
C Sharp Programming

Wikibooks.org

March 18, 2013

On the 28th of April 2012 the contents of the English as well as German Wikibooks and Wikipedia

projects were licensed under Creative Commons Attribution-ShareAlike 3.0 Unported license. An

URI to this license is given in the list of figures on page 165. If this document is a derived work

from the contents of one of these projects and the content was still licensed by the project under

this license at the time of derivation this document has to be licensed under the same, a similar or a

compatible license, as stated in section 4b of the license. The list of contributors is included in chapter

Contributors on page 159. The licenses GPL, LGPL and GFDL are included in chapter Licenses on

page 169, since this book and/or parts of it may or may not be licensed under one or more of these

licenses, and thus require inclusion of these licenses. The licenses of the figures are given in the list of

figures on page 165. This PDF was generated by the LATEX typesetting software. The LATEX source

code is included as an attachment (source.7z.txt) in this PDF file. To extract the source from the

PDF file, we recommend the use of http://www.pdflabs.com/tools/pdftk-the-pdf-toolkit/

utility or clicking the paper clip attachment symbol on the lower left of your PDF Viewer, selecting

Save Attachment. After extracting it from the PDF file you have to rename it to source.7z. To

uncompress the resulting archive we recommend the use of http://www.7-zip.org/. The LATEX

source itself was generated by a program written by Dirk Hünniger, which is freely available under

an open source license from http://de.wikibooks.org/wiki/Benutzer:Dirk_Huenniger/wb2pdf.

This distribution also contains a configured version of the pdflatex compiler with all necessary

packages and fonts needed to compile the LATEX source included in this PDF file.

http://www.pdflabs.com/tools/pdftk-the-pdf-toolkit/
http://www.7-zip.org/
http://de.wikibooks.org/wiki/Benutzer:Dirk_Huenniger/wb2pdf

Contents

1 Introduction 3

1.1 Introduction . 3
1.2 Standard . 4
1.3 History . 4
1.4 References . 5
1.5 Microsoft .NET . 5
1.6 Mono . 5
1.7 Hello, World! . 6

2 Language Basics 9

2.1 Reasoning . 9
2.2 Conventions . 9
2.3 Example . 11
2.4 Statements . 12
2.5 Statement blocks . 14
2.6 Comments . 14
2.7 Case sensitivity . 15
2.8 Fields, local variables, and parameters . 16
2.9 Types . 17
2.10 Text & variable example . 22
2.11 Scope and extent . 23
2.12 Arithmetic . 23
2.13 Logical . 25
2.14 Bitwise shifting . 27
2.15 Relational . 27
2.16 Assignment . 28
2.17 Short-hand Assignment . 29
2.18 Type information . 29
2.19 Pointer manipulation . 30
2.20 Overflow exception control . 30
2.21 Others . 30
2.22 Enumerations . 31
2.23 Structs . 32
2.24 Arrays . 33
2.25 Conditional statements . 34
2.26 Iteration statements . 36
2.27 Jump statements . 38
2.28 Introduction . 41
2.29 Overview . 42
2.30 Examples . 42

III

Contents

2.31 Re-throwing exceptions . 45

3 Classes 49

3.1 Nested namespaces . 50
3.2 Methods . 52
3.3 Constructors of classes . 52
3.4 Finalizers (Destructors) . 53
3.5 Properties . 54
3.6 Indexers . 55
3.7 Events . 55
3.8 Operator overloading . 58
3.9 Structures . 59
3.10 Static classes . 61
3.11 References . 61
3.12 Introduction . 61
3.13 Reference and Value Types . 62
3.14 Object basics . 63
3.15 Protection Levels . 68
3.16 References . 71

4 Advanced Concepts 73

4.1 Inheritance . 73
4.2 Subtyping Inheritance . 74
4.3 Virtual Methods . 75
4.4 Constructors . 76
4.5 Inheritance keywords . 77
4.6 References . 78
4.7 Additional details . 79
4.8 Introduction . 80
4.9 Delegates . 80
4.10 Anonymous delegates . 82
4.11 Events . 83
4.12 Partial Classes . 84
4.13 Generic classes . 86
4.14 Generic interfaces . 87
4.15 Generic methods . 88
4.16 Type constraints . 89
4.17 Notes . 90
4.18 Introduction . 91
4.19 Factory Pattern . 96
4.20 Singleton . 98

5 The .NET Framework 99

5.1 Introduction . 99
5.2 Background . 99
5.3 Console Programming . 100
5.4 System.Windows.Forms . 116
5.5 Form class . 117

IV

Contents

5.6 Events . 117
5.7 Controls . 118
5.8 Lists . 119
5.9 LinkedLists . 120
5.10 Queues . 120
5.11 Stacks . 120
5.12 Hashtables and dictionaries . 121
5.13 The Thread class . 121
5.14 Sharing Data . 123
5.15 Asynchronous Delegates . 123
5.16 Synchronization . 124
5.17 GetSystemTimes . 126
5.18 GetProcessIoCounters . 127

6 Keywords 129

6.1 References . 133
6.2 The directive . 154
6.3 The statement . 154
6.4 References . 158

7 Contributors 159

List of Figures 165

8 Licenses 169

8.1 GNU GENERAL PUBLIC LICENSE . 169
8.2 GNU Free Documentation License . 170
8.3 GNU Lesser General Public License . 171

1

1 Introduction

C#1 (pronounced "See Sharp") is a multi-purpose computer programming language2 suitable
for all development needs.

1.1 Introduction

Although C# is derived from the C programming language3, it has features such as garbage
collection4 that allow beginners to become proficient in C# more quickly than in C5 or
C++6. Similar to Java7, it is object-oriented8, comes with an extensive class library, and
supports exception handling, multiple types of polymorphism9, and separation of interfaces
from implementations. Those features, combined with its powerful development tools,
multi-platform support, and generics, make C# a good choice for many types of software
development projects: rapid application development10 projects, projects implemented by
individuals or large or small teams, Internet applications, and projects with strict reliability
requirements. Testing frameworks such as NUnit11 make C# amenable to test-driven
development12 and thus a good language for use with Extreme Programming13 (XP). Its
strong typing14 helps to prevent many programming errors that are common in weakly typed
languages. Because of this similarities to other languages, it is possible to introduce C#
as a language with features of C++ having the programming style of Java and the rapid
application model of BASIC.15

A large part of the power of C# (as with other .NET languages), comes with the common
.NET Framework API, which provides a large set of classes, including ones for encryption,
TCP/IP socket programming, and graphics. Developers can thus write part of an application
in C# and another part in another .NET language (e.g. VB.NET), keeping the tools, library,
and object-oriented development model while only having to learn the new language syntax.

1 http://en.wikipedia.org/wiki/C_Sharp_%28programming_language%29

2 http://en.wikipedia.org/wiki/programming%20language

3 http://en.wikipedia.org/wiki/C%20programming%20language

4 http://en.wikipedia.org/wiki/Garbage%20collection%20%28computer%20science%29

5 http://en.wikibooks.org/wiki/Programming%3AC

6 http://en.wikibooks.org/wiki/Programming%3AC%20plus%20plus

7 http://en.wikipedia.org/wiki/Java%20programming%20language

8 http://en.wikipedia.org/wiki/object-oriented%20programming

9 http://en.wikipedia.org/wiki/polymorphism%20%28computer%20science%29

10 http://en.wikipedia.org/wiki/Rapid%20application%20development

11 http://en.wikipedia.org/wiki/NUnit

12 http://en.wikipedia.org/wiki/test-driven%20development

13 http://en.wikipedia.org/wiki/Extreme%20Programming

14 http://en.wikipedia.org/wiki/Strongly-typed%20programming%20language

15 Quick C# 16. The Code Project . Retrieved 2012-04-12 http://

3

http://en.wikipedia.org/wiki/C_Sharp_%28programming_language%29
http://en.wikipedia.org/wiki/programming%20language
http://en.wikipedia.org/wiki/C%20programming%20language
http://en.wikipedia.org/wiki/Garbage%20collection%20%28computer%20science%29
http://en.wikibooks.org/wiki/Programming%3AC
http://en.wikibooks.org/wiki/Programming%3AC%20plus%20plus
http://en.wikipedia.org/wiki/Java%20programming%20language
http://en.wikipedia.org/wiki/object-oriented%20programming
http://en.wikipedia.org/wiki/polymorphism%20%28computer%20science%29
http://en.wikipedia.org/wiki/Rapid%20application%20development
http://en.wikipedia.org/wiki/NUnit
http://en.wikipedia.org/wiki/test-driven%20development
http://en.wikipedia.org/wiki/Extreme%20Programming
http://en.wikipedia.org/wiki/Strongly-typed%20programming%20language
http://

Introduction

Because of the similarities between C# and the C family of languages, as well as Java17, a
developer with a background in object-oriented languages like C++ may find C# structure
and syntax intuitive.

1.2 Standard

w:C Sharp (programming language)18 Microsoft19, with Anders Hejlsberg20 as Chief Engineer,
created C# as part of their .NET21 initiative and subsequently opened its specification22

via the ECMA23. Thus, the language is open to implementation by other parties. Other
implementations include Mono24 and DotGNU25.

C# and other .NET languages rely on an implementation of the virtual machine26 specified
in the Common Language Infrastructure27, like Microsoft's Common Language Runtime28

(CLR). That virtual machine manages memory, handles object references, and performs
Just-In-Time (JIT) compiling of Common Intermediate Language29 code. The virtual
machine makes C# programs safer than those that must manage their own memory and is
one of the reasons .NET language code is referred to as managed code. More like Java than
C and C++, C# discourages explicit use of pointers, which could otherwise allow software
bugs to corrupt system memory and force the operating system to halt the program forcibly
with nondescript error messages.

1.3 History

Microsoft's original plan was to create a rival to Java, named J++, but this was abandoned
to create C#, codenamed "Cool".

Microsoft submitted C# to the ECMA standards group mid-2000.

C# 2.0 was released in late-2005 as part of Microsoft's development suite, Visual Studio
2005. The 2.0 version of C# includes such new features as generics, partial classes, and
iterators.30 32

17 http://en.wikipedia.org/wiki/Java%20programming%20language

18 http://en.wikipedia.org/wiki/C%20Sharp%20%28programming%20language%29

19 http://en.wikipedia.org/wiki/Microsoft

20 http://en.wikipedia.org/wiki/Anders%20Hejlsberg

21 http://en.wikipedia.org/wiki/Microsoft%20.Net

22 http://www.ecma-international.org/publications/standards/Ecma-334.htm

23 http://en.wikipedia.org/wiki/ECMA%20International

24 http://en.wikipedia.org/wiki/Mono%20development%20platform

25 http://en.wikipedia.org/wiki/DotGNU

26 http://en.wikipedia.org/wiki/virtual%20machine

27 http://en.wikipedia.org/wiki/Common%20Language%20Infrastructure

28 http://en.wikipedia.org/wiki/Common%20Language%20Runtime

29 http://en.wikipedia.org/wiki/Common%20Intermediate%20Language

30 The Father of C# on the Past, Present and Future of Programming 31. Microsoft Watch . Retrieved
2012-10-21 http://

32 C# Programming 33. Hitmill . Retrieved 2012-10-21 http://

4

http://en.wikipedia.org/wiki/Java%20programming%20language
http://en.wikipedia.org/wiki/C%20Sharp%20%28programming%20language%29
http://en.wikipedia.org/wiki/Microsoft
http://en.wikipedia.org/wiki/Anders%20Hejlsberg
http://en.wikipedia.org/wiki/Microsoft%20.Net
http://www.ecma-international.org/publications/standards/Ecma-334.htm
http://en.wikipedia.org/wiki/ECMA%20International
http://en.wikipedia.org/wiki/Mono%20development%20platform
http://en.wikipedia.org/wiki/DotGNU
http://en.wikipedia.org/wiki/virtual%20machine
http://en.wikipedia.org/wiki/Common%20Language%20Infrastructure
http://en.wikipedia.org/wiki/Common%20Language%20Runtime
http://en.wikipedia.org/wiki/Common%20Intermediate%20Language
http://
http://

References

1.4 References

Foreword34

To compile your first C# application, you will need a copy of a .NET Framework SDK
installed on your PC.

There are two .NET frameworks available: Microsoft's and Mono's.

1.5 Microsoft .NET

For Windows, the .NET Framework SDK can be downloaded from Microsoft's .NET
Framework Developer Center35. If the default Windows directory (the directory where
Windows or WinNT is installed) is C:\WINDOWS, the .Net Framework SDK installation places
the Visual C# .NET compiler (csc) in the

C:\WINDOWS\Microsoft.NET\Framework\v1.0.3705 directory for version 1.0, the

C:\WINDOWS\Microsoft.NET\Framework\v1.1.4322 directory for version 1.1, or the

C:\WINDOWS\Microsoft.NET\Framework\v2.0.50727 directory for version 2.0.

1.6 Mono

For Windows, Linux, or other Operating Systems, an installer can be downloaded from the
Mono website36. For Linux, a good compiler is cscc that can be downloaded for free from
the DotGNU Portable.Net project37 page. The compiled programs can then be run with
ilrun.

1.6.1 Linux

In Linux you can use the MonoDevelop IDE, and either download from their website at:
MonoDevelop Downloads38, or install via apt-get or your distro's installer.

• Debian-based distros:

sudo apt-get install monodevelop

• Arch Linux:

sudo pacman -S mono monodevelop

34 http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming

35 http://msdn.microsoft.com/netframework/

36 http://www.mono-project.com/Downloads

37 http://dotgnu.org/pnet.html

38 http://monodevelop.com/Download

5

http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming
http://msdn.microsoft.com/netframework/
http://www.mono-project.com/Downloads
http://dotgnu.org/pnet.html
http://monodevelop.com/Download

Introduction

1.6.2 Windows

You can download MonoDevelop from their website at: Mono website39. Click the Windows
icon, and follow the installation instructions.

If you are working on Windows it is a good idea to add the path to the folders that contain
cs.exe or mcs.exe to the Path environment variable so that you do not need to type the full
path each time you want to compile.

For writing C#.NET code, there are plenty of editors that are available. It's entirely possible
to write C#.NET programs with a simple text editor, but it should be noted that this
requires you to compile the code yourself. Microsoft offers a wide range of code editing
programs under the Visual Studio line that offer syntax highlighting as well as compiling
and debugging capabilities. Currently C#.NET can be compiled in Visual Studio 2002
and 2003 (only supports the .NET Framework version 1.0 and 1.1) and Visual Studio 2005
(supports the .NET Framework 2.0 and earlier versions with some tweaking). Microsoft
offers five Visual Studio editions40, four of which are sold commercially. The Visual Studio
C# Express Edition can be downloaded and used for free from Microsoft's website41.

1.7 Hello, World!

The code below will demonstrate a C# program written in a simple text editor. Start by
saving the following code to a text file called hello.cs:

using System;

namespace MyConsoleApplication

{

class MyFirstClass

{

static void Main(string[] args)

{

System.Console.WriteLine("Hello,");

Console.WriteLine("World!");

Console.ReadLine();

}

}

}

To compile hello.cs, run the following from the command line:

• For standard Microsoft installations of .NET 2.0, run
C:\WINDOWS\Microsoft.NET\Framework\v2.0.50727\csc.exe hello.cs

• For Mono run mcs hello.cs.
• For users of cscc, compile with cscc hello.cs -o hello.exe.

Doing so will produce hello.exe. The following command will run hello.exe:

39 http://www.mono-project.com/Downloads

40 http://msdn.microsoft.com/en-us/library/zcbsd3cz(VS.80).aspx

41 http://go.microsoft.com/?linkid=7653518

6

http://www.mono-project.com/Downloads
http://msdn.microsoft.com/en-us/library/zcbsd3cz(VS.80).aspx
http://go.microsoft.com/?linkid=7653518

Hello, World!

• On Windows, use hello.exe.
• On Linux, use mono hello.exe or ilrun hello.exe.

Alternatively, in Visual C# express, you could just hit F5 or the green play button to run
the code. If you want to run without debugging, press CTRL-F5.

Running hello.exe will produce the following output:

Hello,

World!

The program will then wait for you to strike 'enter' before returning to the command prompt.

Note that the example above includes the System namespace via the using keyword. That
inclusion allows direct references to any member of the System namespace without specifying
its fully qualified name.

The first call to the WriteLine method of the Console class uses a fully qualified reference.

System.Console.WriteLine("Hello,");

The second call to that method shortens the reference to the Console class by taking
advantage of the fact that the System namespace is included (with using System).

Console.WriteLine("World!");

C# is a fully object-oriented language. The following sections explain the syntax of the C#
language as a beginner's course for programming in the language. Note that much of the
power of the language comes from the classes provided with the .NET framework, which are
not part of the C# language syntax per se.

7

2 Language Basics

This section will define the naming conventions that are generally accepted by the C#
development community. Some companies may define naming conventions that differ from
this, but that is done on an individual basis and is generally discouraged. Some of the
objects discussed in this section may be beyond the reader's knowledge at this point, but
this section can be referred back to later.

2.1 Reasoning

Much of the naming standards are derived from Microsoft's .NET Framework libraries.
These standards have proven to make names readable and understandable "at a glance". By
using the correct conventions when naming objects, you ensure that other C# programmers
who read your code will easily understand what objects are without having to search your
code for their definition.

2.2 Conventions

2.2.1 Namespace

Namespaces are named using Pascal Case1 (also called UpperCamelCase) with no under-
scores. This means the first letter of every word in the name is capitalized. For exam-
ple: MyNewNamespace. Also, note that Pascal Case also denotes that acronyms of three
or more letters should only have the first letter capitalized (MyXmlNamespace instead of
MyXMLNamespace).

2.2.2 Assemblies

If an assembly contains only one namespace, they should use the same name. Otherwise,
Assemblies should follow the normal Pascal Case format.

2.2.3 Classes and Structures

Pascal Case, no underscores or leading C, cls, or I. Classes should not have the same name
as the namespace in which they reside. Any acronyms of three or more letters should be
pascal case, not all caps. Try to avoid abbreviations, and try to always use nouns.

1 http://en.wikipedia.org/wiki/Pascal%20Case

9

http://en.wikipedia.org/wiki/Pascal%20Case

Language Basics

2.2.4 Exception Classes

Follow class naming conventions, but add Exception to the end of the name. In .Net 2.0,
all classes should inherit from the System.Exception base class, and not inherit from the
System.ApplicationException.

2.2.5 Interfaces

Follow class naming conventions, but start the name with I and capitalize the letter following
the I. Example: IFoo The I prefix helps to differentiate between Interfaces and classes and
also to avoid name collisions.

2.2.6 Functions

Pascal Case, no underscores except in the event handlers. Try to avoid abbreviations.
Many programmers have a nasty habit of overly abbreviating everything. This should be
discouraged.

2.2.7 Properties and Public Member Variables

Pascal Case, no underscores. Try to avoid abbreviations.

2.2.8 Parameters and Procedure-level Variables

Camel Case (or lowerCamelCase). Try to avoid abbreviations. Camel Case is the same as
Pascal case, but the first letter of the first word is lowercased.

2.2.9 Class-level Private and Protected Variables

Camel Case with a leading underscore. Always indicate protected or private in the
declaration. The leading underscore is the only controversial thing in this document. The
leading character helps to prevent name collisions in constructors (a parameter and a private
variable having the same name).

2.2.10 Controls on Forms

Pascal Case with a prefix that identifies it as being part of the UI instead of a purely coded
control (example a temporary variable). Many developers use ui as the prefix followed by
a descriptive name such as txtUserName or lblUserNickName ("txt" stands for TextBox
control and "lbl" for Label control)

Some samples are below for ASP.Net web form controls:

Control Prefix Example

10

Example

Control Prefix Example

Label lbl lblSurname
TextBox txt txtSurname
DataGrid dg dgResults
GridView gv gvResults2
Button btn btnSave
ImageButton iBtn iBtnSave
Hyperlink lnk lnkHomePage
DropDownList ddl ddlCompany
ListBox lst lstCompany
DataList dLst dlstAddress
DataSet ds dsInvoices
DataTable dt dtClients
DataRow dr drUser
Repeater rep repSection
Checkbox chk chkMailList
CheckBoxList chk chkAddress
RadioButton rBtn rBtnSex
RadioButtonList rBtn rBtnAgeGroup
Image img imgLogo
Panel pnl pnlSevtion
PlaceHolder plh plhHeader
Calendar txt txtMyDate
AdRotator adr adrBanner
Table tbl tblResults
[All] Validators val (N/A) valCreditCardNumber
ValidationSummary vals (N/A) valsErrors

2.2.11 Constants

Pascal Case. The use of SCREAMING_CAPS is discouraged. This is a large change from
earlier conventions. Most developers now realize that in using SCREAMING_CAPS they
betray more implementation than is necessary. A large portion of the .NET Framework
Design Guidelines2 is dedicated to this discussion.

2.3 Example

Here is an example of a class that uses all of these naming conventions combined.

using System;

namespace MyExampleNamespace

{

public class Customer : IDisposable

2 http://msdn.microsoft.com/en-us/library/czefa0ke

11

http://msdn.microsoft.com/en-us/library/czefa0ke

Language Basics

{

private string _customerName;

public string CustomerName

{

get

{

return _customerName;

}

set

{

_customerName = value;

_lastUpdated = DateTime.Now;

}

}

private DateTime _lastUpdated;

public DateTime LastUpdated

{

get

{

return _lastUpdated;

}

private set

{

_lastUpdated = value;

}

}

public void UpdateCustomer(string newName)

{

if (!newName.Equals(CustomerName))

{

CustomerName = newName;

}

}

public void Dispose()

{

//Do nothing

}

}

}

ko:C 샤프 프로그래밍/명명 규칙3

C# syntax looks quite similar to the syntax of Java because both inherit much of their syntax
from C and C++. The object-oriented nature of C# requires the high-level structure of
a C# program to be defined in terms of classes4, whose detailed behaviors are defined by
their statements.

2.4 Statements

The basic unit of execution in a C# program is the statement. A statement can declare a
variable, define an expression, perform a simple action by calling a method, control the flow

3
http://ko.wikibooks.org/wiki/C%20%C0%E4%D5%04%20%D5%04%B8%5C%AD%F8%B7%98%BC%0D%2F%BA%

85%BA%85%20%AD%DC%CE%59
4 Chapter 3.1 on page 50

12

http://ko.wikibooks.org/wiki/C%20%C0%E4%D5%04%20%D5%04%B8%5C%AD%F8%B7%98%BC%0D%2F%BA%85%BA%85%20%AD%DC%CE%59
http://ko.wikibooks.org/wiki/C%20%C0%E4%D5%04%20%D5%04%B8%5C%AD%F8%B7%98%BC%0D%2F%BA%85%BA%85%20%AD%DC%CE%59

Statements

of execution5 of other statements, create an object, or assign a value to a variable, property,
or field. Statements are usually terminated by a semicolon.

Statements can be grouped into comma-separated statement lists or brace-enclosed statement
blocks.

Examples:

int sampleVariable; // declaring a variable

sampleVariable = 5; // assigning a value

Method(); // calling an instance

method

SampleClass sampleObject = new SampleClass(); // creating a new

instance of an object

sampleObject.ObjectMethod(); // calling a member

function of an object

// executing a "for" loop with an embedded "if" statement

for(int i = 0; i < upperLimit; i++)

{

if (SampleClass.SampleStaticMethodReturningBoolean(i))

{

sum += sampleObject.SampleMethodReturningInteger(i);

}

}

using System;

namespace MyExampleNamespace

{

public class Customer : IDisposable // Interface

{

private string _customerName;

public string CustomerName

{

get

{

return _customerName;

}

set

{

_customerName = value;

_lastUpdated = DateTime.Now;

}

}

private DateTime _lastUpdated;

public DateTime LastUpdated

{

get

{

return _lastUpdated;

}

private set

{

_lastUpdated = value;

}

}

public void UpdateCustomer(string newName)

{

5 Chapter 2.24 on page 33

13

Language Basics

if (!newName.Equals(CustomerName))

{

CustomerName = newName;

}

}

public void Dispose()

{

//Do nothing

}

}

}

// Submitted by krishna mali [pune]

2.5 Statement blocks

A series of statements surrounded by curly braces form a block of code. Among other
purposes, code blocks serve to limit the scope of variables defined within them. Code blocks
can be nested and often appear as the bodies of methods.

private void MyMethod(int integerValue)

{ // This block of code is the body of "MyMethod()"

// The ‚value‚ integer parameter is accessible to everything in

the method

int methodLevelVariable; // This variable is accessible to

everything in the method

if (integerValue == 2)

{

// methodLevelVariable is still accessible here

int limitedVariable; // This variable is only accessible to

code in the, if block

DoSomeWork(limitedVariable);

}

// limitedVariable is no longer accessible here

} // Here ends the code block for the body of "MyMethod()".

//submitted by krishna

2.6 Comments

Comments allow inline documentation of source code. The C# compiler ignores comments.
These styles of comments are allowed in C#:

Single-line comments

The // character sequence marks the following text as a single-line comment. Single-line
comments, as one would expect, end at the first end-of-line following the // comment
marker.

14

Case sensitivity

Multiple-line comments

Comments can span multiple lines by using the multiple-line comment style. Such comments
start with /* and end with */. The text between those multi-line comment markers is the
comment.

//This style of a comment is restricted to one line.

/*

This is another style of a comment.

It allows multiple lines.

*/

XML Documentation-line comments

These comments are used to generate XML documentation. Single-line and multiple-line
styles can be used. The single-line style, where each line of the comment begins with //, is
more common than the multiple-line style delimited by /** and */.

// <summary> documentation here </summary>

// <remarks>

// This uses single-line style XML Documentation comments.

// </remarks>

/**

* <summary> documentation here </summary>

* <remarks>

* This uses multiple-line style XML Documentation comments.

* </remarks>

*/

2.7 Case sensitivity

C# is case-sensitive6, including its variable and method names.

The variables myInteger and MyInteger of type int below are distinct because C# is
case-sensitive:

int myInteger = 3;

int MyInteger = 5;

For example, C# defines a class Console to handle most operations with the console window.
Writing the following code would result in a compiler error unless an object named console

had been previously defined.

// Compiler error!

console.writeline("Hello");

The following corrected code compiles as expected because it uses the correct case:

Console.WriteLine("Hello");

6 http://en.wikipedia.org/wiki/case-sensitive

15

http://en.wikipedia.org/wiki/case-sensitive

Language Basics

ko:C 샤프 프로그래밍/문법7

Variables8 are used to store values. More technically, a variable binds9 an object10 (in the
general sense of the term, i.e. a specific value) to an identifier (the variable's name) so that
the object can be accessed later. Variables can, for example, store a value for later use:

string name = "Dr. Jones";

Console.WriteLine("Good morning " + name);

In this example "name" is the identifier and "Dr. Jones" is the value that we bound to it.
Also, each variable is declared with an explicit type. Only values whose types are compatible
with the variable's declared type can be bound to (stored in) the variable. In the above
example we stored "Dr. Jones" into a variable of the type string. This is a legal statement.
However, if we had said int name = "Dr. Jones", the compiler would have thrown an
error telling us that you cannot implicitly convert between int and string. There are
methods for doing this, but we will talk about them later.

2.8 Fields, local variables, and parameters

C# supports several program elements corresponding to the general programming concept
of variable: fields, parameters, and local variables.

2.8.1 Fields

Fields, sometimes called class-level variables, are variables associated with classes or
structures. An instance variable is a field associated with an instance of the class or
structure, while a static variable, declared with the static keyword, is a field associated
with the type itself. Fields can also be associated with their class by making them constants
(const), which requires a declaration assignment of a constant value and prevents subsequent
changes to the field.

Each field has a visibility of public, protected, internal, protected internal, or private (from
most visible to least visible).

2.8.2 Local variables

Like fields, local variables can optionally be constant (const). Constant local variables are
stored in the assembly data region, while non-constant local variables are stored on (or
referenced from) the stack. They thus have both a scope and an extent of the method or
statement block that declares them.

7
http://ko.wikibooks.org/wiki/C%20%C0%E4%D5%04%20%D5%04%B8%5C%AD%F8%B7%98%BC%0D%2F%BB%

38%BC%95
8 http://en.wikipedia.org/wiki/variable%23Computer%20programming

9 http://en.wikipedia.org/wiki/Name%20binding

10 http://en.wikipedia.org/wiki/object%20%28computer%20science%29

16

http://ko.wikibooks.org/wiki/C%20%C0%E4%D5%04%20%D5%04%B8%5C%AD%F8%B7%98%BC%0D%2F%BB%38%BC%95
http://ko.wikibooks.org/wiki/C%20%C0%E4%D5%04%20%D5%04%B8%5C%AD%F8%B7%98%BC%0D%2F%BB%38%BC%95
http://en.wikipedia.org/wiki/variable%23Computer%20programming
http://en.wikipedia.org/wiki/Name%20binding
http://en.wikipedia.org/wiki/object%20%28computer%20science%29

Types

2.8.3 Parameter

Parameters are variables associated with a method.

An in parameter may either have its value passed in from the caller to the method's
environment, so that changes to the parameter by the method do not affect the value of the
caller's variable, or passed in by reference, so that changes to the variables will affect the
value of the caller's variable. Value types (int, double, string) are passed in "by value" while
reference types (objects) are passed in "by reference." Since this is the default for the C#
compiler, it is not necessary to use .

An out parameter does not have its value copied, thus changes to the variable's value within
the method's environment directly affect the value from the caller's environment. Such a
variable is considered by the compiler to be unbound upon method entry, thus it is illegal
to reference an out parameter before assigning it a value. It also must be assigned by the
method in each valid (non-exceptional) code path through the method in order for the
method to compile.

A reference parameter is similar to an out parameter, except that it is bound before the
method call and it need not be assigned by the method.

A params parameter represents a variable number of parameters. If a method signature
includes one, the params argument must be the last argument in the signature.

// Each pair of lines is what the definition of a method and a call

of a

// method with each of the parameters types would look like.

// In param:

void MethodOne(int param1) // definition

MethodOne(variable); // call

// Out param:

void MethodTwo(out string message) // definition

MethodTwo(out variable); // call

// Reference param;

void MethodThree(ref int someFlag) // definition

MethodThree(ref theFlag) // call

// Params

void MethodFour(params string[] names) // definition

MethodFour("Matthew", "Mark", "Luke", "John"); // call

2.9 Types

Each type in C# is either a value type or a reference type. C# has several predefined
("built-in") types and allows for declaration of custom value types and reference types.

There is a fundamental difference between value types and reference types: Value types are
allocated on the stack, whereas reference types are allocated on the heap.

17

Language Basics

2.9.1 Value types

The value types in the .NET framework are usually small, frequently used types. The benefit
of using them is that the type requires very little resources to get up and running by the
CLR. Value types do not require memory to be allocated on the heap and therefore will not
cause garbage collection. However, in order to be useful, the value types (or types derived
from it) should remain small - ideally below 16 bytes of data. If you choose to make your
value type bigger, it is recommended that you do not pass it to methods (which can require
a copy of all its fields), or return it from methods.

Although this sounds like a useful type to have, it does have some flaws, which need to be
understood when using it.

• Value types are always copied (intrinsically) before being passed to a method. Changes to
this new object will not be reflected back in the original object passed into the method.

• Value types do not /need/ you to call their constructor. They are automatically initialized.
• Value types always initialize their fields to 0 or null.
• Value types can NEVER be assigned a value of null (but can using Nullable types)
• Value types sometimes need to be boxed (wrapped inside an object), allowing their values

to be used like objects.

2.9.2 Reference types

Reference types are managed very differently by the CLR. All reference types consist of two
parts: A pointer to the heap (which contains the object), and the object itself. Reference
types are slightly heavier weight because of the management behind the scenes needed to
keep track of them. However, this is a minor price to pay for the flexibility and speed gains
from passing a pointer around, rather than copying values to/from methods.

When an object is initialized, by use of the constructor, and is of a reference type, the CLR
must perform four operations:

1. The CLR calculates the amount of memory required to hold the object on the heap.
2. The CLR inserts the data into the newly created memory space.
3. The CLR marks where the end of the space lies, so that the next object can be placed

there.
4. The CLR returns a reference to the newly created space.

This occurs every single time an object is created. However the assumption is that there
is infinite memory, therefore some maintenance needs to take place - and that's where the
garbage collector comes in.

2.9.3 Integral types

Because the type system in C# is unified with other languages that are CLI-compliant,
each integral C# type is actually an alias for a corresponding type in the .NET framework.
Although the names of the aliases vary between .NET languages, the underlying types in
the .NET framework remain the same. Thus, objects created in assemblies written in other
languages of the .NET Framework can be bound to C# variables of any type to which

18

Types

the value can be converted, per the conversion rules below. The following illustrates the
cross-language compatibility of types by comparing C# code with the equivalent Visual
Basic .NET code:

// C#

public void UsingCSharpTypeAlias()

{

int i = 42;

}

public void EquivalentCodeWithoutAlias()

{

System.Int32 i = 42;

}

‚ Visual Basic .NET

Public Sub UsingVisualBasicTypeAlias()

Dim i As Integer = 42

End Sub

Public Sub EquivalentCodeWithoutAlias()

Dim i As System.Int32 = 42

End Sub

Using the language-specific type aliases is often considered more readable than using the
fully-qualified .NET Framework type names.

The fact that each C# type corresponds to a type in the unified type system gives each
value type a consistent size across platforms and compilers. That consistency is an important
distinction from other languages such as C, where, e.g. a long is only guaranteed to be at
least as large as an int, and is implemented with different sizes by different compilers. As
reference types, variables of types derived from object (i.e. any class) are exempt from
the consistent size requirement. That is, the size of reference types like System.IntPtr,
as opposed to value types like System.Int32, may vary by platform. Fortunately, there is
rarely a need to know the actual size of a reference type.

There are two predefined reference types: object, an alias for the System.Object class,
from which all other reference types derive; and string, an alias for the System.String

class. C# likewise has several integral value types, each an alias to a corresponding value
type in the System namespace of the .NET Framework. The predefined C# type aliases
expose the methods of the underlying .NET Framework types. For example, since the .NET
Framework's System.Int32 type implements a ToString() method to convert the value of
an integer to its string representation, C#'s int type exposes that method:

int i = 97;

string s = i.ToString(); // The value of s is now the string "97".

Likewise, the System.Int32 type implements the Parse() method, which can therefore be
accessed via C#'s int type:

string s = "97";

int i = int.Parse(s); // The value of i is now the integer 97.

The unified type system is enhanced by the ability to convert value types to reference types
(boxing) and likewise to convert certain reference types to their corresponding value types
(unboxing). This is also known as casting.

19

Language Basics

object boxedInteger = 97;

int unboxedInteger = (int) boxedInteger;

Boxing and casting are, however, not type-safe: the compiler won't generate an error if the
programmer mixes up the types. In the following short example the mistake is quite obvious,
but in complex programs it may be very difficult to spot. Avoid boxing, if possible.

object getInteger = "97";

int anInteger = (int) getInteger; // No compile-time error. The

program will crash, however.

The built-in C# type aliases and their equivalent .NET Framework types follow:

Integers

C#

Alias

.NET Type Size (bits) Range

sbyte System.SByte 8 -128 to 127
byte System.Byte 8 0 to 255
short System.Int16 16 -32,768 to 32,767
ushort System.UInt16 16 0 to 65,535
char System.Char 16 A unicode character of code 0 to

65,535
int System.Int32 32 -2,147,483,648 to 2,147,483,647
uint System.UInt32 32 0 to 4,294,967,295
long System.Int64 64 -9,223,372,036,854,775,808 to

9,223,372,036,854,775,807
ulong System.UInt64 64 0 to 18,446,744,073,709,551,615

Floating-point

C#

Alias

.NET Type Size (bits) Precision Range

float System.Single 32 7 digits 1.5 x 10-45 to
3.4 x 1038

double System.Double 64 15-16 digits 5.0 x 10-324 to
1.7 x 10308

decimal System.Decimal 128 28-29 decimal
places

1.0 x 10-28 to
7.9 x 1028

Other predefined types

C#

Alias

.NET Type Size (bits) Range

bool System.Boolean 32 true or false, which aren't related
to any integer in C#.

20

Types

C#

Alias

.NET Type Size (bits) Range

object System.Object 32/64 Platform dependant (a pointer to
an object).

string System.String 16*length A unicode string with no special
upper bound.

2.9.4 Custom types

The predefined types can be aggregated and extended into custom types.

Custom value types are declared with the struct or enum keyword. Likewise, custom
reference types11 are declared with the class keyword.

Arrays

Although the number of dimensions is included in array declarations, the size of each
dimension is not:

string[] a_str;

Assignments to an array variable (prior to the variable's usage), however, specify the size of
each dimension:

a_str = new string[5];

As with other variable types, the declaration and the initialization can be combined:

string[] a_str = new string[5];

It is also important to note that like in Java, arrays are passed by reference, and not passed
by value. For example, the following code snippet successfully swaps two elements in an
integer array:

static void swap (int[] a_iArray, int iI, int iJ)

{

int iTemp = iArray[iI];

iArray[iI] = iArray[iJ];

iArray[iJ] = iTemp;

}

It is possible to determine the array size during runtime. The following example assignes
the loop counter to the unsigned short array elements:

ushort[] a_usNumbers = new ushort[234];

[...]

for (ushort us = 0; us < a_usNumbers.Length; us++)

{

a_usNumbers = us;

}

11 Chapter 3.1 on page 50

21

Language Basics

Since C# 2.0, it is possible to have arrays also inside of structures12.

2.10 Text & variable example

using System;

namespace Login

{

class Username_Password

{

public static void Main()

{

string username,password;

Console.Write("Enter username: ");

username = Console.ReadLine();

Console.Write("Enter password: ");

password = Console.ReadLine();

if (username == "SomePerson" && password == "SomePassword")

{

Console.WriteLine("Access Granted.");

}

else if (username != "SomePerson" && password ==

"SomePassword")

{

Console.WriteLine("The username is wrong.");

}

else if (username == "SomePerson" && password !=

"SomePassword")

{

Console.WriteLine("The password is wrong.");

}

else

{

Console.WriteLine("Access Denied.");

}

}

}

}

2.10.1 Conversion

Values of a given type may or may not be explicitly or implicitly convertible to other types
depending on predefined conversion rules, inheritance structure, and explicit cast definitions.

Predefined conversions

Many predefined value types have predefined conversions to other predefined value types. If
the type conversion is guaranteed not to lose information, the conversion can be implicit (i.e.
an explicit cast is not required).

12 Chapter 3.9 on page 59

22

Scope and extent

Inheritance polymorphism

A value can be implicitly converted to any class from which it inherits or interface that
it implements. To convert a base class to a class that inherits from it, the conversion
must be explicit in order for the conversion statement to compile. Similarly, to convert an
interface instance to a class that implements it, the conversion must be explicit in order
for the conversion statement to compile. In either case, the runtime environment throws a
conversion exception if the value to convert is not an instance of the target type or any of
its derived types.

2.11 Scope and extent

The scope and extent of variables is based on their declaration. The scope of parameters
and local variables corresponds to the declaring method or statement block, while the scope
of fields is associated with the instance or class and is potentially further restricted by the
field's access modifiers.

The extent of variables is determined by the runtime environment using implicit reference
counting and a complex garbage collection algorithm.

13

ko:C 샤프 프로그래밍/변수14

C# operators and their precedence closely resemble the operators in other languages of the
C family.

Similar to C++, classes can overload most operators, defining or redefining the behavior of
the operators in contexts where the first argument of that operator is an instance of that
class, but doing so is often discouraged for clarity.

Operators can be grouped by their arity15 as unary16, binary17.

Following are the built-in behaviors of C# operators.

2.12 Arithmetic

The following arithmetic operators operate on numeric operands (arguments a and b in the
"sample usage" below).

13 http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming

14
http://ko.wikibooks.org/wiki/C%20%C0%E4%D5%04%20%D5%04%B8%5C%AD%F8%B7%98%BC%0D%2F%BC%

C0%C2%18
15 http://en.wikibooks.org/wiki/%3Aw%3AArity

16 http://en.wikibooks.org/wiki/%3Aw%3Aunary%20operator

17 http://en.wikibooks.org/wiki/%3Aw%3Abinary%20operator

23

http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming
http://ko.wikibooks.org/wiki/C%20%C0%E4%D5%04%20%D5%04%B8%5C%AD%F8%B7%98%BC%0D%2F%BC%C0%C2%18
http://ko.wikibooks.org/wiki/C%20%C0%E4%D5%04%20%D5%04%B8%5C%AD%F8%B7%98%BC%0D%2F%BC%C0%C2%18
http://en.wikibooks.org/wiki/%3Aw%3AArity
http://en.wikibooks.org/wiki/%3Aw%3Aunary%20operator
http://en.wikibooks.org/wiki/%3Aw%3Abinary%20operator

Language Basics

Sample us-

age

Read Type Explanation

a + b a plus b binary + returns the sum18

of its arguments.
a - b a minus b binary - returns the differ-

ence19 between its ar-
guments.

a*b a times b binary * returns the multi-
plicative product20 of
its arguments.

a/b a divided by b binary / returns the quo-
tient21 of its argu-
ments. If both of its
operators are inte-
gers, it obtains that
quotient using integer
division (i.e. it drops
any resulting remain-
der).

a%b a mod b binary % operates only on in-
teger arguments. It re-
turns the remainder22

of integer division of
those arguments. (See
modular arithmetic23.)

a++ a plus plus or Postin-
crement a

unary ++ operates only on
arguments that have
an l-value. When
placed after its ar-
gument, it increments
that argument by 1
and returns the value
of that argument
before it was incre-
mented.

18 http://en.wikipedia.org/wiki/addition

19 http://en.wikipedia.org/wiki/subtraction

20 http://en.wikipedia.org/wiki/multiplication

21 http://en.wikipedia.org/wiki/division%20%28mathematics%29

22 http://en.wikipedia.org/wiki/remainder

23 http://en.wikipedia.org/wiki/modular%20arithmetic

24

http://en.wikipedia.org/wiki/addition
http://en.wikipedia.org/wiki/subtraction
http://en.wikipedia.org/wiki/multiplication
http://en.wikipedia.org/wiki/division%20%28mathematics%29
http://en.wikipedia.org/wiki/remainder
http://en.wikipedia.org/wiki/modular%20arithmetic

Logical

Sample us-

age

Read Type Explanation

++a plus plus a or Prein-
crement a

unary ++ operates only on
arguments that have
an l-value. When
placed before its ar-
gument, it increments
that argument by 1
and returns the result-
ing value.

a-- a minus minus or
Postdecrement a

unary -- operates only on
arguments that have
an l-value. When
placed after its ar-
gument, it decrements
that argument by 1
and returns the value
of that argument
before it was decre-
mented.

--a minus minus a or
Predecrement a

unary -- operates only on
arguments that have
an l-value. When
placed before its ar-
gument, it decrements
that argument by 1
and returns the result-
ing value.

2.13 Logical

The following logical operators operate on boolean or integral operands, as noted.

Sample us-

age

Read Type Explanation

a&b a bitwise and b binary & evaluates both of its operands
and returns the logical conjunc-
tion24 ("AND") of their results.
If the operands are integral, the
logical conjunction is performed
bitwise.

24 http://en.wikipedia.org/wiki/Logical%20conjunction

25

http://en.wikipedia.org/wiki/Logical%20conjunction

Language Basics

Sample us-

age

Read Type Explanation

a&&b a and b binary && operates on boolean operands
only. It evaluates its first operand.
If the result is false, it returns false.
Otherwise, it evaluates and returns
the results of the second operand.
Note that, if evaluating the sec-
ond operand would hypothetically
have no side effects, the results are
identical to the logical conjunc-
tion performed by the & operator.
This is an example of Short Circuit
Evaluation25.

a | b a bitwise or b binary | evaluates both of its operands
and returns the logical disjunc-
tion26 ("OR") of their results. If
the operands are integral, the log-
ical disjunction is performed bit-
wise.

a || b a or b binary || operates on boolean operands
only. It evaluates the first operand.
If the result is true, it returns true.
Otherwise, it evaluates and returns
the results of the second operand.
Note that, if evaluating the sec-
ond operand would hypothetically
have no side effects, the results
are identical to the logical disjunc-
tion performed by the | operator.
This is an example of Short Circuit
Evaluation27.

a ˆ b a x-or b binary ˆ returns the exclusive or28

("XOR") of their results. If the
operands are integral, the exclusive
or is performed bitwise.

!a not a unary ! operates on a boolean operand
only. It evaluates its operand and
returns the negation29 ("NOT")
of the result. That is, it returns
true if a evaluates to false and it
returns false if a evaluates to true.

25 http://en.wikipedia.org/wiki/Short-circuit_evaluation

26 http://en.wikipedia.org/wiki/Logical%20disjunction

27 http://en.wikipedia.org/wiki/Short-circuit_evaluation

28 http://en.wikipedia.org/wiki/exclusive%20or

29 http://en.wikipedia.org/wiki/negation

26

http://en.wikipedia.org/wiki/Short-circuit_evaluation
http://en.wikipedia.org/wiki/Logical%20disjunction
http://en.wikipedia.org/wiki/Short-circuit_evaluation
http://en.wikipedia.org/wiki/exclusive%20or
http://en.wikipedia.org/wiki/negation

Relational

Sample us-

age

Read Type Explanation

˜a bitwise not a unary ˜ operates on integral operands
only. It evaluates its operand and
returns the bitwise negation of the
result. That is, ˜a returns a value
where each bit is the negation of
the corresponding bit in the result
of evaluating a.

2.14 Bitwise shifting

Sample us-

age

Read Type Explanation

a << b a left shift b binary << evaluates its operands and re-
turns the resulting first argument
left-shifted by the number of bits
specified by the second argument. It
discards high-order bits that shift
beyond the size of its first argument
and sets new low-order bits to zero.

a >> b a right shift b binary >> evaluates its operands and re-
turns the resulting first argument
right-shifted by the number of bits
specified by the second argument.
It discards low-order bits that are
shifted beyond the size of its first
argument and sets new high-order
bits to the sign bit of the first argu-
ment, or to zero if the first argument
is unsigned.

2.15 Relational

The binary relational operators ==, !=, <, >, <=, and >= are used for relational operations
and for type comparisons.

27

Language Basics

Sample us-

age

Read Explanation

a == b a is equal to b For arguments of value type, the
operator == returns true, if its
operands have the same value,
false otherwise. For the string
type, it returns true, if the strings'
character sequences match. For
other reference types (types de-
rived from System.Object), how-
ever, a == b returns true only if a

and b reference the same object.
a != b a is not equal to b The operator != returns the log-

ical negation of the operator ==.
Thus, it returns true, if a is not
equal to b, and false, if they are
equal.

a < b a is less than b The operator < operates on inte-
gral types. It returns true, if a is
less than b, false otherwise.

a > b a is greater than b The operator > operates on inte-
gral types. It returns true, if a is
greater than b, false otherwise.

a <= b a is less than or equal to b The operator <= operates on in-
tegral types. It returns true, if
a is less than or equal to b, false
otherwise.

a >= b a is greater than or equal to
b

The operator >= operates on in-
tegral types. It returns true, if a

is greater than or equal to b, false
otherwise.

2.16 Assignment

The assignment operators are binary. The most basic is the operator =. Not surprisingly, it
assigns the value (or reference) of its second argument to its first argument.

(More technically, the operator = requires for its first (left) argument an expression to which
a value can be assigned (an l-value) and for its second (right) argument an expression that
can be evaluated (an r-value). That requirement of an assignable expression to its left and a
bound expression to its right is the origin of the terms l-value and r-value.)

The first argument of the assignment operator (=) is typically a variable. When that
argument has a value type, the assignment operation changes the argument's underlying
value. When the first argument is a reference type, the assignment operation changes the
reference, so the first argument typically just refers to a different object, but the object that

28

Type information

it originally referenced does not change (except that it may no longer be referenced and may
thus be a candidate for garbage collection).

Sample us-

age

Read Explanation

a = b a equals (or set to) b The operator = evaluates its sec-
ond argument and then assigns the
results to (the l-value indicated by)
its first argument.

a = b = c b set to c, and then a set to
b

Equivalent to a = (b = c). When
there are consecutive assignments,
the right-most assignment is eval-
uated first, proceeding from right
to left. In this example, both vari-
ables a and b have the value of c.

2.17 Short-hand Assignment

The short-hand assignment operators shortens the common assignment operation of a = a

operator b into a operator= b, resulting in less typing and neater syntax.

Sample us-

age

Read Explanation

a += b a plus equals (or increment by) b Equivalent to a = a + b.
a -= b a minus equals (or decrement by) b Equivalent to a = a - b.
a *= b a multiply equals (or multiplied by)

b

Equivalent to a = a*b.

a /= b a divide equals (or divided by) b Equivalent to a = a/b.
a %= b a mod equals b Equivalent to a = a%b.
a &= b a and equals b Equivalent to a = a&b.
a |= b a or equals b Equivalent to a = a|b.
a ˆ= b a xor equals b Equivalent to a = aˆb.
a <<= b a left-shift equals b Equivalent to a = a << b.
a >>= b a right-shift equals b Equivalent to a = a >> b.

2.18 Type information

Expression Explanation
x is T returns true, if the variable x of base class type stores an object of

derived class type T, or, if x is of type T. Else returns false.
x as T returns (T)x (x cast to T), if the variable x of base class type stores

an object of derived class type T, or, if x is of type T. Else returns
null. Equivalent to x is T ? (T)x : null

sizeof(x) returns the size of the value type x. Remarks: The sizeof operator
can be applied only to value types, not reference types..

29

Language Basics

Expression Explanation
typeof(T) returns a System.Type object describing the type. T must be the

name of the type, and not a variable. Use the GetType method to
retrieve run-time type information of variables.

2.19 Pointer manipulation

NOTE: Most C# developers agree that direct manipulation and use of pointers is not
recommended in C#. The language has many built-in classes to allow you to do almost any
operation you want. C# was built with memory-management in mind and the creation and
use of pointers is greatly disruptive to this end. This speaks to the declaration of pointers
and the use of pointer notation, not arrays. In fact, a program may only be compiled in
"unsafe mode", if it uses pointers.

Expression Explanation

*a Indirection operator. Allows access the object being pointed.
a->member Similar to the . operator. Allows access to members of classes

and structs being pointed.
a[] Used to index a pointer.
&a References the address of the pointer.
stackalloc allocates memory on the stack.
fixed Temporarily fixes a variable in order that its address may be

found.

2.20 Overflow exception control

Expression Explanation
checked(a) uses overflow checking on value a

unchecked(a) avoids overflow checking on value a

2.21 Others

Expression Explanation
a.b accesses member b of type or namespace a

a[b] the value of index b in a

(a)b casts the value b to type a

new a creates an object of type a

a + b if a and b are strings, concatenates a and b. If any addend is
null, the empty string is used instead. If one addend is a string
and the other one is a non-string object, ToString() is called on
that object before concatenation.

a + b if a and b are delegates, performs delegate concatenation
a ? b : c if a is true, returns the value of b, otherwise c

a ?? b if a is null, returns b, otherwise returns a

@"a" verbatim text, i.e., escape characters are ignored

30

Enumerations

30

it:C sharp/Operatori31

There are various ways of grouping sets of data together in C#.

2.22 Enumerations

An enumeration32 is a data type that enumerates a set of items by assigning to each of them
an identifier (a name), while exposing an underlying base type for ordering the elements of
the enumeration. The underlying type is int by default, but can be any one of the integral
types except for char.

Enumerations are declared as follows:

enum Weekday { Monday, Tuesday, Wednesday, Thursday, Friday,

Saturday, Sunday };

The elements in the above enumeration are then available as constants:

Weekday day = Weekday.Monday;

if (day == Weekday.Tuesday)

{

Console.WriteLine("Time sure flies by when you program in C#!");

}

If no explicit values are assigned to the enumerated items as the example above, the first
element has the value 0, and the successive values are assigned to each subsequent element.
However, specific values from the underlying integral type can be assigned to any of the
enumerated elements (note that the variable must be type cast33 in order to access the base
type):

enum Age { Infant = 0, Teenager = 13, Adult = 18 };

Age myAge = Age.Teenager;

Console.WriteLine("You become a teenager at an age of {0}.",

(int)myAge);

The underlying values of enumerated elements may go unused when the purpose of an
enumeration is simply to group a set of items together, e.g., to represent a nation, state, or
geographical territory in a more meaningful way than an integer could. Rather than define
a group of logically related constants, it is often more readable to use an enumeration.

It may be desirable to create an enumeration with a base type other than int. To do so,
specify any integral type besides char as with base class extension syntax after the name of
the enumeration, as follows:

enum CardSuit : byte { Hearts, Diamonds, Spades, Clubs };

30 http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming

31 http://it.wikibooks.org/wiki/C%20sharp%2FOperatori

32 http://en.wikipedia.org/wiki/enumeration

33 Chapter 2.9 on page 17

31

http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming
http://it.wikibooks.org/wiki/C%20sharp%2FOperatori
http://en.wikipedia.org/wiki/enumeration

Language Basics

The enumeration type is also helpful, if you need to output the value. By calling
the .ToString() method on the enumeration, will output the enumerations name (e.g.
CardSuit.Hearts.ToString() will output "Hearts").

2.23 Structs

Structures (keyword struct) are light-weight objects. They are mostly used when only a
data container is required for a collection of value type variables. Structs are similar to
classes in that they can have constructors, methods, and even implement interfaces, but
there are important differences.

• Structs are value types while classes are reference types, which means they behave
differently when passed into methods as parameters.

• Structs cannot support inheritance. While structs may appear to be limited with their
use, they require less memory and can be less expensive, if used in the proper way.

• Structs always have a default constructor, even if you don't want one. Classes allow you
to hide the constructor away by using the "private" modifier, whereas structures must
have one.

A struct can, for example, be declared like this:

struct Person

{

public string name;

public System.DateTime birthDate;

public int heightInCm;

public int weightInKg;

}

The Person struct can then be used like this:

Person dana = new Person();

dana.name = "Dana Developer";

dana.birthDate = new DateTime(1974, 7, 18);

dana.heightInCm = 178;

dana.weightInKg = 50;

if (dana.birthDate < DateTime.Now)

{

Console.WriteLine("Thank goodness! Dana Developer isn‚t from the

future!");

}

It is also possible to provide constructors to structs to make it easier to initialize them:

using System;

struct Person

{

string name;

DateTime birthDate;

int heightInCm;

int weightInKg;

public Person(string name, DateTime birthDate, int heightInCm,

int weightInKg)

{

this.name = name;

32

Arrays

this.birthDate = birthDate;

this.heightInCm = heightInCm;

this.weightInKg = weightInKg;

}

}

public class StructWikiBookSample

{

public static void Main()

{

Person dana = new Person("Dana Developer", new

DateTime(1974, 7, 18), 178, 50);

}

}

There is also an alternative syntax for initializing structs:

struct Person

{

public string Name;

public int Height;

public string Occupation;

}

public class StructWikiBookSample2

{

public static void Main()

{

Person john = new Person { Name = "John", Height = 182,

Occupation = "Programmer" };

}

}

Structs are really only used for performance reasons or, if you intend to reference it by value.
Structs work best when holding a total equal to or less than 16 bytes of data. If in doubt,
use classes. Data structures34

2.24 Arrays

Arrays represent a set of items all belonging to the same type. The declaration itself may
use a variable or a constant to define the length of the array. However, an array has a set
length and it cannot be changed after declaration.

// an array whose length is defined with a constant

int[] integers = new int[20];

int length = 0;

System.Console.Write("How long should the array be? ");

length = int.Parse(System.Console.ReadLine());

// an array whose length is defined with a variable

// this array still can‚t change length after declaration

double[] doubles = new double[length];

Conditional, iteration, jump, and exception handling statements control a program's flow of
execution.

A conditional statement can decide something using keywords such as if, switch.

34 http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming

33

http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming

Language Basics

An iteration statement can create a loop using keywords such as do, while, for, foreach,
and in.

A jump statement can be used to transfer program control using keywords such as break,
continue, return, and yield.

2.25 Conditional statements

A conditional statement decides whether to execute code based on conditions. The if

statement and the switch statement are the two types of conditional statements in C#.

2.25.1 if statement

As with most of C#, the if statement has the same syntax as in C, C++, and Java. Thus,
it is written in the following form:

if-statement ::= "if" "(" condition ")" if-body ["else" else-body]

condition ::= boolean-expression

if-body ::= statement-or-statement-block

else-body ::= statement-or-statement-block

The if statement evaluates its condition expression to determine whether to execute the
if-body. Optionally, an else clause can immediately follow the if body, providing code to
execute when the condition is false. Making the else-body another if statement creates the
common cascade of if, else if, else if, else if, else statements:

using System;

public class IfStatementSample

{

public void IfMyNumberIs()

{

int myNumber = 5;

if (myNumber == 4)

Console.WriteLine("This will not be shown because

myNumber is not 4.");

else if(myNumber < 0)

{

Console.WriteLine("This will not be shown because

myNumber is not negative.");

}

else if(myNumber % 2 == 0)

Console.WriteLine("This will not be shown because

myNumber is not even.");

else

{

Console.WriteLine("myNumber does not match the coded

conditions, so this sentence will be shown!");

}

}

}

34

Conditional statements

2.25.2 switch statement

The switch statement is similar to the statement from C, C++ and Java.

Unlike C, each case statement must finish with a jump statement (that can be break

or goto or return). In other words, C# does not support "fall through" from one case

statement to the next (thereby eliminating a common source of unexpected behaviour in C
programs). However "stacking" of cases is allowed, as in the example below. If goto is used,
it may refer to a case label or the default case (e.g. goto case 0 or goto default).

The default label is optional. If no default case is defined, then the default behaviour is to
do nothing.

A simple example:

switch (nCPU)

{

case 0:

Console.WriteLine("You don't have a CPU! :-)");

break;

case 1:

Console.WriteLine("Single processor computer");

break;

case 2:

Console.WriteLine("Dual processor computer");

break;

// Stacked cases

case 3:

// falls through

case 4:

// falls through

case 5:

// falls through

case 6:

// falls through

case 7:

// falls through

case 8:

Console.WriteLine("A multi processor computer");

break;

default:

Console.WriteLine("A seriously parallel computer");

break;

}

A nice improvement over the C switch statement is that the switch variable can be a string.
For example:

switch (aircraftIdent)

{

case "C-FESO":

Console.WriteLine("Rans S6S Coyote");

break;

case "C-GJIS":

Console.WriteLine("Rans S12XL Airaile");

break;

default:

Console.WriteLine("Unknown aircraft");

break;

}

35

Language Basics

2.26 Iteration statements

An iteration statement creates a loop of code to execute a variable number of times. The
for loop, the do loop, the while loop, and the foreach loop are the iteration statements in
C#.

2.26.1 do ... while loop

The do...while loop likewise has the same syntax as in other languages derived from C. It
is written in the following form:

do...while-loop ::= "do" body "while" "(" condition ")"

condition ::= boolean-expression

body ::= statement-or-statement-block

The do...while loop always runs its body once. After its first run, it evaluates its condition
to determine whether to run its body again. If the condition is true, the body executes. If the
condition evaluates to true again after the body has ran, the body executes again. When the
condition evaluates to false, the do...while loop ends.

using System;

public class DoWhileLoopSample

{

public void PrintValuesFromZeroToTen()

{

int number = 0;

do

{

Console.WriteLine(number++.ToString());

} while(number <= 10);

}

}

The above code writes the integers from 0 to 10 to the console.

2.26.2 for loop

The for loop likewise has the same syntax as in other languages derived from C. It is written
in the following form:

for-loop ::= "for" "(" initialization ";" condition ";" iteration ")" body

initialization ::= variable-declaration | list-of-statements

condition ::= boolean-expression

iteration ::= list-of-statements

body ::= statement-or-statement-block

36

Iteration statements

The initialization variable declaration or statements are executed the first time through the
for loop, typically to declare and initialize an index variable. The condition expression is
evaluated before each pass through the body to determine whether to execute the body. It is
often used to test an index variable against some limit. If the condition evaluates to true,
the body is executed. The iteration statements are executed after each pass through the
body, typically to increment or decrement an index variable.

public class ForLoopSample

{

public void ForFirst100NaturalNumbers()

{

for(int i = 0; i < 100; i++)

{

System.Console.WriteLine(i.ToString());

}

}

}

The above code writes the integers from 0 to 99 to the console.

2.26.3 foreach loop

The foreach statement is similar to the for statement in that both allow code to iterate
over the items of collections, but the foreach statement lacks an iteration index, so it works
even with collections that lack indices altogether. It is written in the following form:

foreach-loop ::= "foreach" "(" variable-declaration "in" enumerable-expression ")" body

body ::= statement-or-statement-block

The enumerable-expression is an expression of a type that implements IEnumerable, so it
can be an array or a collection. The variable-declaration declares a variable that will be set
to the successive elements of the enumerable-expression for each pass through the body. The
foreach loop exits when there are no more elements of the enumerable-expression to assign
to the variable of the variable-declaration.

public class ForEachSample

{

public void DoSomethingForEachItem()

{

string[] itemsToWrite = {"Alpha", "Bravo", "Charlie"};

foreach (string item in itemsToWrite)

System.Console.WriteLine(item);

}

}

In the above code, the foreach statement iterates over the elements of the string array to
write "Alpha", "Bravo", and "Charlie" to the console.

2.26.4 while loop

The while loop has the same syntax as in other languages derived from C. It is written in
the following form:

37

Language Basics

while-loop ::= "while" "(" condition ")" body

condition ::= boolean-expression

body ::= statement-or-statement-block

The while loop evaluates its condition to determine whether to run its body. If the condition
is true, the body executes. If the condition then evaluates to true again, the body executes
again. When the condition evaluates to false, the while loop ends.

using System;

public class WhileLoopSample

{

public void RunForAWhile()

{

TimeSpan durationToRun = new TimeSpan(0, 0, 30);

DateTime start = DateTime.Now;

while (DateTime.Now - start < durationToRun)

{

Console.WriteLine("not finished yet");

}

Console.WriteLine("finished");

}

}

2.27 Jump statements

A jump statement can be used to transfer program control using keywords such as break,
continue, return, yield, and throw.

2.27.1 break

A break statement is used to exit from a case in a switch statement and also used to exit from
for, foreach,while, do.....while loops that will switch the control to the statement immediately
after the end of the loop.

using System;

namespace JumpSample

{

public class Entry

{

static void Main(string[] args)

{

int i;

for (i = 0; i < 10; i++) // see the comparison, i < 10

{

if (i >= 3)

{

break;

// Not run over the code, and get out of loop.

// Note: The rest of code will not be executed,

// & it leaves the loop instantly

}

38

Jump statements

}

// Here check the value of i, it will be 3, not 10.

Console.WriteLine("The value of OneExternCounter: {0}",

i);

}

}

}

2.27.2 continue

The continue keyword transfers program control just before the end of a loop. The condition
for the loop is then checked, and if it is met, the loop performs another iteration.

using System;

namespace JumpSample

{

public class Entry

{

static void Main(string[] args)

{

int OneExternCounter = 0;

for (int i = 0; i < 10; i++)

{

if (i >= 5)

{

continue; // Not run over the code, and return

to the beginning

// of the scope as if it had

completed the loop

}

OneExternCounter += 1;

}

// Here check the value of OneExternCounter, it will be

5, not 10.

Console.WriteLine("The value of OneExternCounter: {0}",

OneExternCounter);

}

}

}

2.27.3 return

The return keyword identifies the return value for the function or method (if any), and
transfers control to the end of the function.

namespace JumpSample

{

public class Entry

{

static int Fun()

{

int a = 3;

return a; // the code terminate here

a = 9; // here is a block that will not be executed

}

static void Main(string[] args)

{

39

Language Basics

int OnNumber = Fun();

// the value of OnNumber is 3, not 9...

}

}

}

2.27.4 yield

The yield keyword is used to define an iterator block that produces values for an enumerator.
It is typically used within a method implementation of the IEnumerable interface as an
easy way to create an iterator. It is written in the following forms:

yield ::= "yield" "return" expression

yield ::= "yield" "break"

The following example shows the usage of the yield keyword inside the method MyCounter.
This method defines an iterator block, and will return an enumerator object that generates
the value of a counter from zero to stop, incrementing by step for each value generated.

using System;

using System.Collections;

public class YieldSample

{

public IEnumerable MyCounter(int stop, int step)

{

int i;

for (i = 0; i < stop; i += step)

{

yield return i;

}

}

static void Main()

{

foreach (int j in MyCounter(10, 2))

{

Console.WriteLine("{0} ", j);

}

// Will display 0 2 4 6 8

}

}

2.27.5 throw

The throw keyword throws an exception. If it is located within a try block, it will transfer
the control to a catch block that matches the exception - otherwise, it will check if any
calling functions are contained within the matching catch block and transfer execution there.
If no functions contain a catch block, the program may terminate because of an unhandled
exception.

namespace ExceptionSample

{

public class Warrior

{

40

Introduction

private string Name { get; set; }

public Warrior(string name)

{

if (name == "Piccolo")

{

throw new Exception("Piccolo can‚t battle!");

}

}

}

public class Entry

{

static void Main(string[] args)

{

try

{

Warrior a = new Warrior("Goku");

Warrior b = new Warrior("Vegeta");

Warrior c = new Warrior("Piccolo"); // exception

here!

}

catch(Exception e)

{

Console.WriteLine(e.Message);

}

}

}

}

Exceptions and the throw statement are described in greater detail in the Exceptions35

chapter.

ko:C 샤프 프로그래밍/제어문36

2.28 Introduction

Software Programmers write code to perform some desired actions. But every software
may fail to perform its desired actions under some of its internal or external failures. The
exception handling system in the C# language allows the programmer to handle errors or
anomalous situations in a structured manner that allows the programmer to separate the
normal flow of the code from error-handling logic.

An exception can represent a variety of abnormal conditions that arise from several possible
external or internal conditions of software application. External conditions of execution
failures includes, for example, network failures in connecting to a remote component,
inadequate rights in using a file/system resource, out of memory exception or exception
thrown by a web service etc. These are mainly due to failures thrown by environment
components on which our application depends on e.g. operating system, .net runtime
or external application or components. Internal failures may be due to software defects,
designed functional failures (failures required as per business rules), propagated external
failures e.g. a null object reference detected by the runtime, or an invalid input string entered

35 Chapter 2.27.5 on page 41

36
http://ko.wikibooks.org/wiki/C%20%C0%E4%D5%04%20%D5%04%B8%5C%AD%F8%B7%98%BC%0D%2F%C8%

1C%C5%B4%BB%38

41

http://ko.wikibooks.org/wiki/C%20%C0%E4%D5%04%20%D5%04%B8%5C%AD%F8%B7%98%BC%0D%2F%C8%1C%C5%B4%BB%38
http://ko.wikibooks.org/wiki/C%20%C0%E4%D5%04%20%D5%04%B8%5C%AD%F8%B7%98%BC%0D%2F%C8%1C%C5%B4%BB%38

Language Basics

by a user and detected by application code, user requesting to withdraw more amount than
the account balance(business rule).

Code that detects an error condition is said to throw an exception and code that handles
the error is said to catch the exception. An exception in C# is an object that encapsulates
various information about the error that occurred, such as the stack trace at the point of
the exception and a descriptive error message. All exception objects are instantiations of
the System.Exception or a child class of it. There are many exception classes defined in
the .NET Framework used for various purposes. Programmers may also define their own
class inheriting from System.Exception or some other appropriate exception class from the
.NET Framework.

Microsoft recommendations prior to version 2.0 recommended that a developer inherit from
the ApplicationException exception class. After 2.0 was released, this recommendation
was made obsolete and users should inherit from the Exception class37.

2.29 Overview

There are three code definitions for exception handling. These are:

• try/catch - Do something and catch an error, if it should occur.
• try/catch/finally - Do something and catch an error if it should occur, but always do

the finally.
• try/finally - Do something, but always do the finally. Any exception that occurs,

will be thrown after finally.

Exceptions are caught from most specific, to least specific. So for example, if you try and
access a file that does not exist, the CLR would look for exceptions in the following order:

• FileNotFoundException

• IOException (base class of FileNotFoundException)
• SystemException (base class of IOException)
• Exception (base class of SystemException)

If the exception being thrown does not derive or is not in the list of exceptions to catch, it
is thrown up the call stack.

Below are some examples of the different types of exceptions

2.30 Examples

2.30.1 try/catch

The try/catch performs an operation and should an error occur, will transfer control to
the catch block, should there be a valid section to be caught by:

37 http://blogs.msdn.com/fxcop/archive/2006/04/05/569569.aspx ApplicationException made obso-
lete ˆ{http://en.wikibooks.org/wiki/%20ApplicationException%20made%20obsolete}

42

http://blogs.msdn.com/fxcop/archive/2006/04/05/569569.aspx
http://en.wikibooks.org/wiki/%20ApplicationException%20made%20obsolete

Examples

class ExceptionTest

{

public static void Main(string[] args)

{

try

{

Console.WriteLine(args[0]);

Console.WriteLine(args[1]);

Console.WriteLine(args[2]);

Console.WriteLine(args[3]);

Console.WriteLine(args[4]);

}

catch (ArgumentOutOfRangeException e)

{

Console.WriteLine(e.Message);

}

}

}

Here is an example with multiple catches:

class ExceptionTest

{

public static void Main(string[] args)

{

try

{

string fileContents = new

StreamReader(@"C:\log.txt").ReadToEnd();

}

catch (UnauthorizedAccessException e) // Access problems

{

Console.WriteLine(e.Message);

}

catch (FileNotFoundException e) // File does not

exist

{

Console.WriteLine(e.Message);

}

catch (IOException e) // Some other IO

problem.

{

Console.WriteLine(e.Message);

}

}

}

In all catch statements you may omit the type of exception and the exception variable
name:

try

{

int number = 1/0;

}

catch (DivideByZeroException)

{

// DivideByZeroException

}

catch

{

// some other exception

}

43

Language Basics

2.30.2 try/catch/finally

Catching the problem is a good idea, but it can sometimes leave your program in an invalid
state. For example, if you open a connection to a database, an error occurs and you throw an
exception. Where would you close the connection? In both the try AND exception blocks?
Well, problems may occur before the close is carried out.

Therefore, the finally statement allows you to cater for the "in all cases do this" circum-
stance. See the example below:

using System;

class ExceptionTest

{

public static void Main(string[] args)

{

SqlConnection sqlConn = null;

try

{

sqlConn = new SqlConnection (/*Connection here*/);

sqlConn.Open();

// Various DB things

// Notice you do not need to explicitly close the

connection, as .Dispose() does this for you.

}

catch (SqlException e)

{

Console.WriteLine(e.Message);

}

finally

{

if (sqlConn != null && sqlConn.State !=

ConnectionState.Closed)

{

sqlConn.Dispose();

}

}

}

}

Second Example

using System;

public class excepation

{

public double num1, num2,result;

public void add()

{

try

{

Console.WriteLine("enter your number");

num1 = Convert.ToInt32(Console.ReadLine());

num2 = Convert.ToInt32(Console.ReadLine());

result = num1/num2;

}

catch(DivideByZeroException e) //FormatException

{

Console.WriteLine("{0}",e.Message);

}

catch(FormatException ex)

44

Re-throwing exceptions

{

Console.WriteLine("{0}",ex.Message);

}

finally

{

Console.WriteLine("turn over");

}

}

public void display()

{

Console.WriteLine("The Result is: {0}",result);

}

public static void Main()

{

excepation ex = new excepation();

ex.add();

ex.display();

}

}

Notice that the SqlConnection object is declared outside of the try/catch/finally. The
reason is that anything declared in the try/catch cannot be seen by the finally. By
declaring it in the previous scope, the finally block is able to access it.

2.30.3 try/finally

The try/finally block allows you to do the same as above, but instead errors that are
thrown are dealt with by the catch (if possible) and then thrown up the call stack.

class ExceptionTest

{

public static void Main(string[] args)

{

SqlConnection sqlConn = null;

try

{

SqlConnection sqlConn = new SqlConnection (

/*Connection here*/);

sqlConn.Open();

// Various DB bits

}

finally

{

if (sqlConn != null && sqlConn.State !=

ConnectionState.Closed)

{

sqlConn.Dispose();

}

}

}

}

2.31 Re-throwing exceptions

Sometimes it is better to throw the error up the call stack for two reasons.

1. It is not something you would expect to happen.

45

Language Basics

2. You are placing extra information into the exception, to help diagnosis.

2.31.1 How not to throw exceptions

Some developers write empty try/catch statements like this:

try

{

// Do something

}

catch (Exception ex)

{

// Ignore this here

}

This approach is not recommended. You are swallowing the error and continuing on. If this
exception was an OutOfMemoryException or a NullReferenceException, it would not be
wise to continue. Therefore you should always catch what you would expect to occur, and
throw everything else.

Below is another example of how to incorrectly catch exceptions

/* Read the config file, and return the integer value. If it does not

exist, then this is a problem! */

try

{

string value = ConfigurationManager.AppSettings["Timeout"];

if (value == null)

throw new ConfigurationErrorsException("Timeout value is not

in the configuration file.");

}

catch (Exception ex)

{

// Do nothing!

}

As you can see, the ConfigurationErrorsException will be caught by the catch

(Exception) block, but it is being ignored completely! This is bad programming as
you are ignoring the error.

Some developers believe you should also use:

try

{

..

}

catch (Exception ex)

{

throw ex;

}

This is incorrect. What is happening is that the CLR will now think that the throw ex;

statement is the source of the problem, when the problem is actually in the try section.
Therefore never re-throw in this way.

46

Re-throwing exceptions

2.31.2 How to catch exceptions

A better approach would be:

/* Read the config file, and return the integer value. If it does not

exist, then this is a problem! */

try

{

string value = ConfigurationManager.AppSettings["Timeout"];

if (value == null)

throw new ConfigurationErrorsException("Timeout value is not

in the configuration file.");

}

catch (Exception ex)

{

throw; // <-- Throw the existing problem!

}

The throw; keyword means preserve the exception information and throw it up the call
stack.

2.31.3 Extra information within exceptions

An alternative is to give extra information (maybe local variable information) in addition
to the exception. In this case, you wrap the exception within another. You usually use an
exception that is as specific to the problem as possible, or create your own, if you cannot find
out that is not specific enough (or if there is extra information you would wish to include).

public OrderItem LoadItem(string itemNumber)

{

DataTable dt = null;

try

{

if (itemNumber == null)

throw new ArgumentNullException("Item Number cannot be

null","itemNumber");

DataTable dt = DataAccess.OrderItem.Load(itemNumber);

if (dt.Rows == 0)

return null;

else if (dt.Rows > 1)

throw new DuplicateDataException("Multiple items map

to this item.",itemNumber, dt);

OrderItem item =

OrderItem.CreateInstanceFromDataRow(dt.Rows[0]);

if (item == null)

throw new ErrorLoadingException("Error loading Item " +

itemNumber, itemNumber, dt.Rows[0]);

}

catch (DuplicateDataException dde)

{

throw new ErrorLoadingException("OrderItem.LoadItem failed

with Item " +

47

Language Basics

itemNumber, dde); // <-- Include dde (as the InnerException)

parameter

}

catch (Exception ex)

{

throw; // <-- We aren‚t expecting any other problems, so

throw them if they occur.

}

}

2.31.4 References

48

3 Classes

Namespaces are used to provide a "named space" in which your application resides. They're
used especially to provide the C# compiler a context for all the named information in your
program, such as variable names. Without namespaces, you wouldn't be able to make, e.g.,
a class named Console, as .NET already uses one in its System namespace. The purpose of
namespaces is to solve this problem, and release thousands of names defined in the .NET
Framework for your applications to use, along with making it so your application doesn't
occupy names for other applications, if your application is intended to be used in conjunction
with another. So namespaces exist to resolve ambiguities a compiler wouldn't otherwise be
able to do.

Namespaces are easily defined in this way:

namespace MyApplication

{

// The content to reside in the MyApplication namespace is

placed here.

}

There is an entire hierarchy of namespaces provided to you by the .NET Framework, with the
System namespace usually being by far the most commonly seen one. Data in a namespace
is referred to by using the . operator, such as:

System.Console.WriteLine("Hello, World!");

This will call the WriteLine method that is a member of the Console class within the
System namespace.

By using the using keyword, you explicitly tell the compiler that you'll be using a certain
namespace in your program. Since the compiler would then know that, it no longer requires
you to type the namespace name(s) for such declared namespaces, as you told it which
namespaces it should look in, if it couldn't find the data in your application.

So one can then type like this:

using System;

namespace MyApplication

{

class MyClass

{

void ShowGreeting()

{

Console.WriteLine("Hello, World!"); // note how System is

now not required

}

}

}

49

Classes

Namespaces are global, so a namespace in one C# source file, and another with the same
name in another source file, will cause the compiler to treat the different named information
in these two source files as residing in the same namespace.

3.1 Nested namespaces

Normally, your entire application resides under its own special namespace, often named after
your application or project name. Sometimes, companies with an entire product series decide
to use nested namespaces though, where the "root" namespace can share the name of the
company, and the nested namespaces the respective project names. This can be especially
convenient, if you're a developer who has made a library with some usual functionality
that can be shared across programs. If both the library and your program shared a parent
namespace, that one would then not have to be explicitly declared with the using keyword,
and still not have to be completely typed out. If your code was open for others to use,
third party developers that may use your code would additionally then see that the same
company had developed the library and the program. The developer of the library and
program would finally also separate all the named information in their product source codes,
for fewer headaches especially, if common names are used.

To make your application reside in a nested namespace, you can show this in two ways.
Either like this:

namespace CodeWorks

{

namespace MyApplication

{

// Do stuff

}

}

... or like this:

namespace CodeWorks.MyApplication

{

// Do stuff

}

Both methods are accepted, and are identical in what they do.

1

As in other object-oriented programming languages, the functionality of a C# program is
implemented in one or more classes. The methods and properties of a class contain the code
that defines how the class behaves.

1 http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming

50

http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming

Nested namespaces

C# classes support information hiding2 by encapsulating3 functionality in properties and
methods and by enabling several types of polymorphism4, including subtyping polymorphism
via inheritance5 and parametric polymorphism via generics6.

Several types of C# classes can be defined, including instance classes (standard classes that
can be instantiated), static classes, and structures.

Classes are defined using the keyword class followed by an identifier to name the class.
Instances of the class can then be created with the new keyword followed by the name of
the class.

The code below defines a class called Employee with properties Name and Age and with
empty methods GetPayCheck() and Work(). It also defines a Sample class that instantiates
and uses the Employee class:

public class Employee

{

private int _Age;

private string _Name;

public int Age

{

get { return _Age; }

set { _Age = value; }

}

public string Name

{

get { return _Name; }

set { _Name = value; }

}

public void GetPayCheck()

{

}

public void Work()

{

}

}

public class Sample

{

public static void Main()

{

Employee marissa = new Employee();

marissa.Work();

marissa.GetPayCheck();

}

}

2 http://en.wikipedia.org/wiki/information%20hiding

3 Chapter 3.14.2 on page 67
4 http://en.wikipedia.org/wiki/polymorphism%20%28computer%20science%29

5 Chapter 4 on page 73
6 http://en.wikipedia.org/wiki/generic%20programming

51

http://en.wikipedia.org/wiki/information%20hiding
http://en.wikipedia.org/wiki/polymorphism%20%28computer%20science%29
http://en.wikipedia.org/wiki/generic%20programming

Classes

3.2 Methods

C# methods are class members containing code. They may have a return value and a list
of parameters7, as well as a generic type declaration. Like fields, methods can be static
(associated with and accessed through the class) or instance (associated with and accessed
through an object instance of the class).

3.3 Constructors of classes

A class's constructors control its initialization. A constructor's code executes to initialize an
instance of the class when a program requests a new object of the class's type. Constructors
often set properties of their classes, but they are not restricted to doing so.

Like other methods, a constructor can have parameters. To create an object using a
constructor with parameters, the new command accepts parameters. The code below defines
and then instantiates multiple objects of the Employee class, once using the constructor
without parameters and once using the version with a parameter:

public class Employee

{

public Employee()

{

System.Console.WriteLine("Constructed without parameters");

}

public Employee(string strText)

{

System.Console.WriteLine(strText);

}

}

public class Sample

{

public static void Main()

{

System.Console.WriteLine("Start");

Employee Alfred = new Employee();

Employee Billy = new Employee("Parameter for construction");

System.Console.WriteLine("End");

}

}

Output:

Start

Constructed without parameters

Parameter for construction

End

Constructors can call each other:

7 Chapter 2.8.3 on page 17

52

Finalizers (Destructors)

public class Employee

{

public Employee(string strText, int iNumber)

{

...

}

public Employee(string strText)

: this(strText, 1234) // calls the above constructor with

user-specified text and the default number

{ }

public Employee()

: this("default text") // calls the above constructor with

the default text

{ }

}

3.4 Finalizers (Destructors)

The opposite of constructors, finalizers define the final behavior of an object and execute
when the object is no longer in use. Although they are often used in C++ to free resources
reserved by an object, they are less frequently used in C# due to the .NET Framework
Garbage Collector. An object's finalizer, which takes no parameters, is called sometime
after an object is no longer referenced, but the complexities of garbage collection make the
specific timing of finalizers uncertain.

public class Employee

{

public Employee(string strText)

{

System.Console.WriteLine(strText);

}

˜Employee()

{

System.Console.WriteLine("Finalized!");

}

public static void Main()

{

Employee marissa = new Employee("Constructed!");

marissa = null;

}

}

Output:

Constructed!

Finalized!

53

Classes

3.5 Properties

C# properties are class members that expose functionality of methods using the syntax of
fields. They simplify the syntax of calling traditional get and set methods (a.k.a. accessor
methods). Like methods, they can be static or instance.

Properties are defined in the following way:

public class MyClass

{

private int m_iField = 3; // Sets integerField with a default value of 3

public int IntegerField

{

get

{

return m_iField; // get returns the field you specify when

this property is assigned

}

set

{

m_iField = value; // set assigns the value assigned to the

property of the field you specify

}

}

}

An even shorter way for getter/setter methods are accessors that do both in one line:

class Culture

{

public int TalkedCountries { get; set; }

public string Language { get; set; }

}

class InterculturalDialogue

{

Culture culture;

culture.Language = "Italian"; // ==>

culture.SetLanguage("Italian");

string strThisLanguage = culture.Language; // ==> ... =

culture.GetLanguage();

}

The code is equivalent to a GetLanguage and SetLanguage method definition, but without
having to define these methods. The user can directly access the member, if it is not private,
of course.

The C# keyword value contains the value assigned to the property. After a property is
defined it can be used like a variable. If you were to write some additional code in the get
and set portions of the property it would work like a method and allow you to manipulate
the data before it is read or written to the variable.

public class MyProgram

{

MyClass myClass = new MyClass;

Console.WriteLine(myClass.IntegerField); // Writes 3 to the

54

Indexers

command line.

myClass.IntegerField = 7; // Indirectly assigns 7 to the field

myClass.m_iField

}

Using properties in this way provides a clean, easy to use mechanism for protecting data.

3.6 Indexers

C# indexers are class members that define the behavior of the array access operation (e.g.
list[0] to access the first element of list even when list is not an array).

To create an indexer, use the this keyword as in the following example:

public string this[string strKey]

{

get { return coll[strKey]; }

set { coll[strKey] = value; }

}

This code will create a string indexer that returns a string value. For example, if the class
was EmployeeCollection, you could write code similar to the following:

EmployeeCollection e = new EmployeeCollection();

.

.

.

string s = e["Jones"];

e["Smith"] = "xxx";

3.7 Events

C# events are class members that expose notifications to clients of the class. Events are
only getting fired and never assigned.

using System;

// Note: You need to know some about delegate, properties and methods

to understand this sample

namespace EventSample

{

/// <summary>

/// This delegate defines the signature of the appropriate method

/// </summary>

public delegate void ContractHandler(Employee sender);

/// <summary>

/// Employee class

/// </summary>

public class Employee

{

/// <summary>

/// Field for the info whether or not the Employee is

55

Classes

engaged

/// </summary>

private bool m_bIsEngaged = false;

/// <summary>

/// Age of the employee

/// </summary>

private int m_iAge = -1;

/// <summary>

/// Name of the employee

/// </summary>

private String m_strName = null;

/// <summary>

/// *** The our event ***

/// Is a collection of methods that will be called when it

fires

/// </summary>

public event ContractHandler Engaged;

/// <summary>

/// Standard constructor

/// </summary>

public Employee()

{

// Here, we are adding a new method with appropriate

signature (defined by delegate)

// note: when a event not have any method and it was

fired, it causes a exception!

// for all effects when programming with events,

assign one private method to event

// or simply do a verification before fire it! -->

if (event != null)

this.Engaged += new ContractHandler(this.OnEngaged);

}

/// <summary>

/// Event handler for the "engaged" event

/// </summary>

/// <param name="sender">

/// Sender object

/// </param>

private void OnEngaged(Employee sender)

{

Console.WriteLine("private void OnEngaged was called!

this employee is engaged now!");

}

/// <summary>

/// Accessor for the employee name

/// </summary>

public string Name

{

get

{

return m_strName;

}

set

{

m_strName = value;

}

}

/// <summary>

/// Accessor for the employee age

/// </summary>

public int Age

{

56

Events

get

{

return m_iAge;

}

set

{

m_iAge = value;

}

}

/// <summary>

/// Accessor for the information about Employee

engagement

/// </summary>

public bool IsEngaged

{

get

{

return m_bIsEngaged;

}

set

{

if (m_bIsEngaged == false && value == true)

{

// here we fires event (call all the methods that

it have)

// all times when IsEngaged is false and set to

true;

Engaged(this);

}

m_bIsEngaged = value;

}

}

}

/// <summary>

/// Class for the entry point

/// </summary>

public class EntryPointClass

{

static void Main(string[] a_strArgs)

{

Employee simpleEmployee = new Employee();

simpleEmployee.Age = 18;

simpleEmployee.Name = "Samanta Rock";

// Here...

// This is saying when the event fire, the method added

to event are called too.

// note that we cannot use =

// is only += to add methods to event or -= do retire a

event

simpleEmployee.Engaged += new

ContractHandler(SimpleEmployee_Engaged);

// make attention here...

// when I assign true to this property,

// the event Engaged will be called

// when event is called, all method that it have, are

called!

simpleEmployee.IsEngaged = true;

Console.ReadLine();

57

Classes

return;

}

/// <summary>

/// Event handler for the registered "engaged" event

/// </summary>

/// <param name="sender">

/// Event sender

/// </param>

static void SimpleEmployee_Engaged(Employee sender)

{

Console.WriteLine("The employee {0} is happy!",

sender.Name);

}

}

}

See also here8 for details.

3.8 Operator overloading

C# operator definitions are class members that define or redefine the behavior of basic
C# operators (called implicitly or explicitly) on instances of the class:

public class Complex

{

private double m_dReal, m_dImaginary;

public double Real

{

get { return m_dReal; }

set { m_dReal = value; }

}

public double Imaginary

{

get { return m_dImaginary; }

set { m_dImaginary = value; }

}

// binary operator overloading

public static Complex operator +(Complex c1, Complex c2)

{

return new Complex() { Real = c1.Real + c2.Real, Imaginary =

c1.Imaginary + c2.Imaginary };

}

// unary operator overloading

public static Complex operator -(Complex c)

{

return new Complex() { Real = -c.Real, Imaginary =

-c.Imaginary };

}

// cast operator overloading (both implicit and explicit)

public static implicit operator double(Complex c)

{

// return the modulus - sqrt(x^2 + y^2)

return Math.Sqrt(Math.Pow(c.Real, 2) + Math.Pow(c.Imaginary,

2));

8 Chapter 4.11 on page 83

58

Structures

}

public static explicit operator string(Complex c)

{

// we should be overloading the ToString() method, but this

is just a demonstration

return c.Real.ToString() + " + " + c.Imaginary.ToString() +

"i";

}

}

public class StaticDemo

{

public static void Main()

{

Complex number1 = new Complex() { Real = 1, Imaginary = 2 };

Complex number2 = new Complex() { Real = 4, Imaginary = 10 };

Complex number3 = number1 + number2; // number3 now has Real

= 5, Imaginary = 12

number3 = -number3; // number3 now has Real = -5, Imaginary =

-12

double testNumber = number3; // testNumber will be set to the

absolute value of number3

Console.WriteLine((string)number3); // This will print "-5 +

-12i".

// The cast to string was needed because that was an explicit

cast operator.

}

}

3.9 Structures

Structures, or structs, are defined with the struct keyword followed by an identifier to name
the structure. They are similar to classes, but have subtle differences. Structs are used
as lightweight versions of classes that can help reduce memory management efforts when
working with small data structures. In most situations, however, using a standard class is a
better choice.

The principal difference between structs and classes is that instances of structs are values
whereas instances of classes are references. Thus when you pass a struct to a function by
value you get a copy of the object so changes to it are not reflected in the original because
there are now two distinct objects but if you pass an instance of a class by reference then
there is only one instance.

The Employee structure below declares a public and a private field. Access to the private

field is granted through the public property9 Name:

struct Employee

{

public int m_iAge;

private string m_strName;

public string Name

{

get { return m_strName; }

9 Chapter 3.14.2 on page 67

59

Classes

set { m_strName = value; }

}

}

Since C# 2.0, is possible to have arrays10 inside structures, but only in unsafe contexts:

struct data

{

int header;

fixed int values[10];

}

The array is accessed using pointer arithmetic. Values are treat arrayed values as if they
were C-style arrays using indexing, etc.

3.9.1 Structure constructors

Structures need constructors - or better to say initialisers, as they do not construct but
just initialise the memory11 - so that their contents are not left uninitialised. Therefore,
constructors without parametres are not allowed.

Structure variables can be assigned one to another if and only if the structure variable on
the right side of the assignment are all initialised.13

struct Timestamp

{

private ushort m_usYear;

private ushort m_usMonth;

private ushort m_usDayOfMonth;

private ushort m_usHour;

private ushort m_usMinute;

private ushort m_usSecond;

public Timestamp(ushort usYear,

ushort usMonth,

ushort usDay,

ushort usHour,

ushort usMinute,

ushort usSecond)

{

m_usYear = usYear - 1900;

m_usMonth = usMonth;

m_usDay = usDay;

m_usHour = usHour;

m_usMinute = usMinute;

m_usSecond = usSecond;

}

}

10 Chapter 2.9.4 on page 21

11 Structure constructors 12. MSDN . Retrieved 2012-04-12 http://

13 Microsoft® Visual C#® 2005 Step by Step / Copying Structure Variables 14. Google Books . Retrieved
2012-04-12 http://

60

http://
http://

Static classes

3.10 Static classes

Static classes are commonly used to implement a Singleton Pattern15. All of the methods,
properties, and fields of a static class are also static (like the WriteLine() method of
the System.Console class) and can thus be used without instantiating the static class:

public static class Writer

{

public static void Write()

{

System.Console.WriteLine("Text");

}

}

public class Sample

{

public static void Main()

{

Writer.Write();

}

}

3.11 References

16

3.12 Introduction

The .NET framework consists of several languages, all which follow the "object orientated
programming" (OOP) approach to software development. This standard defines that all
objects support

• Inheritance - the ability to inherit and extend existing functionality.
• Encapsulation - the ability to allow the user to only see specific parts, and to interact

with it in specific ways.
• Polymorphism - the ability for an object to be assigned dynamically, but with some

predictability as to what can be done with the object.

Objects are synonymous with objects in the real world. Think of any object and think of
how it looks and how it is measured and interacted with. When creating OOP languages,
the reasoning was that if it mimics the thought process of humans, it would simplify the
coding experience.

For example, let's consider a chair, and its dimensions, weight, colour and what is it made
out of. In .NET, these values are called "Properties". These are values that define the

15 http://en.wikibooks.org/wiki/Computer%20Science%20Design%20Patterns%23Singleton

16 http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming

61

http://en.wikibooks.org/wiki/Computer%20Science%20Design%20Patterns%23Singleton
http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming

Classes

object's state. Be careful, as there are two ways to expose values: Fields and Properties.
The recommended approach is expose Properties and not fields.

So we have a real-world idea of the concept of an object. In terms of practicality for a
computer to pass information about, passing around an object within a program would
consume a lot of resources. Think of a car, how many properties that has - 100's, 1000's. A
computer passing this information about all the time will waste memory, processing time
and therefore a bad idea to use. So objects come in two flavours:

• Reference types
• Value types

3.13 Reference and Value Types

A reference type is like a pointer to the value. Think of it like a piece of paper with a street
address on it, and the address leads to your house - your object with hundreds of properties.
If you want to find it, go to where the address says! This is exactly what happens inside
the computer. The reference is stored as a number, corresponding to somewhere in memory
where the object exists. So instead of moving an object around - like building a replica
house every time you want to look at it - you just look at the original.

A value type is the exact value itself. Values are great for storing small amounts of
information: numbers, dates etc.

There are differences in the way they are processed, so we will leave that until a little later
in the article.

As well as querying values, we need a way to interact with the object so that some operation
can be performed. Think of files - it's all well and good knowing the length of the file,
but how about Read()'ing it? Therefore, we can use something called methods as a way of
performing actions on an object.

An example would be a rectangle. The properties of a rectangle are:

• Length

• Width

The "functions" (or methods in .NET) would be:

• Area (= Length*Width)
• Perimeter (= 2*Length + 2*Width)

Methods vary from Properties because they require some transformation of data to achieve
a result. Methods can either return a result (such as Area) or not. Like above with the
chair, if you Sit() on the chair, there is no expected reaction, the chair just ... works!

3.13.1 System.Object

To support the first rule of OOP - Inheritance, we define something that all objects will
derive from - this is System.Object, also known as Object or object. This object defines
some methods that all objects can use should they need to. These methods include:

62

Object basics

• GetHashCode() - retrieve a number unique to that object.
• GetType() - retrieves information about the object like method names, the objects name

etc.
• ToString() - convert the object to a textual representation - usually for outputting to

the screen or file.

Since all objects derive from this class (whether you define it or not), any class will have these three

methods ready to use. Since we always inherit from System.Object, or a class that itself inherits

from System.Object, we therefore enhance and/or extend its functionality. Like in the real world

that humans, cats, dogs, birds, fish are all an improved and specialised version of an "organism".

3.14 Object basics

All objects by default are reference types. To support value types, objects must instead
inherit from the System.ValueType abstract class, rather than System.Object.

3.14.1 Constructors

When objects are created, they are initialized by the "constructor". The constructor sets
up the object, ready for use. Because objects need to be created before being used, the
constructor is created implicitly, unless it is defined differently by the developer. There are
3 types of constructor:

• Copy Constructor
• Static Constructor
• Default constructor - takes no parameters.
• Overloaded constructor - takes parameters.

Overloaded constructors automatically remove the implicit default constructor, so a developer
must explicitly define the default constructor, if they want to use it.

A constructor is a special type of method in C# that allows an object to initialize itself
when it is created. If a constructor method is used, there is no need to write a separate
method to assign initial values to the data members of an object.

Important characteristics of a constructor method:

1. A constructor method has the same name as the class itself.
2. A constructor method is usually declared as public.
3. Constructor method is declared as public because it is used to create objects from

outside the class in which it is declared. We can also declare a constructor method as
private, but then such a constructor cannot be used to create objects.

4. Constructor methods do not have a return type (not even void).
5. C# provides a default constructor to every class. This default constructor initializes

the data members to zero. But if we write our own constructor method, then the
default constructor is not used.

6. A constructor method is used to assign initial values to the member variables.
7. The constructor is called by the new keyword when an object is created.

63

Classes

8. We can define more than one constructor in a class. This is known as constructor
overloading. All the constructor methods have the same name, but their signatures
are different, i.e., number and type of parameters are different.

9. If a constructor is declared, no default constructor is generated.

Copy Constructor

A copy constructor creates an object by copying variables from another object. The copy
constructor is called by creating an object of the required type and passing it the object to
be copied.

In the following example, we pass a Rectangle object to the Rectangle constructor so that
the new object has the same values as the old object.

using System;

namespace CopyConstructor

{

class Rectangle

{

public int length;

public int breadth;

public Rectangle(int x, int y) // constructor fn

{

length = x;

breadth = y;

}

public Rectangle(Rectangle r)

{

length = r.length;

breadth = r.breadth;

}

public void display()

{

Console.WriteLine("Length = " + length);

Console.WriteLine("Breadth = " + breadth);

}

} // end of class Rectangle

class Program

{

public static void Main()

{

Rectangle r1 = new Rectangle(5, 10);

Console.WriteLine("Values of first object");

r1.display();

Rectangle r2 = new Rectangle(r1);

Console.WriteLine("Values of second object");

r2.display();

Console.ReadLine();

}

}

}

64

Object basics

Static Constructor

A static constructor is first called when the runtime first accesses the class. Static variables
are accessible at all times, so the runtime must initialize it on its first access. The example
below, when stepping through in a debugger, will show that static MyClass() is only
accessed when the MyClass.Number variable is accessed.

C# supports two types of constructors: static constructor and instance constructor. Whereas
an instance constructor is called every time an object of that class is created, the static
constructor is called only once. A static constructor is called before any object of the class
is created, and is usually used to initialize any static data members of a class.

A static constructor is declared by using the keyword static in the constructor definition.
This constructor cannot have any parameters or access modifiers. In addition, a class can
only have one static constructor. For example:

using System;

using System.Collections.Generic;

using System.Text;

namespace StaticConstructors

{

class Program

{

static void Main(string[] args)

{

int i = 0;

int j = 0;

Console.WriteLine("Static Number = " + MyClass.Number);

}

}

class MyClass

{

private static int _number;

public static int Number { get { return _number; } }

static MyClass()

{

Random r = new Random();

_number = r.Next();

}

}

}

Default Constructor

The default constructor takes no parameters and is implicitly defined, if no other constructors
exist. The code sample below show the before, and after result of creating a class.

// Created by the developer

class MyClass

{

}

// Created by the compiler

class MyClass : System.Object

{

public MyClass() : base()

{

65

Classes

}

}

Overloaded Constructors

To initialize objects in various forms, the constructors allow customization of the object by
passing in parameters.

class MyClass

{

private int _number;

public int Number { get { return _number; } }

public MyClass()

{

Random randomNumber = new Random();

_number = randomNumber.Next();

}

public MyClass(int seed)

{

Random randomNumber = new Random(seed);

_number = randomNumber.Next();

}

}

Calling other constructors

To minimise code, if another constructor implements the functionality better, you can instruct
the constructor to call an overloaded (or default) constructor with specific parameters.

class MyClass

{

private int _number;

public int Number { get { return _number; } }

public MyClass() :

this (DateTime.Now.Milliseconds) // Call the other

constructor passing in a value.

{

}

public MyClass(int seed)

{

Random r = new Random(seed);

_number = r.Next();

}

}

Base classes constructors can also be called instead of constructors in the current instance

class MyException : Exception

{

private int _number;

public int Number { get { return _number; } }

public MyException (int errorNumber, string message,

Exception innerException)

66

Object basics

: base(message, innerException)

{

_number = errorNumber;

}

}

3.14.2 Destructors

As well as being "constructed", objects can also perform cleanup when they are cleared up
by the garbage collector. As with constructors, the destructor also uses the same name as
the class, but is preceded by the tilde (˜) sign. However, the garbage collector only runs
when either directly invoked, or has reason to reclaim memory, therefore the destructor may
not get the chance to clean up resources for a long time. In this case, look into use of the
Dispose() method, from the IDisposable interface.

Destructors are recognised via the use of the ˜ symbol in front of a constructor with no
access modifier. For example:

class MyException : Exception

{

private int _number;

public int Number { get { return _number; } }

public MyException (int errorNumber, string message,

Exception innerException)

: base(message, innerException)

{

_number = errorNumber;

}

~MyException()

{

}

}

Encapsulation is depriving the user of a class of information he does not need, and preventing
him from manipulating objects in ways not intended by the designer.

A class element having public protection level is accessible to all code anywhere in the
program. These methods and properties represent the operations allowed on the class to
outside users.

Methods, data members (and other elements) with private protection level represent the
internal state of the class (for variables), and operations that are not allowed to outside
users. The private protection level is default for all class and struct members. This means
that if you do not specify the protection modifier of a method or variable, it is considered as
private by the compiler.

For example:

public class Frog

{

private int _height = 0;

// Methods

public void JumpLow() { Jump(1); }

public void JumpHigh() { Jump(10); }

67

Classes

void Jump(int height) { _height += height; }

}

In this example, the public method the Frog class exposes are JumpLow and JumpHigh.
Internally, they are implemented using the private Jump function that can jump to any
height. This operation is not visible to an outside user, so they cannot make the frog jump
100 meters, only 10 or 1. The Jump private method is implemented by changing the value of
a private data member _height, which is also not visible to an outside user. Some private
data members are made visible by Properties17.

3.15 Protection Levels

3.15.1 Private

Private members are only accessible within the class itself. A method in another class,
even a class derived from the class with private members cannot access the members. If no
protection level is specified, class members will default to private.

namespace PrivateSample

{

public class Person

{

private string _name;

// Methods

public Person(string name)

{

// Private members can only be modified by the internal

methods or constructors of class

this._name = name;

}

}

public class Entry

{

static void Main(string[] args)

{

Person OnePerson = new Person("Samanta");

//OnePerson._name = "Sam"; // This causes a error of

access level

}

}

}

3.15.2 Protected

Protected members can be accessed by the class itself and by any class derived from that
class.

namespace ProtectedSample

17 Chapter 3.5 on page 54

68

Protection Levels

{

public class Person

{

protected string _name;

}

/// <summary>

/// When a class inherits from other class, it can access your

protected and public members

/// above your created members

/// </summary>

public class Warrior : Person

{

public void SetName(string name)

{

// Protected members can be accessed by internal methods

or constructors of class

// so, it can be accessed by inherit class too

base._name = name;

}

}

public class Entry

{

static void Main(string[] args)

{

Warrior OnePerson = new Warrior();

OnePerson.SetName("Glades"); // OK

// OnePerson._name = "Sam"; // This causes a error of

access level too

// protected members can not be accessed by external

scopes

}

}

}

3.15.3 Public

Public members can be accessed by any method in any class.

namespace PublicSample

{

public class Person

{

public string Name;

}

public class Entry

{

static void Main(string[] args)

{

Person BeautifulPerson = new Person();

BeautifulPerson.Name = "Debora"; // OK, public member can

be accessed by other scopes

}

}

}

It is good programming practice not to expose member variables to the outside, unless it is
necessary. This is true especially for fields that should only be accessible over accessor18

18 http://en.wikibooks.org/wiki/%3Aw%3AAccessor%20method

69

http://en.wikibooks.org/wiki/%3Aw%3AAccessor%20method

Classes

and mutator method19s (getters and setters). Exceptions are member variables that are
constant.

3.15.4 Internal

Internal members are accessible only in the same assembly and invisible outside it. If no
protection level is specified for top level classes, they are treated as internal, and can only
be accessed within the assembly.

namespace InternalSample

{

public class Person

{

internal string Name;

}

public class Entry

{

static void Main(string[] args)

{

Person BeautifulPerson = new Person();

BeautifulPerson.Name = "Debora"; // OK, internal member

can be accessed by other

// scopes in same assembly supposing that Person is in

another assembly, by example a

// library, the name cannot be accessed. In another

assembly source, this causes an error:

// BeautifulPerson.Name = "Debora"; // Cannot access

internal member

}

}

}

3.15.5 Protected Internal

Protected internal members are accessible from any class derived from the that class, or any
class within the same assembly. So, it means protected or internal.20

Here, an example:

namespace InternalSample

{

public class Person

{

protected internal string Name;

}

public class Entry

{

static void Main(string[] args)

{

Person BeautifulPerson = new Person();

BeautifulPerson.Name = "Debora"; // As above...

}

}

19 http://en.wikibooks.org/wiki/%3Aw%3AMutator%20method

20 Type Member Access Modifiers 21. C# STATION . Retrieved 2011-08-12 http://

70

http://en.wikibooks.org/wiki/%3Aw%3AMutator%20method
http://

References

}

public class Book : InternalSample.Person

{

static void Main(string[] args)

{

string aName = BeautifulPerson.Name; // Can be accessed, as

Book is derived from Person

}

}

3.16 References

71

4 Advanced Concepts

4.1 Inheritance

Inheritance is the ability to create a class from another class, the "parent" class, extending
the functionality and state of the parent in the derived, or "child" class. It allows derived
classes to overload methods from their parent class.

Inheritance is one of the pillars of object-orientation. It is the mechanism of designing one
class from another and is one of the ideas for code reusability, supporting the concept of
hierarchical classification. C# programs consist of classes, where new classes can either be
created from scratch or by using some or all properties of an existing class.

Another feature related to inheritance and reusability of code is polymorphism, which
permits the same method name to be used for different operations on different data types.
Thus, C# supports code reusability by both features.

Important characteristics of inheritance include:

1. A derived class extends its base class. That is, it contains the methods and data of its
parent class, and it can also contain its own data members and methods.

2. The derived class cannot change the definition of an inherited member.
3. Constructors and destructors are not inherited. All other members of the base class

are inherited.
4. The accessibility of a member in the derived class depends upon its declared accessibility

in the base class.
5. A derived class can override an inherited member.

An example of inheritance:

using System;

using System.Text;

namespace ContainmentInheritance

{

class Room

{

public int length;

public int breadth;

public int height;

public string name;

public Room(int l, int b, int h)

{

length = l;

breadth = b;

height = h;

}

}

73

Advanced Concepts

class Home

{

int numberOfRooms;

int plotSize;

string locality;

// create an object of class Room inside class Home

Room studyRoom = new Room(10, 12, 12);

public Home()

{

numberOfRooms = 1;

plotSize = 1000;

locality = "Versova";

name = "study room";

}

public void Display()

{

Console.WriteLine("MyHome has {0} rooms", numberOfRooms);

Console.WriteLine("Plot size is {0}", plotSize);

Console.WriteLine("Locality is {0}", locality);

int area = studyRoom.length*studyRoom.breadth;

Console.WriteLine("Area of the {0} room is {1}", name,

area);

}

}

class Program

{

static void Main(string[] args)

{

Home myhome = new Home();

myhome.Display();

Console.ReadLine();

}

}

}

4.2 Subtyping Inheritance

The code sample below shows two classes, Employee and Executive. Employee has the
methods GetPayCheck and Work.

We want the Executive class to have the same methods, but differently implemented and
one extra method, AdministerEmployee.

Below is the creation of the first class to be derived from.

public class Employee

{

// We declare one method virtual so that the Executive class

can

// override it.

public virtual void GetPayCheck()

{

// Get paycheck logic here.

}

74

Virtual Methods

//Employee's and Executives both work, so no virtual here

needed.

public void Work()

{

// Do work logic here.

}

}

Now, we create an Executive class that will override the GetPayCheck method:

public class Executive : Employee

{

// The override keyword indicates we want new logic behind

the GetPayCheck method.

public override void GetPayCheck()

{

// New getpaycheck logic here.

}

// The extra method is implemented.

public void AdministerEmployee()

{

// Manage employee logic here

}

}

You'll notice that there is no Work method in the Executive class, as it is inherited from
Employee.

static void Main(string[] args)

{

Employee emp = new Employee();

Executive exec = new Executive();

emp.Work();

exec.Work();

emp.GetPayCheck();

exec.GetPayCheck();

exec.AdministerEmployee();

}

4.3 Virtual Methods

If a base class contains a virtual method that it calls elsewhere and a derived class overrides
that virtual method, the base class will actually call the derived class' method:

public class Resource : IDisposable

{

private bool _isClosed = false; // good programming practice

initialise, although default

protected virtual void Close()

{

Console.WriteLine("Base resource closer called!");

}

~Resource()

{

75

Advanced Concepts

Dispose();

}

public void Dispose()

{

if (!_isClosed)

{

Console.WriteLine("Disposing resource and calling the

Close() method...");

_isClosed = true;

Close();

}

}

}

public class AnotherTypeOfResource : Resource

{

protected override void Close()

{

Console.WriteLine("Another type of resource closer called!");

}

}

public class VirtualMethodDemo

{

public static void Main()

{

Resource res = new Resource();

AnotherTypeOfResource res2 = new AnotherTypeOfResource();

res.Dispose(); // Resource.Close() will be called.

res2.Dispose(); // Even though Dispose() is part of the

Resource class,

// the Resource class will call

AnotherTypeOfResource.Close()!

}

}

4.4 Constructors

A derived class does not automatically inherit the base class' constructors, and it cannot
be instantiated unless it provides its own. A derived class must call one of its base class'
constructors by using the base keyword:

public class MyBaseClass

{

public MyBaseClass(string text)

{

...

}

}

public class MyDerivedClass : MyBaseClass

{

public MyDerivedClass(int number)

: base(number.ToString())

{ }

public MyDerivedClass(string text) // even though this is exactly

the same as MyBaseClass‚

// only constructor, this is still necessary as constructors are

not inherited.

: base(text)

76

Inheritance keywords

{ }

}

4.5 Inheritance keywords

The way C# inherits from another class syntactically is by using the : operator.

Example:

public class Executive : Employee

To indicate a method that can be overridden, you mark the method with virtual.

public virtual void Write(string text)

{

System.Console.WriteLine("Text:{0}", text);

}

To override a method, use the override keyword:

public override void Write(string text)

{

System.Console.WriteLine(text);

}

A missing new or override keyword for a derived method may result in errors or warnings
during compilation.:1 Here an example:

abstract class ShapesA

{

abstract public int Area(); // abstract!

}

class Square : ShapesA

{

int x, y;

public int Area() // Error: missing ‚override‚ or ‚new‚

{

return x * y;

}

}

class Shapes

{

virtual public int Area() { return 0; } // it is virtual now!

}

class Square : Shapes

{

int x, y;

public int Area() // no explicit ‚override‚ or ‚new‚ required

{ return x * y; }

}

1 C# design: Why is new/override required on abstract methods but not on virtual methods? / Answer
2. eFreedom . Retrieved 2011-08-11 http://

77

http://

Advanced Concepts

The Square class method Area() will result in a compilation error, if it is derived from the
ShapesA class:

error CS0534: 'ConsoleApplication3.Square' does not implement

inherited abstract member

'ConsoleApplication3.Shapes.Area()'

The same method will result in a compilation warning, if derived from the normal Shapes

class:

warning CS0114: 'ConsoleApplication3.Square.Area()' hides inherited

member 'ConsoleApplication3.Shapes.Area()'.

To make the current member override that implementation, add the

override keyword. Otherwise add the new

keyword.

4.6 References

An INTERFACE in C# is a type definition similar to a class, except that it purely represents
a contract between an object and its user. It can neither be directly instantiated as an
object, nor can data members be defined. So, an interface is nothing but a collection of
method and property declarations. The following defines a simple interface:

interface IShape

{

double X { get; set; }

double Y { get; set; }

void Draw();

}

A CONVENTION used in the .NET Framework (and likewise by many C# programmers)
is to place an "I" at the beginning of an interface name to distinguish it from a class name.
Another common interface naming convention is used when an interface declares only one
key method, such as Draw() in the above example. The interface name is then formed
as an adjective by adding the "...able" suffix. So, the interface name above could also be
IDrawable. This convention is used throughout the .NET Framework.

Implementing an interface is simply done by inheriting off it and defining all the methods
and properties declared by the interface after that. For instance,

class Square : IShape

{

private double _mX, _mY;

public void Draw() { ... }

public double X

{

set { _mX = value; }

get { return _mX; }

}

78

Additional details

public double Y

{

set { _mY = value; }

get { return _mY; }

}

}

Although a class can inherit from one class only, it can inherit from any number of interfaces.
This is a simplified form of multiple inheritance supported by C#. When inheriting from a
class and one or more interfaces, the base class should be provided first in the inheritance
list, followed by any interfaces to be implemented. For example:

class MyClass : Class1, Interface1, Interface2 { ... }

Object references can be declared using an interface type. For instance, using the previous
examples,

class MyClass

{

static void Main()

{

IShape shape = new Square();

shape.Draw();

}

}

Interfaces can inherit off of any number of other interfaces, but cannot inherit from classes.
For example:

interface IRotateable

{

void Rotate(double theta);

}

interface IDrawable : IRotateable

{

void Draw();

}

4.7 Additional details

Access specifiers (i.e. private, internal, etc.) cannot be provided for interface members,
as all members are public by default. A class implementing an interface must define all
the members declared by the interface as public. The implementing class has the option of
making an implemented method virtual, if it is expected to be overridden in a child class.

There are no static methods within an interface, but any static methods can be implemented
in a class that manages objects using it.

In addition to methods and properties, interfaces can declare events and indexers as well.

For those familiar with Java, C#'s interfaces are extremely similar to Java's.

79

Advanced Concepts

Interfaces3

4.8 Introduction

Delegates and events are fundamental to any Windows or Web Application, allowing the
developer to "subscribe" to particular actions carried out by the user. Therefore, instead
of expecting everything and filtering out what you want, you choose what you want to be
notified of and react to that action.

A delegate is a way of telling C# which method to call when an event is triggered. For
example, if you click a Button on a form, the program would call a specific method. It is
this pointer that is a delegate. Delegates are good, as you can notify several methods that
an event has occurred, if you wish so.

An event is a notification by the .NET framework that an action has occurred. Each event
contains information about the specific event, e.g., a mouse click would say which mouse
button was clicked where on the form.

Let's say you write a program reacting only to a Button click. Here is the sequence of events
that occurs:

• User presses the mouse button down over a button
• The .NET framework raises a MouseDown event

• User releases the mouse button
• The .NET framework raises a MouseUp event
• The .NET framework raises a MouseClick event
• The .NET framework raises a Clicked event on the Button

Since the button's click event has been subscribed, the rest of the events are ignored by the
program and your delegate tells the .NET framework which method to call, now that the
event has been raised.

4.9 Delegates

Delegates form the basis of event handling in C#. They are a construct for abstracting and
creating objects that reference methods and can be used to call those methods. A delegate
declaration specifies a particular method signature. References to one or more methods can
be added to a delegate instance. The delegate instance can then be "called", which effectively
calls all the methods that have been added to the delegate instance. A simple example:

using System;

delegate void Procedure();

class DelegateDemo

{

public static void Method1()

{

3 http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming

80

http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming

Delegates

Console.WriteLine("Method 1");

}

public static void Method2()

{

Console.WriteLine("Method 2");

}

public void Method3()

{

Console.WriteLine("Method 3");

}

static void Main()

{

Procedure someProcs = null;

someProcs += new Procedure(DelegateDemo.Method1);

someProcs += new Procedure(Method2); // Example with omitted

class name

DelegateDemo demo = new DelegateDemo();

someProcs += new Procedure(demo.Method3);

someProcs();

}

}

In this example, the delegate is declared by the line delegate void Procedure(). This
statement is a complete abstraction. It does not result in executable code that does any
work, but merely declares a delegate type called Procedure that takes no arguments and
returns nothing. Next, in the Main() method, the statement Procedure someProcs = null;
instantiates a delegate. The assignment means that the delegate is not initially referencing
any methods. The statements someProcs += new Procedure(DelegateDemo.Method1)

and someProcs += new Procedure(Method2) add two static methods to the delegate
instance. Note that the class name can also be left off, as the statement is occurring inside
DelegateDemo. The statement someProcs += new Procedure(demo.Method3) adds a
non-static method to the delegate instance. For a non-static method, the method name
is preceded by an object reference. When the delegate instance is called, Method3() is
called on the object that was supplied when the method was added to the delegate instance.
Finally, the statement someProcs() calls the delegate instance. All the methods that were
added to the delegate instance are now called in the order that they were added.

Methods that have been added to a delegate instance can be removed with the -= operator:

someProcs -= new Procedure(DelegateDemo.Method1);

In C# 2.0, adding or removing a method reference to a delegate instance can be shortened
as follows:

someProcs += DelegateDemo.Method1;

someProcs -= DelegateDemo.Method1;

Invoking a delegate instance that presently contains no method references results in a
NullReferenceException.

81

Advanced Concepts

Note that, if a delegate declaration specifies a return type and multiple methods are added
to a delegate instance, an invocation of the delegate instance returns the return value of the
last method referenced. The return values of the other methods cannot be retrieved (unless
explicitly stored somewhere in addition to being returned).

4.10 Anonymous delegates

Anonymous delegates are a short way to write delegate code, specified using the delegate

keyword. The delegate code can also reference local variables of the function in which
they are declared. Anonymous delegates are automatically converted into methods by the
compiler. For example:

using System;

delegate void Procedure();

class DelegateDemo2

{

static Procedure someProcs = null;

private static void AddProc()

{

int variable = 100;

someProcs += new Procedure(delegate

{

Console.WriteLine(variable);

});

}

static void Main()

{

someProcs += new Procedure(delegate {

Console.WriteLine("test"); });

AddProc();

someProcs();

Console.ReadKey();

}

}

They can accept arguments just as normal methods can:

using System;

delegate void Procedure(string text);

class DelegateDemo3

{

static Procedure someProcs = null;

private static void AddProc()

{

int variable = 100;

someProcs += new Procedure(delegate(string text)

{

Console.WriteLine(text + ", " + variable.ToString());

});

}

static void Main()

{

82

Events

someProcs += new Procedure(delegate(string text) {

Console.WriteLine(text); });

AddProc();

someProcs("testing");

Console.ReadKey();

}

}

The output is:

testing

testing, 100

4.10.1 Lambda expressions

Lambda expressions are a clearer way to achieve the same thing as an anonymous delegate.
Its form is:

(type1 arg1, type2 arg2, ...) => expression

This is equivalent to:

delegate(type1 arg1, type2 arg2, ...)

{

return expression;

}

If there is only one argument, the parentheses can be omitted. The type names can also be
omitted to let the compiler infer the types from the context. In the following example, str

is a string, and the return type is an int:

Func<string, int> myFunc = str => int.Parse(str);

This is equivalent to:

Func<string, int> myFunc = delegate(string str)

{

return int.Parse(str);

};

4.11 Events

An event is a special kind of delegate that facilitates event-driven programming. Events are
class members that cannot be called outside of the class regardless of its access specifier. So,
for example, an event declared to be public would allow other classes the use of += and -=

on the event, but firing the event (i.e. invoking the delegate) is only allowed in the class
containing the event. A simple example:

83

Advanced Concepts

delegate void ButtonClickedHandler();

class Button

{

public event ButtonClickedHandler ButtonClicked;

public void SimulateClick()

{

if (ButtonClicked != null)

{

ButtonClicked();

}

}

...

}

A method in another class can then subscribe to the event by adding one of its methods to
the event delegate:

Button b = new Button();

b.ButtonClicked += MyHandler;

Even though the event is declared public, it cannot be directly fired anywhere except in the
class containing it.

Delegates and Events4

In general terms, an interface is the set of public members of a component. Of course, this
is also true for C# interface5. A C# class also defines an interface, as it has a set of public
members. A non-abstract C# class defines the implementation of each member.

In C#, it is possible to have a type that is intermediate between a pure interface that does
not define any implementation, and a type that defines a complete implementation. This
is called an abstract class and is defined by including the abstract keyword in the class
definition.

An abstract class is somewhere between a C# interface and a non-abstract class. Of the
public members defined by an abstract class, any number of those members may include an
implementation.

For example, an abstract class might provide an implementation for none of its members.

public abstract class AbstractShape

{

public abstract void Draw(Graphics g);

public abstract double X

4.12 Partial Classes

As the name indicates, partial class definitions can be split up across multiple physical files.
To the compiler, this does not make a difference, as all the fragments of the partial class are

4 http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming

5 Chapter 4.6 on page 78

84

http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming

Partial Classes

grouped and the compiler treats it as a single class. One common usage of partial classes is
the separation of automatically-generated code from programmer-written code.

Below is the example of a partial class.

Listing 1: Entire class definition in one file (file1.cs)

public class Node

{

public bool Delete()

{

}

public bool Create()

{

}

}

Listing 2: Class split across multiple files

(file1.cs)

public partial class Node

{

public bool Delete()

{

}

}

(file2.cs)

public partial class Node

{

public bool Create()

{

}

}

6

Generics are a new feature available since version 2.0 of the C# language and the common
language runtime (CLR). Generics introduce to the .NET Framework the concept of type
parameters, which make it possible to design classes and methods that defer the specification
of one or more types until the class or method is declared and instantiated by client code. The
most common use of generics is to create collection classes. Generic types were introduced
to maximize code reuse, type safety, and performance.7

6 http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming

7 Generics (C# Programming Guide) 8. msdn . Retrieved 2011-08-09

85

http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming

Advanced Concepts

4.13 Generic classes

There are cases when you need to create a class to manage objects of some type, without
modifying them. Without generics, the usual approach (highly simplified) to make such
class would be like this:

public class SomeObjectContainer

{

private object _obj;

public SomeObjectContainer(object obj)

{

this._obj = obj;

}

public object GetObject()

{

return this._obj;

}

}

And its usage would be:

class Program

{

static void Main(string[] args)

{

SomeObjectContainer container = new SomeObjectContainer(25);

SomeObjectContainer container2 = new SomeObjectContainer(5);

Console.WriteLine((int) container.GetObject() + (int)

container2.GetObject());

Console.ReadKey(); // wait for user to press any key, so we

could see results

}

}

Note that we have to cast back to original data type we have chosen (in this case - int)
every time we want to get an object from such a container. In such small programs like this,
everything is clear. But in more complicated cases with more containers in different parts of
the program, we would have to take care that the container is supposed to have int type in
it and no other data type, as in such a case, a InvalidCastException is thrown.

Additionally, if the original data type we have chosen is a value type, such as int, we will
incur a performance penalty every time we access the elements of the collection due to the
autoboxing9 feature of C#.

However, we could surround every unsafe area with a try - catch block, or we could create
a separate "container" for every data type we need just to avoid casting. While both ways
could work (and worked for many years), it is unnecessary now, because generics offers a
much more elegant solution.

To make our "container" class to support any object and avoid casting, we replace every
previous object type with some new name, in this case T, and add <T> mark immediately
after the class name to indicate that this T type is generic/any type.

9 http://en.wikibooks.org/wiki/%3Aw%3Aautoboxing

86

http://en.wikibooks.org/wiki/%3Aw%3Aautoboxing

Generic interfaces

Note: You can choose any name and use more than one generic type for class, i.e <genKey,

genVal>.

public class GenericObjectContainer<T>

{

private T _obj;

public GenericObjectContainer(T obj)

{

this._obj = obj;

}

public T getObject()

{

return this._obj;

}

}

Not a big difference, which results in simple and safe usage:

class Program

{

static void Main(string[] args)

{

GenericObjectContainer<int> container = new

GenericObjectContainer<int>(25);

GenericObjectContainer<int> container2 = new

GenericObjectContainer<int>(5);

Console.WriteLine(container.getObject() +

container2.getObject());

Console.ReadKey(); // wait for user to press any key, so we

could see results

}

}

Generics ensures that you specify the type for a "container" once, avoiding previously
mentioned problems and autoboxing for structs.

While this example is far from practical, it does illustrate some situations where generics
are useful:

• You need to keep objects of a single type in a class
• You do not need to modify objects
• You need to manipulate objects in some way
• You wish to store a "value type10" (such as int, short, string, or any custom struct) in

a collection class without incurring the performance penalty of autoboxing every time
you manipulate the stored elements.

4.14 Generic interfaces

A generic interface accepts one or more type parameters, similar to a generic class:

public interface IContainer<T>

{

10 Chapter 2.9 on page 17

87

Advanced Concepts

T GetObject();

void SetObject(T value);

}

public class StringContainer : IContainer<string>

{

private string _str;

public string GetObject()

{

return _str;

}

public void SetObject(string value)

{

_str = value;

}

}

public class FileWithString : IContainer<string>

{

...

}

class Program

{

static void Main(string[] args)

{

IContainer<string> container = new StringContainer();

container.SetObject("test");

Console.WriteLine(container.GetObject());

container = new FileWithString();

container.SetObject("another test");

Console.WriteLine(container.GetObject());

Console.ReadKey();

}

}

Generic interfaces are useful when multiple implementations of a particular class are possible.
For example, both the List<T> class (discussed below) and the LinkedList<T> class,
both from the System.Collections.Generic namespace, implement the IEnumerable<T>

interface. List<T> has a constructor that creates a new list based on an existing object that
implements IEnumerable<T>, and so we can write the following:

LinkedList<int> linkedList = new LinkedList<int>();

linkedList.AddLast(1);

linkedList.AddLast(2);

linkedList.AddLast(3);

// linkedList now contains 1, 2 and 3.

List<int> list = new List<int>(linkedList);

// now list contains 1, 2 and 3 as well!

4.15 Generic methods

Generic methods are very similar to generic classes and interfaces:

88

Type constraints

using System;

using System.Collections.Generic;

public static bool ArrayContains<T>(T[] array, T element)

{

foreach (T e in array)

{

if (e.Equals(element))

{

return true;

}

}

return false;

}

This method can be used to search any type of array:

using System;

using System.Collections.Generic;

class Program

{

static void Main(string[] args)

{

string[] strArray = { "string one", "string two", "string

three" };

int[] intArray = { 123, 456, 789 };

Console.WriteLine(ArrayContains<string>(strArray, "string

one")); // True

Console.WriteLine(ArrayContains<int>(intArray, 135)); //

False

}

}

4.16 Type constraints

One may specify one or more type constraints in any generic class, interface or method using
the where keyword. The following example shows all of the possible type constraints:

public class MyClass<T, U, V, W>

where T : class, // T should be a reference type (array,

class, delegate, interface)

new() // T should have a public constructor

with no parameters

where U : struct // U should be a value type (byte,

double, float, int, long, struct, uint, etc.)

where V : MyOtherClass, // V should be derived from MyOtherClass

IEnumerable<U> // V should implement IEnumerable<U>

where W : T, // W should be derived from T

IDisposable // W should implement IDisposable

{

...

}

These type constraints are often necessary to

1. create a new instance of a generic type (the new()) constraint
2. use foreach on a variable of a generic type (the IEnumerable<T> constraint)

89

Advanced Concepts

3. use using on a variable of a generic type (the IDisposable constraint)

4.17 Notes

Extension methods are a feature new to C# 3.0 and allow you to extend existing types with
your own methods. While they are static, they are used as if they are normal methods of
the class being extended. Thus, new functionality can be added to an existing class without
a need to change or recompile the class itself. However, since they are not directly part of
the class, extensions cannot access private or protected methods, properties, or fields.

Extension methods should be created inside a static class. They themselves should be
static and should contain at least one parameter, the first preceeded by the this keyword:

public static class MyExtensions

{

public static string[] ToStringArray<T>(this List<T> list)

{

string[] array = new string[list.Count];

for (int i = 0; i < list.Count; i++)

array[i] = list[i].ToString();

return array;

}

// to be continued...

}

The type of the first parameter (in this case List<T>) specifies the type with which the
extension method will be available. You can now call the extension method like this:

List<int> list = new List<int>();

list.Add(1);

list.Add(2);

list.Add(3);

string[] strArray = list.ToStringArray(); // strArray will now

contain "1", "2" and "3".

Here is the rest of the program:

using System;

using System.Collections.Generic;

public static class MyExtensions

{

... // continued from above

public static void WriteToConsole(this string str)

{

Console.WriteLine(str);

}

public static string Repeat(this string str, int times)

{

System.Text.StringBuilder sb = new

System.Text.StringBuilder();

90

Introduction

for (int i = 0; i < times; i++)

sb.Append(str);

return sb.ToString();

}

}

class ExtensionMethodsDemo

{

static void Main()

{

List<int> myList = new List<int>();

for (int i = 1; i <= 10; i++)

myList.Add(i);

string[] myStringArray = myList.ToStringArray();

foreach (string s in myStringArray)

s.Repeat(4).WriteToConsole(); // string is extended by

WriteToConsole()

Console.ReadKey();

}

}

Note that extension methods can take parameters simply by defining more than one parameter
without the this keyword.

4.18 Introduction

All computer programs use up memory, whether that is a variable in memory, opening a file
or connecting to a database. The question is how can the runtime environment reclaim any
memory when it is not being used? There are three answers to this question:

• If you are using a managed resource, this is automatically released by the Garbage
Collector

• If you are using an unmanaged resource, you must use the IDisposable interface to assist
with the cleanup

• If you are calling the Garbage Collector directly, by using System.GC.Collect() method,
it will be forced to tidy up resources immediately.

Before discussing managed and unmanaged resources, it would be interesting to know what
the garbage collector actually does.

4.18.1 Garbage Collector

The garbage collector is a background process running within your program. It is always
present within all .NET applications. Its job is to look for objects (i.e. reference types)
which are no longer being used by your program. If the object is assigned to null, or the
object goes out of scope, the garbage collector will mark the object be cleaned up at some
point in the future, and not necessarily have its resources released immediately!

91

Advanced Concepts

Why? The garbage collector will have a hard time keeping up with every de-allocation you
make, especially at the speed the program runs and therefore only runs when resources
become limited. Therefore, the garbage collector has three "generations".

• Generation 0 - the most recently created objects
• Generation 1 - the mid-life objects
• Generation 2 - the long term objects.

All reference types will exist in one of these three generations. They will firstly be allocated
to Gen 0, then moved to Gen 1 and Gen 2 depending on their lifetime. The garbage collector
works by removing only what is needed and so will only scan Gen 0 for a quick-fix solution.
This is because most, if not all, local variables are placed in this area.

For more in-depth information, visit the MSDN Article11 for a better explanation.

Now you know about the garbage collector, let's discuss the resources that it is managing.

4.18.2 Managed Resources

Managed resources are objects which run totally within the .NET framework. All memory
is reclaimed for you automatically, all resources closed and you are in most cases guaranteed
to have all the memory released after the application closes, or when the garbage collector
runs.

You do not have to do anything with them with regards to closing connections or anything,
it is a self-tidying object.

4.18.3 Unmanaged Resources

There are circumstances where the .NET framework world will not release resources. This
may be because the object references resources outside of the .NET framework, like the
operating system, or internally references another unmanaged component, or that the
resources accesses a component that uses COM, COM+ or DCOM.

Whatever the reason, if you are using an object that implements the IDisposable interface
at a class level, then you too need to implement the IDisposable interface too.

public interface IDisposable

{

void Dispose();

}

This interface exposes a method called Dispose(). This alone will not help tidy up resources,
as it is only an interface, so the developer must use it correctly in order to ensure the resources
are released. The two steps are:

1. Always call Dispose() on any object that implements IDisposable as soon as you are
finished using it. (This can be made easier with the using keyword)

11 http://msdn2.microsoft.com/en-us/library/f144e03t.aspx

92

http://msdn2.microsoft.com/en-us/library/f144e03t.aspx

Introduction

2. Use the finalizer method to call Dispose(), so that if anyone has not closed your
resources, your code will do it for them.

Dispose pattern

Often, what you want to clean up varies depending on whether your object is being finalized.
For example, you would not want to clean up managed resources in a finalizer since the
managed resources could have been reclaimed by the garbage collector already. The dispose

pattern can help you implement resource management properly in this situation:

public class MyResource : IDisposable

{

private IntPtr _someUnmanagedResource;

private List<long> _someManagedResource = new List<long>();

public MyResource()

{

_someUnmanagedResource = AllocateSomeMemory();

for (long i = 0; i < 10000000; i++)

_someManagedResource.Add(i);

...

}

// The finalizer will call the internal dispose method, telling

it not to free managed resources.

~MyResource()

{

this.Dispose(false);

}

// The internal dispose method.

private void Dispose(bool disposing)

{

if (disposing)

{

// Clean up managed resources

_someManagedResource.Clear();

}

// Clean up unmanaged resources

FreeSomeMemory(_someUnmanagedResource);

}

// The public dispose method will call the internal dispose

method, telling it to free managed resources.

public void Dispose()

{

this.Dispose(true);

// Tell the garbage collector to not call the finalizer

because we have already freed resources.

GC.SuppressFinalize(this);

}

}

93

Advanced Concepts

4.18.4 Applications

If you are coming to C# from Visual Basic Classic12 you will have seen code like this:

Public Function Read(ByRef FileName) As String

Dim oFSO As FileSystemObject

Set oFSO = New FileSystemObject

Dim oFile As TextStream

Set oFile = oFSO.OpenTextFile(FileName, ForReading, False)

Read = oFile.ReadLine

End Function

Note that neither oFSO nor oFile are explicitly disposed of. In Visual Basic Classic this
is not necessary because both objects are declared locally. This means that the reference
count goes to zero as soon as the function ends which results in calls to the Terminate event
handlers of both objects. Those event handlers close the file and release the associated
resources.

In C# this doesn't happen because the objects are not reference counted. The finalizers will
not be called until the garbage collector decides to dispose of the objects. If the program
uses very little memory this could be a long time.

This causes a problem because the file is held open which might prevent other processes
from accessing it.

In many languages the solution is to explicitly close the file and dispose of the objects and
many C# programmers do just that. However, there is a better way: use the using statement:

public read(string fileName)

{

using (TextReader textReader = new StreamReader(filename))

{

return textReader.ReadLine();

}

}

Behind the scenes the compiler turns the using statement into try ... finally and produces
this intermediate language (IL) code:

.method public hidebysig static string Read(string FileName) cil

managed

{

// Code size 39 (0x27)

.maxstack 5

.locals init (class [mscorlib]System.IO.TextReader V_0,

string V_1)

IL_0000: ldarg.0

IL_0001: newobj instance void

[mscorlib]System.IO.StreamReader::.ctor(string)

12 http://en.wikibooks.org/wiki/Programming%3AVisual%20Basic%20Classic

94

http://en.wikibooks.org/wiki/Programming%3AVisual%20Basic%20Classic

Introduction

IL_0006: stloc.0

.try

{

IL_0007: ldloc.0

IL_0008: callvirt instance string

[mscorlib]System.IO.TextReader::ReadLine()

IL_000d: stloc.1

IL_000e: leave IL_0025

IL_0013: leave IL_0025

} // end .try

finally

{

IL_0018: ldloc.0

IL_0019: brfalse IL_0024

IL_001e: ldloc.0

IL_001f: callvirt instance void

[mscorlib]System.IDisposable::Dispose()

IL_0024: endfinally

} // end handler

IL_0025: ldloc.1

IL_0026: ret

} // end of method Using::Read

Notice that the body of the Read function has been split into three parts: initialisation, try,
and finally. The finally block includes code that was never explicitly specified in the original
C# source code, namely a call to the destructor of the Streamreader instance.

See Understanding the 'using' statement in C# By TiNgZ aBrAhAm13.

See the following sections for more applications of this technique.

4.18.5 Resource Acquisition Is Initialisation

The application of the using statement in the introduction is an example of an idiom called
Resource Acquisition Is Initialisation (RAII).

RAII is a natural technique in languages like Visual Basic Classic and C++ that have
deterministic finalization, but usually requires extra work to include in programs written in
garbage collected languages like C# and VB.NET. The using statement makes it just as
easy. Of course you could write the try..finally code out explicitly and in some cases that
will still be necessary. For a thorough discussion of the RAII technique see HackCraft: The
RAII Programming Idiom14. Wikipedia has a brief note on the subject as well: Resource
Acquisition Is Initialization15.

Work in progress: add C# versions showing incorrect and correct methods with and without
using. Add notes on RAII, memoization and cacheing (see OOP wikibook).

16

13 http://www.codeproject.com/csharp/tinguusingstatement.asp

14 http://www.hackcraft.net/raii/

15 http://en.wikipedia.org/wiki/Resource%20Acquisition%20Is%20Initialization

16 http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming

95

http://www.codeproject.com/csharp/tinguusingstatement.asp
http://www.hackcraft.net/raii/
http://en.wikipedia.org/wiki/Resource%20Acquisition%20Is%20Initialization
http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming

Advanced Concepts

Design Patterns are common building blocks designed to solve everyday software issues.
Some basic terms and example of such patterns include what we see in everyday life. Key
patterns are the singleton pattern, the factory pattern, and chain of responsibility patterns.

4.19 Factory Pattern

The factory pattern is a method call that uses abstract classes and its implementations, to
give the developer the most appropriate class for the job.

Lets create a couple of classes first to demonstrate how this can be used. Here we take the
example of a bank system.

public abstract class Transaction

{

private string _sourceAccount;

// May not be needed in most cases, but may on transfers,

closures and corrections.

private string _destinationAccount;

private decimal _amount;

public decimal Amount { get { return _amount; } }

private DateTime _transactionDate;

private DateTime _effectiveDate;

public Transaction(string source, string destination, decimal

amount)

{

_sourceAccount = source;

_destinationAccount = destination;

_amount = amount;

_transactionDate = DateTime.Now;

}

public Transaction(string source, string destination, decimal

amount, DateTime effectiveDate) : this(source, destination, amount)

{

_effectiveDate = effectiveDate;

}

protected decimal AdjustBalance(string accountNumber, decimal

amount)

{

decimal newBalance = decimal.MinValue;

using(Mainframe.ICOMInterface mf = new

Mainframe.COMInterfaceClass())

{

string dateFormat = DateTime.Now.ToString("yyyyMMdd

HH:mm:ss");

mf.Credit(dateFormat, accountNumber, amount);

newBalance = mf.GetBalance(

DateTime.Now.AddSeconds(1), accountNumber);

}

return newBalance;

}

public abstract bool Complete();

}

96

Factory Pattern

This Transaction class is incomplete, as there are many types of transactions:

• Opening
• Credits
• Withdrawals
• Transfers
• Penalty
• Correction
• Closure

For this example, we will take credit and withdrawal portions, and create classes for them.

public class Credit : Transaction

{

// Implementations hidden for simplicity

public override bool Complete()

{

this.AdjustBalance(_sourceAccount, amount);

}

}

public class Withdrawal : Transaction

{

// Implementations hidden for simplicity

public override bool Complete()

{

this.AdjustBalance(_sourceAccount, -amount);

}

}

The problem is that these classes do much of the same thing, so it would be helpful, if we
could just give it the values, and it will work out what class type we require. Therefore, we
could come up with some ways to distinguish between the different types of transactions:

• Positive values indicate a credit.
• Negative values indicate a withdrawal.
• Having two account numbers and a positive value would indicate a transfer.
• Having two account numbers and a negative value would indicate a closure.
• etc.

So, let us write a new class with a static method that will do this logic for us, ending the
name Factory:

public class TransactionFactory

{

public static Transaction Create(string source, string

destination, decimal amount)

{

if(string.IsNullOrEmpty(destination))

{

if(amount >= 0)

return new Credit(source, null, amount);

else

return new Withdrawal(source, null, amount);

}

else

{

// Other implementations here

97

Advanced Concepts

}

}

}

Now, you can use this class to do all of the logic and processing, and be assured that the
type you are returned is correct.

public class MyProgram

{

static void Main()

{

decimal randomAmount = new Random().Next()*1000000;

Transaction t =

TransactionFactory.Create("123456","",randomAmount);

// t.Complete(); <-- This would carry out the requested

transaction.

Console.WriteLine("{0}: {1:C}",t.GetType().Name, t.Amount);

}

}

4.20 Singleton

The singleton pattern instantiates only 1 object, and reuses this object for the entire lifetime
of the process. This is useful, if you wish the object to maintain state, or if it takes lots of
resources to set the object up. Below is a basic implementation:

public class MySingletonExample

{

private static Hashtable sharedHt = new Hashtable();

public Hashtable Singleton

{

get

{

return sharedHt;

}

// set { ; }

// Not implemented for a true singleton

}

// Class implementation here..

}

The Singleton property will expose the same instance to all callers. Upon the first call,
the object is initialised and on subsequent calls this is used.

Examples of this pattern include:

• ConfigurationSettings (Generic settings reader)
• HttpApplication (Application object in ASP .NET)
• HttpCacheUtility (Cache object in ASP .NET)
• HttpServerUtility (Server object in ASP .NET)

17

17 http://en.wikibooks.org/wiki/Category%3A

98

http://en.wikibooks.org/wiki/Category%3A

5 The .NET Framework

.NET Framework is a common environment for building, deploying, and running Web
Services, Web Applications, Windows Services and Windows Applications. The .NET
Framework contains common class libraries - like ADO.NET, ASP.NET and Windows Forms
- to provide advanced standard services that can be integrated into a variety of computer
systems.

5.1 Introduction

In June 2000 Microsoft released both the .NET platform and a new program language
called C#. C# is a general-purpose OOP language designed to give optimum simplicity,
expansiveness, and performance. Its syntax is very similar to Java, with the major difference
being that all variable types are derived from a common ancestor class.

C# is a language in itself. It can perform mathematical and logical operations, variable
assignment and other expected traits of a programming language. This in itself is not flexible
enough for more complex applications. At some stage, the developer will want to interact
with the host system whether it be reading files or downloading content from the Internet.

The .NET framework is a toolset developed for the Windows platform to allow the developer
to interact with the host system or any external entity whether it be another process, or
another computer. The .NET platform is a Windows platform-specific implementation.
Other operating systems have their own implementations due to the differences in the
operating systems I/O management, security models and interfaces.

5.2 Background

• Originally called NGWS (Next Generation Windows Services).
• .NET does not run in any browser. It is a runtime language (Common Language Runtime1)

like the Java runtime. By contrast, Microsoft Silverlight2 does run in a browser.
• .NET is based on the newest Web standards.
• .NET is built on the following Internet standards:

• HTTP, the communication protocol between Internet Applications
• SOAP, the standard format for requesting Web Services
• UDDI, the standard to search and discover Web Services
• XML, the format for exchanging data between Internet Applications

1 http://en.wikibooks.org/wiki/%3Aw%3ACommon%20Language%20Runtime

2 http://en.wikipedia.org/wiki/Microsoft%20Silverlight

99

http://en.wikibooks.org/wiki/%3Aw%3ACommon%20Language%20Runtime
http://en.wikipedia.org/wiki/Microsoft%20Silverlight

The .NET Framework

3

5.3 Console Programming

5.3.1 Input

Input can be gathered in a similar method to outputing data using the Read() and ReadLine

methods of that same System.Console class:

using System;

public class ExampleClass

{

public static void Main()

{

Console.WriteLine("Greetings! What is your name?");

Console.Write("My name is: ");

string name = Console.ReadLine();

Console.WriteLine("Nice to meet you, " + name);

Console.ReadKey();

}

}

The above program requests the user's name and displays it back. The final Console.Read()

waits for the user to enter a key before exiting the program.

5.3.2 Output

The example program below shows a couple of ways to output text:

using System;

public class HelloWorld

{

public static void Main()

{

Console.WriteLine("Hello World!"); // relies on

"using System;"

Console.Write("This is");

Console.Write(" my first program!\n");

System.Console.WriteLine("Goodbye World!"); // no "using"

statement required

}

}

The above code displays the following text:

Hello World!

This is... my first program!

Goodbye World!

3 http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming

100

http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming

Console Programming

That text is output using the System.Console class. The using statement at the top allows
the compiler to find the Console class without specifying the System namespace each time
it is used.

The middle lines use the Write() method, which does not automatically create a new line.
To specify a new line, we can use the sequence backslash-n (\n). If for whatever reason
we wanted to really show the \n character instead, we add a second backslash (\\n). The
backslash is known as the escape character in C# because it is not treated as a normal
character, but allows us to encode certain special characters (like a new line character).

5.3.3 Error

The Error output is used to divert error specific messages to the console. To a novice user
this may seem fairly pointless, as this achieves the same as Output4 (as above). If you
decide to write an application that runs another application (for example a scheduler), you
may wish to monitor the output of that program - more specifically, you may only wish
to be notified only of the errors that occur. If you coded your program to write to the
Console.Error stream whenever an error occurred, you can tell your scheduler program to
monitor this stream, and feedback any information that is sent to it. Instead of the Console
appearing with the Error messages, your program may wish to log these to a file.

You may wish to revisit this after studying Streams and after learning about the Process
class.

5.3.4 Command line arguments

Command line arguments are values that are passed to a console program before execution.
For example, the Windows command prompt includes a copy command that takes two
command line arguments. The first argument is the original file and the second is the
location or name for the new copy. Custom console applications can have arguments as well.
c sharp is object based programming language. .net framework is a Microsoft programming
language is used to create web application,console application, mobile application.

using System;

public class ExampleClass

{

public static void Main(string[] args)

{

Console.WriteLine("First Name: " + args[0]);

Console.WriteLine("Last Name: " + args[1]);

Console.Read();

}

}

If the above code is compiled to a program called username.exe, it can be executed from the
command line using two arguments, e.g. "Bill" and "Gates":

4 Chapter 5.3.2 on page 100

101

The .NET Framework

C:\>username.exe Bill Gates

Notice how the Main() method above has a string array parameter. The program assumes
that there will be two arguments. That assumption makes the program unsafe. If it is run
without the expected number of command line arguments, it will crash when it attempts to
access the missing argument. To make the program more robust, we can check to see if the
user entered all the required arguments.

using System;

public class Test

{

public static void Main(string[] args)

{

if(args.Length >= 1)

Console.WriteLine(args[0]);

if(args.Length >= 2)

Console.WriteLine(args[1]);

}

}

Try running the program with only entering your first name or no name at all. The
args.Length property returns the total number of arguments. If no arguments are given, it
will return zero.

You are also able to group a single argument together by using the quote marks (""). This
is particularly useful if you are expecting many parameters, but there is a requirement for
including spaces (e.g. file locations, file names, full names etc.)

using System;

class Test

{

public static void Main(string[] args)

{

for (int index = 0; index < args.Length; index++)

{

Console.WriteLine((index + 1) + ": " + args[index]);

}

}

}

C:\> Test.exe Separate words "grouped together"

1: Separate

2: words

3: grouped together

5.3.5 Formatted output

Console.Write() and Console.WriteLine() allow you to output a text string, but also
allows writing a string with variable substitution.

These two functions normally have a string as the first parameter. When additional objects
are added, either as parameters or as an array, the function will scan the string to substitute
objects in place of tokens.

102

Console Programming

For example:

{

int i = 10;

Console.WriteLine("i = {0}", i);

}

The {0} is identified by braces, and refers to the parameter index that needs to be
substituted. You may also find a format specifier within the braces, which is preceded by a
colon and the specifier in question (e.g. {0:G}).

5.3.6 Rounding number example

This is a small example that rounds a number to a string. It is an augmentation for the Math

class of C#. The result of the Round method has to be rounded to a string, as significant
figures may be trailing zeros that would disappear, if a number format would be used. Here
is the code and its call. You are invited to write a shorter version that gives the same result,
or to correct errors!

The constant class contains repeating constants that should exist only once in the code so
that to avoid inadvertant changes. (If the one constant is changed inadvertantly, it is most
likely to be seen, as it used at several locations.)

using System;

namespace ConsoleApplicationCommons

{

class Common

{

/// <summary>Constant of comma or decimal point in

German</summary>

public const char COMMA = ‚,‚;

/// <summary>Dash or minus constant</summary>

public const char DASH = ‚-‚;

/// <summary>

/// The exponent sign in a scientific number, or the capital

letter E

/// </summary>

public const char EXPONENT = ‚E‚;

/// <summary>The full stop or period</summary>

public const char PERIOD = ‚.‚;

/// <summary>The zero string constant used at several

places</summary>

public const String ZERO = "0";

} // class Common

}

The Math class is an enhancement to the <math.h> library and contains the rounding
calculations.

using System;

using System.Globalization;

using System.IO;

using System.Text;

namespace ConsoleApplicationCommons

{

/// <summary>

/// Class for special mathematical calculations.

103

The .NET Framework

/// ATTENTION: Should not depend on any other class except Java

libraries!

/// </summary>

public class Maths

{

public static CultureInfo invC =

CultureInfo.InvariantCulture;

/// <summary>

/// Value after which the language switches from scientific

to double

/// </summary>

private const double E_TO_DOUBLE = 1E-4;

/// <summary>

/// Maximal digits after which Convert.ToString(...) becomes

inaccurate.

/// </summary>

private const short MAX_CHARACTERS = 16;

/// <summary>The string of zeros</summary>

private static String strZeros =

"000000000000000000000000000000000";

/// <summary>

/// Determines language-independently whether or not the

character

/// can be a decimal separator or not

/// </summary>

/// <param name="character">Character to be checked</param>

/// <returns>

/// true, if it can be a decimal separator in a language, and

false

/// otherwise.

/// </returns>

private static bool IsDecimalSeparator(char c)

{

return ((c == Common.COMMA) || (c == Common.PERIOD));

}

/// <summary>

/// Determines how many zeros are to be appended after the

decimal

/// digits.

/// </summary>

/// <param name="separator">

/// Language-specific decimal separator

/// </param>

/// <param name="d">Rounded number</param>

/// <param name="significantsAfter">

/// Significant digits after decimal

/// </param>

/// <returns>Requested value</returns>

private static short CalculateMissingSignificantZeros(char

separator,

double d,

short significantsAfter)

{

short after = FindSignificantsAfterDecimal(separator, d);

short zeros = (short)(significantsAfter

- ((after == 0) ? 1 : after));

return (short)((zeros >= 0) ? zeros : 0);

}

/// <summary>

/// Finds the decimal position language-independently.

/// </summary>

/// <param name="value">

/// Value to be searched for the decimal separator

104

Console Programming

/// </param>

/// <returns>The position of the decimal separator</returns>

private static short FindDecimalSeparatorPosition(String

value)

{

short separatorAt = (short)value.IndexOf(Common.COMMA);

return (separatorAt > -1)

? separatorAt : (short)value.IndexOf(Common.PERIOD);

}

/// <summary>

/// Calculates the number of significant digits (without the

sign and

/// the decimal separator).

/// </summary>

/// <param name="separator">

/// Language-specific decimal separator

/// </param>

/// <param name="d">Value where the digits are to be

counted</param>

/// <param name="significantsAfter">

/// Number of decimal places after the separator

/// </param>

/// <returns>Number of significant digits</returns>

private static short FindSignificantDigits(char separator,

double d,

short significantsAfter)

{

if (d == 0) return 0;

else

{

String mantissa = FindMantissa(separator,

Convert.ToString(d, invC));

if (d == (long)d)

{

mantissa = mantissa.Substring(0, mantissa.Length

- 1);

}

mantissa = RetrieveDigits(mantissa);

// Find the position of the first non-zero digit:

short nonZeroAt = 0;

for (; (nonZeroAt < mantissa.Length)

&& (mantissa[nonZeroAt] == ‚0‚); nonZeroAt++)

;

return (short)mantissa.Substring(nonZeroAt).Length;

}

}

/// <summary>

/// Finds the significant digits after the decimal separator

of a

/// mantissa.

/// </summary>

/// <param name="separator">Language-specific decimal

separator</param>

/// <param name="d">Value to be scrutinised</param>

/// <returns>Number of insignificant zeros after decimal

separator.

/// </returns>

private static short FindSignificantsAfterDecimal(char

separator,

double d)

{

105

The .NET Framework

if (d == 0) return 1;

else

{

String value = ConvertToString(d);

short separatorAt =

FindDecimalSeparatorPosition(value);

if (separatorAt > -1) value =

value.Substring(separatorAt + 1);

short eAt = (short) value.IndexOf(Common.EXPONENT);

if ((separatorAt == -1) && (eAt == -1)) return 0;

else if (eAt > 0) value = value.Substring(0, eAt);

long longValue = Convert.ToInt64(value, invC);

if (longValue == 0) return 0;

else if (Math.Abs(d) < 1)

{

value = Convert.ToString(longValue, invC);

if (value.Length >= 15)

{

return (byte)Convert.ToString(longValue,

invC).Length;

}

else return (byte)(value.Length);

}

else

{

if (value.Length >= 15) return

(byte)(value.Length - 1);

else return (byte)(value.Length);

}

}

}

/// <summary>

/// Determines the number of significant digits after the

decimal

/// separator knowing the total number of significant digits

and

/// the number before the decimal separator.

/// </summary>

/// <param name="significantsBefore">

/// Number of significant digits before separator

/// </param>

/// <param name="significantDigits">

/// Number of all significant digits

/// </param>

/// <returns>

/// Number of significant decimals after the separator

/// </returns>

private static short FindSignificantsAfterDecimal(

short significantsBefore,

short significantDigits)

{

short significantsAfter =

(short)(significantDigits - significantsBefore);

return (short)((significantsAfter > 0) ?

significantsAfter : 0);

}

/// <summary>

/// Determines the number of digits before the decimal point.

106

Console Programming

/// </summary>

/// <param name="separator">

/// Language-specific decimal separator

/// </param>

/// <param name="value">Value to be scrutinised</param>

/// <returns>

/// Number of digits before the decimal separator

/// </returns>

private static short FindSignificantsBeforeDecimal(char

separator,

double d)

{

String value = Convert.ToString(d, invC);

// Return immediately, if result is clear: Special

handling at

// crossroads of floating point and exponential numbers:

if ((d == 0) || (Math.Abs(d) >= E_TO_DOUBLE) &&

(Math.Abs(d) < 1))

{

return 0;

}

else if ((Math.Abs(d) > 0) && (Math.Abs(d) <

E_TO_DOUBLE)) return 1;

else

{

short significants = 0;

for (short s = 0; s < value.Length; s++)

{

if (IsDecimalSeparator(value[s])) break;

else if (value[s] != Common.DASH) significants++;

}

return significants;

}

}

/// <summary>

/// Returns the exponent part of the double number.

/// </summary>

/// <param name="d">Value of which the exponent is of

interest</param>

/// <returns>Exponent of the number or zero.</returns>

private static short FindExponent(double d)

{

return short.Parse(FindExponent(Convert.ToString(d,

invC)), invC);

}

/// <summary>

/// Finds the exponent of a number.

/// </summary>

/// <param name="value">

/// Value where an exponent is to be searched

/// </param>

/// <returns>Exponent, if it exists, or "0".</returns>

private static String FindExponent(String value)

{

short eAt = (short)(value.IndexOf(Common.EXPONENT));

if (eAt < 0) return Common.ZERO;

else

{

return Convert.ToString

(short.Parse(value.Substring(eAt + 1)), invC);

}

}

107

The .NET Framework

/// <summary>

/// Finds the mantissa of a number.

/// </summary>

/// <param name="separator">

/// Language-specific decimal separator

/// </param>

/// <param name="value">Value where the mantissa is to be

found</param>

/// <returns>Mantissa of the number</returns>

private static String FindMantissa(char separator,

String value)

{

short eAt = (short)(value.IndexOf(Common.EXPONENT));

if (eAt > -1) value = value.Substring(0, eAt);

if (FindDecimalSeparatorPosition(value) == -1) value +=

".0";

return value;

}

/// <summary>

/// Retrieves the digits of the value only

/// </summary>

/// <param name="d">Number</param>

/// <returns>The digits only</returns>

private static String RetrieveDigits(double d)

{

double dValue = d;

short exponent = FindExponent(d);

StringBuilder value = new StringBuilder();

if (exponent == 0)

{

value.Append(dValue);

if (value.Length >= MAX_CHARACTERS)

{

value.Clear();

if (Math.Abs(dValue) < 1) value.Append("0");

// Determine the exponent for a scientific form:

exponent = 0;

while (((long)dValue != dValue) && (dValue <

1E11))

{

dValue *= 10;

exponent++;

}

value.Append((long)dValue);

while ((long)dValue != dValue)

{

dValue -= (long)dValue;

dValue *= 10;

value.Append((long)dValue);

}

}

}

else

{

108

Console Programming

double multiplier = Math.Pow(10, -exponent);

for (short s = 0; (s <= 16) && (exponent != 0); s++)

{

dValue *= multiplier;

value.Append((long)dValue);

dValue -= (long)dValue;

exponent++;

multiplier = 10;

}

}

if (value.Length >= MAX_CHARACTERS + 2)

value.Length = MAX_CHARACTERS + 2;

return RetrieveDigits(value.ToString());

}

/// <summary>

/// Retrieves the digits of the value only

/// </summary>

/// <param name="number">Value to be scrutinised</param>

/// <returns>The digits only</returns>

private static String RetrieveDigits(String number)

{

// Strip off exponent part, if it exists:

short eAt = (short)number.IndexOf(Common.EXPONENT);

if (eAt > -1) number = number.Substring(0, eAt);

return number.Replace(Convert.ToString(Common.DASH),

"").Replace(

Convert.ToString(Common.COMMA), "").Replace(

Convert.ToString(Common.PERIOD), "");

}

/// <summary>

/// Inserts the decimal separator at the right place

/// </summary>

/// <param name="dValue">Number</param>

/// <param name="value">

/// String variable, where the separator is to be added.

/// </param>

private static void InsertSeparator(double dValue,

StringBuilder value)

{

short separatorAt =

(short)Convert.ToString((long)dValue).Length;

if (separatorAt < value.Length)

value.Insert(separatorAt, Common.PERIOD);

}

/// <summary>

/// Calculates the power of the base to the exponent without

changing

/// the least-significant digits of a number.

/// </summary>

/// <param name="basis"></param>

/// <param name="exponent">basis to power of exponent</param>

/// <returns></returns>

public static double Power(int basis, short exponent)

{

return Power((short)basis, exponent);

}

/// <summary>

109

The .NET Framework

/// Calculates the power of the base to the exponent without

changing

/// the least-significant digits of a number.

/// </summary>

/// <param name="basis"></param>

/// <param name="exponent"></param>

/// <returns>basis to power of exponent</returns>

public static double Power(short basis, short exponent)

{

if (basis == 0) return (exponent != 0) ? 1 : 0;

else

{

if (exponent == 0) return 1;

else

{

// The Math method power does change the least

significant

// digits after the decimal separator and is

therefore

// useless.

long result = 1;

short s = 0;

if (exponent > 0)

{

for (; s < exponent; s++) result *= basis;

}

else if (exponent < 0)

{

for (s = exponent; s < 0; s++) result /=

basis;

}

return result;

}

}

}

/// <summary>

/// Rounds a number to the decimal places.

/// </summary>

/// <param name="d">Number to be rounded</param>

/// <param name="separator">

/// Language-specific decimal separator

/// </param>

/// <param name="significantsAfter">

/// Number of decimal places after the separator

/// </param>

/// <returns>Rounded number to the requested decimal

places</returns>

public static double Round(char separator,

double d,

short significantsAfter)

{

if (d == 0) return 0;

else

{

double constant = Power(10, significantsAfter);

short dsExponent = FindExponent(d);

short exponent = dsExponent;

double value = d*constant*Math.Pow(10, -exponent);

String exponentSign = (exponent < 0)

? Convert.ToString(Common.DASH) : "";

if (exponent != 0)

{

110

Console Programming

exponent = (short)Math.Abs(exponent);

value = Round(value);

}

else

{

while (FindSignificantsBeforeDecimal(separator,

value)

< significantsAfter)

{

constant *= 10;

value *= 10;

}

value = Round(value)/constant;

}

// Power method cannot be used, as the exponentiated

number may

// exceed the maximal long value.

exponent -= (short)(Math.Sign(dsExponent)*

(FindSignificantDigits(separator, value,

significantsAfter)

- 1));

if (dsExponent != 0)

{

String strValue = Convert.ToString(value, invC);

short separatorAt =

FindDecimalSeparatorPosition(strValue);

if (separatorAt > -1)

{

strValue = strValue.Substring(0,

separatorAt);

}

strValue += Common.EXPONENT + exponentSign

+ Convert.ToString(exponent);

value = double.Parse(strValue, invC);

}

return value;

}

}

/// <summary>

/// Rounds a number according to mathematical rules.

/// </summary>

/// <param name="d">Number to be rounded</param>

/// <returns>Rounded number</returns>

public static double Round(double d)

{

return (long)(d + .5);

}

/// <summary>

/// Converts a double value to a string such that it reflects

the double

/// format (without converting it to a scientific format by

itself, as

/// it is the case with Convert.ToString(double, invC)).

/// </summary>

/// <param name="d">Value to be converted</param>

/// <returns>Same format value as a string</returns>

public static String ConvertToString(double d)

111

The .NET Framework

{

double dValue = d;

StringBuilder value = new StringBuilder();

if (Math.Sign(dValue) == -1) value.Append(Common.DASH);

if ((dValue > 1E-5) && (dValue < 1E-4))

{

value.Append("0");

while ((long)dValue == 0)

{

dValue *= 10;

if (dValue >= 1) break;

value.Append(Convert.ToString((long)dValue));

}

}

short exponent = FindExponent(d);

if (exponent != 0)

{

value.Append(RetrieveDigits(dValue));

InsertSeparator(dValue, value);

value.Append(Common.EXPONENT);

value.Append(exponent);

}

else

{

value.Append(RetrieveDigits(dValue));

InsertSeparator(dValue, value);

if (value.Length > MAX_CHARACTERS + 3)

{

value.Length = MAX_CHARACTERS + 3;

}

}

return value.ToString();

}

/// <summary>

/// Rounds to a fixed number of significant digits.

/// </summary>

/// <param name="d">Number to be rounded</param>

/// <param name="significantDigits">

/// Requested number of significant digits

/// </param>

/// <param name="separator">

/// Language-specific decimal separator

/// </param>

/// <returns>Rounded number</returns>

public static String RoundToString(char separator,

double d,

short significantDigits)

{

// Number of significants that *are* before the decimal

separator:

short significantsBefore =

FindSignificantsBeforeDecimal(separator, d);

// Number of decimals that *should* be after the decimal

separator:

short significantsAfter = FindSignificantsAfterDecimal(

significantsBefore, significantDigits);

// Round to the specified number of digits after decimal

112

Console Programming

separator:

double rounded = Maths.Round(separator, d,

significantsAfter);

String exponent = FindExponent(Convert.ToString(rounded,

invC));

String mantissa = FindMantissa(separator,

Convert.ToString(rounded, invC));

double dMantissa = double.Parse(mantissa, invC);

StringBuilder result = new StringBuilder(mantissa);

// Determine the significant digits in this number:

short significants = FindSignificantDigits(separator,

dMantissa,

significantsAfter);

// Add lagging zeros, if necessary:

if (significants <= significantDigits)

{

if (significantsAfter != 0)

{

result.Append(strZeros.Substring(0,

CalculateMissingSignificantZeros(separator,

dMantissa, significantsAfter)));

}

else

{

// Cut off the decimal separator & after decimal

digits:

short decimalValue = (short)

result.ToString().IndexOf(

Convert.ToString(separator));

if (decimalValue > -1) result.Length =

decimalValue;

}

}

else if (significantsBefore > significantDigits)

{

d /= Power(10, (short)(significantsBefore -

significantDigits));

d = Round(d);

short digits = (short)(significantDigits + ((d < 0) ?

1 : 0));

String strD = d.ToString().Substring(0, digits);

result.Length = 0;

result.Append(strD + strZeros.Substring(0,

significantsBefore - significantDigits));

}

if (short.Parse(exponent, invC) != 0)

{

result.Append(Common.EXPONENT + exponent);

}

return result.ToString();

} // public static String RoundToString(...)

/// <summary>

/// Rounds to a fixed number of significant digits.

/// </summary>

/// <param name="separator">

/// Language-specific decimal separator

/// </param>

/// <param name="significantDigits">

113

The .NET Framework

/// Requested number of significant digits

/// </param>

/// <param name="value"></param>

/// <returns></returns>

public static String RoundToString(char separator,

float value,

int significantDigits)

{

return RoundToString(separator, (double)value,

(short)significantDigits);

}

} // public class Maths

}

Extensive testing of a software is crucial for qualitative code. To say that the code is tested
does not give much information. The question is what is tested. Not in this case, but often
it is also important to know where (in which environment) it was tested, and how - i.e. the
test succession. Here is the code used to test the Maths class.

using System;

using System.Collections.Generic;

namespace ConsoleApplicationCommons

{

class TestCommon

{

/// <summary>

/// Test for the common functionality

/// </summary>

/// <param name="args"></param>

static void Main(string[] args)

{

// Test rounding

List<double> values = new List<double>();

values.Add(0.0);

AddValue(1.4012984643248202e-45, values);

AddValue(1.999999757e-5, values);

AddValue(1.999999757e-4, values);

AddValue(1.999999757e-3, values);

AddValue(0.000640589, values);

AddValue(0.3396899998188019, values);

AddValue(0.34, values);

AddValue(7.07, values);

AddValue(118.188, values);

AddValue(118.2, values);

AddValue(123.405009, values);

AddValue(30.76994323730469, values);

AddValue(130.76994323730469, values);

AddValue(540, values);

AddValue(12345, values);

AddValue(123456, values);

AddValue(540911, values);

AddValue(9.223372036854776e56, values);

const short SIGNIFICANTS = 5;

foreach (double element in values)

{

Console.Out.WriteLine("Maths.Round(‚" + Common.PERIOD

+ "‚, "

+ Convert.ToString(element, Maths.invC) + ", "

+ SIGNIFICANTS + ") = " + Maths.RoundToString

(Common.PERIOD, element, SIGNIFICANTS));

}

114

Console Programming

Console.In.Read();

}

/// <summary>

/// Method that adds a negative and a positive value

/// </summary>

/// <param name="d"></param>

/// <param name="values"></param>

private static void AddValue(double d, List<double> values)

{

values.Add(-d);

values.Add(d);

}

} // class TestCommon

}

The results of your better code should comply with the result I got:

Maths.Round('.', 0, 5) = 0.00000

Maths.Round('.', -1.40129846432482E-45, 5) = -1.4012E-45

Maths.Round('.', 1.40129846432482E-45, 5) = 1.4013E-45

Maths.Round('.', -1.999999757E-05, 5) = -1.9999E-5

Maths.Round('.', 1.999999757E-05, 5) = 2.0000E-5

Maths.Round('.', -0.0001999999757, 5) = -0.00019999

Maths.Round('.', 0.0001999999757, 5) = 0.00020000

Maths.Round('.', -0.001999999757, 5) = -0.0019999

Maths.Round('.', 0.001999999757, 5) = 0.0020000

Maths.Round('.', -0.000640589, 5) = -0.00064058

Maths.Round('.', 0.000640589, 5) = 0.00064059

Maths.Round('.', -0.339689999818802, 5) = -0.33968

Maths.Round('.', 0.339689999818802, 5) = 0.33969

Maths.Round('.', -0.34, 5) = -0.33999

Maths.Round('.', 0.34, 5) = 0.34000

Maths.Round('.', -7.07, 5) = -7.0699

Maths.Round('.', 7.07, 5) = 7.0700

Maths.Round('.', -118.188, 5) = -118.18

Maths.Round('.', 118.188, 5) = 118.19

Maths.Round('.', -118.2, 5) = -118.19

Maths.Round('.', 118.2, 5) = 118.20

Maths.Round('.', -123.405009, 5) = -123.40

Maths.Round('.', 123.405009, 5) = 123.41

Maths.Round('.', -30.7699432373047, 5) = -30.769

Maths.Round('.', 30.7699432373047, 5) = 30.770

Maths.Round('.', -130.769943237305, 5) = -130.76

Maths.Round('.', 130.769943237305, 5) = 130.77

Maths.Round('.', -540, 5) = -539.99

Maths.Round('.', 540, 5) = 540.00

Maths.Round('.', -12345, 5) = -12344

Maths.Round('.', 12345, 5) = 12345

Maths.Round('.', -123456, 5) = -123450

Maths.Round('.', 123456, 5) = 123460

Maths.Round('.', -540911, 5) = -540900

Maths.Round('.', 540911, 5) = 540910

Maths.Round('.', -9.22337203685478E+56, 5) = -9.2233E56

Maths.Round('.', 9.22337203685478E+56, 5) = 9.2234E56

115

The .NET Framework

If you are interested in a comparison with C++5, please compare it with the same example6

there. If you want to compare C# with Java7, take a look at the rounding number example8

there.

5.4 System.Windows.Forms

To create a Windows desktop application we use the library represented by
System.Windows.Forms namespace. Some commonly used classes in this namespace include:

• Control9 - generic class from which other useful classes, like Form, TextBox and others
listed below are derived

• Form10 - this is the base class for the program window. All other controls are placed
directly onto a Form or indirectly on another container (like TabPage or TabControl)
that ultimately resides on the Form. When automatically created in Visual Studio, it is
usually subclassed as Form1.

• Button11 - a clickable button
• TextBox12 - a singleline or multiline textbox that can be used for displaying or inputting

text
• RichTextBox13 - an extended TextBox that can display styled text, e.g. with parts of

the text colored or with a specified font. RichTextBox can also display generalized RTF
document, including embedded images.

• Label14 - simple control allowing display of a single line of unstyled text, often used for
various captions and titles

• ListBox15 - control displaying multiple items (lines of text) with ability to select an item
and to scroll through it

• ComboBox16 - similar to ListBox, but resembling a dropdown menu
• TabControl17 and TabPage18 - used to group controls in a tabbed interface (much like

tabbed interface in Visual Studio or Mozilla Firefox). A TabControl contains a collection
of TabPage objects.

5 http://en.wikipedia.org/wiki/C%2B%2B

6
http://en.wikibooks.org/wiki/C%2B%2B_Programming/Code/IO#.E2.80.8ERounding_number_

example
7 http://en.wikipedia.org/wiki/Java%20%28programming%20language%29

8
http://en.wikibooks.org/wiki/Java_Programming/Mathematical_functions#Rounding_number_

example
9 Chapter 2.24 on page 33
10 http://en.wikibooks.org/wiki/C%20Sharp%20Programming%2FControl%2FForm

11 http://en.wikibooks.org/wiki/C%20Sharp%20Programming%2FControl%2FButton

12 http://en.wikibooks.org/wiki/C%20Sharp%20Programming%2FControl%2FTextBox

13 http://en.wikibooks.org/wiki/C%20Sharp%20Programming%2FControl%2FRichTextBox

14 http://en.wikibooks.org/wiki/C%20Sharp%20Programming%2FControl%2FLabel

15 http://en.wikibooks.org/wiki/C%20Sharp%20Programming%2FControl%2FListBox

16 http://en.wikibooks.org/wiki/C%20Sharp%20Programming%2FControl%2FComboBox

17 http://en.wikibooks.org/wiki/C%20Sharp%20Programming%2FControl%2FTabControl

18 http://en.wikibooks.org/wiki/C%20Sharp%20Programming%2FControls%2FTabPage

116

http://en.wikipedia.org/wiki/C%2B%2B
http://en.wikibooks.org/wiki/C%2B%2B_Programming/Code/IO#.E2.80.8ERounding_number_example
http://en.wikibooks.org/wiki/C%2B%2B_Programming/Code/IO#.E2.80.8ERounding_number_example
http://en.wikipedia.org/wiki/Java%20%28programming%20language%29
http://en.wikibooks.org/wiki/Java_Programming/Mathematical_functions#Rounding_number_example
http://en.wikibooks.org/wiki/Java_Programming/Mathematical_functions#Rounding_number_example
http://en.wikibooks.org/wiki/C%20Sharp%20Programming%2FControl%2FForm
http://en.wikibooks.org/wiki/C%20Sharp%20Programming%2FControl%2FButton
http://en.wikibooks.org/wiki/C%20Sharp%20Programming%2FControl%2FTextBox
http://en.wikibooks.org/wiki/C%20Sharp%20Programming%2FControl%2FRichTextBox
http://en.wikibooks.org/wiki/C%20Sharp%20Programming%2FControl%2FLabel
http://en.wikibooks.org/wiki/C%20Sharp%20Programming%2FControl%2FListBox
http://en.wikibooks.org/wiki/C%20Sharp%20Programming%2FControl%2FComboBox
http://en.wikibooks.org/wiki/C%20Sharp%20Programming%2FControl%2FTabControl
http://en.wikibooks.org/wiki/C%20Sharp%20Programming%2FControls%2FTabPage

Form class

5.5 Form class

The Form class (System.Windows.Forms.Form19) is a particularly important part of that
namespace because the form is the key graphical building block of Windows applications.
It provides the visual frame that holds buttons, menus, icons, and title bars together.
Integrated development environments (IDEs) like Visual C# and SharpDevelop can help
create graphical applications, but it is important to know how to do so manually:

using System.Windows.Forms;

public class ExampleForm : Form // inherits from System.Windows.Forms.Form

{

public static void Main()

{

ExampleForm wikibooksForm = new ExampleForm();

wikibooksForm.Text = "I Love Wikibooks"; // specify title of

the form

wikibooksForm.Width = 400; // width of the

window in pixels

wikibooksForm.Height = 300; // height in pixels

Application.Run(wikibooksForm); // display the form

}

}

The example above creates a simple Window with the text "I Love Wikibooks" in the title bar.
Custom form classes like the example above inherit from the System.Windows.Forms.Form

class. Setting any of the properties Text, Width, and Height is optional. Your program will
compile and run successfully, if you comment these lines out, but they allow us to add extra
control to our form.

5.6 Events

An event is an action being taken by the program when a user or the computer makes an
action (for example, a button is clicked, a mouse rolls over an image, etc.). An event handler
is an object that determines what action should be taken when an event is triggered.

using System.Windows.Forms;

using System.Drawing;

public class ExampleForm : Form // inherits from

System.Windows.Forms.Form

{

public ExampleForm()

{

this.Text = "I Love Wikibooks"; // specify title of

the form

this.Width = 300; // width of the

window in pixels

this.Height = 300; // height in pixels

Button HelloButton = new Button();

HelloButton.Location = new Point(20, 20); // the location of

button in pixels

19 http://en.wikibooks.org/wiki/C%20Sharp%20Programming%2FControls%2FForm

117

http://en.wikibooks.org/wiki/C%20Sharp%20Programming%2FControls%2FForm

The .NET Framework

HelloButton.Size = new Size(100, 30); // the size of

button in pixels

HelloButton.Text = "Click me!"; // the text of

button

// When click in the button, this event fire

HelloButton.Click += new

System.EventHandler(WhenHelloButtonClick);

this.Controls.Add(HelloButton);

}

void WhenHelloButtonClick(object sender, System.EventArgs e)

{

MessageBox.Show("You clicked! Press OK to exit of this

message");

}

public static void Main()

{

Application.Run(new ExampleForm()); // display the form

}

}

5.7 Controls

The Windows Forms namespace has a lot of very interesting classes. One of the simplest and
important is the Form class. A form is the key building block of any Windows application.
It provides the visual frame that holds buttons, menus, icons and title bars together. Forms
can be modal and modalless, owners and owned, parents and children. While forms could
be created with a notepad, using a form editor like VS.NET, C# Builder or Sharp Develop
makes development much faster. In this lesson, we will not be using an IDE. Instead, save
the code below into a text file and compile with command line compiler.

using System.Windows.Forms;

using System.Drawing;

public class ExampleForm : Form // inherits from

System.Windows.Forms.Form

{

public ExampleForm()

{

this.Text = "I Love Wikibooks"; // specify title of

the form

this.BackColor = Color.White;

this.Width = 300; // width of the

window in pixels

this.Height = 300; // height in pixels

// A Label

Label TextLabel = new Label();

TextLabel.Text = "One Label here!";

TextLabel.Location = new Point(20, 20);

TextLabel.Size = new Size(150, 30);

TextLabel.Font = new Font("Arial", 12); // See! we can modify

the font of text

this.Controls.Add(TextLabel); // adding the control

to the form

// A input text field

TextBox Box = new TextBox(); // inherits from

118

Lists

Control

Box.Location = new Point(20, 60); // then, it have Size

and Location properties

Box.Size = new Size(100, 30);

this.Controls.Add(Box); // all class that

inherit from Control can be added in a form

}

public static void Main()

{

Application.EnableVisualStyles();

Application.Run(new ExampleForm()); // display the form

}

}

5.8 Lists

A list is a dynamic array that resizes itself as needed, if more data is inserted than it can
hold at the time of insertion. Items can be inserted at any index, deleted at any index and
accessed at any index. The C# non-generic list class is the ArrayList, while the generic
one is List<T>.

Many of the List class' methods and properties are demonstrated in the following example:

using System;

using System.Collections;

using System.Collections.Generic;

namespace csharp_generic_list

{

class MainClass

{

public static void Main(string[] args)

{

Console.WriteLine("List<T> demo");

// Creating an instance that accepts strings

List<string> foods = new List<string>();

// Adding some items one by one with Add()

foods.Add("bread");

foods.Add("butter");

foods.Add("chocolate");

// Adding a simple string array with AddRange()

string[] subList1 = {"orange", "apple", "strawberry",

"grapes", "kiwi", "banana"};

foods.AddRange(subList1);

// Adding another List<string> with AddRange()

List<string> anotherFoodList = new List<string>();

anotherFoodList.Add("yoghurt");

anotherFoodList.Add("tomato");

anotherFoodList.Add("roast beef");

anotherFoodList.Add("vanilla cake");

foods.AddRange(anotherFoodList);

// Removing "orange" with Remove()

foods.Remove("orange");

// Removing the 5th (index = 4) item ("strawberry") with

RemoveAt()

foods.RemoveAt(4);

119

The .NET Framework

// Removing a range (4-7: all fruits) with

RemoveRange(int index, int count)

foods.RemoveRange(3, 4);

// sorting the list

foods.Sort();

// Printing the sorted foods

foreach (string item in foods)

{

Console.Write("| " + item + " ");

}

Console.WriteLine("|");

// Removing all items from foods

foods.Clear();

// Printing the current item count in foods

Console.WriteLine("The list now has {0} items.",

foods.Count);

}

}

}

The terminal output is:

List<T> demo

| bread | butter | chocolate | roast beef | tomato | vanilla cake |

yoghurt |

The list now has 0 items.

5.9 LinkedLists

Items in a linked list can be accessed directly only one after the other. Of course an item at
any index can be accessed, but the list must iterate to the item from the first one, which is
much slower than accessing items by index in an array or a list. There is no non-generic
linked list in C#, while the generic one is LinkedList<T>.

5.10 Queues

A queue is a FIFO (first in - first out) collection. The item first pushed in the queue gets
taken first with the pop function. Only the first item is accessible at any time, and items
can only be put to the end. The non-generic queue class is called Queue, while the generic
one is Queue<T>.

5.11 Stacks

A stack is a LIFO (last in - first out) collection. The item pushed in first will be the last to
be taken by pop. Only the last item is accessible at any time, and items can only be put at
the top. The non-generic stack class is Stack, while the generic one is Stack<T>.

120

Hashtables and dictionaries

5.12 Hashtables and dictionaries

A dictionary is a collection of values with keys. The values can be very complex, yet
searching the keys is still fast. The non-generic class is Hashtable, while the generic one is
Dictionary<TKey, TValue>.

20

Threads are tasks that can run concurrently to other threads and can share data. When
your program starts, it creates a thread for the entry point of your program, usually a
Main function. So, you can think of a "program" as being made up of threads. The .NET
Framework allows you to use threading in your programs to run code in parallel to each
other. This is often done for two reasons:

1. If the thread running your graphical user interface performs time-consuming work,
your program may appear to be unresponsive. Using threading, you can create a new
thread to perform tasks and report its progress to the GUI thread.

2. On computers with more than one CPU or CPUs with more than one core, threads
can maximize the use of computational resources, speeding up tasks.

5.13 The Thread class

The System.Threading.Thread class exposes basic functionality for using threads. To
create a thread, you simply create an instance of the Thread class with a ThreadStart or
ParameterizedThreadStart delegate pointing to the code the thread should start running.
For example:

using System;

using System.Threading;

public static class Program

{

private static void SecondThreadFunction()

{

while (true)

{

Console.WriteLine("Second thread says hello.");

Thread.Sleep(1000); // pause execution of the current

thread for 1 second (1000 ms)

}

}

public static void Main()

{

Thread newThread = new Thread(new

ThreadStart(SecondThreadFunction));

newThread.Start();

while (true)

{

Console.WriteLine("First thread says hello.");

Thread.Sleep(500); // pause execution of the current

20 http://en.wikibooks.org/wiki/Category%3A

121

http://en.wikibooks.org/wiki/Category%3A

The .NET Framework

thread for half a second (500 ms)

}

}

}

You should see the following output:

First thread says hello.

Second thread says hello.

First thread says hello.

First thread says hello.

Second thread says hello.

...

Notice that the while keyword is needed because as soon as the function returns, the
thread exits, or terminates.

5.13.1 ParameterizedThreadStart

The void ParameterizedThreadStart(object obj) delegate allows you to pass a param-
eter to the new thread:

using System;

using System.Threading;

public static class Program

{

private static void SecondThreadFunction(object param)

{

while (true)

{

Console.WriteLine("Second thread says " +

param.ToString() + ".");

Thread.Sleep(500); // pause execution of the current

thread for half a second (500 ms)

}

}

public static void Main()

{

Thread newThread = new Thread(new

ParameterizedThreadStart(SecondThreadFunction));

newThread.Start(1234); // here you pass a parameter to the

new thread

while (true)

{

Console.WriteLine("First thread says hello.");

Thread.Sleep(1000); // pause execution of the current

thread for a second (1000 ms)

}

}

}

The output is:

122

Sharing Data

First thread says hello.

Second thread says 1234.

Second thread says 1234.

First thread says hello.

...

5.14 Sharing Data

Although we could use ParameterizedThreadStart to pass parameter(s) to threads, it is
not typesafe and is clumsy to use. We could exploit anonymous delegates to share data
between threads, however:

using System;

using System.Threading;

public static class Program

{

public static void Main()

{

int number = 1;

Thread newThread = new Thread(new ThreadStart(delegate

{

while (true)

{

number++;

Console.WriteLine("Second thread says " +

number.ToString() + ".");

Thread.Sleep(1000);

}

}));

newThread.Start();

while (true)

{

number++;

Console.WriteLine("First thread says " +

number.ToString() + ".");

Thread.Sleep(1000);

}

}

}

Notice how the body of the anonymous delegate can access the local variable number.

5.15 Asynchronous Delegates

Using anonymous delegates can lead to a lot of syntax, confusion of scope, and lack of
encapsulation. However with the use of lambda expressions, some of these problems can
be mitigated. Instead of anonymous delegates, you can use asynchronous delegates to
pass and return data, all of which is type safe. It should be noted that when you use a
asynchronous delegate, you are actually queueing a new thread to the thread pool. Also,
using asynchronous delegates forces you to use the asynchronous model.

123

The .NET Framework

using System;

public static class Program

{

delegate int del(int[] data);

public static int SumOfNumbers(int[] data)

{

int sum = 0;

foreach (int number in data) {

sum += number;

}

return sum;

}

public static void Main()

{

int[] numbers = new int[] { 1, 2, 3, 4, 5 };

del func = SumOfNumbers;

IAsyncResult result = func.BeginInvoke(numbers, null,

null);

// I can do stuff here while numbers is being added

int sum = func.EndInvoke(result);

// sum = 15

}

}

5.16 Synchronization

In the sharing data example, you may have noticed that often, if not all of the time, you
will get the following output:

First thread says 2.

Second thread says 3.

Second thread says 5.

First thread says 4.

Second thread says 7.

First thread says 7.

One would expect that at least, the numbers would be printed in ascending order! This
problem arises because of the fact that the two pieces of code are running at the same time.
For example, it printed 3, 5, then 4. Let us examine what may have occurred:

1. After "First thread says 2", the first thread incremented number, making it 3, and
printed it.

2. The second thread then incremented number, making it 4.
3. Just before the second thread got a chance to print number, the first thread incremented

number, making it 5, and printed it.
4. The second thread then printed what number was before the first thread incremented

it, that is, 4. Note that this may have occurred due to console output buffering.

124

Synchronization

The solution to this problem is to synchronize the two threads, making sure their code
doesn't interleave like it did. C# supports this through the lock keyword. We can put
blocks of code under this keyword:

using System;

using System.Threading;

public static class Program

{

public static void Main()

{

int number = 1;

object numberLock = new object();

Thread newThread = new Thread(new ThreadStart(delegate

{

while (true)

{

lock (numberLock)

{

number++;

Console.WriteLine("Second thread says " +

number.ToString() + ".");

}

Thread.Sleep(1000);

}

}));

newThread.Start();

while (true)

{

lock (numberLock)

{

number++;

Console.WriteLine("First thread says " +

number.ToString() + ".");

}

Thread.Sleep(1000);

}

}

}

The variable numberLock is needed because the lock keyword only operates on reference
types, not value types. This time, you will get the correct output:

First thread says 2.

Second thread says 3.

Second thread says 4.

First thread says 5.

Second thread says 6.

...

The lock keyword operates by trying to gain an exclusive lock on the object passed to it
(numberLock). It will only release the lock when the code block has finished execution (that
is, after the }). If an object is already locked when another thread tries to gain a lock on
the same object, the thread will block (suspend execution) until the lock is released, and
then lock the object. This way, sections of code can be prevented from interleaving.

125

The .NET Framework

5.16.1 Thread.Join()

The Join method of the Thread class allows a thread to wait for another thread, optionally
specifying a timeout:

using System;

using System.Threading;

public static class Program

{

public static void Main()

{

Thread newThread = new Thread(new ThreadStart(delegate

{

Console.WriteLine("Second thread reporting.");

Thread.Sleep(5000);

Console.WriteLine("Second thread done sleeping.");

}));

newThread.Start();

Console.WriteLine("Just started second thread.");

newThread.Join(1000);

Console.WriteLine("First thread waited for 1 second.");

newThread.Join();

Console.WriteLine("First thread finished waiting for second

thread. Press any key.");

Console.ReadKey();

}

}

The output is:

Just started second thread.

Second thread reporting.

First thread waited for 1 second.

Second thread done sleeping.

First thread finished waiting for second thread. Press any key.

The .NET Framework currently supports calling unmanaged functions and using unmanaged
data, a process called marshalling. This is often done to use Windows API functions and
data structures, but can also be used with custom libraries.

5.17 GetSystemTimes

A simple example to start with is the Windows API function GetSystemTimes. It is declared
as:

BOOL WINAPI GetSystemTimes(

__out_opt LPFILETIME lpIdleTime,

__out_opt LPFILETIME lpKernelTime,

__out_opt LPFILETIME lpUserTime

);

LPFILETIME is a pointer to a FILETIME structure, which is simply a 64-bit integer. Since
C# supports 64-bit numbers through the long type, we can use that. We can then import
and use the function as follows:

126

GetProcessIoCounters

using System;

using System.Runtime.InteropServices;

public class Program

{

[DllImport("kernel32.dll")]

static extern bool GetSystemTimes(out long idleTime, out long

kernelTime, out long userTime);

public static void Main()

{

long idleTime, kernelTime, userTime;

GetSystemTimes(out idleTime, out kernelTime, out userTime);

Console.WriteLine("Your CPU(s) have been idle for: " + (new

TimeSpan(idleTime)).ToString());

Console.ReadKey();

}

}

Note that the use of out or ref in parameters automatically makes it a pointer to the
unmanaged function.

5.18 GetProcessIoCounters

To pass pointers to structs, we can use the out or ref keyword:

using System;

using System.Runtime.InteropServices;

public class Program

{

struct IO_COUNTERS

{

public ulong ReadOperationCount;

public ulong WriteOperationCount;

public ulong OtherOperationCount;

public ulong ReadTransferCount;

public ulong WriteTransferCount;

public ulong OtherTransferCount;

}

[DllImport("kernel32.dll")]

static extern bool GetProcessIoCounters(IntPtr ProcessHandle, out

IO_COUNTERS IoCounters);

public static void Main()

{

IO_COUNTERS counters;

GetPro

cessIoCounters(System.Diagnostics.Process.GetCurrentProcess().Handle,

out counters);

Console.WriteLine("This process has read " +

counters.ReadTransferCount.ToString("N0") +

" bytes of data.");

Console.ReadKey();

}

}

127

6 Keywords

Abstract classes may contain abstract members in addition to implemented ones. That is,
while some of the methods and properties in an abstract class may be implemented, others
(the abstract members) may have their signatures defined, but have no implementation.
Concrete subclasses derived from an abstract class define those methods and properties.

1

The as keyword casts an object to a different type. It is therefore similar to the TypeA varA

= (TypeA) varB syntax. The difference is that this keyword returns null if the object was
of an incompatible type, while the former method throws a type-cast exception in that case.

6.0.1 See also

• is2

3

The keyword base describes that you would like to refer to the base class for the requested
information, not in the current instantiated class.

A base class is the class in which the currently implemented class inherits from. When cre-
ating a class with no defined base class, the compiler automatically uses the System.Object

base class.

Therefore the two declarations below are equivalent.

public class MyClass

{

}

public class MyClass : System.Object

{

}

Some of the reasons the base keyword is used is:

• Passing information to the base class's constructor

public class MyCustomException : System.Exception

{

public MyCustomException() : base() {}

1 http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords

2 Chapter 6.1.4 on page 141
3 http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords

129

http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords
http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords

Keywords

public MyCustomerException(string message, Exception

innerException) : base(message,innerException) {}

//

}

• Recalling variables in the base class, where the newly implemented class is overriding its
behaviour

public class MyBaseClass

{

protected string className = "MyBaseClass";

}

public class MyNewClass : MyBaseClass

{

protected new string className = "MyNewClass";

public override string BaseClassName

{

get { return base.className; }

}

}

• Recalling methods in the base class. This is useful when you want to add to a method,
but still keep the underlying implementation.

// Necessary using‚s here

public class _Default : System.Web.UI.Page

{

protected void InitializeCulture()

{

System.Threading.Thread.CurrentThread.CurrentUICulture =

CultureInfo.GetSpecificCulture(Page.UICulture);

base.InitializeCulture();

}

}

4

The bool keyword is used in field, method5, property6, and variable declarations and in
cast and typeof operations as an alias for the .NET Framework structure System.Boolean.
That is, it represents a value of true or false. Unlike in C++, whose boolean is actually an
integer, a bool in C# is its own data type and cannot be cast to any other primitive type.

7

The keyword break is used to exit out of a loop or switch block.

break as used in a loop

4 http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords

5 Chapter 3.2 on page 52
6 Chapter 3.5 on page 54
7 http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords

130

http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords
http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords

GetProcessIoCounters

int x;

while (x < 20){

if (x > 10) break;

x++;

}

The while loop would increment x as long as it was less than twenty. However when
x is incremented to ten the condition in the if statement becomes true, so the break
statement causes the while loop to be broken and execution would continue after the closing
parentheses.

break as used in a switch block

int x;

switch (x)

{

case 0:

Console.WriteLine("x is 0");

break;

case 1:

Console.WriteLine("x is 1");

break;

case 2:

// falls through

case 3:

Console.WriteLine("x is 2 or 3");

break;

}

When the program enters the switch block, it will search for a case statement that is true.
Once it finds one, it will read any further statements printed until it finds a break statement.
In the above example, if x is 0 or 1, the console will only print their respective values and
then jump out of the statement. However, if the value of x is 2 or 3, the program will
read the same proceeding statement(s) until it reaches a break statement. In order not to
show anybody who reads the code that this handling for 2 is the same for three, it is good
programming practice to add a comment like "falls through" after the falling-through cases.

8

The byte keyword is used in field, method9, property10, and variable declarations and in
cast and typeof operations as an alias for the .NET Framework structure System.Byte.
That is, it represents an 8-bit unsigned integer whose value ranges from 0 to 255.

11

The keyword case is often used in a switch12 statement.

8 http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming

9 Chapter 3.2 on page 52
10 Chapter 3.5 on page 54
11 http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords

12 Chapter 6.1.4 on page 150

131

http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming
http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords

Keywords

13

The keyword catch is used to identify a statement or statement block for execution, if an
exception occurs in the body of the enclosing try14 block. The catch clause is preceded by
the try15 clause, and may optionally be followed by a finally16 clause.

17

The char keyword is used in field, method18, property19, and variable declarations and in
cast and typeof operations as an alias for the .NET Framework structure System.Char.
That is, it represents a Unicode20 character whose from 0 to 65,535.

21

The checked and unchecked operators are used to control the overflow checking context for
integral-type arithmetic operations and conversions. It checks, if there is an overflow (this is
default).

See also

• http://www.csharpfriends.com/Spec/index.aspx?specID=14.5.12.htm

22

The class keyword is used to declare a class23.

24

The const keyword is used in field and local variable declarations to make the variable
constant. It is thus associated with its declaring class or assembly instead of with an instance
of the class or with a method call. It is syntactically invalid to assign a value to such a
variable anywhere other than its declaration.

Further reading

• Constant function parameters25

26

The keyword continue can be used inside any loop in a method. Its affect is to end the
current loop iteration and proceed to the next one. If executed inside a for, end-of-loop
statement is executed (just like normal loop termination).

13 http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords

14 Chapter 6.1.4 on page 151
15 Chapter 6.1.4 on page 151
16 Chapter 6.1.2 on page 136
17 http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords

18 Chapter 3.2 on page 52
19 Chapter 3.5 on page 54
20 http://en.wikibooks.org/wiki/%3Aw%3AUnicode

21 http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords

22 http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords

23 Chapter 3.1 on page 50
24 http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords

25
http://en.wikibooks.org/wiki/%3Aw%3AConstant%20%28programming%29%23Constant%

20function%20parameters
26 http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords

132

http://www.csharpfriends.com/Spec/index.aspx?specID=14.5.12.htm
http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords
http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords
http://en.wikibooks.org/wiki/%3Aw%3AUnicode
http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords
http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords
http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords
http://en.wikibooks.org/wiki/%3Aw%3AConstant%20%28programming%29%23Constant%20function%20parameters
http://en.wikibooks.org/wiki/%3Aw%3AConstant%20%28programming%29%23Constant%20function%20parameters
http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords

References

27

The decimal keyword is used in field, method28, property29, and variable declarations and in
cast and typeof operations as an alias for the .NET Framework structure System.Decimal.
That is, it represents a signed, 128-bit decimal number whose value is 0 or a decimal number
with 28 or 29 digits of precision ranging either from −1.0 × 10−28 to −7.9 × 1028 or from
1.0×10−28 to 7.9×1028.

30

The default keyword can be used in the switch statement or in generic code:31

• The switch statement33: Specifies the default label.
• Generic code34: Specifies the default value of the type parameter. This will be null for

reference types and zero for value types.

6.1 References

35

The delegate keyword is used to declare a delegate. A delegate is a programming construct
that is used to obtain a callable reference to a method of a class.

36

The do keyword identifies the beginning of a do ... loop37.

38

The double keyword is used in field, method39, property40, and variable declarations and in
cast and typeof operations as an alias for the .NET Framework structure System.Double.
That is, it represents an IEEE 754, 64-bit signed binary floating point number whose value is
negative 0, positive 0, negative infinity, positive infinity, not a number, or a number ranging
either from −5.0×10−324 to −1.79×10308 or from 5.0×10−324 to 1.79×10308.

41

The else keyword identifies a else clause42 of an if statement with the following syntax:

27 http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming

28 Chapter 3.2 on page 52
29 Chapter 3.5 on page 54
30 http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords

31 default (C# Reference) 32. MSDN . Retrieved 2011-08-09 http://

33 http://msdn2.microsoft.com/en-us/library/06tc147t.aspx

34 http://msdn2.microsoft.com/en-us/library/xwth0h0d.aspx

35 http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords

36 http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords

37 Chapter 2.25.2 on page 35
38 http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords

39 Chapter 3.2 on page 52
40 Chapter 3.5 on page 54
41 http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords

42 Chapter 2.25.2 on page 35

133

http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming
http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords
http://
http://msdn2.microsoft.com/en-us/library/06tc147t.aspx
http://msdn2.microsoft.com/en-us/library/xwth0h0d.aspx
http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords
http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords
http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords
http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords

Keywords

if-statement ::= "if" "(" condition ")" if-body "else" else-body

condition ::= boolean-expression

if-body ::= statement-or-statement-block

else-body ::= statement-or-statement-block

An else clause immediately follows an if-body. It provides code to execute when the
condition is false. Making the else-body another if statement creates the common cascade
of if, else if, else if, else if, else statements:

using System;

public class IfStatementSample

{

public void IfMyNumberIs()

{

int myNumber = 5;

if (myNumber == 4)

Console.WriteLine("This will not be shown because

myNumber is not 4.");

else if(myNumber < 0)

{

Console.WriteLine("This will not be shown because

myNumber is not negative.");

}

else if(myNumber%2 == 0)

Console.WriteLine("This will not be shown because

myNumber is not even.");

else

{

Console.WriteLine("myNumber does not match the coded

conditions, so this sentence will be shown!");

}

}

}

The above example only checks whether myNumber is less than 0, if myNumber is not 4. It in
turn only checks whether myNumber%2 is 0, if myNumber is not less than 0. Since none of the
conditions are true, it executes the body of the final else clause.

43

The enum keyword identifies an enumeration44.

45

The event keyword is used to declare an event46.

47

43 http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords

44 Chapter 2.22 on page 31
45 http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords

46 Chapter 3.7 on page 55
47 http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords

134

http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords
http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords
http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords

References

6.1.1 General

When values are cast implicitally, the runtime does not need any casting in code by the
developer in order for the value to be converted to its new type.

Here is an example, where the developer is casting explicitly:

// Example of explicit casting.

float fNumber = 100.00f;

int iNumber = (int) fNumber;

The developer has told the runtime, "I know what I'm doing, force this conversion."

Implicit casting means that runtime doesn't need any prompting in order to do the conversion.
Here is an example of this.

// Example of implicit casting.

byte bNumber = 10;

int iNumber = bNumber;

6.1.2 Keyword

Notice that no casting was necessary by the developer. What is special about implicit, is
that the context that the type is converted to is totally lossless i.e. converting to this type
loses no information, so it can be converted back without worry.

The explicit keyword is used to create type conversion operators that can only be used by
specifying an explicit type cast.

This construct is useful to help software developers write more readable code. Having an
explicit cast name makes it clear that a conversion is taking place.

class Something

{

public static explicit operator Something(string s)

{

// Convert the string to Something

}

}

string x = "hello";

// Implicit conversion (string to Something) generates a compile time

error

Something s = x;

// This statement is correct (explicit type name conversion)

Something s = (Something) x;

48

The keyword extern indicates that the method being called exists in a DLL49.

48 http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords

49 http://en.wikibooks.org/wiki/%3Aw%3ADynamic-link%20library

135

http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords
http://en.wikibooks.org/wiki/%3Aw%3ADynamic-link%20library

Keywords

A tool called tlbimp.exe can create a wrapper assembly that allows C# to interact with
the DLL like it was a .NET assembly i.e. use constructors to instantiate it, call its methods.

Older DLLs will not work with this method. Instead, you have to explicitally tell the compiler
what DLL to call, what method to call and what parameters to pass. Since parameter type
is very important, you can also explicitally define what type the parameter should be passed
to the method as.

Here is an example:

using System;

using System.Runtime.InteropServices;

namespace ExternKeyword

{

public class Program

{

static void Main()

{

NativeMethods.MessageBoxEx(IntPtr.Zero, "Hello there",

"Caption here", 0, 0);

}

}

public class NativeMethods

{

[DllImport("user32.dll")]

public static extern MessageBoxEx(IntPtr hWnd, string

lpText, string lpCaption, uint uType, short wLanguageId);

}

}

The [DllImport("user32.dll")] tells the compiler which DLL to reference. Windows
searches for files as defined by the PATH environment variable, and therefore will search
those paths before failing.

The method is also static because the DLL may not understand how to be "created", as
DLLs can be created in different languages. This allows the method to be called directly,
instead of being instantiated and then used.

50

The false keyword is a boolean51 constant value.

52

The keyword finally is used to identify a statement or statement block after a try53-catch54

block for execution regardless of whether the associated try block encountered an exception,
and executes even after a return statement. The finally block is used to perform cleanup
activities.

55

50 http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming

51 Chapter 6.0.1 on page 130
52 http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords

53 Chapter 6.1.4 on page 151
54 Chapter 6.0.1 on page 132
55 http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords

136

http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming
http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords
http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords

References

The fixed keyword is used to prevent the garbage collector from relocating a variable. You
may only use this in an unsafe context.

fixed (int *c = &shape.color) {

*c = Color.White;

}

If you are using C# 2.0 or greater, the fixed may also be used to declare a fixed-size array.
This is useful when creating code that works with a COM56 project or DLL57.

Your array must be composed of one of the primitive types: bool, byte, char, double,
float, int, long, sbyte, short, ulong, or ushort.

protected fixed int monthDays[12];

58

The float keyword is used in field, method59, property60, and variable declarations and in
cast and typeof operations as an alias for the .NET Framework structure System.Single.
That is, it represents a IEEE 754, 32-bit signed binary floating point number whose value is
negative 0, positive 0, negative infinity, positive infinity, not a number, or a number ranging
either from −1.5×10−45 to −3.4×1038 or from 1.5×10−45 to 3.4×1038.

61

The for keyword identifies a for loop62.

63

The foreach keyword identifies a foreach loop64.

// example of foreach to iterate over an array

public static void Main() {

int[] scores = new int [] { 54, 78, 34, 88, 98, 12 };

foreach (int score in scores) {

total += score;

}

int averageScore = total/scores.length;

}

65

The goto keyword returns the flow of operation to the label which follows it. Labels can be
created by putting a colon after any word. e.g.

56 http://en.wikibooks.org/wiki/%3Aw%3AComponent%20Object%20Model

57 http://en.wikibooks.org/wiki/%3Aw%3ADynamic-link%20library

58 http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords

59 Chapter 3.2 on page 52
60 Chapter 3.5 on page 54
61 http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords

62 Chapter 2.25.2 on page 35
63 http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords

64 Chapter 2.25.2 on page 35
65 http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords

137

http://en.wikibooks.org/wiki/%3Aw%3AComponent%20Object%20Model
http://en.wikibooks.org/wiki/%3Aw%3ADynamic-link%20library
http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords
http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords
http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords
http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords

Keywords

thelabel: // This is a label

System.Console.WriteLine("Blah blah blah");

goto thelabel; // Program flow returns to thelabel

The use of goto is very controversial, because, when used frivolously, it creates code that
jumps from place to place and is disorganized and hard to read. It is rarely even necessary
because the same thing can often be accomplished with a more organized for loop66 or
while loop67 loop.

68

The if keyword identifies an if statement69 with the following syntax:

if-statement ::= "if" "(" condition ")" if-body ["else" else-body]

condition ::= boolean-expression

if-body ::= statement-or-statement-block

else-body ::= statement-or-statement-block

If the condition evaluates to true, the if-body executes. Curly braces ("{" and "}") allow the
if-body to contain more than one statement. Optionally, an else clause can immediately
follow the if-body, providing code to execute when the condition is false. Making the else-body
another if statement creates the common cascade of if, else if, else if, else if, else

statements:

using System;

public class IfStatementSample

{

public void IfMyNumberIs()

{

int myNumber = 5;

if (myNumber == 4)

Console.WriteLine("This will not be shown because

myNumber is not 4.");

else if(myNumber < 0)

{

Console.WriteLine("This will not be shown because

myNumber is not negative.");

}

else if(myNumber%2 == 0)

Console.WriteLine("This will not be shown because

myNumber is not even.");

else

{

Console.WriteLine("myNumber does not match the coded

conditions, so this sentence will be shown!");

}

}

}

The boolean expression used in an if statement typically contains one or more of the
following operators:

66 Chapter 2.25.2 on page 35
67 Chapter 2.25.2 on page 35
68 http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords

69 Chapter 2.25.2 on page 35

138

http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords

References

Operator Meaning Operator Meaning

< less than > greater than
== equal to != not equal to
<= less than or equal to >= greater than or equal to
&& and || or
! not

See also else70.

71

6.1.3 General

When values are cast implicitally, the runtime does not need any casting in code by the
developer in order for the value to be converted to its new type.

Here is an example, where the developer is casting explicitly:

// Example of explicit casting.

float fNumber = 100.00f;

int iNumber = (int) fNumber;

The developer has told the runtime, "I know what I'm doing, force this conversion."

Implicit casting means that runtime doesn't need any prompting in order to do the conversion.
Here is an example of this.

// Example of implicit casting.

byte bNumber = 10;

int iNumber = bNumber;

Notice that no casting was necessary by the developer. What is special about implicit is
that the context that the type is converted to is totally lossless, i.e. converting to this type
loses no information. So, it can be converted back without worry.

6.1.4 Keyword

The keyword implicit is used for a type to define how to can be converted implicitly. It is
used to define what types can be converted to without the need for explicit casting.

As an example, let us take a Fraction class, that will hold a nominator (the number at the
top of the division), and a denominator (the number at the bottom of the division). We will
add a property so that the value can be converted to a float.

public class Fraction

{

private int nominator;

private int denominator;

70 Chapter 6.1 on page 133
71 http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords

139

http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords

Keywords

public Fraction(int nominator1, int denominator1)

{

nominator = nominator1;

denominator = denominator1;

}

public float Value { get { return

(float)_nominator/(float)_denominator; } }

public static implicit operator float(Fraction f)

{

return f.Value;

}

public override string ToString()

{

return _nominator + "/" + _denominator;

}

}

public class Program

{

[STAThread]

public static void Main(string[] args)

{

Fraction fractionClass = new Fraction(1, 2);

float number = fractionClass;

Console.WriteLine("{0} = {1}", fractionClass, number);

}

}

To re-iterate, the value it implicitally casts to must hold data in the form that the original
class can be converted back to. If this is not possible, and the range is narrowed (like
converting double to int), use the explicit operator.

72

The in keyword identifies the collection to enumerate in a foreach loop73.

74

The int keyword is used in field, method75, property76, and variable declarations and in
cast and typeof operations as an alias for the .NET Framework structure System.Int32.
That is, it represents a 32-bit signed integer whose value ranges from -2,147,483,648 to
2,147,483,647.

77

The interface keyword is used to declare an interface. Interfaces provide a construct for
a programmer to create types that can have methods, properties, delegates, events, and
indexers declared, but not implemented.

72 http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming

73 Chapter 2.25.2 on page 35
74 http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords

75 Chapter 3.2 on page 52
76 Chapter 3.5 on page 54
77 http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords

140

http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming
http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords
http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords

References

It is a good programming practice to give interfaces differing names from classes that start
with an I and/or finish with ...able, like IRun or Runnable or IRunnable.

78

The internal keyword is an access modifier used in field, method79, and property80 decla-
rations to make the field, method, or property internal to its enclosing assembly. That is, it
is only visible81 within the assembly that implements it.

82

The is keyword compares an object to a type, and if they're the same or of the same "kind"
(the object inherits83 the type), returns true. The keyword is therefore used to check for
type compatibility, usually before casting (converting) a source type to a destination type in
order to ensure that won't cause a type-cast exception to be thrown. Using is on a null

variable always returns false.

This code snippet shows a sample usage:

System.IO.StreamReader reader = new StreamReader("readme.txt");

bool b = reader is System.IO.TextReader;

// b is now set to true, because StreamReader inherits TextReader

84

The lock keyword allows a section of code to exclusively use a resource, a feature useful in
multi-threaded applications. If a lock to the specified object is already held when a piece of
code tries to lock the object, the code's thread is blocked until the object is available.

using System;

using System.Threading;

class LockDemo

{

private static int number = 0;

private static object lockObject = new object();

private static void DoSomething()

{

while (true)

{

lock (lockObject)

{

int originalNumber = number;

number += 1;

Thread.Sleep((new Random()).Next(1000)); // sleep for

a random amount of time

number += 1;

78 http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords

79 Chapter 3.2 on page 52
80 Chapter 3.5 on page 54

81
http://en.wikipedia.org/wiki/Variable%20%28computer%20science%29%23Scope%20and%

20extent
82 http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords

83 Chapter 4 on page 73
84 http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords

141

http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords
http://en.wikipedia.org/wiki/Variable%20%28computer%20science%29%23Scope%20and%20extent
http://en.wikipedia.org/wiki/Variable%20%28computer%20science%29%23Scope%20and%20extent
http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords
http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords

Keywords

Thread.Sleep((new Random()).Next(1000)); // sleep

again

Console.Write("Expecting number to be " +

(originalNumber + 2).ToString());

Console.WriteLine(", and it is: " +

number.ToString());

// without the lock statement, the above would

produce unexpected results,

// since the other thread may have added 2 to the

number while we were sleeping.

}

}

}

public static void Main()

{

Thread t = new Thread(new ThreadStart(DoSomething));

t.Start();

DoSomething(); // at this point, two instances of DoSomething

are running at the same time.

}

}

The parameter to the lock statement must be an object reference, not a value type:

class LockDemo2

{

private int number;

private object obj = new object();

public void DoSomething()

{

lock (this) // ok

{

...

}

lock (number) // not ok, number is not a reference

{

...

}

lock (obj) // ok, obj is a reference

{

...

}

}

}

85

The long keyword is used in field, method86, property87, and variable declarations and in cast
and typeof operations as an alias for the .NET Framework structure System.Int64. That
is, it represents a 64-bit signed integer whose value ranges from -9,223,372,036,854,775,808
to 9,223,372,036,854,775,807.

88

85 http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords

86 Chapter 3.2 on page 52
87 Chapter 3.5 on page 54
88 http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords

142

http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords
http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords

References

The namespace keyword is used to supply a namespace for class, structure, and type
declarations.

89

The new keyword has two different meanings:

1. It is an operator that requests a new instance of the class identified by its argument.
2. It is a modifier that explicitly hides a member.

As an example, see the code below:

public class Car

{

public void go()

{

}

}

Car theCar = new Car(); // The new operator creates a Car

instance

int i = new int(); // Identical to ... = 0;

public class Lamborghini : Car

{

public new void go() // Hides Car.go() with this method

{

}

}

90

The null keyword represents an empty value for a reference type variable, i.e. for a variable
of any type derived from System.Object. In C# 2.0, null also represents the empty value
for nullable value type variables.

91

The object keyword is used in field, method92, property93, and variable declarations and in
cast and typeof operations as an alias for the .NET Framework structure System.Object.
That is, it represents the base class from which all other reference types derive. On some
platforms, the size of the reference is 32 bits, while on other platforms it is 64 bits.

94

The operator keyword allows a class to overload arithmetic and cast operators:

public class Complex

{

private double re, im;

public double Real

89 http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords

90 http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords

91 http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords

92 Chapter 3.2 on page 52
93 Chapter 3.5 on page 54
94 http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords

143

http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords
http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords
http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords
http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords

Keywords

{

get { return re; }

set { re = value; }

}

public double Imaginary

{

get { return im; }

set { im = value; }

}

// binary operator overloading

public static Complex operator +(Complex c1, Complex c2)

{

return new Complex() { Real = c1.Real + c2.Real, Imaginary =

c1.Imaginary + c2.Imaginary };

}

// unary operator overloading

public static Complex operator -(Complex c)

{

return new Complex() { Real = -c.Real, Imaginary =

-c.Imaginary };

}

// cast operator overloading (both implicit and explicit)

public static implicit operator double(Complex c)

{

// return the modulus: sqrt(x^2 + y^2)

return Math.Sqrt(Math.Pow(c.Real, 2) + Math.Pow(c.Imaginary,

2));

}

public static explicit operator string(Complex c)

{

// we should be overloading the ToString() method, but this

is just a demonstration

return c.Real.ToString() + " + " + c.Imaginary.ToString() +

"i";

}

}

public class StaticDemo

{

public static void Main()

{

Complex number1 = new Complex() { Real = 1, Imaginary = 2 };

Complex number2 = new Complex() { Real = 4, Imaginary = 10 };

Complex number3 = number1 + number2; // number3 now has Real

= 5, Imaginary = 12

number3 = -number3; // number3 now has Real = -5, Imaginary =

-12

double testNumber = number3; // testNumber will be set to the

absolute value of number3

Console.WriteLine((string)number3); // This will print "-5 +

-12i".

// The cast to string was needed because that was an explicit

cast operator.

}

}

95

95 http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords

144

http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords

References

The out keyword explicitly specifies that a variable should be passed by reference to a
method, and set in that method. A variable using this keyword must not be intialized before
the method call to ensure the developer understand its intended effects. Using this keyword
requires the called method to set the variable using this modifier before returning. Using
out also requires the developer to specify the keyword even in the calling code, to ensure
that it is easily visible to developers reading the code that the variable will have its value
changed elsewhere, which is useful when analyzing the program flow.

An example of passing a variable with out follows:

void CallingMethod()

{

int i;

SetDependingOnTime(out i);

// i is now 10 before/at 12 am, or 20 after

}

void SetDependingOnTime(out int iValue)

{

iValue = DateTime.Now.Hour <= 12 ? 10 : 20;

}

96

The keyword override is use in declaring an overridden function, which extends a base
class function of the same name.

Further reading

• Inheritance keywords97

98

The keyword params is used to describe when a grouping of parameters are passed to a
method, but the number of parameters are not important, as they may vary. Since the
number isn't important, the params keyword must be the last variable in a method signature
so that the compiler can deal with the parameters which have been defined first, before
dealing with the params.

Here are examples of where it will, and will not work:

// This works

public static void AddToShoppingBasket(decimal total, params string[]

items)

{

//

}

// This works

public static void AddToShoppingBasket(decimal total, int

totalQuantity, params string[] items)

{

//

}

96 http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords

97 Chapter 4.5 on page 77
98 http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords

145

http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords
http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords

Keywords

// THIS DOES NOT WORK <-------------------->

public static void AddToShoppingBasket(params string[] items, decimal

total, int totalQuantity)

{

//

}

A good example of this is the String.Format method. The String.Format method allows
a user to pass in a string formatted to their requirements, and then lots of parameters for
the values to insert into the string. Here is an example:

public static string FormatMyString(string format, params string[]

values)

{

string myFormat = "Date: {0}, Time: {1}, WeekDay: {1}";

return String.Format(myFormat, DateTime.Now.ToShortDateString(),

DateTime.Now.ToShortTimeString(), DateTime.Now.DayOfWeek);

}

// Output will be something like:

//

// Date: 7/8/2007, Time: 13:00, WeekDay: Tuesday;

//

The String.Format method has taken a string, and replaced the {0}, {1}, {2} with the 1st,
2nd and 3rd parameters. If the params keyword did not exist, then the String.Format()

would need an infinite number of overloads to cater for each case.

public string Format(string format, string param1)

{

//

}

public string Format(string format, string param1, string param2)

{

//

}

public string Format(string format, string param1, string param2,

string param3)

{

//

}

public string Format(string format, string param1, string param2,

string param3, string param4)

{

//

}

public string Format(string format, string param1, string param2,

string param3, string param4, string param5)

{

//

}

// To infinitum

99

99 http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming

146

http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming

References

The private keyword is used in field, method100, and property101 declarations to make the
field, method, or property private to its enclosing class. That is, it is not visible102 outside
of its class.

103

The protected keyword is used in field, method104, and property105 declarations to make
the field, method, or property protected to its enclosing class. That is, it is not visible106

outside of its class.

107

The public keyword is used in field, method108, and property109 declarations to make the
field, method, or property public to its enclosing class. That is, it is visible110 from any class.

111

The readonly keyword is closely related to the const keyword at a glance, with the exception
of allowing a variable with this modifier to be initialized in a constructor, along with being
associated with a class instance (object) rather than the class itself.

The primary use for this keyword is to allow the variable to take on different values depending
on which constructor was called, in case the class has many, while still ensuring the developer
that it can never intentionally or unintentionally be changed in the code once the object has
been created.

This is a sample usage, assumed to be in a class called SampleClass:

readonly string s;

SampleClass()

{

s = "Hello!";

}

112

The ref keyword explicitely specifies that a variable should be passed by reference rather
than by value.

100 Chapter 3.2 on page 52
101 Chapter 3.5 on page 54
102 http://en.wikipedia.org/wiki/Variable%20%28programming%29%23Scope%20and%20extent

103 http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords

104 Chapter 3.2 on page 52
105 Chapter 3.5 on page 54
106 http://en.wikipedia.org/wiki/Variable%20%28programming%29%23Scope%20and%20extent

107 http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords

108 Chapter 3.2 on page 52
109 Chapter 3.5 on page 54
110 http://en.wikipedia.org/wiki/Variable%20%28programming%29%23Scope%20and%20extent

111 http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords

112 http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords

147

http://en.wikipedia.org/wiki/Variable%20%28programming%29%23Scope%20and%20extent
http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords
http://en.wikipedia.org/wiki/Variable%20%28programming%29%23Scope%20and%20extent
http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords
http://en.wikipedia.org/wiki/Variable%20%28programming%29%23Scope%20and%20extent
http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords
http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords

Keywords

A developer may wish to pass a variable by reference particularly in case of value types113.
If a variable is passed by reference, only a pointer is sent to a function in reality, reducing
the cost of a method call in case it would involve copying large amounts of data, something
C# does when normally passing value types.

Another common reason to pass a variable by reference is to let the called method modify
its value. Because this is allowed, C# always enforces specifying that a value is passed by
reference even in the method call, something many other programming languages don't.
This let developers reading the code easily spot places that can imply a type has had its
value changed in a method, which is useful when analyzing the program flow.

Passing a value by reference does not imply that the called method has to modify the value;
see the out keyword for this.

Passing by reference requires the passed variable to be initialized.

An example of passing a variable by reference follows:

void CallingMethod()

{

int i = 24;

if (DoubleIfEven(ref i))

Console.WriteLine("i was doubled to {0}", i); // outputs "i was

doubled to 48"

}

bool DoubleIfEven(ref int iValue)

{

if (iValue%2 == 0)

{

iValue *= 2;

return true;

}

return false;

}

114

The return keyword is used to return execution from a method or from a property accessor.
If the method or property accessor has a return type, the return keyword is followed by the
value to return.

115

The sbyte keyword is used in field, method116, property117, and variable declarations and
in cast and typeof operations as an alias for the .NET Framework structure System.SByte.
That is, it represents an 8-bit signed integer whose value ranges from -128 to 127.

118

113 Chapter 2.9 on page 17
114 http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords

115 http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords

116 Chapter 3.2 on page 52
117 Chapter 3.5 on page 54
118 http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords

148

http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords
http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords
http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords

References

The sealed keyword is used to specify that a class cannot be inherited from. The following
example shows the context in which it may be used:

public sealed class

{

...

}

Notice: The sealed class inheritance is the same as that of a final class in Java.

119

The short keyword is used in field, method120, property121, and variable declarations and
in cast and typeof operations as an alias for the .NET Framework structure System.Int16.
That is, it represents a 16-bit signed integer whose value ranges from -32,768 to 32,767.

122

The sizeof keyword returns how many bytes an object requires to be stored.

An example usage:

int i = 123456;

Console.WriteLine("Storing i, a {0}, requires {1} bytes, or {2}

bits.",

i.GetType(), sizeof(i), sizeof(i)*8);

// outputs "Storing i, a System.Int32, requires 4 bytes, or 32

bits."

123

The keyword stackalloc is used in an unsafe code context to allocate a block of memory
on the stack.

int* fib = stackalloc int[100];

In the example above, a block of memory of sufficient size to contain 100 elements of type
int is allocated on the stack, not the heap; the address of the block is stored in the pointer
fib. This memory is not subject to garbage collection and therefore does not have to be
pinned (via fixed). The lifetime of the memory block is limited to the lifetime of the method
in which it is defined (there is no way to free the memory before the method returns).

stackalloc is only valid in local variable initializers.

Because Pointer types are involved, stackalloc requires unsafe context. See Unsafe Code
and Pointers.

stackalloc is similar to _alloca in the C run-time library.

119 http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords

120 Chapter 3.2 on page 52
121 Chapter 3.5 on page 54
122 http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords

123 http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords

149

http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords
http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords
http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords

Keywords

Note* - From MSDN

124

The static keyword is used to declare a class or a class member (method, property, field, or
variable) as static. A class that is declared static has only static members, and these are
associated with the entire class instead of class instances.

125

The string keyword is used in field, method126, property127, and variable declarations
and in cast and typeof operations as an alias for System.String. That is, it indicates an
immutable sequence of characters.

128

The struct keyword declares a structure129, i.e. a value type that functions as a light-weight
class.

130

The switch statement is a control statement that handles multiple selections and enumera-
tions by passing control to one of the case statements within its body.

This is an example of a switch statement:

int currentAge = 18;

switch currentAge

{

case 16:

Console.WriteLine("You can drive!")

break;

case 18:

Console.WriteLine("You're finally an adult!");

break;

default:

Console.WriteLine("Nothing exciting happened this year.");

break;

}

Console Output

You're finally an adult!

131

124 http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming

125 http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords

126 Chapter 3.2 on page 52
127 Chapter 3.5 on page 54
128 http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords

129 Chapter 2.23 on page 32
130 http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords

131 http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords

150

http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming
http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords
http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords
http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords
http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords

References

The this keyword is used in an instance method or instance property to refer to the current
class instance. That is, this refers to the object through which its containing method or
property was invoked. It is also used to define extension methods132.

133

The throw keyword is used to throw an exception object.

134

The true keyword is a Boolean135 constant value. Therefore

while(true)

would create an infinite loop.

136

The try keyword is used to identify a statement or statement block as the body of an
exception handling sequence. The body of the exception handling sequence must be followed
by a catch137 clause, a finally138 clause, or both.

try

{

foo();

}

catch(Exception Exc)

{

throw new Exception ("this is the error message", Exc);

}

139

The typeof keyword returns an instance of the System.Type class when passed a name of
a class. It is similar to the sizeof140 keyword in that it returns a value instead of starting
a section (block) of code (see if, try, while).

An example:

using System;

namespace MyNamespace

{

class MyClass

{

static void Main(string[] args)

{

Type t = typeof(int);

Console.Out.WriteLine(t.ToString());

132 Chapter 4.17 on page 90
133 http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords

134 http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords

135 Chapter 6.0.1 on page 130
136 http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords

137 Chapter 6.0.1 on page 132
138 Chapter 6.1.2 on page 136
139 http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords

140 Chapter 6.1.4 on page 149

151

http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords
http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords
http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords
http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords

Keywords

Console.In.Read();

}

}

}

The output will be:

System.Int32

It should be noted that unlike sizeof, only class names themselves and not variables can
be passed to typeof as shown here:

using System;

namespace MyNamespace

{

class MyClass2

{

static void Main(string[] args)

{

char ch;

// This line will cause compilation to fail

Type t = typeof(ch);

Console.Out.WriteLine(t.ToString());

Console.In.Read();

}

}

}

Sometimes, classes will include their own GetType() method that will be similar, if not
identical, to typeof.

141

The uint keyword is used in field, method142, property143, and variable declarations and in
cast and typeof operations as an alias for the .NET Framework structure System.UInt32.
That is, it represents a 32-bit unsigned integer whose value ranges from 0 to 4,294,967,295.

144

The ulong keyword is used in field, method145, property146, and variable declarations
and in cast and typeof operations as an alias for the .NET Framework structure
System.UInt64. That is, it represents a 64-bit unsigned integer whose value ranges from 0
to 18,446,744,073,709,551,615.

147

141 http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords

142 Chapter 3.2 on page 52
143 Chapter 3.5 on page 54
144 http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords

145 Chapter 3.2 on page 52
146 Chapter 3.5 on page 54
147 http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords

152

http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords
http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords
http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords

References

The unchecked keyword prevents overflow-checking when doing integer arithmetics. It may
be used as an operator on a single expression or as a statement on a whole block of code.

int x, y, z;

x = 1222111000;

y = 1222111000;

// used as an operator

z = unchecked(x*y);

// used as a statement

unchecked {

z = x*y;

x = z*z;

}

148

The unsafe keyword may be used to modify a procedure or define a block of code which
uses unsafe code. Code is unsafe if it uses the "address of" (&) or pointer operator (*).

In order for the compiler to compile code containing this keyword, you must use the unsafe

option when using the Microsoft C-Sharp Compiler.

// example of unsafe to modify a procedure

class MyClass {

unsafe static void(string *msg) {

Console.WriteLine(*msg)

}

}

// example of unsafe to modify a code block

string s = "hello";

unsafe {

char *cp = &s[2];

*cp = ‚a‚;

}

149

The ushort keyword is used in field, method150, property151, and variable declarations and
in cast and typeof operations as an alias for the .NET Framework structure System.UInt16.
That is, it represents a 16-bit unsigned integer whose value ranges from 0 to 65,535.

152

The using keyword has two completely unrelated meanings in C#, depending on if it is
used as a directive or a statement.

148 http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords

149 http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords

150 Chapter 3.2 on page 52
151 Chapter 3.5 on page 54
152 http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords

153

http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords
http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords
http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords

Keywords

6.2 The directive

using as a directive resolves unqualified type references so that a developer doesn't have to
specify the complete namespace.

Example:

using System;

// A developer can now type ‚‚Console.WriteLine();‚‚ rather than

‚‚System.Console.WriteLine()‚‚.

using can also provide a namespace alias for referencing types.

Example:

using utils = Company.Application.Utilities;

6.3 The statement

using as a statement automatically calls the dispose on the specified object. The object
must implement the IDisposable interface. It is possible to use several objects in one
statement as long as they are of the same type.

Example:

using (System.IO.StreamReader reader = new

StreamReader("readme.txt"))

{

// read from the file

}

// The file readme.txt has now been closed automatically.

using (Font headerFont = new Font("Arial", 12.0f),

textFont = new Font("Times New Roman", 10.0f))

{

// Use headerFont and textFont.

}

// Both font objects are closed now.

153

The var keyword can be used in place of a type when declaring a variable to allow the
compiler to infer the type of the variable. This feature can be used to shorten variable
declarations, especially when instantiating generic types, and is even necessary with LINQ154

expressions (since queries may generate very complex types).

The following:

int num = 123;

153 http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords

154 http://en.wikibooks.org/wiki/%3Aw%3ALanguage%20Integrated%20Query

154

http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords
http://en.wikibooks.org/wiki/%3Aw%3ALanguage%20Integrated%20Query

The statement

string str = "asdf";

Dictionary<int, string> dict = new Dictionary<int, string>();

is equivalent to:

var num = 123;

var str = "asdf";

var dict = new Dictionary<int, string>();

var does not create a "variant" type; the type is simply inferred by the compiler. In
situations where the type cannot be inferred, the compiler generates an error:

var str; // no assignment, can‚t infer type

void Function(var arg1, var arg2) // can‚t infer type

{

...

}

155

The keyword virtual is applied to a method declaration to indicate that the method may
be overridden in a subclass. If the virtual keyword is not applied and a method is defined
in a subclass with the same signature as the one in the parent class, the method in the
parent class is hidden by the subclass implementation. With other words, it is only possible
to have a true polymorphism156 of functions with this keyword.

Notice: Comparing it with Java157, a method is not virtual if and only if it is final. This
is the result of different design philosophies158.

159

The void keyword is used in method160 signatures to declare a method that does not return
a value. A method declared with the void return type cannot provide any arguments to
any return statements they contain.

Example:

public void WorkRepeatedly(int numberOfTimes)

{

for(int i = 0; i < numberOfTimes; i++)

if(EarlyTerminationIsRequested)

return;

else

DoWork();

}

161

155 http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords

156 http://en.wikibooks.org/wiki/%3Aw%3APolymorphism%20%28computer%20science%29

157 http://en.wikibooks.org/wiki/%3Aw%3AJava%20%28programming%20language%29

158 http://en.wikibooks.org/wiki/%3Aw%3AVirtual%20function%23The%20virtual%20philosophy

159 http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming

160 Chapter 3.2 on page 52
161 http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords

155

http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords
http://en.wikibooks.org/wiki/%3Aw%3APolymorphism%20%28computer%20science%29
http://en.wikibooks.org/wiki/%3Aw%3AJava%20%28programming%20language%29
http://en.wikibooks.org/wiki/%3Aw%3AVirtual%20function%23The%20virtual%20philosophy
http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming
http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords

Keywords

The volatile keyword is used to declare a variable that may change its value over time
due to modification by an outside process, the system hardware, or another concurrently
running thread.

You should use this modifier in your member variable declaration to ensure that whenver
the value is read, you are always getting the most recent (up-to-date) value of the variable.

class MyClass

{

public volatile long systemclock;

}

This keyword has been part of the C# programming language since .NET Framework 1.1
(Visual Studio 2003).

162

The while keyword identifies a while loop163.

164

Special C# Identifiers

The add and remove keywords allow you to execute code whenever a delegate is added or
removed from an event. Its usage is similar to the get and set keywords with properties:

public event MyDelegateType MyEvent

{

add

{

// here you can use the keyword "value" to access the

delegate that is being added

...

}

remove

{

// here you can use the keyword "value" to access the

delegate that is being removed

...

}

}

The code in the add block will be executed when a delegate is added to the event. Similarly,
the code in the remove block will be executed when a delegate is removed from the event.

165

The alias keyword is used to indicate an external alias.

When you need to use several versions of the same assembly or assemblies with the same
full qualified typenames, you need to use the alias and extern keywords to give different
alias names for each version.

Example:

162 http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords

163 Chapter 2.25.2 on page 35
164 http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords

165 http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords

156

http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords
http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords
http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords

The statement

extern alias AppTools;

extern alias AppToolsV2;

To use the typenames of each version, you have the operator :: .

Example:

AppTools::MainTool tool_v1 = new AppTools::MainTool();

AppToolsV2::MainTool tool_v2 = new AppToolsV2::MainTool();

However, this only says to the compiler that there are several assemblies with typename
conflits. To relate what of each assemblies match's the alias name, you have to tell the
compiler on its options apart the source. On dotNet command line, this options would be:

/r:AppTools=AppToolsv100.dll /r:AppToolsV2=AppToolsv200.dll

Notice: In order for it to be of use, you need to provide an external assembly to the
compiler (e.g. pass /r:EXTALIAS=XXX.dll) and identify the external alias within the code
(e.g. extern alias EXTALIAS;)

166

The special identifier get is used to declare the read accessor for a property.

167

The global keyword is useful in some contexts to resolve ambiguity between identifiers. If
you have a conflict between a class name and a namespace, for example, you can use the
global keyword to access the namespace:

namespace MyApp

{

public static class System

{

public static void Main()

{

global::System.Console.WriteLine("Hello, World!");

// if we had just used System.Console.WriteLine,

// the compile would think that we referred to a

// class named "Console" inside our "System" class.

}

}

}

global does not work in the following situation, however, as our System class does not have
a namespace:

public static class System

{

public static void Main()

{

global::System.Console.WriteLine("Hello, World!");

// "System" doesn‚t have a namespace, so the above

// would be referring to this class!

}

}

166 http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords

167 http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords

157

http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords
http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords

Keywords

168

The special identifier partial is used to allow developers to build classes from different files
and have the compiler generate one class, combining all the partial classes. This is mostly
useful for separating classes into separate blocks. For example, Visual Studio 2005 separates
the UI code for forms into a separate partial class that allows you to work on the business
logic separately.

169

The special identifier set is used to declare the write accessor for a property.

170

The special identifier value is used in a property's write accessor to represent the value
requested for assignment to the property.

171

The where keyword has two different meanings:

1. It is used to specify one or more constraints on generic type parameters172.
2. With LINQ173, it is used to query a data source and select or filter elements to return.

174

The yield keyword returns the next value from an iterator or ends175 an iteration.

176

6.4 References

168 http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords

169 http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords

170 http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords

171 http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords

172 Chapter 4.16 on page 89
173 http://en.wikibooks.org/wiki/%3Aw%3ALINQ

174 http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords

175 Chapter 2.25.2 on page 35
176 http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords

158

http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords
http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords
http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords
http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords
http://en.wikibooks.org/wiki/%3Aw%3ALINQ
http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords
http://en.wikibooks.org/wiki/Category%3AC%20Sharp%20Programming%20Keywords

7 Contributors

Edits User

35 Adrignola1

1 Alexcey2

2 Arbitrary3

1 Astillman74

9 Avicennasis5

1 Bacon6

7 Beno10007

1 Bombe8

2 Buttink9

2 C.Bharati10

2 Cbmeeks11

1 Chowmeined12

1 Crazycomputers13

2 Cristobaljbor14

24 Darklama15

1 David C Walls16

5 Ddas17

1 Derbeth18

1 Devourer0919

5 Dirk Hünniger20

9 Dm747521

1 http://en.wikibooks.org/w/index.php?title=User:Adrignola

2 http://en.wikibooks.org/w/index.php?title=User:Alexcey

3 http://en.wikibooks.org/w/index.php?title=User:Arbitrary

4 http://en.wikibooks.org/w/index.php?title=User:Astillman7

5 http://en.wikibooks.org/w/index.php?title=User:Avicennasis

6 http://en.wikibooks.org/w/index.php?title=User:Bacon

7 http://en.wikibooks.org/w/index.php?title=User:Beno1000

8 http://en.wikibooks.org/w/index.php?title=User:Bombe

9 http://en.wikibooks.org/w/index.php?title=User:Buttink

10 http://en.wikibooks.org/w/index.php?title=User:C.Bharati

11 http://en.wikibooks.org/w/index.php?title=User:Cbmeeks

12 http://en.wikibooks.org/w/index.php?title=User:Chowmeined

13 http://en.wikibooks.org/w/index.php?title=User:Crazycomputers

14 http://en.wikibooks.org/w/index.php?title=User:Cristobaljbor

15 http://en.wikibooks.org/w/index.php?title=User:Darklama

16 http://en.wikibooks.org/w/index.php?title=User:David_C_Walls

17 http://en.wikibooks.org/w/index.php?title=User:Ddas

18 http://en.wikibooks.org/w/index.php?title=User:Derbeth

19 http://en.wikibooks.org/w/index.php?title=User:Devourer09

20 http://en.wikibooks.org/w/index.php?title=User:Dirk_H%C3%BCnniger

21 http://en.wikibooks.org/w/index.php?title=User:Dm7475

159

http://en.wikibooks.org/w/index.php?title=User:Adrignola
http://en.wikibooks.org/w/index.php?title=User:Alexcey
http://en.wikibooks.org/w/index.php?title=User:Arbitrary
http://en.wikibooks.org/w/index.php?title=User:Astillman7
http://en.wikibooks.org/w/index.php?title=User:Avicennasis
http://en.wikibooks.org/w/index.php?title=User:Bacon
http://en.wikibooks.org/w/index.php?title=User:Beno1000
http://en.wikibooks.org/w/index.php?title=User:Bombe
http://en.wikibooks.org/w/index.php?title=User:Buttink
http://en.wikibooks.org/w/index.php?title=User:C.Bharati
http://en.wikibooks.org/w/index.php?title=User:Cbmeeks
http://en.wikibooks.org/w/index.php?title=User:Chowmeined
http://en.wikibooks.org/w/index.php?title=User:Crazycomputers
http://en.wikibooks.org/w/index.php?title=User:Cristobaljbor
http://en.wikibooks.org/w/index.php?title=User:Darklama
http://en.wikibooks.org/w/index.php?title=User:David_C_Walls
http://en.wikibooks.org/w/index.php?title=User:Ddas
http://en.wikibooks.org/w/index.php?title=User:Derbeth
http://en.wikibooks.org/w/index.php?title=User:Devourer09
http://en.wikibooks.org/w/index.php?title=User:Dirk_H%C3%BCnniger
http://en.wikibooks.org/w/index.php?title=User:Dm7475

Contributors

38 Dominicz8222

1 DuLithgow23

1 Dunstvangeet24

1 Dzikasosna25

7 Eray26

1 Fatcat111127

2 Feraudyh28

15 FewEditsToday29

1 Fishpi30

5 Fly4fun31

7 Forage32

3 Frank (Usurped)33

4 Gandalfxviv34

1 Gbs25635

3 Gorpik36

1 Gotovikas37

36 GreenVoid38

1 HGatta39

4 Ha9857440

2 Hagindaz41

15 Herbythyme42

7 Hethrir43

1 HethrirBot44

3 Huan08645

2 HumanThePequenino46

22 http://en.wikibooks.org/w/index.php?title=User:Dominicz82

23 http://en.wikibooks.org/w/index.php?title=User:DuLithgow

24 http://en.wikibooks.org/w/index.php?title=User:Dunstvangeet

25 http://en.wikibooks.org/w/index.php?title=User:Dzikasosna

26 http://en.wikibooks.org/w/index.php?title=User:Eray

27 http://en.wikibooks.org/w/index.php?title=User:Fatcat1111

28 http://en.wikibooks.org/w/index.php?title=User:Feraudyh

29 http://en.wikibooks.org/w/index.php?title=User:FewEditsToday

30 http://en.wikibooks.org/w/index.php?title=User:Fishpi

31 http://en.wikibooks.org/w/index.php?title=User:Fly4fun

32 http://en.wikibooks.org/w/index.php?title=User:Forage

33 http://en.wikibooks.org/w/index.php?title=User:Frank_%28Usurped%29

34 http://en.wikibooks.org/w/index.php?title=User:Gandalfxviv

35 http://en.wikibooks.org/w/index.php?title=User:Gbs256

36 http://en.wikibooks.org/w/index.php?title=User:Gorpik

37 http://en.wikibooks.org/w/index.php?title=User:Gotovikas

38 http://en.wikibooks.org/w/index.php?title=User:GreenVoid

39 http://en.wikibooks.org/w/index.php?title=User:HGatta

40 http://en.wikibooks.org/w/index.php?title=User:Ha98574

41 http://en.wikibooks.org/w/index.php?title=User:Hagindaz

42 http://en.wikibooks.org/w/index.php?title=User:Herbythyme

43 http://en.wikibooks.org/w/index.php?title=User:Hethrir

44 http://en.wikibooks.org/w/index.php?title=User:HethrirBot

45 http://en.wikibooks.org/w/index.php?title=User:Huan086

46 http://en.wikibooks.org/w/index.php?title=User:HumanThePequenino

160

http://en.wikibooks.org/w/index.php?title=User:Dominicz82
http://en.wikibooks.org/w/index.php?title=User:DuLithgow
http://en.wikibooks.org/w/index.php?title=User:Dunstvangeet
http://en.wikibooks.org/w/index.php?title=User:Dzikasosna
http://en.wikibooks.org/w/index.php?title=User:Eray
http://en.wikibooks.org/w/index.php?title=User:Fatcat1111
http://en.wikibooks.org/w/index.php?title=User:Feraudyh
http://en.wikibooks.org/w/index.php?title=User:FewEditsToday
http://en.wikibooks.org/w/index.php?title=User:Fishpi
http://en.wikibooks.org/w/index.php?title=User:Fly4fun
http://en.wikibooks.org/w/index.php?title=User:Forage
http://en.wikibooks.org/w/index.php?title=User:Frank_%28Usurped%29
http://en.wikibooks.org/w/index.php?title=User:Gandalfxviv
http://en.wikibooks.org/w/index.php?title=User:Gbs256
http://en.wikibooks.org/w/index.php?title=User:Gorpik
http://en.wikibooks.org/w/index.php?title=User:Gotovikas
http://en.wikibooks.org/w/index.php?title=User:GreenVoid
http://en.wikibooks.org/w/index.php?title=User:HGatta
http://en.wikibooks.org/w/index.php?title=User:Ha98574
http://en.wikibooks.org/w/index.php?title=User:Hagindaz
http://en.wikibooks.org/w/index.php?title=User:Herbythyme
http://en.wikibooks.org/w/index.php?title=User:Hethrir
http://en.wikibooks.org/w/index.php?title=User:HethrirBot
http://en.wikibooks.org/w/index.php?title=User:Huan086
http://en.wikibooks.org/w/index.php?title=User:HumanThePequenino

References

7 Hyad47

1 Jeremytmunn48

63 Jguk49

1 Jjamulla50

21 Jlenthe51

2 Jokes Free4Me52

10 Jomegat53

15 Jonas Nordlund54

1 Karelklic55

1 Kayau56

10 Kencyber57

1 Kinamand58

2 Kirby90059

1 Kladess60

4 Kwhitefoot61

1 LeviOlo62

12 Lewbloch63

2 Littlejedi64

1 Luosiji65

1 Lux-fiat66

2 MTM67

1 Mabdul68

1 Machine Elf 173569

4 Magic Speller70

3 Maxpower4771

47 http://en.wikibooks.org/w/index.php?title=User:Hyad

48 http://en.wikibooks.org/w/index.php?title=User:Jeremytmunn

49 http://en.wikibooks.org/w/index.php?title=User:Jguk

50 http://en.wikibooks.org/w/index.php?title=User:Jjamulla

51 http://en.wikibooks.org/w/index.php?title=User:Jlenthe

52 http://en.wikibooks.org/w/index.php?title=User:Jokes_Free4Me

53 http://en.wikibooks.org/w/index.php?title=User:Jomegat

54 http://en.wikibooks.org/w/index.php?title=User:Jonas_Nordlund

55 http://en.wikibooks.org/w/index.php?title=User:Karelklic

56 http://en.wikibooks.org/w/index.php?title=User:Kayau

57 http://en.wikibooks.org/w/index.php?title=User:Kencyber

58 http://en.wikibooks.org/w/index.php?title=User:Kinamand

59 http://en.wikibooks.org/w/index.php?title=User:Kirby900

60 http://en.wikibooks.org/w/index.php?title=User:Kladess

61 http://en.wikibooks.org/w/index.php?title=User:Kwhitefoot

62 http://en.wikibooks.org/w/index.php?title=User:LeviOlo

63 http://en.wikibooks.org/w/index.php?title=User:Lewbloch

64 http://en.wikibooks.org/w/index.php?title=User:Littlejedi

65 http://en.wikibooks.org/w/index.php?title=User:Luosiji

66 http://en.wikibooks.org/w/index.php?title=User:Lux-fiat

67 http://en.wikibooks.org/w/index.php?title=User:MTM

68 http://en.wikibooks.org/w/index.php?title=User:Mabdul

69 http://en.wikibooks.org/w/index.php?title=User:Machine_Elf_1735

70 http://en.wikibooks.org/w/index.php?title=User:Magic_Speller

71 http://en.wikibooks.org/w/index.php?title=User:Maxpower47

161

http://en.wikibooks.org/w/index.php?title=User:Hyad
http://en.wikibooks.org/w/index.php?title=User:Jeremytmunn
http://en.wikibooks.org/w/index.php?title=User:Jguk
http://en.wikibooks.org/w/index.php?title=User:Jjamulla
http://en.wikibooks.org/w/index.php?title=User:Jlenthe
http://en.wikibooks.org/w/index.php?title=User:Jokes_Free4Me
http://en.wikibooks.org/w/index.php?title=User:Jomegat
http://en.wikibooks.org/w/index.php?title=User:Jonas_Nordlund
http://en.wikibooks.org/w/index.php?title=User:Karelklic
http://en.wikibooks.org/w/index.php?title=User:Kayau
http://en.wikibooks.org/w/index.php?title=User:Kencyber
http://en.wikibooks.org/w/index.php?title=User:Kinamand
http://en.wikibooks.org/w/index.php?title=User:Kirby900
http://en.wikibooks.org/w/index.php?title=User:Kladess
http://en.wikibooks.org/w/index.php?title=User:Kwhitefoot
http://en.wikibooks.org/w/index.php?title=User:LeviOlo
http://en.wikibooks.org/w/index.php?title=User:Lewbloch
http://en.wikibooks.org/w/index.php?title=User:Littlejedi
http://en.wikibooks.org/w/index.php?title=User:Luosiji
http://en.wikibooks.org/w/index.php?title=User:Lux-fiat
http://en.wikibooks.org/w/index.php?title=User:MTM
http://en.wikibooks.org/w/index.php?title=User:Mabdul
http://en.wikibooks.org/w/index.php?title=User:Machine_Elf_1735
http://en.wikibooks.org/w/index.php?title=User:Magic_Speller
http://en.wikibooks.org/w/index.php?title=User:Maxpower47

Contributors

1 Mortense72

3 Mukeshnt73

2 Mwtoews74

2 N1mxv75

1 Nanodeath76

8 Nercury77

3 Netboy200578

2 Nfgdayton79

16 Northgrove80

1 Nvineeth81

83 Ohms law82

2 Onlyforu3783

2 Orion Blastar84

7 Panic2k485

2 Pcu12345678986

3 Peachpuff87

2 Phil.a88

9 Phyll Chloro89

2 Plee90

2 Polluks91

1 Purnil92

1 QUBot93

8 QuiteUnusual94

2 Ramac95

11 Recent Runes96

72 http://en.wikibooks.org/w/index.php?title=User:Mortense

73 http://en.wikibooks.org/w/index.php?title=User:Mukeshnt

74 http://en.wikibooks.org/w/index.php?title=User:Mwtoews

75 http://en.wikibooks.org/w/index.php?title=User:N1mxv

76 http://en.wikibooks.org/w/index.php?title=User:Nanodeath

77 http://en.wikibooks.org/w/index.php?title=User:Nercury

78 http://en.wikibooks.org/w/index.php?title=User:Netboy2005

79 http://en.wikibooks.org/w/index.php?title=User:Nfgdayton

80 http://en.wikibooks.org/w/index.php?title=User:Northgrove

81 http://en.wikibooks.org/w/index.php?title=User:Nvineeth

82 http://en.wikibooks.org/w/index.php?title=User:Ohms_law

83 http://en.wikibooks.org/w/index.php?title=User:Onlyforu37

84 http://en.wikibooks.org/w/index.php?title=User:Orion_Blastar

85 http://en.wikibooks.org/w/index.php?title=User:Panic2k4

86 http://en.wikibooks.org/w/index.php?title=User:Pcu123456789

87 http://en.wikibooks.org/w/index.php?title=User:Peachpuff

88 http://en.wikibooks.org/w/index.php?title=User:Phil.a

89 http://en.wikibooks.org/w/index.php?title=User:Phyll_Chloro

90 http://en.wikibooks.org/w/index.php?title=User:Plee

91 http://en.wikibooks.org/w/index.php?title=User:Polluks

92 http://en.wikibooks.org/w/index.php?title=User:Purnil

93 http://en.wikibooks.org/w/index.php?title=User:QUBot

94 http://en.wikibooks.org/w/index.php?title=User:QuiteUnusual

95 http://en.wikibooks.org/w/index.php?title=User:Ramac

96 http://en.wikibooks.org/w/index.php?title=User:Recent_Runes

162

http://en.wikibooks.org/w/index.php?title=User:Mortense
http://en.wikibooks.org/w/index.php?title=User:Mukeshnt
http://en.wikibooks.org/w/index.php?title=User:Mwtoews
http://en.wikibooks.org/w/index.php?title=User:N1mxv
http://en.wikibooks.org/w/index.php?title=User:Nanodeath
http://en.wikibooks.org/w/index.php?title=User:Nercury
http://en.wikibooks.org/w/index.php?title=User:Netboy2005
http://en.wikibooks.org/w/index.php?title=User:Nfgdayton
http://en.wikibooks.org/w/index.php?title=User:Northgrove
http://en.wikibooks.org/w/index.php?title=User:Nvineeth
http://en.wikibooks.org/w/index.php?title=User:Ohms_law
http://en.wikibooks.org/w/index.php?title=User:Onlyforu37
http://en.wikibooks.org/w/index.php?title=User:Orion_Blastar
http://en.wikibooks.org/w/index.php?title=User:Panic2k4
http://en.wikibooks.org/w/index.php?title=User:Pcu123456789
http://en.wikibooks.org/w/index.php?title=User:Peachpuff
http://en.wikibooks.org/w/index.php?title=User:Phil.a
http://en.wikibooks.org/w/index.php?title=User:Phyll_Chloro
http://en.wikibooks.org/w/index.php?title=User:Plee
http://en.wikibooks.org/w/index.php?title=User:Polluks
http://en.wikibooks.org/w/index.php?title=User:Purnil
http://en.wikibooks.org/w/index.php?title=User:QUBot
http://en.wikibooks.org/w/index.php?title=User:QuiteUnusual
http://en.wikibooks.org/w/index.php?title=User:Ramac
http://en.wikibooks.org/w/index.php?title=User:Recent_Runes

References

7 Ripper23497

214 Rodasmith98

1 S.Örvarr.S99

203 Sae1962100

1 Scorchsaber101

61 Sigma 7102

1 Soeb103

1 Spiderman104

3 Spongebob88105

1 Swatkatz14106

1 Szelee107

6 Tetsuo86108

5 Thambiduraip109

1 Tom Morris110

1 Vaile111

2 Vito Genovese112

3 Watcher113

2 Weblum114

1 Whiteknight115

2 Withinfocus116

71 Wj32117

1 Wutsje118

1 Xania119

3 Xraytux120

2 Yurik121

97 http://en.wikibooks.org/w/index.php?title=User:Ripper234

98 http://en.wikibooks.org/w/index.php?title=User:Rodasmith

99 http://en.wikibooks.org/w/index.php?title=User:S.%C3%96rvarr.S

100 http://en.wikibooks.org/w/index.php?title=User:Sae1962

101 http://en.wikibooks.org/w/index.php?title=User:Scorchsaber

102 http://en.wikibooks.org/w/index.php?title=User:Sigma_7

103 http://en.wikibooks.org/w/index.php?title=User:Soeb

104 http://en.wikibooks.org/w/index.php?title=User:Spiderman

105 http://en.wikibooks.org/w/index.php?title=User:Spongebob88

106 http://en.wikibooks.org/w/index.php?title=User:Swatkatz14

107 http://en.wikibooks.org/w/index.php?title=User:Szelee

108 http://en.wikibooks.org/w/index.php?title=User:Tetsuo86

109 http://en.wikibooks.org/w/index.php?title=User:Thambiduraip

110 http://en.wikibooks.org/w/index.php?title=User:Tom_Morris

111 http://en.wikibooks.org/w/index.php?title=User:Vaile

112 http://en.wikibooks.org/w/index.php?title=User:Vito_Genovese

113 http://en.wikibooks.org/w/index.php?title=User:Watcher

114 http://en.wikibooks.org/w/index.php?title=User:Weblum

115 http://en.wikibooks.org/w/index.php?title=User:Whiteknight

116 http://en.wikibooks.org/w/index.php?title=User:Withinfocus

117 http://en.wikibooks.org/w/index.php?title=User:Wj32

118 http://en.wikibooks.org/w/index.php?title=User:Wutsje

119 http://en.wikibooks.org/w/index.php?title=User:Xania

120 http://en.wikibooks.org/w/index.php?title=User:Xraytux

121 http://en.wikibooks.org/w/index.php?title=User:Yurik

163

http://en.wikibooks.org/w/index.php?title=User:Ripper234
http://en.wikibooks.org/w/index.php?title=User:Rodasmith
http://en.wikibooks.org/w/index.php?title=User:S.%C3%96rvarr.S
http://en.wikibooks.org/w/index.php?title=User:Sae1962
http://en.wikibooks.org/w/index.php?title=User:Scorchsaber
http://en.wikibooks.org/w/index.php?title=User:Sigma_7
http://en.wikibooks.org/w/index.php?title=User:Soeb
http://en.wikibooks.org/w/index.php?title=User:Spiderman
http://en.wikibooks.org/w/index.php?title=User:Spongebob88
http://en.wikibooks.org/w/index.php?title=User:Swatkatz14
http://en.wikibooks.org/w/index.php?title=User:Szelee
http://en.wikibooks.org/w/index.php?title=User:Tetsuo86
http://en.wikibooks.org/w/index.php?title=User:Thambiduraip
http://en.wikibooks.org/w/index.php?title=User:Tom_Morris
http://en.wikibooks.org/w/index.php?title=User:Vaile
http://en.wikibooks.org/w/index.php?title=User:Vito_Genovese
http://en.wikibooks.org/w/index.php?title=User:Watcher
http://en.wikibooks.org/w/index.php?title=User:Weblum
http://en.wikibooks.org/w/index.php?title=User:Whiteknight
http://en.wikibooks.org/w/index.php?title=User:Withinfocus
http://en.wikibooks.org/w/index.php?title=User:Wj32
http://en.wikibooks.org/w/index.php?title=User:Wutsje
http://en.wikibooks.org/w/index.php?title=User:Xania
http://en.wikibooks.org/w/index.php?title=User:Xraytux
http://en.wikibooks.org/w/index.php?title=User:Yurik

Contributors

1 Zr40122

2 123שחנדופיק

122 http://en.wikibooks.org/w/index.php?title=User:Zr40

123
http://en.wikibooks.org/w/index.php?title=User:%D7%A7%D7%99%D7%A4%D7%95%D7%93%D7%A0%

D7%97%D7%A9

164

http://en.wikibooks.org/w/index.php?title=User:Zr40
http://en.wikibooks.org/w/index.php?title=User:%D7%A7%D7%99%D7%A4%D7%95%D7%93%D7%A0%D7%97%D7%A9
http://en.wikibooks.org/w/index.php?title=User:%D7%A7%D7%99%D7%A4%D7%95%D7%93%D7%A0%D7%97%D7%A9

List of Figures

• GFDL: Gnu Free Documentation License. http://www.gnu.org/licenses/fdl.html

• cc-by-sa-3.0: Creative Commons Attribution ShareAlike 3.0 License. http://

creativecommons.org/licenses/by-sa/3.0/

• cc-by-sa-2.5: Creative Commons Attribution ShareAlike 2.5 License. http://

creativecommons.org/licenses/by-sa/2.5/

• cc-by-sa-2.0: Creative Commons Attribution ShareAlike 2.0 License. http://

creativecommons.org/licenses/by-sa/2.0/

• cc-by-sa-1.0: Creative Commons Attribution ShareAlike 1.0 License. http://

creativecommons.org/licenses/by-sa/1.0/

• cc-by-2.0: Creative Commons Attribution 2.0 License. http://creativecommons.

org/licenses/by/2.0/

• cc-by-2.0: Creative Commons Attribution 2.0 License. http://creativecommons.

org/licenses/by/2.0/deed.en

• cc-by-2.5: Creative Commons Attribution 2.5 License. http://creativecommons.

org/licenses/by/2.5/deed.en

• cc-by-3.0: Creative Commons Attribution 3.0 License. http://creativecommons.

org/licenses/by/3.0/deed.en

• GPL: GNU General Public License. http://www.gnu.org/licenses/gpl-2.0.txt

• LGPL: GNU Lesser General Public License. http://www.gnu.org/licenses/lgpl.

html

• PD: This image is in the public domain.

• ATTR: The copyright holder of this file allows anyone to use it for any purpose,
provided that the copyright holder is properly attributed. Redistribution, derivative
work, commercial use, and all other use is permitted.

• EURO: This is the common (reverse) face of a euro coin. The copyright on the design
of the common face of the euro coins belongs to the European Commission. Authorised
is reproduction in a format without relief (drawings, paintings, films) provided they
are not detrimental to the image of the euro.

• LFK: Lizenz Freie Kunst. http://artlibre.org/licence/lal/de

• CFR: Copyright free use.

165

http://www.gnu.org/licenses/fdl.html
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.0/
http://creativecommons.org/licenses/by-sa/2.0/
http://creativecommons.org/licenses/by-sa/1.0/
http://creativecommons.org/licenses/by-sa/1.0/
http://creativecommons.org/licenses/by/2.0/
http://creativecommons.org/licenses/by/2.0/
http://creativecommons.org/licenses/by/2.0/deed.en
http://creativecommons.org/licenses/by/2.0/deed.en
http://creativecommons.org/licenses/by/2.5/deed.en
http://creativecommons.org/licenses/by/2.5/deed.en
http://creativecommons.org/licenses/by/3.0/deed.en
http://creativecommons.org/licenses/by/3.0/deed.en
http://www.gnu.org/licenses/gpl-2.0.txt
http://www.gnu.org/licenses/lgpl.html
http://www.gnu.org/licenses/lgpl.html
http://artlibre.org/licence/lal/de

List of Figures

• EPL: Eclipse Public License. http://www.eclipse.org/org/documents/epl-v10.

php

Copies of the GPL, the LGPL as well as a GFDL are included in chapter Licenses124. Please
note that images in the public domain do not require attribution. You may click on the
image numbers in the following table to open the webpage of the images in your webbrower.

124 Chapter 8 on page 169

166

http://www.eclipse.org/org/documents/epl-v10.php
http://www.eclipse.org/org/documents/epl-v10.php

List of Figures

167

8 Licenses

8.1 GNU GENERAL PUBLIC LICENSE

Version 3, 29 June 2007

Copyright © 2007 Free Software Foundation, Inc.
<http://fsf.org/>

Everyone is permitted to copy and distribute verba-
tim copies of this license document, but changing
it is not allowed. Preamble

The GNU General Public License is a free, copyleft
license for software and other kinds of works.

The licenses for most software and other practi-
cal works are designed to take away your freedom
to share and change the works. By contrast, the
GNU General Public License is intended to guaran-
tee your freedom to share and change all versions
of a program–to make sure it remains free software
for all its users. We, the Free Software Foundation,
use the GNU General Public License for most of our
software; it applies also to any other work released
this way by its authors. You can apply it to your
programs, too.

When we speak of free software, we are referring
to freedom, not price. Our General Public Li-
censes are designed to make sure that you have
the freedom to distribute copies of free software
(and charge for them if you wish), that you receive
source code or can get it if you want it, that you
can change the software or use pieces of it in new
free programs, and that you know you can do these
things.

To protect your rights, we need to prevent others
from denying you these rights or asking you to sur-
render the rights. Therefore, you have certain re-
sponsibilities if you distribute copies of the soft-
ware, or if you modify it: responsibilities to respect
the freedom of others.

For example, if you distribute copies of such a pro-
gram, whether gratis or for a fee, you must pass
on to the recipients the same freedoms that you re-
ceived. You must make sure that they, too, receive
or can get the source code. And you must show
them these terms so they know their rights.

Developers that use the GNU GPL protect your
rights with two steps: (1) assert copyright on the
software, and (2) offer you this License giving you
legal permission to copy, distribute and/or modify
it.

For the developers’ and authors’ protection, the
GPL clearly explains that there is no warranty for
this free software. For both users’ and authors’
sake, the GPL requires that modified versions be
marked as changed, so that their problems will not
be attributed erroneously to authors of previous
versions.

Some devices are designed to deny users access to
install or run modified versions of the software in-
side them, although the manufacturer can do so.
This is fundamentally incompatible with the aim
of protecting users’ freedom to change the software.
The systematic pattern of such abuse occurs in the
area of products for individuals to use, which is
precisely where it is most unacceptable. Therefore,
we have designed this version of the GPL to pro-
hibit the practice for those products. If such prob-
lems arise substantially in other domains, we stand
ready to extend this provision to those domains in
future versions of the GPL, as needed to protect
the freedom of users.

Finally, every program is threatened constantly by
software patents. States should not allow patents
to restrict development and use of software on
general-purpose computers, but in those that do,
we wish to avoid the special danger that patents
applied to a free program could make it effectively
proprietary. To prevent this, the GPL assures that
patents cannot be used to render the program non-
free.

The precise terms and conditions for copying, dis-
tribution and modification follow. TERMS AND
CONDITIONS 0. Definitions.

“This License” refers to version 3 of the GNU Gen-
eral Public License.

“Copyright” also means copyright-like laws that ap-
ply to other kinds of works, such as semiconductor
masks.

“The Program” refers to any copyrightable work
licensed under this License. Each licensee is ad-
dressed as “you”. “Licensees” and “recipients” may
be individuals or organizations.

To “modify” a work means to copy from or adapt
all or part of the work in a fashion requiring copy-
right permission, other than the making of an exact
copy. The resulting work is called a “modified ver-
sion” of the earlier work or a work “based on” the
earlier work.

A “covered work” means either the unmodified Pro-
gram or a work based on the Program.

To “propagate” a work means to do anything with it
that, without permission, would make you directly
or secondarily liable for infringement under appli-
cable copyright law, except executing it on a com-
puter or modifying a private copy. Propagation in-
cludes copying, distribution (with or without mod-
ification), making available to the public, and in
some countries other activities as well.

To “convey” a work means any kind of propagation
that enables other parties to make or receive copies.
Mere interaction with a user through a computer

network, with no transfer of a copy, is not convey-
ing.

An interactive user interface displays “Appropriate
Legal Notices” to the extent that it includes a con-
venient and prominently visible feature that (1) dis-
plays an appropriate copyright notice, and (2) tells
the user that there is no warranty for the work (ex-
cept to the extent that warranties are provided),
that licensees may convey the work under this Li-
cense, and how to view a copy of this License. If
the interface presents a list of user commands or
options, such as a menu, a prominent item in the
list meets this criterion. 1. Source Code.

The “source code” for a work means the preferred
form of the work for making modifications to it.
“Object code” means any non-source form of a
work.

A “Standard Interface” means an interface that ei-
ther is an official standard defined by a recognized
standards body, or, in the case of interfaces spec-
ified for a particular programming language, one
that is widely used among developers working in
that language.

The “System Libraries” of an executable work in-
clude anything, other than the work as a whole,
that (a) is included in the normal form of packag-
ing a Major Component, but which is not part of
that Major Component, and (b) serves only to en-
able use of the work with that Major Component,
or to implement a Standard Interface for which an
implementation is available to the public in source
code form. A “Major Component”, in this context,
means a major essential component (kernel, window
system, and so on) of the specific operating system
(if any) on which the executable work runs, or a
compiler used to produce the work, or an object
code interpreter used to run it.

The “Corresponding Source” for a work in object
code form means all the source code needed to gen-
erate, install, and (for an executable work) run
the object code and to modify the work, including
scripts to control those activities. However, it does
not include the work’s System Libraries, or general-
purpose tools or generally available free programs
which are used unmodified in performing those ac-
tivities but which are not part of the work. For
example, Corresponding Source includes interface
definition files associated with source files for the
work, and the source code for shared libraries and
dynamically linked subprograms that the work is
specifically designed to require, such as by intimate
data communication or control flow between those
subprograms and other parts of the work.

The Corresponding Source need not include any-
thing that users can regenerate automatically from
other parts of the Corresponding Source.

The Corresponding Source for a work in source code
form is that same work. 2. Basic Permissions.

All rights granted under this License are granted
for the term of copyright on the Program, and are
irrevocable provided the stated conditions are met.
This License explicitly affirms your unlimited per-
mission to run the unmodified Program. The out-
put from running a covered work is covered by this
License only if the output, given its content, con-
stitutes a covered work. This License acknowledges
your rights of fair use or other equivalent, as pro-
vided by copyright law.

You may make, run and propagate covered works
that you do not convey, without conditions so long
as your license otherwise remains in force. You may
convey covered works to others for the sole purpose
of having them make modifications exclusively for
you, or provide you with facilities for running those
works, provided that you comply with the terms
of this License in conveying all material for which
you do not control copyright. Those thus making or
running the covered works for you must do so exclu-
sively on your behalf, under your direction and con-
trol, on terms that prohibit them from making any
copies of your copyrighted material outside their
relationship with you.

Conveying under any other circumstances is permit-
ted solely under the conditions stated below. Subli-
censing is not allowed; section 10 makes it unneces-
sary. 3. Protecting Users’ Legal Rights From Anti-
Circumvention Law.

No covered work shall be deemed part of an effec-
tive technological measure under any applicable law
fulfilling obligations under article 11 of the WIPO
copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumven-
tion of such measures.

When you convey a covered work, you waive any
legal power to forbid circumvention of technologi-
cal measures to the extent such circumvention is ef-
fected by exercising rights under this License with
respect to the covered work, and you disclaim any
intention to limit operation or modification of the
work as a means of enforcing, against the work’s
users, your or third parties’ legal rights to forbid
circumvention of technological measures. 4. Con-
veying Verbatim Copies.

You may convey verbatim copies of the Program’s
source code as you receive it, in any medium, pro-
vided that you conspicuously and appropriately
publish on each copy an appropriate copyright no-
tice; keep intact all notices stating that this License
and any non-permissive terms added in accord with
section 7 apply to the code; keep intact all notices
of the absence of any warranty; and give all recipi-
ents a copy of this License along with the Program.

You may charge any price or no price for each copy
that you convey, and you may offer support or war-
ranty protection for a fee. 5. Conveying Modified
Source Versions.

You may convey a work based on the Program, or
the modifications to produce it from the Program,
in the form of source code under the terms of sec-
tion 4, provided that you also meet all of these con-
ditions:

* a) The work must carry prominent notices stating
that you modified it, and giving a relevant date. *
b) The work must carry prominent notices stating
that it is released under this License and any con-
ditions added under section 7. This requirement
modifies the requirement in section 4 to “keep in-
tact all notices”. * c) You must license the entire
work, as a whole, under this License to anyone who
comes into possession of a copy. This License will
therefore apply, along with any applicable section 7
additional terms, to the whole of the work, and all
its parts, regardless of how they are packaged. This
License gives no permission to license the work in
any other way, but it does not invalidate such per-
mission if you have separately received it. * d) If
the work has interactive user interfaces, each must
display Appropriate Legal Notices; however, if the
Program has interactive interfaces that do not dis-
play Appropriate Legal Notices, your work need not
make them do so.

A compilation of a covered work with other sepa-
rate and independent works, which are not by their
nature extensions of the covered work, and which
are not combined with it such as to form a larger
program, in or on a volume of a storage or distri-
bution medium, is called an “aggregate” if the com-
pilation and its resulting copyright are not used to
limit the access or legal rights of the compilation’s
users beyond what the individual works permit. In-
clusion of a covered work in an aggregate does not
cause this License to apply to the other parts of the
aggregate. 6. Conveying Non-Source Forms.

You may convey a covered work in object code form
under the terms of sections 4 and 5, provided that
you also convey the machine-readable Correspond-
ing Source under the terms of this License, in one
of these ways:

* a) Convey the object code in, or embodied in,
a physical product (including a physical distribu-
tion medium), accompanied by the Corresponding
Source fixed on a durable physical medium custom-
arily used for software interchange. * b) Convey the
object code in, or embodied in, a physical product
(including a physical distribution medium), accom-
panied by a written offer, valid for at least three
years and valid for as long as you offer spare parts
or customer support for that product model, to
give anyone who possesses the object code either
(1) a copy of the Corresponding Source for all the
software in the product that is covered by this Li-
cense, on a durable physical medium customarily
used for software interchange, for a price no more
than your reasonable cost of physically performing
this conveying of source, or (2) access to copy the
Corresponding Source from a network server at no
charge. * c) Convey individual copies of the object
code with a copy of the written offer to provide
the Corresponding Source. This alternative is al-
lowed only occasionally and noncommercially, and
only if you received the object code with such an of-
fer, in accord with subsection 6b. * d) Convey the
object code by offering access from a designated
place (gratis or for a charge), and offer equivalent
access to the Corresponding Source in the same way
through the same place at no further charge. You
need not require recipients to copy the Correspond-
ing Source along with the object code. If the place
to copy the object code is a network server, the Cor-
responding Source may be on a different server (op-
erated by you or a third party) that supports equiv-
alent copying facilities, provided you maintain clear
directions next to the object code saying where to
find the Corresponding Source. Regardless of what
server hosts the Corresponding Source, you remain
obligated to ensure that it is available for as long
as needed to satisfy these requirements. * e) Con-
vey the object code using peer-to-peer transmission,
provided you inform other peers where the object
code and Corresponding Source of the work are be-
ing offered to the general public at no charge under
subsection 6d.

A separable portion of the object code, whose
source code is excluded from the Corresponding
Source as a System Library, need not be included
in conveying the object code work.

A “User Product” is either (1) a “consumer prod-
uct”, which means any tangible personal property
which is normally used for personal, family, or
household purposes, or (2) anything designed or
sold for incorporation into a dwelling. In deter-
mining whether a product is a consumer product,
doubtful cases shall be resolved in favor of cover-
age. For a particular product received by a par-
ticular user, “normally used” refers to a typical or
common use of that class of product, regardless of
the status of the particular user or of the way in
which the particular user actually uses, or expects
or is expected to use, the product. A product is a
consumer product regardless of whether the prod-
uct has substantial commercial, industrial or non-
consumer uses, unless such uses represent the only
significant mode of use of the product.

“Installation Information” for a User Product
means any methods, procedures, authorization
keys, or other information required to install and
execute modified versions of a covered work in that
User Product from a modified version of its Corre-
sponding Source. The information must suffice to
ensure that the continued functioning of the modi-
fied object code is in no case prevented or interfered
with solely because modification has been made.

If you convey an object code work under this sec-
tion in, or with, or specifically for use in, a User
Product, and the conveying occurs as part of a
transaction in which the right of possession and
use of the User Product is transferred to the re-
cipient in perpetuity or for a fixed term (regard-
less of how the transaction is characterized), the
Corresponding Source conveyed under this section
must be accompanied by the Installation Informa-
tion. But this requirement does not apply if neither
you nor any third party retains the ability to install
modified object code on the User Product (for ex-
ample, the work has been installed in ROM).

The requirement to provide Installation Informa-
tion does not include a requirement to continue to
provide support service, warranty, or updates for a
work that has been modified or installed by the re-
cipient, or for the User Product in which it has been
modified or installed. Access to a network may be
denied when the modification itself materially and
adversely affects the operation of the network or
violates the rules and protocols for communication
across the network.

Corresponding Source conveyed, and Installation
Information provided, in accord with this section
must be in a format that is publicly documented
(and with an implementation available to the public
in source code form), and must require no special
password or key for unpacking, reading or copying.
7. Additional Terms.

“Additional permissions” are terms that supplement
the terms of this License by making exceptions from
one or more of its conditions. Additional permis-
sions that are applicable to the entire Program
shall be treated as though they were included in
this License, to the extent that they are valid un-
der applicable law. If additional permissions apply
only to part of the Program, that part may be used
separately under those permissions, but the entire
Program remains governed by this License without
regard to the additional permissions.

When you convey a copy of a covered work, you may
at your option remove any additional permissions
from that copy, or from any part of it. (Additional
permissions may be written to require their own re-
moval in certain cases when you modify the work.)
You may place additional permissions on material,
added by you to a covered work, for which you have
or can give appropriate copyright permission.

Notwithstanding any other provision of this Li-
cense, for material you add to a covered work, you
may (if authorized by the copyright holders of that
material) supplement the terms of this License with
terms:

* a) Disclaiming warranty or limiting liability dif-
ferently from the terms of sections 15 and 16 of this
License; or * b) Requiring preservation of specified
reasonable legal notices or author attributions in
that material or in the Appropriate Legal Notices
displayed by works containing it; or * c) Prohibit-
ing misrepresentation of the origin of that material,
or requiring that modified versions of such material
be marked in reasonable ways as different from the
original version; or * d) Limiting the use for pub-
licity purposes of names of licensors or authors of
the material; or * e) Declining to grant rights under
trademark law for use of some trade names, trade-
marks, or service marks; or * f) Requiring indem-
nification of licensors and authors of that material
by anyone who conveys the material (or modified
versions of it) with contractual assumptions of lia-
bility to the recipient, for any liability that these
contractual assumptions directly impose on those
licensors and authors.

All other non-permissive additional terms are con-
sidered “further restrictions” within the meaning of
section 10. If the Program as you received it, or any
part of it, contains a notice stating that it is gov-
erned by this License along with a term that is a
further restriction, you may remove that term. If a
license document contains a further restriction but
permits relicensing or conveying under this License,
you may add to a covered work material governed
by the terms of that license document, provided
that the further restriction does not survive such
relicensing or conveying.

If you add terms to a covered work in accord with
this section, you must place, in the relevant source
files, a statement of the additional terms that ap-
ply to those files, or a notice indicating where to
find the applicable terms.

Additional terms, permissive or non-permissive,
may be stated in the form of a separately written
license, or stated as exceptions; the above require-
ments apply either way. 8. Termination.

You may not propagate or modify a covered work
except as expressly provided under this License.
Any attempt otherwise to propagate or modify it is
void, and will automatically terminate your rights
under this License (including any patent licenses
granted under the third paragraph of section 11).

However, if you cease all violation of this License,
then your license from a particular copyright holder
is reinstated (a) provisionally, unless and until the
copyright holder explicitly and finally terminates
your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some
reasonable means prior to 60 days after the cessa-
tion.

Moreover, your license from a particular copyright
holder is reinstated permanently if the copyright
holder notifies you of the violation by some reason-
able means, this is the first time you have received
notice of violation of this License (for any work)

from that copyright holder, and you cure the vi-
olation prior to 30 days after your receipt of the
notice.

Termination of your rights under this section does
not terminate the licenses of parties who have re-
ceived copies or rights from you under this License.
If your rights have been terminated and not perma-
nently reinstated, you do not qualify to receive new
licenses for the same material under section 10. 9.
Acceptance Not Required for Having Copies.

You are not required to accept this License in or-
der to receive or run a copy of the Program. Ancil-
lary propagation of a covered work occurring solely
as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require accep-
tance. However, nothing other than this License
grants you permission to propagate or modify any
covered work. These actions infringe copyright if
you do not accept this License. Therefore, by mod-
ifying or propagating a covered work, you indicate
your acceptance of this License to do so. 10. Auto-
matic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient
automatically receives a license from the original
licensors, to run, modify and propagate that work,
subject to this License. You are not responsible
for enforcing compliance by third parties with this
License.

An “entity transaction” is a transaction transfer-
ring control of an organization, or substantially all
assets of one, or subdividing an organization, or
merging organizations. If propagation of a cov-
ered work results from an entity transaction, each
party to that transaction who receives a copy of the
work also receives whatever licenses to the work the
party’s predecessor in interest had or could give un-
der the previous paragraph, plus a right to posses-
sion of the Corresponding Source of the work from
the predecessor in interest, if the predecessor has it
or can get it with reasonable efforts.

You may not impose any further restrictions on the
exercise of the rights granted or affirmed under this
License. For example, you may not impose a license
fee, royalty, or other charge for exercise of rights
granted under this License, and you may not ini-
tiate litigation (including a cross-claim or counter-
claim in a lawsuit) alleging that any patent claim
is infringed by making, using, selling, offering for
sale, or importing the Program or any portion of it.
11. Patents.

A “contributor” is a copyright holder who autho-
rizes use under this License of the Program or a
work on which the Program is based. The work
thus licensed is called the contributor’s “contribu-
tor version”.

A contributor’s “essential patent claims” are all
patent claims owned or controlled by the contribu-
tor, whether already acquired or hereafter acquired,
that would be infringed by some manner, permit-
ted by this License, of making, using, or selling its
contributor version, but do not include claims that
would be infringed only as a consequence of further
modification of the contributor version. For pur-
poses of this definition, “control” includes the right
to grant patent sublicenses in a manner consistent
with the requirements of this License.

Each contributor grants you a non-exclusive, world-
wide, royalty-free patent license under the contrib-
utor’s essential patent claims, to make, use, sell, of-
fer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.

In the following three paragraphs, a “patent li-
cense” is any express agreement or commitment,
however denominated, not to enforce a patent (such
as an express permission to practice a patent or
covenant not to sue for patent infringement). To
“grant” such a patent license to a party means to
make such an agreement or commitment not to en-
force a patent against the party.

If you convey a covered work, knowingly relying
on a patent license, and the Corresponding Source
of the work is not available for anyone to copy,
free of charge and under the terms of this License,
through a publicly available network server or other
readily accessible means, then you must either (1)
cause the Corresponding Source to be so available,
or (2) arrange to deprive yourself of the benefit
of the patent license for this particular work, or
(3) arrange, in a manner consistent with the re-
quirements of this License, to extend the patent
license to downstream recipients. “Knowingly re-
lying” means you have actual knowledge that, but
for the patent license, your conveying the covered
work in a country, or your recipient’s use of the cov-
ered work in a country, would infringe one or more
identifiable patents in that country that you have
reason to believe are valid.

If, pursuant to or in connection with a single trans-
action or arrangement, you convey, or propagate
by procuring conveyance of, a covered work, and
grant a patent license to some of the parties re-
ceiving the covered work authorizing them to use,
propagate, modify or convey a specific copy of the
covered work, then the patent license you grant is
automatically extended to all recipients of the cov-
ered work and works based on it.

A patent license is “discriminatory” if it does not in-
clude within the scope of its coverage, prohibits the
exercise of, or is conditioned on the non-exercise
of one or more of the rights that are specifically
granted under this License. You may not convey a
covered work if you are a party to an arrangement
with a third party that is in the business of dis-
tributing software, under which you make payment
to the third party based on the extent of your ac-
tivity of conveying the work, and under which the
third party grants, to any of the parties who would
receive the covered work from you, a discrimina-
tory patent license (a) in connection with copies
of the covered work conveyed by you (or copies
made from those copies), or (b) primarily for and in
connection with specific products or compilations
that contain the covered work, unless you entered
into that arrangement, or that patent license was
granted, prior to 28 March 2007.

Nothing in this License shall be construed as ex-
cluding or limiting any implied license or other de-
fenses to infringement that may otherwise be avail-
able to you under applicable patent law. 12. No
Surrender of Others’ Freedom.

If conditions are imposed on you (whether by court
order, agreement or otherwise) that contradict the
conditions of this License, they do not excuse you
from the conditions of this License. If you cannot
convey a covered work so as to satisfy simultane-
ously your obligations under this License and any
other pertinent obligations, then as a consequence
you may not convey it at all. For example, if you
agree to terms that obligate you to collect a roy-
alty for further conveying from those to whom you
convey the Program, the only way you could satisfy
both those terms and this License would be to re-
frain entirely from conveying the Program. 13. Use
with the GNU Affero General Public License.

Notwithstanding any other provision of this Li-
cense, you have permission to link or combine any
covered work with a work licensed under version
3 of the GNU Affero General Public License into
a single combined work, and to convey the result-
ing work. The terms of this License will continue
to apply to the part which is the covered work, but
the special requirements of the GNU Affero General
Public License, section 13, concerning interaction
through a network will apply to the combination
as such. 14. Revised Versions of this License.

The Free Software Foundation may publish revised
and/or new versions of the GNU General Public Li-
cense from time to time. Such new versions will be
similar in spirit to the present version, but may dif-
fer in detail to address new problems or concerns.

Each version is given a distinguishing version num-
ber. If the Program specifies that a certain num-
bered version of the GNU General Public License
“or any later version” applies to it, you have the
option of following the terms and conditions either
of that numbered version or of any later version
published by the Free Software Foundation. If the
Program does not specify a version number of the
GNU General Public License, you may choose any
version ever published by the Free Software Foun-
dation.

If the Program specifies that a proxy can decide
which future versions of the GNU General Public
License can be used, that proxy’s public statement
of acceptance of a version permanently authorizes
you to choose that version for the Program.

Later license versions may give you additional or
different permissions. However, no additional obli-
gations are imposed on any author or copyright
holder as a result of your choosing to follow a later
version. 15. Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PRO-
GRAM, TO THE EXTENT PERMITTED BY AP-
PLICABLE LAW. EXCEPT WHEN OTHERWISE
STATED IN WRITING THE COPYRIGHT HOLD-
ERS AND/OR OTHER PARTIES PROVIDE THE
PROGRAM “AS IS” WITHOUT WARRANTY OF
ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IM-
PLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE.
THE ENTIRE RISK AS TO THE QUALITY AND
PERFORMANCE OF THE PROGRAM IS WITH
YOU. SHOULD THE PROGRAM PROVE DEFEC-
TIVE, YOU ASSUME THE COST OF ALL NECES-
SARY SERVICING, REPAIR OR CORRECTION.
16. Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLI-
CABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY
OTHER PARTY WHO MODIFIES AND/OR CON-
VEYS THE PROGRAM AS PERMITTED ABOVE,
BE LIABLE TO YOU FOR DAMAGES, IN-
CLUDING ANY GENERAL, SPECIAL, INCIDEN-
TAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE
THE PROGRAM (INCLUDING BUT NOT LIM-
ITED TO LOSS OF DATA OR DATA BEING REN-
DERED INACCURATE OR LOSSES SUSTAINED
BY YOU OR THIRD PARTIES OR A FAILURE
OF THE PROGRAM TO OPERATE WITH ANY
OTHER PROGRAMS), EVEN IF SUCH HOLDER
OR OTHER PARTY HAS BEEN ADVISED OF
THE POSSIBILITY OF SUCH DAMAGES. 17. In-
terpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of lia-
bility provided above cannot be given local legal ef-

fect according to their terms, reviewing courts shall
apply local law that most closely approximates an
absolute waiver of all civil liability in connection
with the Program, unless a warranty or assumption
of liability accompanies a copy of the Program in
return for a fee.

END OF TERMS AND CONDITIONS How to Ap-
ply These Terms to Your New Programs

If you develop a new program, and you want it to
be of the greatest possible use to the public, the
best way to achieve this is to make it free software
which everyone can redistribute and change under
these terms.

To do so, attach the following notices to the pro-
gram. It is safest to attach them to the start of
each source file to most effectively state the exclu-
sion of warranty; and each file should have at least
the “copyright” line and a pointer to where the full
notice is found.

<one line to give the program’s name and a brief
idea of what it does.> Copyright (C) <year>
<name of author>

This program is free software: you can redistribute
it and/or modify it under the terms of the GNU
General Public License as published by the Free
Software Foundation, either version 3 of the Li-
cense, or (at your option) any later version.

This program is distributed in the hope that
it will be useful, but WITHOUT ANY WAR-
RANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PAR-
TICULAR PURPOSE. See the GNU General Public
License for more details.

You should have received a copy of the GNU Gen-
eral Public License along with this program. If not,
see <http://www.gnu.org/licenses/>.

Also add information on how to contact you by elec-
tronic and paper mail.

If the program does terminal interaction, make it
output a short notice like this when it starts in an
interactive mode:

<program> Copyright (C) <year> <name of au-
thor> This program comes with ABSOLUTELY
NO WARRANTY; for details type ‘show w’. This is
free software, and you are welcome to redistribute it
under certain conditions; type ‘show c’ for details.

The hypothetical commands ‘show w’ and ‘show c’
should show the appropriate parts of the General
Public License. Of course, your program’s com-
mands might be different; for a GUI interface, you
would use an “about box”.

You should also get your employer (if you work
as a programmer) or school, if any, to sign a
“copyright disclaimer” for the program, if nec-
essary. For more information on this, and
how to apply and follow the GNU GPL, see
<http://www.gnu.org/licenses/>.

The GNU General Public License does not permit
incorporating your program into proprietary pro-
grams. If your program is a subroutine library, you
may consider it more useful to permit linking pro-
prietary applications with the library. If this is
what you want to do, use the GNU Lesser General
Public License instead of this License. But first,
please read <http://www.gnu.org/philosophy/why-
not-lgpl.html>.

8.2 GNU Free Documentation License

Version 1.3, 3 November 2008

Copyright © 2000, 2001, 2002, 2007, 2008 Free Soft-
ware Foundation, Inc. <http://fsf.org/>

Everyone is permitted to copy and distribute verba-
tim copies of this license document, but changing
it is not allowed. 0. PREAMBLE

The purpose of this License is to make a manual,
textbook, or other functional and useful document
"free" in the sense of freedom: to assure everyone
the effective freedom to copy and redistribute it,
with or without modifying it, either commercially
or noncommercially. Secondarily, this License pre-
serves for the author and publisher a way to get
credit for their work, while not being considered
responsible for modifications made by others.

This License is a kind of "copyleft", which means
that derivative works of the document must them-
selves be free in the same sense. It complements
the GNU General Public License, which is a copy-
left license designed for free software.

We have designed this License in order to use it
for manuals for free software, because free software
needs free documentation: a free program should
come with manuals providing the same freedoms
that the software does. But this License is not lim-
ited to software manuals; it can be used for any tex-
tual work, regardless of subject matter or whether
it is published as a printed book. We recommend
this License principally for works whose purpose is
instruction or reference. 1. APPLICABILITY AND
DEFINITIONS

This License applies to any manual or other work,
in any medium, that contains a notice placed by the
copyright holder saying it can be distributed under
the terms of this License. Such a notice grants a
world-wide, royalty-free license, unlimited in dura-
tion, to use that work under the conditions stated
herein. The "Document", below, refers to any such
manual or work. Any member of the public is a li-
censee, and is addressed as "you". You accept the
license if you copy, modify or distribute the work
in a way requiring permission under copyright law.

A "Modified Version" of the Document means any
work containing the Document or a portion of it, ei-
ther copied verbatim, or with modifications and/or
translated into another language.

A "Secondary Section" is a named appendix or a
front-matter section of the Document that deals ex-
clusively with the relationship of the publishers or

authors of the Document to the Document’s overall
subject (or to related matters) and contains noth-
ing that could fall directly within that overall sub-
ject. (Thus, if the Document is in part a textbook
of mathematics, a Secondary Section may not ex-
plain any mathematics.) The relationship could be
a matter of historical connection with the subject
or with related matters, or of legal, commercial,
philosophical, ethical or political position regard-
ing them.

The "Invariant Sections" are certain Secondary Sec-
tions whose titles are designated, as being those of
Invariant Sections, in the notice that says that the
Document is released under this License. If a sec-
tion does not fit the above definition of Secondary
then it is not allowed to be designated as Invariant.
The Document may contain zero Invariant Sections.
If the Document does not identify any Invariant
Sections then there are none.

The "Cover Texts" are certain short passages of text
that are listed, as Front-Cover Texts or Back-Cover
Texts, in the notice that says that the Document is
released under this License. A Front-Cover Text
may be at most 5 words, and a Back-Cover Text
may be at most 25 words.

A "Transparent" copy of the Document means a
machine-readable copy, represented in a format
whose specification is available to the general pub-
lic, that is suitable for revising the document
straightforwardly with generic text editors or (for
images composed of pixels) generic paint programs
or (for drawings) some widely available drawing ed-
itor, and that is suitable for input to text format-
ters or for automatic translation to a variety of for-
mats suitable for input to text formatters. A copy
made in an otherwise Transparent file format whose
markup, or absence of markup, has been arranged
to thwart or discourage subsequent modification by
readers is not Transparent. An image format is not
Transparent if used for any substantial amount of
text. A copy that is not "Transparent" is called
"Opaque".

Examples of suitable formats for Transparent
copies include plain ASCII without markup, Tex-
info input format, LaTeX input format, SGML or
XML using a publicly available DTD, and standard-
conforming simple HTML, PostScript or PDF de-
signed for human modification. Examples of trans-
parent image formats include PNG, XCF and JPG.
Opaque formats include proprietary formats that
can be read and edited only by proprietary word
processors, SGML or XML for which the DTD
and/or processing tools are not generally available,
and the machine-generated HTML, PostScript or

PDF produced by some word processors for output
purposes only.

The "Title Page" means, for a printed book, the
title page itself, plus such following pages as are
needed to hold, legibly, the material this License
requires to appear in the title page. For works in
formats which do not have any title page as such,
"Title Page" means the text near the most promi-
nent appearance of the work’s title, preceding the
beginning of the body of the text.

The "publisher" means any person or entity that
distributes copies of the Document to the public.

A section "Entitled XYZ" means a named subunit
of the Document whose title either is precisely XYZ
or contains XYZ in parentheses following text that
translates XYZ in another language. (Here XYZ
stands for a specific section name mentioned below,
such as "Acknowledgements", "Dedications", "En-
dorsements", or "History".) To "Preserve the Title"
of such a section when you modify the Document
means that it remains a section "Entitled XYZ" ac-
cording to this definition.

The Document may include Warranty Disclaimers
next to the notice which states that this License
applies to the Document. These Warranty Dis-
claimers are considered to be included by reference
in this License, but only as regards disclaiming war-
ranties: any other implication that these Warranty
Disclaimers may have is void and has no effect on
the meaning of this License. 2. VERBATIM COPY-
ING

You may copy and distribute the Document in any
medium, either commercially or noncommercially,
provided that this License, the copyright notices,
and the license notice saying this License applies to
the Document are reproduced in all copies, and that
you add no other conditions whatsoever to those
of this License. You may not use technical mea-
sures to obstruct or control the reading or further
copying of the copies you make or distribute. How-
ever, you may accept compensation in exchange for
copies. If you distribute a large enough number of
copies you must also follow the conditions in sec-
tion 3.

You may also lend copies, under the same condi-
tions stated above, and you may publicly display
copies. 3. COPYING IN QUANTITY

If you publish printed copies (or copies in media
that commonly have printed covers) of the Doc-
ument, numbering more than 100, and the Doc-
ument’s license notice requires Cover Texts, you

must enclose the copies in covers that carry, clearly
and legibly, all these Cover Texts: Front-Cover
Texts on the front cover, and Back-Cover Texts
on the back cover. Both covers must also clearly
and legibly identify you as the publisher of these
copies. The front cover must present the full title
with all words of the title equally prominent and
visible. You may add other material on the covers
in addition. Copying with changes limited to the
covers, as long as they preserve the title of the Doc-
ument and satisfy these conditions, can be treated
as verbatim copying in other respects.

If the required texts for either cover are too volu-
minous to fit legibly, you should put the first ones
listed (as many as fit reasonably) on the actual
cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the
Document numbering more than 100, you must ei-
ther include a machine-readable Transparent copy
along with each Opaque copy, or state in or with
each Opaque copy a computer-network location
from which the general network-using public has
access to download using public-standard network
protocols a complete Transparent copy of the Doc-
ument, free of added material. If you use the lat-
ter option, you must take reasonably prudent steps,
when you begin distribution of Opaque copies in
quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until
at least one year after the last time you distribute
an Opaque copy (directly or through your agents or
retailers) of that edition to the public.

It is requested, but not required, that you con-
tact the authors of the Document well before redis-
tributing any large number of copies, to give them
a chance to provide you with an updated version of
the Document. 4. MODIFICATIONS

You may copy and distribute a Modified Version of
the Document under the conditions of sections 2
and 3 above, provided that you release the Modi-
fied Version under precisely this License, with the
Modified Version filling the role of the Document,
thus licensing distribution and modification of the
Modified Version to whoever possesses a copy of it.
In addition, you must do these things in the Modi-
fied Version:

* A. Use in the Title Page (and on the covers, if
any) a title distinct from that of the Document,
and from those of previous versions (which should,
if there were any, be listed in the History section
of the Document). You may use the same title as
a previous version if the original publisher of that
version gives permission. * B. List on the Title

Page, as authors, one or more persons or entities
responsible for authorship of the modifications in
the Modified Version, together with at least five of
the principal authors of the Document (all of its
principal authors, if it has fewer than five), unless
they release you from this requirement. * C. State
on the Title page the name of the publisher of the
Modified Version, as the publisher. * D. Preserve
all the copyright notices of the Document. * E. Add
an appropriate copyright notice for your modifica-
tions adjacent to the other copyright notices. * F.
Include, immediately after the copyright notices, a
license notice giving the public permission to use
the Modified Version under the terms of this Li-
cense, in the form shown in the Addendum below. *
G. Preserve in that license notice the full lists of In-
variant Sections and required Cover Texts given in
the Document’s license notice. * H. Include an unal-
tered copy of this License. * I. Preserve the section
Entitled "History", Preserve its Title, and add to it
an item stating at least the title, year, new authors,
and publisher of the Modified Version as given on
the Title Page. If there is no section Entitled "His-
tory" in the Document, create one stating the title,
year, authors, and publisher of the Document as
given on its Title Page, then add an item describ-
ing the Modified Version as stated in the previous
sentence. * J. Preserve the network location, if any,
given in the Document for public access to a Trans-
parent copy of the Document, and likewise the net-
work locations given in the Document for previous
versions it was based on. These may be placed in
the "History" section. You may omit a network lo-
cation for a work that was published at least four
years before the Document itself, or if the original
publisher of the version it refers to gives permission.
* K. For any section Entitled "Acknowledgements"
or "Dedications", Preserve the Title of the section,
and preserve in the section all the substance and
tone of each of the contributor acknowledgements
and/or dedications given therein. * L. Preserve all
the Invariant Sections of the Document, unaltered
in their text and in their titles. Section numbers or
the equivalent are not considered part of the section
titles. * M. Delete any section Entitled "Endorse-
ments". Such a section may not be included in the
Modified Version. * N. Do not retitle any existing
section to be Entitled "Endorsements" or to conflict
in title with any Invariant Section. * O. Preserve
any Warranty Disclaimers.

If the Modified Version includes new front-matter
sections or appendices that qualify as Secondary
Sections and contain no material copied from the
Document, you may at your option designate some
or all of these sections as invariant. To do this, add
their titles to the list of Invariant Sections in the
Modified Version’s license notice. These titles must
be distinct from any other section titles.

You may add a section Entitled "Endorsements",
provided it contains nothing but endorsements of
your Modified Version by various parties—for ex-
ample, statements of peer review or that the text
has been approved by an organization as the au-
thoritative definition of a standard.

You may add a passage of up to five words as a
Front-Cover Text, and a passage of up to 25 words
as a Back-Cover Text, to the end of the list of Cover
Texts in the Modified Version. Only one passage of
Front-Cover Text and one of Back-Cover Text may
be added by (or through arrangements made by)
any one entity. If the Document already includes
a cover text for the same cover, previously added
by you or by arrangement made by the same entity
you are acting on behalf of, you may not add an-

other; but you may replace the old one, on explicit
permission from the previous publisher that added
the old one.

The author(s) and publisher(s) of the Document do
not by this License give permission to use their
names for publicity for or to assert or imply en-
dorsement of any Modified Version. 5. COMBIN-
ING DOCUMENTS

You may combine the Document with other docu-
ments released under this License, under the terms
defined in section 4 above for modified versions,
provided that you include in the combination all
of the Invariant Sections of all of the original doc-
uments, unmodified, and list them all as Invariant
Sections of your combined work in its license no-
tice, and that you preserve all their Warranty Dis-
claimers.

The combined work need only contain one copy of
this License, and multiple identical Invariant Sec-
tions may be replaced with a single copy. If there
are multiple Invariant Sections with the same name
but different contents, make the title of each such
section unique by adding at the end of it, in paren-
theses, the name of the original author or publisher
of that section if known, or else a unique number.
Make the same adjustment to the section titles in
the list of Invariant Sections in the license notice
of the combined work.

In the combination, you must combine any sections
Entitled "History" in the various original docu-
ments, forming one section Entitled "History"; like-
wise combine any sections Entitled "Acknowledge-
ments", and any sections Entitled "Dedications".
You must delete all sections Entitled "Endorse-
ments". 6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Docu-
ment and other documents released under this Li-
cense, and replace the individual copies of this Li-
cense in the various documents with a single copy
that is included in the collection, provided that you
follow the rules of this License for verbatim copying
of each of the documents in all other respects.

You may extract a single document from such a col-
lection, and distribute it individually under this Li-
cense, provided you insert a copy of this License
into the extracted document, and follow this Li-
cense in all other respects regarding verbatim copy-
ing of that document. 7. AGGREGATION WITH
INDEPENDENT WORKS

A compilation of the Document or its derivatives
with other separate and independent documents or
works, in or on a volume of a storage or distribution
medium, is called an "aggregate" if the copyright re-
sulting from the compilation is not used to limit the
legal rights of the compilation’s users beyond what
the individual works permit. When the Document
is included in an aggregate, this License does not
apply to the other works in the aggregate which are
not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is appli-
cable to these copies of the Document, then if the
Document is less than one half of the entire aggre-
gate, the Document’s Cover Texts may be placed
on covers that bracket the Document within the
aggregate, or the electronic equivalent of covers
if the Document is in electronic form. Otherwise
they must appear on printed covers that bracket
the whole aggregate. 8. TRANSLATION

Translation is considered a kind of modification, so
you may distribute translations of the Document
under the terms of section 4. Replacing Invariant
Sections with translations requires special permis-
sion from their copyright holders, but you may in-
clude translations of some or all Invariant Sections
in addition to the original versions of these Invari-
ant Sections. You may include a translation of this
License, and all the license notices in the Document,
and any Warranty Disclaimers, provided that you
also include the original English version of this Li-
cense and the original versions of those notices and
disclaimers. In case of a disagreement between the
translation and the original version of this License
or a notice or disclaimer, the original version will
prevail.

If a section in the Document is Entitled "Acknowl-
edgements", "Dedications", or "History", the re-
quirement (section 4) to Preserve its Title (section
1) will typically require changing the actual title.
9. TERMINATION

You may not copy, modify, sublicense, or distribute
the Document except as expressly provided under
this License. Any attempt otherwise to copy, mod-
ify, sublicense, or distribute it is void, and will
automatically terminate your rights under this Li-
cense.

However, if you cease all violation of this License,
then your license from a particular copyright holder
is reinstated (a) provisionally, unless and until the
copyright holder explicitly and finally terminates
your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some
reasonable means prior to 60 days after the cessa-
tion.

Moreover, your license from a particular copyright
holder is reinstated permanently if the copyright
holder notifies you of the violation by some reason-
able means, this is the first time you have received
notice of violation of this License (for any work)
from that copyright holder, and you cure the vi-
olation prior to 30 days after your receipt of the
notice.

Termination of your rights under this section does
not terminate the licenses of parties who have re-
ceived copies or rights from you under this License.
If your rights have been terminated and not perma-
nently reinstated, receipt of a copy of some or all
of the same material does not give you any rights
to use it. 10. FUTURE REVISIONS OF THIS LI-
CENSE

The Free Software Foundation may publish new, re-
vised versions of the GNU Free Documentation Li-
cense from time to time. Such new versions will be
similar in spirit to the present version, but may dif-
fer in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguish-
ing version number. If the Document specifies that
a particular numbered version of this License "or
any later version" applies to it, you have the op-
tion of following the terms and conditions either of
that specified version or of any later version that
has been published (not as a draft) by the Free Soft-
ware Foundation. If the Document does not specify
a version number of this License, you may choose
any version ever published (not as a draft) by the
Free Software Foundation. If the Document speci-
fies that a proxy can decide which future versions of

this License can be used, that proxy’s public state-
ment of acceptance of a version permanently autho-
rizes you to choose that version for the Document.
11. RELICENSING

"Massive Multiauthor Collaboration Site" (or
"MMC Site") means any World Wide Web server
that publishes copyrightable works and also pro-
vides prominent facilities for anybody to edit those
works. A public wiki that anybody can edit is
an example of such a server. A "Massive Multiau-
thor Collaboration" (or "MMC") contained in the
site means any set of copyrightable works thus pub-
lished on the MMC site.

"CC-BY-SA" means the Creative Commons
Attribution-Share Alike 3.0 license published by
Creative Commons Corporation, a not-for-profit
corporation with a principal place of business in
San Francisco, California, as well as future copyleft
versions of that license published by that same
organization.

"Incorporate" means to publish or republish a Doc-
ument, in whole or in part, as part of another Doc-
ument.

An MMC is "eligible for relicensing" if it is licensed
under this License, and if all works that were first
published under this License somewhere other than
this MMC, and subsequently incorporated in whole
or in part into the MMC, (1) had no cover texts or
invariant sections, and (2) were thus incorporated
prior to November 1, 2008.

The operator of an MMC Site may republish an
MMC contained in the site under CC-BY-SA on the
same site at any time before August 1, 2009, pro-
vided the MMC is eligible for relicensing. ADDEN-
DUM: How to use this License for your documents

To use this License in a document you have written,
include a copy of the License in the document and
put the following copyright and license notices just
after the title page:

Copyright (C) YEAR YOUR NAME. Permission is
granted to copy, distribute and/or modify this doc-
ument under the terms of the GNU Free Documen-
tation License, Version 1.3 or any later version pub-
lished by the Free Software Foundation; with no
Invariant Sections, no Front-Cover Texts, and no
Back-Cover Texts. A copy of the license is included
in the section entitled "GNU Free Documentation
License".

If you have Invariant Sections, Front-Cover Texts
and Back-Cover Texts, replace the "with . . .
Texts." line with this:

with the Invariant Sections being LIST THEIR TI-
TLES, with the Front-Cover Texts being LIST, and
with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts,
or some other combination of the three, merge
those two alternatives to suit the situation.

If your document contains nontrivial examples of
program code, we recommend releasing these exam-
ples in parallel under your choice of free software
license, such as the GNU General Public License,
to permit their use in free software.

8.3 GNU Lesser General Public License

GNU LESSER GENERAL PUBLIC LICENSE

Version 3, 29 June 2007

Copyright © 2007 Free Software Foundation, Inc.
<http://fsf.org/>

Everyone is permitted to copy and distribute verba-
tim copies of this license document, but changing
it is not allowed.

This version of the GNU Lesser General Public Li-
cense incorporates the terms and conditions of ver-
sion 3 of the GNU General Public License, supple-
mented by the additional permissions listed below.
0. Additional Definitions.

As used herein, “this License” refers to version 3
of the GNU Lesser General Public License, and the
“GNU GPL” refers to version 3 of the GNU General
Public License.

“The Library” refers to a covered work governed by
this License, other than an Application or a Com-
bined Work as defined below.

An “Application” is any work that makes use of an
interface provided by the Library, but which is not
otherwise based on the Library. Defining a subclass
of a class defined by the Library is deemed a mode
of using an interface provided by the Library.

A “Combined Work” is a work produced by com-
bining or linking an Application with the Library.
The particular version of the Library with which
the Combined Work was made is also called the
“Linked Version”.

The “Minimal Corresponding Source” for a Com-
bined Work means the Corresponding Source for
the Combined Work, excluding any source code for
portions of the Combined Work that, considered in
isolation, are based on the Application, and not on
the Linked Version.

The “Corresponding Application Code” for a Com-
bined Work means the object code and/or source
code for the Application, including any data and
utility programs needed for reproducing the Com-
bined Work from the Application, but excluding the
System Libraries of the Combined Work. 1. Excep-
tion to Section 3 of the GNU GPL.

You may convey a covered work under sections 3
and 4 of this License without being bound by sec-
tion 3 of the GNU GPL. 2. Conveying Modified
Versions.

If you modify a copy of the Library, and, in your
modifications, a facility refers to a function or data
to be supplied by an Application that uses the fa-
cility (other than as an argument passed when the
facility is invoked), then you may convey a copy of
the modified version:

* a) under this License, provided that you make a
good faith effort to ensure that, in the event an Ap-
plication does not supply the function or data, the
facility still operates, and performs whatever part
of its purpose remains meaningful, or * b) under
the GNU GPL, with none of the additional permis-
sions of this License applicable to that copy.

3. Object Code Incorporating Material from Li-
brary Header Files.

The object code form of an Application may incor-
porate material from a header file that is part of
the Library. You may convey such object code un-
der terms of your choice, provided that, if the in-
corporated material is not limited to numerical pa-
rameters, data structure layouts and accessors, or
small macros, inline functions and templates (ten
or fewer lines in length), you do both of the follow-
ing:

* a) Give prominent notice with each copy of the
object code that the Library is used in it and that
the Library and its use are covered by this License.
* b) Accompany the object code with a copy of the
GNU GPL and this license document.

4. Combined Works.

You may convey a Combined Work under terms of
your choice that, taken together, effectively do not
restrict modification of the portions of the Library
contained in the Combined Work and reverse en-
gineering for debugging such modifications, if you
also do each of the following:

* a) Give prominent notice with each copy of the
Combined Work that the Library is used in it and
that the Library and its use are covered by this Li-
cense. * b) Accompany the Combined Work with a
copy of the GNU GPL and this license document. *
c) For a Combined Work that displays copyright no-
tices during execution, include the copyright notice
for the Library among these notices, as well as a ref-
erence directing the user to the copies of the GNU
GPL and this license document. * d) Do one of the
following: o 0) Convey the Minimal Corresponding
Source under the terms of this License, and the Cor-
responding Application Code in a form suitable for,
and under terms that permit, the user to recombine
or relink the Application with a modified version
of the Linked Version to produce a modified Com-
bined Work, in the manner specified by section 6 of
the GNU GPL for conveying Corresponding Source.
o 1) Use a suitable shared library mechanism for
linking with the Library. A suitable mechanism
is one that (a) uses at run time a copy of the Li-
brary already present on the user’s computer sys-
tem, and (b) will operate properly with a modified
version of the Library that is interface-compatible
with the Linked Version. * e) Provide Installation
Information, but only if you would otherwise be re-
quired to provide such information under section 6
of the GNU GPL, and only to the extent that such
information is necessary to install and execute a
modified version of the Combined Work produced
by recombining or relinking the Application with
a modified version of the Linked Version. (If you
use option 4d0, the Installation Information must
accompany the Minimal Corresponding Source and
Corresponding Application Code. If you use option
4d1, you must provide the Installation Information
in the manner specified by section 6 of the GNU
GPL for conveying Corresponding Source.)

5. Combined Libraries.

You may place library facilities that are a work
based on the Library side by side in a single library
together with other library facilities that are not
Applications and are not covered by this License,
and convey such a combined library under terms of
your choice, if you do both of the following:

* a) Accompany the combined library with a copy
of the same work based on the Library, uncombined
with any other library facilities, conveyed under
the terms of this License. * b) Give prominent no-
tice with the combined library that part of it is a
work based on the Library, and explaining where
to find the accompanying uncombined form of the
same work.

6. Revised Versions of the GNU Lesser General
Public License.

The Free Software Foundation may publish revised
and/or new versions of the GNU Lesser General
Public License from time to time. Such new ver-
sions will be similar in spirit to the present version,
but may differ in detail to address new problems or
concerns.

Each version is given a distinguishing version num-
ber. If the Library as you received it specifies that
a certain numbered version of the GNU Lesser Gen-
eral Public License “or any later version” applies to
it, you have the option of following the terms and
conditions either of that published version or of any
later version published by the Free Software Foun-
dation. If the Library as you received it does not
specify a version number of the GNU Lesser Gen-
eral Public License, you may choose any version of
the GNU Lesser General Public License ever pub-
lished by the Free Software Foundation.

If the Library as you received it specifies that a
proxy can decide whether future versions of the
GNU Lesser General Public License shall apply,
that proxy’s public statement of acceptance of
any version is permanent authorization for you to
choose that version for the Library.

	1 Introduction
	1.1 Introduction
	1.2 Standard
	1.3 History
	1.4 References
	1.5 Microsoft .NET
	1.6 Mono
	1.7 Hello, World!

	2 Language Basics
	2.1 Reasoning
	2.2 Conventions
	2.3 Example
	2.4 Statements
	2.5 Statement blocks
	2.6 Comments
	2.7 Case sensitivity
	2.8 Fields, local variables, and parameters
	2.9 Types
	2.10 Text & variable example
	2.11 Scope and extent
	2.12 Arithmetic
	2.13 Logical
	2.14 Bitwise shifting
	2.15 Relational
	2.16 Assignment
	2.17 Short-hand Assignment
	2.18 Type information
	2.19 Pointer manipulation
	2.20 Overflow exception control
	2.21 Others
	2.22 Enumerations
	2.23 Structs
	2.24 Arrays
	2.25 Conditional statements
	2.26 Iteration statements
	2.27 Jump statements
	2.28 Introduction
	2.29 Overview
	2.30 Examples
	2.31 Re-throwing exceptions

	3 Classes
	3.1 Nested namespaces
	3.2 Methods
	3.3 Constructors of classes
	3.4 Finalizers (Destructors)
	3.5 Properties
	3.6 Indexers
	3.7 Events
	3.8 Operator overloading
	3.9 Structures
	3.10 Static classes
	3.11 References
	3.12 Introduction
	3.13 Reference and Value Types
	3.14 Object basics
	3.15 Protection Levels
	3.16 References

	4 Advanced Concepts
	4.1 Inheritance
	4.2 Subtyping Inheritance
	4.3 Virtual Methods
	4.4 Constructors
	4.5 Inheritance keywords
	4.6 References
	4.7 Additional details
	4.8 Introduction
	4.9 Delegates
	4.10 Anonymous delegates
	4.11 Events
	4.12 Partial Classes
	4.13 Generic classes
	4.14 Generic interfaces
	4.15 Generic methods
	4.16 Type constraints
	4.17 Notes
	4.18 Introduction
	4.19 Factory Pattern
	4.20 Singleton

	5 The .NET Framework
	5.1 Introduction
	5.2 Background
	5.3 Console Programming
	5.4 System.Windows.Forms
	5.5 Form class
	5.6 Events
	5.7 Controls
	5.8 Lists
	5.9 LinkedLists
	5.10 Queues
	5.11 Stacks
	5.12 Hashtables and dictionaries
	5.13 The Thread class
	5.14 Sharing Data
	5.15 Asynchronous Delegates
	5.16 Synchronization
	5.17 GetSystemTimes
	5.18 GetProcessIoCounters

	6 Keywords
	6.1 References
	6.2 The directive
	6.3 The statement
	6.4 References

	7 Contributors
	List of Figures
	8 Licenses
	8.1 GNU GENERAL PUBLIC LICENSE
	8.2 GNU Free Documentation License
	8.3 GNU Lesser General Public License

