.wikibooks.org/wiki/Ada%20Programming%2FDelimiters%2F%2F
http://en.wikibooks.org/wiki/Ada%20Programming%2FOperators%2F%2F
http://en.wikibooks.org/wiki/Ada%20Programming%2FDelimiters%2F%3A
http://en.wikibooks.org/wiki/Ada%20Programming%2FDelimiters%2F%3B

Delimiters

semicolon
<18

less than sign (also operator)
=19

equal sign (also operator =20)
>21

greater than sign (also operator)
22

vertical line

36.2 Compound character delimiters
Compound character delimiters

=>23

arrow
..24

double dot
**25

double star, exponentiate (also operator **26)
=27

assignment
/=28

inequality (also operator)
>=29

greater than or equal to (also operator)
<=30

less than or equal to (also operator)
<<31

left label bracket
>>32

right label bracket
<>33

18 http://en.wikibooks.org/wiki/Ada%20Programming%2FDelimiters%2Fless%20than

19 http://en.wikibooks.org/wiki/Ada%20Programming%2FDelimiters%2F%3D

20 http://en.wikibooks.org/wiki/Ada%20Programming%2FOperators%2F%3D

21 http://en.wikibooks.org/wiki/Ada%20Programming%2FDelimiters%2Fgreater%20than

22 http://en.wikibooks.org/wiki/Ada%20Programming%2FDelimiters%2Fvertical%20line

23 http://en.wikibooks.org/wiki/Ada%20Programming%2FDelimiters%2Farrow

24 http://en.wikibooks.org/wiki/Ada%20Programming%2FDelimiters%2Fdouble%20dot

25 http://en.wikibooks.org/wiki/Ada%20Programming%2FDelimiters%2F%2A%2A

26 http://en.wikibooks.org/wiki/Ada%20Programming%2FOperators%2F%2A%2A

27 http://en.wikibooks.org/wiki/Ada%20Programming%2FDelimiters%2F%3A%3D

28 http://en.wikibooks.org/wiki/Ada%20Programming%2FDelimiters%2F%2F%3D

29
http://en.wikibooks.org/wiki/Ada%20Programming%2FDelimiters%2Fgreater%20than%20or%

20equal%20to

30
http://en.wikibooks.org/wiki/Ada%20Programming%2FDelimiters%2Fless%20than%20or%

20equal%20to
31 http://en.wikibooks.org/wiki/Ada%20Programming%2FDelimiters%2Fleft%20label

32 http://en.wikibooks.org/wiki/Ada%20Programming%2FDelimiters%2Fright%20label

33 http://en.wikibooks.org/wiki/Ada%20Programming%2FDelimiters%2Fbox

298

http://en.wikibooks.org/wiki/Ada%20Programming%2FDelimiters%2Fless%20than
http://en.wikibooks.org/wiki/Ada%20Programming%2FDelimiters%2F%3D
http://en.wikibooks.org/wiki/Ada%20Programming%2FOperators%2F%3D
http://en.wikibooks.org/wiki/Ada%20Programming%2FDelimiters%2Fgreater%20than
http://en.wikibooks.org/wiki/Ada%20Programming%2FDelimiters%2Fvertical%20line
http://en.wikibooks.org/wiki/Ada%20Programming%2FDelimiters%2Farrow
http://en.wikibooks.org/wiki/Ada%20Programming%2FDelimiters%2Fdouble%20dot
http://en.wikibooks.org/wiki/Ada%20Programming%2FDelimiters%2F%2A%2A
http://en.wikibooks.org/wiki/Ada%20Programming%2FOperators%2F%2A%2A
http://en.wikibooks.org/wiki/Ada%20Programming%2FDelimiters%2F%3A%3D
http://en.wikibooks.org/wiki/Ada%20Programming%2FDelimiters%2F%2F%3D
http://en.wikibooks.org/wiki/Ada%20Programming%2FDelimiters%2Fgreater%20than%20or%20equal%20to
http://en.wikibooks.org/wiki/Ada%20Programming%2FDelimiters%2Fgreater%20than%20or%20equal%20to
http://en.wikibooks.org/wiki/Ada%20Programming%2FDelimiters%2Fless%20than%20or%20equal%20to
http://en.wikibooks.org/wiki/Ada%20Programming%2FDelimiters%2Fless%20than%20or%20equal%20to
http://en.wikibooks.org/wiki/Ada%20Programming%2FDelimiters%2Fleft%20label
http://en.wikibooks.org/wiki/Ada%20Programming%2FDelimiters%2Fright%20label
http://en.wikibooks.org/wiki/Ada%20Programming%2FDelimiters%2Fbox

box

36.3 Others
Others

The following ones are special characters but not delimiters.
"34

quotation mark, used for string literals35.
#36

number sign, used in based numeric literals37.
The following special characters are unused in Ada code - they are illegal except within
string literals and comments (they are used in the Reference Manual Backus-Naur syntax
definition of Ada):
[
left square bracket

]
right square bracket

{
left curly bracket

}
right curly bracket

36.4 See also
See also

36.4.1 Wikibook

• Ada Programming38

36.4.2 Ada 95 Reference Manual

• 2.1 Character Set ˆ{http://www.adaic.org/resources/add_content/standards/

95lrm/ARM_HTML/RM-2-1.html}

• 2.2 Lexical Elements, Separators, and Delimiters ˆ{http://www.adaic.org/

resources/add_content/standards/95lrm/ARM_HTML/RM-2-2.html}

36.4.3 Ada 2005 Reference Manual

• 2.1 Character Set ˆ{http://www.adaic.org/resources/add_content/standards/

05rm/html/RM-2-1.html}

• 2.2 Lexical Elements, Separators, and Delimiters ˆ{http://www.adaic.org/

resources/add_content/standards/05rm/html/RM-2-2.html}

34 http://en.wikibooks.org/wiki/Ada%20Programming%2FSpecial%2F%22

35 Chapter 34.2.4 on page 289
36 http://en.wikibooks.org/wiki/Ada%20Programming%2FSpecial%2Fnumber%20sign

37 Chapter 34.2.2 on page 288
38 http://en.wikibooks.org/wiki/Ada%20Programming

299

http://www.adaic.org/resources/add_content/standards/95lrm/ARM_HTML/RM-2-1.html
http://www.adaic.org/resources/add_content/standards/95lrm/ARM_HTML/RM-2-1.html
http://www.adaic.org/resources/add_content/standards/95lrm/ARM_HTML/RM-2-2.html
http://www.adaic.org/resources/add_content/standards/95lrm/ARM_HTML/RM-2-2.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-2-1.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-2-1.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-2-2.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-2-2.html
http://en.wikibooks.org/wiki/Ada%20Programming%2FSpecial%2F%22
http://en.wikibooks.org/wiki/Ada%20Programming%2FSpecial%2Fnumber%20sign
http://en.wikibooks.org/wiki/Ada%20Programming

37 Operators

37.1 Standard operators
Standard operators

Ada1 allows operator overloading2 for all standard operators and so the following sum-
maries can only describe the suggested standard operations for each operator. It is quite
possible to misuse any standard operator to perform something unusual.
Each operator is either a keyword3 or a delimiter4 -- hence all operator pages are redirects
to the appropriate keyword5 or delimiter6.
Operators have arguments which in the RM are called Left and Right for binary operators,
Right for unary operators (indicating the position with respect to the operator symbol).
The list is sorted from lowest precedence to highest precedence.

37.1.1 Logical operators

and7

and x∧y, (also keyword and8)
or9

or x∨y, (also keyword or10)
xor11

exclusive or (x∧ ȳ)∨ (x̄∧y), (also keyword xor12)

37.1.2 Relational operators

/=13

Not Equal x 6= y, (also special character /=14)
=15

Equal x = y, (also special character =16)

1 http://en.wikibooks.org/wiki/Ada%20Programming

2 http://en.wikipedia.org/wiki/operator%20overloading

3 Chapter 35 on page 293
4 Chapter 36 on page 297
5 Chapter 35 on page 293
6 Chapter 36 on page 297
7 http://en.wikibooks.org/wiki/Ada%20Programming%2FOperators%2Fand

8 http://en.wikibooks.org/wiki/Ada%20Programming%2FKeywords%2Fand

9 http://en.wikibooks.org/wiki/Ada%20Programming%2FOperators%2For

10 http://en.wikibooks.org/wiki/Ada%20Programming%2FKeywords%2For

11 http://en.wikibooks.org/wiki/Ada%20Programming%2FOperators%2Fxor

12 http://en.wikibooks.org/wiki/Ada%20Programming%2FKeywords%2Fxor

13 http://en.wikibooks.org/wiki/Ada%20Programming%2FOperators%2F%2F%3D

14 http://en.wikibooks.org/wiki/Ada%20Programming%2FDelimiters%2F%2F%3D

15 http://en.wikibooks.org/wiki/Ada%20Programming%2FOperators%2F%3D

16 http://en.wikibooks.org/wiki/Ada%20Programming%2FDelimiters%2F%3D

301

http://en.wikibooks.org/wiki/Ada%20Programming
http://en.wikipedia.org/wiki/operator%20overloading
http://en.wikibooks.org/wiki/Ada%20Programming%2FOperators%2Fand
http://en.wikibooks.org/wiki/Ada%20Programming%2FKeywords%2Fand
http://en.wikibooks.org/wiki/Ada%20Programming%2FOperators%2For
http://en.wikibooks.org/wiki/Ada%20Programming%2FKeywords%2For
http://en.wikibooks.org/wiki/Ada%20Programming%2FOperators%2Fxor
http://en.wikibooks.org/wiki/Ada%20Programming%2FKeywords%2Fxor
http://en.wikibooks.org/wiki/Ada%20Programming%2FOperators%2F%2F%3D
http://en.wikibooks.org/wiki/Ada%20Programming%2FDelimiters%2F%2F%3D
http://en.wikibooks.org/wiki/Ada%20Programming%2FOperators%2F%3D
http://en.wikibooks.org/wiki/Ada%20Programming%2FDelimiters%2F%3D

Operators

<17

Less than x < y, (also special character <18)
<=19

Less than or equal to (x ≤ y), (also special character <=20)
>21

Greater than (x > y), (also special character >22)
>=23

Greater than or equal to (x ≥ y), (also special character >=24)

37.1.3 Binary adding operators

+25

Add x+y, (also special character +26)
-27

Subtract x−y, (also special character -28)
&29

Concatenate , x & y, (also special character &30)

37.1.4 Unary adding operators

+31

Plus sign +x, (also special character +32)
-33

Minus sign −x, (also special character -34)

37.1.5 Multiplying operator

*35

Multiply, x×y, (also special character *36)

17 http://en.wikibooks.org/wiki/Ada%20Programming%2FOperators%2Fless%20than

18 http://en.wikibooks.org/wiki/Ada%20Programming%2FDelimiters%2Fless%20than

19
http://en.wikibooks.org/wiki/Ada%20Programming%2FOperators%2Fless%20than%20or%

20equal%20to

20
http://en.wikibooks.org/wiki/Ada%20Programming%2FDelimiters%2Fless%20than%20or%

20equal%20to
21 http://en.wikibooks.org/wiki/Ada%20Programming%2FOperators%2Fgreater%20than

22 http://en.wikibooks.org/wiki/Ada%20Programming%2FDelimiters%2Fgreater%20than

23
http://en.wikibooks.org/wiki/Ada%20Programming%2FOperators%2Fgreater%20than%20or%

20equal%20to

24
http://en.wikibooks.org/wiki/Ada%20Programming%2FDelimiters%2Fgreater%20than%20or%

20equal%20to
25 http://en.wikibooks.org/wiki/Ada%20Programming%2FDelimiters%2F%2B

26 http://en.wikibooks.org/wiki/Ada%20Programming%2FDelimiters%2F%2B

27 http://en.wikibooks.org/wiki/Ada%20Programming%2FDelimiters%2F-

28 http://en.wikibooks.org/wiki/Ada%20Programming%2FDelimiters%2F-

29 http://en.wikibooks.org/wiki/Ada%20Programming%2FDelimiters%2F%26

30 http://en.wikibooks.org/wiki/Ada%20Programming%2FDelimiters%2F%26

31 http://en.wikibooks.org/wiki/Ada%20Programming%2FDelimiters%2F%2B

32 http://en.wikibooks.org/wiki/Ada%20Programming%2FDelimiters%2F%2B

33 http://en.wikibooks.org/wiki/Ada%20Programming%2FDelimiters%2F-

34 http://en.wikibooks.org/wiki/Ada%20Programming%2FDelimiters%2F-

35 http://en.wikibooks.org/wiki/Ada%20Programming%2FDelimiters%2F%2A

36 http://en.wikibooks.org/wiki/Ada%20Programming%2FDelimiters%2F%2A

302

http://en.wikibooks.org/wiki/Ada%20Programming%2FOperators%2Fless%20than
http://en.wikibooks.org/wiki/Ada%20Programming%2FDelimiters%2Fless%20than
http://en.wikibooks.org/wiki/Ada%20Programming%2FOperators%2Fless%20than%20or%20equal%20to
http://en.wikibooks.org/wiki/Ada%20Programming%2FOperators%2Fless%20than%20or%20equal%20to
http://en.wikibooks.org/wiki/Ada%20Programming%2FDelimiters%2Fless%20than%20or%20equal%20to
http://en.wikibooks.org/wiki/Ada%20Programming%2FDelimiters%2Fless%20than%20or%20equal%20to
http://en.wikibooks.org/wiki/Ada%20Programming%2FOperators%2Fgreater%20than
http://en.wikibooks.org/wiki/Ada%20Programming%2FDelimiters%2Fgreater%20than
http://en.wikibooks.org/wiki/Ada%20Programming%2FOperators%2Fgreater%20than%20or%20equal%20to
http://en.wikibooks.org/wiki/Ada%20Programming%2FOperators%2Fgreater%20than%20or%20equal%20to
http://en.wikibooks.org/wiki/Ada%20Programming%2FDelimiters%2Fgreater%20than%20or%20equal%20to
http://en.wikibooks.org/wiki/Ada%20Programming%2FDelimiters%2Fgreater%20than%20or%20equal%20to
http://en.wikibooks.org/wiki/Ada%20Programming%2FDelimiters%2F%2B
http://en.wikibooks.org/wiki/Ada%20Programming%2FDelimiters%2F%2B
http://en.wikibooks.org/wiki/Ada%20Programming%2FDelimiters%2F-
http://en.wikibooks.org/wiki/Ada%20Programming%2FDelimiters%2F-
http://en.wikibooks.org/wiki/Ada%20Programming%2FDelimiters%2F%26
http://en.wikibooks.org/wiki/Ada%20Programming%2FDelimiters%2F%26
http://en.wikibooks.org/wiki/Ada%20Programming%2FDelimiters%2F%2B
http://en.wikibooks.org/wiki/Ada%20Programming%2FDelimiters%2F%2B
http://en.wikibooks.org/wiki/Ada%20Programming%2FDelimiters%2F-
http://en.wikibooks.org/wiki/Ada%20Programming%2FDelimiters%2F-
http://en.wikibooks.org/wiki/Ada%20Programming%2FDelimiters%2F%2A
http://en.wikibooks.org/wiki/Ada%20Programming%2FDelimiters%2F%2A

/37

Divide x/y, (also special character /38)
mod39

modulus (also keyword mod40)
rem41

remainder (also keyword rem42)

37.1.6 Highest precedence operator

**43

Power xy, (also special character **44)
not45

logical not ¬x, (also keyword not46)
abs47

absolute value |x| (also keyword abs48)

37.2 Short-circuit control forms
Short-circuit control forms

These are not operators and thus cannot be overloaded.
and then49

e.g. if Y /= 0 and then X/Y > Limit then ...

or else50

e.g. if Ptr = null or else Ptr.I = 0 then ...

37.3 Membership tests
Membership tests

The Membership Tests also cannot be overloaded because they are not operators.
in51

element of, var ∈ type, e.g. if I in Positive then, (also keyword in)
not in52

37 http://en.wikibooks.org/wiki/Ada%20Programming%2FDelimiters%2F%2F

38 http://en.wikibooks.org/wiki/Ada%20Programming%2FDelimiters%2F%2F

39 http://en.wikibooks.org/wiki/Ada%20Programming%2FOperators%2Fmod

40 http://en.wikibooks.org/wiki/Ada%20Programming%2FKeywords%2Fmod

41 http://en.wikibooks.org/wiki/Ada%20Programming%2FKeywords%2Frem

42 http://en.wikibooks.org/wiki/Ada%20Programming%2FKeywords%2Frem

43 http://en.wikibooks.org/wiki/Ada%20Programming%2FDelimiters%2F%2A%2A

44 http://en.wikibooks.org/wiki/Ada%20Programming%2FDelimiters%2F%2A%2A

45 http://en.wikibooks.org/wiki/Ada%20Programming%2FOperators%2Fnot

46 http://en.wikibooks.org/wiki/Ada%20Programming%2FKeywords%2Fnot

47 http://en.wikibooks.org/wiki/Ada%20Programming%2FOperators%2Fabs

48 http://en.wikibooks.org/wiki/Ada%20Programming%2FKeywords%2Fabs

49
http://en.wikibooks.org/wiki/Ada%20Programming%2FOperators%2Fand%23Boolean_shortcut_

operator

50
http://en.wikibooks.org/wiki/Ada%20Programming%2FOperators%2For%23Boolean_shortcut_

operator
51 http://en.wikibooks.org/wiki/Ada%20Programming%2FOperators%2Fin

52 http://en.wikibooks.org/wiki/Ada%20Programming%2FOperators%2Fin

303

http://en.wikibooks.org/wiki/Ada%20Programming%2FDelimiters%2F%2F
http://en.wikibooks.org/wiki/Ada%20Programming%2FDelimiters%2F%2F
http://en.wikibooks.org/wiki/Ada%20Programming%2FOperators%2Fmod
http://en.wikibooks.org/wiki/Ada%20Programming%2FKeywords%2Fmod
http://en.wikibooks.org/wiki/Ada%20Programming%2FKeywords%2Frem
http://en.wikibooks.org/wiki/Ada%20Programming%2FKeywords%2Frem
http://en.wikibooks.org/wiki/Ada%20Programming%2FDelimiters%2F%2A%2A
http://en.wikibooks.org/wiki/Ada%20Programming%2FDelimiters%2F%2A%2A
http://en.wikibooks.org/wiki/Ada%20Programming%2FOperators%2Fnot
http://en.wikibooks.org/wiki/Ada%20Programming%2FKeywords%2Fnot
http://en.wikibooks.org/wiki/Ada%20Programming%2FOperators%2Fabs
http://en.wikibooks.org/wiki/Ada%20Programming%2FKeywords%2Fabs
http://en.wikibooks.org/wiki/Ada%20Programming%2FOperators%2Fand%23Boolean_shortcut_operator
http://en.wikibooks.org/wiki/Ada%20Programming%2FOperators%2Fand%23Boolean_shortcut_operator
http://en.wikibooks.org/wiki/Ada%20Programming%2FOperators%2For%23Boolean_shortcut_operator
http://en.wikibooks.org/wiki/Ada%20Programming%2FOperators%2For%23Boolean_shortcut_operator
http://en.wikibooks.org/wiki/Ada%20Programming%2FOperators%2Fin
http://en.wikibooks.org/wiki/Ada%20Programming%2FOperators%2Fin

Operators

not element of, var /∈ type, e.g. if I not in Positive then, (also keywords not in)

37.3.1 Range membership test

if Today not in Tuesday .. Thursday then

...

37.3.2 Subtype membership test

Is_Non_Negative := X in Natural;

37.3.3 Class membership test

exit when Object in Circle'Class;

37.4 See also
See also

37.4.1 Wikibook

• Ada Programming53

37.4.2 Ada 95 Reference Manual

• 4.5 Operators and Expression Evaluation ˆ{http://www.adaic.org/resources/add_

content/standards/05rm/html/RM-4-5.html}

37.4.3 Ada 2005 Reference Manual

• 4.5 Operators and Expression Evaluation ˆ{http://www.adaic.org/resources/add_

content/standards/05rm/html/RM-4-5.html}

37.4.4 Ada Quality and Style Guide

• 2.1.3 Alignment of Operators ˆ{http://www.adaic.org/resources/add_content/

docs/95style/html/sec_2/2-1-3.html}

• 5.7.4 Overloaded Operators ˆ{http://www.adaic.org/resources/add_content/

docs/95style/html/sec_5/5-7-4.html}

• 5.7.5 Overloading the Equality Operator ˆ{http://www.adaic.org/resources/add_

content/docs/95style/html/sec_5/5-7-5.html}

Ada Operators54

and55 and then56 >57 +58 abs59 &60

or61 or else62 >=63 -64 mod65

xor66 =67 <68 *69 rem70 in71

not72 /=73 <=74 **75 /76 not in77

53 http://en.wikibooks.org/wiki/Ada%20Programming

54 http://en.wikibooks.org/wiki/Ada%20Programming%2FAll%20Operators

304

http://www.adaic.org/resources/add_content/standards/05rm/html/RM-4-5.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-4-5.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-4-5.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-4-5.html
http://www.adaic.org/resources/add_content/docs/95style/html/sec_2/2-1-3.html
http://www.adaic.org/resources/add_content/docs/95style/html/sec_2/2-1-3.html
http://www.adaic.org/resources/add_content/docs/95style/html/sec_5/5-7-4.html
http://www.adaic.org/resources/add_content/docs/95style/html/sec_5/5-7-4.html
http://www.adaic.org/resources/add_content/docs/95style/html/sec_5/5-7-5.html
http://www.adaic.org/resources/add_content/docs/95style/html/sec_5/5-7-5.html
http://en.wikibooks.org/wiki/Ada%20Programming
http://en.wikibooks.org/wiki/Ada%20Programming%2FAll%20Operators

38 Attributes

38.1 Language summary attributes
Language summary attributes

The concept of attributes is pretty unique to Ada1. Attributes allow you to get —and
sometimes set— information about objects or other language entities such as types. A
good example is the Size attribute. It describes the size of an object or a type in bits.

A : Natural := Integer'Size; --A is now 32 (with the GNAT2 compiler for the x86 architecture)

However, unlike the sizeof operator from C3/C++4 the Size attribute can also be set:

type Byte is range -128 .. 127; --The range fits into 8 bits but the

--compiler is still free to choose.

for Byte'Size use 8; --Now we force the compiler to use 8 bits.

Of course not all attributes can be set. An attribute starts with a tick ' and is followed
by its name. The compiler determines by context if the tick is the beginning of an
attribute or of a character literal.

A : Character := Character'Val (32) --A is now a space

B : Character := ' '; --B is also a space

38.2 List of language defined attributes
List of language defined attributes

Ada 2005
This is a new Ada 20055 attribute.

Ada 2012
This is a new Ada 20126 attribute.

Obsolescent
This is a deprecated attribute and should not be used in new code.

1 http://en.wikibooks.org/wiki/Ada%20Programming

3 http://en.wikibooks.org/wiki/C%20Programming

4 http://en.wikibooks.org/wiki/C%2B%2B%20Programming

5 Chapter 23 on page 219
6 http://en.wikibooks.org/wiki/Ada%20Programming%2FAda%202012

305

http://en.wikibooks.org/wiki/Ada%20Programming
http://en.wikibooks.org/wiki/C%20Programming
http://en.wikibooks.org/wiki/C%2B%2B%20Programming
http://en.wikibooks.org/wiki/Ada%20Programming%2FAda%202012

Attributes

38.2.1 A − B

• 'Access7

• 'Address8

• 'Adjacent9

• 'Aft10

• 'Alignment11

• 'Base12

• 'Bit_Order13

• 'Body_Version14

38.2.2 C

• 'Callable15

• 'Caller16

• 'Ceiling17

• 'Class18

• 'Component_Size19

• 'Compose20

• 'Constrained21

• 'Copy_Sign22

• 'Count23

38.2.3 D − F

• 'Definite24

• 'Delta25

• 'Denorm26

• 'Digits27

• 'Emax28 (Obsolescent)

7 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Access

8 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Address

9 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Adjacent

10 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Aft

11 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Alignment

12 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Base

13 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Bit_Order

14 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Body_Version

15 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Callable

16 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Caller

17 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Ceiling

18 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Class

19 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Component_Size

20 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Compose

21 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Constrained

22 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Copy_Sign

23 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Count

24 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Definite

25 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Delta

26 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Denorm

27 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Digits

28 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Emax

306

http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Access
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Address
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Adjacent
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Aft
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Alignment
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Base
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Bit_Order
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Body_Version
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Callable
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Caller
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Ceiling
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Class
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Component_Size
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Compose
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Constrained
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Copy_Sign
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Count
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Definite
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Delta
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Denorm
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Digits
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Emax

• 'Exponent29

• 'External_Tag30

• 'Epsilon31 (Obsolescent)
• 'First32

• 'First_Bit33

• 'Floor34

• 'Fore35

• 'Fraction36

38.2.4 G − L

• 'Has_Same_Storage37 (Ada 2012)
• 'Identity38

• 'Image39

• 'Input40

• 'Large41 (Obsolescent)
• 'Last42

• 'Last_Bit43

• 'Leading_Part44

• 'Length45

38.2.5 M

• 'Machine46

• 'Machine_Emax47

• 'Machine_Emin48

• 'Machine_Mantissa49

• 'Machine_Overflows50

29 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Exponent

30 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27External_Tag

31 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Epsilon

32 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27First

33 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27First_Bit

34 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Floor

35 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Fore

36 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Fraction

37 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Has_Same_Storage

38 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Identity

39 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Image

40 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Input

41 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Large

42 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Last

43 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Last_Bit

44 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Leading_Part

45 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Length

46 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Machine

47 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Machine_Emax

48 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Machine_Emin

49 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Machine_Mantissa

50 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Machine_Overflows

307

http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Exponent
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27External_Tag
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Epsilon
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27First
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27First_Bit
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Floor
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Fore
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Fraction
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Has_Same_Storage
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Identity
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Image
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Input
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Large
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Last
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Last_Bit
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Leading_Part
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Length
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Machine
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Machine_Emax
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Machine_Emin
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Machine_Mantissa
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Machine_Overflows

Attributes

• 'Machine_Radix51

• 'Machine_Rounding52 (Ada 2005)
• 'Machine_Rounds53

• 'Mantissa54 (Obsolescent)
• 'Max55

• 'Max_Aligment_For_Allocation56 (Ada 2012)
• 'Max_Size_In_Storage_Elements57

• 'Min58

• 'Mod59 (Ada 2005)
• 'Model60

• 'Model_Emin61

• 'Model_Epsilon62

• 'Model_Mantissa63

• 'Model_Small64

• 'Modulus65

38.2.6 O − R

• 'Old66 (Ada 2012)
• 'Output67

• 'Overlaps_Storage68 (Ada 2012)
• 'Partition_ID69

• 'Pos70

• 'Position71

• 'Pred72

• 'Priority73 (Ada 2005)

51 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Machine_Radix

52 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Machine_Rounding

53 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Machine_Rounds

54 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Mantissa

55 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Max

56
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Max_Aligment_For_

Allocation

57
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Max_Size_In_Storage_

Elements
58 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Min

59 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Mod

60 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Model

61 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Model_Emin

62 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Model_Epsilon

63 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Model_Mantissa

64 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Model_Small

65 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Modulus

66 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Old

67 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Output

68 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Overlaps_Storage

69 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Partition_ID

70 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Pos

71 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Position

72 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Pred

73 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Priority

308

http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Machine_Radix
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Machine_Rounding
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Machine_Rounds
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Mantissa
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Max
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Max_Aligment_For_Allocation
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Max_Aligment_For_Allocation
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Max_Size_In_Storage_Elements
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Max_Size_In_Storage_Elements
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Min
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Mod
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Model
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Model_Emin
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Model_Epsilon
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Model_Mantissa
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Model_Small
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Modulus
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Old
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Output
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Overlaps_Storage
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Partition_ID
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Pos
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Position
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Pred
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Priority

• 'Range74

• 'Read75

• 'Remainder76

• 'Result77 (Ada 2012)
• 'Round78

• 'Rounding79

38.2.7 S

• 'Safe_Emax80 (Obsolescent)
• 'Safe_First81

• 'Safe_Large82 (Obsolescent)
• 'Safe_Last83

• 'Safe_Small84 (Obsolescent)
• 'Scale85

• 'Scaling86

• 'Signed_Zeros87

• 'Size88

• 'Small89

• 'Storage_Pool90

• 'Storage_Size91

• 'Stream_Size92 (Ada 2005)
• 'Succ93

38.2.8 T − V

• 'Tag94

• 'Terminated95

74 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Range

75 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Read

76 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Remainder

77 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Result

78 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Round

79 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Rounding

80 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Safe_Emax

81 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Safe_First

82 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Safe_Large

83 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Safe_Last

84 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Safe_Small

85 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Scale

86 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Scaling

87 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Signed_Zeros

88 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Size

89 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Small

90 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Storage_Pool

91 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Storage_Size

92 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Stream_Size

93 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Succ

94 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Tag

95 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Terminated

309

http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Range
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Read
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Remainder
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Result
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Round
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Rounding
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Safe_Emax
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Safe_First
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Safe_Large
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Safe_Last
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Safe_Small
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Scale
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Scaling
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Signed_Zeros
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Size
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Small
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Storage_Pool
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Storage_Size
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Stream_Size
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Succ
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Tag
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Terminated

Attributes

• 'Truncation96

• 'Unbiased_Rounding97

• 'Unchecked_Access98

• 'Val99

• 'Valid100

• 'Value101

• 'Version102

38.2.9 W − Z

• 'Wide_Image103

• 'Wide_Value104

• 'Wide_Wide_Image105 (Ada 2005)
• 'Wide_Wide_Value106 (Ada 2005)
• 'Wide_Wide_Width107 (Ada 2005)
• 'Wide_Width108

• 'Width109

• 'Write110

38.3 List of implementation defined attributes
List of implementation defined attributes

The following attributes are not available in all Ada compilers, only in those that had
implemented them.
Currently, there are only listed the implementation-defined attributes of a few compilers.
You can help Wikibooks adding111 specific attributes of other compilers:
GNAT
Implementation-defined attribute112 of the GNAT113 compiler from AdaCore/FSF.

HP Ada

96 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Truncation

97 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Unbiased_Rounding

98 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Unchecked_Access

99 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Val

100 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Valid

101 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Value

102 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Version

103 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Wide_Image

104 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Wide_Value

105 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Wide_Wide_Image

106 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Wide_Wide_Value

107 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Wide_Wide_Width

108 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Wide_Width

109 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Width

110 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Write

111 http://en.wikibooks.org/w/index.php?title=Programming:Ada:Attributes&action=edit

112 http://www.adacore.com/wp-content/files/auto_update/gnat-unw-docs/html/gnat_rm_3.html

113 http://en.wikibooks.org/wiki/Ada%20Programming%2FGNAT

310

http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Truncation
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Unbiased_Rounding
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Unchecked_Access
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Val
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Valid
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Value
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Version
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Wide_Image
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Wide_Value
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Wide_Wide_Image
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Wide_Wide_Value
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Wide_Wide_Width
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Wide_Width
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Width
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Write
http://en.wikibooks.org/w/index.php?title=Programming:Ada:Attributes&action=edit
http://www.adacore.com/wp-content/files/auto_update/gnat-unw-docs/html/gnat_rm_3.html
http://en.wikibooks.org/wiki/Ada%20Programming%2FGNAT

Implementation-defined attribute114 of the HP Ada115 compiler (formerly known as
"DEC Ada").

ICC
Implementation-defined attribute116 of the Irvine ICC117 compiler.

PowerAda
Implementation-defined attribute118 of OC Systems' PowerAda119.

SPARCompiler
Implementation-defined attribute120 of Sun's SPARCompiler Ada121.

38.3.1 A − D

• 'Abort_Signal122 (GNAT)
• 'Address_Size123 (GNAT)
• 'Architecture124 (ICC)
• 'Asm_Input125 (GNAT)
• 'Asm_Output126 (GNAT)
• 'AST_Entry127 (GNAT, HP Ada)
• 'Bit128 (GNAT, HP Ada)
• 'Bit_Position129 (GNAT)
• 'CG_Mode130 (ICC)
• 'Code_Address131 (GNAT)
• 'Compiler_Key132 (SPARCompiler)
• 'Compiler_Version133 (SPARCompiler)
• 'Declared134 (ICC)
• 'Default_Bit_Order135 (GNAT)
• 'Dope_Address136 (SPARCompiler)

114 http://h71000.www7.hp.com/commercial/ada/ada_lrm.pdf

115 http://h71000.www7.hp.com/commercial/ada/ada_index.html

116 "4.2 ICC-Defined Attributes", ICC Ada Implementation Reference — ICC Ada Version 8.2.5 for i960MC

Targets, document version 2.11.4http://www.irvine.com/support/general/

117 http://www.irvine.com/products.html

118 http://www.ocsystems.com/user_guide/powerada/html/powerada-117.html#HEADING117-0

119 http://www.ocsystems.com/prod_powerada.html

120
http://docs.sun.com/app/docs/doc/802-3641/6i7h8si5i?a=view#F.

Implementation-Dependent_Characteristi-30
121 http://docs.sun.com/app/docs/coll/15.4

122 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Abort_Signal

123 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Address_Size

124 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Architecture

125 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Asm_Input

126 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Asm_Output

127 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27AST_Entry

128 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Bit

129 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Bit_Position

130 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27CG_Mode

131 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Code_Address

132 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Compiler_Key

133 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Compiler_Version

134 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Declared

135 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Default_Bit_Order

136 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Dope_Address

311

http://h71000.www7.hp.com/commercial/ada/ada_lrm.pdf
http://h71000.www7.hp.com/commercial/ada/ada_index.html
http://www.irvine.com/support/general/
http://www.irvine.com/products.html
http://www.ocsystems.com/user_guide/powerada/html/powerada-117.html#HEADING117-0
http://www.ocsystems.com/prod_powerada.html
http://docs.sun.com/app/docs/doc/802-3641/6i7h8si5i?a=view#F.Implementation-Dependent_Characteristi-30
http://docs.sun.com/app/docs/doc/802-3641/6i7h8si5i?a=view#F.Implementation-Dependent_Characteristi-30
http://docs.sun.com/app/docs/coll/15.4
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Abort_Signal
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Address_Size
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Architecture
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Asm_Input
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Asm_Output
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27AST_Entry
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Bit
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Bit_Position
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27CG_Mode
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Code_Address
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Compiler_Key
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Compiler_Version
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Declared
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Default_Bit_Order
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Dope_Address

Attributes

• 'Dope_Size137 (SPARCompiler)

38.3.2 E − H

• 'Elaborated138 (GNAT)
• 'Elab_Body139 (GNAT)
• 'Elab_Spec140 (GNAT)
• 'Emax141 (GNAT)
• 'Enabled142 (GNAT)
• 'Entry_Number143 (SPARCompiler)
• 'Enum_Rep144 (GNAT)
• 'Enum_Val145 (GNAT)
• 'Epsilon146 (GNAT)
• 'Exception_Address147 (ICC)
• 'Extended_Aft148 (PowerAda)
• 'Extended_Base149 (PowerAda)
• 'Extended_Digits150 (PowerAda)
• 'Extended_Fore151 (PowerAda)
• 'Extended_Image152 (PowerAda)
• 'Extended_Value153 (PowerAda)
• 'Extended_Width154 (PowerAda)
• 'Extended_Wide_Image155 (PowerAda)
• 'Extended_Wide_Value156 (PowerAda)
• 'Extended_Wide_Width157 (PowerAda)
• 'Fixed_Value158 (GNAT)
• 'Has_Access_Values159 (GNAT)
• 'Has_Discriminants160 (GNAT)

137 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Dope_Size

138 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Elaborated

139 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Elab_Body

140 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Elab_Spec

141 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Emax

142 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Enabled

143 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Entry_Number

144 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Enum_Rep

145 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Enum_Val

146 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Epsilon

147 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Exception_Address

148 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Extended_Aft

149 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Extended_Base

150 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Extended_Digits

151 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Extended_Fore

152 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Extended_Image

153 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Extended_Value

154 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Extended_Width

155 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Extended_Wide_Image

156 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Extended_Wide_Value

157 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Extended_Wide_Width

158 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Fixed_Value

159 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Has_Access_Values

160 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Has_Discriminants

312

http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Dope_Size
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Elaborated
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Elab_Body
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Elab_Spec
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Emax
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Enabled
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Entry_Number
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Enum_Rep
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Enum_Val
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Epsilon
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Exception_Address
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Extended_Aft
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Extended_Base
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Extended_Digits
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Extended_Fore
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Extended_Image
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Extended_Value
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Extended_Width
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Extended_Wide_Image
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Extended_Wide_Value
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Extended_Wide_Width
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Fixed_Value
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Has_Access_Values
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Has_Discriminants

• 'High_Word161 (ICC)
• 'Homogeneous162 (SPARCompiler)

38.3.3 I − N

• 'Img163 (GNAT)
• 'Integer_Value164 (GNAT)
• 'Invalid_Value165 (GNAT)
• 'Linear_Address166 (ICC)
• 'Low_Word167 (ICC)
• 'Machine_Size168 (GNAT, HP Ada)
• 'Max_Interrupt_Priority169 (GNAT)
• 'Max_Priority170 (GNAT)
• 'Maximum_Alignment171 (GNAT)
• 'Mechanism_Code172 (GNAT)
• 'Null_Parameter173 (GNAT, HP Ada)

38.3.4 O − T

• 'Object_Size174 (GNAT)
• 'Old175 (GNAT)
• 'Passed_By_Reference176 (GNAT)
• 'Pool_Address177 (GNAT)
• 'Range_Length178 (GNAT)
• 'Ref179 (SPARCompiler)
• 'Storage_Unit180 (GNAT)
• 'Stub_Type181 (GNAT)
• 'Target182 (ICC)

161 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27High_Word

162 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Homogeneous

163 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Img

164 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Integer_Value

165 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Invalid_Value

166 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Linear_Address

167 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Low_Word

168 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Machine_Size

169
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Max_Interrupt_

Priority
170 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Max_Priority

171 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Maximum_Alignment

172 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Mechanism_Code

173 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Null_Parameter

174 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Object_Size

175 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Old

176 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Passed_By_Reference

177 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Pool_Address

178 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Range_Length

179 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Ref

180 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Storage_Unit

181 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Stub_Type

182 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Target

313

http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27High_Word
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Homogeneous
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Img
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Integer_Value
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Invalid_Value
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Linear_Address
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Low_Word
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Machine_Size
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Max_Interrupt_Priority
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Max_Interrupt_Priority
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Max_Priority
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Maximum_Alignment
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Mechanism_Code
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Null_Parameter
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Object_Size
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Old
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Passed_By_Reference
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Pool_Address
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Range_Length
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Ref
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Storage_Unit
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Stub_Type
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Target

Attributes

• 'Target_Name183 (GNAT)
• 'Task_ID184 (SPARCompiler)
• 'Tick185 (GNAT)
• 'To_Address186 (GNAT)
• 'Type_Class187 (GNAT, HP Ada)
• 'Type_Key188 (SPARCompiler)

38.3.5 U − Z

• 'UET_Address189 (GNAT)
• 'Unconstrained_Array190 (GNAT)
• 'Universal_Literal_String191 (GNAT)
• 'Unrestricted_Access192 (GNAT, ICC)
• 'VADS_Size193 (GNAT)
• 'Value_Size194 (GNAT)
• 'Wchar_T_Size195 (GNAT)
• 'Word_Size196 (GNAT)

38.4 See also
See also

38.4.1 Wikibook

• Ada Programming197

• Ada Programming/Aspects198

• Ada Programming/Pragmas199

• Ada Programming/Keywords200

183 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Target_Name

184 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Task_ID

185 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Tick

186 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27To_Address

187 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Type_Class

188 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Type_Key

189 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27UET_Address

190 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Unconstrained_Array

191
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Universal_Literal_

String
192 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Unrestricted_Access

193 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27VADS_Size

194 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Value_Size

195 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Wchar_T_Size

196 http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Word_Size

197 http://en.wikibooks.org/wiki/Ada%20Programming

198 http://en.wikibooks.org/wiki/Ada%20Programming%2FAspects

199 Chapter 39 on page 317
200 Chapter 35 on page 293

314

http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Target_Name
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Task_ID
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Tick
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27To_Address
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Type_Class
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Type_Key
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27UET_Address
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Unconstrained_Array
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Universal_Literal_String
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Universal_Literal_String
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Unrestricted_Access
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27VADS_Size
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Value_Size
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Wchar_T_Size
http://en.wikibooks.org/wiki/Ada%20Programming%2FAttributes%2F%27Word_Size
http://en.wikibooks.org/wiki/Ada%20Programming
http://en.wikibooks.org/wiki/Ada%20Programming%2FAspects

38.4.2 Ada Reference Manual

Ada 83

• Annex 4: Attributes ˆ{http://archive.adaic.com/standards/83lrm/html/lrm-4.

html}

• Annex A: Predefined Language Attributes ˆ{http://archive.adaic.com/

standards/83lrm/html/lrm-A.html}

Ada 95

• 4.1 Attributes201

• Annex K: (informative) Language-Defined Attributes202

Ada 2005

• 4.1 Attributes203

• Annex K: (informative) Language-Defined Attributes204

Ada 2012

• 4.1 Attributes205

• Annex K: (informative) Language-Defined Attributes206

38.5 References
References

201 http://www.adaic.org/resources/add_content/standards/95lrm/ARM_HTML/RM-4-1.html

202 http://www.adaic.org/resources/add_content/standards/95lrm/ARM_HTML/RM-K.html

203 http://www.adaic.org/resources/add_content/standards/05rm/html/RM-2-4-1.html

204 http://www.adaic.org/resources/add_content/standards/05rm/html/RM-2-K.html

205 http://www.ada-auth.org/standards/12rm/html/RM-4-1.html

206 http://www.ada-auth.org/standards/12rm/html/RM-K.html

315

http://archive.adaic.com/standards/83lrm/html/lrm-4.html
http://archive.adaic.com/standards/83lrm/html/lrm-4.html
http://archive.adaic.com/standards/83lrm/html/lrm-A.html
http://archive.adaic.com/standards/83lrm/html/lrm-A.html
http://www.adaic.org/resources/add_content/standards/95lrm/ARM_HTML/RM-4-1.html
http://www.adaic.org/resources/add_content/standards/95lrm/ARM_HTML/RM-K.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-2-4-1.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-2-K.html
http://www.ada-auth.org/standards/12rm/html/RM-4-1.html
http://www.ada-auth.org/standards/12rm/html/RM-K.html

39 Pragmas

39.1 Description
Description

Pragmas1 control the compiler, i.e. they are compiler directives2. They have the standard
form of

pragma Name (Parameter_List);

where the parameter list is optional.

39.2 List of language defined pragmas
List of language defined pragmas

Some pragmas are specially marked:
Ada 2005
This is a new Ada 20053 pragma.

Ada 2012
This is a new Ada 20124 pragma.

Obsolescent
This is a deprecated pragma and it should not be used in new code.

39.2.1 A − H

• All_Calls_Remote5

• Assert6 (Ada 2005)
• Assertion_Policy7 (Ada 2005)
• Asynchronous8 (Obsolescent since Ada 2012)
• Atomic9 (Obsolescent since Ada 2012)
• Atomic_Components10 (Obsolescent since Ada 2012)
• Attach_Handler11 (Obsolescent since Ada 2012)

1 Chapter 39 on page 317
2 http://en.wikipedia.org/wiki/Compiler%20directive

3 Chapter 23 on page 219
4 http://en.wikibooks.org/wiki/Ada%20Programming%2FAda%202012

5 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FAll_Calls_Remote

6 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FAssert

7 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FAssertion_Policy

8 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FAsynchronous

9 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FAtomic

10 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FAtomic_Components

11 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FAttach_Handler

317

http://en.wikipedia.org/wiki/Compiler%20directive
http://en.wikibooks.org/wiki/Ada%20Programming%2FAda%202012
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FAll_Calls_Remote
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FAssert
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FAssertion_Policy
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FAsynchronous
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FAtomic
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FAtomic_Components
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FAttach_Handler

Pragmas

• Controlled12

• Convention13 (Obsolescent since Ada 2012)
• CPU14 (Ada 2012)
• Default_Storage_Pool15 (Ada 2012)
• Detect_Blocking16 (Ada 2005)
• Discard_Names17

• Dispatching_Domain18 (Ada 2012)
• Elaborate19

• Elaborate_All20

• Elaborate_Body21

• Export22 (Obsolescent since Ada 2012)

39.2.2 I − O

• Import23 (Obsolescent since Ada 2012)
• Independent24 (Ada 2012)
• Independent_Component25 (Ada 2012)
• Inline26 (Obsolescent since Ada 2012)
• Inspection_Point27

• Interface28 (Obsolescent)
• Interrupt_Handler29 (Obsolescent since Ada 2012)
• Interrupt_Priority30 (Obsolescent since Ada 2012)
• Linker_Options31

• List32

• Locking_Policy33

• Memory_Size34 (Obsolescent)
• No_Return35 (Ada 2005) (Obsolescent since Ada 2012)

12 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FControlled

13 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FConvention

14 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FCPU

15 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FDefault_Storage_Pool

16 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FDetect_Blocking

17 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FDiscard_Names

18 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FDispatching_Domain

19 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FElaborate

20 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FElaborate_All

21 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FElaborate_Body

22 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FExport

23 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FImport

24 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FIndependent

25 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FIndependent_Component

26 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FInline

27 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FInspection_Point

28 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FInterface

29 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FInterrupt_Handler

30 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FInterrupt_Priority

31 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FLinker_Options

32 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FList

33 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FLocking_Policy

34 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FMemory_Size

35 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FNo_Return

318

http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FControlled
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FConvention
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FCPU
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FDefault_Storage_Pool
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FDetect_Blocking
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FDiscard_Names
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FDispatching_Domain
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FElaborate
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FElaborate_All
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FElaborate_Body
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FExport
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FImport
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FIndependent
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FIndependent_Component
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FInline
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FInspection_Point
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FInterface
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FInterrupt_Handler
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FInterrupt_Priority
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FLinker_Options
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FList
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FLocking_Policy
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FMemory_Size
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FNo_Return

• Normalize_Scalars36

• Optimize37

39.2.3 P − R

• Pack38 (Obsolescent since Ada 2012)
• Page39

• Partition_Elaboration_Policy40 (Ada 2005)
• Preelaborable_Initialization41 (Ada 2005)
• Preelaborate42

• Priority43 (Obsolescent since Ada 2012)
• Priority_Specific_Dispatching44 (Ada 2005)
• Profile45 (Ada 2005)
• Pure46

• Queueing_Policy47

• Relative_Deadline48 (Ada 2005)
• Remote_Call_Interface49

• Remote_Types50

• Restrictions51

• Reviewable52

39.2.4 S − Z

• Shared53 (Obsolescent)
• Shared_Passive54

• Storage_Size55

• Storage_Unit56 (Obsolescent)
• Suppress57

36 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FNormalize_Scalars

37 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FOptimize

38 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FPack

39 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FPage

40
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FPartition_Elaboration_

Policy

41
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FPreelaborable_

Initialization
42 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FPreelaborate

43 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FPriority

44
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FPriority_Specific_

Dispatching
45 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FProfile

46 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FPure

47 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FQueueing_Policy

48 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FRelative_Deadline

49 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FRemote_Call_Interface

50 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FRemote_Types

51 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FRestrictions

52 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FReviewable

53 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FShared

54 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FShared_Passive

55 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FStorage_Size

56 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FStorage_Unit

57 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FSuppress

319

http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FNormalize_Scalars
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FOptimize
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FPack
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FPage
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FPartition_Elaboration_Policy
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FPartition_Elaboration_Policy
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FPreelaborable_Initialization
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FPreelaborable_Initialization
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FPreelaborate
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FPriority
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FPriority_Specific_Dispatching
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FPriority_Specific_Dispatching
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FProfile
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FPure
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FQueueing_Policy
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FRelative_Deadline
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FRemote_Call_Interface
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FRemote_Types
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FRestrictions
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FReviewable
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FShared
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FShared_Passive
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FStorage_Size
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FStorage_Unit
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FSuppress

Pragmas

• System_Name58 (Obsolescent)
• Task_Dispatching_Policy59

• Unchecked_Union60 (Ada 2005)
• Unsuppress61 (Ada 2005)
• Volatile62

• Volatile_Components63

39.3 List of implementation defined pragmas
List of implementation defined pragmas

The following pragmas are not available in all Ada compilers, only in those that had
implemented them.
Currently, there are only listed the implementation-defined pragmas of a few compilers.
You can help Wikibooks adding64 specific aspects of other compilers:
GNAT
Implementation defined pragma65 of the GNAT66 compiler from AdaCore and FSF.

HP Ada
Implementation defined pragma67 of the HP Ada68 compiler (formerly known as "DEC
Ada").

ICC
Implementation-defined pragma69 of the Irvine ICC70 compiler.

PowerAda
Implementation defined pragma71 of OC Systems' PowerAda72.

SPARCompiler
Implementation defined pragma73 of Sun's SPARCompiler Ada74.http://

findarticles.com/p/articles/mi_m0EIN/is_1994_Nov_2/ai_15882197

39.3.1 A − C

• Abort_Defer75 (GNAT)

58 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FSystem_Name

59 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FTask_Dispatching_Policy

60 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FUnchecked_Union

61 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FUnsuppress

62 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FVolatile

63 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FVolatile_Components

64 http://en.wikibooks.org/w/index.php?title=Ada_Programming/Pragmas&action=edit

65 http://www.adacore.com/wp-content/files/auto_update/gnat-unw-docs/html/gnat_rm_2.html

66 http://en.wikibooks.org/wiki/Ada%20Programming%2FGNAT

67 http://h71000.www7.hp.com/commercial/ada/ada_lrm.pdf

68 http://h71000.www7.hp.com/commercial/ada/ada_index.html

69 "2.2 ICC-Defined Pragmas", ICC Ada Implementation Reference — ICC Ada Version 8.2.5 for i960MC

Targets, document version 2.11.4.http://www.irvine.com/support/general/

70 http://www.irvine.com/products.html

71 http://www.ocsystems.com/user_guide/powerada/html/powerada-106.html#HEADING106-0

72 http://www.ocsystems.com/prod_powerada.html

73
http://docs.sun.com/app/docs/doc/802-3641/6i7h8si5i?a=view#F.

Implementation-Dependent_Characteristi-2
74 http://docs.sun.com/app/docs/coll/15.4

75 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FAbort_Defer

320

http://findarticles.com/p/articles/mi_m0EIN/is_1994_Nov_2/ai_15882197
http://findarticles.com/p/articles/mi_m0EIN/is_1994_Nov_2/ai_15882197
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FSystem_Name
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FTask_Dispatching_Policy
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FUnchecked_Union
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FUnsuppress
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FVolatile
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FVolatile_Components
http://en.wikibooks.org/w/index.php?title=Ada_Programming/Pragmas&action=edit
http://www.adacore.com/wp-content/files/auto_update/gnat-unw-docs/html/gnat_rm_2.html
http://en.wikibooks.org/wiki/Ada%20Programming%2FGNAT
http://h71000.www7.hp.com/commercial/ada/ada_lrm.pdf
http://h71000.www7.hp.com/commercial/ada/ada_index.html
http://www.irvine.com/support/general/
http://www.irvine.com/products.html
http://www.ocsystems.com/user_guide/powerada/html/powerada-106.html#HEADING106-0
http://www.ocsystems.com/prod_powerada.html
http://docs.sun.com/app/docs/doc/802-3641/6i7h8si5i?a=view#F.Implementation-Dependent_Characteristi-2
http://docs.sun.com/app/docs/doc/802-3641/6i7h8si5i?a=view#F.Implementation-Dependent_Characteristi-2
http://docs.sun.com/app/docs/coll/15.4
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FAbort_Defer

• Ada_8376 (GNAT)
• Ada_9577 (GNAT)
• Ada_0578 (GNAT)
• Ada_200579 (GNAT)
• Ada_1280 (GNAT)
• Ada_201281 (GNAT)
• Annotate82 (GNAT)
• Assume_No_Invalid_Values83 (GNAT)
• Ast_Entry84 (GNAT, HP Ada)
• Bit_Pack85 (SPARCompiler)
• Built_In86 (SPARCompiler)
• Byte_Pack87 (SPARCompiler)
• C_Pass_By_Copy88 (GNAT)
• Call_Mechanism89 (ICC)
• Canonical_Streams90 (GNAT)
• Check91 (GNAT)
• Check_Name92 (GNAT)
• Check_Policy93 (GNAT)
• CM_Info94 (PowerAda)
• Comment95 (GNAT)
• Common_Object96 (GNAT, HP Ada)
• Compatible_Calls97 (ICC)
• Compile_Time_Error98 (GNAT)
• Compile_Time_Warning99 (GNAT)
• Complete_Representation100 (GNAT)

76 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FAda_83

77 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FAda_95

78 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FAda_05

79 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FAda_2005

80 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FAda_12

81 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FAda_2012

82 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FAnnotate

83 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FAssume_No_Invalid_Values

84 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FAst_Entry

85 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FBit_Pack

86 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FBuilt_In

87 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FByte_Pack

88 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FC_Pass_By_Copy

89 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FCall_Mechanism

90 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FCanonical_Streams

91 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FCheck

92 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FCheck_Name

93 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FCheck_Policy

94 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FCM_Info

95 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FComment

96 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FCommon_Object

97 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FCompatible_Calls

98 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FCompile_Time_Error

99 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FCompile_Time_Warning

100 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FComplete_Representation

321

http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FAda_83
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FAda_95
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FAda_05
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FAda_2005
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FAda_12
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FAda_2012
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FAnnotate
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FAssume_No_Invalid_Values
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FAst_Entry
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FBit_Pack
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FBuilt_In
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FByte_Pack
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FC_Pass_By_Copy
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FCall_Mechanism
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FCanonical_Streams
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FCheck
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FCheck_Name
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FCheck_Policy
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FCM_Info
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FComment
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FCommon_Object
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FCompatible_Calls
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FCompile_Time_Error
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FCompile_Time_Warning
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FComplete_Representation

Pragmas

• Complex_Representation101 (GNAT)
• Component_Alignment102 (GNAT, HP Ada)
• Compress103 (ICC)
• Constrain_Private104 (ICC)
• Convention_Identifier105 (GNAT)
• CPP_Class106 (GNAT)
• CPP_Constructor107 (GNAT)
• CPP_Virtual108 (GNAT)
• CPP_Vtable109 (GNAT)

39.3.2 D − H

• Data_Mechanism110 (ICC)
• Debug111 (GNAT)
• Debug_Policy112 (GNAT)
• Delete_Subprogram_Entry113 (ICC)
• Elaboration_Checks114 (GNAT)
• Eliminate115 (GNAT)
• Error116 (SPARCompiler)
• Export_Exception117 (GNAT, HP Ada)
• Export_Function118 (GNAT, HP Ada, SPARCompiler)
• Export_Mechanism119 (ICC)
• Export_Object120 (GNAT, HP Ada, SPARCompiler)
• Export_Procedure121 (GNAT, HP Ada, SPARCompiler)
• Export_Value122 (GNAT)
• Export_Valued_Procedure123 (GNAT, HP Ada)
• Extend_System124 (GNAT)

101 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FComplex_Representation

102 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FComponent_Alignment

103 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FCompress

104 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FConstrain_Private

105 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FConvention_Identifier

106 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FCPP_Class

107 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FCPP_Constructor

108 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FCPP_Virtual

109 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FCPP_Vtable

110 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FData_Mechanism

111 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FDebug

112 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FDebug_Policy

113 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FDelete_Subprogram_Entry

114 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FElaboration_Checks

115 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FEliminate

116 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FError

117 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FExport_Exception

118 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FExport_Function

119 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FExport_Mechanism

120 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FExport_Object

121 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FExport_Procedure

122 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FExport_Value

123 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FExport_Valued_Procedure

124 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FExtend_System

322

http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FComplex_Representation
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FComponent_Alignment
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FCompress
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FConstrain_Private
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FConvention_Identifier
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FCPP_Class
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FCPP_Constructor
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FCPP_Virtual
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FCPP_Vtable
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FData_Mechanism
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FDebug
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FDebug_Policy
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FDelete_Subprogram_Entry
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FElaboration_Checks
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FEliminate
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FError
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FExport_Exception
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FExport_Function
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FExport_Mechanism
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FExport_Object
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FExport_Procedure
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FExport_Value
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FExport_Valued_Procedure
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FExtend_System

• Extensions_Allowed125 (GNAT)
• External126 (GNAT, SPARCompiler)
• External_Name127 (ICC, SPARCompiler)
• External_Name_Casing128 (GNAT)
• Fast_Math129 (GNAT)
• Favor_Top_Level130 (GNAT)
• Finalize_Storage_Only131 (GNAT)
• Float_Representation132 (GNAT, HP Ada)
• Foreign133 (ICC)
• Generic_Mechanism134 (ICC)
• Generic_Policy135 (SPARCompiler)

39.3.3 I − L

• i960_Intrinsic136 (ICC)
• Ident137 (GNAT, HP Ada)
• Images138 (PowerAda)
• Implemented139, previously named 'Implemented_By_Entry' (GNAT)
• Implicit_Code140 (SPARCompiler)
• Implicit_Packing141 (GNAT)
• Import_Exception142 (GNAT, HP Ada)
• Import_Function143 (GNAT, HP Ada, SPARCompiler)
• Import_Mechanism144 (ICC)
• Import_Object145 (GNAT, HP Ada, SPARCompiler)
• Import_Procedure146 (GNAT, HP Ada, SPARCompiler)
• Import_Valued_Procedure147 (GNAT, HP Ada)
• Include148 (SPARCompiler)

125 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FExtensions_Allowed

126 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FExternal

127 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FExternal_Name

128 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FExternal_Name_Casing

129 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FFast_Math

130 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FFavor_Top_Level

131 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FFinalize_Storage_Only

132 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FFloat_Representation

133 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FForeign

134 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FGeneric_Mechanism

135 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FGeneric_Policy

136 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2Fi960_Intrinsic

137 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FIdent

138 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FImages

139 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FImplemented

140 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FImplicit_Code

141 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FImplicit_Packing

142 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FImport_Exception

143 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FImport_Function

144 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FImport_Mechanism

145 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FImport_Object

146 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FImport_Procedure

147 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FImport_Valued_Procedure

148 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FInclude

323

http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FExtensions_Allowed
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FExternal
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FExternal_Name
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FExternal_Name_Casing
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FFast_Math
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FFavor_Top_Level
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FFinalize_Storage_Only
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FFloat_Representation
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FForeign
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FGeneric_Mechanism
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FGeneric_Policy
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2Fi960_Intrinsic
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FIdent
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FImages
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FImplemented
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FImplicit_Code
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FImplicit_Packing
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FImport_Exception
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FImport_Function
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FImport_Mechanism
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FImport_Object
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FImport_Procedure
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FImport_Valued_Procedure
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FInclude

Pragmas

• Initialize149 (SPARCompiler)
• Initialize_Scalars150 (GNAT)
• Inline_Always151 (GNAT)
• Inline_Generic152 (GNAT, HP Ada)
• Inline_Only153 (SPARCompiler)
• Instance_Policy154 (SPARCompiler)
• Interface_Constant155 (ICC)
• Interface_Information156 (PowerAda)
• Interface_Mechanism157 (ICC)
• Interface_Name158 (GNAT, HP Ada, ICC, SPARCompiler)
• Interrupt_State159 (GNAT)
• Invariant160 (GNAT)
• Keep_Names161 (GNAT)
• Label162 (ICC)
• License163 (GNAT)
• Link_With164 (GNAT, ICC, SPARCompiler)
• Linker_Alias165 (GNAT)
• Linker_Constructor166 (GNAT)
• Linker_Destructor167 (GNAT)
• Linker_Section168 (GNAT)
• Long_Float169 (GNAT: OpenVMS, HP Ada)

39.3.4 M − P

• Machine_Attribute170 (GNAT)
• Main171 (GNAT)
• Main_Storage172 (GNAT, HP Ada)

149 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FInitialize

150 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FInitialize_Scalars

151 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FInline_Always

152 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FInline_Generic

153 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FInline_Only

154 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FInstance_Policy

155 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FInterface_Constant

156 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FInterface_Information

157 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FInterface_Mechanism

158 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FInterface_Name

159 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FInterrupt_State

160 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FInvariant

161 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FKeep_Names

162 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FLabel

163 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FLicense

164 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FLink_With

165 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FLinker_Alias

166 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FLinker_Constructor

167 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FLinker_Destructor

168 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FLinker_Section

169 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FLong_Float

170 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FMachine_Attribute

171 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FMain

172 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FMain_Storage

324

http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FInitialize
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FInitialize_Scalars
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FInline_Always
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FInline_Generic
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FInline_Only
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FInstance_Policy
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FInterface_Constant
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FInterface_Information
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FInterface_Mechanism
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FInterface_Name
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FInterrupt_State
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FInvariant
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FKeep_Names
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FLabel
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FLicense
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FLink_With
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FLinker_Alias
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FLinker_Constructor
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FLinker_Destructor
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FLinker_Section
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FLong_Float
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FMachine_Attribute
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FMain
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FMain_Storage

• No_Body173 (GNAT)
• No_Image174 (SPARCompiler)
• No_Strict_Aliasing175 (GNAT)
• No_Suppress176 (PowerAda)
• No_Reorder177 (ICC)
• No_Zero178 (ICC)
• Noinline179 (ICC)
• Non_Reentrant180 (SPARCompiler)
• Not_Elaborated181 (SPARCompiler)
• Not_Null182 (ICC)
• Obsolescent183 (GNAT)
• Optimize_Alignment184 (GNAT)
• Optimize_Code185 (SPARCompiler)
• Optimize_Options186 (ICC)
• Ordered187 (GNAT)
• Parameter_Mechanism188 (ICC)
• Passive189 (GNAT, HP Ada, SPARCompiler)
• Persistent_BSS190 (GNAT)
• Physical_Address191 (ICC)
• Polling192 (GNAT)
• Postcondition193 (GNAT)
• Precondition194 (GNAT)
• Preserve_Layout195 (PowerAda)
• Profile_Warnings196 (GNAT)
• Propagate_Exceptions197 (GNAT)

173 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FNo_Body

174 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FNo_Image

175 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FNo_Strict_Aliasing

176 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FNo_Suppress

177 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FNo_Reorder

178 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FNo_Zero

179 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FNoinline

180 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FNon_Reentrant

181 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FNot_Elaborated

182 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FNot_Null

183 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FObsolescent

184 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FOptimize_Alignment

185 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FOptimize_Code

186 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FOptimize_Options

187 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FOrdered

188 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FParameter_Mechanism

189 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FPassive

190 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FPersistent_BSS

191 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FPhysical_Address

192 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FPolling

193 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FPostcondition

194 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FPrecondition

195 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FPreserve_Layout

196 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FProfile_Warnings

197 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FPropagate_Exceptions

325

http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FNo_Body
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FNo_Image
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FNo_Strict_Aliasing
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FNo_Suppress
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FNo_Reorder
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FNo_Zero
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FNoinline
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FNon_Reentrant
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FNot_Elaborated
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FNot_Null
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FObsolescent
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FOptimize_Alignment
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FOptimize_Code
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FOptimize_Options
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FOrdered
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FParameter_Mechanism
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FPassive
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FPersistent_BSS
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FPhysical_Address
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FPolling
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FPostcondition
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FPrecondition
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FPreserve_Layout
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FProfile_Warnings
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FPropagate_Exceptions

Pragmas

• Protect_Registers198 (ICC)
• Protected_Call199 (ICC)
• Protected_Return200 (ICC)
• Psect_Object201 (GNAT, HP Ada)
• Pure_Function202 (GNAT)
• Put203 (ICC)
• Put_Line204 (ICC)

39.3.5 R − S

• Reserve_Registers205 (ICC)
• Restriction_Warnings206 (GNAT)
• RTS_Interface207 (SPARCompiler)
• SCCS_ID208 (PowerAda)
• Share_Body209 (SPARCompiler)
• Share_Code210 (SPARCompiler)
• Share_Generic211 (GNAT, HP Ada)
• Shareable212 (ICC)
• Short_Circuit_And_Or213 (GNAT)
• Short_Descriptors214 (GNAT)
• Simple_Storage_Pool_Type215 (GNAT)
• Simple_Task216 (ICC)
• Source_File_Name217 (GNAT)
• Source_File_Name_Project218 (GNAT)
• Source_Reference219 (GNAT)
• Stack_Size220 (ICC)
• Static_Elaboration221 (ICC)

198 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FProtect_Registers

199 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FProtected_Call

200 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FProtected_Return

201 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FPsect_Object

202 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FPure_Function

203 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FPut

204 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FPut_Line

205 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FReserve_Registers

206 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FRestriction_Warnings

207 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FRTS_Interface

208 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FSCCS_ID

209 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FShare_Body

210 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FShare_Code

211 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FShare_Generic

212 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FShareable

213 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FShort_Circuit_And_Or

214 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FShort_Descriptors

215 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FSimple_Storage_Pool_Type

216 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FSimple_Task

217 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FSource_File_Name

218 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FSource_File_Name_Project

219 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FSource_Reference

220 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FStack_Size

221 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FStatic_Elaboration

326

http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FProtect_Registers
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FProtected_Call
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FProtected_Return
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FPsect_Object
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FPure_Function
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FPut
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FPut_Line
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FReserve_Registers
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FRestriction_Warnings
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FRTS_Interface
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FSCCS_ID
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FShare_Body
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FShare_Code
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FShare_Generic
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FShareable
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FShort_Circuit_And_Or
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FShort_Descriptors
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FSimple_Storage_Pool_Type
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FSimple_Task
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FSource_File_Name
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FSource_File_Name_Project
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FSource_Reference
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FStack_Size
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FStatic_Elaboration

• Static_Elaboration_Desired222 (GNAT)
• Stream_Convert223 (GNAT)
• Style_Checks224 (GNAT)
• Subtitle225 (GNAT)
• Suppress_All226 (GNAT, HP Ada, PowerAda, SPARCompiler)
• Suppress_Elaboration_Checks227 (SPARCompiler)
• Suppress_Exception_Locations228 (GNAT)
• Suppress_Initialization229 (GNAT)
• System_Table230 (ICC)

39.3.6 T − Z

• Task_Attributes231 (SPARCompiler)
• Task_Info232 (GNAT)
• Task_Name233 (GNAT)
• Task_Storage234 (GNAT, HP Ada)
• Test_Case235 (GNAT)
• Thread_Body236 (GNAT)
• Thread_Local_Storage237 (GNAT)
• Time_Slice238 (GNAT, HP Ada, ICC)
• Time_Slice_Attributes239 (ICC)
• Title240 (GNAT, HP Ada)
• Unimplemented_Unit241 (GNAT)
• Universal_Aliasing242 (GNAT)
• Universal_Data243 (GNAT)
• Unmodified244 (GNAT)

222 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FStatic_Elaboration_Desired

223 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FStream_Convert

224 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FStyle_Checks

225 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FSubtitle

226 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FSuppress_All

227
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FSuppress_Elaboration_

Checks

228
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FSuppress_Exception_

Locations
229 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FSuppress_Initialization

230 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FSystem_Table

231 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FTask_Attributes

232 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FTask_Info

233 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FTask_Name

234 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FTask_Storage

235 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FTest_Case

236 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FThread_Body

237 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FThread_Local_Storage

238 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FTime_Slice

239 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FTime_Slice_Attributes

240 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FTitle

241 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FUnimplemented_Unit

242 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FUniversal_Aliasing

243 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FUniversal_Data

244 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FUnmodified

327

http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FStatic_Elaboration_Desired
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FStream_Convert
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FStyle_Checks
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FSubtitle
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FSuppress_All
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FSuppress_Elaboration_Checks
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FSuppress_Elaboration_Checks
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FSuppress_Exception_Locations
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FSuppress_Exception_Locations
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FSuppress_Initialization
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FSystem_Table
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FTask_Attributes
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FTask_Info
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FTask_Name
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FTask_Storage
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FTest_Case
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FThread_Body
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FThread_Local_Storage
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FTime_Slice
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FTime_Slice_Attributes
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FTitle
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FUnimplemented_Unit
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FUniversal_Aliasing
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FUniversal_Data
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FUnmodified

Pragmas

• Unreferenced245 (GNAT)
• Unreferenced_Objects246 (GNAT)
• Unreserve_All_Interrupts247 (GNAT)
• Unsigned_Literal248 (ICC)
• Use_VADS_Size249 (GNAT)
• Validity_Checks250 (GNAT)
• Warning251 (SPARCompiler)
• Warnings252 (GNAT, SPARCompiler)
• Weak_External253 (GNAT)
• Wide_Character_Encoding254 (GNAT)

39.4 See also
See also

39.4.1 Wikibook

• Ada Programming255

• Ada Programming/Aspects256

• Ada Programming/Attributes257

• Ada Programming/Keywords258

39.4.2 Ada Reference Manual

Ada 83

• Annex 2: Pragmas ˆ{http://archive.adaic.com/standards/83lrm/html/lrm-2.

html}

• Annex B: Predefined Language Pragmas ˆ{http://archive.adaic.com/standards/

83lrm/html/lrm-B.html}

Ada 95

• 2.8 Pragmas259

• Annex L: (informative) Language-Defined Pragmas260

245 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FUnreferenced

246 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FUnreferenced_Objects

247 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FUnreserve_All_Interrupts

248 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FUnsigned_Literal

249 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FUse_VADS_Size

250 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FValidity_Checks

251 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FWarning

252 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FWarnings

253 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FWeak_External

254 http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FWide_Character_Encoding

255 http://en.wikibooks.org/wiki/Ada%20Programming

256 http://en.wikibooks.org/wiki/Ada%20Programming%2FAspects

257 Chapter 38 on page 305
258 Chapter 35 on page 293
259 http://www.adaic.org/resources/add_content/standards/95lrm/ARM_HTML/RM-2-8.html

260 http://www.adaic.org/resources/add_content/standards/95lrm/ARM_HTML/RM-L.html

328

http://archive.adaic.com/standards/83lrm/html/lrm-2.html
http://archive.adaic.com/standards/83lrm/html/lrm-2.html
http://archive.adaic.com/standards/83lrm/html/lrm-B.html
http://archive.adaic.com/standards/83lrm/html/lrm-B.html
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FUnreferenced
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FUnreferenced_Objects
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FUnreserve_All_Interrupts
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FUnsigned_Literal
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FUse_VADS_Size
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FValidity_Checks
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FWarning
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FWarnings
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FWeak_External
http://en.wikibooks.org/wiki/Ada%20Programming%2FPragmas%2FWide_Character_Encoding
http://en.wikibooks.org/wiki/Ada%20Programming
http://en.wikibooks.org/wiki/Ada%20Programming%2FAspects
http://www.adaic.org/resources/add_content/standards/95lrm/ARM_HTML/RM-2-8.html
http://www.adaic.org/resources/add_content/standards/95lrm/ARM_HTML/RM-L.html

Ada 2005

• 2.8 Pragmas261

• Annex L: (informative) Language-Defined Pragmas262

Ada 2012

• 2.8 Pragmas263

• Annex L: (informative) Language-Defined Pragmas264

39.5 References
References

261 http://www.adaic.org/resources/add_content/standards/05rm/html/RM-2-2-8.html

262 http://www.adaic.org/resources/add_content/standards/05rm/html/RM-2-L.html

263 http://www.ada-auth.org/standards/12rm/html/RM-2-8.html

264 http://www.ada-auth.org/standards/12rm/html/RM-L.html

329

http://www.adaic.org/resources/add_content/standards/05rm/html/RM-2-2-8.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-2-L.html
http://www.ada-auth.org/standards/12rm/html/RM-2-8.html
http://www.ada-auth.org/standards/12rm/html/RM-L.html

40 Libraries

40.1 Predefined Language Libraries
Predefined Language Libraries

The library which comes with Ada in general and GNAT1 in particular. Ada's built in
library is quite extensive and well structured. These chapters too are more reference like.
• Standard2

• Ada3

• Interfaces4

• System5

• GNAT6

40.2 Other Language Libraries
Other Language Libraries

Other libraries which are not part of the standard but freely available.
• Multi Purpose7

• Container Libraries8

• GUI Libraries9

• Distributed Objects10

• Database11

• Web Programming12

• Input/Output13

40.3 See also

1 http://en.wikipedia.org/wiki/GNAT

2 Chapter 41 on page 333
3 Chapter 42 on page 337
4 Chapter 43 on page 349
5 Chapter 44 on page 351
6 Chapter 45 on page 353
7 Chapter 46 on page 357
8 Chapter 47 on page 359
9 Chapter 48 on page 361
10 Chapter 49 on page 363
11 Chapter 50 on page 365
12 Chapter 51 on page 371
13 Chapter 52 on page 373

331

http://en.wikipedia.org/wiki/GNAT

Libraries

See also

40.3.1 Wikibook

• Ada Programming14

40.3.2 Ada Reference Manual

• Annex A (normative) Predefined Language Environment ˆ{http://www.adaic.org/

resources/add_content/standards/05rm/html/RM-A.html}

40.3.3 Resources

• A collection of Tools and Libraries15 maintained by the Ada Resource Association.
es:Programación en Ada/Unidades predefinidas16

14 http://en.wikibooks.org/wiki/Ada%20Programming

15 http://www.adaic.org/ada-resources/tools-libraries/

16 http://es.wikibooks.org/wiki/Programaci%F3n%20en%20Ada%2FUnidades%20predefinidas

332

http://www.adaic.org/resources/add_content/standards/05rm/html/RM-A.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-A.html
http://en.wikibooks.org/wiki/Ada%20Programming
http://www.adaic.org/ada-resources/tools-libraries/
http://es.wikibooks.org/wiki/Programaci%F3n%20en%20Ada%2FUnidades%20predefinidas

41 Libraries: Standard

The Standard package is implicit. This means two things:
1. You do not need to with or use the package, in fact you cannot (see below). It's

always available (except where hidden by a homograph, RM 8.3 (8) ˆ{http://www.

adaic.org/resources/add_content/standards/05rm/html/RM-8-3.html}).
2. Standard may contain constructs which are not quite legal Ada (like the definitions

of Character and Wide_Character).
A with clause mentioning Standard references a user-defined package Standard that
hides the predefined one. So do not do this. However any library unit hidden by a
homograph can be made visible again by qualifying its name with Standard, like e.g.
Standard.My_Unit.

41.1 Implementation
Implementation

Since the package Standard is very important for portability, here are some examples for
various compilers:
• The package Standard1 from ISO 86522.
• The package Standard3 from GNAT4.
• The package Standard5 from Rational Apex6.
• The package Standard7 from ObjectAda8

• The Standard9 definitions for AppletMagic10

41.2 Portability
Portability

The only mandatory types in Standard are Boolean, Integer and its subtypes, Float,
Character, Wide_Character, Wide_Wide_Character, String, Wide_String, Wide_-
Wide_String, Duration. There is an implementation permission in RM A.1 (51) ˆ{http://

www.adaic.org/resources/add_content/standards/05rm/html/RM-A-1.html} that
there may be more integer and floating point types and an implementation advice RM
A.1 (52) ˆ{http://www.adaic.org/resources/add_content/standards/05rm/html/

1 http://en.wikibooks.org/wiki/%2FRM

2 http://en.wikipedia.org/wiki/ISO%208652

3 http://en.wikibooks.org/wiki/%2FGNAT

4 http://en.wikipedia.org/wiki/GNAT

5 http://en.wikibooks.org/wiki/%2FApex

6 http://www-306.ibm.com/software/awdtools/developer/ada

7 http://en.wikibooks.org/wiki/%2FObjectAda

8 http://www.aonix.com/objectada.html

9 http://en.wikibooks.org/wiki/%2FAppletMagic

10 http://www.sofcheck.com/products/adamagic.html#appletmagic

333

http://www.adaic.org/resources/add_content/standards/05rm/html/RM-8-3.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-8-3.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-A-1.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-A-1.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-A-1.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-A-1.html
http://en.wikibooks.org/wiki/%2FRM
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-A-1.html
http://en.wikipedia.org/wiki/ISO%208652
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-A-1.html
http://en.wikibooks.org/wiki/%2FGNAT
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-A-1.html
http://en.wikipedia.org/wiki/GNAT
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-A-1.html
http://en.wikibooks.org/wiki/%2FApex
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-A-1.html
http://www-306.ibm.com/software/awdtools/developer/ada
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-A-1.html
http://en.wikibooks.org/wiki/%2FObjectAda
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-A-1.html
http://www.aonix.com/objectada.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-A-1.html
http://en.wikibooks.org/wiki/%2FAppletMagic
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-A-1.html
http://www.sofcheck.com/products/adamagic.html#appletmagic
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-A-1.html

Libraries: Standard

RM-A-1.html} about the names to be chosen. There even is no requirement that those
additional types must have different sizes. So it is e.g. legal for an implementation to
provide two types Long_Integer and Long_Long_Integer which both have the same
range and size.
Note that the ranges and sizes of these types can be different in every platform (except of

course for Boolean and [[Wide_]Wide_]Character). There is an implementation requirement
that the size of type Integer is at least 16 bits, and that of Long_Integer at least 32
bits (if present) RM 3.5.4 (21..22) ˆ{http://www.adaic.org/resources/add_content/

standards/05rm/html/RM-3-5-4.html} . So if you want full portability of your types,
do not use types from Standard (except where you must, see below), rather define you own
types. A compiler will reject any type declaration whose range it cannot satisfy.
This means e.g. if you need a 64-bit type and find that with your current implemen-
tation Standard.Long_Long_Integer is such a type, when porting your program to
another implementation, this type may be shorter, but the compiler will not tell you
- and your program will most probably crash. However, when you define your own type like

type My_Integer_64 is range -(2**63) .. +(2**63 - 1);

then, when porting to an implementation that cannot satisfy this range, the compiler
will reject your program.
The type Integer is mandatory when you use [[wide] wide] strings or exponentiation x**i.
This is why some projects even define their own strings, but this means throwing out the
child with the bath tub. Using Integer with strings and exponentiation will normally not
lead to portability issues.

41.3 See also
See also

41.3.1 Wikibook

• Ada Programming11

• Ada Programming/Libraries#Predefined Language Libraries12

41.3.2 Ada Reference Manual

• A.1 The Package Standard ˆ{http://www.adaic.org/resources/add_content/

standards/05rm/html/RM-A-1.html}

• 3.5.4 Integer Types ˆ{http://www.adaic.org/resources/add_content/standards/

05rm/html/RM-3-5-4.html}

• 3.5.7 Floating Point Types ˆ{http://www.adaic.org/resources/add_content/

standards/05rm/html/RM-3-5-7.html}

11 http://en.wikibooks.org/wiki/Ada%20Programming

12 Chapter 40.1 on page 331

334

http://www.adaic.org/resources/add_content/standards/05rm/html/RM-A-1.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-A-1.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-3-5-4.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-3-5-4.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-A-1.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-A-1.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-3-5-4.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-3-5-4.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-3-5-7.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-3-5-7.html
http://en.wikibooks.org/wiki/Ada%20Programming

41.3.3 Ada Quality and Style Guide

• 7.1.1 Obsolescent Features ˆ{http://www.adaic.org/resources/add_content/

docs/95style/html/sec_7/7-1-1.html} − Avoid using the package ASCII
• 7.2.1 Predefined Numeric Types ˆ{http://www.adaic.org/resources/add_

content/docs/95style/html/sec_7/7-2-1.html} − Avoid the predefined numeric
types

335

http://www.adaic.org/resources/add_content/docs/95style/html/sec_7/7-1-1.html
http://www.adaic.org/resources/add_content/docs/95style/html/sec_7/7-1-1.html
http://www.adaic.org/resources/add_content/docs/95style/html/sec_7/7-2-1.html
http://www.adaic.org/resources/add_content/docs/95style/html/sec_7/7-2-1.html

42 Libraries: Ada

The Ada package is only an anchor or namespace for Ada's standard library. Most
compilers will not allow you to add new packages to the Ada hierarchy and even if your
compiler allows it you should not do so since all package names starting with Ada. are
reserved for future extensions.

42.1 List of language defined child units
List of language defined child units

The following library units (packages and generic subprograms) are descendents of the
package Ada.
Ada 2005
This package is available since Ada 20051.

42.1.1 A − C

• Ada.Assertions2 (Ada 2005)
• Ada.Asynchronous_Task_Control3

• Ada.Calendar4

• Ada.Calendar.Arithmetic5 (Ada 2005)
• Ada.Calendar.Formatting6 (Ada 2005)
• Ada.Calendar.Time_Zones7 (Ada 2005)
• Ada.Characters8

• Ada.Characters.Conversions9 (Ada 2005)
• Ada.Characters.Handling10

• Ada.Characters.Latin_111

• Ada.Command_Line12

• Ada.Complex_Text_IO13 (Ada 2005)

1 Chapter 23 on page 219
2 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Assertions

3
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Asynchronous_Task_

Control
4 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Calendar

5 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Calendar.Arithmetic

6 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Calendar.Formatting

7 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Calendar.Time_Zones

8 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Characters

9
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Characters.

Conversions
10 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Characters.Handling

11 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Characters.Latin_1

12 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Command_Line

13 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Complex_Text_IO

337

http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Assertions
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Asynchronous_Task_Control
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Asynchronous_Task_Control
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Calendar
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Calendar.Arithmetic
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Calendar.Formatting
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Calendar.Time_Zones
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Characters
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Characters.Conversions
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Characters.Conversions
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Characters.Handling
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Characters.Latin_1
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Command_Line
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Complex_Text_IO

Libraries: Ada

• Ada.Containers14 (Ada 2005)
• Ada.Containers.Doubly_Linked_Lists15 (Ada 2005)
• Ada.Containers.Generic_Array_Sort16 (Ada 2005 generic procedure)
• Ada.Containers.Generic_Constrained_Array_Sort17 (Ada 2005 generic procedure)
• Ada.Containers.Hashed_Maps18 (Ada 2005)
• Ada.Containers.Hashed_Sets19 (Ada 2005)
• Ada.Containers.Indefinite_Doubly_Linked_Lists20 (Ada 2005)
• Ada.Containers.Indefinite_Hashed_Maps21 (Ada 2005)
• Ada.Containers.Indefinite_Hashed_Sets22 (Ada 2005)
• Ada.Containers.Indefinite_Ordered_Maps23 (Ada 2005)
• Ada.Containers.Indefinite_Ordered_Sets24 (Ada 2005)
• Ada.Containers.Indefinite_Vectors25 (Ada 2005)
• Ada.Containers.Ordered_Maps26 (Ada 2005)
• Ada.Containers.Ordered_Sets27 (Ada 2005)
• Ada.Containers.Vectors28 (Ada 2005)

42.1.2 D − F

• Ada.Decimal29

• Ada.Direct_IO30

• Ada.Directories31 (Ada 2005)
• Ada.Directories.Information32 (Ada 2005)
• Ada.Dispatching33 (Ada 2005)

14 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Containers

15
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Containers.Doubly_

Linked_Lists

16
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Containers.Generic_

Array_Sort

17
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Containers.Generic_

Constrained_Array_Sort

18
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Containers.Hashed_

Maps

19
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Containers.Hashed_

Sets

20
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Containers.

Indefinite_Doubly_Linked_Lists

21
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Containers.

Indefinite_Hashed_Maps

22
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Containers.

Indefinite_Hashed_Sets

23
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Containers.

Indefinite_Ordered_Maps

24
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Containers.

Indefinite_Ordered_Sets

25
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Containers.

Indefinite_Vectors

26
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Containers.Ordered_

Maps

27
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Containers.Ordered_

Sets
28 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Containers.Vectors

29 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Decimal

30 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Direct_IO

31 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Directories

32
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Directories.

Information
33 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Dispatching

338

http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Containers
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Containers.Doubly_Linked_Lists
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Containers.Doubly_Linked_Lists
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Containers.Generic_Array_Sort
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Containers.Generic_Array_Sort
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Containers.Generic_Constrained_Array_Sort
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Containers.Generic_Constrained_Array_Sort
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Containers.Hashed_Maps
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Containers.Hashed_Maps
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Containers.Hashed_Sets
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Containers.Hashed_Sets
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Containers.Indefinite_Doubly_Linked_Lists
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Containers.Indefinite_Doubly_Linked_Lists
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Containers.Indefinite_Hashed_Maps
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Containers.Indefinite_Hashed_Maps
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Containers.Indefinite_Hashed_Sets
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Containers.Indefinite_Hashed_Sets
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Containers.Indefinite_Ordered_Maps
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Containers.Indefinite_Ordered_Maps
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Containers.Indefinite_Ordered_Sets
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Containers.Indefinite_Ordered_Sets
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Containers.Indefinite_Vectors
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Containers.Indefinite_Vectors
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Containers.Ordered_Maps
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Containers.Ordered_Maps
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Containers.Ordered_Sets
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Containers.Ordered_Sets
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Containers.Vectors
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Decimal
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Direct_IO
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Directories
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Directories.Information
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Directories.Information
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Dispatching

• Ada.Dispatching.EDF34 (Ada 2005)
• Ada.Dispatching.Round_Robin35 (Ada 2005)
• Ada.Dynamic_Priorities36

• Ada.Environment_Variables37 (Ada 2005)
• Ada.Exceptions38

• Ada.Execution_Time39 (Ada 2005)
• Ada.Execution_Time.Timers40 (Ada 2005)
• Ada.Execution_Time.Group_Budgets41 (Ada 2005)
• Ada.Finalization42

• Ada.Float_Text_IO43

• Ada.Float_Wide_Text_IO44

• Ada.Float_Wide_Wide_Text_IO45 (Ada 2005)

42.1.3 G − R

• Ada.Integer_Text_IO46

• Ada.Integer_Wide_Text_IO47

• Ada.Integer_Wide_Wide_Text_IO48 (Ada 2005)
• Ada.Interrupts49

• Ada.Interrupts.Names50

• Ada.IO_Exceptions51

• Ada.Numerics52

• Ada.Numerics.Complex_Arrays53 (Ada 2005)
• Ada.Numerics.Complex_Elementary_Functions54

34 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Dispatching.EDF

35
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Dispatching.Round_

Robin
36 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Dynamic_Priorities

37
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Environment_

Variables
38 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Exceptions

39 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Execution_Time

40
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Execution_Time.

Timers

41
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Execution_Time.

Group_Budgets
42 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Finalization

43 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Float_Text_IO

44 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Float_Wide_Text_IO

45
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Float_Wide_Wide_

Text_IO
46 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Integer_Text_IO

47 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Integer_Wide_Text_IO

48
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Integer_Wide_Wide_

Text_IO
49 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Interrupts

50 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Interrupts.Names

51 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.IO_Exceptions

52 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Numerics

53
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Numerics.Complex_

Arrays

54
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Numerics.Complex_

Elementary_Functions

339

http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Dispatching.EDF
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Dispatching.Round_Robin
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Dispatching.Round_Robin
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Dynamic_Priorities
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Environment_Variables
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Environment_Variables
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Exceptions
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Execution_Time
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Execution_Time.Timers
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Execution_Time.Timers
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Execution_Time.Group_Budgets
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Execution_Time.Group_Budgets
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Finalization
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Float_Text_IO
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Float_Wide_Text_IO
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Float_Wide_Wide_Text_IO
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Float_Wide_Wide_Text_IO
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Integer_Text_IO
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Integer_Wide_Text_IO
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Integer_Wide_Wide_Text_IO
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Integer_Wide_Wide_Text_IO
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Interrupts
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Interrupts.Names
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.IO_Exceptions
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Numerics
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Numerics.Complex_Arrays
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Numerics.Complex_Arrays
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Numerics.Complex_Elementary_Functions
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Numerics.Complex_Elementary_Functions

Libraries: Ada

• Ada.Numerics.Complex_Types55

• Ada.Numerics.Discrete_Random56

• Ada.Numerics.Elementary_Functions57

• Ada.Numerics.Float_Random58

• Ada.Numerics.Generic_Complex_Arrays59 (Ada 2005)
• Ada.Numerics.Generic_Complex_Elementary_Functions60

• Ada.Numerics.Generic_Complex_Types61

• Ada.Numerics.Generic_Elementary_Functions62

• Ada.Numerics.Generic_Real_Arrays63 (Ada 2005)
• Ada.Numerics.Real_Arrays64 (Ada 2005)

42.1.4 R − S

• Ada.Real_Time65

• Ada.Real_Time.Timing_Events66 (Ada 2005)
• Ada.Sequential_IO67

• Ada.Storage_IO68

• Ada.Streams69

• Ada.Streams.Stream_IO70

• Ada.Strings71

• Ada.Strings.Bounded72

• Ada.Strings.Bounded.Hash73 (Ada 2005 generic function)
• Ada.Strings.Fixed74

• Ada.Strings.Fixed.Hash75 (Ada 2005 generic function)

55
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Numerics.Complex_

Types

56
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Numerics.Discrete_

Random

57
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Numerics.Elementary_

Functions

58
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Numerics.Float_

Random

59
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Numerics.Generic_

Complex_Arrays

60
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Numerics.Generic_

Complex_Elementary_Functions

61
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Numerics.Generic_

Complex_Types

62
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Numerics.Generic_

Elementary_Functions

63
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Numerics.Generic_

Real_Arrays
64 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Numerics.Real_Arrays

65 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Real_Time

66
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Real_Time.Timing_

Events
67 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Sequential_IO

68 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Storage_IO

69 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Streams

70 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Streams.Stream_IO

71 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Strings

72 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Strings.Bounded

73 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Strings.Bounded.Hash

74 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Strings.Fixed

75 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Strings.Fixed.Hash

340

http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Numerics.Complex_Types
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Numerics.Complex_Types
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Numerics.Discrete_Random
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Numerics.Discrete_Random
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Numerics.Elementary_Functions
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Numerics.Elementary_Functions
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Numerics.Float_Random
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Numerics.Float_Random
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Numerics.Generic_Complex_Arrays
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Numerics.Generic_Complex_Arrays
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Numerics.Generic_Complex_Elementary_Functions
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Numerics.Generic_Complex_Elementary_Functions
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Numerics.Generic_Complex_Types
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Numerics.Generic_Complex_Types
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Numerics.Generic_Elementary_Functions
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Numerics.Generic_Elementary_Functions
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Numerics.Generic_Real_Arrays
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Numerics.Generic_Real_Arrays
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Numerics.Real_Arrays
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Real_Time
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Real_Time.Timing_Events
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Real_Time.Timing_Events
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Sequential_IO
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Storage_IO
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Streams
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Streams.Stream_IO
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Strings
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Strings.Bounded
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Strings.Bounded.Hash
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Strings.Fixed
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Strings.Fixed.Hash

• Ada.Strings.Hash76 (Ada 2005 generic function)
• Ada.Strings.Maps77

• Ada.Strings.Maps.Constants78

• Ada.Strings.Unbounded79

• Ada.Strings.Unbounded.Hash80 (Ada 2005 generic function)
• Ada.Strings.Wide_Bounded81

• Ada.Strings.Wide_Bounded.Wide_Hash82 (Ada 2005 generic function)
• Ada.Strings.Wide_Fixed83

• Ada.Strings.Wide_Fixed.Wide_Hash84 (Ada 2005 generic function)
• Ada.Strings.Wide_Hash85 (Ada 2005 generic function)
• Ada.Strings.Wide_Maps86

• Ada.Strings.Wide_Maps.Wide_Constants87

• Ada.Strings.Wide_Unbounded88

• Ada.Strings.Wide_Unbounded.Wide_Hash89 (Ada 2005 generic function)
• Ada.Strings.Wide_Wide_Bounded90 (Ada 2005)
• Ada.Strings.Wide_Wide_Bounded.Wide_Wide_Hash91 (Ada 2005 generic function)
• Ada.Strings.Wide_Wide_Fixed92 (Ada 2005)
• Ada.Strings.Wide_Wide_Fixed.Wide_Wide_Hash93 (Ada 2005 generic function)
• Ada.Strings.Wide_Wide_Hash94 (Ada 2005 generic function)
• Ada.Strings.Wide_Wide_Maps95 (Ada 2005)
• Ada.Strings.Wide_Wide_Maps.Wide_Wide_Constants96 (Ada 2005)

76 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Strings.Hash

77 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Strings.Maps

78
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Strings.Maps.

Constants
79 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Strings.Unbounded

80
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Strings.Unbounded.

Hash
81 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Strings.Wide_Bounded

82
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Strings.Wide_Bounded.

Wide_Hash
83 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Strings.Wide_Fixed

84
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Strings.Wide_Fixed.

Wide_Hash
85 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Strings.Wide_Hash

86 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Strings.Wide_Maps

87
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Strings.Wide_Maps.

Wide_Constants

88
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Strings.Wide_

Unbounded

89
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Strings.Wide_

Unbounded.Wide_Hash

90
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Strings.Wide_Wide_

Bounded

91
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Strings.Wide_Wide_

Bounded.Wide_Wide_Hash

92
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Strings.Wide_Wide_

Fixed

93
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Strings.Wide_Wide_

Fixed.Wide_Wide_Hash

94
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Strings.Wide_Wide_

Hash

95
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Strings.Wide_Wide_

Maps

96
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Strings.Wide_Wide_

Maps.Wide_Wide_Constants

341

http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Strings.Hash
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Strings.Maps
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Strings.Maps.Constants
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Strings.Maps.Constants
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Strings.Unbounded
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Strings.Unbounded.Hash
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Strings.Unbounded.Hash
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Strings.Wide_Bounded
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Strings.Wide_Bounded.Wide_Hash
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Strings.Wide_Bounded.Wide_Hash
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Strings.Wide_Fixed
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Strings.Wide_Fixed.Wide_Hash
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Strings.Wide_Fixed.Wide_Hash
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Strings.Wide_Hash
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Strings.Wide_Maps
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Strings.Wide_Maps.Wide_Constants
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Strings.Wide_Maps.Wide_Constants
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Strings.Wide_Unbounded
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Strings.Wide_Unbounded
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Strings.Wide_Unbounded.Wide_Hash
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Strings.Wide_Unbounded.Wide_Hash
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Strings.Wide_Wide_Bounded
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Strings.Wide_Wide_Bounded
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Strings.Wide_Wide_Bounded.Wide_Wide_Hash
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Strings.Wide_Wide_Bounded.Wide_Wide_Hash
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Strings.Wide_Wide_Fixed
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Strings.Wide_Wide_Fixed
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Strings.Wide_Wide_Fixed.Wide_Wide_Hash
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Strings.Wide_Wide_Fixed.Wide_Wide_Hash
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Strings.Wide_Wide_Hash
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Strings.Wide_Wide_Hash
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Strings.Wide_Wide_Maps
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Strings.Wide_Wide_Maps
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Strings.Wide_Wide_Maps.Wide_Wide_Constants
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Strings.Wide_Wide_Maps.Wide_Wide_Constants

Libraries: Ada

• Ada.Strings.Wide_Wide_Unbounded97 (Ada 2005)
• Ada.Strings.Wide_Wide_Unbounded.Wide_Wide_Hash98 (Ada 2005 generic func-

tion)
• Ada.Synchronous_Task_Control99

42.1.5 T − U

• Ada.Tags100

• Ada.Tags.Generic_Dispatching_Constructor101 (generic function)
• Ada.Task_Attributes102

• Ada.Task_Identification103

• Ada.Task_Termination104 (Ada 2005)
• Ada.Text_IO105

• Ada.Text_IO.Bounded_IO106 (Ada 2005)
• Ada.Text_IO.Complex_IO107

• Ada.Text_IO.Decimal_IO108 (Nested package of Ada.Text_IO)
• Ada.Text_IO.Editing109

• Ada.Text_IO.Enumeration_IO110 (Nested package of Ada.Text_IO111)
• Ada.Text_IO.Fixed_IO112 (Nested package of Ada.Text_IO)
• Ada.Text_IO.Float_IO113 (Nested package of Ada.Text_IO)
• Ada.Text_IO.Integer_IO114 (Nested package of Ada.Text_IO)
• Ada.Text_IO.Modular_IO115 (Nested package of Ada.Text_IO)
• Ada.Text_IO.Text_Streams116

• Ada.Text_IO.Unbounded_IO117 (Ada 2005)
• Ada.Unchecked_Conversion118 (generic function)

97
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Strings.Wide_Wide_

Unbounded

98
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Strings.Wide_Wide_

Unbounded.Wide_Wide_Hash

99
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Synchronous_Task_

Control
100 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Tags

101
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Tags.Generic_

Dispatching_Constructor
102 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Task_Attributes

103 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Task_Identification

104 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Task_Termination

105 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Text_IO

106 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Text_IO.Bounded_IO

107 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Text_IO.Complex_IO

108 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Text_IO.Decimal_IO

109 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Text_IO.Editing

110
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Text_IO.Enumeration_

IO
111 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Text_IO

112 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Text_IO.Fixed_IO

113 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Text_IO.Float_IO

114 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Text_IO.Integer_IO

115 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Text_IO.Modular_IO

116 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Text_IO.Text_Streams

117 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Text_IO.Unbounded_IO

118 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Unchecked_Conversion

342

http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Strings.Wide_Wide_Unbounded
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Strings.Wide_Wide_Unbounded
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Strings.Wide_Wide_Unbounded.Wide_Wide_Hash
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Strings.Wide_Wide_Unbounded.Wide_Wide_Hash
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Synchronous_Task_Control
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Synchronous_Task_Control
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Tags
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Tags.Generic_Dispatching_Constructor
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Tags.Generic_Dispatching_Constructor
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Task_Attributes
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Task_Identification
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Task_Termination
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Text_IO
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Text_IO.Bounded_IO
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Text_IO.Complex_IO
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Text_IO.Decimal_IO
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Text_IO.Editing
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Text_IO.Enumeration_IO
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Text_IO.Enumeration_IO
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Text_IO
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Text_IO.Fixed_IO
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Text_IO.Float_IO
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Text_IO.Integer_IO
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Text_IO.Modular_IO
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Text_IO.Text_Streams
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Text_IO.Unbounded_IO
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Unchecked_Conversion

• Ada.Unchecked_Deallocation119 (generic procedure)

42.1.6 W − Z

• Ada.Wide_Characters120 (Ada 2005)
• Ada.Wide_Text_IO121

• Ada.Wide_Text_IO.Bounded_IO122 (Ada 2005)
• Ada.Wide_Text_IO.Complex_IO123

• Ada.Wide_Text_IO.Decimal_IO124 (Nested package of Ada.Wide_Text_IO)
• Ada.Wide_Text_IO.Editing125

• Ada.Wide_Text_IO.Enumeration_IO126 (Nested package of Ada.Wide_Text_IO)
• Ada.Wide_Text_IO.Fixed_IO127 (Nested package of Ada.Wide_Text_IO)
• Ada.Wide_Text_IO.Float_IO128 (Nested package of Ada.Wide_Text_IO)
• Ada.Wide_Text_IO.Integer_IO129 (Nested package of Ada.Wide_Text_IO)
• Ada.Wide_Text_IO.Modular_IO130 (Nested package of Ada.Wide_Text_IO)
• Ada.Wide_Text_IO.Text_Streams131

• Ada.Wide_Text_IO.Unbounded_IO132 (Ada 2005)
• Ada.Wide_Wide_Characters133 (Ada 2005)
• Ada.Wide_Wide_Text_IO134 (Ada 2005)
• Ada.Wide_Wide_Text_IO.Bounded_IO135 (Ada 2005)
• Ada.Wide_Wide_Text_IO.Complex_IO136 (Ada 2005)
• Ada.Wide_Wide_Text_IO.Decimal_IO137 (Nested package of Ada.Wide_Wide_-

Text_IO)

119
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Unchecked_

Deallocation
120 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Wide_Characters

121 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Wide_Text_IO

122
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Wide_Text_IO.

Bounded_IO

123
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Wide_Text_IO.

Complex_IO

124
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Wide_Text_IO.

Decimal_IO
125 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Wide_Text_IO.Editing

126
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Wide_Text_IO.

Enumeration_IO

127
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Wide_Text_IO.Fixed_

IO

128
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Wide_Text_IO.Float_

IO

129
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Wide_Text_IO.

Integer_IO

130
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Wide_Text_IO.

Modular_IO

131
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Wide_Text_IO.Text_

Streams

132
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Wide_Text_IO.

Unbounded_IO
133 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Wide_Wide_Characters

134 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Wide_Wide_Text_IO

135
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Wide_Wide_Text_IO.

Bounded_IO

136
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Wide_Wide_Text_IO.

Complex_IO

137
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Wide_Wide_Text_IO.

Decimal_IO

343

http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Unchecked_Deallocation
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Unchecked_Deallocation
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Wide_Characters
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Wide_Text_IO
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Wide_Text_IO.Bounded_IO
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Wide_Text_IO.Bounded_IO
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Wide_Text_IO.Complex_IO
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Wide_Text_IO.Complex_IO
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Wide_Text_IO.Decimal_IO
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Wide_Text_IO.Decimal_IO
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Wide_Text_IO.Editing
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Wide_Text_IO.Enumeration_IO
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Wide_Text_IO.Enumeration_IO
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Wide_Text_IO.Fixed_IO
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Wide_Text_IO.Fixed_IO
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Wide_Text_IO.Float_IO
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Wide_Text_IO.Float_IO
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Wide_Text_IO.Integer_IO
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Wide_Text_IO.Integer_IO
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Wide_Text_IO.Modular_IO
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Wide_Text_IO.Modular_IO
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Wide_Text_IO.Text_Streams
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Wide_Text_IO.Text_Streams
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Wide_Text_IO.Unbounded_IO
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Wide_Text_IO.Unbounded_IO
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Wide_Wide_Characters
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Wide_Wide_Text_IO
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Wide_Wide_Text_IO.Bounded_IO
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Wide_Wide_Text_IO.Bounded_IO
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Wide_Wide_Text_IO.Complex_IO
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Wide_Wide_Text_IO.Complex_IO
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Wide_Wide_Text_IO.Decimal_IO
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Wide_Wide_Text_IO.Decimal_IO

Libraries: Ada

• Ada.Wide_Wide_Text_IO.Editing138 (Ada 2005)
• Ada.Wide_Wide_Text_IO.Enumeration_IO139 (Nested package of Ada.Wide_-

Wide_Text_IO)
• Ada.Wide_Wide_Text_IO.Fixed_IO140 (Nested package of Ada.Wide_Wide_Text_-

IO)
• Ada.Wide_Wide_Text_IO.Float_IO141 (Nested package of Ada.Wide_Wide_Text_-

IO)
• Ada.Wide_Wide_Text_IO.Integer_IO142 (Nested package of Ada.Wide_Wide_-

Text_IO)
• Ada.Wide_Wide_Text_IO.Modular_IO143 (Nested package of Ada.Wide_Wide_-

Text_IO)
• Ada.Wide_Wide_Text_IO.Text_Streams144 (Ada 2005)
• Ada.Wide_Wide_Text_IO.Unbounded_IO145 (Ada 2005)

42.2 List of implementation defined child units
List of implementation defined child units

The Reference Manual allows compiler vendors to add extensions to the Standard Libraries.
However, these extensions cannot be directly childs of the package Ada, only grandchilds
-- for example Ada.Characters.Latin_9 .
Currently, only the implementation defined library units of the GNAT146 compiler are
listed here. You can help Wikibooks by adding147 implementation dependent packages
of other compilers:
GNAT
Extended package implemented by GNAT148.

ObjectAda
Extended package implemented by ObjectAda.

APEX
Extended package implemented by IBM/Rational APEX.

138
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Wide_Wide_Text_IO.

Editing

139
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Wide_Wide_Text_IO.

Enumeration_IO

140
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Wide_Wide_Text_IO.

Fixed_IO

141
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Wide_Wide_Text_IO.

Float_IO

142
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Wide_Wide_Text_IO.

Integer_IO

143
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Wide_Wide_Text_IO.

Modular_IO

144
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Wide_Wide_Text_IO.

Text_Streams

145
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Wide_Wide_Text_IO.

Unbounded_IO
146 http://en.wikipedia.org/wiki/GNAT

147 http://en.wikibooks.org/w/index.php?title=Ada_Programming/Libraries/Ada&action=edit

148 http://gcc.gnu.org/onlinedocs/gnat_rm/The-GNAT-Library.html

344

http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Wide_Wide_Text_IO.Editing
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Wide_Wide_Text_IO.Editing
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Wide_Wide_Text_IO.Enumeration_IO
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Wide_Wide_Text_IO.Enumeration_IO
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Wide_Wide_Text_IO.Fixed_IO
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Wide_Wide_Text_IO.Fixed_IO
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Wide_Wide_Text_IO.Float_IO
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Wide_Wide_Text_IO.Float_IO
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Wide_Wide_Text_IO.Integer_IO
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Wide_Wide_Text_IO.Integer_IO
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Wide_Wide_Text_IO.Modular_IO
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Wide_Wide_Text_IO.Modular_IO
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Wide_Wide_Text_IO.Text_Streams
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Wide_Wide_Text_IO.Text_Streams
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Wide_Wide_Text_IO.Unbounded_IO
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Wide_Wide_Text_IO.Unbounded_IO
http://en.wikipedia.org/wiki/GNAT
http://en.wikibooks.org/w/index.php?title=Ada_Programming/Libraries/Ada&action=edit
http://gcc.gnu.org/onlinedocs/gnat_rm/The-GNAT-Library.html

42.2.1 A − K

• Ada.Characters.Latin_9149 (GNAT)
• Ada.Characters.Wide_Latin_1150 (GNAT)
• Ada.Characters.Wide_Latin_9151 (GNAT)
• Ada.Characters.Wide_Wide_Latin_1152 (GNAT)
• Ada.Characters.Wide_Wide_Latin_9153 (GNAT)
• Ada.Command_Line.Environment154 (GNAT)
• Ada.Command_Line.Remove155 (GNAT)
• Ada.Direct_IO.C_Streams156 (GNAT)
• Ada.Exceptions.Is_Null_Occurrence157 (GNAT child function)
• Ada.Exceptions.Traceback158 (GNAT)

42.2.2 L − Q

• Ada.Long_Float_Text_IO159 (GNAT)
• Ada.Long_Float_Wide_Text_IO160 (GNAT)
• Ada.Long_Integer_Text_IO161 (GNAT)
• Ada.Long_Integer_Wide_Text_IO162 (GNAT)
• Ada.Long_Long_Float_Text_IO163 (GNAT)
• Ada.Long_Long_Float_Wide_Text_IO164 (GNAT)
• Ada.Long_Long_Integer_Text_IO165 (GNAT)
• Ada.Long_Long_Integer_Wide_Text_IO166 (GNAT)
• Ada.Numerics.Long_Complex_Elementary_Functions167 (GNAT)

149 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Characters.Latin_9

150
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Characters.Wide_

Latin_1

151
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Characters.Wide_

Latin_9

152
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Characters.Wide_

Wide_Latin_1

153
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Characters.Wide_

Wide_Latin_9

154
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Command_Line.

Environment
155 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Command_Line.Remove

156 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Direct_IO.C_Streams

157
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Exceptions.Is_Null_

Occurrence
158 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Exceptions.Traceback

159 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Long_Float_Text_IO

160
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Long_Float_Wide_

Text_IO
161 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Long_Integer_Text_IO

162
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Long_Integer_Wide_

Text_IO

163
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Long_Long_Float_

Text_IO

164
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Long_Long_Float_

Wide_Text_IO

165
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Long_Long_Integer_

Text_IO

166
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Long_Long_Integer_

Wide_Text_IO

167
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Numerics.Long_

Complex_Elementary_Functions

345

http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Characters.Latin_9
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Characters.Wide_Latin_1
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Characters.Wide_Latin_1
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Characters.Wide_Latin_9
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Characters.Wide_Latin_9
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Characters.Wide_Wide_Latin_1
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Characters.Wide_Wide_Latin_1
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Characters.Wide_Wide_Latin_9
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Characters.Wide_Wide_Latin_9
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Command_Line.Environment
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Command_Line.Environment
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Command_Line.Remove
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Direct_IO.C_Streams
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Exceptions.Is_Null_Occurrence
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Exceptions.Is_Null_Occurrence
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Exceptions.Traceback
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Long_Float_Text_IO
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Long_Float_Wide_Text_IO
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Long_Float_Wide_Text_IO
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Long_Integer_Text_IO
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Long_Integer_Wide_Text_IO
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Long_Integer_Wide_Text_IO
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Long_Long_Float_Text_IO
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Long_Long_Float_Text_IO
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Long_Long_Float_Wide_Text_IO
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Long_Long_Float_Wide_Text_IO
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Long_Long_Integer_Text_IO
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Long_Long_Integer_Text_IO
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Long_Long_Integer_Wide_Text_IO
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Long_Long_Integer_Wide_Text_IO
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Numerics.Long_Complex_Elementary_Functions
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Numerics.Long_Complex_Elementary_Functions

Libraries: Ada

• Ada.Numerics.Long_Complex_Types168 (GNAT)
• Ada.Numerics.Long_Elementary_Functions169 (GNAT)
• Ada.Numerics.Long_Long_Complex_Elementary_Functions170 (GNAT)
• Ada.Numerics.Long_Long_Complex_Types171 (GNAT)
• Ada.Numerics.Long_Long_Elementary_Functions172 (GNAT)
• Ada.Numerics.Short_Complex_Elementary_Functions173 (GNAT)
• Ada.Numerics.Short_Complex_Types174 (GNAT)
• Ada.Numerics.Short_Elementary_Functions175 (GNAT)

42.2.3 R − Z

• Ada.Sequential_IO.C_Streams176 (GNAT)
• Ada.Short_Float_Text_IO177 (GNAT)
• Ada.Short_Float_Wide_Text_IO178 (GNAT)
• Ada.Short_Integer_Text_IO179 (GNAT)
• Ada.Short_Integer_Wide_Text_IO180 (GNAT)
• Ada.Short_Short_Integer_Text_IO181 (GNAT)
• Ada.Short_Short_Integer_Wide_Text_IO182 (GNAT)
• Ada.Streams.Stream_IO.C_Streams183 (GNAT)
• Ada.Strings.Unbounded.Text_IO184 (GNAT)
• Ada.Strings.Wide_Unbounded.Wide_Text_IO185 (GNAT)

168
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Numerics.Long_

Complex_Types

169
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Numerics.Long_

Elementary_Functions

170
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Numerics.Long_Long_

Complex_Elementary_Functions

171
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Numerics.Long_Long_

Complex_Types

172
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Numerics.Long_Long_

Elementary_Functions

173
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Numerics.Short_

Complex_Elementary_Functions

174
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Numerics.Short_

Complex_Types

175
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Numerics.Short_

Elementary_Functions

176
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Sequential_IO.C_

Streams
177 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Short_Float_Text_IO

178
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Short_Float_Wide_

Text_IO

179
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Short_Integer_Text_

IO

180
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Short_Integer_Wide_

Text_IO

181
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Short_Short_Integer_

Text_IO

182
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Short_Short_Integer_

Wide_Text_IO

183
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Streams.Stream_IO.C_

Streams

184
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Strings.Unbounded.

Text_IO

185
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Strings.Wide_

Unbounded.Wide_Text_IO

346

http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Numerics.Long_Complex_Types
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Numerics.Long_Complex_Types
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Numerics.Long_Elementary_Functions
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Numerics.Long_Elementary_Functions
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Numerics.Long_Long_Complex_Elementary_Functions
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Numerics.Long_Long_Complex_Elementary_Functions
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Numerics.Long_Long_Complex_Types
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Numerics.Long_Long_Complex_Types
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Numerics.Long_Long_Elementary_Functions
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Numerics.Long_Long_Elementary_Functions
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Numerics.Short_Complex_Elementary_Functions
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Numerics.Short_Complex_Elementary_Functions
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Numerics.Short_Complex_Types
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Numerics.Short_Complex_Types
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Numerics.Short_Elementary_Functions
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Numerics.Short_Elementary_Functions
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Sequential_IO.C_Streams
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Sequential_IO.C_Streams
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Short_Float_Text_IO
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Short_Float_Wide_Text_IO
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Short_Float_Wide_Text_IO
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Short_Integer_Text_IO
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Short_Integer_Text_IO
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Short_Integer_Wide_Text_IO
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Short_Integer_Wide_Text_IO
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Short_Short_Integer_Text_IO
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Short_Short_Integer_Text_IO
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Short_Short_Integer_Wide_Text_IO
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Short_Short_Integer_Wide_Text_IO
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Streams.Stream_IO.C_Streams
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Streams.Stream_IO.C_Streams
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Strings.Unbounded.Text_IO
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Strings.Unbounded.Text_IO
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Strings.Wide_Unbounded.Wide_Text_IO
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Strings.Wide_Unbounded.Wide_Text_IO

• Ada.Strings.Wide_Wide_Unbounded.Wide_Wide_Text_IO186 (GNAT)
• Ada.Text_IO.C_Streams187 (GNAT)
• Ada.Wide_Text_IO.C_Streams188 (GNAT)
• Ada.Wide_Wide_Text_IO.C_Streams189 (GNAT)

42.3 See also
See also

42.3.1 Wikibook

• Ada Programming190

• Ada Programming/Libraries191

• Ada Programming/Libraries/Standard192

• Ada Programming/Libraries/System193

• Ada Programming/Libraries/Interfaces194

42.3.2 Ada Reference Manual

A.2 The Package Ada ˆ{http://www.adaic.org/resources/add_content/standards/

05rm/html/RM-A-2.html}

186
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Strings.Wide_Wide_

Unbounded.Wide_Wide_Text_IO
187 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Text_IO.C_Streams

188
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Wide_Text_IO.C_

Streams

189
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Wide_Wide_Text_IO.C_

Streams
190 http://en.wikibooks.org/wiki/Ada%20Programming

191 Chapter 40 on page 331
192 Chapter 41 on page 333
193 Chapter 44 on page 351
194 Chapter 43 on page 349

347

http://www.adaic.org/resources/add_content/standards/05rm/html/RM-A-2.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-A-2.html
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Strings.Wide_Wide_Unbounded.Wide_Wide_Text_IO
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Strings.Wide_Wide_Unbounded.Wide_Wide_Text_IO
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Text_IO.C_Streams
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Wide_Text_IO.C_Streams
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Wide_Text_IO.C_Streams
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Wide_Wide_Text_IO.C_Streams
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Wide_Wide_Text_IO.C_Streams
http://en.wikibooks.org/wiki/Ada%20Programming

43 Libraries: Interfaces

The Interfaces package helps in interfacing with other programming languages. Ada is
one of the few languages where interfacing with other languages is part of the language
standard. The language standard defines the interfaces for C1, Cobol2 and Fortran3. Of
course any implementation might define further interfaces — GNAT4 for example defines
an interface to C++5.
Interfacing with other languages is actually provided by pragma , pragma and pragma

43.1 Child Packages
Child Packages

• Interfaces.C6

• Interfaces.C.Extensions7 (GNAT)
• Interfaces.C.Pointers8

• Interfaces.C.Streams9 (GNAT)
• Interfaces.C.Strings10

• Interfaces.CPP11 (GNAT)
• Interfaces.COBOL12

• Interfaces.Fortran13

• Interfaces.OS2Lib14 (GNAT, OS/2)
• Interfaces.OS2Lib.Errors15 (GNAT, OS/2)
• Interfaces.OS2Lib.Synchronization16 (GNAT, OS/2)
• Interfaces.OS2Lib.Threads17 (GNAT, OS/2)

• Interfaces.Packed_Decimal18 (GNAT)

1 http://en.wikibooks.org/wiki/C%20Programming

2 http://en.wikibooks.org/wiki/COBOL

3 http://en.wikibooks.org/wiki/Programming%3AFortran

4 http://en.wikibooks.org/wiki/Ada%20Programming%2FGNAT

5 http://en.wikibooks.org/wiki/C%2B%2B%20Programming

6 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FInterfaces.C

7 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FInterfaces.C.Extensions

8 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FInterfaces.C.Pointers

9 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FInterfaces.C.Streams

10 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FInterfaces.C.Strings

11 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FInterfaces.CPP

12 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FInterfaces.COBOL

13 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FInterfaces.Fortran

14 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FInterfaces.OS2Lib

15 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FInterfaces.OS2Lib.Errors

16
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FInterfaces.OS2Lib.

Synchronization

17
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FInterfaces.OS2Lib.

Threads

18
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FInterfaces.Packed_

Decimal

349

http://en.wikibooks.org/wiki/C%20Programming
http://en.wikibooks.org/wiki/COBOL
http://en.wikibooks.org/wiki/Programming%3AFortran
http://en.wikibooks.org/wiki/Ada%20Programming%2FGNAT
http://en.wikibooks.org/wiki/C%2B%2B%20Programming
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FInterfaces.C
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FInterfaces.C.Extensions
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FInterfaces.C.Pointers
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FInterfaces.C.Streams
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FInterfaces.C.Strings
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FInterfaces.CPP
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FInterfaces.COBOL
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FInterfaces.Fortran
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FInterfaces.OS2Lib
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FInterfaces.OS2Lib.Errors
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FInterfaces.OS2Lib.Synchronization
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FInterfaces.OS2Lib.Synchronization
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FInterfaces.OS2Lib.Threads
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FInterfaces.OS2Lib.Threads
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FInterfaces.Packed_Decimal
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FInterfaces.Packed_Decimal

Libraries: Interfaces

• Interfaces.VxWorks19 (GNAT, VxWorks)
• Interfaces.VxWorks.IO20 (GNAT, VxWorks)

43.2 See also
See also

43.2.1 Wikibook

• Ada Programming21

• Ada Programming/Libraries22

• Ada Programming/Libraries/Standard23

• Ada Programming/Libraries/Ada24

• Ada Programming/Libraries/System25

43.2.2 Ada Reference Manual

Ada 95

• Annex B Interface to Other Languages ˆ{http://www.adaic.org/resources/add_

content/standards/05rm/html/RM-B.html}

• B.2 The Package Interfaces ˆ{http://www.adaic.org/resources/add_content/

standards/05rm/html/RM-B-2.html}

Ada 2005

• Annex B Interface to Other Languages ˆ{http://www.adaic.org/resources/add_

content/standards/05rm/html/RM-B.html}

• B.2 The Package Interfaces ˆ{http://www.adaic.org/resources/add_content/

standards/05rm/html/RM-B-2.html}

19 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FInterfaces.VxWorks

20 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FInterfaces.VxWorks.IO

21 http://en.wikibooks.org/wiki/Ada%20Programming

22 Chapter 40 on page 331
23 Chapter 41 on page 333
24 Chapter 42 on page 337
25 Chapter 44 on page 351

350

http://www.adaic.org/resources/add_content/standards/05rm/html/RM-B.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-B.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-B-2.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-B-2.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-B.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-B.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-B-2.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-B-2.html
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FInterfaces.VxWorks
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FInterfaces.VxWorks.IO
http://en.wikibooks.org/wiki/Ada%20Programming

44 Libraries: System

351

45 Libraries: GNAT

The GNAT package hierarchy defines several units for general purpose programming
provided by the GNAT compiler. It is distributed along with the compiler and uses the
same license.
GNAT-4-ObjectAda1 is a project for porting the GNAT library to the ObjectAda compiler.

45.1 Child packages
Child packages

• GNAT.Array_Split2

• GNAT.AWK3

• GNAT.Bounded_Buffers4

• GNAT.Bounded_Mailboxes5

• GNAT.Bubble_Sort6

• GNAT.Bubble_Sort_A7

• GNAT.Bubble_Sort_G8

• GNAT.Calendar9

• GNAT.Calendar.Time_IO10

• GNAT.Case_Util11

• GNAT.CGI12

• GNAT.CGI.Cookie13

• GNAT.CGI.Debug14

• GNAT.Command_Line15

• GNAT.Compiler_Version16

• GNAT.CRC3217

• GNAT.Ctrl_C18

1 http://sourceforge.net/projects/gnat4oa

2 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGNAT.Array_Split

3 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGNAT.AWK

4 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGNAT.Bounded_Buffers

5 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGNAT.Bounded_Mailboxes

6 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGNAT.Bubble_Sort

7 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGNAT.Bubble_Sort_A

8 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGNAT.Bubble_Sort_G

9 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGNAT.Calendar

10 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGNAT.Calendar.Time_IO

11 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGNAT.Case_Util

12 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGNAT.CGI

13 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGNAT.CGI.Cookie

14 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGNAT.CGI.Debug

15 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGNAT.Command_Line

16 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGNAT.Compiler_Version

17 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGNAT.CRC32

18 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGNAT.Ctrl_C

353

http://sourceforge.net/projects/gnat4oa
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGNAT.Array_Split
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGNAT.AWK
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGNAT.Bounded_Buffers
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGNAT.Bounded_Mailboxes
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGNAT.Bubble_Sort
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGNAT.Bubble_Sort_A
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGNAT.Bubble_Sort_G
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGNAT.Calendar
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGNAT.Calendar.Time_IO
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGNAT.Case_Util
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGNAT.CGI
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGNAT.CGI.Cookie
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGNAT.CGI.Debug
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGNAT.Command_Line
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGNAT.Compiler_Version
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGNAT.CRC32
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGNAT.Ctrl_C

Libraries: GNAT

• GNAT.Current_Exception19

• GNAT.Debug_Pools20

• GNAT.Debug_Utilities21

• GNAT.Directory_Operations22

• GNAT.Directory_Operations.Iteration23

• GNAT.Dynamic_HTables24

• GNAT.Dynamic_Tables25

• GNAT.Exception_Actions26

• GNAT.Exceptions27

• GNAT.Exception_Traces28

• GNAT.Expect29

• GNAT.Float_Control30

• GNAT.Heap_Sort31

• GNAT.Heap_Sort_A32

• GNAT.Heap_Sort_G33

• GNAT.HTable34

• GNAT.IO35

• GNAT.IO_Aux36

• GNAT.Lock_Files37

• GNAT.MD538

• GNAT.Memory_Dump39

• GNAT.Most_Recent_Exception40

• GNAT.OS_Lib41

• GNAT.Perfect_Hash_Generators42

19 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGNAT.Current_Exception

20 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGNAT.Debug_Pools

21 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGNAT.Debug_Utilities

22
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGNAT.Directory_

Operations

23
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGNAT.Directory_

Operations.Iteration
24 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGNAT.Dynamic_HTables

25 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGNAT.Dynamic_Tables

26 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGNAT.Exception_Actions

27 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGNAT.Exceptions

28 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGNAT.Exception_Traces

29 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGNAT.Expect

30 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGNAT.Float_Control

31 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGNAT.Heap_Sort

32 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGNAT.Heap_Sort_A

33 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGNAT.Heap_Sort_G

34 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGNAT.HTable

35 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGNAT.IO

36 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGNAT.IO_Aux

37 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGNAT.Lock_Files

38 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGNAT.MD5

39 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGNAT.Memory_Dump

40
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGNAT.Most_Recent_

Exception
41 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGNAT.OS_Lib

42
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGNAT.Perfect_Hash_

Generators

354

http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGNAT.Current_Exception
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGNAT.Debug_Pools
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGNAT.Debug_Utilities
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGNAT.Directory_Operations
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGNAT.Directory_Operations
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGNAT.Directory_Operations.Iteration
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGNAT.Directory_Operations.Iteration
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGNAT.Dynamic_HTables
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGNAT.Dynamic_Tables
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGNAT.Exception_Actions
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGNAT.Exceptions
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGNAT.Exception_Traces
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGNAT.Expect
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGNAT.Float_Control
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGNAT.Heap_Sort
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGNAT.Heap_Sort_A
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGNAT.Heap_Sort_G
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGNAT.HTable
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGNAT.IO
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGNAT.IO_Aux
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGNAT.Lock_Files
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGNAT.MD5
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGNAT.Memory_Dump
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGNAT.Most_Recent_Exception
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGNAT.Most_Recent_Exception
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGNAT.OS_Lib
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGNAT.Perfect_Hash_Generators
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGNAT.Perfect_Hash_Generators

• GNAT.Regexp43

• GNAT.Registry44

• GNAT.Regpat45

• GNAT.Secondary_Stack_Info46

• GNAT.Semaphores47

• GNAT.Signals48

• GNAT.Sockets49 (GNAT.Sockets examples50)
• GNAT.Sockets.Constants51

• GNAT.Sockets.Linker_Options52

• GNAT.Sockets.Thin53

• GNAT.Source_Info54

• GNAT.Spelling_Checker55

• GNAT.Spitbol56

• GNAT.Spitbol.Patterns57

• GNAT.Spitbol.Table_Boolean new58

• GNAT.Spitbol.Table_Integer59

• GNAT.Spitbol.Table_VString new60

• GNAT.Strings61

• GNAT.String_Split62

• GNAT.Table63

• GNAT.Task_Lock64

• GNAT.Threads65

• GNAT.Traceback66

43 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGNAT.Regexp

44 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGNAT.Registry

45 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGNAT.Regpat

46
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGNAT.Secondary_Stack_

Info
47 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGNAT.Semaphores

48 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGNAT.Signals

49 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGNAT.Sockets

50 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGNAT.Sockets_examples

51 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGNAT.Sockets.Constants

52
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGNAT.Sockets.Linker_

Options
53 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGNAT.Sockets.Thin

54 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGNAT.Source_Info

55 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGNAT.Spelling_Checker

56 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGNAT.Spitbol

57 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGNAT.Spitbol.Patterns

58
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGNAT.Spitbol.Table_

Boolean%20new

59
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGNAT.Spitbol.Table_

Integer

60
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGNAT.Spitbol.Table_

VString%20new
61 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGNAT.Strings

62 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGNAT.String_Split

63 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGNAT.Table

64 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGNAT.Task_Lock

65 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGNAT.Threads

66 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGNAT.Traceback

355

http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGNAT.Regexp
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGNAT.Registry
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGNAT.Regpat
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGNAT.Secondary_Stack_Info
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGNAT.Secondary_Stack_Info
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGNAT.Semaphores
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGNAT.Signals
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGNAT.Sockets
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGNAT.Sockets_examples
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGNAT.Sockets.Constants
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGNAT.Sockets.Linker_Options
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGNAT.Sockets.Linker_Options
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGNAT.Sockets.Thin
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGNAT.Source_Info
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGNAT.Spelling_Checker
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGNAT.Spitbol
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGNAT.Spitbol.Patterns
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGNAT.Spitbol.Table_Boolean%20new
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGNAT.Spitbol.Table_Boolean%20new
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGNAT.Spitbol.Table_Integer
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGNAT.Spitbol.Table_Integer
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGNAT.Spitbol.Table_VString%20new
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGNAT.Spitbol.Table_VString%20new
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGNAT.Strings
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGNAT.String_Split
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGNAT.Table
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGNAT.Task_Lock
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGNAT.Threads
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGNAT.Traceback

Libraries: GNAT

• GNAT.Traceback.Symbolic67

• GNAT.Wide_String_Split68

45.2 See also
See also

45.2.1 External links

• The GNAT Library69

45.2.2 Wikibook

• Ada Programming70

• Ada Programming/Libraries71

67 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGNAT.Traceback.Symbolic

68 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGNAT.Wide_String_Split

69 http://gcc.gnu.org/onlinedocs/gnat_rm/The-GNAT-Library.html

70 http://en.wikibooks.org/wiki/Ada%20Programming

71 Chapter 40 on page 331

356

http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGNAT.Traceback.Symbolic
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGNAT.Wide_String_Split
http://gcc.gnu.org/onlinedocs/gnat_rm/The-GNAT-Library.html
http://en.wikibooks.org/wiki/Ada%20Programming

46 Libraries: Multi-Purpose

AdaCL, Ada Class Library1

Filtering of text files, string tools, process control, command line parsing, CGI, garbage
collector, components.

Matreshka2

Core components for information system development: Unicode support (case conver-
sions and folding, collation, normalization); regular expression engine; XML processor;
FastCGI, SQL database access.

paraffin3

"A suite of Ada 2005 generics to facilitate iterative and recursive parallelism".4 Features
include load-balancing and monitoring of stacks.

46.1 See also
See also

46.1.1 Wikibook

• Ada Programming6

• Ada Programming/Libraries7

46.1.2 Ada Reference Manual

-- does not apply --

46.1.3 References

1 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FMultiPurpose%2FAdaCL

2 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FMultiPurpose%2FMatreshka

3 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FMultiPurpose%2FParaffin

4 Iterative and recursive parallelism generics for Ada 2005 5. . Retrieved 2012-08-28
6 http://en.wikibooks.org/wiki/Ada%20Programming

7 Chapter 40 on page 331

357

http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FMultiPurpose%2FAdaCL
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FMultiPurpose%2FMatreshka
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FMultiPurpose%2FParaffin
http://en.wikibooks.org/wiki/Ada%20Programming

47 Libraries: Container

The following Libraries help you store and manage objects inside container classes:
Booch Components1

the most complete of all container class libraries (at least when used with AdaCL, Ada
Class Library2).

AdaCL, Ada Class Library3

A Booch Components4 extension pack for storing indefinite objects.
Charles5

Build on the C++ STL and therefore very easy to learn for C++ developers.
AI3026

Proof of concept for Ada.Containers7

Ada.Containers8

This language feature is only available in Ada 2005
Stephe's Ada Library9

dynamic arrays, lists, trees

47.1 See also
See also

47.1.1 Wikibook

• Ada Programming10

• Ada Programming/Libraries11

47.1.2 Ada Reference Manual

• A.18.1 The Package Containers ˆ{http://www.adaic.org/resources/add_content/

standards/05rm/html/RM-A-18-1.html}

1 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FContainer%2FBooch

2 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FMultiPurpose%2FAdaCL

3 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FMultiPurpose%2FAdaCL

4 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FContainer%2FBooch

5 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FContainer%2FCharles

6 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FContainer%2FAI302

7 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Containers

8 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Containers

9 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FSAL

10 http://en.wikibooks.org/wiki/Ada%20Programming

11 Chapter 40 on page 331

359

http://www.adaic.org/resources/add_content/standards/05rm/html/RM-A-18-1.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-A-18-1.html
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FContainer%2FBooch
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FMultiPurpose%2FAdaCL
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FMultiPurpose%2FAdaCL
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FContainer%2FBooch
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FContainer%2FCharles
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FContainer%2FAI302
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Containers
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FAda.Containers
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FSAL
http://en.wikibooks.org/wiki/Ada%20Programming

48 Libraries: GUI

The following libraries can be used to make Graphical User Interfaces:
CLAW1

Commercial GUI toolkit for Windows. Introductory Edition2 is distributed under
GMGPL3.

GtkAda4

Binding to the popular GTK+ toolkit.
GWindows5

RAD GUI Development Framework for Windows.
Qt4Ada6

An Ada2005 binding to Qt4. Under CeCILL license V2.
QtAda7

An Ada2005 binding to the Qt libraries and associated tools. Under GPL and GMGPL8

(commercially supported) licenses.
libAgar9

Ada bindings for the libagar10 OpenGL GUI library (BSD license).
TASH11

TclAdaSHell, An Ada binding to Tcl/Tk. GPL with "Linking Exception".

48.1 See also
See also

48.1.1 Wikibook

• Ada Programming12

• Ada Programming/Libraries13

48.1.2 Ada Reference Manual

-- does not apply --

1 http://www.rrsoftware.com/html/prodinf/claw/claw.htm

2 http://www.adapower.com/adapower1/claw/

3 http://en.wikipedia.org/wiki/GMGPL

4 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGUI%2FGtkAda

5 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGUI%2FGWindows

6 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGUI%2FQt4Ada

7 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGUI%2FQtAda

8 http://en.wikipedia.org/wiki/GMGPL

9 http://wiki.libagar.org/wiki/Ada_bindings

10 http://libagar.org/

11 http://sourceforge.net/projects/tcladashell/

12 http://en.wikibooks.org/wiki/Ada%20Programming

13 Chapter 40 on page 331

361

http://www.rrsoftware.com/html/prodinf/claw/claw.htm
http://www.adapower.com/adapower1/claw/
http://en.wikipedia.org/wiki/GMGPL
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGUI%2FGtkAda
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGUI%2FGWindows
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGUI%2FQt4Ada
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGUI%2FQtAda
http://en.wikipedia.org/wiki/GMGPL
http://wiki.libagar.org/wiki/Ada_bindings
http://libagar.org/
http://sourceforge.net/projects/tcladashell/
http://en.wikibooks.org/wiki/Ada%20Programming

Libraries: GUI

48.1.3 External Links

• adapower.com - Links to tools and Bindings for GUI Applications14

• adapower.com - Examples of programming GUIs in Ada15

14 http://www.adapower.com/index.php?Command=Class&ClassID=AdaGUI&Title=Ada+GUI

15
http://www.adapower.com/index.php?Command=Class&ClassID=GUIExamples&Title=GUI+

Examples

362

http://www.adapower.com/index.php?Command=Class&ClassID=AdaGUI&Title=Ada+GUI
http://www.adapower.com/index.php?Command=Class&ClassID=GUIExamples&Title=GUI+Examples
http://www.adapower.com/index.php?Command=Class&ClassID=GUIExamples&Title=GUI+Examples

49 Libraries: Distributed Systems

The following Libraries help you in Distributed programming:
GLADE1

A full implementation of the Ada Annex E: Distributed Systems2

PolyORB3

A CORBA4 and Annex E: Distributed Systems5 implementation.

49.1 See also
See also

49.1.1 Wikibook

• Ada Programming6

• Ada Programming/Libraries7

• Programming:CORBA8

49.1.2 Ada Reference Manual

• Annex E (normative) Distributed Systems ˆ{http://www.adaic.org/resources/

add_content/standards/05rm/html/RM-E.html}

1 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FDistributed%2FGLADE

2 http://www.adaic.org/standards/95lrm/html/RM-E.html

3 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FDistributed%2FPolyORB

4 http://en.wikibooks.org/wiki/Programming%3ACORBA

5 http://www.adaic.org/standards/95lrm/html/RM-E.html

6 http://en.wikibooks.org/wiki/Ada%20Programming

7 Chapter 40 on page 331
8 http://en.wikibooks.org/wiki/Programming%3ACORBA

363

http://www.adaic.org/resources/add_content/standards/05rm/html/RM-E.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-E.html
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FDistributed%2FGLADE
http://www.adaic.org/standards/95lrm/html/RM-E.html
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FDistributed%2FPolyORB
http://en.wikibooks.org/wiki/Programming%3ACORBA
http://www.adaic.org/standards/95lrm/html/RM-E.html
http://en.wikibooks.org/wiki/Ada%20Programming
http://en.wikibooks.org/wiki/Programming%3ACORBA

50 Libraries: Databases

The following libraries help you in Database programming:

365

Libraries: Databases

L
i-

b
ra

ry
L

i-
c
e
n

se
In

te
r-

b
a
se

F
ir

e
-

b
ir

d

M
y

S
Q

L
O

D
B

C
O

ra
-

c
le

P
o

st
-

g
re

S
Q

L
S

Q
L

it
e

3
S

y
b

a
se

O
th

e
r

d
a
ta

b
a
se

B
i-

n
a
ry

p
a
ck

-
a
g

e
s

N
o

te
s

A
P

Q
1

G
M

G
P

L
—

Y
e
s

Y
e
s

—
Y

e
s

—
Y

e
s

—
D

e-
b
ia

n
2

T
h
re

ad
-

sa
fe

co
n
n
ec

-
ti

o
n

p
o
ol

s

G
N

A
D

E
(G

N
u

A
d
a

D
at

ab
as

e
E

n
v
i-

ro
n
-

m
en

t)
3

G
M

G
P

L
—

3
.x

,
4

.x
Y

e
s

—
Y

e
s

Y
e
s

—
—

D
e-

b
ia

n
4

E
m

-
b

ed
d
ed

S
Q

L
p
re

p
ro

-
ce

ss
or

gn
ad

el
it

e5 ?
?

?
?

?
?

Y
e
s

?
?

?

1
h
t
t
p
:
/
/
f
r
a
m
e
w
o
r
k
.
k
o
w
.
c
o
m
.
b
r

2
h
t
t
p
:
/
/
p
a
c
k
a
g
e
s
.
q
a
.
d
e
b
i
a
n
.
o
r
g
/
a
/
a
p
q
.
h
t
m
l

3
h
t
t
p
:
/
/
g
n
a
d
e
.
s
o
u
r
c
e
f
o
r
g
e
.
n
e
t

4
h
t
t
p
:
/
/
p
a
c
k
a
g
e
s
.
q
a
.
d
e
b
i
a
n
.
o
r
g
/
g
/
g
n
a
d
e
.
h
t
m
l

5
h
t
t
p
:
/
/
r
e
p
o
.
o
r
.
c
z
/
w
/
g
n
a
d
e
l
i
t
e
.
g
i
t

366

http://framework.kow.com.br
http://packages.qa.debian.org/a/apq.html
http://gnade.sourceforge.net
http://packages.qa.debian.org/g/gnade.html
http://repo.or.cz/w/gnadelite.git

G
N

A
T

-
C

O
L

L
(d

at
ab

as
e

in
te

r-
fa

ce
m

o
d
-

u
le

)6

G
P

L
/G

-
M

G
P

L
—

—
—

—
Y

e
s

Y
e
s

—
—

?
gn

at
co

ll
_

-
d
b
2
a
d
a

g
en

er
-

a
te

s
th

ic
k

A
d
a

b
in

d
-

in
g
s

to
a

sp
ec

-
ifi

ed
d
at

ab
as

e
sc

h
em

a
.

R
e-

q
u
ir

es
A

d
a

20
05

.

G
W

in
-

d
ow

s7
?

?
?

Y
e
s

?
?

?
?

?
?

W
in

-
d
ow

s
on

ly
?

M
a
-

tr
es

h
k
a

S
Q

L
8

B
S
D

Y
e
s

Y
e
s

—
Y

e
s

Y
e
s

Y
e
s

—
—

O
p

en
-

S
U

S
E

9
,

F
e-

d
or

a1
0

6
h
t
t
p
:
/
/
w
w
w
.
a
d
a
c
o
r
e
.
c
o
m
/
w
p
-

c
o
n
t
e
n
t
/
f
i
l
e
s
/
a
u
t
o
_
u
p
d
a
t
e
/
g
n
a
t
c
o
l
l
-

d
o
c
s
/
g
n
a
t
c
o
l
l
.
h
t
m
l
#

D
a
t
a
b
a
s
e
-

i
n
t
e
r
f
a
c
e

7
h
t
t
p
:
/
/
e
n
.
w
i
k
i
b
o
o
k
s
.
o
r
g
/
w
i
k
i
/
A
d
a
%
2
0
P
r
o
g
r
a
m
m
i
n
g
%
2
F
L
i
b
r
a
r
i
e
s
%
2
F
D
a
t
a
b
a
s
e
%
2
F
G
W
i
n
d
o
w
s

8
h
t
t
p
:
/
/
a
d
a
f
o
r
g
e
.
q
t
a
d
a
.
c
o
m
/
c
g
i
-

b
i
n
/
t
r
a
c
k
e
r
.
f
c
g
i
/
m
a
t
r
e
s
h
k
a
/
w
i
k
i

9
h
t
t
p
:
/
/
w
w
w
.
o
p
e
n
s
u
s
e
.
o
r
g

1
0

h
t
t
p
:
/
/
w
w
w
.
f
e
d
o
r
a
p
r
o
j
e
c
t
.
o
r
g

367

http://www.adacore.com/wp-content/files/auto_update/gnatcoll-docs/gnatcoll.html#Database-interface
http://www.adacore.com/wp-content/files/auto_update/gnatcoll-docs/gnatcoll.html#Database-interface
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FDatabase%2FGWindows
http://adaforge.qtada.com/cgi-bin/tracker.fcgi/matreshka/wiki
http://www.opensuse.org
http://www.fedoraproject.org

Libraries: Databases

O
D

B
C

1
1

G
P

L
?

?
Y

e
s

?
?

?
?

?
n
on

e
W

in
-

d
ow

s
o
n
ly

.
D

e-
p

en
d
s

o
n

W
in

32
A

d
a.

V
er

y
si

m
p
le

.

Q
tA

d
a

(Q
tS

q
l

m
o
d
-

u
le

)1
2

G
P

L
/G

-
M

G
P

L
Y

e
s

Y
e
s

Y
e
s

Y
e
s

Y
e
s

Y
e
s

Y
e
s

IB
M

D
B

/
2
,

S
Q

L
it

e2

M
i-

cr
o
so

ft
W

in
-

d
ow

s

B
in

d
-

in
g

to
Q

t:
re

-
q
u
ir

es
C

+
+

1
1

h
t
t
p
:
/
/
p
o
b
r
y
.
b
l
o
g
s
p
o
t
.
f
r
/
p
/
a
d
a
-

c
o
n
t
r
i
b
u
t
i
o
n
s
.
h
t
m
l

1
2

h
t
t
p
:
/
/
w
w
w
.
q
t
a
d
a
.
c
o
m
/

368

http://pobry.blogspot.fr/p/ada-contributions.html
http://www.qtada.com/

S
im

-
p
le

C
o
m

p
o
-

n
en

ts
fo

r
A

d
a1

3

G
M

G
P

L
—

—
Y

e
s

—
—

Y
e
s

—
—

F
e-

d
o
ra

,
D

eb
ia

n

S
Q

L
it

e
b
in

d
-

in
g
s

a
re

in
-

te
n
d
ed

fo
r

st
a
ti

c
li
n
k
in

g
w

it
h

th
e

S
Q

L
it

e3
a
m

a
l-

g
a
ti

o
n
.

O
D

B
C

b
in

d
-

in
g
s

su
p
p

o
rt

3
2
-

a
n
d

6
4
-b

it
p
la

t-
fo

rm
s

S
O

C
I-

A
d
a1

4
B

o
os

t
—

Y
e
s

—
Y

e
s

Y
e
s

—
—

—
?

R
e-

q
u
ir

es
C

+
+

.

S
Q

L
it

e3
-

A
d
a1

5
P

u
b
li
c

d
om

ai
n

—
—

—
—

—
Y

e
s

—
—

?

1
3

h
t
t
p
:
/
/
w
w
w
.
d
m
i
t
r
y
-

k
a
z
a
k
o
v
.
d
e
/
a
d
a
/
c
o
m
p
o
n
e
n
t
s
.
h
t
m
#
S
Q
L
i
t
e

1
4

h
t
t
p
:
/
/
w
w
w
.
i
n
s
p
i
r
e
l
.
c
o
m
/
s
o
c
i
-

a
d
a
/

1
5

h
t
t
p
:
/
/
c
o
r
e
l
a
n
d
.
a
t
h
.
c
x
/
c
o
d
e
/
s
q
l
i
t
e
3
-

a
d
a

369

http://www.dmitry-kazakov.de/ada/components.htm#SQLite
http://www.inspirel.com/soci-ada/
http://coreland.ath.cx/code/sqlite3-ada

51 Libraries: Web

The following libraries help you in Internet or Web programming:
AdaCL, Ada Class Library1

Powerful CGI implementation.
XML/Ada2

XML and Unicode support.
AWS3

A full-featured Web-Server.
Matreshka4

FastCGI, XML, Unicode and localization support.

51.1 See also
See also

51.1.1 Wikibook

• Ada Programming5

• Ada Programming/Libraries6

51.1.2 Ada Reference Manual

-- does not apply --

1 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FMultiPurpose%2FAdaCL

2 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FIO%2FXML%2FAda

3 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FWeb%2FAWS

4 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FMultiPurpose%2FMatreshka

5 http://en.wikibooks.org/wiki/Ada%20Programming

6 Chapter 40 on page 331

371

http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FMultiPurpose%2FAdaCL
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FIO%2FXML%2FAda
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FWeb%2FAWS
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FMultiPurpose%2FMatreshka
http://en.wikibooks.org/wiki/Ada%20Programming

52 Libraries: Input Output

The following libraries help you when doing input/output1:
AdaCL, Ada Class Library2

A multipurpose library featuring filtering of text files, string I/O, command line parsing,
etc.

XML/Ada3

XML and Unicode support.
Matreshka4

SAX-style XML reader and writer. Supports XML1.0 (Fifth Edition), XML1.1 (Second
Edition), Namespaces in XML and XML Base Specifications. Strings, files and sockets
can be used as input source in both blocking and non-blocking modes. Full Unicode
support and many text codecs is provided also.

52.1 See also
See also

52.1.1 Wikibook

• Ada Programming5

• Ada Programming/Libraries6

52.1.2 Ada Reference Manual

-- does not apply --

1 Chapter 18 on page 147
2 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FMultiPurpose%2FAdaCL

3 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FIO%2FXML%2FAda

4 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FMultiPurpose%2FMatreshka

5 http://en.wikibooks.org/wiki/Ada%20Programming

6 Chapter 40 on page 331

373

http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FMultiPurpose%2FAdaCL
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FIO%2FXML%2FAda
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FMultiPurpose%2FMatreshka
http://en.wikibooks.org/wiki/Ada%20Programming

53 Platform Support

Ada is known to be very portable, but there is sometimes a necessity of using a specific
platform feature. For that matter, there are some non-standard libraries.
• Linux1

• Windows2

• POSIX systems3

• Virtual machines4

• Java5

• .NET6

53.1 See also
See also

53.1.1 Wikibook

• Ada Programming7

53.1.2 Ada Reference Manual

-- does not apply --

53.1.3 Ada Quality and Style Guide

• Chapter 7: Portability ˆ{http://www.adaic.org/resources/add_content/docs/

95style/html/sec_7/}

1 Chapter 54 on page 377
2 Chapter 55 on page 379
3 http://en.wikibooks.org/wiki/Ada%20Programming%2FPlatform%2FPOSIX

4 Chapter 56 on page 381
5 http://en.wikibooks.org/wiki/Ada%20Programming%2FPlatform%2FVM%2FJava

6 http://en.wikibooks.org/wiki/Ada%20Programming%2FPlatform%2FVM%2FdotNET

7 http://en.wikibooks.org/wiki/Ada%20Programming

375

http://www.adaic.org/resources/add_content/docs/95style/html/sec_7/
http://www.adaic.org/resources/add_content/docs/95style/html/sec_7/
http://en.wikibooks.org/wiki/Ada%20Programming%2FPlatform%2FPOSIX
http://en.wikibooks.org/wiki/Ada%20Programming%2FPlatform%2FVM%2FJava
http://en.wikibooks.org/wiki/Ada%20Programming%2FPlatform%2FVM%2FdotNET
http://en.wikibooks.org/wiki/Ada%20Programming

54 Platform: Linux

The following libraries help you when you target the Linux Platform.
Florist1

POSIX.5 binding. It will let you perform Linux system calls in the POSIX subset.
Ncurses2

text terminal library.
Texttools3

ncurses-based library for the Linux console.
GtkAda4

GUI library (actually multiplatform).

54.1 See also
See also

54.1.1 Wikibook

• Ada Programming5

• Ada Programming/Libraries6

54.1.2 Ada Reference Manual

-- does not apply --

54.1.3 External resources

• The Big Online Book of Linux Ada Programming7

• Ada in Debian GNU/Linux8, slides suitable for a 50minute presentation, by Ludovic
Brenta9.

1 http://en.wikibooks.org/wiki/Ada%20Programming%2FPlatform%2FPOSIX

2 http://en.wikibooks.org/wiki/Ada%20Programming%2FPlatform%2FNcurses

3 http://en.wikibooks.org/wiki/Ada%20Programming%2FPlatform%2FTexttools

4 http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGUI%2FGtkAda

5 http://en.wikibooks.org/wiki/Ada%20Programming

6 Chapter 40 on page 331
7 http://www.pegasoft.ca/resources/boblap/book.html

8
http://www.cs.kuleuven.be/~dirk/ada-belgium/events/06/060226-fosdem-4-ada-in-debian.

pdf
9 http://en.wikibooks.org/wiki/User%3ALudovic%20Brenta

377

http://en.wikibooks.org/wiki/Ada%20Programming%2FPlatform%2FPOSIX
http://en.wikibooks.org/wiki/Ada%20Programming%2FPlatform%2FNcurses
http://en.wikibooks.org/wiki/Ada%20Programming%2FPlatform%2FTexttools
http://en.wikibooks.org/wiki/Ada%20Programming%2FLibraries%2FGUI%2FGtkAda
http://en.wikibooks.org/wiki/Ada%20Programming
http://www.pegasoft.ca/resources/boblap/book.html
http://www.cs.kuleuven.be/~dirk/ada-belgium/events/06/060226-fosdem-4-ada-in-debian.pdf
http://www.cs.kuleuven.be/~dirk/ada-belgium/events/06/060226-fosdem-4-ada-in-debian.pdf
http://en.wikibooks.org/wiki/User%3ALudovic%20Brenta

55 Platform: Windows

The following Libraries and Tools help you when you target the MS-Windows Platform.
GWindows1

Win32 binding
CLAW2

Another Win32 binding that works with any Ada 95 compiler. An introductory edition
is available free of charge for non-commercial use.

GNATCOM3

COM/DCOM/ActiveX binding
GNAVI4

Visual RAD5 (Rapid application development6) Development environment
/Console/7

Libraries for console I/O.
/Visual C++ - GNAT interface/8

Guide for calling Ada functions from C++ using GNAT and Visual C++.

55.1 See also
See also

55.1.1 Wikibook

• Ada Programming9

• Ada Programming/Libraries10

55.1.2 Ada Reference Manual

-- does not apply --

1 http://en.wikibooks.org/wiki/Ada%20Programming%2FPlatform%2FWindows%2Fwin32binding

2 http://www.rrsoftware.com/html/prodinf/claw/claw.htm

3 http://en.wikibooks.org/wiki/Ada%20Programming%2FPlatform%2FWindows%2Fwin32binding

4 http://en.wikibooks.org/wiki/Ada%20Programming%2FPlatform%2FWindows%2Fwin32binding

5 http://en.wikipedia.org/wiki/Rapid_application_development

6 http://en.wikipedia.org/wiki/Rapid%20application%20development

7 http://en.wikibooks.org/wiki/%2FConsole%2F

8 http://en.wikibooks.org/wiki/%2FVisual%20C%2B%2B%20-%20GNAT%20interface%2F

9 http://en.wikibooks.org/wiki/Ada%20Programming

10 Chapter 40 on page 331

379

http://en.wikibooks.org/wiki/Ada%20Programming%2FPlatform%2FWindows%2Fwin32binding
http://www.rrsoftware.com/html/prodinf/claw/claw.htm
http://en.wikibooks.org/wiki/Ada%20Programming%2FPlatform%2FWindows%2Fwin32binding
http://en.wikibooks.org/wiki/Ada%20Programming%2FPlatform%2FWindows%2Fwin32binding
http://en.wikipedia.org/wiki/Rapid_application_development
http://en.wikipedia.org/wiki/Rapid%20application%20development
http://en.wikibooks.org/wiki/%2FConsole%2F
http://en.wikibooks.org/wiki/%2FVisual%20C%2B%2B%20-%20GNAT%20interface%2F
http://en.wikibooks.org/wiki/Ada%20Programming

56 Platform: Virtual Machines

The following tools help you when you target a virtual machine.
Java1

Programming Ada 95 for Java's JVM (JGnat, AppletMagic)
.NET2

Programming Ada for the .NET Platform (GNAT Pro .NET, A#)

56.1 See also
See also

56.1.1 Wikibook

• Ada Programming3

• Ada Programming/Libraries4

56.1.2 Ada Reference Manual

-- does not apply --

1 http://en.wikibooks.org/wiki/Ada%20Programming%2FPlatform%2FVM%2FJava

2 http://en.wikibooks.org/wiki/Ada%20Programming%2FPlatform%2FVM%2FdotNET

3 http://en.wikibooks.org/wiki/Ada%20Programming

4 Chapter 40 on page 331

381

http://en.wikibooks.org/wiki/Ada%20Programming%2FPlatform%2FVM%2FJava
http://en.wikibooks.org/wiki/Ada%20Programming%2FPlatform%2FVM%2FdotNET
http://en.wikibooks.org/wiki/Ada%20Programming

57 Portals

57.1 Forges of open-source projects
Forges of open-source projects

SourceForge1

Currently there are 200 Ada projects hosted at SourceForge — including the example
programs for Ada Programming2 wikibook.

GitHub3

A source code repository based on Git with many recent developments.
Ada-centric forges
There are some Ada-centric forges hosted by Ada associations and individuals:
• http://forge.ada-ru.org

• http://www.ada-france.org:8081

• http://codelabs.ch

• http://scm.ada.cx

BerliOS4

57.2 Directories of freely available tools and libraries
Directories of freely available tools and libraries

Ada Information Clearinghouse — Free Tools and Libraries5

Oloh (language summary6, ada tag7, language search8)
Oloh is a directory of Open Source projects. Its main features are source code analysis
of public repositories and public reviews of projects.

Freecode9

Freecode, formerly Freshmeat.net, is a software directory where developers can register
their projects and users find interesting software. Although the content is somewhat
redundant to other portals, some projects are exclusively listed here.

57.3 Collections of Ada source code

1 http://sourceforge.net/directory/language:ada/

2 https://sourceforge.net/projects/wikibook-ada

3 https://github.com/languages/Ada

4 http://developer.berlios.de/softwaremap/trove_list.php?form_cat=52

5 http://www.adaic.org/ada-resources/tools-libraries/

6 http://www.ohloh.net/languages/21

7 http://www.ohloh.net/tags/ada

8 http://www.ohloh.net/p?page=3&q=language%3Aada&sort=relevance

9 http://freecode.com/tags/ada?sort=vitality&with=&without=

383

http://forge.ada-ru.org
http://www.ada-france.org:8081
http://codelabs.ch
http://scm.ada.cx
http://sourceforge.net/directory/language:ada/
https://sourceforge.net/projects/wikibook-ada
https://github.com/languages/Ada
http://developer.berlios.de/softwaremap/trove_list.php?form_cat=52
http://www.adaic.org/ada-resources/tools-libraries/
http://www.ohloh.net/languages/21
http://www.ohloh.net/tags/ada
http://www.ohloh.net/p?page=3&q=language%3Aada&sort=relevance
http://freecode.com/tags/ada?sort=vitality&with=&without=

Portals

Collections of Ada source code

AdaBasis10

AdaBasis consists of about 560 MB of public domain source code and documents, mainly
taken from the Public Ada Library (PAL). The software has been classified and is
presented in a hierarchical manner, separated in different application domains, and, for
some domains, with an additional multi-faceted searching facility.
The intent is to provide students, teachers and researchers with a large collection of
reusable Ada components and systems for use in language and software engineering
courses.
AdaBasis was set up by the Programming Languages Group of the Institut für Informatik
at the University of Stuttgart, Germany. They plan to enlarge the library in the future,
and welcome free public domain contributions. For more informations or to make
suggestions please contact adabasis@informatik.uni-stuttgart.de11

The Public Ada Library (PAL)12

The PAL is a library of Ada and VHDL software, information, and courseware that
contains over 1 BILLION bytes of material (mainly in compressed form). All items in
the PAL have been released to the public with unlimited distribution, and, in most cases
(the exceptions are shareware), the items are freeware.

[ftp
//ftp.cs.kuleuven.ac.be/pub/Ada-Belgium/cdrom/index.html Ada and Software Engi-
neering Library Version 2 (ASE2)] : The ASE2 Library contains over 1.1GB of material
on Ada and Software Engineering assembled through a collaboration with over 60 orga-
nizations. Walnut Creek CDROM once sold copies of this library. Nowadays it is no
longer maintained but is still hosted in the Ada Belgium FTP server. It may contain
useful resources, but it is highly redundant with other libraries.

AdaPower13

A directory and collection of Ada tools and resources.

57.4 See also
See also

57.4.1 Wikibook

• Ada Programming14

• Ada Programming/Tutorials15

• Ada Programming/Wikis16

57.4.2 Ada Reference Manual

-- does not apply --

10 http://www.iste.uni-stuttgart.de/ps/adabasis.html

11 mailto:adabasis@informatik.uni-stuttgart.de

12 http://www2.informatik.uni-stuttgart.de/iste/ps/ada-software/html/PAL.html

13 http://www.adapower.com/index.php?Command=Packages&Title=Packages+for+Reuse

14 http://en.wikibooks.org/wiki/Ada%20Programming

15 Chapter 58 on page 387
16 http://en.wikibooks.org/wiki/Ada%20Programming%2FWikis

384

http://www.iste.uni-stuttgart.de/ps/adabasis.html
mailto:adabasis@informatik.uni-stuttgart.de
http://www2.informatik.uni-stuttgart.de/iste/ps/ada-software/html/PAL.html
http://www.adapower.com/index.php?Command=Packages&Title=Packages+for+Reuse
http://en.wikibooks.org/wiki/Ada%20Programming
http://en.wikibooks.org/wiki/Ada%20Programming%2FWikis

57.4.3 Ada Quality and Style Guide

-- does not apply --

385

58 Tutorials

This page contains a list of other Ada tutorials on the Net.
1. Ada Programming1, available on Wikibooks, is currently the only tutorial based on

the Ada 20052 standard and currently being updated to Ada 20123.
2. Lovelace4 is a free (no-charge), self-directed Ada 95 tutorial available on the World

Wide Web (WWW). Lovelace assumes that the user already knows another algo-
rithmic programming language, such as C, C++, or Pascal. Lovelace is interactive
and contains many short sections, most of which end with a question to help ensure
that users understand the material. Lovelace can be used directly from the WWW,
downloaded, or run from CD-ROM. Lovelace was developed by David A. Wheeler.

3. AdaTutor5 is an interactive Ada 95 tutorial distributed as a public-domain Ada
program. A web edition6 of the tutorial is also available.

4. The Ada-95: A guide for C and C++ programmers7 is a short hypertext tutorial
for programmers who have a C or C++ style programming language background. It
was written by Simon Johnston, with some additional text by Tucker Taft. PDF
edition8.

5. Dale Stanbrough's Introduction9 is a set of notes that provide a simple introduction
to Ada. This material has been used for a few years as a simple introduction to the
language.

6. Coronado Enterprises Ada 95 Tutorial: shareware edition10, commercial edition11.

1 http://en.wikibooks.org/wiki/Ada%20Programming

2 Chapter 23 on page 219
3 http://en.wikibooks.org/wiki/Ada%20Programming%2FAda%202012

4 http://www.dwheeler.com/lovelace/

5 http://www.adatutor.com/

6 http://zhu-qy.blogspot.com.es/2012/08/adatutor.html

7 http://www.adahome.com/Ammo/Cplpl2Ada.html

8 http://home.agh.edu.pl/~jpi/download/ada/guide-c2ada.pdf

9 http://goanna.cs.rmit.edu.au/~dale/ada/aln.html

10 http://www.infres.enst.fr/~pautet/Ada95/a95list.htm

11 http://www.coronadoenterprises.com/tutorials/ada95/index.html

387

http://en.wikibooks.org/wiki/Ada%20Programming
http://en.wikibooks.org/wiki/Ada%20Programming%2FAda%202012
http://www.dwheeler.com/lovelace/
http://www.adatutor.com/
http://zhu-qy.blogspot.com.es/2012/08/adatutor.html
http://www.adahome.com/Ammo/Cplpl2Ada.html
http://home.agh.edu.pl/~jpi/download/ada/guide-c2ada.pdf
http://goanna.cs.rmit.edu.au/~dale/ada/aln.html
http://www.infres.enst.fr/~pautet/Ada95/a95list.htm
http://www.coronadoenterprises.com/tutorials/ada95/index.html

59 Web 2.0

Here is a list of Web 2.01 resources about Ada:

59.0.4 News & Blogs

• reddit.com — Ada2 [RSS3], social news website on which users can post links to
content on the web

• Ada Gems4 [RSS5], programming tips and articles about specific language features
• Planet Ada6 [RSS7], an aggregate feed of mostly Ada-related blogs.
• Ada Programming blog8 [RSS9], by Martin Krischik and other authors
• Kickin' the Darkness10 [RSS11], by Marc A. Criley
• Archeia12 [RSS13], by Lucretia
• Pragmatic Revelations14 [RSS15]

59.0.5 Forums & developer rings

• Stack Overflow — Ada questions16

• Linked In — Ada developers group17 (free register needed)
• Tek-Tips — Ada Forum18

1 http://en.wikipedia.org/wiki/Web%202.0

2 http://www.reddit.com/r/ada/

3 http://www.reddit.com/r/ada/.rss

4 http://www.adacore.com/category/developers-center/gems/

5 http://www.adacore.com/rss/gems

6 http://planet.ada.cx/

7 http://planet.ada.cx/rss20.xml

8 http://ada-programming.blogspot.com/

9 http://ada-programming.blogspot.com/feeds/posts/default

10 http://blog.kickin-the-darkness.com/search/label/Ada

11 http://blog.kickin-the-darkness.com/feeds/posts/default

12 http://www.archeia.com/

13 http://www.archeia.com/rss_feed.html

14 http://adrianhoe.com/adrianhoe/category/software_development/ada/

15 http://adrianhoe.com/adrianhoe/feed/rss/

16 http://stackoverflow.com/questions/tagged/ada

17 http://www.linkedin.com/groups?gid=114211

18 http://www.tek-tips.com/threadminder.cfm?pid=199

389

http://en.wikipedia.org/wiki/Web%202.0
http://www.reddit.com/r/ada/
http://www.reddit.com/r/ada/.rss
http://www.adacore.com/category/developers-center/gems/
http://www.adacore.com/rss/gems
http://planet.ada.cx/
http://planet.ada.cx/rss20.xml
http://ada-programming.blogspot.com/
http://ada-programming.blogspot.com/feeds/posts/default
http://blog.kickin-the-darkness.com/search/label/Ada
http://blog.kickin-the-darkness.com/feeds/posts/default
http://www.archeia.com/
http://www.archeia.com/rss_feed.html
http://adrianhoe.com/adrianhoe/category/software_development/ada/
http://adrianhoe.com/adrianhoe/feed/rss/
http://stackoverflow.com/questions/tagged/ada
http://www.linkedin.com/groups?gid=114211
http://www.tek-tips.com/threadminder.cfm?pid=199

Web 2.0

59.0.6 General Info

• SlideShare19, presentations about Ada20. See also: Ada programming21, Ada 9522,
Ada 200523, Ada 201224 tag pages.

• Ohloh25, a directory of Open Source projects. Its main features are source code
analysis26 of public repositories and public reviews of projects

• Ada Commons27, wiki for Ada developers
• Ada@Krischik28, Ada homepage of Martin Krischik
• WikiCFP — Calls For Papers on Ada29 [RSS30]
• AdaCore channel on youtube.com31, Ada related videos.

59.0.7 Wikimedia projects

• Wikipedia articles (Ada category32):
• Ada33

• Jean Ichbiah34

• Beaujolais effect35

• ISO 865236

• Ada Semantic Interface Specification37

• ...
• Wiktionary entries:

• ACATS38

• Ada39

• ASIS40

• Wikisource documents:
• Steelman language requirements41

• Stoneman requirements42

• Wikibooks tutorials:

19 http://www.slideshare.net/

20 http://www.slideshare.net/group/ada-programming/slideshows

21 http://www.slideshare.net/tag/ada-programming

22 http://www.slideshare.net/tag/ada-95

23 http://www.slideshare.net/tag/ada-2005

24 http://www.slideshare.net/tag/ada-2012

25 http://www.ohloh.net/tags/ada

26 http://www.ohloh.net/languages/21

27 http://commons.ada.cx

28 http://ada.krischik.com

29 http://www.wikicfp.com/cfp/call?conference=ada

30 http://www.wikicfp.com/cfp/rss?cat=ada

31 http://www.youtube.com/user/AdaCore05

32 http://en.wikipedia.org/wiki/Category%3AAda%20programming%20language

33 http://en.wikipedia.org/wiki/Ada%20%28programming%20language%29

34 http://en.wikipedia.org/wiki/Jean%20Ichbiah

35 http://en.wikipedia.org/wiki/Beaujolais%20effect

36 http://en.wikipedia.org/wiki/ISO%208652

37 http://en.wikipedia.org/wiki/Ada%20Semantic%20Interface%20Specification

38 http://en.wiktionary.org/wiki/ACATS

39 http://en.wiktionary.org/wiki/Ada

40 http://en.wiktionary.org/wiki/ASIS

41 http://en.wikisource.org/wiki/Steelman%20language%20requirements

42 http://en.wikisource.org/wiki/Stoneman%20requirements

390

http://www.slideshare.net/
http://www.slideshare.net/group/ada-programming/slideshows
http://www.slideshare.net/tag/ada-programming
http://www.slideshare.net/tag/ada-95
http://www.slideshare.net/tag/ada-2005
http://www.slideshare.net/tag/ada-2012
http://www.ohloh.net/tags/ada
http://www.ohloh.net/languages/21
http://commons.ada.cx
http://ada.krischik.com
http://www.wikicfp.com/cfp/call?conference=ada
http://www.wikicfp.com/cfp/rss?cat=ada
http://www.youtube.com/user/AdaCore05
http://en.wikipedia.org/wiki/Category%3AAda%20programming%20language
http://en.wikipedia.org/wiki/Ada%20%28programming%20language%29
http://en.wikipedia.org/wiki/Jean%20Ichbiah
http://en.wikipedia.org/wiki/Beaujolais%20effect
http://en.wikipedia.org/wiki/ISO%208652
http://en.wikipedia.org/wiki/Ada%20Semantic%20Interface%20Specification
http://en.wiktionary.org/wiki/ACATS
http://en.wiktionary.org/wiki/Ada
http://en.wiktionary.org/wiki/ASIS
http://en.wikisource.org/wiki/Steelman%20language%20requirements
http://en.wikisource.org/wiki/Stoneman%20requirements

• Programación en Ada43, in Spanish
• Programmation Ada44, in French
• Ada45, in Italian

• Wikiquote:
• Programming languages — Ada46

• Wikiversity:
• Ada course47 (you can enroll!)

59.0.8 Source code

• Examples Ada Programming wikibook48

• Rosetta Code — Ada Category49, programming examples in multiple languages
• literateprograms.org — Ada Category50, examples of literate programming51 in multi-

ple languages

59.0.9 Projects

• AdaCL52

• The Ada 95 Booch Components53

• The GNU Ada Compiler54

• ASIS55

• GLADE56

• Florist57

• GNAT — GCC Wiki58

• RTEMSAda59

• AVR-Ada60 - Ada compiler for Atmel microcontrollers (Arduinos)
Web 2.061

43 http://en.wikibooks.org/wiki/%3Aes%3AProgramaci%F3n_en_Ada

44 http://en.wikibooks.org/wiki/%3Afr%3AProgrammation_Ada

45 http://en.wikibooks.org/wiki/%3Ait%3AAda

46 http://en.wikiquote.org/wiki/Programming_languages#Ada

47 http://en.wikiversity.org/wiki/Ada

48 http://wikibook-ada.sourceforge.net

49 http://www.rosettacode.org/wiki/Ada

50 http://en.literateprograms.org/Category:Programming_language:Ada

51 http://en.wikipedia.org/wiki/literate%20programming

52 http://adacl.sourceforge.net/index.php

53 http://booch95.sourceforge.net/pmwiki.php

54 http://gnuada.sourceforge.net

55 http://gnat-asis.sourceforge.net

56 http://gnat-glade.sourceforge.net

57 http://gnat-florist.sourceforge.net

58 http://gcc.gnu.org/wiki/GNAT

59 http://www.rtems.com/wiki/index.php/RTEMSAda

60 http://avr-ada.sourceforge.net/

61 http://en.wikibooks.org/wiki/Category%3AAda%20Programming

391

http://en.wikibooks.org/wiki/%3Aes%3AProgramaci%F3n_en_Ada
http://en.wikibooks.org/wiki/%3Afr%3AProgrammation_Ada
http://en.wikibooks.org/wiki/%3Ait%3AAda
http://en.wikiquote.org/wiki/Programming_languages#Ada
http://en.wikiversity.org/wiki/Ada
http://wikibook-ada.sourceforge.net
http://www.rosettacode.org/wiki/Ada
http://en.literateprograms.org/Category:Programming_language:Ada
http://en.wikipedia.org/wiki/literate%20programming
http://adacl.sourceforge.net/index.php
http://booch95.sourceforge.net/pmwiki.php
http://gnuada.sourceforge.net
http://gnat-asis.sourceforge.net
http://gnat-glade.sourceforge.net
http://gnat-florist.sourceforge.net
http://gcc.gnu.org/wiki/GNAT
http://www.rtems.com/wiki/index.php/RTEMSAda
http://avr-ada.sourceforge.net/
http://en.wikibooks.org/wiki/Category%3AAda%20Programming

60 Contributors

Edits User
1 A101121

1 ALK2

1 AdRiley3

64 Adrignola4

1 Alan.poindexter5

2 Alisonken16

1 Ammon7

1 Andreas Ipp8

1 Aramael9

1 Arny10

1 Arthurvogel11

7 Avicennasis12

1 Benjstarratt13

14 Carsrac14

56 CarsracBot15

1 Chouclac16

2 Cspurrier17

44 Darklama18

3 David Hoos19

3 Derbeth20

1 Dhenry21

1 http://en.wikibooks.org/w/index.php?title=User:A10112

2 http://en.wikibooks.org/w/index.php?title=User:ALK

3 http://en.wikibooks.org/w/index.php?title=User:AdRiley

4 http://en.wikibooks.org/w/index.php?title=User:Adrignola

5 http://en.wikibooks.org/w/index.php?title=User:Alan.poindexter

6 http://en.wikibooks.org/w/index.php?title=User:Alisonken1

7 http://en.wikibooks.org/w/index.php?title=User:Ammon

8 http://en.wikibooks.org/w/index.php?title=User:Andreas_Ipp

9 http://en.wikibooks.org/w/index.php?title=User:Aramael

10 http://en.wikibooks.org/w/index.php?title=User:Arny

11 http://en.wikibooks.org/w/index.php?title=User:Arthurvogel

12 http://en.wikibooks.org/w/index.php?title=User:Avicennasis

13 http://en.wikibooks.org/w/index.php?title=User:Benjstarratt

14 http://en.wikibooks.org/w/index.php?title=User:Carsrac

15 http://en.wikibooks.org/w/index.php?title=User:CarsracBot

16 http://en.wikibooks.org/w/index.php?title=User:Chouclac

17 http://en.wikibooks.org/w/index.php?title=User:Cspurrier

18 http://en.wikibooks.org/w/index.php?title=User:Darklama

19 http://en.wikibooks.org/w/index.php?title=User:David_Hoos

20 http://en.wikibooks.org/w/index.php?title=User:Derbeth

21 http://en.wikibooks.org/w/index.php?title=User:Dhenry

393

http://en.wikibooks.org/w/index.php?title=User:A10112
http://en.wikibooks.org/w/index.php?title=User:ALK
http://en.wikibooks.org/w/index.php?title=User:AdRiley
http://en.wikibooks.org/w/index.php?title=User:Adrignola
http://en.wikibooks.org/w/index.php?title=User:Alan.poindexter
http://en.wikibooks.org/w/index.php?title=User:Alisonken1
http://en.wikibooks.org/w/index.php?title=User:Ammon
http://en.wikibooks.org/w/index.php?title=User:Andreas_Ipp
http://en.wikibooks.org/w/index.php?title=User:Aramael
http://en.wikibooks.org/w/index.php?title=User:Arny
http://en.wikibooks.org/w/index.php?title=User:Arthurvogel
http://en.wikibooks.org/w/index.php?title=User:Avicennasis
http://en.wikibooks.org/w/index.php?title=User:Benjstarratt
http://en.wikibooks.org/w/index.php?title=User:Carsrac
http://en.wikibooks.org/w/index.php?title=User:CarsracBot
http://en.wikibooks.org/w/index.php?title=User:Chouclac
http://en.wikibooks.org/w/index.php?title=User:Cspurrier
http://en.wikibooks.org/w/index.php?title=User:Darklama
http://en.wikibooks.org/w/index.php?title=User:David_Hoos
http://en.wikibooks.org/w/index.php?title=User:Derbeth
http://en.wikibooks.org/w/index.php?title=User:Dhenry

Contributors

12 Dirk Hünniger22

2 Dmitry-kazakov23

1 Doug24

2 DougP25

17 Dragontamer26

1 Fraterm27

1 Friess28

1 Frikk29

1 Frodet30

2 Geocachernemesis31

97 GeorgBauhaus32

8 Godunko33

1 Hagindaz34

1 Herbythyme35

2 JMatthews36

3 James Dennett37

1 Jclee38

1 Jcreem39

1 Jeffinous40

5 Jesselang41

34 Jguk42

1 Jlaire43

2 Jlenthe44

4 Jomegat45

1 Kayau46

22 http://en.wikibooks.org/w/index.php?title=User:Dirk_H%C3%BCnniger

23 http://en.wikibooks.org/w/index.php?title=User:Dmitry-kazakov

24 http://en.wikibooks.org/w/index.php?title=User:Doug

25 http://en.wikibooks.org/w/index.php?title=User:DougP

26 http://en.wikibooks.org/w/index.php?title=User:Dragontamer

27 http://en.wikibooks.org/w/index.php?title=User:Fraterm

28 http://en.wikibooks.org/w/index.php?title=User:Friess

29 http://en.wikibooks.org/w/index.php?title=User:Frikk

30 http://en.wikibooks.org/w/index.php?title=User:Frodet

31 http://en.wikibooks.org/w/index.php?title=User:Geocachernemesis

32 http://en.wikibooks.org/w/index.php?title=User:GeorgBauhaus

33 http://en.wikibooks.org/w/index.php?title=User:Godunko

34 http://en.wikibooks.org/w/index.php?title=User:Hagindaz

35 http://en.wikibooks.org/w/index.php?title=User:Herbythyme

36 http://en.wikibooks.org/w/index.php?title=User:JMatthews

37 http://en.wikibooks.org/w/index.php?title=User:James_Dennett

38 http://en.wikibooks.org/w/index.php?title=User:Jclee

39 http://en.wikibooks.org/w/index.php?title=User:Jcreem

40 http://en.wikibooks.org/w/index.php?title=User:Jeffinous

41 http://en.wikibooks.org/w/index.php?title=User:Jesselang

42 http://en.wikibooks.org/w/index.php?title=User:Jguk

43 http://en.wikibooks.org/w/index.php?title=User:Jlaire

44 http://en.wikibooks.org/w/index.php?title=User:Jlenthe

45 http://en.wikibooks.org/w/index.php?title=User:Jomegat

46 http://en.wikibooks.org/w/index.php?title=User:Kayau

394

http://en.wikibooks.org/w/index.php?title=User:Dirk_H%C3%BCnniger
http://en.wikibooks.org/w/index.php?title=User:Dmitry-kazakov
http://en.wikibooks.org/w/index.php?title=User:Doug
http://en.wikibooks.org/w/index.php?title=User:DougP
http://en.wikibooks.org/w/index.php?title=User:Dragontamer
http://en.wikibooks.org/w/index.php?title=User:Fraterm
http://en.wikibooks.org/w/index.php?title=User:Friess
http://en.wikibooks.org/w/index.php?title=User:Frikk
http://en.wikibooks.org/w/index.php?title=User:Frodet
http://en.wikibooks.org/w/index.php?title=User:Geocachernemesis
http://en.wikibooks.org/w/index.php?title=User:GeorgBauhaus
http://en.wikibooks.org/w/index.php?title=User:Godunko
http://en.wikibooks.org/w/index.php?title=User:Hagindaz
http://en.wikibooks.org/w/index.php?title=User:Herbythyme
http://en.wikibooks.org/w/index.php?title=User:JMatthews
http://en.wikibooks.org/w/index.php?title=User:James_Dennett
http://en.wikibooks.org/w/index.php?title=User:Jclee
http://en.wikibooks.org/w/index.php?title=User:Jcreem
http://en.wikibooks.org/w/index.php?title=User:Jeffinous
http://en.wikibooks.org/w/index.php?title=User:Jesselang
http://en.wikibooks.org/w/index.php?title=User:Jguk
http://en.wikibooks.org/w/index.php?title=User:Jlaire
http://en.wikibooks.org/w/index.php?title=User:Jlenthe
http://en.wikibooks.org/w/index.php?title=User:Jomegat
http://en.wikibooks.org/w/index.php?title=User:Kayau

1102 Krischik47

1 Kwhitefoot48

16 Larry Luther49

3 LesmanaZimmer50

1 Lincher51

1 Lodacom52

118 Ludovic Brenta53

1 Maciej Sobczak54

2 Mahanga55

463 ManuelGR56

4 Mike.lifeguard57

2 Moskvax58

5 Nikai59

2 Okellogg60

6 Oleszkie61

8 Panic2k462

1 Panzon63

1 Parallelized64

2 Paxton65

1 Per.sandberg66

1 QuiteUnusual67

1 RamaccoloBot68

2 Randhol69

1 Recent Runes70

1 Red4tribe71

47 http://en.wikibooks.org/w/index.php?title=User:Krischik

48 http://en.wikibooks.org/w/index.php?title=User:Kwhitefoot

49 http://en.wikibooks.org/w/index.php?title=User:Larry_Luther

50 http://en.wikibooks.org/w/index.php?title=User:LesmanaZimmer

51 http://en.wikibooks.org/w/index.php?title=User:Lincher

52 http://en.wikibooks.org/w/index.php?title=User:Lodacom

53 http://en.wikibooks.org/w/index.php?title=User:Ludovic_Brenta

54 http://en.wikibooks.org/w/index.php?title=User:Maciej_Sobczak

55 http://en.wikibooks.org/w/index.php?title=User:Mahanga

56 http://en.wikibooks.org/w/index.php?title=User:ManuelGR

57 http://en.wikibooks.org/w/index.php?title=User:Mike.lifeguard

58 http://en.wikibooks.org/w/index.php?title=User:Moskvax

59 http://en.wikibooks.org/w/index.php?title=User:Nikai

60 http://en.wikibooks.org/w/index.php?title=User:Okellogg

61 http://en.wikibooks.org/w/index.php?title=User:Oleszkie

62 http://en.wikibooks.org/w/index.php?title=User:Panic2k4

63 http://en.wikibooks.org/w/index.php?title=User:Panzon

64 http://en.wikibooks.org/w/index.php?title=User:Parallelized

65 http://en.wikibooks.org/w/index.php?title=User:Paxton

66 http://en.wikibooks.org/w/index.php?title=User:Per.sandberg

67 http://en.wikibooks.org/w/index.php?title=User:QuiteUnusual

68 http://en.wikibooks.org/w/index.php?title=User:RamaccoloBot

69 http://en.wikibooks.org/w/index.php?title=User:Randhol

70 http://en.wikibooks.org/w/index.php?title=User:Recent_Runes

71 http://en.wikibooks.org/w/index.php?title=User:Red4tribe

395

http://en.wikibooks.org/w/index.php?title=User:Krischik
http://en.wikibooks.org/w/index.php?title=User:Kwhitefoot
http://en.wikibooks.org/w/index.php?title=User:Larry_Luther
http://en.wikibooks.org/w/index.php?title=User:LesmanaZimmer
http://en.wikibooks.org/w/index.php?title=User:Lincher
http://en.wikibooks.org/w/index.php?title=User:Lodacom
http://en.wikibooks.org/w/index.php?title=User:Ludovic_Brenta
http://en.wikibooks.org/w/index.php?title=User:Maciej_Sobczak
http://en.wikibooks.org/w/index.php?title=User:Mahanga
http://en.wikibooks.org/w/index.php?title=User:ManuelGR
http://en.wikibooks.org/w/index.php?title=User:Mike.lifeguard
http://en.wikibooks.org/w/index.php?title=User:Moskvax
http://en.wikibooks.org/w/index.php?title=User:Nikai
http://en.wikibooks.org/w/index.php?title=User:Okellogg
http://en.wikibooks.org/w/index.php?title=User:Oleszkie
http://en.wikibooks.org/w/index.php?title=User:Panic2k4
http://en.wikibooks.org/w/index.php?title=User:Panzon
http://en.wikibooks.org/w/index.php?title=User:Parallelized
http://en.wikibooks.org/w/index.php?title=User:Paxton
http://en.wikibooks.org/w/index.php?title=User:Per.sandberg
http://en.wikibooks.org/w/index.php?title=User:QuiteUnusual
http://en.wikibooks.org/w/index.php?title=User:RamaccoloBot
http://en.wikibooks.org/w/index.php?title=User:Randhol
http://en.wikibooks.org/w/index.php?title=User:Recent_Runes
http://en.wikibooks.org/w/index.php?title=User:Red4tribe

Contributors

5 Robert Horning72

1 Rosen73

1 Rursus74

3 SQL75

2 Sam76

5 Sjw77

1 Sparre78

5 Spongebob8879

1 Stephen leake80

711 Suruena81

2 Swhalen82

2 The bellman83

3 Thenub31484

3 Tkoskine85

1 Tobias Bergemann86

1 Van der Hoorn87

3 Venullian88

5 VillemtheVillain!89

1 Vito Genovese90

1 Warinthepocket91

3 WhirlWind92

1 Wikibob93

1 Xania94

1 robot95

72 http://en.wikibooks.org/w/index.php?title=User:Robert_Horning

73 http://en.wikibooks.org/w/index.php?title=User:Rosen

74 http://en.wikibooks.org/w/index.php?title=User:Rursus

75 http://en.wikibooks.org/w/index.php?title=User:SQL

76 http://en.wikibooks.org/w/index.php?title=User:Sam

77 http://en.wikibooks.org/w/index.php?title=User:Sjw

78 http://en.wikibooks.org/w/index.php?title=User:Sparre

79 http://en.wikibooks.org/w/index.php?title=User:Spongebob88

80 http://en.wikibooks.org/w/index.php?title=User:Stephen_leake

81 http://en.wikibooks.org/w/index.php?title=User:Suruena

82 http://en.wikibooks.org/w/index.php?title=User:Swhalen

83 http://en.wikibooks.org/w/index.php?title=User:The_bellman

84 http://en.wikibooks.org/w/index.php?title=User:Thenub314

85 http://en.wikibooks.org/w/index.php?title=User:Tkoskine

86 http://en.wikibooks.org/w/index.php?title=User:Tobias_Bergemann

87 http://en.wikibooks.org/w/index.php?title=User:Van_der_Hoorn

88 http://en.wikibooks.org/w/index.php?title=User:Venullian

89 http://en.wikibooks.org/w/index.php?title=User:VillemtheVillain%21

90 http://en.wikibooks.org/w/index.php?title=User:Vito_Genovese

91 http://en.wikibooks.org/w/index.php?title=User:Warinthepocket

92 http://en.wikibooks.org/w/index.php?title=User:WhirlWind

93 http://en.wikibooks.org/w/index.php?title=User:Wikibob

94 http://en.wikibooks.org/w/index.php?title=User:Xania

95
http://en.wikibooks.org/w/index.php?title=User:%E3%82%BF%E3%83%81%E3%82%B3%E3%83%9E_

robot

396

http://en.wikibooks.org/w/index.php?title=User:Robert_Horning
http://en.wikibooks.org/w/index.php?title=User:Rosen
http://en.wikibooks.org/w/index.php?title=User:Rursus
http://en.wikibooks.org/w/index.php?title=User:SQL
http://en.wikibooks.org/w/index.php?title=User:Sam
http://en.wikibooks.org/w/index.php?title=User:Sjw
http://en.wikibooks.org/w/index.php?title=User:Sparre
http://en.wikibooks.org/w/index.php?title=User:Spongebob88
http://en.wikibooks.org/w/index.php?title=User:Stephen_leake
http://en.wikibooks.org/w/index.php?title=User:Suruena
http://en.wikibooks.org/w/index.php?title=User:Swhalen
http://en.wikibooks.org/w/index.php?title=User:The_bellman
http://en.wikibooks.org/w/index.php?title=User:Thenub314
http://en.wikibooks.org/w/index.php?title=User:Tkoskine
http://en.wikibooks.org/w/index.php?title=User:Tobias_Bergemann
http://en.wikibooks.org/w/index.php?title=User:Van_der_Hoorn
http://en.wikibooks.org/w/index.php?title=User:Venullian
http://en.wikibooks.org/w/index.php?title=User:VillemtheVillain%21
http://en.wikibooks.org/w/index.php?title=User:Vito_Genovese
http://en.wikibooks.org/w/index.php?title=User:Warinthepocket
http://en.wikibooks.org/w/index.php?title=User:WhirlWind
http://en.wikibooks.org/w/index.php?title=User:Wikibob
http://en.wikibooks.org/w/index.php?title=User:Xania
http://en.wikibooks.org/w/index.php?title=User:%E3%82%BF%E3%83%81%E3%82%B3%E3%83%9E_robot
http://en.wikibooks.org/w/index.php?title=User:%E3%82%BF%E3%83%81%E3%82%B3%E3%83%9E_robot

List of Figures

– GFDL: Gnu Free Documentation License. http://www.gnu.org/licenses/fdl.

html

– cc-by-sa-3.0: Creative Commons Attribution ShareAlike 3.0 License. http://

creativecommons.org/licenses/by-sa/3.0/

– cc-by-sa-2.5: Creative Commons Attribution ShareAlike 2.5 License. http://

creativecommons.org/licenses/by-sa/2.5/

– cc-by-sa-2.0: Creative Commons Attribution ShareAlike 2.0 License. http://

creativecommons.org/licenses/by-sa/2.0/

– cc-by-sa-1.0: Creative Commons Attribution ShareAlike 1.0 License. http://

creativecommons.org/licenses/by-sa/1.0/

– cc-by-2.0: Creative Commons Attribution 2.0 License. http://creativecommons.

org/licenses/by/2.0/

– cc-by-2.0: Creative Commons Attribution 2.0 License. http://creativecommons.

org/licenses/by/2.0/deed.en

– cc-by-2.5: Creative Commons Attribution 2.5 License. http://creativecommons.

org/licenses/by/2.5/deed.en

– cc-by-3.0: Creative Commons Attribution 3.0 License. http://creativecommons.

org/licenses/by/3.0/deed.en

– GPL: GNU General Public License. http://www.gnu.org/licenses/gpl-2.0.txt

– LGPL: GNU Lesser General Public License. http://www.gnu.org/licenses/lgpl.

html

– PD: This image is in the public domain.
– ATTR: The copyright holder of this file allows anyone to use it for any purpose,

provided that the copyright holder is properly attributed. Redistribution, derivative
work, commercial use, and all other use is permitted.

– EURO: This is the common (reverse) face of a euro coin. The copyright on the
design of the common face of the euro coins belongs to the European Commission.
Authorised is reproduction in a format without relief (drawings, paintings, films)
provided they are not detrimental to the image of the euro.

– LFK: Lizenz Freie Kunst. http://artlibre.org/licence/lal/de

– CFR: Copyright free use.
– EPL: Eclipse Public License. http://www.eclipse.org/org/documents/epl-v10.

php
Copies of the GPL, the LGPL as well as a GFDL are included in chapter Licenses96.
Please note that images in the public domain do not require attribution. You may click
on the image numbers in the following table to open the webpage of the images in your
webbrower.

96 Chapter 61 on page 399

397

http://www.gnu.org/licenses/fdl.html
http://www.gnu.org/licenses/fdl.html
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.0/
http://creativecommons.org/licenses/by-sa/2.0/
http://creativecommons.org/licenses/by-sa/1.0/
http://creativecommons.org/licenses/by-sa/1.0/
http://creativecommons.org/licenses/by/2.0/
http://creativecommons.org/licenses/by/2.0/
http://creativecommons.org/licenses/by/2.0/deed.en
http://creativecommons.org/licenses/by/2.0/deed.en
http://creativecommons.org/licenses/by/2.5/deed.en
http://creativecommons.org/licenses/by/2.5/deed.en
http://creativecommons.org/licenses/by/3.0/deed.en
http://creativecommons.org/licenses/by/3.0/deed.en
http://www.gnu.org/licenses/gpl-2.0.txt
http://www.gnu.org/licenses/lgpl.html
http://www.gnu.org/licenses/lgpl.html
http://artlibre.org/licence/lal/de
http://www.eclipse.org/org/documents/epl-v10.php
http://www.eclipse.org/org/documents/epl-v10.php

List of Figures

1 ManuelGR97 GFDL

97 http://en.wikibooks.org/wiki/User%3AManuelGR

398

http://en.wikibooks.org/wiki/File:Ada_types.png
http://en.wikibooks.org/wiki/User%3AManuelGR

61 Licenses

61.1 GNU GENERAL PUBLIC LICENSE

Version 3, 29 June 2007
Copyright © 2007 Free Software Foundation, Inc.
<http://fsf.org/>
Everyone is permitted to copy and distribute verba-
tim copies of this license document, but changing
it is not allowed. Preamble
The GNU General Public License is a free, copyleft
license for software and other kinds of works.
The licenses for most software and other practi-
cal works are designed to take away your freedom
to share and change the works. By contrast, the
GNU General Public License is intended to guaran-
tee your freedom to share and change all versions
of a program–to make sure it remains free software
for all its users. We, the Free Software Foundation,
use the GNU General Public License for most of our
software; it applies also to any other work released
this way by its authors. You can apply it to your
programs, too.
When we speak of free software, we are referring
to freedom, not price. Our General Public Li-
censes are designed to make sure that you have
the freedom to distribute copies of free software
(and charge for them if you wish), that you receive
source code or can get it if you want it, that you
can change the software or use pieces of it in new
free programs, and that you know you can do these
things.
To protect your rights, we need to prevent others
from denying you these rights or asking you to sur-
render the rights. Therefore, you have certain re-
sponsibilities if you distribute copies of the soft-
ware, or if you modify it: responsibilities to respect
the freedom of others.
For example, if you distribute copies of such a pro-
gram, whether gratis or for a fee, you must pass
on to the recipients the same freedoms that you re-
ceived. You must make sure that they, too, receive
or can get the source code. And you must show
them these terms so they know their rights.
Developers that use the GNU GPL protect your
rights with two steps: (1) assert copyright on the
software, and (2) offer you this License giving you
legal permission to copy, distribute and/or modify
it.
For the developers’ and authors’ protection, the
GPL clearly explains that there is no warranty for
this free software. For both users’ and authors’
sake, the GPL requires that modified versions be
marked as changed, so that their problems will not
be attributed erroneously to authors of previous
versions.
Some devices are designed to deny users access to
install or run modified versions of the software in-
side them, although the manufacturer can do so.
This is fundamentally incompatible with the aim
of protecting users’ freedom to change the software.
The systematic pattern of such abuse occurs in the
area of products for individuals to use, which is
precisely where it is most unacceptable. Therefore,
we have designed this version of the GPL to pro-
hibit the practice for those products. If such prob-
lems arise substantially in other domains, we stand
ready to extend this provision to those domains in
future versions of the GPL, as needed to protect
the freedom of users.
Finally, every program is threatened constantly by
software patents. States should not allow patents
to restrict development and use of software on
general-purpose computers, but in those that do,
we wish to avoid the special danger that patents
applied to a free program could make it effectively
proprietary. To prevent this, the GPL assures that
patents cannot be used to render the program non-
free.
The precise terms and conditions for copying, dis-
tribution and modification follow. TERMS AND
CONDITIONS 0. Definitions.
“This License” refers to version 3 of the GNU Gen-
eral Public License.
“Copyright” also means copyright-like laws that ap-
ply to other kinds of works, such as semiconductor
masks.
“The Program” refers to any copyrightable work
licensed under this License. Each licensee is ad-
dressed as “you”. “Licensees” and “recipients” may
be individuals or organizations.
To “modify” a work means to copy from or adapt
all or part of the work in a fashion requiring copy-
right permission, other than the making of an exact
copy. The resulting work is called a “modified ver-
sion” of the earlier work or a work “based on” the
earlier work.
A “covered work” means either the unmodified Pro-
gram or a work based on the Program.
To “propagate” a work means to do anything with it
that, without permission, would make you directly
or secondarily liable for infringement under appli-
cable copyright law, except executing it on a com-
puter or modifying a private copy. Propagation in-
cludes copying, distribution (with or without mod-
ification), making available to the public, and in
some countries other activities as well.
To “convey” a work means any kind of propagation
that enables other parties to make or receive copies.
Mere interaction with a user through a computer
network, with no transfer of a copy, is not convey-
ing.
An interactive user interface displays “Appropriate
Legal Notices” to the extent that it includes a con-
venient and prominently visible feature that (1) dis-
plays an appropriate copyright notice, and (2) tells
the user that there is no warranty for the work (ex-
cept to the extent that warranties are provided),
that licensees may convey the work under this Li-
cense, and how to view a copy of this License. If
the interface presents a list of user commands or
options, such as a menu, a prominent item in the
list meets this criterion. 1. Source Code.
The “source code” for a work means the preferred
form of the work for making modifications to it.
“Object code” means any non-source form of a
work.
A “Standard Interface” means an interface that ei-
ther is an official standard defined by a recognized
standards body, or, in the case of interfaces spec-
ified for a particular programming language, one
that is widely used among developers working in
that language.
The “System Libraries” of an executable work in-
clude anything, other than the work as a whole,
that (a) is included in the normal form of packag-

ing a Major Component, but which is not part of
that Major Component, and (b) serves only to en-
able use of the work with that Major Component,
or to implement a Standard Interface for which an
implementation is available to the public in source
code form. A “Major Component”, in this context,
means a major essential component (kernel, window
system, and so on) of the specific operating system
(if any) on which the executable work runs, or a
compiler used to produce the work, or an object
code interpreter used to run it.
The “Corresponding Source” for a work in object
code form means all the source code needed to gen-
erate, install, and (for an executable work) run
the object code and to modify the work, including
scripts to control those activities. However, it does
not include the work’s System Libraries, or general-
purpose tools or generally available free programs
which are used unmodified in performing those ac-
tivities but which are not part of the work. For
example, Corresponding Source includes interface
definition files associated with source files for the
work, and the source code for shared libraries and
dynamically linked subprograms that the work is
specifically designed to require, such as by intimate
data communication or control flow between those
subprograms and other parts of the work.
The Corresponding Source need not include any-
thing that users can regenerate automatically from
other parts of the Corresponding Source.
The Corresponding Source for a work in source code
form is that same work. 2. Basic Permissions.
All rights granted under this License are granted
for the term of copyright on the Program, and are
irrevocable provided the stated conditions are met.
This License explicitly affirms your unlimited per-
mission to run the unmodified Program. The out-
put from running a covered work is covered by this
License only if the output, given its content, con-
stitutes a covered work. This License acknowledges
your rights of fair use or other equivalent, as pro-
vided by copyright law.
You may make, run and propagate covered works
that you do not convey, without conditions so long
as your license otherwise remains in force. You may
convey covered works to others for the sole purpose
of having them make modifications exclusively for
you, or provide you with facilities for running those
works, provided that you comply with the terms
of this License in conveying all material for which
you do not control copyright. Those thus making or
running the covered works for you must do so exclu-
sively on your behalf, under your direction and con-
trol, on terms that prohibit them from making any
copies of your copyrighted material outside their
relationship with you.
Conveying under any other circumstances is permit-
ted solely under the conditions stated below. Subli-
censing is not allowed; section 10 makes it unneces-
sary. 3. Protecting Users’ Legal Rights From Anti-
Circumvention Law.
No covered work shall be deemed part of an effec-
tive technological measure under any applicable law
fulfilling obligations under article 11 of the WIPO
copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumven-
tion of such measures.
When you convey a covered work, you waive any
legal power to forbid circumvention of technologi-
cal measures to the extent such circumvention is ef-
fected by exercising rights under this License with
respect to the covered work, and you disclaim any
intention to limit operation or modification of the
work as a means of enforcing, against the work’s
users, your or third parties’ legal rights to forbid
circumvention of technological measures. 4. Con-
veying Verbatim Copies.
You may convey verbatim copies of the Program’s
source code as you receive it, in any medium, pro-
vided that you conspicuously and appropriately
publish on each copy an appropriate copyright no-
tice; keep intact all notices stating that this License
and any non-permissive terms added in accord with
section 7 apply to the code; keep intact all notices
of the absence of any warranty; and give all recipi-
ents a copy of this License along with the Program.
You may charge any price or no price for each copy
that you convey, and you may offer support or war-
ranty protection for a fee. 5. Conveying Modified
Source Versions.
You may convey a work based on the Program, or
the modifications to produce it from the Program,
in the form of source code under the terms of sec-
tion 4, provided that you also meet all of these con-
ditions:
* a) The work must carry prominent notices stating
that you modified it, and giving a relevant date. *
b) The work must carry prominent notices stating
that it is released under this License and any con-
ditions added under section 7. This requirement
modifies the requirement in section 4 to “keep in-
tact all notices”. * c) You must license the entire
work, as a whole, under this License to anyone who
comes into possession of a copy. This License will
therefore apply, along with any applicable section 7
additional terms, to the whole of the work, and all
its parts, regardless of how they are packaged. This
License gives no permission to license the work in
any other way, but it does not invalidate such per-
mission if you have separately received it. * d) If
the work has interactive user interfaces, each must
display Appropriate Legal Notices; however, if the
Program has interactive interfaces that do not dis-
play Appropriate Legal Notices, your work need not
make them do so.
A compilation of a covered work with other sepa-
rate and independent works, which are not by their
nature extensions of the covered work, and which
are not combined with it such as to form a larger
program, in or on a volume of a storage or distri-
bution medium, is called an “aggregate” if the com-
pilation and its resulting copyright are not used to
limit the access or legal rights of the compilation’s
users beyond what the individual works permit. In-
clusion of a covered work in an aggregate does not
cause this License to apply to the other parts of the
aggregate. 6. Conveying Non-Source Forms.
You may convey a covered work in object code form
under the terms of sections 4 and 5, provided that
you also convey the machine-readable Correspond-
ing Source under the terms of this License, in one
of these ways:

* a) Convey the object code in, or embodied in,
a physical product (including a physical distribu-
tion medium), accompanied by the Corresponding
Source fixed on a durable physical medium custom-
arily used for software interchange. * b) Convey the
object code in, or embodied in, a physical product
(including a physical distribution medium), accom-
panied by a written offer, valid for at least three
years and valid for as long as you offer spare parts
or customer support for that product model, to
give anyone who possesses the object code either
(1) a copy of the Corresponding Source for all the
software in the product that is covered by this Li-
cense, on a durable physical medium customarily
used for software interchange, for a price no more
than your reasonable cost of physically performing
this conveying of source, or (2) access to copy the
Corresponding Source from a network server at no
charge. * c) Convey individual copies of the object
code with a copy of the written offer to provide
the Corresponding Source. This alternative is al-
lowed only occasionally and noncommercially, and
only if you received the object code with such an of-
fer, in accord with subsection 6b. * d) Convey the
object code by offering access from a designated
place (gratis or for a charge), and offer equivalent
access to the Corresponding Source in the same way
through the same place at no further charge. You
need not require recipients to copy the Correspond-
ing Source along with the object code. If the place
to copy the object code is a network server, the Cor-
responding Source may be on a different server (op-
erated by you or a third party) that supports equiv-
alent copying facilities, provided you maintain clear
directions next to the object code saying where to
find the Corresponding Source. Regardless of what
server hosts the Corresponding Source, you remain
obligated to ensure that it is available for as long
as needed to satisfy these requirements. * e) Con-
vey the object code using peer-to-peer transmission,
provided you inform other peers where the object
code and Corresponding Source of the work are be-
ing offered to the general public at no charge under
subsection 6d.
A separable portion of the object code, whose
source code is excluded from the Corresponding
Source as a System Library, need not be included
in conveying the object code work.
A “User Product” is either (1) a “consumer prod-
uct”, which means any tangible personal property
which is normally used for personal, family, or
household purposes, or (2) anything designed or
sold for incorporation into a dwelling. In deter-
mining whether a product is a consumer product,
doubtful cases shall be resolved in favor of cover-
age. For a particular product received by a par-
ticular user, “normally used” refers to a typical or
common use of that class of product, regardless of
the status of the particular user or of the way in
which the particular user actually uses, or expects
or is expected to use, the product. A product is a
consumer product regardless of whether the prod-
uct has substantial commercial, industrial or non-
consumer uses, unless such uses represent the only
significant mode of use of the product.
“Installation Information” for a User Product
means any methods, procedures, authorization
keys, or other information required to install and
execute modified versions of a covered work in that
User Product from a modified version of its Corre-
sponding Source. The information must suffice to
ensure that the continued functioning of the modi-
fied object code is in no case prevented or interfered
with solely because modification has been made.
If you convey an object code work under this sec-
tion in, or with, or specifically for use in, a User
Product, and the conveying occurs as part of a
transaction in which the right of possession and
use of the User Product is transferred to the re-
cipient in perpetuity or for a fixed term (regard-
less of how the transaction is characterized), the
Corresponding Source conveyed under this section
must be accompanied by the Installation Informa-
tion. But this requirement does not apply if neither
you nor any third party retains the ability to install
modified object code on the User Product (for ex-
ample, the work has been installed in ROM).
The requirement to provide Installation Informa-
tion does not include a requirement to continue to
provide support service, warranty, or updates for a
work that has been modified or installed by the re-
cipient, or for the User Product in which it has been
modified or installed. Access to a network may be
denied when the modification itself materially and
adversely affects the operation of the network or
violates the rules and protocols for communication
across the network.
Corresponding Source conveyed, and Installation
Information provided, in accord with this section
must be in a format that is publicly documented
(and with an implementation available to the public
in source code form), and must require no special
password or key for unpacking, reading or copying.
7. Additional Terms.
“Additional permissions” are terms that supplement
the terms of this License by making exceptions from
one or more of its conditions. Additional permis-
sions that are applicable to the entire Program
shall be treated as though they were included in
this License, to the extent that they are valid un-
der applicable law. If additional permissions apply
only to part of the Program, that part may be used
separately under those permissions, but the entire
Program remains governed by this License without
regard to the additional permissions.
When you convey a copy of a covered work, you may
at your option remove any additional permissions
from that copy, or from any part of it. (Additional
permissions may be written to require their own re-
moval in certain cases when you modify the work.)
You may place additional permissions on material,
added by you to a covered work, for which you have
or can give appropriate copyright permission.
Notwithstanding any other provision of this Li-
cense, for material you add to a covered work, you
may (if authorized by the copyright holders of that
material) supplement the terms of this License with
terms:
* a) Disclaiming warranty or limiting liability dif-
ferently from the terms of sections 15 and 16 of this
License; or * b) Requiring preservation of specified
reasonable legal notices or author attributions in

that material or in the Appropriate Legal Notices
displayed by works containing it; or * c) Prohibit-
ing misrepresentation of the origin of that material,
or requiring that modified versions of such material
be marked in reasonable ways as different from the
original version; or * d) Limiting the use for pub-
licity purposes of names of licensors or authors of
the material; or * e) Declining to grant rights under
trademark law for use of some trade names, trade-
marks, or service marks; or * f) Requiring indem-
nification of licensors and authors of that material
by anyone who conveys the material (or modified
versions of it) with contractual assumptions of lia-
bility to the recipient, for any liability that these
contractual assumptions directly impose on those
licensors and authors.
All other non-permissive additional terms are con-
sidered “further restrictions” within the meaning of
section 10. If the Program as you received it, or any
part of it, contains a notice stating that it is gov-
erned by this License along with a term that is a
further restriction, you may remove that term. If a
license document contains a further restriction but
permits relicensing or conveying under this License,
you may add to a covered work material governed
by the terms of that license document, provided
that the further restriction does not survive such
relicensing or conveying.
If you add terms to a covered work in accord with
this section, you must place, in the relevant source
files, a statement of the additional terms that ap-
ply to those files, or a notice indicating where to
find the applicable terms.
Additional terms, permissive or non-permissive,
may be stated in the form of a separately written
license, or stated as exceptions; the above require-
ments apply either way. 8. Termination.
You may not propagate or modify a covered work
except as expressly provided under this License.
Any attempt otherwise to propagate or modify it is
void, and will automatically terminate your rights
under this License (including any patent licenses
granted under the third paragraph of section 11).
However, if you cease all violation of this License,
then your license from a particular copyright holder
is reinstated (a) provisionally, unless and until the
copyright holder explicitly and finally terminates
your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some
reasonable means prior to 60 days after the cessa-
tion.
Moreover, your license from a particular copyright
holder is reinstated permanently if the copyright
holder notifies you of the violation by some reason-
able means, this is the first time you have received
notice of violation of this License (for any work)
from that copyright holder, and you cure the vi-
olation prior to 30 days after your receipt of the
notice.
Termination of your rights under this section does
not terminate the licenses of parties who have re-
ceived copies or rights from you under this License.
If your rights have been terminated and not perma-
nently reinstated, you do not qualify to receive new
licenses for the same material under section 10. 9.
Acceptance Not Required for Having Copies.
You are not required to accept this License in or-
der to receive or run a copy of the Program. Ancil-
lary propagation of a covered work occurring solely
as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require accep-
tance. However, nothing other than this License
grants you permission to propagate or modify any
covered work. These actions infringe copyright if
you do not accept this License. Therefore, by mod-
ifying or propagating a covered work, you indicate
your acceptance of this License to do so. 10. Auto-
matic Licensing of Downstream Recipients.
Each time you convey a covered work, the recipient
automatically receives a license from the original
licensors, to run, modify and propagate that work,
subject to this License. You are not responsible
for enforcing compliance by third parties with this
License.
An “entity transaction” is a transaction transfer-
ring control of an organization, or substantially all
assets of one, or subdividing an organization, or
merging organizations. If propagation of a cov-
ered work results from an entity transaction, each
party to that transaction who receives a copy of the
work also receives whatever licenses to the work the
party’s predecessor in interest had or could give un-
der the previous paragraph, plus a right to posses-
sion of the Corresponding Source of the work from
the predecessor in interest, if the predecessor has it
or can get it with reasonable efforts.
You may not impose any further restrictions on the
exercise of the rights granted or affirmed under this
License. For example, you may not impose a license
fee, royalty, or other charge for exercise of rights
granted under this License, and you may not ini-
tiate litigation (including a cross-claim or counter-
claim in a lawsuit) alleging that any patent claim
is infringed by making, using, selling, offering for
sale, or importing the Program or any portion of it.
11. Patents.
A “contributor” is a copyright holder who autho-
rizes use under this License of the Program or a
work on which the Program is based. The work
thus licensed is called the contributor’s “contribu-
tor version”.
A contributor’s “essential patent claims” are all
patent claims owned or controlled by the contribu-
tor, whether already acquired or hereafter acquired,
that would be infringed by some manner, permit-
ted by this License, of making, using, or selling its
contributor version, but do not include claims that
would be infringed only as a consequence of further
modification of the contributor version. For pur-
poses of this definition, “control” includes the right
to grant patent sublicenses in a manner consistent
with the requirements of this License.
Each contributor grants you a non-exclusive, world-
wide, royalty-free patent license under the contrib-
utor’s essential patent claims, to make, use, sell, of-
fer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.
In the following three paragraphs, a “patent li-
cense” is any express agreement or commitment,
however denominated, not to enforce a patent (such
as an express permission to practice a patent or
covenant not to sue for patent infringement). To

“grant” such a patent license to a party means to
make such an agreement or commitment not to en-
force a patent against the party.
If you convey a covered work, knowingly relying
on a patent license, and the Corresponding Source
of the work is not available for anyone to copy,
free of charge and under the terms of this License,
through a publicly available network server or other
readily accessible means, then you must either (1)
cause the Corresponding Source to be so available,
or (2) arrange to deprive yourself of the benefit
of the patent license for this particular work, or
(3) arrange, in a manner consistent with the re-
quirements of this License, to extend the patent
license to downstream recipients. “Knowingly re-
lying” means you have actual knowledge that, but
for the patent license, your conveying the covered
work in a country, or your recipient’s use of the cov-
ered work in a country, would infringe one or more
identifiable patents in that country that you have
reason to believe are valid.
If, pursuant to or in connection with a single trans-
action or arrangement, you convey, or propagate
by procuring conveyance of, a covered work, and
grant a patent license to some of the parties re-
ceiving the covered work authorizing them to use,
propagate, modify or convey a specific copy of the
covered work, then the patent license you grant is
automatically extended to all recipients of the cov-
ered work and works based on it.
A patent license is “discriminatory” if it does not in-
clude within the scope of its coverage, prohibits the
exercise of, or is conditioned on the non-exercise
of one or more of the rights that are specifically
granted under this License. You may not convey a
covered work if you are a party to an arrangement
with a third party that is in the business of dis-
tributing software, under which you make payment
to the third party based on the extent of your ac-
tivity of conveying the work, and under which the
third party grants, to any of the parties who would
receive the covered work from you, a discrimina-
tory patent license (a) in connection with copies
of the covered work conveyed by you (or copies
made from those copies), or (b) primarily for and in
connection with specific products or compilations
that contain the covered work, unless you entered
into that arrangement, or that patent license was
granted, prior to 28 March 2007.
Nothing in this License shall be construed as ex-
cluding or limiting any implied license or other de-
fenses to infringement that may otherwise be avail-

able to you under applicable patent law. 12. No
Surrender of Others’ Freedom.
If conditions are imposed on you (whether by court
order, agreement or otherwise) that contradict the
conditions of this License, they do not excuse you
from the conditions of this License. If you cannot
convey a covered work so as to satisfy simultane-
ously your obligations under this License and any
other pertinent obligations, then as a consequence
you may not convey it at all. For example, if you
agree to terms that obligate you to collect a roy-
alty for further conveying from those to whom you
convey the Program, the only way you could satisfy
both those terms and this License would be to re-
frain entirely from conveying the Program. 13. Use
with the GNU Affero General Public License.
Notwithstanding any other provision of this Li-
cense, you have permission to link or combine any
covered work with a work licensed under version
3 of the GNU Affero General Public License into
a single combined work, and to convey the result-
ing work. The terms of this License will continue
to apply to the part which is the covered work, but
the special requirements of the GNU Affero General
Public License, section 13, concerning interaction
through a network will apply to the combination
as such. 14. Revised Versions of this License.
The Free Software Foundation may publish revised
and/or new versions of the GNU General Public Li-
cense from time to time. Such new versions will be
similar in spirit to the present version, but may dif-
fer in detail to address new problems or concerns.
Each version is given a distinguishing version num-
ber. If the Program specifies that a certain num-
bered version of the GNU General Public License
“or any later version” applies to it, you have the
option of following the terms and conditions either
of that numbered version or of any later version
published by the Free Software Foundation. If the
Program does not specify a version number of the
GNU General Public License, you may choose any
version ever published by the Free Software Foun-
dation.
If the Program specifies that a proxy can decide
which future versions of the GNU General Public
License can be used, that proxy’s public statement
of acceptance of a version permanently authorizes
you to choose that version for the Program.
Later license versions may give you additional or
different permissions. However, no additional obli-
gations are imposed on any author or copyright
holder as a result of your choosing to follow a later
version. 15. Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PRO-
GRAM, TO THE EXTENT PERMITTED BY AP-
PLICABLE LAW. EXCEPT WHEN OTHERWISE
STATED IN WRITING THE COPYRIGHT HOLD-
ERS AND/OR OTHER PARTIES PROVIDE THE
PROGRAM “AS IS” WITHOUT WARRANTY OF
ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IM-
PLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE.
THE ENTIRE RISK AS TO THE QUALITY AND
PERFORMANCE OF THE PROGRAM IS WITH
YOU. SHOULD THE PROGRAM PROVE DEFEC-
TIVE, YOU ASSUME THE COST OF ALL NECES-
SARY SERVICING, REPAIR OR CORRECTION.
16. Limitation of Liability.
IN NO EVENT UNLESS REQUIRED BY APPLI-
CABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY
OTHER PARTY WHO MODIFIES AND/OR CON-
VEYS THE PROGRAM AS PERMITTED ABOVE,
BE LIABLE TO YOU FOR DAMAGES, IN-
CLUDING ANY GENERAL, SPECIAL, INCIDEN-
TAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE
THE PROGRAM (INCLUDING BUT NOT LIM-
ITED TO LOSS OF DATA OR DATA BEING REN-
DERED INACCURATE OR LOSSES SUSTAINED
BY YOU OR THIRD PARTIES OR A FAILURE
OF THE PROGRAM TO OPERATE WITH ANY
OTHER PROGRAMS), EVEN IF SUCH HOLDER
OR OTHER PARTY HAS BEEN ADVISED OF
THE POSSIBILITY OF SUCH DAMAGES. 17. In-
terpretation of Sections 15 and 16.
If the disclaimer of warranty and limitation of lia-
bility provided above cannot be given local legal ef-
fect according to their terms, reviewing courts shall
apply local law that most closely approximates an
absolute waiver of all civil liability in connection
with the Program, unless a warranty or assumption
of liability accompanies a copy of the Program in
return for a fee.
END OF TERMS AND CONDITIONS How to Ap-
ply These Terms to Your New Programs
If you develop a new program, and you want it to
be of the greatest possible use to the public, the
best way to achieve this is to make it free software
which everyone can redistribute and change under
these terms.
To do so, attach the following notices to the pro-
gram. It is safest to attach them to the start of
each source file to most effectively state the exclu-
sion of warranty; and each file should have at least

the “copyright” line and a pointer to where the full
notice is found.
<one line to give the program’s name and a brief
idea of what it does.> Copyright (C) <year>
<name of author>
This program is free software: you can redistribute
it and/or modify it under the terms of the GNU
General Public License as published by the Free
Software Foundation, either version 3 of the Li-
cense, or (at your option) any later version.
This program is distributed in the hope that
it will be useful, but WITHOUT ANY WAR-
RANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PAR-
TICULAR PURPOSE. See the GNU General Public
License for more details.
You should have received a copy of the GNU Gen-
eral Public License along with this program. If not,
see <http://www.gnu.org/licenses/>.
Also add information on how to contact you by elec-
tronic and paper mail.
If the program does terminal interaction, make
output a short notice like this when it starts in an
interactive mode:
<program> Copyright (C) <year> <name of au-
thor> This program comes with ABSOLUTEL
NO WARRANTY; for details type ‘show w’. This
free software, and you are welcome to redistribute
under certain conditions; type ‘show c’ for details.
The hypothetical commands ‘show w’ and ‘show
should show the appropriate parts of the General
Public License. Of course, your program’s com-
mands might be different; for a GUI interface, you
would use an “about box”.
You should also get your employer (if you work
as a programmer) or school, if any, to sign
“copyright disclaimer” for the program, if nec-
essary. For more information on this, and
how to apply and follow the GNU GPL, see
<http://www.gnu.org/licenses/>.
The GNU General Public License does not permit
incorporating your program into proprietary pro-
grams. If your program is a subroutine library, you
may consider it more useful to permit linking pro-
prietary applications with the library. If this
what you want to do, use the GNU Lesser General
Public License instead of this License. But first,
please read <http://www.gnu.org/philosophy/wh
not-lgpl.html>.

61.2 GNU Free Documentation License

Version 1.3, 3 November 2008
Copyright © 2000, 2001, 2002, 2007, 2008 Free Soft-
ware Foundation, Inc. <http://fsf.org/>
Everyone is permitted to copy and distribute verba-
tim copies of this license document, but changing
it is not allowed. 0. PREAMBLE
The purpose of this License is to make a manual,
textbook, or other functional and useful document
"free" in the sense of freedom: to assure everyone
the effective freedom to copy and redistribute it,
with or without modifying it, either commercially
or noncommercially. Secondarily, this License pre-
serves for the author and publisher a way to get
credit for their work, while not being considered
responsible for modifications made by others.
This License is a kind of "copyleft", which means
that derivative works of the document must them-
selves be free in the same sense. It complements
the GNU General Public License, which is a copy-
left license designed for free software.
We have designed this License in order to use it
for manuals for free software, because free software
needs free documentation: a free program should
come with manuals providing the same freedoms
that the software does. But this License is not lim-
ited to software manuals; it can be used for any tex-
tual work, regardless of subject matter or whether
it is published as a printed book. We recommend
this License principally for works whose purpose is
instruction or reference. 1. APPLICABILITY AND
DEFINITIONS
This License applies to any manual or other work,
in any medium, that contains a notice placed by the
copyright holder saying it can be distributed under
the terms of this License. Such a notice grants a
world-wide, royalty-free license, unlimited in dura-
tion, to use that work under the conditions stated
herein. The "Document", below, refers to any such
manual or work. Any member of the public is a li-
censee, and is addressed as "you". You accept the
license if you copy, modify or distribute the work
in a way requiring permission under copyright law.
A "Modified Version" of the Document means any
work containing the Document or a portion of it, ei-
ther copied verbatim, or with modifications and/or
translated into another language.
A "Secondary Section" is a named appendix or a
front-matter section of the Document that deals ex-
clusively with the relationship of the publishers or
authors of the Document to the Document’s overall
subject (or to related matters) and contains noth-
ing that could fall directly within that overall sub-
ject. (Thus, if the Document is in part a textbook
of mathematics, a Secondary Section may not ex-
plain any mathematics.) The relationship could be
a matter of historical connection with the subject
or with related matters, or of legal, commercial,
philosophical, ethical or political position regard-
ing them.
The "Invariant Sections" are certain Secondary Sec-
tions whose titles are designated, as being those of
Invariant Sections, in the notice that says that the
Document is released under this License. If a sec-
tion does not fit the above definition of Secondary
then it is not allowed to be designated as Invariant.
The Document may contain zero Invariant Sections.
If the Document does not identify any Invariant
Sections then there are none.
The "Cover Texts" are certain short passages of text
that are listed, as Front-Cover Texts or Back-Cover
Texts, in the notice that says that the Document is
released under this License. A Front-Cover Text
may be at most 5 words, and a Back-Cover Text
may be at most 25 words.
A "Transparent" copy of the Document means a
machine-readable copy, represented in a format
whose specification is available to the general pub-
lic, that is suitable for revising the document
straightforwardly with generic text editors or (for
images composed of pixels) generic paint programs
or (for drawings) some widely available drawing ed-
itor, and that is suitable for input to text format-
ters or for automatic translation to a variety of for-
mats suitable for input to text formatters. A copy
made in an otherwise Transparent file format whose
markup, or absence of markup, has been arranged
to thwart or discourage subsequent modification by
readers is not Transparent. An image format is not
Transparent if used for any substantial amount of

text. A copy that is not "Transparent" is called
"Opaque".
Examples of suitable formats for Transparent
copies include plain ASCII without markup, Tex-
info input format, LaTeX input format, SGML or
XML using a publicly available DTD, and standard-
conforming simple HTML, PostScript or PDF de-
signed for human modification. Examples of trans-
parent image formats include PNG, XCF and JPG.
Opaque formats include proprietary formats that
can be read and edited only by proprietary word
processors, SGML or XML for which the DTD
and/or processing tools are not generally available,
and the machine-generated HTML, PostScript or
PDF produced by some word processors for output
purposes only.
The "Title Page" means, for a printed book, the
title page itself, plus such following pages as are
needed to hold, legibly, the material this License
requires to appear in the title page. For works in
formats which do not have any title page as such,
"Title Page" means the text near the most promi-
nent appearance of the work’s title, preceding the
beginning of the body of the text.
The "publisher" means any person or entity that
distributes copies of the Document to the public.
A section "Entitled XYZ" means a named subunit
of the Document whose title either is precisely XYZ
or contains XYZ in parentheses following text that
translates XYZ in another language. (Here XYZ
stands for a specific section name mentioned below,
such as "Acknowledgements", "Dedications", "En-
dorsements", or "History".) To "Preserve the Title"
of such a section when you modify the Document
means that it remains a section "Entitled XYZ" ac-
cording to this definition.
The Document may include Warranty Disclaimers
next to the notice which states that this License
applies to the Document. These Warranty Dis-
claimers are considered to be included by reference
in this License, but only as regards disclaiming war-
ranties: any other implication that these Warranty
Disclaimers may have is void and has no effect on
the meaning of this License. 2. VERBATIM COPY-
ING
You may copy and distribute the Document in any
medium, either commercially or noncommercially,
provided that this License, the copyright notices,
and the license notice saying this License applies to
the Document are reproduced in all copies, and that
you add no other conditions whatsoever to those
of this License. You may not use technical mea-
sures to obstruct or control the reading or further
copying of the copies you make or distribute. How-
ever, you may accept compensation in exchange for
copies. If you distribute a large enough number of
copies you must also follow the conditions in sec-
tion 3.
You may also lend copies, under the same condi-
tions stated above, and you may publicly display
copies. 3. COPYING IN QUANTITY
If you publish printed copies (or copies in media
that commonly have printed covers) of the Doc-
ument, numbering more than 100, and the Doc-
ument’s license notice requires Cover Texts, you
must enclose the copies in covers that carry, clearly
and legibly, all these Cover Texts: Front-Cover
Texts on the front cover, and Back-Cover Texts
on the back cover. Both covers must also clearly
and legibly identify you as the publisher of these
copies. The front cover must present the full title
with all words of the title equally prominent and
visible. You may add other material on the covers
in addition. Copying with changes limited to the
covers, as long as they preserve the title of the Doc-
ument and satisfy these conditions, can be treated
as verbatim copying in other respects.
If the required texts for either cover are too volu-
minous to fit legibly, you should put the first ones
listed (as many as fit reasonably) on the actual
cover, and continue the rest onto adjacent pages.
If you publish or distribute Opaque copies of the
Document numbering more than 100, you must ei-
ther include a machine-readable Transparent copy
along with each Opaque copy, or state in or with
each Opaque copy a computer-network location
from which the general network-using public has
access to download using public-standard network
protocols a complete Transparent copy of the Doc-
ument, free of added material. If you use the lat-

ter option, you must take reasonably prudent steps,
when you begin distribution of Opaque copies in
quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until
at least one year after the last time you distribute
an Opaque copy (directly or through your agents or
retailers) of that edition to the public.
It is requested, but not required, that you con-
tact the authors of the Document well before redis-
tributing any large number of copies, to give them
a chance to provide you with an updated version of
the Document. 4. MODIFICATIONS
You may copy and distribute a Modified Version of
the Document under the conditions of sections 2
and 3 above, provided that you release the Modi-
fied Version under precisely this License, with the
Modified Version filling the role of the Document,
thus licensing distribution and modification of the
Modified Version to whoever possesses a copy of it.
In addition, you must do these things in the Modi-
fied Version:
* A. Use in the Title Page (and on the covers, if
any) a title distinct from that of the Document,
and from those of previous versions (which should,
if there were any, be listed in the History section
of the Document). You may use the same title as
a previous version if the original publisher of that
version gives permission. * B. List on the Title
Page, as authors, one or more persons or entities
responsible for authorship of the modifications in
the Modified Version, together with at least five of
the principal authors of the Document (all of its
principal authors, if it has fewer than five), unless
they release you from this requirement. * C. State
on the Title page the name of the publisher of the
Modified Version, as the publisher. * D. Preserve
all the copyright notices of the Document. * E. Add
an appropriate copyright notice for your modifica-
tions adjacent to the other copyright notices. * F.
Include, immediately after the copyright notices, a
license notice giving the public permission to use
the Modified Version under the terms of this Li-
cense, in the form shown in the Addendum below. *
G. Preserve in that license notice the full lists of In-
variant Sections and required Cover Texts given in
the Document’s license notice. * H. Include an unal-
tered copy of this License. * I. Preserve the section
Entitled "History", Preserve its Title, and add to it
an item stating at least the title, year, new authors,
and publisher of the Modified Version as given on
the Title Page. If there is no section Entitled "His-
tory" in the Document, create one stating the title,
year, authors, and publisher of the Document as
given on its Title Page, then add an item describ-
ing the Modified Version as stated in the previous
sentence. * J. Preserve the network location, if any,
given in the Document for public access to a Trans-
parent copy of the Document, and likewise the net-
work locations given in the Document for previous
versions it was based on. These may be placed in
the "History" section. You may omit a network lo-
cation for a work that was published at least four
years before the Document itself, or if the original
publisher of the version it refers to gives permission.
* K. For any section Entitled "Acknowledgements"
or "Dedications", Preserve the Title of the section,
and preserve in the section all the substance and
tone of each of the contributor acknowledgements
and/or dedications given therein. * L. Preserve all
the Invariant Sections of the Document, unaltered
in their text and in their titles. Section numbers or
the equivalent are not considered part of the section
titles. * M. Delete any section Entitled "Endorse-
ments". Such a section may not be included in the
Modified Version. * N. Do not retitle any existing
section to be Entitled "Endorsements" or to conflict
in title with any Invariant Section. * O. Preserve
any Warranty Disclaimers.
If the Modified Version includes new front-matter
sections or appendices that qualify as Secondary
Sections and contain no material copied from the
Document, you may at your option designate some
or all of these sections as invariant. To do this, add
their titles to the list of Invariant Sections in the
Modified Version’s license notice. These titles must
be distinct from any other section titles.
You may add a section Entitled "Endorsements",
provided it contains nothing but endorsements of
your Modified Version by various parties—for ex-
ample, statements of peer review or that the text

has been approved by an organization as the au-
thoritative definition of a standard.
You may add a passage of up to five words as
Front-Cover Text, and a passage of up to 25 words
as a Back-Cover Text, to the end of the list of Cover
Texts in the Modified Version. Only one passage of
Front-Cover Text and one of Back-Cover Text ma
be added by (or through arrangements made by)
any one entity. If the Document already includes
a cover text for the same cover, previously added
by you or by arrangement made by the same entit
you are acting on behalf of, you may not add an-
other; but you may replace the old one, on explicit
permission from the previous publisher that added
the old one.
The author(s) and publisher(s) of the Document do
not by this License give permission to use their
names for publicity for or to assert or imply en-
dorsement of any Modified Version. 5. COMBIN-
ING DOCUMENTS
You may combine the Document with other docu-
ments released under this License, under the terms
defined in section 4 above for modified versions,
provided that you include in the combination all
of the Invariant Sections of all of the original do
uments, unmodified, and list them all as Invarian
Sections of your combined work in its license no-
tice, and that you preserve all their Warranty Dis-
claimers.
The combined work need only contain one copy of
this License, and multiple identical Invariant Sec-
tions may be replaced with a single copy. If there
are multiple Invariant Sections with the same name
but different contents, make the title of each suc
section unique by adding at the end of it, in paren-
theses, the name of the original author or publisher
of that section if known, or else a unique number.
Make the same adjustment to the section titles in
the list of Invariant Sections in the license notice
of the combined work.
In the combination, you must combine any sections
Entitled "History" in the various original docu-
ments, forming one section Entitled "History"; lik
wise combine any sections Entitled "Acknowledge-
ments", and any sections Entitled "Dedications".
You must delete all sections Entitled "Endorse-
ments". 6. COLLECTIONS OF DOCUMENTS
You may make a collection consisting of the Docu-
ment and other documents released under this Li-
cense, and replace the individual copies of this Li-
cense in the various documents with a single cop
that is included in the collection, provided that you
follow the rules of this License for verbatim copying
of each of the documents in all other respects.
You may extract a single document from such a col-
lection, and distribute it individually under this Li-
cense, provided you insert a copy of this License
into the extracted document, and follow this Li-
cense in all other respects regarding verbatim cop
ing of that document. 7. AGGREGATION WIT
INDEPENDENT WORKS
A compilation of the Document or its derivatives
with other separate and independent documents or
works, in or on a volume of a storage or distribution
medium, is called an "aggregate" if the copyright re-
sulting from the compilation is not used to limit the
legal rights of the compilation’s users beyond what
the individual works permit. When the Documen
is included in an aggregate, this License does not
apply to the other works in the aggregate which are
not themselves derivative works of the Document.
If the Cover Text requirement of section 3 is appli-
cable to these copies of the Document, then if the
Document is less than one half of the entire aggre-
gate, the Document’s Cover Texts may be placed
on covers that bracket the Document within the
aggregate, or the electronic equivalent of covers
if the Document is in electronic form. Otherwise
they must appear on printed covers that bracket
the whole aggregate. 8. TRANSLATION
Translation is considered a kind of modification, so
you may distribute translations of the Documen
under the terms of section 4. Replacing Invarian
Sections with translations requires special permis-
sion from their copyright holders, but you may in-
clude translations of some or all Invariant Sections
in addition to the original versions of these Invari-
ant Sections. You may include a translation of this
License, and all the license notices in the Documen
and any Warranty Disclaimers, provided that you

also include the original English version of this Li-
cense and the original versions of those notices and
disclaimers. In case of a disagreement between the
translation and the original version of this License
or a notice or disclaimer, the original version will
prevail.
If a section in the Document is Entitled "Acknowl-
edgements", "Dedications", or "History", the re-
quirement (section 4) to Preserve its Title (section
1) will typically require changing the actual title.
9. TERMINATION
You may not copy, modify, sublicense, or distribute
the Document except as expressly provided under
this License. Any attempt otherwise to copy, mod-
ify, sublicense, or distribute it is void, and will
automatically terminate your rights under this Li-
cense.
However, if you cease all violation of this License,
then your license from a particular copyright holder
is reinstated (a) provisionally, unless and until the
copyright holder explicitly and finally terminates
your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some
reasonable means prior to 60 days after the cessa-
tion.
Moreover, your license from a particular copyright
holder is reinstated permanently if the copyright
holder notifies you of the violation by some reason-
able means, this is the first time you have received
notice of violation of this License (for any work)
from that copyright holder, and you cure the vi-

olation prior to 30 days after your receipt of the
notice.
Termination of your rights under this section does
not terminate the licenses of parties who have re-
ceived copies or rights from you under this License.
If your rights have been terminated and not perma-
nently reinstated, receipt of a copy of some or all
of the same material does not give you any rights
to use it. 10. FUTURE REVISIONS OF THIS LI-
CENSE
The Free Software Foundation may publish new, re-
vised versions of the GNU Free Documentation Li-
cense from time to time. Such new versions will be
similar in spirit to the present version, but may dif-
fer in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.
Each version of the License is given a distinguish-
ing version number. If the Document specifies that
a particular numbered version of this License "or
any later version" applies to it, you have the op-
tion of following the terms and conditions either of
that specified version or of any later version that
has been published (not as a draft) by the Free Soft-
ware Foundation. If the Document does not specify
a version number of this License, you may choose
any version ever published (not as a draft) by the
Free Software Foundation. If the Document speci-
fies that a proxy can decide which future versions of
this License can be used, that proxy’s public state-
ment of acceptance of a version permanently autho-

rizes you to choose that version for the Document.
11. RELICENSING
"Massive Multiauthor Collaboration Site" (or
"MMC Site") means any World Wide Web server
that publishes copyrightable works and also pro-
vides prominent facilities for anybody to edit those
works. A public wiki that anybody can edit is
an example of such a server. A "Massive Multiau-
thor Collaboration" (or "MMC") contained in the
site means any set of copyrightable works thus pub-
lished on the MMC site.
"CC-BY-SA" means the Creative Commons
Attribution-Share Alike 3.0 license published by
Creative Commons Corporation, a not-for-profit
corporation with a principal place of business in
San Francisco, California, as well as future copyleft
versions of that license published by that same
organization.
"Incorporate" means to publish or republish a Doc-
ument, in whole or in part, as part of another Doc-
ument.
An MMC is "eligible for relicensing" if it is licensed
under this License, and if all works that were first
published under this License somewhere other than
this MMC, and subsequently incorporated in whole
or in part into the MMC, (1) had no cover texts or
invariant sections, and (2) were thus incorporated
prior to November 1, 2008.
The operator of an MMC Site may republish an
MMC contained in the site under CC-BY-SA on the

same site at any time before August 1, 2009, pro-
vided the MMC is eligible for relicensing. ADDEN-
DUM: How to use this License for your documents
To use this License in a document you have written,
include a copy of the License in the document and
put the following copyright and license notices just
after the title page:
Copyright (C) YEAR YOUR NAME. Permission is
granted to copy, distribute and/or modify this doc-
ument under the terms of the GNU Free Documen-
tation License, Version 1.3 or any later version pub-
lished by the Free Software Foundation; with no
Invariant Sections, no Front-Cover Texts, and no
Back-Cover Texts. A copy of the license is included
in the section entitled "GNU Free Documentation
License".
If you have Invariant Sections, Front-Cover Texts
and Back-Cover Texts, replace the "with . . .
Texts." line with this:
with the Invariant Sections being LIST THEIR TI-
TLES, with the Front-Cover Texts being LIST, and
with the Back-Cover Texts being LIST.
If you have Invariant Sections without Cover Texts,
or some other combination of the three, merge
those two alternatives to suit the situation.
If your document contains nontrivial examples of
program code, we recommend releasing these exam-
ples in parallel under your choice of free software
license, such as the GNU General Public License,
to permit their use in free software.

61.3 GNU Lesser General Public License

GNU LESSER GENERAL PUBLIC LICENSE
Version 3, 29 June 2007
Copyright © 2007 Free Software Foundation, Inc.
<http://fsf.org/>
Everyone is permitted to copy and distribute verba-
tim copies of this license document, but changing
it is not allowed.
This version of the GNU Lesser General Public Li-
cense incorporates the terms and conditions of ver-
sion 3 of the GNU General Public License, supple-
mented by the additional permissions listed below.
0. Additional Definitions.
As used herein, “this License” refers to version 3
of the GNU Lesser General Public License, and the
“GNU GPL” refers to version 3 of the GNU General
Public License.
“The Library” refers to a covered work governed by
this License, other than an Application or a Com-
bined Work as defined below.
An “Application” is any work that makes use of an
interface provided by the Library, but which is not
otherwise based on the Library. Defining a subclass
of a class defined by the Library is deemed a mode
of using an interface provided by the Library.
A “Combined Work” is a work produced by com-
bining or linking an Application with the Library.
The particular version of the Library with which
the Combined Work was made is also called the
“Linked Version”.
The “Minimal Corresponding Source” for a Com-
bined Work means the Corresponding Source for
the Combined Work, excluding any source code for
portions of the Combined Work that, considered in
isolation, are based on the Application, and not on
the Linked Version.
The “Corresponding Application Code” for a Com-
bined Work means the object code and/or source
code for the Application, including any data and
utility programs needed for reproducing the Com-
bined Work from the Application, but excluding the

System Libraries of the Combined Work. 1. Excep-
tion to Section 3 of the GNU GPL.
You may convey a covered work under sections 3
and 4 of this License without being bound by sec-
tion 3 of the GNU GPL. 2. Conveying Modified
Versions.
If you modify a copy of the Library, and, in your
modifications, a facility refers to a function or data
to be supplied by an Application that uses the fa-
cility (other than as an argument passed when the
facility is invoked), then you may convey a copy of
the modified version:
* a) under this License, provided that you make a
good faith effort to ensure that, in the event an Ap-
plication does not supply the function or data, the
facility still operates, and performs whatever part
of its purpose remains meaningful, or * b) under
the GNU GPL, with none of the additional permis-
sions of this License applicable to that copy.
3. Object Code Incorporating Material from Li-
brary Header Files.
The object code form of an Application may incor-
porate material from a header file that is part of
the Library. You may convey such object code un-
der terms of your choice, provided that, if the in-
corporated material is not limited to numerical pa-
rameters, data structure layouts and accessors, or
small macros, inline functions and templates (ten
or fewer lines in length), you do both of the follow-
ing:
* a) Give prominent notice with each copy of the
object code that the Library is used in it and that
the Library and its use are covered by this License.
* b) Accompany the object code with a copy of the
GNU GPL and this license document.
4. Combined Works.
You may convey a Combined Work under terms of
your choice that, taken together, effectively do not
restrict modification of the portions of the Library
contained in the Combined Work and reverse en-

gineering for debugging such modifications, if you
also do each of the following:
* a) Give prominent notice with each copy of the
Combined Work that the Library is used in it and
that the Library and its use are covered by this Li-
cense. * b) Accompany the Combined Work with a
copy of the GNU GPL and this license document. *
c) For a Combined Work that displays copyright no-
tices during execution, include the copyright notice
for the Library among these notices, as well as a ref-
erence directing the user to the copies of the GNU
GPL and this license document. * d) Do one of the
following: o 0) Convey the Minimal Corresponding
Source under the terms of this License, and the Cor-
responding Application Code in a form suitable for,
and under terms that permit, the user to recombine
or relink the Application with a modified version
of the Linked Version to produce a modified Com-
bined Work, in the manner specified by section 6 of
the GNU GPL for conveying Corresponding Source.
o 1) Use a suitable shared library mechanism for
linking with the Library. A suitable mechanism
is one that (a) uses at run time a copy of the Li-
brary already present on the user’s computer sys-
tem, and (b) will operate properly with a modified
version of the Library that is interface-compatible
with the Linked Version. * e) Provide Installation
Information, but only if you would otherwise be re-
quired to provide such information under section 6
of the GNU GPL, and only to the extent that such
information is necessary to install and execute a
modified version of the Combined Work produced
by recombining or relinking the Application with
a modified version of the Linked Version. (If you
use option 4d0, the Installation Information must
accompany the Minimal Corresponding Source and
Corresponding Application Code. If you use option
4d1, you must provide the Installation Information
in the manner specified by section 6 of the GNU
GPL for conveying Corresponding Source.)
5. Combined Libraries.

You may place library facilities that are a work
based on the Library side by side in a single library
together with other library facilities that are not
Applications and are not covered by this License,
and convey such a combined library under terms of
your choice, if you do both of the following:
* a) Accompany the combined library with a copy
of the same work based on the Library, uncombined
with any other library facilities, conveyed under
the terms of this License. * b) Give prominent no-
tice with the combined library that part of it is a
work based on the Library, and explaining where
to find the accompanying uncombined form of the
same work.
6. Revised Versions of the GNU Lesser General
Public License.
The Free Software Foundation may publish revised
and/or new versions of the GNU Lesser General
Public License from time to time. Such new ver-
sions will be similar in spirit to the present version,
but may differ in detail to address new problems or
concerns.
Each version is given a distinguishing version num-
ber. If the Library as you received it specifies that
a certain numbered version of the GNU Lesser Gen-
eral Public License “or any later version” applies to
it, you have the option of following the terms and
conditions either of that published version or of any
later version published by the Free Software Foun-
dation. If the Library as you received it does not
specify a version number of the GNU Lesser Gen-
eral Public License, you may choose any version of
the GNU Lesser General Public License ever pub-
lished by the Free Software Foundation.
If the Library as you received it specifies that a
proxy can decide whether future versions of the
GNU Lesser General Public License shall apply,
that proxy’s public statement of acceptance of
any version is permanent authorization for you to
choose that version for the Library.

	1 Basic Ada
	1.1 34Hello, world!34 programs
	1.2 Compiling the 34Hello, world!34 program
	1.3 Things to look out for
	1.4 Where to ask for help
	1.5 Notes

	2 Installing
	2.1 AdaMagic from SofCheck
	2.2 AdaMULTI from Green Hills Software
	2.3 DEC Ada from HP
	2.4 GNAT, the GNU Ada Compiler from AdaCore and the Free Software Foundation
	2.5 ICC from Irvine Compiler Corporation
	2.6 Janus/Ada 83 and 95 from RR Software
	2.7 MAXAda from Concurrent
	2.8 ObjectAda from Atego (formerly Aonix)
	2.9 PowerAda from OC Systems
	2.10 Rational Apex from Atego (formerly IBM Rational Atego acquires IBM Rational Apex Ada Developer product family)
	2.11 SCORE from DDC-I
	2.12 XD Ada from SWEP-EDS
	2.13 XGC Ada from XGC Software
	2.14 References

	3 Building
	3.1 Building with various compilers
	3.2 Compiling our Demo Source
	3.3 External links

	4 Control Statements
	4.1 Conditionals
	4.2 Unconditionals
	4.3 Loops
	4.4 See also

	5 Type System
	5.1 Predefined types
	5.2 The Type Hierarchy
	5.3 Concurrency Types
	5.4 Limited Types
	5.5 Defining new types and subtypes
	5.6 Subtype categories
	5.7 Qualified expressions
	5.8 Type conversions
	5.9 Elaborated Discussion of Types for Signed Integer Types
	5.10 Relations between types
	5.11 See also

	6 Integer types
	6.1 Working demo
	6.2 See also

	7 Unsigned integer types
	7.1 Description
	7.2 See also

	8 Enumerations
	8.1 Operators and attributes
	8.2 Enumeration literals
	8.3 Enumeration subtypes
	8.4 See also

	9 Floating point types
	9.1 Description
	9.2 See also

	10 Fixed point types
	10.1 Description
	10.2 Ordinary Fixed Point
	10.3 Decimal Fixed Point
	10.4 Differences between Ordinary and Decimal Fixed Point Types
	10.5 See also

	11 Arrays
	11.1 Declaring arrays
	11.2 Using arrays
	11.3 See also

	12 Records
	12.1 Basic record
	12.2 Null record
	12.3 Record Values
	12.4 Discriminated record
	12.5 Variant record
	12.6 Union
	12.7 Tagged record
	12.8 Abstract tagged record
	12.9 With aliased elements
	12.10 Limited Records
	12.11 See also

	13 Access types
	13.1 What's an Access Type?
	13.2 Pool access
	13.3 General access
	13.4 Anonymous access
	13.5 Implicit Dereference
	13.6 Null exclusions
	13.7 Access to Subprogram
	13.8 Access FAQ
	13.9 Thin and Fat Access Types
	13.10 See also

	14 Limited types
	14.1 Limited Types
	14.2 Initialising Limited Types
	14.3 See also
	14.4 References

	15 Strings
	15.1 Fixed-length string handling
	15.2 Bounded-length string handling
	15.3 Unbounded-length string handling
	15.4 See also

	16 Subprograms
	16.1 Procedures
	16.2 Functions
	16.3 Named parameters
	16.4 Default parameters
	16.5 Renaming
	16.6 See also

	17 Packages
	17.1 Separate compilation
	17.2 Parts of a package
	17.3 Using packages
	17.4 Package organisation
	17.5 Notes
	17.6 See also

	18 Input Output
	18.1 Overview
	18.2 Text I/O
	18.3 Direct I/O
	18.4 Sequential I/O
	18.5 Stream I/O
	18.6 See also

	19 Exceptions
	19.1 Robustness
	19.2 Modules, preconditions and postconditions
	19.3 Predefined exceptions
	19.4 Input-output exceptions
	19.5 Exception declarations
	19.6 Raising exceptions
	19.7 Exception handling and propagation
	19.8 Information about an exception occurrence
	19.9 See also

	20 Generics
	20.1 Parametric polymorphism (generic units)
	20.2 Generic parameters
	20.3 Instantiating generics
	20.4 Advanced generics
	20.5 See also

	21 Tasking
	21.1 Tasks
	21.2 Protected types
	21.3 Entry families
	21.4 Termination
	21.5 Timeout
	21.6 Conditional entry calls
	21.7 Requeue statements
	21.8 Scheduling
	21.9 Interfaces
	21.10 See also
	21.11 Ada Quality and Style Guide

	22 Object Orientation
	22.1 Object orientation in Ada
	22.2 Class names
	22.3 Object-Oriented Ada for C++ programmers
	22.4 See also

	23 New in Ada 2005
	23.1 Language features
	23.2 Language library
	23.3 Real-Time and High Integrity Systems
	23.4 Summary of what's new
	23.5 See also
	23.6 External links

	24 Containers
	24.1 See also

	25 Interfacing
	25.1 Interfacing
	25.2 Other programming languages
	25.3 Hardware devices
	25.4 See also

	26 Coding Standards
	26.1 Introduction
	26.2 Tools
	26.3 Coding guidelines
	26.4 See also
	26.5 External links

	27 Tips
	27.1 Full declaration of a type can be deferred to the unit's body
	27.2 Lambda calculus through generics
	27.3 Compiler Messages
	27.4 Universal integers
	27.5 I/O
	27.6 Quirks
	27.7 References
	27.8 See also

	28 Common Errors
	28.1 pragma Atomic & Volatile
	28.2 References
	28.3 pragma Pack
	28.4 'Bit_Order attribute
	28.5 'Size attribute
	28.6 See also
	28.7 References

	29 Algorithms
	29.1 Introduction
	29.2 Chapter 1: Introduction
	29.3 Chapter 6: Dynamic Programming

	30 Function overloading
	30.1 Function overloading in Ada
	30.2 See also

	31 Mathematical calculations
	31.1 Simple calculations
	31.2 Exponential calculations
	31.3 Higher math
	31.4 See also

	32 Statements
	33 Variables
	33.1 Assignment statements
	33.2 Uses
	33.3 See also

	34 Lexical elements
	34.1 Character set
	34.2 Lexical elements
	34.3 See also

	35 Keywords
	35.1 Language summary keywords
	35.2 List of keywords
	35.3 See also

	36 Delimiters
	36.1 Single character delimiters
	36.2 Compound character delimiters
	36.3 Others
	36.4 See also

	37 Operators
	37.1 Standard operators
	37.2 Short-circuit control forms
	37.3 Membership tests
	37.4 See also

	38 Attributes
	38.1 Language summary attributes
	38.2 List of language defined attributes
	38.3 List of implementation defined attributes
	38.4 See also
	38.5 References

	39 Pragmas
	39.1 Description
	39.2 List of language defined pragmas
	39.3 List of implementation defined pragmas
	39.4 See also
	39.5 References

	40 Libraries
	40.1 Predefined Language Libraries
	40.2 Other Language Libraries
	40.3 See also

	41 Libraries: Standard
	41.1 Implementation
	41.2 Portability
	41.3 See also

	42 Libraries: Ada
	42.1 List of language defined child units
	42.2 List of implementation defined child units
	42.3 See also

	43 Libraries: Interfaces
	43.1 Child Packages
	43.2 See also

	44 Libraries: System
	45 Libraries: GNAT
	45.1 Child packages
	45.2 See also

	46 Libraries: Multi-Purpose
	46.1 See also

	47 Libraries: Container
	47.1 See also

	48 Libraries: GUI
	48.1 See also

	49 Libraries: Distributed Systems
	49.1 See also

	50 Libraries: Databases
	51 Libraries: Web
	51.1 See also

	52 Libraries: Input Output
	52.1 See also

	53 Platform Support
	53.1 See also

	54 Platform: Linux
	54.1 See also

	55 Platform: Windows
	55.1 See also

	56 Platform: Virtual Machines
	56.1 See also

	57 Portals
	57.1 Forges of open-source projects
	57.2 Directories of freely available tools and libraries
	57.3 Collections of Ada source code
	57.4 See also

	58 Tutorials
	59 Web 2.0
	60 Contributors
	List of Figures
	61 Licenses
	61.1 GNU GENERAL PUBLIC LICENSE
	61.2 GNU Free Documentation License
	61.3 GNU Lesser General Public License

