
© 2013, 2014 Wahlin Consulting 1 | P a g e

AngularJS in 60 Minutes

by

Dan Wahlin

Transcription and Arrangement

by Ian Smith

© 2013, 2014 Wahlin Consulting 2 | P a g e

Video Length: 01:10:49

“o Ǉou͛ǀe heaƌd aďout AngularJS, ďut Ǉou͛ƌe Ŷot eǆaĐtlǇ suƌe hoǁ to get staƌted ǁith it?

This ǀideo͛s foƌ Ǉou.

AngularJS Fundamentals in 60-ish Minutes is going to go through all of the key fundamentals you

need to know about the AngularJS SPA framework.

Video: http://www.youtube.com/watch?v=i9MHigUZKEM

Disclaimer: The original content is copyright of the original ͞free to download͟ video published as

indicated by the link to the original source material above. Any mistakes, opinions or views in that

content are those of the original presenter. Any mistakes in the actual transcription of that content

are the fault of the transcriber.

http://www.youtube.com/watch?v=i9MHigUZKEM

© 2013, 2014 Wahlin Consulting 3 | P a g e

Contents

AngularJS in 60 Minutes .. 1

Introduction .. 4

Module 1: Getting Started .. 15

Single Page Application (SPA) ... 16

The Challenge With SPAs .. 17

AngularJS.org .. 21

Download AngularJS ... 22

Module 2: Directives, Filters and Data Binding... 24

What are Directives? ... 25

Using Directives and Data Binding Syntax .. 26

Data-Binding Example using AngularJS Directives .. 28

Iterating with the ng-repeat Directive .. 31

ng-Repeat Example ... 33

The AngularJS API Reference for Directives .. 35

ngRepeat Documentation ... 36

Using Filters ... 37

Using Filters Demo .. 39

Module 3: Views, Controllers and Scope .. 44

Creating a View and Controller ... 47

Module 4: Modules, Routes and Factories ... 53

Modules are Containers .. 56

Creating a Module... 58

Creating a Controller in a Module... 60

The Role of Routes .. 65

Defining Routes ... 66

Defining Routes Demo .. 68

Using Factories and Services ... 80

The Role of the Factory ... 82

Factory Demo .. 84

Wrap-Up Demo: Pulling It All Together .. 89

Summary ... 98

Download the Sample Code .. 100

Resources .. 101

© 2013, 2014 Wahlin Consulting 4 | P a g e

Dan Wahlin .. 102

Introduction

00:00:15

MǇ Ŷaŵe͛s Dan Wahlin aŶd I͛ll ďe ǁalkiŶg Ǉou thƌough soŵe of the keǇ fuŶdaŵeŶtals, soŵe of the
things I really like.

My blog can be found here at http://weblogs.asp.net/dwahlin aŶd if Ǉou͛ƌe oŶ Tǁitteƌ feel fƌee to
follow me @danWahlin and keep in touch that way.

http://weblogs.asp.net/dwahlin

© 2013, 2014 Wahlin Consulting 5 | P a g e

00:00:30

To get staƌted ǁe͛ƌe goiŶg to be focussing 100% on AngularJS.

The deŵo͛s I͛ŵ goiŶg to ďe shoǁiŶg thƌoughout this aƌe goiŶg to ďe fouŶd heƌe
http://tinyurl.com/AngularJSDemos

I haǀe soŵe ƌeal siŵple deŵo͛s to staƌt thiŶgs out, aŶd theŶ ǁe͛ll ďuild up aŶd theŶ ďǇ the eŶd ǁe͛ll
kind of put all the main pieces together.

I͛ŵ Ŷot goiŶg to haǀe tiŵe iŶ aƌouŶd ϲϬ-ish minutes to go through an entire full-scale line-of-

business type app but you can absolutely build those types of apps with AngularJS.

http://tinyurl.com/AngularJSDemos

© 2013, 2014 Wahlin Consulting 6 | P a g e

00:01:03

If Ǉou͛ƌe Ŷeǁ to AŶgulaƌ aŶd Ǉou ƌeallǇ haǀeŶ͛t ƌead ŵuĐh aďout it Ǉou ĐaŶ go to http://angularjs.org

to get all the information. This includes documentation, demonstrations, tutorials – all that fun stuff.

The fiƌst tiŵe I ǁeŶt theƌe I ǁas ƌeallǇ eǆĐited aďout it. I heaƌd aďout it fƌoŵ a fƌieŶd. I ƌeallǇ hadŶ͛t
been on the SPA (Single Page Application) bandwagon because I just felt it was too much of a mess.

Theƌe͛s too ŵaŶǇ sĐƌipts iŶǀolǀed aŶd Ǉou have all of these different things you need to deal with.

“o I ǁas ƌeallǇ eǆĐited aďout AŶgulaƌ ďeĐause it ƌeallǇ ǁas, as Ǉou͛ll see, kiŶd of a “PA fƌaŵeǁoƌk.

The first time I went and looked at the docs I have to say not a lot of light bulbs went off.

http://angularjs.org/

© 2013, 2014 Wahlin Consulting 7 | P a g e

00:01:45

It felt a little bit strange.

The more I got into it, it looked a little bit stranger in parts.

© 2013, 2014 Wahlin Consulting 8 | P a g e

00:01:50

I saǁ all these diffeƌeŶt ǁoƌds like ͞tƌaŶsĐlusioŶ͟ aŶd ͞sĐope͟ aŶd ͞diƌeĐtiǀe͟ aŶd I said ͞What the
heĐk is this?͟

IŶ faĐt I ǁasŶ͛t eǀeŶ sure if transclusion was an actual word, but it turns out it is.

I kind of felt like this guy.

© 2013, 2014 Wahlin Consulting 9 | P a g e

I ǁoŶ͛t saǇ I shed a teaƌ, ďut I ǁas a little fƌustƌated ďeĐause I͛ǀe ďeeŶ usiŶg Jaǀa“Đƌipt siŶĐe the 9Ϭ͛s
and usually I pick up on stuff pretty quickly so I figuƌed ͞OK. MaǇďe I͛ŵ stupid!͟

It tuƌŶs out I just ǁasŶ͛t thiŶkiŶg aďout it the ƌight ǁaǇ, aŶd aďout hoǁ to appƌoaĐh it.

© 2013, 2014 Wahlin Consulting 10 | P a g e

00:02:20

OŶĐe I took a step ďaĐk aŶd ƌelaǆed a little ďit aŶd said ͞Heh! This ĐaŶ͛t ďe as haƌd as I͛ŵ ŵakiŶg it.͟

I chilled out a little ďit…

© 2013, 2014 Wahlin Consulting 11 | P a g e

00:02:31

… aŶd I ƌealised ͞Woǁ! This is aǁesoŵe͟.

AngularJS truly in my opinion is an awesome framework and so a lot of light bulbs went off. Once

that started happening all the pieces fitted in and made total sense to me.

I thiŶk it͛s like anything. With a new framework: sometimes you catch it instantly when you learn it,

aŶd otheƌ tiŵes Ǉou doŶ͛t.

With this it ǁas ŵoƌe a ŵatteƌ of I hadŶ͛t takeŶ the tiŵe to ďe ƌeallǇ hoŶest to ƌeseaƌĐh the
different pieces. I was kind of learning little titbits here and there.

What I͛ŵ goiŶg to do thƌoughout this ǀideo is ǁalk Ǉou thƌough all the keǇ thiŶgs that I ǁish I ǁould
have understood more about upfront and hopefully jump-start your AngularJS development

process.

© 2013, 2014 Wahlin Consulting 12 | P a g e

00:03:10

OŶĐe Ǉou get doŶe Ǉou͛ƌe going to have superpowers, just like this kid here.

MaǇďe Ŷot ͞foƌĐe͟ poǁeƌs, ďut supeƌ-SPA powers – Single Page Application powers

© 2013, 2014 Wahlin Consulting 13 | P a g e

00:03:22

The ageŶda is…

We͛ƌe goiŶg to staƌt off ǁith soŵe of the keǇ featuƌes AngularJS offeƌs aŶd I͛ll kiŶd of iŶtƌoduce the

challenge with writing SPAs from scratch.

Anyone who knows me knows I do not recommend writing them from scratch. I just think that in the

long term it is, when it comes to maintenance, a nightmare.

Theƌe͛s too ŵaŶǇ sĐƌipts iŶǀolǀed aŶd I͛ŵ ǁoƌƌied about version dependencies and scripts changing

and things breaking.

“o ǁe͛ƌe goiŶg to talk aďout that aŶd how Angular addresses it.

TheŶ ǁe͛ƌe goiŶg to get staƌted ǁith soŵe of the fƌaŵeǁoƌk fuŶdaŵeŶtal featuƌes that AŶgulaƌ
provides.

TheŶ I͛ll go iŶto soŵe of those keǇ featuƌes that Ǉou͛ǀe ƌeallǇ got to staƌt off ǁith, kiŶd of the A-B-Cs

of Angular if you will, so Directives, Filters and two-way Data Binding which is just awesome.

I͛ŵ a ďig faŶ of soŵe of the otheƌ sĐƌipts out theƌe – like KnockoutJS as an example - ďut Ǉou͛ƌe
goiŶg to see that AŶgulaƌ is a tƌue fƌaŵeǁoƌk. It͛s Ŷot just a liďƌaƌǇ that does ŵaǇďe oŶe oƌ tǁo
things: it actually can do a LOT of different things.

OŶĐe ǁe get thƌough the DiƌeĐtiǀes, Filteƌs aŶd Data BiŶdiŶg ǁe͛ƌe goiŶg to talk about Views,

Controllers and Scope.

© 2013, 2014 Wahlin Consulting 14 | P a g e

AŶd theŶ ǁe͛ll ǁƌap up ǁith Modules, aŶd ǁe͛ll talk aďout hoǁ all this otheƌ stuff fits iŶto ŵodules,
aŶd theŶ ǁe͛ll get iŶto soŵe “PA ĐoŶĐepts like ‘outes aŶd eǀeŶ FaĐtoƌies foƌ shaƌiŶg data aŶd usiŶg
data.

© 2013, 2014 Wahlin Consulting 15 | P a g e

Module 1: Getting Started

00:04:28

So how do you get started with AngularJS and why do you want to get started? I mean what features

does it offer that are that compelling?

Well ǁe͛ƌe goiŶg to talk aďout that iŶ this paƌtiĐulaƌ seĐtioŶ.

© 2013, 2014 Wahlin Consulting 16 | P a g e

Single Page Application (SPA)

00:04:49

First off, a Single Page Application is one in which we have a shell page and we can load multiple

views into that.

“o a tƌaditioŶal app, as Ǉou kŶoǁ Ǉou tǇpiĐallǇ ďliŶk aŶd load eǀeƌǇthiŶg agaiŶ. It͛s Ŷot ǀeƌǇ effiĐieŶt
on the bandwidth, especially in the mobile world.

In a SPA we can load the initial content upfront and then the different views or the little kind of mini-

web pages can be loaded on the fly and embedded into the shell.

AngularJS, as ǁe͛ƌe goiŶg to see, is a ǀeƌǇ good “PA fƌaŵeǁoƌk, ďut it͛s Ŷot just foƌ that. You doŶ͛t
have to load these dynamic views with it. In fact if you wanted you could just use it for some of the

Đool sepaƌatioŶ of Đode that I͛ll shoǁ Ǉou aŶd data ďiŶdiŶg, ďut I ǁill foĐus oŶ “PAs heƌe.

© 2013, 2014 Wahlin Consulting 17 | P a g e

The Challenge With SPAs

00:05:34

The ĐhalleŶge ǁith ďuildiŶg “PAs fƌoŵ sĐƌatĐh is theƌe͛s a lot of diffeƌeŶt issues to deal ǁith: DOM
manipulation and history and how do you dynamically load modules and how do you deal with

promises when you make async calls and things like that.

‘outiŶg ďeĐoŵes a huge issue ďeĐause Ǉou haǀe to haǀe soŵe ǁaǇ to tƌaĐk ͞Wheƌe aƌe ǁe? AŶd
ǁheƌe aƌe ǁe goiŶg?͟

All of this tǇpe of stuff Ǉou͛ƌe goiŶg to see is ďuilt iŶto AŶgulaƌ. Noǁ ǁe ĐaŶ ĐeƌtaiŶlǇ do all this ǁith
different scripts out there. We could use sammyJS and jQuery and historyJS and requireJS. For AJAX

ǁe ĐaŶ use Q aŶd theƌe͛s a lot of diffeƌeŶt optioŶs.

But AŶgulaƌ, Ǉou͛ƌe goiŶg to see, pƌoǀides a lot of Đool featuƌes.

© 2013, 2014 Wahlin Consulting 18 | P a g e

A Full-featured SPA Framework

00:06:10

AngularJS is one core library.

I ƌeallǇ like that ĐoŶĐept ďeĐause I doŶ͛t haǀe to ƌelǇ oŶ a ŵillioŶ otheƌ sĐƌipts aŶd ǁoƌƌǇiŶg aďout
those different script versions playing nicely into the future.

If you work on a development team then maintenance should be some type of a goal for you,

especially if you do the maintenance.

Angular, in my view, gives a nice solid core that you can build on top of.

Now what are some of the features?

© 2013, 2014 Wahlin Consulting 19 | P a g e

00:06:37

As mentioned it [Angular] is really a full-featured SPA framework.

It does all kinds of good stuff.

We have two-way data binding. We have the Model-View-Controller concept. Routing of the Views I

mentioned into the shell pages is done through built-iŶ ƌoutiŶg suppoƌt aŶd I͛ll shoǁ hoǁ to do that
in this video.

Testing was designed right fƌoŵ the ďegiŶŶiŶg so Ǉou ĐaŶ ďuild ǀeƌǇ ƌoďust tests if Ǉou͛d like, ǁhiĐh
is obviously recommended.

For DOM manipulation jQLite is built-in which is kind of like the Mini-Me of jQuery. If you want to

use more advanced stuff you can even use jQuery and they play really nice together: Angular and

jQuery.

When it comes to data binding we have full support for templates. HistoƌǇ͛s ďuilt iŶ. We ĐaŶ shaƌe
code through factories and services and other things.

TheŶ theƌe͛s eǀeŶ ŵoƌe. We haǀe the ĐoŶĐept of data-ďiŶdiŶg ǁith Vieǁ Models. DiƌeĐtiǀes I͛ŵ
going to be talking about in the next section, which is a way to teach HTML new tricks. Validation.

Dynamically injecting different features at run time through dependency injection and much much

more.

© 2013, 2014 Wahlin Consulting 20 | P a g e

These are just some of the core features and these features will satisfy some of the others that I

mentioned when it comes to building a SPA.

Now building that SPA from scratch can be a challenge – not so hard here.

© 2013, 2014 Wahlin Consulting 21 | P a g e

AngularJS.org

00:07:55

Let͛s go aŶd ƌuŶ off to the AŶgulaƌJ“ page ƌeal fast aŶd I͛ll shoǁ Ǉou hoǁ ǁe ĐaŶ get staƌted ǁith it.

TheŶ iŶ the Ŷeǆt seĐtioŶ ǁe͛ll juŵp iŶto soŵe of the keǇ staƌtiŶg featuƌes.

To get started with AngularJS just head over to http://angularjs.org

You͛ll ŶotiĐe heƌe that I ĐaŶ go to GitHuď aŶd I ĐaŶ aĐtuallǇ get to all of the sĐƌipts theƌe, oƌ I ĐaŶ just
hit ͞DoǁŶload͟ which is very simple.

http://angularjs.org/

© 2013, 2014 Wahlin Consulting 22 | P a g e

Download AngularJS

Theƌe aƌe tǁo diffeƌeŶt optioŶs. I ĐaŶ go ǁith the ͞staďle͟ oƌ the ͞uŶstaďle͟.

If Ǉou ǁaŶt ĐuttiŶg edge go ǁith the ͞uŶstaďle͟. I aĐtuallǇ use it all the tiŵe aŶd I͛ǀe had ƌeallǇ good
luĐk ǁith that ďut “taďle ǁould ďe the offiĐial, ƌeĐoŵŵeŶded ƌelease if ǁe͛ƌe ďuildiŶg a pƌoduĐtioŶ
application.

Then we can go with the minified, uncompressed or zipped version.

You also have access to a CDN. The CDN will give you access around the world to regional data

centres that in this case, Google host.

Then we also potentially get some caching benefits, some parallelism benefits of browsers being

aďle to load diffeƌeŶt sĐƌipts ďeĐause theǇ͛ƌe diffeƌeŶt doŵaiŶs. Theƌe͛s aĐtuallǇ soŵe good ďeŶefits
by going with the CDN if you want it.

But foƌ Ŷoǁ I͛ŵ just goiŶg to go foƌ staďle aŶd ŵiŶified aŶd doǁŶload it. This is just goiŶg to giǀe ŵe
this angular.min.js that Ǉou͛ll see.

Noǁ ǁhat I ǁaŶt to do fƌoŵ heƌe is just plop it iŶto a ǁeď page aŶd that͛s all I haǀe to do.

© 2013, 2014 Wahlin Consulting 23 | P a g e

00:09:09

You͛ll ŶotiĐe I͛ǀe alƌeadǇ added that iŶ [aďoǀe] aŶd ǁe͛ƌe ƌeadǇ to go. It͛s Ŷot goiŶg to do ŵuĐh
ƌight Ŷoǁ ďut that͛s going to lead us in nicely to the next section which will be Directives, Data

Binding and Filters.

© 2013, 2014 Wahlin Consulting 24 | P a g e

Module 2: Directives, Filters and Data Binding

00:09:26

OŶĐe Ǉou͛ǀe added the AngularJS sĐƌipt iŶto a page Ŷoǁ Ǉou͛ƌe ƌeadǇ to staƌt usiŶg it aŶd the first

thiŶg ǁe͛ƌe goiŶg to talk aďout is soŵethiŶg Đalled Directives.

TheǇ͛ƌe ǀeƌǇ, ǀeƌǇ ĐƌitiĐal aŶd a kiŶd of Đoƌe ĐoŶĐept iŶ the AŶgulaƌJ“ fƌaŵeǁoƌk.

Fƌoŵ theƌe ǁe͛ƌe goiŶg to talk aďout filteƌiŶg data aŶd ǁe͛ll talk aďout data ďiŶdiŶg, so a lot of Đool
stuff in this particular section.

© 2013, 2014 Wahlin Consulting 25 | P a g e

What are Directives?

00:09:48

To start off, what is a directive?

Well I mentioned this earlier. A directive is really a way to teach HTML new tricks.

The web when it first came out was really just designed to display statiĐ pages. As ǁe all kŶoǁ it͛s
become very dynamiĐ aŶd ǁe͛ǀe dealt ǁith that pƌettǇ ǁell. jQuery came out many years ago and it

provided a way to do it. Even before then we could use raw, vanilla JavaScript.

Angular takes it up a whole notch and allows us to extend HTML very easily by simply adding

attributes, elements or comments.

© 2013, 2014 Wahlin Consulting 26 | P a g e

Using Directives and Data Binding Syntax

00:10:20

Heƌe͛s aŶ eǆaŵple of usiŶg a ǀeƌǇ ďasiĐ, ďut iŵpoƌtaŶt, Angular directive.

Notice at the top we have ng-app. Any time you see ng- that is an Angular directive. It͛s a ďuilt-on

directive. You can also write custom ones. You can get third party ones and things like that.

This paƌtiĐulaƌ diƌeĐtiǀe is ǀeƌǇ iŵpoƌtaŶt ďeĐause the sĐƌipt that͛s now loaded [at the bottom] is

going to kiĐk off aŶd this ǁill iŶitialise the AŶgulaƌ app. ‘ight Ŷoǁ ǁe doŶ͛t haǀe aŶǇ paƌtiĐulaƌ
module associated or any other code but we can still do stuff just by adding ng-app.

So for example, this is an example of another directive called ng-model.

What ng-model does is ďehiŶd the sĐeŶes it͛s goiŶg to add a pƌopeƌtǇ up iŶ the ŵeŵoƌǇ Đalled
͞Ŷaŵe͟ iŶto ǁhat͛s Đalled ͞the scope͟.

If Ǉou͛ǀe eǀeƌ dealt ǁith the ĐoŶĐept of a Vieǁ͛s ŵodel Đalled a VieǁModel - Knockout and some

other libraries have this concept – then what this is really doing behind the scenes is making an

empty ViewModel but then filling it with a name property. Now if I want to write out that value then

I can simply come over and add a data binding expression.

Expressions are really cool because if I ǁaŶted to put ͞ϭ + ϭ͟ aŶd tƌǇ to ǁƌite out the ƌesult I Đould
do that. You ĐaŶ͛t put ĐoŶditioŶal logiĐ iŶ heƌe ďeĐause Ǉou shouldŶ͛t ďe puttiŶg that tǇpe of
conditional logic in your views. But out of the box, just by adding the ng-app and ng-model with a

© 2013, 2014 Wahlin Consulting 27 | P a g e

property as they type into this text box I can actually bind to that value and that provides a very cool

little feature.

“o let͛s go ahead aŶd look at a deŵoŶstƌatioŶ of that.

© 2013, 2014 Wahlin Consulting 28 | P a g e

Data-Binding Example using AngularJS Directives

00:12:02

So I have a pƌettǇ siŵple ǁeď page. You͛ll see I alƌeadǇ haǀe AŶgulaƌ iŶĐluded.

Let͛s go ahead aŶd staƌt off ďǇ saǇiŶg ǁe͛ll alloǁ Ǉou to tǇpe Ǉouƌ Ŷaŵe. We͛ll ďuŵp this doǁŶ:

We͛ƌe just goiŶg to do aŶ <input type=”text” /> aŶd ǁe͛ll leaǀe it at that ƌight Ŷoǁ.

OďǀiouslǇ if I ǁeƌe to ƌuŶ this ǁe͛ƌe Ŷot goiŶg to see ŵuĐh happeŶ. We͛ƌe goiŶg to see a teǆtďoǆ aŶd
as I tǇpe ŶothiŶg͛s goiŶg to happeŶ. Let͛s saǇ that as theǇ tǇpe ǁe͛ƌe goiŶg to ǁƌite out the ǀalue liǀe
as they type.

The first thing I need to do is come in and add the ng-app directive.

© 2013, 2014 Wahlin Consulting 29 | P a g e

00:12:39

If you feel more comfortable, and I do to be really honest, adding data- on these then you can do it.

In fact I could even add data-ng-app=”” and this would still work.

Then it will validate against some of the diffeƌeŶt ǀalidatoƌs out theƌe. I͛ll leaǀe that up to Ǉou ďut
Ǉou doŶ͛t haǀe to put data- if Ǉou doŶ͛t ǁaŶt to.

I͛ŵ goiŶg to Đoŵe doǁŶ a little ďit aŶd saǇ ng-model=”name”.

This is the Ŷaŵe of the pƌopeƌtǇ. I Đould haǀe said ͞foo͟ oƌ I Đould haǀe said ͞fo͟, ͞fuŵ͟ oƌ ǁhateǀeƌ
I ǁaŶted ďut ǁe͛ƌe goiŶg to do ͞Ŷaŵe͟ heƌe, aŶd agaiŶ I͛ŵ goiŶg to add data- just because it makes

me feel all warm and fuzzy.

Neǆt ǁhat I͛ŵ goiŶg to do is as theǇ tǇpe I ǁould like to ďiŶd to the ǀalue that theǇ tǇpe. BeĐause ǁe
Ŷoǁ, ďehiŶd the sĐeŶes, ŵade a pƌopeƌtǇ up iŶ ŵeŵoƌǇ Đalled ͞Ŷaŵe͟ I ĐaŶ Ŷoǁ ďiŶd to that, aŶd
ǁe do that usiŶg the douďle ďƌaĐkets ͞{{͞. We͛ƌe usiŶg the kiŶd of haŶdleďaƌs oƌ ŵoustaĐhe –type

style of data-ďiŶdiŶg if Ǉou͛ǀe used those sĐƌipt liďƌaƌies ďefore.

That͛ll siŵplǇ tǇpe out Ŷaŵe as ǁe tǇpe it.

Let͛s go ahead aŶd ƌuŶ this aŶd Ǉou͛ƌe goiŶg to see that although it ǁoŶ͛t ďe supeƌ, supeƌ iŵpƌessiǀe
it should ǁoƌk foƌ us aŶd that͛s all ǁe haǀe to do to get staƌted ǁith Angular.

We͛ll go ahead aŶd tǇpe the Ŷaŵe aŶd theƌe ǁe go…

© 2013, 2014 Wahlin Consulting 30 | P a g e

You ĐaŶ see that as I tǇpe it autoŵatiĐallǇ ďiŶds it, aŶd that͛s pƌettǇ daŵŶed easǇ, ƌight?

 Include the ng-app

 Include the ng-model

 Bind to that model.

This is pƌettǇ pƌiŵitiǀe aŶd ǁe͛ƌe goiŶg to go ŵuĐh deepeƌ heƌe, ďut that͛s how we can get started.

© 2013, 2014 Wahlin Consulting 31 | P a g e

Iterating with the ng-repeat Directive

00:14:07

The next thing we can do is we can actually iterate through data.

So I have another directive here called ng-init aŶd this isŶ͛t oŶe I use a lot iŶ ƌeal life apps ďeĐause
ǁe͛ƌe going to get into controllers and things like that later in the video, but this is going to give me

some initialisation data that I want to actually bind to and display so we can come in and use

another directive in Angular called ng-repeat.

We͛ƌe goiŶg to say ng-repeat aŶd theŶ I͛ŵ goiŶg to giǀe a ǀaƌiaďle heƌe. Foƌ eaĐh Ŷaŵe iŶ the Ŷaŵes
variable write out that name.

IŶ this Đase ͞Ŷaŵe͟ is Ŷot the saŵe thiŶg as I just deŵoŶstƌated: ͞Ŷaŵe͟ is just a ǀaƌiaďle. If I put
͞foo͟ heƌe theŶ I ǁould ďiŶd to ͞foo͟ here.

This provides a very easy way to duplicate s.

© 2013, 2014 Wahlin Consulting 32 | P a g e

In this case we have four names and so we would get four s with the name written out

automatically.

So again, we have the ng-app, the ng-init: these are two directives. Then the third is ng-repeat which

will simply loop through all the names, and then data-bind or apply the value into the .

Let͛s look at aŶ eǆaŵple of that ƌeallǇ ƋuiĐklǇ.

© 2013, 2014 Wahlin Consulting 33 | P a g e

ng-Repeat Example

00:15:20

“o ǁe ĐaŶ Đoŵe ďaĐk iŶto ouƌ ǁeď page aŶd I͛ŵ goiŶg to do the ng-init.

I͛ŵ going to give it an array with a couple of names.

This is a primitive way to initialise some variables with data.

If we come down [below the input] I can do a and and do an ng-repeat – yet another

directive – foƌ eaĐh Ŷaŵe iŶ Ŷaŵes. I͛ǀe alƌeadǇ used ͞Ŷaŵe͟ heƌe:

“o I͛ŵ goiŶg to Đall it soŵethiŶg diffeƌeŶt. Let͛s saǇ foƌ eaĐh peƌsoŶNaŵe iŶ Ŷaŵes:

Let͛s go ahead aŶd ďiŶd to peƌsoŶNaŵe:

VeƌǇ easǇ. VeƌǇ siŵple. “o …

© 2013, 2014 Wahlin Consulting 34 | P a g e

 We͛ǀe Ŷoǁ iŶitialised ouƌ data ǁith the ng-init.

 We͛ƌe goiŶg to iteƌate through our data with the ng-repeat

 We siŵplǇ giǀe it the Ŷaŵe aŶd it͛s goiŶg to put that Ŷaŵe iŶto the ǀaƌiaďle ǁheŶ ǁe ďiŶd to
it

If ǁe go ahead aŶd ƌuŶ this Ǉou͛ll see that ǁe just get a ŶiĐe little list ǁƌitteŶ out, ŶothiŶg too faŶĐǇ,
but it does work, and if the name binding at the top still works as well.

When you use directives one of the nice things you can do is go off to the documentation. One of

the ďest thiŶgs Ǉou Ŷeed to kŶoǁ aďout is go to ͞Deǀelop͟…

.. aŶd seleĐt ͞API ‘efeƌeŶĐe͟.

© 2013, 2014 Wahlin Consulting 35 | P a g e

The AngularJS API Reference for Directives

00:16:50

IŶ the API ‘efeƌeŶĐe Ǉou͛ll see that ƌight at the top ǁe haǀe diffeƌeŶt diƌeĐtiǀes.

Theƌe͛s a ǁhole ďuŶĐh of these. I͛ŵ oŶlǇ shoǁiŶg a ǀeƌǇ sŵall suďset of ǁhat͛s aǀailaďle. I͛ll shoǁ
some others as we move along here.

So for instance if we want to know more about ngRepeat we can click on that.

© 2013, 2014 Wahlin Consulting 36 | P a g e

ngRepeat Documentation

00:17:09

It gives us some info. It gives us some different samples of it and a look at how it works.

Theƌe͛s eǀeŶ soŵe tests [͞EŶd to eŶd test͟ taď uŶdeƌ ͞“ouƌĐe͟] oŶ hoǁ to test the ƌepeateƌ aŶd do
that kiŶd of thiŶg if Ǉou͛d like as ǁell.

“o theƌe͛s a lot of gƌeat stuff Ǉou ĐaŶ do ǁith diƌeĐtiǀes, aŶd ǁe͛ll staƌt to see ŵoƌe of these as ǁe
move along.

© 2013, 2014 Wahlin Consulting 37 | P a g e

Using Filters

00:17:25

The next thing we can do with Angular is apply filters.

Let͛s saǇ that as ǁe ďiŶd to, saǇ a Đustoŵeƌ Ŷaŵe, aŶd ǁe do that pƌoĐess ǁe ǁaŶt to uppeƌ-case it.

Now I could upper-Đase it iŶ ŵǇ data ŵodel, ǁhiĐh ǁe͛ll get to iŶ a little ďit lateƌ, ďut aŶ easǇ ǁaǇ to
do this type of thing is to apply an AngularJS filter.

All this will do is this pipe [|] is a separator between the data binding statement and something

called a filter.

Theƌe͛s a feǁ filteƌs ďuilt-iŶ. We͛ll look at that iŶ the documentationonce I get into the demo and

ƌuŶ off to the ǁeď page. ͞uppeƌĐase͟ saǇs uppeƌ-Đase it, ͞loǁeƌĐase͟ saǇs loǁeƌ-case it, you can

ƌestƌiĐt it if it͛s an array and you want to output that array and you want to restrict it, limit it to say

three out of the five or whatever it may be.

Then when it comes to ng-repeat soŵethiŶg that͛s ǀeƌǇ Đool: iŶ this Đase ǁe͛ƌe goiŶg to saǇ foƌ eaĐh
Đust iŶ Đustoŵeƌs I ǁaŶt to filteƌ ďǇ ͞ŶaŵeTeǆt͟.

© 2013, 2014 Wahlin Consulting 38 | P a g e

Above this we have this ng-ŵodel, ǁhiĐh ǁe͛ǀe alƌeadǇ looked at.

As they type, the value they type will automatically be applied to first filter down the customers

based upon what was typed.

“o if Ǉou tǇpe ͞da͟ aŶd ͞daŶ͟ ǁas iŶ theƌe theŶ it͛ll autoŵatiĐallǇ piĐk ŵe oƌ aŶǇ otheƌ people that
staƌt ǁith ͞da͟ oƌ haǀe ͞da͟ iŶ the Ŷaŵe.

TheŶ ǁe͛ƌe goiŶg to take those results and filter again – ǁe͛ƌe goiŶg to oƌdeƌ those ƌesults ďǇ a
͞Ŷaŵe͟ pƌopeƌtǇ:

I͛ll shoǁ this iŶ the deŵoŶstƌatioŶ ĐoŵiŶg up.

What that ǁill ultiŵatelǇ do is if ǁe haǀe ϱϬ Đustoŵeƌs aŶd ǁe filteƌ foƌ all those that haǀe ͞JohŶ͟ iŶ
the Ŷaŵe theŶ all the ͞JohŶ͟s ǁould ďe shoǁŶ aŶd ǁe ǁould theŶ oƌdeƌ those ďǇ ͞JohŶ Doe͟, ͞JohŶ
“ŵith͟ aŶd that tǇpe of thiŶg.

What ǁe͛ƌe goiŶg to do iŶ this Đase is oŶĐe that filteƌiŶg goes thƌough aŶd ǁe oƌdeƌ those ǁe͛ll theŶ
write out the customer name and the customer city.

Let͛s go ahead aŶd juŵp iŶto a deŵoŶstƌatioŶ of doiŶg it this ǁaǇ.

© 2013, 2014 Wahlin Consulting 39 | P a g e

Using Filters Demo

00:19:20

BaĐk iŶ ouƌ ǁeď page I͛ǀe ĐhaŶged the ng-init a little bit. Instead of just having an array of strings, I

have an array of objects.

You͛ll ŶotiĐe that eaĐh oďjet has a Ŷaŵe aŶd a ĐitǇ pƌopeƌtǇ. I just haǀe thƌee of these iŶ heƌe: JohŶ
Doe, John Smith and Jane Doe, from San Francisco, New York and Phoenix.

I͛ŵ goiŶg to haǀe to ĐhaŶge this [ĐoŶteŶts of the ďodǇ of the page] Ŷoǁ. ͞Ŷaŵes͟ still staǇs the
saŵe, ďut I͛ŵ goiŶg to go ahead aŶd ĐhaŶge that too. Let͛s saǇ this is a list of Đustoŵeƌs:

We͛ll Ŷaŵe it ͞Đustoŵeƌs͟ aŶd ǁe͛ll ĐhaŶge the stateŵeŶt aĐĐoƌdiŶglǇ to let͛s saǇ ͞Đust͟:

© 2013, 2014 Wahlin Consulting 40 | P a g e

Noǁ ǁhat I͛ŵ goiŶg to haǀe to do is ǁƌite out the cust. – and now we can get into the properties

aŶd ǁe ĐaŶ do ͞Ŷaŵe͟ heƌe:

Now if I wanted I could put in a space and maybe a dash or something and we could do cust.city and

Ŷoǁ ǁe͛ƌe goiŶg to data-bind both those properties.

I could even come into here, just to show you, I could even do it this way if I wanted, and that would

work too.

But I͛ŵ goiŶg to ďƌeak these out iŶto tǁo sepaƌate data-binding statements. So now we say for each

Đust iŶ Đustoŵeƌs let͛s go ahead aŶd ǁƌite out Đust.Ŷaŵe aŶd Đust.city.

Let ŵe go ahead aŶd just ŵake suƌe this ǁoƌks aŶd theŶ ǁe͛ll applǇ soŵe filteƌs.

It looks like it does [work]. You can see the cities now being written out, but notice as I type nothing

ƌeallǇ happeŶs that͛s useful oƌ iŶteƌestiŶg.

What I͛ŵ goiŶg to do is Đoŵe iŶ aŶd let͛s do a filteƌ ďǇ aŶd ǁheŶeǀeƌ theǇ tǇpe a Ŷaŵe iŶstead of
data-ďiŶdiŶg to it I ǁaŶt to use it as a filteƌ. “o ǁe͛ƌe goiŶg to filteƌ ďǇ the Ŷaŵe pƌopeƌtǇ that͛s iŶ
our model.

Let͛s go ahead aŶd test this. You͛ll ŶotiĐe that ǁheŶ ǁe tǇpe ͞s͟ the ͞“͟ fƌoŵ ͞“aŶ FƌaŶĐisĐo͟ also
pulls up ďeĐause I didŶ͛t tell it aŶǇthiŶg speĐifiĐ – just enter everything:

© 2013, 2014 Wahlin Consulting 41 | P a g e

“o ǁe haǀe ͞“ŵith͟, ǁe haǀe ͞Doe͟. We ĐaŶ do ďoth of those. We ĐaŶ do ͞Neǁ Yoƌk͟ …

You ĐaŶ see all that ǁoƌks aŶd it͛s all liǀe. We ĐaŶ also use ͞oƌdeƌBǇ͟. Let͛s see if ǁe haǀe thiŶgs iŶ
the ƌight aƌea. It looks like if I do ͞JohŶ͟ aŶd ǁe oƌdeƌ ďǇ saǇ ĐitǇ theŶ oďǀiouslǇ PhoeŶiǆ is out of
plaĐe ǁith Neǁ Yoƌk, so ǁe ĐaŶ Đoŵe iŶ aŶd do aŶotheƌ pipe aŶd ͞oƌdeƌBǇ͟ aŶd theŶ iŶ Ƌuotes I
giǀe it the pƌopeƌtǇ. Let͛s oƌdeƌ ďǇ ĐitǇ aŶd theŶ it ǁill ďiŶd those ƌeŵaiŶiŶg Đustoŵeƌs aŶd oƌdeƌ
them by city.

Let͛s go ahead aŶd seaƌĐh foƌ ͞JohŶ͟ heƌe, aŶd ŶotiĐe that ͞JohŶ͟ iŶ Neǁ Yoƌk Ŷoǁ appeaƌs fiƌst, aŶd
Phoenix follows which of course was not the case with the data.

“o that͛s aŶ eǆaŵple of applǇiŶg Ŷot oŶlǇ soŵe data-binding and some ng-repeat –type of

directives, but also how we can apply filters and orderBys and I could even do upper-case if I

wanted.

Let͛s saǇ ǁe ǁaŶted the Ŷaŵe to ďe uppercase and the city to be lowercase.

© 2013, 2014 Wahlin Consulting 42 | P a g e

Now what will happen is it will automatically do that for us, as you can see here:

NotiĐe though that as I tǇpe if I do ͞JohŶ͟ [usiŶg ŵiǆed loǁeƌ-case] it still works. It still does the

filters – it still filters aŶd soƌts. ͞JaŶe͟ still ǁoƌks aŶd all that.

So these are some of the built-in sorts and filters you get out of the box.

AgaiŶ, if Ǉou go off to http://aŶgulaƌjs.oƌg , go to ͞API ‘efeƌeŶĐe͟ aŶd theŶ sĐƌoll oŶ doǁŶ a little ďit
Ǉou͛ll see a ǁhole list of the filters.

If I had a number that I wanted to convert into a currency with a $ sign for instance or a £ sign or

ǁhateǀeƌ ĐuƌƌeŶĐǇ Ǉou͛ƌe iŶ theŶ I ǁould just saǇ ͞| ĐuƌƌeŶĐǇ͟ aŶd it ǁould autoŵatiĐallǇ do that.

If I had a date and I wanted to format it a certain way, and you can control that by the way, you

could do |date. Theƌe͛s a lot of diffeƌeŶt thiŶgs Ǉou ĐaŶ do heƌe.

What͛s ƌeallǇ ŶiĐe aďout AŶgulaƌ is Ŷot oŶlǇ ĐaŶ ǁe ǁƌite ouƌ oǁŶ Đustoŵ diƌeĐtiǀes ďut I ĐaŶ eǀeŶ
write my own custom filters if I want to get a little more advanced with this.

“o, a ǀeƌǇ poǁeƌful fƌaŵeǁoƌk aŶd ǁe͛ǀe oŶlǇ sĐƌatĐhed the suƌfaĐe so faƌ.

© 2013, 2014 Wahlin Consulting 43 | P a g e

What ǁe͛ƌe goiŶg to do Ŷeǆt is staƌt talkiŶg aďout the MVC paƌt of AŶgulaƌ – the Model, the View,

aŶd the CoŶtƌolleƌ, aŶd ǁe͛ll see hoǁ all that fits in.

© 2013, 2014 Wahlin Consulting 44 | P a g e

Module 3: Views, Controllers and Scope

00:23:40

IŶ this paƌt of the tutoƌial ǁe͛ƌe goiŶg to talk aďout Views, Controllers and a really integral part of

Angular called Scope, which is really another term for ViewModel if Ǉou͛ǀe used that term before.

© 2013, 2014 Wahlin Consulting 45 | P a g e

00:23:47

The way it works in Angular is you have a View, ǁhiĐh is ǁhat ǁe͛ǀe ďeeŶ doiŶg iŶ the pƌeǀious
section with our Directives, our Filters and our Data Binding.

But ǁe doŶ͛t ǁaŶt to put all of ouƌ logiĐ iŶto the View because it͛s Ŷot ǀeƌǇ ŵaiŶtaiŶaďle oƌ testaďle
or all those types of things.

IŶstead ǁe͛ƌe goiŶg to haǀe a speĐial little Jaǀa“Đƌipt oďjeĐt – a container - called a Controller. The

Controller ǁill dƌiǀe thiŶgs. It͛s goiŶg to ĐoŶtƌol ultiŵatelǇ ǁhat data gets ďouŶd into the View. If the

View passes up data to the controller it will handle passing off maybe to a service which then

updates a back-end data store.

The glue between the View and the Controller is something called the Scope, aŶd iŶ AŶgulaƌ Ǉou͛ƌe
going to see a lot of objects or variables that start with $. $scope represents the scope object.

WheŶ I saǇ it͛s the glue, it liteƌallǇ is the thiŶg that ties the ĐoŶtƌolleƌ to the ǀieǁ.

You͛ll see that the ǀieǁ ĐaŶ kŶoǁ aďout the ĐoŶtƌolleƌ ďeĐause theƌe͛s a diƌeĐtiǀe foƌ that if Ǉou͛d
like to use it but the controller itself, to make it testable and a few things – loosely coupled and

The ǀieǁ doesŶ’t haǀe to kŶoǁ aďout the ĐoŶtroller, aŶd the ĐoŶtroller defiŶitely doesŶ’t ǁaŶt
to know about the view.

© 2013, 2014 Wahlin Consulting 46 | P a g e

modular and all that good stuff – shouldŶ͛t kŶoǁ aŶǇthiŶg aďout the ǀieǁ. IŶ faĐt Ǉou should ďe aďle
to define a controller that you can bind to different views. Maybe you have a mobile view, you have

a desktop view or whatever it may be.

So the scope is this glue between them.

Now for folks that have worked with Knockout or some of the different data binding frameworks out

there, not just JavaScript but other desktop modes and things, you might have heard the term

͞ViewModel͟.

A ViewModel literally is the model – the data – foƌ the ǀieǁ. Well that͛s ƌeallǇ all the sĐope is. The
sĐope is ouƌ VieǁModel aŶd it͛s the glue ďetǁeen the view and the controller.

© 2013, 2014 Wahlin Consulting 47 | P a g e

Creating a View and Controller

00:25:40

Heƌe͛s aŶ eǆaŵple of a ƌeallǇ siŵple ĐoŶtƌolleƌ Đalled, oddlǇ eŶough, SimpleController. You͛ll ŶotiĐe
aŶ iŶteƌestiŶg thiŶg heƌe iŶ the paƌaŵeteƌ sigŶatuƌe. You͛ll see that ǁe pass $scope. This is

dependency injection that͛s ďuilt iŶto AŶgulaƌJ“.

What this is going to do is Angular, when this controller gets used, will automatically inject a scope

oďjeĐt iŶ. You͛ll see that fƌoŵ theƌe ǁe͛ll take that oďjeĐt aŶd add iŶ a pƌopeƌtǇ oŶto it called

customers which is simply an array of object literals. So we have our same scenario with name and

city here.

What this controller can do then is serve as the source of the data for the view but the controller

agaiŶ shouldŶ͛t kŶoǁ aŶǇthiŶg aďout the view, so how would we possibly communicate customers

oǀeƌ? Well that͛s ǁhǇ ǁe͛ƌe iŶjeĐtiŶg sĐope. “Đope is to ďe that ǀieǁ ďetǁeeŶ the ĐoŶtƌolleƌ aŶd the
view.

If we come up to our view up here the scope gets injected and then that scope is going to be

automatically bound into the view once the view knows about this controller.

“o heƌe͛s ǁhat it looks like…

© 2013, 2014 Wahlin Consulting 48 | P a g e

00:26:50

You͛ll ŶotiĐe up heƌe [at the top] ǁe haǀe aŶ ng-controller, “iŵpleCoŶtƌolleƌ. That͛ll autoŵatiĐallǇ
tie in this [our controller in the second half of the slide].

WheŶ this [the ĐoŶtroller] gets iŶitialised the sĐope gets passed iŶ ďut it’s iŶitially eŵpty.

Well ǁe͛ƌe goiŶg to add a customers pƌopeƌtǇ. What͛s goiŶg to happeŶ theŶ is this ĐoŶtƌolleƌ ǁill ďe
used by the view. The controlleƌ itself though isŶ͛t goiŶg to ďe Đalled – it͛s goiŶg to go thƌough the
scope. The scope itself is implicitly available – in this case to the entire div: from the start of the div

to the end of the div.

Now look at the ng-repeat heƌe. It͛s the saŵe thiŶg I did eaƌlieƌ iŶ the deŵo, eǆĐept iŶ this Đase it͛s
ďiŶdiŶg to the sĐope͛s customers property

What͛s goiŶg to happeŶ Ŷoǁ is the ǀieǁ, ďeĐause it kŶoǁs aďout the ĐoŶtƌolleƌ, autoŵatiĐallǇ gets
passed the scope. Angular does that kind of behind the scenes – it just happeŶs autoŵatiĐallǇ. We͛ƌe
goiŶg to theŶ ĐoŶtƌol iŶ ouƌ ǀieǁ ǁhat pƌopeƌties ǁe ǁaŶt to ďiŶd to. IŶ this Đase ǁe͛ƌe goiŶg to
bind to the customers.

© 2013, 2014 Wahlin Consulting 49 | P a g e

Fƌoŵ heƌe it͛s staŶdaƌd data ďiŶdiŶg like ǁe͛ǀe seeŶ eaƌlieƌ: ǁe ďiŶd to the Ŷaŵe aŶd ǁe ďiŶd to the

ĐitǇ aŶd ǁe͛ƌe kiŶd of off aŶd ƌuŶŶiŶg.

Let͛s take a look at aŶ eǆaŵple of hoǁ ǁe ĐaŶ Đƌeate ouƌ Đustoŵ ĐoŶtƌolleƌ heƌe aŶd tie it iŶto ouƌ
view.

© 2013, 2014 Wahlin Consulting 50 | P a g e

00:28:05

We alƌeadǇ haǀe soŵe data up heƌe [iŶ the ďodǇ tag] ďut I doŶ͛t ǁaŶt to use ng-init in this case. It

might have come from maybe a back-end database through an AJAX call, something along those

lines.

I͛ŵ goiŶg to get ƌid of the Ŷg-init and come on down and write my own custom script. Now keep in

ŵiŶd I͛ŵ goiŶg to do this iŶliŶe puƌelǇ foƌ deŵo purposes.

© 2013, 2014 Wahlin Consulting 51 | P a g e

I generally like to break this out into its own script – aŶd I͛ll shoǁ Ǉou hoǁ I do that lateƌ ǁheŶ ǁe
get more into a real life –tǇpe app. But foƌ Ŷoǁ let͛s ŵake ouƌ saŵe fuŶĐtioŶ like I shoǁed eaƌlieƌ:
SimpleController.

IŶ the doĐs Ǉou͛ll ofteŶ see it aďďƌeǀiated to Ctƌl oƌ soŵethiŶg. I doŶ͛t like to do that. IŶ faĐt I
recommend against it. I think you should be pretty explicit with your names but you can certainly do

it whatever way you like.

We Ŷeed the sĐope, ďeĐause, agaiŶ, that͛s the glue between this particular object – our function

SimpleController – aŶd ouƌ ǀieǁ that͛s going to get the data bind to it.

Noǁ I͛ŵ goiŶg to tag oŶto that sĐope, ǁhiĐh ƌight Ŷoǁ is eŵptǇ, a customer pƌopeƌtǇ. I͛ll just paste
in our object literal here:

Now this array of object literals is now going to be bound into the customers which then get filtered

and do all that good stuff.

We͛ǀe Ŷoǁ doŶe the saŵe thiŶg ďut if ǁe ƌuŶ this it͛s Ŷot goiŶg to ǁoƌk ďeĐause the ǀieǁ doesŶ͛t
know about SimpleController.

One way we could fix this is I could come up to the body and say ng-controller=͟“iŵpleCoŶtƌolleƌ͟:

But you can also have different controllers for different parts of a given page. The scope would only

apply to where you add that controller. So, for instance, if I came in and only wanted the scope to

applǇ heƌe…

.. then anything in the end and start tag for the div is now in that.

© 2013, 2014 Wahlin Consulting 52 | P a g e

00:30:10

So now we have two properties in the scope. The ng-model is going to add a property in the scope

called name, and we can actually get to that now in the controller by saying $scope.name

Then of course we have customers which will be retrieved through the scope as well.

If ǁe ƌuŶ this Ŷoǁ that ǁe͛ǀe defiŶed the ĐoŶtƌolleƌ ǁe should see the saŵe eǆaĐt ďehaǀiouƌ heƌe.

It still works. All my filters still work. I ĐaŶ tǇpe to filteƌ to ͞Ŷeǁ Ǉoƌk͟

That͛s aŶ eǆaŵple of a siŵple ĐoŶtƌolleƌ.

IŶ a seĐtioŶ that ǁill ďe ĐoŵiŶg up iŶ the ǀideo I͛ŵ goiŶg to ďe shoǁiŶg it iŶ a diffeƌeŶt ǁaǇ, aŶd
what I consider a better way to do it. But agaiŶ, ǁe͛ƌe tƌǇiŶg to ǁalk thƌough the fuŶdaŵeŶtals step-

by-step on how to use this.

Let͛s go ďaĐk aŶd take a look at soŵe otheƌ thiŶgs Ǉou ĐaŶ Ŷoǁ do.

© 2013, 2014 Wahlin Consulting 53 | P a g e

Module 4: Modules, Routes and Factories

00:31:02

Noǁ that Ǉou͛ǀe seeŶ data ďiŶdiŶg, diƌeĐtiǀes, filteƌs aŶd ĐoŶtƌolleƌs, aŶd Ǉou͛ǀe seeŶ hoǁ the sĐope
aĐtuallǇ ĐaŶ iŶtegƌate ďetǁeeŶ a ǀieǁ aŶd a ĐoŶtƌolleƌ it͛s Ŷoǁ tiŵe to ƌeallǇ ŵoǀe it up a ŶotĐh aŶd
talk about modularity and some more SPA-oriented concepts like routes.

IŶ this seĐtioŶ ǁe͛ƌe going to talk about how to create modules, and how modules can actually be

used to create other things like controllers, routes, factories and services, and how all this fits

together.

© 2013, 2014 Wahlin Consulting 54 | P a g e

00:31:30

One of the things I really struggled with when I very first started learning AngularJS ǁas I didŶ͛t
really see the big picture of how everything fit together.

I͛ŵ goiŶg to shoǁ Ǉou a ƌeallǇ siŵple diagƌaŵ - this is really an over-simplification – but I think it

breaks it down pretty easily.

So a module can have something off of it called a config function, and it can be defined to use

different routes. Now routes again are really important in the SPA world because if you have

different views and those views need to be loaded into the shell page then we need a way to be able

to tƌaĐk ǁhat ƌoute ǁe͛ƌe oŶ aŶd ǁhat ǀieǁ that͛s assoĐiated ǁith aŶd theŶ ǁhat ĐoŶtƌolleƌ goes
with that view and how we do all of that marrying together of these different pieces.

When you define a route in AngularJS you can define two things on that route – two of the key

things, I should say.

OŶe of those is the ǀieǁ. “o ǁhat ǀieǁ ǁheŶ that ƌoute suĐh as ͞uŶit.oƌg/oƌdeƌs͟ theŶ ŵaǇďe go to
͞oƌdeƌspaƌtial.htŵl͟ oƌ ͞oƌdeƌsfƌagŵeŶt.htŵl͟ oƌ ǁhateǀeƌ Ǉou ǁaŶt to Đall it.

 Then that view needs a controller. Instead of hard-coding the controller into the view – which works

and you can certainly do it: I showed that in the previous section – we can actually go in and do this

on our own through the route. This is the way I would definitely recommend you do it.

A given controller would then of course have access to the scope object which then the view will

bind to. I talked about that a little bit earlier.

© 2013, 2014 Wahlin Consulting 55 | P a g e

And then controllers rather than having all the functionality to get the data and update the data and

peƌfoƌŵ C‘UD opeƌatioŶs aŶd thiŶgs like that, iŶ a ŵoƌe ƌeal life appliĐatioŶ theǇ͛ll Đall out to
faĐtoƌies oƌ… I put a staƌ theƌe ďeĐause Ǉou ŵight haǀe seƌǀiĐes, pƌoǀideƌs oƌ eǀeŶ ǀalues Ǉou ǁaŶt
to get. There are a lot of different ways you can access data. Even resources.

On the views we of course then have directives and filters and those types of things.

Theƌe͛s eǀeŶ ŵoƌe to the oǀeƌall piĐtuƌe ďut this is oŶe of those thiŶgs I ǁish I ǁould͛ǀe seeŶ this
right upfront because I would have kind of instantly had that light bulb moment where the light goes

oŶ aŶd Ǉou saǇ ͞OK. “o Ǉou defiŶe a ƌoute, a ƌoute has a ĐoŶtƌolleƌ aŶd a ǀieǁ aŶd theŶ the
controller can load data from factories and services and things.͟

What ǁe͛ƌe goiŶg to do is talk aďout eaĐh of these individual pieces and how in a single page

application you can actually define routes and use those.

© 2013, 2014 Wahlin Consulting 56 | P a g e

Modules are Containers

00:33:57

The fiƌst thiŶg to talk aďout is although I Đƌeated the ĐoŶtƌolleƌ iŶ soŵe pƌeǀious deŵo͛s ƌight iŶ the
view that͛s Ŷot the ƌeĐoŵŵeŶded ǁaǇ to do it.

Keep in mind you might actually have different views. You might have a mobile view, maybe one

speĐifiĐ to iPad oƌ “uƌfaĐe oƌ soŵethiŶg like that, aŶd ŵaǇďe haǀe oŶe foƌ desktops. It͛s ǀeƌǇ
possible.

So what we need to do is when we define our ng-app, eaƌlieƌ ǁe didŶ͛t assigŶ it to aŶǇthiŶg, aŶd so
what that did was implicitly create a scope behind the scenes and it still worked we saw with the

data binding and the filters and all that good stuff. We now want to graduate to a more modular

application and Angular is very, very modular if you take advantage of it.

There is a module oďjeĐt aŶd I͛ll shoǁ Ǉou hoǁ to Đƌeate that – you literally just say angular.module

– and off of the module you can configure the routes, create custom filters, custom directives. You

can get data from different sources using Factories, Services, Providers or Values. You can then even

create Controllers using the module. You can think of the module as really just an object container,

and then in that container you can have all these different things that you see here.

What͛s iŵpoƌtaŶt is that oŶĐe the ŵodule is giǀeŶ a Ŷaŵe that͛s ǁheŶ Ǉou͛ƌe goiŶg to go iŶto ng-

app aŶd ǁhateǀeƌ the ŵodule Ŷaŵe is that͛s ǁhat͛s goiŶg to go heƌe. “o theǇ Đould haǀe just as

© 2013, 2014 Wahlin Consulting 57 | P a g e

easily called it ng-module, but I actually like ng-app – it makes sense I think. It really just means

͞Heh! What͛s the Ŷaŵe of the ŵodule Ǉou͛ǀe defiŶed iŶ Jaǀa“Đƌipt?͟

© 2013, 2014 Wahlin Consulting 58 | P a g e

Creating a Module

00:36:00

Heƌe͛s ǁhat it looks like.

It͛s ƌeallǇ, ƌeallǇ siŵple to Đƌeate a ŵodule. OŶĐe Ǉou͛ǀe ƌefeƌeŶĐed the AŶgulaƌ sĐƌipt Ǉou͛ƌe goiŶg
to have access to an angular object.

Off of this object you can get to all kinds of good stuff. You can get to the jqLite functionality for

jQuery DOM –type manipulation. But you can also get, as you can see here, to the module.

In this example you can see I called my module demoApp. You might wonder what exactly is the

empty array for? I know I did the first time I saw it.

The answer is this is where dependency injection comes in because your module might actually rely

on other modules to get data.

© 2013, 2014 Wahlin Consulting 59 | P a g e

00:36:17

Heƌe͛s aŶ eǆaŵple of that.

We have demoApp agaiŶ. We saǇ ͞Heh AŶgulaƌ! Cƌeate ŵe a ŵodule Đalled deŵoApp.͟ I Ŷeed to
rely on another module. In this case I just called it helperModule. This would be some other

JavaScript file that you might reference. I then has another angular reference and in the quotes here

[fiƌst ŵodule ͚deŵoApp͛ Ƌuotes] Ǉou ǁould see helperModule and it would have maybe just filters

and directives iŶ it aŶd that͛s all it has.

What I͛ŵ doiŶg is telliŶg AŶgulaƌ ͞Go fiŶd that ŵodule. Go look it up ǁheƌeǀeƌ it is aŶd iŶjeĐt it iŶ
and make it available to my controllers and directives and filters and factories and all that stuff that

this particular module might have.

It͛s a ǀeƌǇ poǁeƌful featuƌe. If Ǉou͛ǀe eǀeƌ used requireJS oƌ soŵethiŶg that͛s ŵoƌe ŵodulaƌ ďased
theŶ this ǁill kiŶd of ƌiŶg hoŵe ǁith Ǉou. If Ǉou haǀeŶ͛t though it͛s just a ǀeƌǇ fleǆiďle ǁaǇ to, at ƌuŶ
time, include other modules.

© 2013, 2014 Wahlin Consulting 60 | P a g e

Creating a Controller in a Module

00:37:15

Noǁ heƌe͛s aŶ eǆaŵple of hoǁ ǁe ĐaŶ use that ŵodule to aĐtuallǇ Đƌeate a ĐoŶtƌolleƌ. This is the
ŵoƌe, I ǁould saǇ, ͞offiĐial͟ ǁaǇ to Đƌeate a ĐoŶtƌolleƌ.

You͛ll ŶotiĐe up top that ǁe haǀe ouƌ demoApp. We just create that the saŵe ǁaǇ. IŶ this Đase ǁe͛ƌe
saying that it has no dependencies - an empty array.

What ǁe͛ƌe goiŶg to do ǁith that ŵodule though is ǁe͛ƌe goiŶg to use it to defiŶe a ĐoŶtƌolleƌ aŶd
ǁe͛ƌe goiŶg to Đall this as it shoǁs: SimpleController. Notice that I just have an anonymous function

here nested inside. So the second parameter here is ͞Ok, so ǁhat is the ĐoŶtƌolleƌ oďjeĐt?͟ Well
fuŶĐtioŶ of Đouƌse is aŶ oďjeĐt iŶ Jaǀa“Đƌipt so ǁe͛ƌe goiŶg to iŶjeĐt iŶ the sĐope aŶd theŶ fƌoŵ there

I do the same exact thing we did before.

The keǇ is that oŶĐe I͛ǀe defiŶed this I theŶ Ŷeed to go iŶ aŶd ŵake suƌe that ŵǇ ng-app points up to

demoApp in the strings. I could even then in the view do ng-controller, like I did earlier, is

SimpleController.

Once we get to ƌoutes heƌe I͛ŵ goiŶg to shoǁ Ǉou hoǁ eǀeŶ that ĐaŶ ĐhaŶge. Let͛s go ahead aŶd
take a quick demonstration of fixing up our previous function and going with the more modular

approach.

© 2013, 2014 Wahlin Consulting 61 | P a g e

00:38:28

OK. So we have our SimpleController heƌe ďut this isŶ͛t ƌeallǇ ŵodulaƌ. It͛s just kiŶd of a fuŶĐtioŶ out
theƌe. “o ǁhat I͛ŵ goiŶg to do is just Đoŵe iŶ aŶd defiŶe a ǀaƌiaďle, let͛s just Đall this demoApp.

The stƌiŶg ǁe use foƌ the ŵodule Ŷaŵe doesŶ͛t haǀe to ďe the saŵe as the ǀaƌiaďle Ŷaŵe.

I͛ŵ goiŶg to leaǀe the ƌest as it is to shoǁ hoǁ it ǁoƌks, aŶd theŶ I͛ŵ goiŶg to ĐhaŶge it.

I ĐaŶ theŶ Đoŵe doǁŶ aŶd saǇ ͞Let͛s add a… aŶd ŶotiĐe foƌ the ͚Đ͛s ǁe haǀe a ĐoŶfig, ĐoŶstƌuĐtoƌ,
ĐoŶtƌolleƌ…

© 2013, 2014 Wahlin Consulting 62 | P a g e

We͛ƌe goiŶg to use a ĐoŶtƌolleƌ aŶd let͛s Ŷaŵe it “iŵpleCoŶtƌolleƌ:

Now I͛ŵ goiŶg to giǀe it SimpleController because I could give it an anonymous function or I could

actually create the controller outside and just assign it in, and that would work absolutely fine.

Now this already knows about SimpleController…

… ďut ng-app doesŶ͛t kŶoǁ aďout demoApp so let͛s just fiǆ that:

“o Ŷoǁ ǁe͛ƌe ƌeadǇ to go aŶd Ŷoǁ this is a little ďit ŵodulaƌ.

Let͛s ŵake suƌe it still ƌuŶs aŶd theŶ I͛ll shoǁ Ǉou the aŶoŶǇŵous ǁaǇ to do it.

The next piece of this is you may not even want to keep it [SimpleController] outside. In some cases

you may – aŶd I͛ll shoǁ Ǉou oŶe ŵoƌe tƌiĐk to ǁƌap up iŶ a seĐoŶd heƌe – ďut I͛ŵ goiŶg to do aŶ
anonymous function right inside my SimpleController.

Because the ng-app=͟deŵoApp͟ kŶoǁs aďout this it then knows about the controller. So

͞“iŵpleCoŶtƌolleƌ͟ the stƌiŶg is kŶoǁŶ heƌe aŶd it should ƌuŶ eǆaĐtlǇ the saŵe ǁaǇ.

“o that͛s aŶ eǆaŵple of aĐtuallǇ ĐƌeatiŶg a ŵodule ǁith a ĐoŶtƌolleƌ.

Anothercool trick you can do - and this can be useful depending on how you like to write your

JavaScript I think – I͛ŵ goiŶg to ǁipe out all of this aŶd I͛ŵ goiŶg to Đoŵe iŶ aŶd Đƌeate a ǀaƌiaďle
called controllers and give it an empty object literal to start.

© 2013, 2014 Wahlin Consulting 63 | P a g e

00:40:50

TheŶ I͛ŵ goiŶg to defiŶe “iŵpleCoŶtƌolleƌ aŶd I͛ŵ going to give it the function.

I can do multiples of these. If I had multiple controllers I could say controllers.controller2 = an

anonymous function.

Now I can come in and just pass it [demoApp] controllers:

Because this is named SimpleController it͛s a pƌopeƌtǇ off of the oďjeĐt this ǁill still ďe aďle to fiŶd it.
By using this sort of technique – soŵe people like this teĐhŶiƋue, soŵe people doŶ͛t – we can come

in and [run the app] and you see we get the same exact feature. It still works the same, so theƌe͛s
three ways you can do it.

One way you can create an external function and just pass the function in with the controller name.

© 2013, 2014 Wahlin Consulting 64 | P a g e

The second way is you could actually pass a name as a string with an anonymous function.

The third way is we can come in and do this kind of technique. Some people like this because now

it͛s a little easieƌ to pƌototǇpe thiŶgs if I Ŷeeded to, aŶd that kiŶd of stuff.

“o that͛s aŶ eǆaŵple of usiŶg a ŵodule ǁith a ĐoŶtƌolleƌ.

© 2013, 2014 Wahlin Consulting 65 | P a g e

The Role of Routes

00:42:02

Noǁ oŶĐe Ǉou͛ǀe defiŶed a ŵodule aŶd a ĐoŶtƌolleƌ, at soŵe poiŶt if Ǉou͛ƌe ďuildiŶg a siŶgle page
appliĐatioŶ Ǉou͛ƌe goiŶg to Ŷeed ƌoutes ďeĐause ǁe Ŷeed to load diffeƌeŶt ǀieǁs iŶto ouƌ shell page.

This will be an example of four different routes.

We have when View1 is clicked maybe theƌe͛s a liŶk to it aŶd that liŶk is soŵethiŶg like ͞/ǀieǁϭ͟.
TǇpiĐallǇ Ǉou haǀe a hash ďut Ǉou͛ll see that ĐoŵiŶg up. That ǁill load that ǀieǁ. TheŶ ǁheŶ theǇ
ĐliĐk oŶ a liŶk that has VieǁϮ iŶ the path theŶ that ǁould load up VieǁϮ ďut it͛s not going to load up

the whole shell page. Angular will only load up the page that you want.

Theƌe͛s tǁo kiŶd of ǁaǇs Ǉou ĐaŶ load it.

First off, the view could be embedded as a script template in the actual shell page and then we could

just tell Angular ͞Heh! The teŵplate id to load… it͛s kiŶda like saǇiŶg ͚The ǀieǁ id is ǆ͛͟.

The second way is back up on the server you might actually have all these Views and I like to call

theŵ ͞paƌtials͟ ďeĐause theǇ͛ƌe paƌt of a page. You ĐaŶ tell AŶgulaƌ ͞the teŵplate URL for what I

ǁaŶt to load͟ aŶd theŶ Ǉou giǀe it the U‘L to the seƌǀeƌ, aŶd I͛ŵ goiŶg to shoǁ that ĐoŵiŶg up heƌe.

© 2013, 2014 Wahlin Consulting 66 | P a g e

Defining Routes

00:43:15

This is a really important feature because we want to be able to go in and load different partials or

fragments and then that will be kind of how our SPA works.

What ǁe͛ƌe goiŶg to do is use that config that I showed earlier.

We haǀe aŶgulaƌ.ŵodule is ͞deŵoApp͟ ǁith Ŷo depeŶdeŶĐies.

Noǁ ǁhat I͛ŵ goiŶg to do is ĐoŶfiguƌe the ŵodule ǁith soŵe ƌoutes. AŶotheƌ oďjeĐt that͛s aǀailaďle
in Angular is called the routeProvider, as Ǉou ĐaŶ see heƌe. It͛s kiŶd of like the scope – it͛s iŶjeĐted iŶ
dynamically just by defining $routeProvider as your parameter.

IŶ this Đase ǁe͛ƌe goiŶg to saǇ ͞Foƌ the ƌoutePƌoǀideƌ ǁheŶ the ƌoute is just a slash ͞/͟ to the ƌoot
ǁe ǁaŶt to use “iŵpleCoŶtƌolleƌ ǁith Vieǁϭ.htŵl. WheŶ the ƌoute is ͞/paƌtialϮ͟ ǁe ǁaŶt to use the
same controller in this case but you can certainly do a different one, with a template URL of View2.

Now the template URL: you might give it a folder where these partials are going to live, and I actually

like to Đall ŵǇ foldeƌ ͞paƌtials͟ ďut Ǉou doŶ͛t haǀe to.

Otheƌǁise if it [the ƌoute] doesŶ͛t ŵeaŶ aŶǇ of those ƌoutes ǁe͛ƌe goiŶg to ƌediƌeĐt ďaĐk to the ƌoot,
which ultimately goes back up to here [the ͞/͟ ƌoute speĐified ǁith the fiƌst ͞.ǁheŶ͟ stateŵeŶt]
which will load View1.

© 2013, 2014 Wahlin Consulting 67 | P a g e

This is a really cool thing, and once it kind of clicks and you have that light bulb moment, this is really

the magic to glue a View to a Controller so that scope gets passed and we can do the data binding

and the directives appropriately.

Let͛s go fiǆ up ǁhat ǁe haǀe so faƌ aŶd let͛s ĐoŶǀeƌt this iŶto ŵoƌe of a “PA-type of an application.

Please note that routing has changed in AngularJS 1.2+. For more information visit

http://weblogs.asp.net/dwahlin/archive/2013/08/14/angularjs-routing-changes.aspx

http://weblogs.asp.net/dwahlin/archive/2013/08/14/angularjs-routing-changes.aspx

© 2013, 2014 Wahlin Consulting 68 | P a g e

Defining Routes Demo

00:44:52

So far in our application we͛ǀe Đƌeated a ŵodule aŶd ǁe͛ǀe assigŶed that to ouƌ Ŷg-app so it knows

how to get to that, and then that module has this SimpleController so now we have that View

knowing about SimpleController.

That͛s fiŶe aŶd it ǁoƌks, ďut that ĐaŶ ƋuiĐklǇ get out of Đontrol and really have some code

dupliĐatioŶ heƌe ǁheŶ Ǉou ƌeallǇ doŶ͛t Ŷeed it.

© 2013, 2014 Wahlin Consulting 69 | P a g e

Let͛s go ahead aŶd oŶ ouƌ ŵodule let͛s add iŶ ouƌ config. So we can say demoApp.config and then in

here we can give it a new route or multiple routes.

I͛ŵ just goiŶg to paste in some code for this to save a little typing:

So we have demoApp.config and we have our routeProvider.

The ƌoutePƌoǀideƌ saǇs ͞WheŶ ǁe͛ƌe at the ƌoot foƌ ouƌ ƌoute theŶ use “iŵpleCoŶtƌolleƌ aŶd go to
Partials/View1.html.

© 2013, 2014 Wahlin Consulting 70 | P a g e

00:45:45

You͛ll see it͛s ǀery, very simple.

We have our same filtering and our same looping that we did earlier, so really nothing different

there.

© 2013, 2014 Wahlin Consulting 71 | P a g e

00:45:58

We also have View2.

We͛ƌe just goiŶg to pƌeteŶd ǁe filteƌ ďǇ ĐitǇ iŶstead. “o ŶothiŶg ƌeallǇ faŶĐǇ theƌe, just eŶough to
make it a little bit different.

TheǇ͛ƌe ďoth goiŶg to use the saŵe ĐoŶtƌolleƌ iŶ this Đase, ďut iŶ a ƌeal life app that ŵaǇ oƌ ŵaǇ Ŷot
be the case. Certainly I offer that most of the time I have kind of a one-to-one between controllers

but it depends on how much re-use you can get out of one.

IŶ this Đase ǁe͛ƌe just goiŶg to use “iŵpleCoŶtƌolleƌ ǁhiĐh has ouƌ Đustoŵeƌs:

Now what I want to do though is just come into View1 and fix it up just a little bit.

© 2013, 2014 Wahlin Consulting 72 | P a g e

I͛ŵ goiŶg to ŵake it so that uŶdeƌ eaĐh Đustoŵeƌ we can enter a customer name .

I also want to come in and make it so that you can enter a customer city.

We alƌeadǇ haǀe ͞Ŷaŵe͟ – that͛s ouƌ filteƌ. NoƌŵallǇ I like to do filteƌ.Ŷaŵe ǁhiĐh keeps it ƌeallǇ
clear:

Then I change the customer name to saǇ ͞Đustoŵeƌ.Ŷaŵe͟ oƌ just to ŵake it ƌeallǇ oďǀious let͛s saǇ
newCustomer.name.

What that will do is create a new property on the scope, which then has a sub-property called

͞Ŷaŵe͟.

We͛ll do the saŵe foƌ ͞ĐitǇ͟.

© 2013, 2014 Wahlin Consulting 73 | P a g e

Then the final thing we need is a button. We haǀeŶ͛t seeŶ hoǁ to iŶteƌaĐt ǁith ouƌ ĐoŶtƌolleƌ Ǉet so
let͛s go ahead aŶd take a look.

I͛ŵ goiŶg to add just a staŶdaƌd good old ďuttoŶ aŶd aŶotheƌ diƌeĐtiǀe ǁe ĐaŶ use is Đalled ng-click.

If you go to the documentation for Angular there are several different options here. ng-click is just

oŶe of theŵ. I͛ŵ goiŶg to Đall addCustomer().

Once this view loads, once we get that working, we should be able to add a customer in. Now

obviously in our controller we need to be able to handle that.

“o let͛s go back to our controller and because we called this addCustomer and because the view

ďiŶds to the sĐope theŶ ǁe Ŷeed to saǇ ͞$sĐope.addCustoŵeƌ͟ aŶd assigŶ that to a fuŶĐtioŶ.

You͛ll ŶotiĐe that I͛ŵ Ŷot haǀiŶg to pass iŶ the data. I doŶ͛t eǀeŶ haǀe to look at the textboxes

ďeĐause the sĐope alƌeadǇ has that. We ĐaŶ get to eǀeƌǇthiŶg thƌough this so ǁhat I͛ŵ goiŶg to do is
saǇ ͞$sĐope.Đustoŵeƌs.push;Ϳ͟ aŶd let͛s push a Ŷeǁ iteŵ iŶto the aƌƌaǇ.

“o ǁe͛ll saǇ ͞Ŷaŵe: $sĐope.ŶeǁCustoŵeƌ.Ŷaŵe͟

TheŶ ǁe͛ll add a Đoŵŵa aŶd ǁe͛ll do ͞ĐitǇ: $sĐope.ŶeǁCustoŵeƌ.ĐitǇ͟, aŶd theŶ eŶd ouƌ oďjeĐt
literal there.

TheŶ ǁe͛ƌe up aŶd ƌuŶŶiŶg. That͛s it. That͛s all ǁe haǀe to do to ŵake this ǁoƌk aŶd it ŵakes it ƌeallǇ
easy to now interact back from the view into the controlleƌ, ďut Ǉet this [the ǀieǁ] doesŶ͛t eǀeŶ

© 2013, 2014 Wahlin Consulting 74 | P a g e

kŶoǁ aďout the ĐoŶtƌolleƌ. You͛ll ŶotiĐe theƌe͛s Ŷo ĐoŶtƌolleƌ defiŶitioŶ heƌe – that͛s goiŶg to
happen through the route:

That ǁill Đall ouƌ ͞addCustoŵeƌ͟ aŶd it ǁill siŵplǇ shoǁ up iŶ ouƌ list – our s that we have.

That͛s oŶe thiŶg I ǁaŶted to shoǁ, aŶd Ŷoǁ ǁe haǀe the ƌoutes ǁe͛ƌe kiŶd of ƌeadǇ to go, ďut ǁe
have a little bit more work.

00:49:37

What I͛ŵ goiŶg to do is this little ͞UsiŶgDiƌeĐtiǀesWithDataBiŶdiŶg͟ page heƌe, I͛ŵ goiŶg to pƌettǇ
much kill off most of this.

© 2013, 2014 Wahlin Consulting 75 | P a g e

I doŶ͛t Ŷeed the ĐoŶtƌolleƌ aŶǇŵoƌe ďeĐause the ǀieǁs ǁill use those.

What I͛ŵ goiŶg to do is add a speĐial diƌeĐtiǀe Đalled ng-view.

Theƌe͛s a Đouple of ǁaǇs Ǉou ĐaŶ do this. You ŵight see it like this, ǁith Ŷg-view as a tag:

I feel more comfortable using <div> and then I can use my data-

NoƌŵallǇ Ǉou just do it like that, ďut I͛ŵ goiŶg to go ahead aŶd add aŶ = just ďeĐause ŵost people
are used to that with the HTML5 data- attributes.

© 2013, 2014 Wahlin Consulting 76 | P a g e

This represents the placeholder for the views so now when my routes kick in and we go to a default

ƌoute ǁhat ǁill happeŶ is the Paƌtials/Vieǁϭ.htŵl is goiŶg to ďe ŵaƌƌied to the ĐoŶtƌolleƌ. That͛s
then going to be injected dynamically into the <div>

I doŶ͛t haǀe to ǁƌite the DOM Đode to do that. It͛s just goiŶg to happeŶ ďehiŶd the sĐeŶes aŶd Ŷoǁ
ǁe͛ƌe staƌtiŶg to get iŶto a “PA-type of concept here.

If we go up [to the start of the code] just as a recap:

 Ng-app has ͞deŵoApp͟
 We now have our ng-View which represents our placeholder

 We have our module with our config and our routes and, assuming I named everything OK

we should be alright here.

Let͛s saǇ this [ƌoute ĐoŶfiguƌatioŶ] is goiŶg to ďe ǀieǁϮ aŶd ǁe͛ll ƌefeƌeŶĐe this iŶ just a
second.

© 2013, 2014 Wahlin Consulting 77 | P a g e

 Then we have our controller where we can bind customers

 and then we find a way to add to it [customers]

What I͛ŵ goiŶg to do ƌeal ƋuiĐk heƌe is I ƌealise I didŶ͛t add a liŶk heƌe [iŶ Vieǁϭ]. Let͛s saǇ at the
ďottoŵ ǁe haǀe a hǇpeƌliŶk aŶd let͛s saǇ ǁheŶ this is ĐliĐked ǁe ǁaŶt to go to that ƌoute aŶd ǁe͛ll
saǇ ͞Vieǁ Ϯ͟ oŶ this.

So when you click it this will direct Angular to kick in the router and then that router will take us over

to View2 so it will be pretty standard.

00:51:48

OK, so Ŷoǁ ǁe͛ǀe ƌeallǇ ĐleaŶed this guǇ up. The last thiŶg that I ǁould do ǁhiĐh I͛ll shoǁ Ǉou iŶ a
more realistic app is I would take all this [stuff between script tags] out and make it separate scripts

aŶd load that, ďut ǁe͛ll go ahead aŶd leaǀe it heƌe foƌ deŵo͛s sake.

Noǁ that Vieǁϭ is heƌe ŶotiĐe that I doŶ͛t haǀe to put ng-ĐoŶtƌolleƌ ďeĐause it͛s goiŶg to ŵap that
up automatically for both views.

“o let͛s giǀe it a shot aŶd ǁe͛ll see if theƌe aƌe aŶǇ eƌƌoƌs oƌ tǇpo͛s heƌe.

© 2013, 2014 Wahlin Consulting 78 | P a g e

00:52:15

You can see that View1 has now loaded here.

I actually tweaked the route just a little bit.

I had ͞/͟ ǁhiĐh I Đould do, ďut I also ǁaŶted to shoǁ that iŶstead of haǀiŶg just a slash theƌe foƌ the
ƌoute I͛ŵ goiŶg to ƌediƌeĐt to ǀieǁϭ oƌ if Ǉou pƌefeƌ Ǉou Đould just do this [ĐhaŶge ďoth ͞/ǀieǁϭ͟s
ďaĐk to ͞/͟s] , aŶd that ǁould ďe the default view. Either way would work.

© 2013, 2014 Wahlin Consulting 79 | P a g e

Noǁ heƌe͛s ǁhat͛s ƌeallǇ Đool. Not oŶlǇ does this ŵaŶage ouƌ ƌoutiŶg foƌ us, aŶd as I load it Ǉou͛ƌe
going to see it still works and you can see our context is bound, I get our customers, I can still filter

and do all that. I ĐaŶ Đoŵe iŶ aŶd let͛s add a Đustoŵeƌ…

… aŶd ǁatĐh ouƌ list…

… ŶotiĐe it soƌted it.

Noǁ ǁheŶ I ĐliĐk oŶ ͞VieǁϮ͟ ǁatĐh the path up heƌe [iŶ the ďƌoǁseƌ ďaƌ].

What it͛s goiŶg to do is Ŷaǀigate to Vieǁ Ϯ ǁheƌe I ĐaŶ still filteƌ. These ďoth haǀe the same

controller and therefore the same scope.

But ǁheŶ I hit BaĐk [iŶ the ďƌoǁseƌ ŵeŶu] it͛s aĐtuallǇ goiŶg to go ďaĐk to Vieǁϭ. I ĐaŶ go ďaĐk aŶd
forward and Angular is automatically handling that history for me which is a really, really nice

feature to have available.

“o that͛s aŶ eǆaŵple of ǁe ĐaŶ actually come in, define a module, define some routes, and then go

in and on those routes hook up a controller to a view and now Angulare will actually wire up those

routes for us.

© 2013, 2014 Wahlin Consulting 80 | P a g e

Using Factories and Services

00:53:56

Noǁ that Ǉou͛ǀe seeŶ hoǁ to Đƌeate ŵodules aŶd hoǁ ŵodules ĐaŶ theŶ ďe used to defiŶe ƌoutes
aŶd also to ǁoƌk ǁith ĐoŶtƌolleƌs, ǁe͛ƌe goiŶg to ǁƌap up ďǇ talkiŶg aďout soŵe ƌe-use concepts.

Another feature of AngularJS is the ability to encapsulate data functionality into factory, services,

provider or little value providers.

I͛ŵ goiŶg to foĐus oŶ faĐtoƌies heƌe ďut all thƌee of the top oŶes shoǁŶ heƌe – factory, service and

providers – they allow us to encapsulate common functionality.

So for instance if I had to go and get customers and I need those customers in multiple controllers I

ǁouldŶ͛t ǁaŶt to haƌd Đode that data iŶ eaĐh ĐoŶtƌolleƌ. It just ǁouldŶ͛t ŵake seŶse aŶd theƌe͛d ďe
a lot of duplication there.

IŶstead ǁhat I͛ll do is I͛ll ŵoǀe that Đode out to a faĐtoƌǇ, seƌǀiĐe oƌ pƌoǀideƌ.

The difference between the three is just the way in which they create the object that goes and gets

the data. That͛s ƌeallǇ all theƌe is to it.

 With the factory you actually create an object inside of the factory and return it.

 With the service you just have a standard function that uses the this keyword to define

function.

 With the provider theƌe͛s a $get you define and it can be used to get the object that returns

the data.

© 2013, 2014 Wahlin Consulting 81 | P a g e

A value is just a waǇ to get foƌ iŶstaŶĐe a ĐoŶfig ǀalue. A siŵple eǆaŵple of this Ǉou͛ll see oŶ the
AŶgulaƌ site is Ǉou ŵight just ǁaŶt the ǀeƌsioŶ of a paƌtiĐulaƌ sĐƌipt. “o Ǉou͛d haǀe a Ŷaŵe-value

paiƌ ǁheƌe the Ŷaŵe of the ǀalue ŵight ďe ͞ǀeƌsioŶ͟ aŶd theŶ the ǀalue ŵight ďe saǇ ͞ϭ.ϰ͟

I͛ŵ Ŷot goiŶg to Đoǀeƌ all those heƌe ďut I aŵ goiŶg to Đoǀeƌ faĐtoƌies. “o let͛s take a look at hoǁ
we can use a module to define a factory.

© 2013, 2014 Wahlin Consulting 82 | P a g e

The Role of the Factory

00:55:25

IŶ this eǆaŵple Ǉou͛ll see that doǁŶ ďeloǁ I haǀe this ĐoŶtƌoller which I looked at earlier.

Notice that instead of hard coding the customers in here, or if it was an AJAX call instead of coding

that Đall iŶto the ĐoŶtƌolleƌ, I͛ŵ goiŶg to use a ŵodule up heƌe to defiŶe a faĐtoƌǇ.

IŶ this Đase Ǉou͛ll see I͛ŵ aĐtuallǇ using chaining.

“o the ŵodule͛s defiŶed aŶd theŶ iŶstead if puttiŶg a seŵi-colon we chain factory and then we chain

ĐoŶtƌolleƌ. You doŶ͛t haǀe to do that, ďut that is ĐeƌtaiŶlǇ aŶ optioŶ.

IŶ this faĐtoƌǇ ǁe͛ƌe goiŶg to giǀe it a Ŷaŵe, aŶd ǁhat the faĐtoƌǇ͛s goiŶg to do iŶ this Đase is fiŶd a
ǁaǇ to get Đustoŵeƌs. Let͛s assuŵe ǁe haǀe a Đustoŵeƌs ǀaƌiaďle up heƌe. What ǁe ǁaŶt to do is
create a factory object, define a method on it that returns this customers variable.

In a real life app this getCustomers might go out and make an async call. Then that async data

returns and then returns it to the controller or controllers that needs it.

What͛s ƌeallǇ Đool aďout faĐtoƌies, seƌǀiĐes aŶd pƌoǀideƌs is that oŶĐe Ǉou͛ǀe defiŶed it Ǉou ĐaŶ theŶ
inject it very easily as a parameter into something like a controller or even another factory if you

want. A factory could rely on another factory.

© 2013, 2014 Wahlin Consulting 83 | P a g e

If ǁe Đoŵe doǁŶ to ouƌ ĐoŶtƌolleƌ, Ǉou͛ll see that “iŵpleCoŶtƌolleƌ does ouƌ staŶdaƌd $sĐope ďut
notice that the second parameter is simpleFactory. Well that little name there matches up on

purpose.

What AŶgulaƌJ“ is goiŶg to do at ƌuŶ tiŵe is dǇŶaŵiĐallǇ iŶjeĐt this iŶto the ĐoŶtƌolleƌ so Ŷoǁ I͛ll
haǀe aĐĐess to this faĐtoƌǇ oďjeĐt that͛s ƌetuƌŶed out of this fuŶĐtioŶ aŶd Ŷoǁ I can say

factory.getCustomers()

This provides dependency injecton and it provides a way in which I know I can centrally place where

I get customer data or order data or whatever it may be. In a real-life app you certainly may have

several different factories in the application itself.

Let͛s juŵp iŶto a deŵo aŶd I͛ŵ goiŶg to ĐoŶǀeƌt the Đustoŵeƌs ǁe had iŶ ouƌ ĐoŶtƌolleƌ ďefoƌe aŶd
move those out into just a really simple factory to help get you started.

© 2013, 2014 Wahlin Consulting 84 | P a g e

Factory Demo

00:57:35

Earlier I showed how we can define a module, define our routes and then have a controller in that

ŵodule Đalled “iŵpleCoŶtƌolleƌ, ďut Ǉou͛ll ŶotiĐe that the Đustoŵeƌs aƌe haƌd-coded:

In a real-life app you may have something hard-Đoded I suppose ďut iŶ geŶeƌal ǁe͛ƌe pƌoďaďlǇ goiŶg

to go off to a server or service to go and get the data via AJAX or some similar kind of technique

maybe even websockets.

“o ǁhat I͛ŵ goiŶg to do is ŵoǀe these Đustoŵeƌs out.

We doŶ͛t ǁaŶt to haƌd-Đode these oďǀiouslǇ aŶd ǁe ĐaŶ pƌeteŶd that ǁe͛ƌe goiŶg to go and call a

seƌǀiĐe. I͛ŵ just goiŶg to go ahead aŶd saǇ that ƌight Ŷoǁ Đustoŵeƌs is just aŶ eŵptǇ aƌƌaǇ.

© 2013, 2014 Wahlin Consulting 85 | P a g e

Noǁ ǁhat I͛ŵ goiŶg to do is uŶdeƌ the ƌoutes I͛ŵ goiŶg to defiŶe a faĐtoƌǇ. You͛ll ŶotiĐe that as I
type factory it shows up in the nice Intellisense. If I type ser it also shows service, or I could do a

provider.

“o theƌe͛s thƌee diffeƌeŶt optioŶs foƌ doiŶg this aŶd, agaiŶ, theǇ all diffeƌ just iŶ hoǁ theǇ Đƌeate aŶd
return the object that serves up the data, but factory is really easy to understand and get started

ǁith. I͛ŵ goiŶg to giǀe it aŶ eŵptǇ fuŶĐtioŶ heƌe ďut keep iŶ ŵiŶd ǁith AŶgulaƌ as eg $sĐope is
dynamically injected, we can also inject other things.

If I ǁaŶted to ŵake aŶ AJAX Đall I ĐaŶ tell AŶgulaƌ ͞iŶjeĐt iŶ the AŶgulaƌ http oďjeĐt͟.

And then I could do http get/put/post and delete type of calls to for instance RESP APIs.

IŶ this Đase I͛ŵ Ŷot goiŶg to do that – ǁe͛ƌe goiŶg to keep it ƌeallǇ fuŶdaŵeŶtal aŶd siŵple. I͛ŵ goiŶg
to Đoŵe iŶ aŶd defiŶe soŵe Đustoŵeƌs aŶd I͛ŵ just goiŶg to define those customers we had earlier.

With a factory you create an object, tack on some functions to it and then return that object out of

the fuŶĐtioŶ. With a seƌǀiĐe Ǉou doŶ͛t Đƌeate an object. The function is the object. You just tack on

using the ͞this͟ keǇǁoƌd soŵe fuŶĐtioŶ. I͛ll shoǁ Ǉou the diffeƌeŶĐe heƌe.

We͛ƌe goiŶg to Đoŵe iŶ aŶd saǇ faĐtoƌǇ = aŶd just Đƌeate aŶ eŵptǇ oďjeĐt heƌe.

Noǁ ǁhat I͛ŵ goiŶg to do is faĐtoƌǇ. AŶd let͛s Đall it ͞getCustoŵeƌs͟.

© 2013, 2014 Wahlin Consulting 86 | P a g e

getCustomers is simply going to come in and just return customers.

Had I passed iŶ aŶ http oďjeĐt, oƌ if Ǉou͛ƌe usiŶg jQueƌǇ oƌ ǁhateǀeƌ it ŵaǇ ďe I ĐaŶ ŵake the AJAX
call right here and then once it comes back we could return a promise and get into all that fun stuff

with async calls.

But iŶ this Đase it͛s goiŶg to ƌetuƌŶ soŵethiŶg ƌeallǇ siŵple so Ŷoǁ ouƌ faĐtoƌǇ has a getCustoŵeƌs;Ϳ.
We might also have factory.putCustomer if we wanted to or postCustomer or whatever you want to

call it and maybe this would take our actual customer object and then we would have code in here

to actually do something with it.

IŶ this Đase ǁe͛ll just stiĐk ǁith Đustoŵeƌs. ‘egaƌdless of ǁhateǀeƌ Ǉou put oŶ ǁith the faĐtoƌǇ, oŶĐe
you create the factory object simply return it.

If this were to say service right here instead of .factory then this [the function] becomes the factory.

So I would just say this.getCustomers and this.postCustomers and then the factory itself would be in

the function.

© 2013, 2014 Wahlin Consulting 87 | P a g e

I like factories because you control the object yourself and Ǉou doŶ͛t haǀe to use the ͞this͟ keǇǁoƌd
and things.

01:01:10

“o ǁe͛ƌe ƌeadǇ to go heƌe. We Ŷoǁ haǀe a faĐtoƌǇ ǁhiĐh ƌetuƌŶs soŵe haƌd-coded customers. Now

we need to fill them. How do we do that?

Well I need first to get a reference up here to the factory. Now all you do is you take the name and

I͛ll just put Đoŵŵa aŶd theŶ Ǉou put that Ŷaŵe iŶ.

What AŶgulaƌ ǁill do is go look up that faĐtoƌǇ autoŵatiĐallǇ aŶd iŶjeĐt it iŶ foƌ us. That͛s all Ǉou
have to do – put the Ŷaŵe, so it͛s ǀeƌǇ ŵodulaƌ.

Here I could say simpleFactory.getCustomers():

But let͛s saǇ ǁe haǀe a ǁhole iŶitialisatioŶ ƌoutiŶe ǁe ǁaŶt to do. I usuallǇ do soŵethiŶg like this. I͛ll
just ŵake kiŶd of a pƌiǀate fuŶĐtioŶ heƌe, ǁe͛ll Đall it init aŶd I͛ll saǇ $sĐope.Đustoŵeƌs = that:

And then all we have to do is call init():

You doŶ͛t haǀe to do it that ǁaǇ at all. I just pƌefeƌ all ŵǇ iŶitialisatioŶs foƌ all ŵǇ data ƌoutiŶes oƌ
factory calls to be in one nice little place so I might have multiple lines in here that kind of kick off

the process to maybe get the initial maybe look-up data for instance for drop-downs that my

ĐoŶtƌolleƌ passes doǁŶ to ŵǇ ǀieǁ. That͛s ǁhǇ I like to do it this ǁaǇ.

OK Ŷoǁ otheƌ thaŶ this theƌe͛s ƌeallǇ ŶothiŶg iŶ the ǀieǁ that͛s goiŶg to ĐhaŶge ďeĐause the ǀiew

doesŶ͛t eǀeŶ kŶoǁ aďout aŶǇ of this. It just kŶoǁs aďout ultiŵatelǇ the ĐoŶtƌolleƌ aŶd the sĐope aŶd
the ǁaǇ ǁe did ouƌ ǀieǁs it doesŶ͛t eǀeŶ kŶoǁ aďout the ĐoŶtƌolleƌ ďeĐause it͛s dǇŶaŵiĐallǇ
assigned:

© 2013, 2014 Wahlin Consulting 88 | P a g e

Let͛s go ahead aŶd ƌuŶ this aŶd ǁe should see that ouƌ Đustoŵeƌs aĐtuallǇ load up. TheǇ͛ƌe Ŷoǁ
coming from the factory though. If we go to View2 these are also coming from the factory.

Noǁ ǁe͛ƌe Ŷot haǀiŶg to dupliĐate data, assuŵiŶg ǁe did haǀe tǁo ĐoŶtƌolleƌs heƌe. We haǀe theŵ
all in one nice little, reusable factory.

That is an example of getting started with factories in AngularJS.

© 2013, 2014 Wahlin Consulting 89 | P a g e

Wrap-Up Demo: Pulling It All Together

01:03:15

Noǁ that Ǉou͛ǀe seeŶ the Đoƌe ĐoŵpoŶeŶts iŶǀolǀed iŶ AŶgulaƌJ“ I͛ŵ goiŶg to ǁƌap up ǁith just a
real quick demo that I put together. This was put together over just a few hours that demonstrates

some of these features in action.

Let me first pull up the application, and this is really just a little SPA app that shows some different

customers so I can coŵe iŶ aŶd add iŶ Đustoŵeƌs if I͛d like. You ĐaŶ see it alphabetises them and all

of that. I go here [x on one of the customer headers], and I can remove it back out.

I ĐaŶ ĐliĐk oŶ ͞oƌdeƌs͟ so ǁe͛ll do that foƌ Lee Caƌoll aŶd that͛ll take ŵe iŶto a sepaƌate page – a

sepaƌate ǀieǁ aĐtuallǇ, ďut it didŶ͛t ƌeload the ǁhole shell page…

© 2013, 2014 Wahlin Consulting 90 | P a g e

I ĐaŶ go ďaĐk to Custoŵeƌs aŶd go see all the Đustoŵeƌ oƌdeƌs…

© 2013, 2014 Wahlin Consulting 91 | P a g e

This is just usiŶg a Đouple of thiŶgs. Fiƌst of all ǁe haǀe AŶgulaƌJ“ of Đouƌse. It͛s also usiŶg a little ďit

of jQueƌǇ ďeĐause I͛ŵ doiŶg Bootstƌap: so Bootstƌap, jQueƌǇ aŶd AŶgulaƌ. Noǁ I͛ŵ Ŷot usiŶg jQueƌǇ
for much of really anything – just a few basic things so that we can work with some of the Bootstrap

stuff I͛ŵ doiŶg.

In this particular app this is the shell page.

You can see that we have some bootstrap up the top as well as my styles.

We have my navigation.

And here is the view:

© 2013, 2014 Wahlin Consulting 92 | P a g e

Now I did a little custom directive. This is an animated-view that slides things in. Starting with

version – and I put a comment in about it – 1.1.4 of Angular the ability to animate your views as they

get put iŶ ǁill autoŵatiĐallǇ Đoŵe out of the ďoǆ. You just haǀe to supplǇ soŵe C““ stǇles aŶd that͛ll
kiĐk iŶ, ďut this also shoǁs hoǁ to do a Đustoŵ diƌeĐtiǀe so if Ǉou͛ƌe iŶteƌested I show how to write a

custom directive there.

All I did was take what AngularJS already had for the ng-view and just tweaked it to use the jQuery

animation features.

Fƌoŵ theƌe, ŵoǀiŶg oŶ doǁŶ Ǉou͛ll ŶotiĐe that I just haǀe soŵe sĐƌipts.

The only Đoƌe ǁhat I͛d Đall liďƌaƌǇ sĐƌipts aƌe AŶgulaƌ aŶd jQueƌǇ. We theŶ haǀe Bootstƌap foƌ ouƌ UI
sĐƌipts aŶd theŶ heƌe͛s ŵǇ Đustoŵ. I put all the ĐoŶtƌolleƌs just iŶ oŶe file to keep it ƌeallǇ siŵple
here but you can certainly break these out.

You can see that everything is in an app foldeƌ, so if ǁe go up to App Ǉou͛ll see ĐoŶtƌolleƌs,
directives, partials, services and then app.js Ǉou͛ƌe goiŶg to see is ǁhat kiŶd of kiĐks eǀeƌǇthiŶg off.

© 2013, 2014 Wahlin Consulting 93 | P a g e

Let͛s staƌt theƌe.

© 2013, 2014 Wahlin Consulting 94 | P a g e

1:05:38

app.js is where we come in and define our module.

You can see I have customersApp aŶd it doesŶ͛t haǀe aŶǇ depeŶdeŶĐies.

Then I have my different routes for my customers, my customer orders and my orders screen.

© 2013, 2014 Wahlin Consulting 95 | P a g e

You ĐaŶ eǀeŶ see I͛ŵ deŵoŶstƌatiŶg hoǁ to pass paƌaŵeteƌs up heƌe oŶ the U‘L using a route

parameter.

“o that͛s iŶ heƌe as ǁell if Ǉou͛ƌe iŶteƌested. That͛s kiŶd of the default ĐoŶfiguƌatioŶ that Ǉou ĐaŶ
see aŶd theŶ theƌe͛s a little ďit of details heƌe [iŶ the opeŶiŶg ĐoŵŵeŶt seĐtioŶ] aďout hoǁ I like to
break things up in general.

If we come over to the Controllers folder this is where I have my controllers.

You can see I have CustomersController. We have CustomersOrdersController:

AŶd aŶ OƌdeƌsCoŶtƌolleƌ…

© 2013, 2014 Wahlin Consulting 96 | P a g e

Then I have a really simple one for NavbarController.

These aƌe all ďuilt off the ŵodule, so theǇ͛ƌe paƌt of it. TheǇ iŶjeĐt iŶ a feǁ thiŶgs that the app Ŷeeds
heƌe, iŶĐludiŶg a faĐtoƌǇ aŶd so this is all pƌettǇ staŶdaƌd stuff that Ǉou͛ǀe alƌeadǇ seeŶ. The faĐtoƌǇ,
or in this case the service – I wanted to show both ǁaǇs of doiŶg it, so iŶ the deŵo͛s I shoǁed a
faĐtoƌǇ. Heƌe͛s aŶ eǆaŵple of a seƌǀiĐe, ƌeallǇ the saŵe thiŶg as I ŵeŶtioŶed eaƌlieƌ: Ǉou use the this
keyword to find your different functions here.

IŶ this Đase the data͛s haƌd Đoded so it͛s Ŷot ŵakiŶg an AJAX call, but this would give you the

foundation for building a service or you could do a factory. Either one. I actually tend to prefer

factories for some reason but this is one where I decided to try services out.

My views are in a little partials folder.

© 2013, 2014 Wahlin Consulting 97 | P a g e

This is just going to be the little simple parts that get injected in to the animated views. These are my

kind of SPA sub-pages if you will that get injected in and we bind them to scope. You can see some

data binding here.

Theƌe͛s Ƌuite a ďit ŵoƌe that I could walk through here, but this is something I wanted to show real

quick just to show a simple example of getting started with AngularJS and how you can use it to

actually interact, do data binding, do factories, do controllers and all that fun type of stuff.

© 2013, 2014 Wahlin Consulting 98 | P a g e

Summary

01:07:50

Well that is the end.

I hope that by watching this video you have a really good solid feel for the different pieces of Angular

aŶd the poǁeƌ that it ƌeallǇ does offeƌ. I͛ŵ ƌeallǇ eǆĐited aďout the fƌaŵeǁoƌk. We͛ƌe ďuildiŶg some

different apps using it and liking the overall process, flow and modularity it provides.

Theƌe͛s kiŶd of a suŵŵaƌǇ heƌe.

It ƌeallǇ is a “PA fƌaŵeǁoƌk ďut it depeŶds oŶ ǁhat Ǉou͛ƌe doiŶg. If Ǉou just ǁaŶt it foƌ data ďiŶdiŶg
with the injection you could do that if you wanted as well.

“oŵe of the keǇ featuƌes as a ƌeǀieǁ…

We talked about directives and filters. So directives enhance our HTML. We talked about things like

ng-repeat, ng-app, ng-controller, ng-iŶit aŶd theƌe͛s ŵaŶǇ otheƌs. We talked aďout how we can filter

data and also how we can do two-way data binding.

From there I showed you how we can hook up views and controllers, and that really the glue there

so far as the data binding goes is the scope, and the scope is really another word for a viewmodel,

that some of you might be familiar with.

Then finally we wrapped up with modules and routes, and I also threw in factories at the end there

to show how we can first off define a container. That container can then have one or more routes in

© 2013, 2014 Wahlin Consulting 99 | P a g e

it, one or more controllers, different factories and then we can link that app or module into our main

shell view using the ng-app directive.

“o that͛s a ǁƌap oŶ the ĐoŶteŶt I had plaŶŶed iŶ the ϲϬ-ish ŵiŶutes siŶĐe I kŶoǁ I͛ŵ oǀeƌ that.

© 2013, 2014 Wahlin Consulting 100 | P a g e

Download the Sample Code

01:09:20

Now as far as other resources out there that I recommend you take a look at, there are definitely a

lot of cool things out there.

OŶe of those ǁill ďe the saŵple Đode. This͛ll just haǀe soŵe of the saŵple Đode I ƌaŶ thƌough, as ǁell
as the app I showed at the end. You can go to http://tinyurl.com/AngularJSDemos

http://tinyurl.com/AngularJSDemos

© 2013, 2014 Wahlin Consulting 101 | P a g e

Resources

01:09:40

Aside from that a lot of great stuff out there that I doŶ͛t haǀe tiŵe to go into.

We did visit http://angularjs.org but http://builtwith.angularjs.org has a lot of samples of Angular in

action.

Then if you want to get some different plug-iŶs ǁhetheƌ it͛s Bootstƌap oƌ jQueƌǇ theƌe͛s some sites

out theƌe ǁith soŵe diƌeĐtiǀes that͛ll ŵake theŵ ƌeallǇ easǇ to iŶtegƌate.

As faƌ as leaƌŶiŶg, I do a lot of ǁoƌk ǁith a ĐoŵpaŶǇ Đalled Pluƌalsight. It͛s aŶ aǁesoŵe ĐoŵpaŶǇ aŶd
very cool people run it, and this is online video training. Now at the time I filmed this, or else I would

haǀe listed theŵ, theƌe͛s Ŷot aŶǇ AŶgulaƌ Đouƌses, ďut theǇ͛ƌe ďeiŶg ǁoƌked oŶ as ǁe speak.

My good friends Jim Cooper and Joe Bohemes are working on an AngularJS Fundamentals course

that will be up there shortly, and theŶ I͛ŵ ĐuƌƌeŶtlǇ ǁoƌkiŶg ǁith “Đott AlleŶ, deǀelopeƌ
extaordinaire Scott Allen, on an end-to-eŶd AŶgulaƌ Đouƌse that͛ll shoǁ Ǉou the ǁhole pƌoĐess ǁith a
real app and how that all works.

Feel fƌee to ĐheĐk that out if Ǉou͛ƌe iŶteƌested.

http://angularjs.org/
http://builtwith.angularjs.org/

© 2013, 2014 Wahlin Consulting 102 | P a g e

Dan Wahlin

01:10:35

In the meantime feel free to check out some of my posts at http://weblogs.asp.net/dwahlin or get in

touch via Twitter.

I appreciate your time in watching the video.

http://weblogs.asp.net/dwahlin

