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mini-FAQ

Q: Why should one learn assembly language these days?
A: Unless you are an OS9 developer, you probably don’t need to code in assembly—
modern compilers are much better at performing optimizations than humans 10.
Also, modern CPU11s are very complex devices and assembly knowledge doesn’t re-
ally help one to understand their internals. That being said, there are at least two
areas where a good understanding of assembly can be helpful: First and foremost,
security/malware research. It is also a good way to gain a better understanding of
your compiled code whilst debugging. This book is therefore intended for those
who want to understand assembly language rather than to code in it, which is why
there are many examples of compiler output contained within.

Q: I clicked on a hyperlink inside a PDF-document, how do I go back?
A: In Adobe Acrobat Reader click Alt+LeftArrow.

9Operating System
10A very good text about this topic: [Fog13]
11Central processing unit
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Q: I’m not sure if I should try to learn reverse engineering or not.
A: Perhaps, the average time to become familiar with the contents of the shortened
LITE-version is 1-2 month(s).

Q: May I print this book? Use it for teaching?
A: Of course! That’s why the book is licensed under the Creative Commons license.
Onemight also want to build one’s own version of book—read here to find out more.

Q: I want to translate your book to some other language.
A: Read my note to translators.

Q: How does one get a job in reverse engineering?
A: There are hiring threads that appear from time to time on reddit, devoted to
RE12 (2013 Q3, 2014). Try looking there. A somewhat related hiring thread can be
found in the “netsec” subreddit: 2014 Q2.

Q: I have a question...
A: Send it to me by email (dennis(a)yurichev.com).

This is the A5-format version for e-book readers. Although the content is mostly
the same, the illustrations are resized and probably not readable. You may try to
change scale in your e-book reader. Otherwise, you can always view them in the
A4-format version here: beginners.re.

About the Korean translation

In January 2015, the Acorn publishing company (www.acornpub.co.kr) in South Ko-
rea did a huge amount of work in translating and publishing my book (as it was in
August 2014) into Korean.

It’s now available at their website.

The translator is Byungho Min (twitter/tais9).

The cover art was done by my artistic friend, Andy Nechaevsky : facebook/andy-
dinka.

They also hold the copyright to the Korean translation.

So, if you want to have a real book on your shelf in Korean and want to support my
work, it is now available for purchase.

12reddit.com/r/ReverseEngineering/
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Everything is comprehended in
comparison

Author unknown

When the author of this book first started learning C and, later, C++, he used to write
small pieces of code, compile them, and then look at the assembly language output.
This made it very easy for him to understand what was going on in the code that
he had written. 13. He did it so many times that the relationship between the C/C++
code and what the compiler produced was imprinted deeply in his mind. It’s easy
to imagine instantly a rough outline of C code’s appearance and function. Perhaps
this technique could be helpful for others.

Sometimes ancient compilers are used here, in order to get the shortest (or sim-
plest) possible code snippet.

Optimization levels and debug information

Source code can be compiled by different compilers with various optimization lev-
els. A typical compiler has about three such levels, where level zero means disable
optimization. Optimization can also be targeted towards code size or code speed.

A non-optimizing compiler is faster and produces more understandable (albeit ver-
bose) code, whereas an optimizing compiler is slower and tries to produce code
that runs faster (but is not necessarily more compact).

In addition to optimization levels and direction, a compiler can include in the re-
sulting file some debug information, thus producing code for easy debugging.

One of the important features of the ´debug’ code is that it might contain links
between each line of the source code and the respective machine code addresses.
Optimizing compilers, on the other hand, tend to produce output where entire lines
of source code can be optimized away and thus not even be present in the resulting
machine code.

Reverse engineers can encounter either version, simply because some developers
turn on the compiler’s optimization flags and others do not. Because of this, we’ll
try to work on examples of both debug and release versions of the code featured
in this book, where possible.

13In fact, he still does it when he can’t understand what a particular bit of code does.
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Chapter 1

A short introduction to the CPU

The CPU is the device that executes the machine code a program consists of.

A short glossary:

Instruction : A primitive CPU command. The simplest examples include: moving
data between registers, working with memory, primitive arithmetic opera-
tions . As a rule, each CPU has its own instruction set architecture (ISA1).

Machine code : Code that the CPU directly processes. Each instruction is usually
encoded by several bytes.

Assembly language : Mnemonic code and some extensions like macros that are
intended to make a programmer’s life easier.

CPU register : Each CPU has a fixed set of general purpose registers (GPR2). ≈ 8 in
x86, ≈ 16 in x86-64, ≈ 16 in ARM. The easiest way to understand a register is
to think of it as an untyped temporary variable . Imagine if you were working
with a high-level PL3 and could only use eight 32-bit (or 64-bit) variables .
Yet a lot can be done using just these!

One might wonder why there needs to be a difference between machine code and
a PL. The answer lies in the fact that humans and CPUs are not alike— it is much
easier for humans to use a high-level PL like C/C++, Java, Python, etc., but it is
easier for a CPU to use a much lower level of abstraction. Perhaps it would
be possible to invent a CPU that can execute high-level PL code, but it would be
many times more complex than the CPUs we know of today. In a similar fashion,
it is very inconvenient for humans to write in assembly language, due to it being
so low-level and difficult to write in without making a huge number of annoying

1Instruction Set Architecture
2General Purpose Registers
3Programming language
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mistakes. The program that converts the high-level PL code into assembly is
called a compiler.
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Chapter 2

The simplest Function

The simplest possible function is arguably one that simply returns a constant value:

Here it is:

Listing 2.1: C/C++ Code
int f()
{

return 123;
};

Lets compile it!

2.1 x86

Here’s what both the optimizing GCC and MSVC compilers produce on the x86 plat-
form:

Listing 2.2: Optimizing GCC/MSVC (assembly output)
f:

mov eax, 123
ret

There are just two instructions: the first places the value 123 into the EAX register,
which is used by convention for storing the return value and the second one is RET,
which returns execution to the caller. The caller will take the result from the EAX
register.
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It is worth noting that MOV is a misleading name for the instruction in both x86
and ARM ISAs. The data is not in fact moved, but copied.
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Chapter 3

Hello, world!

Let’s use the famous example from the book “The C programming Language”[Ker88]:

#include <stdio.h>

int main()
{

printf("hello, world\n");
return 0;

}

3.1 x86

3.1.1 MSVC

Let’s compile it in MSVC 2010:

cl 1.cpp /Fa1.asm

(/Fa option instructs the compiler to generate assembly listing file)

Listing 3.1: MSVC 2010
CONST SEGMENT
$SG3830 DB 'hello, world', 0AH, 00H
CONST ENDS
PUBLIC _main
EXTRN _printf:PROC
; Function compile flags: /Odtp

7
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_TEXT SEGMENT
_main PROC

push ebp
mov ebp, esp
push OFFSET $SG3830
call _printf
add esp, 4
xor eax, eax
pop ebp
ret 0

_main ENDP
_TEXT ENDS

The compiler generated the file, 1.obj, which is to be linked into 1.exe. In our
case, the file contains two segments: CONST (for data constants) and _TEXT (for
code).

The string hello, world in C/C++ has type const char[] [Str13, p176, 7.3.2],
but it does not have its own name. The compiler needs to deal with the string
somehow so it defines the internal name $SG3830 for it.

That is why the example may be rewritten as follows:

#include <stdio.h>

const char $SG3830[]="hello, world\n";

int main()
{

printf($SG3830);
return 0;

}

Let’s go back to the assembly listing. As we can see, the string is terminated by
a zero byte, which is standard for C/C++ strings. More about C strings: 25.1.1 on
page 167.

In the code segment, _TEXT, there is only one function so far: main(). The func-
tion main() starts with prologue code and ends with epilogue code (like almost
any function)1.

After the function prologue we see the call to the printf() function: CALL
_printf. Before the call the string address (or a pointer to it) containing our
greeting is placed on the stack with the help of the PUSH instruction.

When the printf() function returns the control to the main() function, the
string address (or a pointer to it) is still on the stack. Since we do not need it

1You can read more about it in the section about function prologues and epilogues ( 4 on page 11).
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anymore, the stack pointer (the ESP register) needs to be corrected.

ADD ESP, 4 means add 4 to the ESP register value. Why 4? Since this is a
32-bit program, we need exactly 4 bytes for address passing through the stack. If
it was x64 code we would need 8 bytes. ADD ESP, 4 is effectively equivalent to
POP register but without using any register2.

For the same purpose, some compilers (like the Intel C++ Compiler) may emit POP
ECX instead of ADD (e.g., such a pattern can be observed in the Oracle RDBMS code
as it is compiled with the Intel C++ compiler). This instruction has almost the same
effect but the ECX register contents will be overwritten. The Intel C++ compiler
probably uses POP ECX since this instruction’s opcode is shorter than ADD ESP,
x (1 byte for POP against 3 for ADD).

Here is an example of using POP instead of ADD from Oracle RDBMS:

Listing 3.2: Oracle RDBMS 10.2 Linux (app.o file)
.text:0800029A push ebx
.text:0800029B call qksfroChild
.text:080002A0 pop ecx

After calling printf(), the original C/C++ code contains the statement return
0 —return 0 as the result of the main() function. In the generated code this is
implemented by the instruction XOR EAX, EAX. XOR is in fact just “eXclusive
OR”3 but the compilers often use it instead of MOV EAX, 0— again because it is
a slightly shorter opcode (2 bytes for XOR against 5 for MOV).

Some compilers emit SUB EAX, EAX, which means SUBtract the value in the EAX
from the value in EAX, which, in any case, results in zero.

The last instruction RET returns the control to the caller. Usually, this is C/C++ CRT4

code, which, in turn, returns control to the OS.

3.2 x86-64

3.2.1 MSVC—x86-64

Let’s also try 64-bit MSVC:

Listing 3.3: MSVC 2012 x64
$SG2989 DB 'hello, world', 0AH, 00H

2CPU flags, however, are modified
3wikipedia
4C runtime library
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main PROC
sub rsp, 40
lea rcx, OFFSET FLAT:$SG2989
call printf
xor eax, eax
add rsp, 40
ret 0

main ENDP

In x86-64, all registers were extended to 64-bit and now their names have an R-
prefix. In order to use the stack less often (in other words, to access external mem-
ory/cache less often), there exists a popular way to pass function arguments via
registers (fastcall). I.e., a part of the function arguments is passed in registers, the
rest—via the stack. In Win64, 4 function arguments are passed in the RCX, RDX, R8,
R9 registers. That is what we see here: a pointer to the string for printf() is
now passed not in the stack, but in the RCX register.

The pointers are 64-bit now, so they are passed in the 64-bit registers (which have
the R- prefix). However, for backward compatibility, it is still possible to access the
32-bit parts, using the E- prefix.

This is how the RAX/EAX/AX/AL register looks like in x86-64:

7th (byte number) 6th 5th 4th 3rd 2nd 1st 0th
RAXx64

EAX
AX

AH AL

The main() function returns an int-typed value, which is, in C/C++, for better back-
ward compatibility and portability, still 32-bit, so that is why the EAX register is
cleared at the function end (i.e., the 32-bit part of the register) instead of RAX.

There are also 40 bytes allocated in the local stack. This is called the “shadow
space”, about which we are going to talk later: 8.2.1 on page 43.

3.3 Conclusion

The main difference between x86/ARM and x64/ARM64 code is that the pointer to
the string is now 64-bits in length. Indeed, modern CPUs are now 64-bit due to
both the reduced cost of memory and the greater demand for it by modern applica-
tions. We can add much more memory to our computers than 32-bit pointers are
able to address. As such, all pointers are now 64-bit.
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Chapter 4

Function prologue and epilogue

A function prologue is a sequence of instructions at the start of a function. It often
looks something like the following code fragment:

push ebp
mov ebp, esp
sub esp, X

What these instruction do: save the value in the EBP register, set the value of the
EBP register to the value of the ESP and then allocate space on the stack for local
variables.

The value in the EBP stays the same over the period of the function execution and
is to be used for local variables and arguments access. For the same purpose one
can use ESP, but since it changes over time this approach is not too convenient.

The function epilogue frees the allocated space in the stack, returns the value in
the EBP register back to its initial state and returns the control flow to the callee:

mov esp, ebp
pop ebp
ret 0

Function prologues and epilogues are usually detected in disassemblers for func-
tion delimitation.

4.1 Recursion

Epilogues and prologues can negatively affect the recursion performance.
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More about recursion in this book: ?? on page ??.
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Chapter 5

Stack

The stack is one of the most fundamental data structures in computer science1.

Technically, it is just a block of memory in process memory along with the ESP or
RSP register in x86 or x64, or the SP2 register in ARM, as a pointer within that
block.

The most frequently used stack access instructions are PUSH and POP (in both x86
and ARM Thumb-mode). PUSH subtracts from ESP/RSP/SP 4 in 32-bit mode (or
8 in 64-bit mode) and then writes the contents of its sole operand to the memory
address pointed by ESP/RSP/SP.

POP is the reverse operation: retrieve the data from the memory location that SP
points to, load it into the instruction operand (often a register) and then add 4 (or
8) to the stack pointer.

After stack allocation, the stack pointer points at the bottom of the stack. PUSH
decreases the stack pointer and POP increases it. The bottom of the stack is
actually at the beginning of the memory allocated for the stack block. It seems
strange, but that’s the way it is.

5.1 Why does the stack grow backwards?

Intuitively, we might think that the stack grows upwards, i.e. towards higher ad-
dresses, like any other data structure.

1wikipedia.org/wiki/Call_stack
2stack pointer. SP/ESP/RSP in x86/x64. SP in ARM.
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The reason that the stack grows backward is probably historical. When the com-
puters were big and occupied a whole room, it was easy to divide memory into two
parts, one for the heap and one for the stack. Of course, it was unknown how big
the heap and the stack would be during program execution, so this solution was
the simplest possible.

...Heap . Stack...

Start of heap

.

Start of stack

In [RT74] we can read:

The user-core part of an image is divided into three logical
segments. The program text segment begins at location 0 in the
virtual address space. During execution, this segment is write-
protected and a single copy of it is shared among all processes
executing the same program. At the first 8K byte boundary above
the program text segment in the virtual address space begins a
nonshared, writable data segment, the size of which may be ex-
tended by a system call. Starting at the highest address in the vir-
tual address space is a stack segment, which automatically grows
downward as the hardware’s stack pointer fluctuates.

This reminds us how some students write two lecture notes using only one note-
book: notes for the first lecture are written as usual, and notes for the second one
are written from the end of notebook, by flipping it. Notes may meet each other
somewhere in between, in case of lack of free space.

5.2 What is the stack used for?

5.2.1 Save the function’s return address

x86

When calling another function with a CALL instruction, the address of the point
exactly after the CALL instruction is saved to the stack and then an unconditional
jump to the address in the CALL operand is executed.

14
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The CALL instruction is equivalent to a PUSH address_after_call / JMP
operand instruction pair.

RET fetches a value from the stack and jumps to it —that is equivalent to a POP
tmp / JMP tmp instruction pair.

Overflowing the stack is straightforward. Just run eternal recursion:

void f()
{

f();
};

MSVC 2008 reports the problem:

c:\tmp6>cl ss.cpp /Fass.asm
Microsoft (R) 32-bit C/C++ Optimizing Compiler Version ⤦

Ç 15.00.21022.08 for 80x86
Copyright (C) Microsoft Corporation. All rights reserved.

ss.cpp
c:\tmp6\ss.cpp(4) : warning C4717: 'f' : recursive on all ⤦

Ç control paths, function will cause runtime stack overflow

…but generates the right code anyway:

?f@@YAXXZ PROC ; f
; File c:\tmp6\ss.cpp
; Line 2

push ebp
mov ebp, esp

; Line 3
call ?f@@YAXXZ ; f

; Line 4
pop ebp
ret 0

?f@@YAXXZ ENDP ; f

… Also if we turn on the compiler optimization (/Ox option) the optimized code
will not overflow the stack and will work correctly3 instead:

?f@@YAXXZ PROC ; f
; File c:\tmp6\ss.cpp
; Line 2
$LL3@f:
; Line 3

jmp SHORT $LL3@f

3irony here
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?f@@YAXXZ ENDP ; f

5.2.2 Passing function arguments

The most popular way to pass parameters in x86 is called “cdecl”:

push arg3
push arg2
push arg1
call f
add esp, 12 ; 4*3=12

Callee functions get their arguments via the stack pointer.

Therefore, this is how the argument values are located in the stack before the
execution of the f() function’s very first instruction:

ESP return address
ESP+4 argument#1, marked in IDA4 as arg_0
ESP+8 argument#2, marked in IDA as arg_4
ESP+0xC argument#3, marked in IDA as arg_8
… …

It is worth noting that nothing obliges programmers to pass arguments through the
stack. It is not a requirement. One could implement any other method without
using the stack at all.

For example, it is possible to allocate a space for arguments in the heap, fill it and
pass it to a function via a pointer to this block in the EAX register. This will work5.
However, it is a convenient custom in x86 and ARM to use the stack for this purpose.

By the way, the callee function does not have any information about how many
arguments were passed. C functions with a variable number of arguments (like
printf()) determine their number using format string specifiers (which begin
with the % symbol). If we write something like

printf("%d %d %d", 1234);

printf() will print 1234, and then two random numbers, which were lying next
to it in the stack.

5For example, in the “The Art of Computer Programming” book by Donald Knuth, in section 1.4.1
dedicated to subroutines [Knu98, section 1.4.1], we could read that one way to supply arguments to a
subroutine is simply to list them after the JMP instruction passing control to subroutine. Knuth explains
that this method was particularly convenient on IBM System/360.
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That’s why it is not very important howwe declare themain() function: asmain(),
main(int argc, char *argv[]) or main(int argc, char *argv[],
char *envp[]).

In fact, the CRT-code is calling main() roughly as:

push envp
push argv
push argc
call main
...

If you declare main() as main() without arguments, they are, nevertheless, still
present in the stack, but are not used. If you declare main() as main(int argc,
char *argv[]), you will be able to use first two arguments, and the third will
remain “invisible” for your function. Even more, it is possible to declare main(int
argc), and it will work.

5.2.3 Local variable storage

A function could allocate space in the stack for its local variables just by decreasing
the stack pointer towards the stack bottom. Hence, it’s very fast, no matter how
many local variables are defined.

It is also not a requirement to store local variables in the stack. You could store
local variables wherever you like, but traditionally this is how it’s done.

5.2.4 x86: alloca() function

It is worth noting the alloca() function6.

This function works like malloc(), but allocates memory directly on the stack.

The allocated memory chunk does not need to be freed via a free() function call,
since the function epilogue ( 4 on page 11) returns ESP back to its initial state and
the allocated memory is just dropped.

It is worth noting how alloca() is implemented.

In simple terms, this function just shifts ESP downwards toward the stack bottom
by the number of bytes you need and sets ESP as a pointer to the allocated block.
Let’s try:

6In MSVC, the function implementation can be found in alloca16.asm and chkstk.asm in
C:\Program Files (x86)\Microsoft Visual Studio 10.0\VC\crt\src\intel
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#ifdef __GNUC__
#include <alloca.h> // GCC
#else
#include <malloc.h> // MSVC
#endif
#include <stdio.h>

void f()
{

char *buf=(char*)alloca (600);
#ifdef __GNUC__

snprintf (buf, 600, "hi! %d, %d, %d\n", 1, 2, 3); // GCC
#else

_snprintf (buf, 600, "hi! %d, %d, %d\n", 1, 2, 3); // MSVC
#endif

puts (buf);
};

_snprintf() function works just like printf(), but instead of dumping the re-
sult into stdout (e.g., to terminal or console), it writes it to the buf buffer. Function
puts() copies the contents of buf to stdout. Of course, these two function calls
might be replaced by one printf() call, but we have to illustrate small buffer
usage.

MSVC

Let’s compile (MSVC 2010):

Listing 5.1: MSVC 2010
...

mov eax, 600 ; 00000258H
call __alloca_probe_16
mov esi, esp

push 3
push 2
push 1
push OFFSET $SG2672
push 600 ; 00000258H
push esi
call __snprintf

push esi
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call _puts
add esp, 28 ; 0000001cH

...

The sole alloca() argument is passed via EAX (instead of pushing it into the
stack)7. After the alloca() call, ESP points to the block of 600 bytes and we
can use it as memory for the buf array.

5.2.5 (Windows) SEH

SEH10 records are also stored on the stack (if they are present)..

5.2.6 Buffer overflow protection

More about it here ( 16.2 on page 95).

5.2.7 Automatic deallocation of data in stack

Perhaps, the reason for storing local variables and SEH records in the stack is that
they are freed automatically upon function exit, using just one instruction to correct
the stack pointer (it is often ADD). Function arguments, as we could say, are also
deallocated automatically at the end of function. In contrast, everything stored in
the heap must be deallocated explicitly.

5.3 A typical stack layout

A typical stack layout in a 32-bit environment at the start of a function, before the
first instruction execution looks like this:

7It is because alloca() is rather a compiler intrinsic than a normal function.
One of the reasons we need a separate function instead of just a couple of instructions in the code, is

because the MSVC8 alloca() implementation also has code which reads from the memory just allocated,
in order to let the OS map physical memory to this VM9 region.

10Structured Exception Handling
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… …
ESP-0xC local variable #2, marked in IDA as var_8
ESP-8 local variable #1, marked in IDA as var_4
ESP-4 saved value of EBP
ESP return address
ESP+4 argument#1, marked in IDA as arg_0
ESP+8 argument#2, marked in IDA as arg_4
ESP+0xC argument#3, marked in IDA as arg_8
… …
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Chapter 6

printf() with several
arguments

Now let’s extend the Hello, world! ( 3 on page 7) example, replacing printf() in
the main() function body with this:

#include <stdio.h>

int main()
{

printf("a=%d; b=%d; c=%d", 1, 2, 3);
return 0;

};

6.1 x86

6.1.1 x86: 3 arguments

MSVC

When we compile it with MSVC 2010 Express we get:

$SG3830 DB 'a=%d; b=%d; c=%d', 00H

...

push 3
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push 2
push 1
push OFFSET $SG3830
call _printf
add esp, 16 ; ⤦

Ç 00000010H

Almost the same, but now we can see the printf() arguments are pushed onto
the stack in reverse order. The first argument is pushed last.

By the way, variables of int type in 32-bit environment have 32-bit width, that is 4
bytes.

So, we have 4 arguments here. 4 ∗ 4 = 16 —they occupy exactly 16 bytes in the
stack: a 32-bit pointer to a string and 3 numbers of type int.

When the stack pointer (ESP register) has changed back by the ADD ESP, X
instruction after a function call, often, the number of function arguments could be
deduced by simply dividing X by 4.

Of course, this is specific to the cdecl calling convention, and only for 32-bit envi-
ronment.

In certain cases where several functions return right after one another, the compiler
could merge multiple “ADD ESP, X” instructions into one, after the last call:

push a1
push a2
call ...
...
push a1
call ...
...
push a1
push a2
push a3
call ...
add esp, 24

Here is a real-world example:

Listing 6.1: x86
.text:100113E7 push 3
.text:100113E9 call sub_100018B0 ; takes one

argument (3)
.text:100113EE call sub_100019D0 ; takes no

arguments at all
.text:100113F3 call sub_10006A90 ; takes no

arguments at all
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.text:100113F8 push 1

.text:100113FA call sub_100018B0 ; takes one
argument (1)

.text:100113FF add esp, 8 ; drops two
arguments from stack at once

6.1.2 x64: 8 arguments

To see how other arguments are passed via the stack, let’s change our example
again by increasing the number of arguments to 9 (printf() format string + 8 int
variables):

#include <stdio.h>

int main()
{

printf("a=%d; b=%d; c=%d; d=%d; e=%d; f=%d; g=%d; h=%d\⤦
Ç n", 1, 2, 3, 4, 5, 6, 7, 8);

return 0;
};

MSVC

As it was mentioned earlier, the first 4 arguments has to be passed through the
RCX, RDX, R8, R9 registers in Win64, while all the rest—via the stack. That is
exactly what we see here. However, the MOV instruction, instead of PUSH, is used
for preparing the stack, so the values are stored to the stack in a straightforward
manner.

Listing 6.2: MSVC 2012 x64
$SG2923 DB 'a=%d; b=%d; c=%d; d=%d; e=%d; f=%d; g=%d; h=%d⤦

Ç ', 0aH, 00H

main PROC
sub rsp, 88

mov DWORD PTR [rsp+64], 8
mov DWORD PTR [rsp+56], 7
mov DWORD PTR [rsp+48], 6
mov DWORD PTR [rsp+40], 5
mov DWORD PTR [rsp+32], 4
mov r9d, 3
mov r8d, 2

23



CHAPTER 6. PRINTF() WITH SEVERAL ARGUMENTS CHAPTER 6. PRINTF() WITH SEVERAL ARGUMENTS

mov edx, 1
lea rcx, OFFSET FLAT:$SG2923
call printf

; return 0
xor eax, eax

add rsp, 88
ret 0

main ENDP
_TEXT ENDS
END

The observant reader may ask why are 8 bytes allocated for int values, when 4
is enough? Yes, one has to remember: 8 bytes are allocated for any data type
shorter than 64 bits. This is established for the convenience’s sake: it makes it
easy to calculate the address of arbitrary argument. Besides, they are all located
at aligned memory addresses. It is the same in the 32-bit environments: 4 bytes
are reserved for all data types.

6.2 Conclusion

Here is a rough skeleton of the function call:

Listing 6.3: x86
...
PUSH 3rd argument
PUSH 2nd argument
PUSH 1st argument
CALL function
; modify stack pointer (if needed)

Listing 6.4: x64 (MSVC)
MOV RCX, 1st argument
MOV RDX, 2nd argument
MOV R8, 3rd argument
MOV R9, 4th argument
...
PUSH 5th, 6th argument, etc (if needed)
CALL function
; modify stack pointer (if needed)
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6.3 By the way

By the way, this difference between the arguments passing in x86, x64, fastcall,
ARM and MIPS is a good illustration of the fact that the CPU is oblivious to how
the arguments are passed to functions. It is also possible to create a hypothetical
compiler able to pass arguments via a special structure without using stack at all.

The CPU is not aware of calling conventions whatsoever.

We may also recall how newcoming assembly language programmers passing ar-
guments into other functions: usually via registers, without any explicit order, or
even via global variables. Of course, it works fine.
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Chapter 7

scanf()

Now let’s use scanf().

7.1 Simple example

#include <stdio.h>

int main()
{

int x;
printf ("Enter X:\n");

scanf ("%d", &x);

printf ("You entered %d...\n", x);

return 0;
};

It’s not clever to use scanf() for user interactions nowadays. But we can, however,
illustrate passing a pointer to a variable of type int.

7.1.1 About pointers

Pointers are one of the fundamental concepts in computer science. Often, passing
a large array, structure or object as an argument to another function is too expen-
sive, while passing their address is much cheaper. In addition if the callee function
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needs to modify something in the large array or structure received as a parameter
and return back the entire structure then the situation is close to absurd. So the
simplest thing to do is to pass the address of the array or structure to the callee
function, and let it change what needs to be changed.

A pointer in C/C++ is simply an address of some memory location.

In x86, the address is represented as a 32-bit number (i.e., it occupies 4 bytes), while
in x86-64 it is a 64-bit number (occupying 8 bytes). By the way, that is the reason
behind some people’s indignation related to switching to x86-64—all pointers in
the x64-architecture require twice as much space, including cache memory, which
is “expensive” place.

It is possible to work with untyped pointers only, given some effort; e.g. the stan-
dard C function memcpy(), that copies a block from one memory location to an-
other, takes 2 pointers of type void* as arguments, since it is impossible to
predict the type of the data you would like to copy. Data types are not important,
only the block size matters.

Pointers are also widely used when a function needs to return more than one value
(we are going to get back to this later ). scanf() is such a case. Besides the fact
that the function needs to indicate how many values were successfully read, it also
needs to return all these values.

In C/C++ the pointer type is only needed for compile-time type checking. Internally,
in the compiled code there is no information about pointer types at all.

7.1.2 x86

MSVC

Here is what we get after compiling with MSVC 2010:

CONST SEGMENT
$SG3831 DB 'Enter X:', 0aH, 00H
$SG3832 DB '%d', 00H
$SG3833 DB 'You entered %d...', 0aH, 00H
CONST ENDS
PUBLIC _main
EXTRN _scanf:PROC
EXTRN _printf:PROC
; Function compile flags: /Odtp
_TEXT SEGMENT
_x$ = -4 ; size = 4
_main PROC

push ebp
mov ebp, esp
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push ecx
push OFFSET $SG3831 ; 'Enter X:'
call _printf
add esp, 4
lea eax, DWORD PTR _x$[ebp]
push eax
push OFFSET $SG3832 ; '%d'
call _scanf
add esp, 8
mov ecx, DWORD PTR _x$[ebp]
push ecx
push OFFSET $SG3833 ; 'You entered %d...'
call _printf
add esp, 8

; return 0
xor eax, eax
mov esp, ebp
pop ebp
ret 0

_main ENDP
_TEXT ENDS

x is a local variable.

According to the C/C++ standard it must be visible only in this function and not
from any other external scope. Traditionally, local variables are stored on the stack.
There are probably other ways to allocate them, but in x86 that is the way it is.

The goal of the instruction following the function prologue, PUSH ECX, is not to
save the ECX state (notice the absence of corresponding POP ECX at the function’s
end).

In fact it allocates 4 bytes on the stack for storing the x variable.

x is to be accessed with the assistance of the _x$ macro (it equals to -4) and the
EBP register pointing to the current frame.

Over the span of the function’s execution, EBP is pointing to the current stack
frame making it possible to access local variables and function arguments via
EBP+offset.

It is also possible to use ESP for the same purpose, although that is not very con-
venient since it changes frequently. The value of the EBP could be perceived as a
frozen state of the value in ESP at the start of the function’s execution.

Here is a typical stack frame layout in 32-bit environment:
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… …
EBP-8 local variable #2, marked in IDA as var_8
EBP-4 local variable #1, marked in IDA as var_4
EBP saved value of EBP
EBP+4 return address
EBP+8 argument#1, marked in IDA as arg_0
EBP+0xC argument#2, marked in IDA as arg_4
EBP+0x10 argument#3, marked in IDA as arg_8
… …

The scanf() function in our example has two arguments.

The first one is a pointer to the string containing %d and the second is the address
of the x variable.

First, the x variable’s address is loaded into the EAX register by the lea eax,
DWORD PTR _x$[ebp] instruction

We could say that in this case LEA simply stores the sum of the EBP register value
and the _x$ macro in the EAX register.

This is the same as lea eax, [ebp-4].

So, 4 is being subtracted from the EBP register value and the result is loaded in the
EAX register. Next the EAX register value is pushed into the stack and scanf() is
being called.

printf() is being called after that with its first argument— a pointer to the string:
You entered %d...\n.

The second argument is prepared with: mov ecx, [ebp-4]. The instruction
stores the x variable value and not its address, in the ECX register.

Next the value in the ECX is stored on the stack and the last printf() is being
called.

By the way

By the way, this simple example is a demonstration of the fact that compiler trans-
lates list of expressions in C/C++-block into sequential list of instructions. There
are nothing between expressions in C/C++, and so in resulting machine code, there
are nothing between, control flow slips from one expression to the next one.

7.1.3 x64

The picture here is similar with the difference that the registers, rather than the
stack, are used for arguments passing.
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MSVC

Listing 7.1: MSVC 2012 x64
_DATA SEGMENT
$SG1289 DB 'Enter X:', 0aH, 00H
$SG1291 DB '%d', 00H
$SG1292 DB 'You entered %d...', 0aH, 00H
_DATA ENDS

_TEXT SEGMENT
x$ = 32
main PROC
$LN3:

sub rsp, 56
lea rcx, OFFSET FLAT:$SG1289 ; 'Enter X:'
call printf
lea rdx, QWORD PTR x$[rsp]
lea rcx, OFFSET FLAT:$SG1291 ; '%d'
call scanf
mov edx, DWORD PTR x$[rsp]
lea rcx, OFFSET FLAT:$SG1292 ; 'You entered %d...'
call printf

; return 0
xor eax, eax
add rsp, 56
ret 0

main ENDP
_TEXT ENDS

7.2 Global variables

What if the x variable from the previous example was not local but a global one?
Then it would have been accessible from any point, not only from the function body.
Global variables are considered anti-pattern, but for the sake of the experiment, we
could do this.

#include <stdio.h>

// now x is global variable
int x;

int main()
{

30



CHAPTER 7. SCANF() CHAPTER 7. SCANF()

printf ("Enter X:\n");

scanf ("%d", &x);

printf ("You entered %d...\n", x);

return 0;
};

7.2.1 MSVC: x86

_DATA SEGMENT
COMM _x:DWORD
$SG2456 DB 'Enter X:', 0aH, 00H
$SG2457 DB '%d', 00H
$SG2458 DB 'You entered %d...', 0aH, 00H
_DATA ENDS
PUBLIC _main
EXTRN _scanf:PROC
EXTRN _printf:PROC
; Function compile flags: /Odtp
_TEXT SEGMENT
_main PROC

push ebp
mov ebp, esp
push OFFSET $SG2456
call _printf
add esp, 4
push OFFSET _x
push OFFSET $SG2457
call _scanf
add esp, 8
mov eax, DWORD PTR _x
push eax
push OFFSET $SG2458
call _printf
add esp, 8
xor eax, eax
pop ebp
ret 0

_main ENDP
_TEXT ENDS

In this case the x variable is defined in the _DATA segment and no memory is allo-
cated in the local stack. It is accessed directly, not through the stack. Uninitialized
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global variables take no space in the executable file (indeed, why one needs to
allocate space for variables initially set to zero?), but when someone accesses their
address, the OS will allocate a block of zeroes there1.

Now let’s explicitly assign a value to the variable:

int x=10; // default value

We got:

_DATA SEGMENT
_x DD 0aH

...

Here we see a value 0xA of DWORD type (DD stands for DWORD = 32 bit) for this
variable.

If you open the compiled .exe in IDA, you can see the x variable placed at the
beginning of the _DATA segment, and after it you can see text strings.

If you open the compiled .exe from the previous example in IDA, where the value
of x was not set, you would see something like this:

.data:0040FA80 _x dd ? ; DATA ⤦
Ç XREF: _main+10

.data:0040FA80 ; _main⤦
Ç +22

.data:0040FA84 dword_40FA84 dd ? ; DATA ⤦
Ç XREF: _memset+1E

.data:0040FA84 ; ⤦
Ç unknown_libname_1+28

.data:0040FA88 dword_40FA88 dd ? ; DATA ⤦
Ç XREF: ___sbh_find_block+5

.data:0040FA88 ; ⤦
Ç ___sbh_free_block+2BC

.data:0040FA8C ; LPVOID lpMem

.data:0040FA8C lpMem dd ? ; DATA ⤦
Ç XREF: ___sbh_find_block+B

.data:0040FA8C ; ⤦
Ç ___sbh_free_block+2CA

.data:0040FA90 dword_40FA90 dd ? ; DATA ⤦
Ç XREF: _V6_HeapAlloc+13

.data:0040FA90 ; ⤦
Ç __calloc_impl+72

.data:0040FA94 dword_40FA94 dd ? ; DATA ⤦
Ç XREF: ___sbh_free_block+2FE

1That is how a VM behaves
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_x is marked with ? with the rest of the variables that do not need to be initialized.
This implies that after loading the .exe to thememory, a space for all these variables
is to be allocated and filled with zeroes [ISO07, 6.7.8p10]. But in the .exe file these
uninitialized variables do not occupy anything. This is convenient for large arrays,
for example.

7.2.2 MSVC: x64

Listing 7.2: MSVC 2012 x64
_DATA SEGMENT
COMM x:DWORD
$SG2924 DB 'Enter X:', 0aH, 00H
$SG2925 DB '%d', 00H
$SG2926 DB 'You entered %d...', 0aH, 00H
_DATA ENDS

_TEXT SEGMENT
main PROC
$LN3:

sub rsp, 40

lea rcx, OFFSET FLAT:$SG2924 ; 'Enter X:'
call printf
lea rdx, OFFSET FLAT:x
lea rcx, OFFSET FLAT:$SG2925 ; '%d'
call scanf
mov edx, DWORD PTR x
lea rcx, OFFSET FLAT:$SG2926 ; 'You entered %d...'
call printf

; return 0
xor eax, eax

add rsp, 40
ret 0

main ENDP
_TEXT ENDS

The code is almost the same as in x86. Please note that the address of the x

variable is passed to scanf() using a LEA instruction, while the variable’s value
is passed to the second printf() using a MOV instruction. DWORD PTR is a part
of the assembly language (no relation to the machine code), indicating that the
variable data size is 32-bit and the MOV instruction has to be encoded accordingly.
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7.3 scanf() result checking

As was noted before, it is slightly old-fashioned to use scanf() today. But if we
have to, we need to at least check if scanf() finishes correctly without an error.

#include <stdio.h>

int main()
{

int x;
printf ("Enter X:\n");

if (scanf ("%d", &x)==1)
printf ("You entered %d...\n", x);

else
printf ("What you entered? Huh?\n");

return 0;
};

By standard, the scanf()2 function returns the number of fields it has successfully
read.

In our case, if everything goes fine and the user enters a number scanf() returns
1, or in case of error (or EOF3) — 0.

Let’s add some C code to check the scanf() return value and print error message
in case of an error.

This works as expected:

C:\...>ex3.exe
Enter X:
123
You entered 123...

C:\...>ex3.exe
Enter X:
ouch
What you entered? Huh?

7.3.1 MSVC: x86

Here is what we get in the assembly output (MSVC 2010):
2scanf, wscanf: MSDN
3End of file
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lea eax, DWORD PTR _x$[ebp]
push eax
push OFFSET $SG3833 ; '%d', 00H
call _scanf
add esp, 8
cmp eax, 1
jne SHORT $LN2@main
mov ecx, DWORD PTR _x$[ebp]
push ecx
push OFFSET $SG3834 ; 'You entered %d...', 0aH, 00H
call _printf
add esp, 8
jmp SHORT $LN1@main

$LN2@main:
push OFFSET $SG3836 ; 'What you entered? Huh?', 0aH,⤦

Ç 00H
call _printf
add esp, 4

$LN1@main:
xor eax, eax

The caller function (main()) needs the callee function (scanf()) result, so the
callee returns it in the EAX register.

We check it with the help of the instruction CMP EAX, 1 (CoMPare). In other words,
we compare the value in the EAX register with 1.

A JNE conditional jump follows the CMP instruction. JNE stands for Jump if Not
Equal.

So, if the value in the EAX register is not equal to 1, the CPU will pass the execution
to the address mentioned in the JNE operand, in our case $LN2@main. Passing
the control to this address results in the CPU executing printf() with the argu-
ment What you entered? Huh?. But if everything is fine, the conditional
jump is not be be taken, and another printf() call is to be executed, with two
arguments: 'You entered %d...' and the value of x.

Since in this case the second printf() has not to be executed, there is a JMP
preceding it (unconditional jump). It passes the control to the point after the second
printf() and just before the XOR EAX, EAX instruction, which implements
return 0.

So, it could be said that comparing a value with another is usually implemented by
CMP/Jcc instruction pair, where cc is condition code. CMP compares two values
and sets processor flags4. Jcc checks those flags and decides to either pass the
control to the specified address or not.

4x86 flags, see also: wikipedia.
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This could sound paradoxical, but the CMP instruction is in fact SUB (subtract). All
arithmetic instructions set processor flags, not just CMP. If we compare 1 and 1,
1 − 1 is 0 so the ZF flag would be set (meaning that the last result was 0). In no
other circumstances ZF can be set, except when the operands are equal. JNE
checks only the ZF flag and jumps only if it is not set. JNE is in fact a synonym for
JNZ (Jump if Not Zero). Assembler translates both JNE and JNZ instructions into
the same opcode. So, the CMP instruction can be replaced with a SUB instruction
and almost everything will be fine, with the difference that SUB alters the value of
the first operand. CMP is SUB without saving the result, but affecting flags.
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7.3.2 MSVC: x86 + Hiew

This can also be used as a simple example of executable file patching. We may try
to patch the executable so the program would always print the input, no matter
what we enter.

Assuming that the executable is compiled against external MSVCR*.DLL (i.e., with
/MD option)5, we see the main() function at the beginning of the .text section.
Let’s open the executable in Hiew and find the beginning of the .text section
(Enter, F8, F6, Enter, Enter).

We can see this:

Figure 7.1: Hiew: main() function

Hiew finds ASCIIZ6 strings and displays them, as it does with the imported func-
tions’ names.

5that’s what also called “dynamic linking”
6ASCII Zero (null-terminated ASCII string)
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Move the cursor to address .00401027 (where the JNZ instruction, we have to
bypass, is located), press F3, and then type “9090”(, meaning two NOP7s):

Figure 7.2: Hiew: replacing JNZ with two NOPs

Then press F9 (update). Now the executable is saved to the disk. It will behave as
we wanted.

Two NOPs are probably not the most æsthetic approach. Another way to patch this
instruction is to write just 0 to the second opcode byte (jump offset), so that JNZ
will always jump to the next instruction.

We could also do the opposite: replace first byte with EB while not touching the
second byte (jump offset). We would get an unconditional jump that is always
triggered. In this case the error message would be printed every time, no matter
the input.

7.3.3 MSVC: x64

Since we work here with int-typed variables, which are still 32-bit in x86-64, we
see how the 32-bit part of the registers (prefixed with E-) are used here as well.

7No OPeration
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While working with pointers, however, 64-bit register parts are used, prefixed with
R-.

Listing 7.3: MSVC 2012 x64
_DATA SEGMENT
$SG2924 DB 'Enter X:', 0aH, 00H
$SG2926 DB '%d', 00H
$SG2927 DB 'You entered %d...', 0aH, 00H
$SG2929 DB 'What you entered? Huh?', 0aH, 00H
_DATA ENDS

_TEXT SEGMENT
x$ = 32
main PROC
$LN5:

sub rsp, 56
lea rcx, OFFSET FLAT:$SG2924 ; 'Enter X:'
call printf
lea rdx, QWORD PTR x$[rsp]
lea rcx, OFFSET FLAT:$SG2926 ; '%d'
call scanf
cmp eax, 1
jne SHORT $LN2@main
mov edx, DWORD PTR x$[rsp]
lea rcx, OFFSET FLAT:$SG2927 ; 'You entered %d...'
call printf
jmp SHORT $LN1@main

$LN2@main:
lea rcx, OFFSET FLAT:$SG2929 ; 'What you entered? ⤦

Ç Huh?'
call printf

$LN1@main:
; return 0
xor eax, eax
add rsp, 56
ret 0

main ENDP
_TEXT ENDS
END

7.4 Exercise

• http://challenges.re/53
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Chapter 8

Accessing passed arguments

Now we figured out that the caller function is passing arguments to the callee via
the stack. But how does the callee access them?

Listing 8.1: simple example
#include <stdio.h>

int f (int a, int b, int c)
{

return a*b+c;
};

int main()
{

printf ("%d\n", f(1, 2, 3));
return 0;

};

8.1 x86

8.1.1 MSVC

Here is what we get after compilation (MSVC 2010 Express):

Listing 8.2: MSVC 2010 Express
_TEXT SEGMENT
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_a$ = 8 ; size ⤦
Ç = 4

_b$ = 12 ; size ⤦
Ç = 4

_c$ = 16 ; size ⤦
Ç = 4

_f PROC
push ebp
mov ebp, esp
mov eax, DWORD PTR _a$[ebp]
imul eax, DWORD PTR _b$[ebp]
add eax, DWORD PTR _c$[ebp]
pop ebp
ret 0

_f ENDP

_main PROC
push ebp
mov ebp, esp
push 3 ; 3rd argument
push 2 ; 2nd argument
push 1 ; 1st argument
call _f
add esp, 12
push eax
push OFFSET $SG2463 ; '%d', 0aH, 00H
call _printf
add esp, 8
; return 0
xor eax, eax
pop ebp
ret 0

_main ENDP

What we see is that the main() function pushes 3 numbers onto the stack and calls
f(int,int,int). Argument access inside f() is organized with the help of
macros like: _a$ = 8, in the same way as local variables, but with positive offsets
(addressed with plus). So, we are addressing the outer side of the stack frame by
adding the _a$ macro to the value in the EBP register.

Then the value of a is stored into EAX. After IMUL instruction execution, the value
in EAX is a product of the value in EAX and the content of _b. After that, ADD
adds the value in _c to EAX. The value in EAX does not need to be moved: it is
already where it must be. On returning to caller, it takes the EAX value and use it
as an argument to printf().
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8.2 x64

The story is a bit different in x86-64. Function arguments (first 4 or first 6 of them)
are passed in registers i.e. the callee reads them from registers instead of reading
them from the stack.

8.2.1 MSVC

Optimizing MSVC:

Listing 8.3: Optimizing MSVC 2012 x64
$SG2997 DB '%d', 0aH, 00H

main PROC
sub rsp, 40
mov edx, 2
lea r8d, QWORD PTR [rdx+1] ; R8D=3
lea ecx, QWORD PTR [rdx-1] ; ECX=1
call f
lea rcx, OFFSET FLAT:$SG2997 ; '%d'
mov edx, eax
call printf
xor eax, eax
add rsp, 40
ret 0

main ENDP

f PROC
; ECX - 1st argument
; EDX - 2nd argument
; R8D - 3rd argument
imul ecx, edx
lea eax, DWORD PTR [r8+rcx]
ret 0

f ENDP

As we can see, the compact function f() takes all its arguments from the registers.
The LEA instruction here is used for addition, apparently the compiler considered
it faster than ADD. LEA is also used in the main() function to prepare the first and
third f() arguments. The compiler must have decided that this would work faster
than the usual way of loading values into a register using MOV instruction.

Let’s take a look at the non-optimizing MSVC output:

Listing 8.4: MSVC 2012 x64
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f proc near

; shadow space:
arg_0 = dword ptr 8
arg_8 = dword ptr 10h
arg_10 = dword ptr 18h

; ECX - 1st argument
; EDX - 2nd argument
; R8D - 3rd argument
mov [rsp+arg_10], r8d
mov [rsp+arg_8], edx
mov [rsp+arg_0], ecx
mov eax, [rsp+arg_0]
imul eax, [rsp+arg_8]
add eax, [rsp+arg_10]
retn

f endp

main proc near
sub rsp, 28h
mov r8d, 3 ; 3rd argument
mov edx, 2 ; 2nd argument
mov ecx, 1 ; 1st argument
call f
mov edx, eax
lea rcx, $SG2931 ; "%d\n"
call printf

; return 0
xor eax, eax
add rsp, 28h
retn

main endp

It looks somewhat puzzling because all 3 arguments from the registers are saved to
the stack for some reason. This is called “shadow space” 1: every Win64 may (but
is not required to) save all 4 register values there. This is done for two reasons:
1) it is too lavish to allocate a whole register (or even 4 registers) for an input
argument, so it will be accessed via stack; 2) the debugger is always aware where
to find the function arguments at a break2.

So, some large functions can save their input arguments in the “shadows space” if
they need to use them during execution, but some small functions (like ours) may

1MSDN
2MSDN
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not do this.

It is a caller responsibility to allocate “shadow space” in the stack.
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Chapter 9

More about results returning

In x86, the result of function execution is usually returned1 in the EAX register. If
it is byte type or a character (char), then the lowest part of register EAX (AL) is used.
If a function returns a float number, the FPU register ST(0) is used instead.

9.1 Attempt to use the result of a function returning
void

So, what if the main() function return value was declared of type void and not
int?

The so-called startup-code is calling main() roughly as follows:

push envp
push argv
push argc
call main
push eax
call exit

In other words:

exit(main(argc,argv,envp));

If you declare main() as void, nothing is to be returned explicitly (using the return
statement), then something random, that was stored in the EAX register at the end

1See also: MSDN: Return Values (C++): MSDN
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of main() becomes the sole argument of the exit() function. Most likely, there
will be a random value, left from your function execution, so the exit code of pro-
gram is pseudorandom.

We can illustrate this fact. Please note that here the main() function has a void
return type:

#include <stdio.h>

void main()
{

printf ("Hello, world!\n");
};

Let’s compile it in Linux.

GCC 4.8.1 replaced printf() with puts(), but that’s OK, since puts() returns
the number of characters printed out, just like printf(). Please notice that EAX
is not zeroed before main()’s end. This implies that the value of EAX at the end
of main() contains what puts() has left there.

Listing 9.1: GCC 4.8.1
.LC0:

.string "Hello, world!"
main:

push ebp
mov ebp, esp
and esp, -16
sub esp, 16
mov DWORD PTR [esp], OFFSET FLAT:.LC0
call puts
leave
ret

Let’ s write a bash script that shows the exit status:

Listing 9.2: tst.sh
#!/bin/sh
./hello_world
echo $?

And run it:

$ tst.sh
Hello, world!
14
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14 is the number of characters printed.

9.2 What if we do not use the function result?

printf() returns the count of characters successfully output, but the result of
this function is rarely used in practice. It is also possible to call a function whose
essence is in returning a value, and not use it:

int f()
{

// skip first 3 random values
rand();
rand();
rand();
// and use 4th
return rand();

};

The result of the rand() function is left in EAX, in all four cases. But in the first 3
cases, the value in EAX is just thrown away.
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Chapter 10

GOTO operator

The GOTO operator is generally considered as anti-pattern. [Dij68], Nevertheless,
it can be used reasonably [Knu74], [Yur13, p. 1.3.2].

Here is a very simple example:

#include <stdio.h>

int main()
{

printf ("begin\n");
goto exit;
printf ("skip me!\n");

exit:
printf ("end\n");

};

Here is what we have got in MSVC 2012:

Listing 10.1: MSVC 2012
$SG2934 DB 'begin', 0aH, 00H
$SG2936 DB 'skip me!', 0aH, 00H
$SG2937 DB 'end', 0aH, 00H

_main PROC
push ebp
mov ebp, esp
push OFFSET $SG2934 ; 'begin'
call _printf
add esp, 4
jmp SHORT $exit$3
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push OFFSET $SG2936 ; 'skip me!'
call _printf
add esp, 4

$exit$3:
push OFFSET $SG2937 ; 'end'
call _printf
add esp, 4
xor eax, eax
pop ebp
ret 0

_main ENDP

The goto statement has been simply replaced by a JMP instruction, which has the
same effect: unconditional jump to another place.

The second printf() could be executed only with human intervention, by using
a debugger or by patching the code.

10.1 Dead code

The second printf() call is also called “dead code” in compiler terms. This
means that the code will never be executed. So when you compile this example
with optimizations, the compiler removes “dead code”, leaving no trace of it:

Listing 10.2: Optimizing MSVC 2012
$SG2981 DB 'begin', 0aH, 00H
$SG2983 DB 'skip me!', 0aH, 00H
$SG2984 DB 'end', 0aH, 00H

_main PROC
push OFFSET $SG2981 ; 'begin'
call _printf
push OFFSET $SG2984 ; 'end'

$exit$4:
call _printf
add esp, 8
xor eax, eax
ret 0

_main ENDP

However, the compiler forgot to remove the “skip me!” string.

49



CHAPTER 11. CONDITIONAL JUMPS CHAPTER 11. CONDITIONAL JUMPS

Chapter 11

Conditional jumps

11.1 Simple example

#include <stdio.h>

void f_signed (int a, int b)
{

if (a>b)
printf ("a>b\n");

if (a==b)
printf ("a==b\n");

if (a<b)
printf ("a<b\n");

};

void f_unsigned (unsigned int a, unsigned int b)
{

if (a>b)
printf ("a>b\n");

if (a==b)
printf ("a==b\n");

if (a<b)
printf ("a<b\n");

};

int main()
{

f_signed(1, 2);
f_unsigned(1, 2);
return 0;
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};

11.1.1 x86

x86 + MSVC

Here is how the f_signed() function looks like:

Listing 11.1: Non-optimizing MSVC 2010
_a$ = 8
_b$ = 12
_f_signed PROC

push ebp
mov ebp, esp
mov eax, DWORD PTR _a$[ebp]
cmp eax, DWORD PTR _b$[ebp]
jle SHORT $LN3@f_signed
push OFFSET $SG737 ; 'a>b'
call _printf
add esp, 4

$LN3@f_signed:
mov ecx, DWORD PTR _a$[ebp]
cmp ecx, DWORD PTR _b$[ebp]
jne SHORT $LN2@f_signed
push OFFSET $SG739 ; 'a==b'
call _printf
add esp, 4

$LN2@f_signed:
mov edx, DWORD PTR _a$[ebp]
cmp edx, DWORD PTR _b$[ebp]
jge SHORT $LN4@f_signed
push OFFSET $SG741 ; 'a<b'
call _printf
add esp, 4

$LN4@f_signed:
pop ebp
ret 0

_f_signed ENDP

The first instruction, JLE, stands for Jump if Less or Equal. In other words, if the
second operand is larger or equal to the first one, the control flow will be passed to
the specified in the instruction address or label. If this condition does not trigger
because the second operand is smaller than the first one, the control flow would
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not be altered and the first printf() would be executed. The second check is
JNE: Jump if Not Equal. The control flow will not change if the operands are equal.

The third check is JGE: Jump if Greater or Equal—jump if the first operand is larger
than the second or if they are equal. So, if all three conditional jumps are triggered,
none of the printf() calls would be executed whatsoever. This is impossible
without special intervention.

Now let’s take a look at the f_unsigned() function. The f_unsigned() func-
tion is the same as f_signed(), with the exception that the JBE and JAE instruc-
tions are used instead of JLE and JGE, as follows:

Listing 11.2: GCC
_a$ = 8 ; size = 4
_b$ = 12 ; size = 4
_f_unsigned PROC

push ebp
mov ebp, esp
mov eax, DWORD PTR _a$[ebp]
cmp eax, DWORD PTR _b$[ebp]
jbe SHORT $LN3@f_unsigned
push OFFSET $SG2761 ; 'a>b'
call _printf
add esp, 4

$LN3@f_unsigned:
mov ecx, DWORD PTR _a$[ebp]
cmp ecx, DWORD PTR _b$[ebp]
jne SHORT $LN2@f_unsigned
push OFFSET $SG2763 ; 'a==b'
call _printf
add esp, 4

$LN2@f_unsigned:
mov edx, DWORD PTR _a$[ebp]
cmp edx, DWORD PTR _b$[ebp]
jae SHORT $LN4@f_unsigned
push OFFSET $SG2765 ; 'a<b'
call _printf
add esp, 4

$LN4@f_unsigned:
pop ebp
ret 0

_f_unsigned ENDP

As already mentioned, the branch instructions are different: JBE—Jump if Below or
Equal and JAE—Jump if Above or Equal. These instructions (JA/JAE/JB/JBE) differ
from JG/JGE/JL/JLE in the fact that they work with unsigned numbers.
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See also the section about signed number representations ( 22 on page 157). That
is why if we see JG/JL in use instead of JA/JB or vice-versa, we can be almost
sure that the variables are signed or unsigned, respectively.

Here is also the main() function, where there is nothing much new to us:

Listing 11.3: main()
_main PROC

push ebp
mov ebp, esp
push 2
push 1
call _f_signed
add esp, 8
push 2
push 1
call _f_unsigned
add esp, 8
xor eax, eax
pop ebp
ret 0

_main ENDP
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x86 + MSVC + Hiew

We can try to patch the executable file in a way that the f_unsigned() function
would always print “a==b”, no matter the input values. Here is how it looks in Hiew:

Figure 11.1: Hiew: f_unsigned() function

Essentially, we need to accomplish three tasks:

• force the first jump to always trigger;

• force the second jump to never trigger;

• force the third jump to always trigger.

Thus we can direct the code flow to always pass through the second printf(),
and output “a==b”.

Three instructions (or bytes) has to be patched:

• The first jump becomes JMP, but the jump offset would remain the same.

• The second jump might be triggered sometimes, but in any case it will jump
to the next instruction, because, we set the jump offset to 0. In these in-
structions the jump offset is added to the address for the next instruction. So
if the offset is 0, the jump will transfer the control to the next instruction.
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• The third jump we replace with JMP just as we do with the first one, so it will
always trigger.
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Here is the modified code:

Figure 11.2: Hiew: let’s modify the f_unsigned() function

If we miss to change any of these jumps, then several printf() calls may execute,
while we want to execute only one.

11.2 Calculating absolute value

A simple function:

int my_abs (int i)
{

if (i<0)
return -i;

else
return i;

};

11.2.1 Optimizing MSVC

This is how the code is usually generated:
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Listing 11.4: Optimizing MSVC 2012 x64
i$ = 8
my_abs PROC
; ECX = input

test ecx, ecx
; check for sign of input value
; skip NEG instruction if sign is positive

jns SHORT $LN2@my_abs
; negate value

neg ecx
$LN2@my_abs:
; prepare result in EAX:

mov eax, ecx
ret 0

my_abs ENDP

11.3 Ternary conditional operator

The ternary conditional operator in C/C++ has the following syntax:

expression ? expression : expression

Here is an example:

const char* f (int a)
{

return a==10 ? "it is ten" : "it is not ten";
};

11.3.1 x86

Old and non-optimizing compilers generate assembly code just as if an if/else
statement was used:

Listing 11.5: Non-optimizing MSVC 2008
$SG746 DB 'it is ten', 00H
$SG747 DB 'it is not ten', 00H

tv65 = -4 ; this will be used as a temporary variable
_a$ = 8
_f PROC

push ebp
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mov ebp, esp
push ecx

; compare input value with 10
cmp DWORD PTR _a$[ebp], 10

; jump to $LN3@f if not equal
jne SHORT $LN3@f

; store pointer to the string into temporary variable:
mov DWORD PTR tv65[ebp], OFFSET $SG746 ; 'it is ten⤦

Ç '
; jump to exit

jmp SHORT $LN4@f
$LN3@f:
; store pointer to the string into temporary variable:

mov DWORD PTR tv65[ebp], OFFSET $SG747 ; 'it is not⤦
Ç ten'

$LN4@f:
; this is exit. copy pointer to the string from temporary

variable to EAX.
mov eax, DWORD PTR tv65[ebp]
mov esp, ebp
pop ebp
ret 0

_f ENDP

Listing 11.6: Optimizing MSVC 2008
$SG792 DB 'it is ten', 00H
$SG793 DB 'it is not ten', 00H

_a$ = 8 ; size = 4
_f PROC
; compare input value with 10

cmp DWORD PTR _a$[esp-4], 10
mov eax, OFFSET $SG792 ; 'it is ten'

; jump to $LN4@f if equal
je SHORT $LN4@f
mov eax, OFFSET $SG793 ; 'it is not ten'

$LN4@f:
ret 0

_f ENDP

Newer compilers are more concise:

Listing 11.7: Optimizing MSVC 2012 x64
$SG1355 DB 'it is ten', 00H
$SG1356 DB 'it is not ten', 00H
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a$ = 8
f PROC
; load pointers to the both strings

lea rdx, OFFSET FLAT:$SG1355 ; 'it is ten'
lea rax, OFFSET FLAT:$SG1356 ; 'it is not ten'

; compare input value with 10
cmp ecx, 10

; if equal, copy value from RDX ("it is ten")
; if not, do nothing. pointer to the string "it is not ten" is

still in RAX as for now.
cmove rax, rdx
ret 0

f ENDP

Optimizing GCC 4.8 for x86 also uses theCMOVcc instruction, while the non-optimizing
GCC 4.8 uses conditional jumps.

11.3.2 Let’s rewrite it in an if/else way

const char* f (int a)
{

if (a==10)
return "it is ten";

else
return "it is not ten";

};

Interestingly, optimizing GCC 4.8 for x86 was also able to use CMOVcc in this case:

Listing 11.8: Optimizing GCC 4.8
.LC0:

.string "it is ten"
.LC1:

.string "it is not ten"
f:
.LFB0:
; compare input value with 10

cmp DWORD PTR [esp+4], 10
mov edx, OFFSET FLAT:.LC1 ; "it is not ten"
mov eax, OFFSET FLAT:.LC0 ; "it is ten"

; if comparison result is Not Equal, copy EDX value to EAX
; if not, do nothing

cmovne eax, edx
ret

But the optimizing MSVC 2012 is not that good (yet).
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11.4 Getting minimal and maximal values

11.4.1 32-bit

int my_max(int a, int b)
{

if (a>b)
return a;

else
return b;

};

int my_min(int a, int b)
{

if (a<b)
return a;

else
return b;

};

Listing 11.9: Non-optimizing MSVC 2013
_a$ = 8
_b$ = 12
_my_min PROC

push ebp
mov ebp, esp
mov eax, DWORD PTR _a$[ebp]

; compare A and B:
cmp eax, DWORD PTR _b$[ebp]

; jump, if A is greater or equal to B:
jge SHORT $LN2@my_min

; reload A to EAX if otherwise and jump to exit
mov eax, DWORD PTR _a$[ebp]
jmp SHORT $LN3@my_min
jmp SHORT $LN3@my_min ; this is redundant JMP

$LN2@my_min:
; return B

mov eax, DWORD PTR _b$[ebp]
$LN3@my_min:

pop ebp
ret 0

_my_min ENDP

_a$ = 8
_b$ = 12
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_my_max PROC
push ebp
mov ebp, esp
mov eax, DWORD PTR _a$[ebp]

; compare A and B:
cmp eax, DWORD PTR _b$[ebp]

; jump if A is less or equal to B:
jle SHORT $LN2@my_max

; reload A to EAX if otherwise and jump to exit
mov eax, DWORD PTR _a$[ebp]
jmp SHORT $LN3@my_max
jmp SHORT $LN3@my_max ; this is redundant JMP

$LN2@my_max:
; return B

mov eax, DWORD PTR _b$[ebp]
$LN3@my_max:

pop ebp
ret 0

_my_max ENDP

These two functions differ only in the conditional jump instruction: JGE (“Jump if
Greater or Equal”) is used in the first one and JLE (“Jump if Less or Equal”) in the
second.

There is one unneeded JMP instruction in each function, which MSVC probably left
by mistake.

11.5 Conclusion

11.5.1 x86

Here’s the rough skeleton of a conditional jump:

Listing 11.10: x86
CMP register, register/value
Jcc true ; cc=condition code
false:
... some code to be executed if comparison result is false ...
JMP exit
true:
... some code to be executed if comparison result is true ...
exit:
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11.5.2 Branchless

If the body of a condition statement is very short, the conditional move instruction
can be used: MOVcc in ARM (in ARM mode), CSEL in ARM64, CMOVcc in x86.
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Chapter 12

switch()/case/default

12.1 Small number of cases

#include <stdio.h>

void f (int a)
{

switch (a)
{
case 0: printf ("zero\n"); break;
case 1: printf ("one\n"); break;
case 2: printf ("two\n"); break;
default: printf ("something unknown\n"); break;
};

};

int main()
{

f (2); // test
};

12.1.1 x86

Non-optimizing MSVC

Result (MSVC 2010):
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Listing 12.1: MSVC 2010
tv64 = -4 ; size = 4
_a$ = 8 ; size = 4
_f PROC

push ebp
mov ebp, esp
push ecx
mov eax, DWORD PTR _a$[ebp]
mov DWORD PTR tv64[ebp], eax
cmp DWORD PTR tv64[ebp], 0
je SHORT $LN4@f
cmp DWORD PTR tv64[ebp], 1
je SHORT $LN3@f
cmp DWORD PTR tv64[ebp], 2
je SHORT $LN2@f
jmp SHORT $LN1@f

$LN4@f:
push OFFSET $SG739 ; 'zero', 0aH, 00H
call _printf
add esp, 4
jmp SHORT $LN7@f

$LN3@f:
push OFFSET $SG741 ; 'one', 0aH, 00H
call _printf
add esp, 4
jmp SHORT $LN7@f

$LN2@f:
push OFFSET $SG743 ; 'two', 0aH, 00H
call _printf
add esp, 4
jmp SHORT $LN7@f

$LN1@f:
push OFFSET $SG745 ; 'something unknown', 0aH, 00H
call _printf
add esp, 4

$LN7@f:
mov esp, ebp
pop ebp
ret 0

_f ENDP

Our function with a few cases in switch() is in fact analogous to this construction:

void f (int a)
{

if (a==0)
printf ("zero\n");
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else if (a==1)
printf ("one\n");

else if (a==2)
printf ("two\n");

else
printf ("something unknown\n");

};

If we work with switch() with a few cases it is impossible to be sure if it was a
real switch() in the source code, or just a pack of if() statements. This implies that
switch() is like syntactic sugar for a large number of nested if()s.

There is nothing especially new to us in the generated code, with the exception of
the compiler moving input variable a to a temporary local variable tv64 1.

If we compile this in GCC 4.4.1, we’ll get almost the same result, even with maximal
optimization turned on (-O3 option).

Optimizing MSVC

Now let’s turn on optimization in MSVC (/Ox): cl 1.c /Fa1.asm /Ox

Listing 12.2: MSVC
_a$ = 8 ; size = 4
_f PROC

mov eax, DWORD PTR _a$[esp-4]
sub eax, 0
je SHORT $LN4@f
sub eax, 1
je SHORT $LN3@f
sub eax, 1
je SHORT $LN2@f
mov DWORD PTR _a$[esp-4], OFFSET $SG791 ; 'something ⤦
Ç unknown', 0aH, 00H
jmp _printf

$LN2@f:
mov DWORD PTR _a$[esp-4], OFFSET $SG789 ; 'two', 0aH, 00⤦
Ç H
jmp _printf

$LN3@f:
mov DWORD PTR _a$[esp-4], OFFSET $SG787 ; 'one', 0aH, 00⤦
Ç H
jmp _printf

$LN4@f:

1Local variables in stack are prefixed with tv—that’s how MSVC names internal variables for its
needs
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mov DWORD PTR _a$[esp-4], OFFSET $SG785 ; 'zero', 0aH, ⤦
Ç 00H
jmp _printf

_f ENDP

Here we can see some dirty hacks.

First: the value of a is placed in EAX and 0 is subtracted from it. Sounds absurd,
but it is done to check if the value in EAX was 0. If yes, the ZF flag is to be set (e.g.
subtracting from 0 is 0) and the first conditional jump JE (Jump if Equal or synonym
JZ—Jump if Zero) is to be triggered and control flow is to be passed to the $LN4@f
label, where the 'zero' message is being printed. If the first jump doesn’t get
triggered, 1 is subtracted from the input value and if at some stage the result is 0,
the corresponding jump is to be triggered.

And if no jump gets triggered at all, the control flow passes to printf() with
string argument 'something unknown'.

Second: we see something unusual for us: a string pointer is placed into the a vari-
able, and then printf() is called not via CALL, but via JMP. There is a simple
explanation for that: the caller pushes a value to the stack and calls our function
via CALL. CALL itself pushes the return address (RA2) to the stack and does an
unconditional jump to our function address. Our function at any point of execu-
tion (since it do not contain any instruction that moves the stack pointer) has the
following stack layout:

• ESP—points to RA

• ESP+4—points to the a variable

On the other side, when we need to call printf() here we need exactly the same
stack layout, except for the first printf() argument, which needs to point to the
string. And that is what our code does.

It replaces the function’s first argument with the address of the string and jumps to
printf(), as if we didn’t call our functionf(), but directlyprintf(). printf()
prints a string to stdout and then executes the RET instruction, which POPs RA from
the stack and control flow is returned not to f() but rather to f()’s callee, bypass-
ing the end of the f() function.

All this is possible because printf() is called right at the end of the f() function
in all cases. In some way, it is similar to the longjmp()3 function. And of course,
it is all done for the sake of speed.

2Return Address
3wikipedia
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12.1.2 Conclusion

A switch() with few cases is indistinguishable from an if/else construction, for exam-
ple: listing.12.1.1.

12.2 A lot of cases

If a switch() statement contains a lot of cases, it is not very convenient for the
compiler to emit too large code with a lot JE/JNE instructions.

#include <stdio.h>

void f (int a)
{

switch (a)
{
case 0: printf ("zero\n"); break;
case 1: printf ("one\n"); break;
case 2: printf ("two\n"); break;
case 3: printf ("three\n"); break;
case 4: printf ("four\n"); break;
default: printf ("something unknown\n"); break;
};

};

int main()
{

f (2); // test
};

12.2.1 x86

Non-optimizing MSVC

We get (MSVC 2010):

Listing 12.3: MSVC 2010
tv64 = -4 ; size = 4
_a$ = 8 ; size = 4
_f PROC

push ebp
mov ebp, esp
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push ecx
mov eax, DWORD PTR _a$[ebp]
mov DWORD PTR tv64[ebp], eax
cmp DWORD PTR tv64[ebp], 4
ja SHORT $LN1@f
mov ecx, DWORD PTR tv64[ebp]
jmp DWORD PTR $LN11@f[ecx*4]

$LN6@f:
push OFFSET $SG739 ; 'zero', 0aH, 00H
call _printf
add esp, 4
jmp SHORT $LN9@f

$LN5@f:
push OFFSET $SG741 ; 'one', 0aH, 00H
call _printf
add esp, 4
jmp SHORT $LN9@f

$LN4@f:
push OFFSET $SG743 ; 'two', 0aH, 00H
call _printf
add esp, 4
jmp SHORT $LN9@f

$LN3@f:
push OFFSET $SG745 ; 'three', 0aH, 00H
call _printf
add esp, 4
jmp SHORT $LN9@f

$LN2@f:
push OFFSET $SG747 ; 'four', 0aH, 00H
call _printf
add esp, 4
jmp SHORT $LN9@f

$LN1@f:
push OFFSET $SG749 ; 'something unknown', 0aH, 00H
call _printf
add esp, 4

$LN9@f:
mov esp, ebp
pop ebp
ret 0
npad 2 ; align next label

$LN11@f:
DD $LN6@f ; 0
DD $LN5@f ; 1
DD $LN4@f ; 2
DD $LN3@f ; 3
DD $LN2@f ; 4
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_f ENDP

What we see here is a set of printf() calls with various arguments. All they have
not only addresses in the memory of the process, but also internal symbolic labels
assigned by the compiler. All these labels are also mentioned in the $LN11@f
internal table.

At the function start, if a is greater than 4, control flow is passed to label $LN1@f,
where printf() with argument 'something unknown' is called.

But if the value of a is less or equals to 4, then it gets multiplied by 4 and addedwith
the $LN11@f table address. That is how an address inside the table is constructed,
pointing exactly to the element we need. For example, let’s say a is equal to 2.
2 ∗ 4 = 8 (all table elements are addresses in a 32-bit process and that is why all
elements are 4 bytes wide). The address of the $LN11@f table + 8 is the table
element where the $LN4@f label is stored. JMP fetches the $LN4@f address from
the table and jumps to it.

This table is sometimes called jumptable or branch table4.

Then the corresponding printf() is called with argument 'two'. Literally, the
jmp DWORD PTR $LN11@f[ecx*4] instruction implies jump to the DWORD that
is stored at address $LN11@f + ecx * 4.

is assembly language macro that aligning the next label so that it is to be stored at
an address aligned on a 4 byte (or 16 byte) boundary. This is very suitable for the
processor since it is able to fetch 32-bit values from memory through the memory
bus, cache memory, etc, in a more effective way if it is aligned.

Non-optimizing GCC

Let’s see what GCC 4.4.1 generates:

Listing 12.4: GCC 4.4.1
public f

f proc near ; CODE XREF: main+10

var_18 = dword ptr -18h
arg_0 = dword ptr 8

push ebp
mov ebp, esp
sub esp, 18h
cmp [ebp+arg_0], 4

4The whole method was once called computed GOTO in early versions of FORTRAN: wikipedia. Not
quite relevant these days, but what a term!
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ja short loc_8048444
mov eax, [ebp+arg_0]
shl eax, 2
mov eax, ds:off_804855C[eax]
jmp eax

loc_80483FE: ; DATA XREF: .rodata:off_804855C
mov [esp+18h+var_18], offset aZero ; "zero"
call _puts
jmp short locret_8048450

loc_804840C: ; DATA XREF: .rodata:08048560
mov [esp+18h+var_18], offset aOne ; "one"
call _puts
jmp short locret_8048450

loc_804841A: ; DATA XREF: .rodata:08048564
mov [esp+18h+var_18], offset aTwo ; "two"
call _puts
jmp short locret_8048450

loc_8048428: ; DATA XREF: .rodata:08048568
mov [esp+18h+var_18], offset aThree ; "three"
call _puts
jmp short locret_8048450

loc_8048436: ; DATA XREF: .rodata:0804856C
mov [esp+18h+var_18], offset aFour ; "four"
call _puts
jmp short locret_8048450

loc_8048444: ; CODE XREF: f+A
mov [esp+18h+var_18], offset aSomethingUnkno ; "⤦

Ç something unknown"
call _puts

locret_8048450: ; CODE XREF: f+26
; f+34...

leave
retn

f endp

off_804855C dd offset loc_80483FE ; DATA XREF: f+12
dd offset loc_804840C
dd offset loc_804841A
dd offset loc_8048428
dd offset loc_8048436
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It is almost the same, with a little nuance: argument arg_0 is multiplied by 4 by
shifting it to left by 2 bits (it is almost the same as multiplication by 4) ( 15.2.1
on page 92). Then the address of the label is taken from the off_804855C array,
stored in EAX, and then JMP EAX does the actual jump.

12.2.2 Conclusion

Rough skeleton of switch():

Listing 12.5: x86
MOV REG, input
CMP REG, 4 ; maximal number of cases
JA default
SHL REG, 2 ; find element in table. shift for 3 bits in x64.
MOV REG, jump_table[REG]
JMP REG

case1:
; do something
JMP exit

case2:
; do something
JMP exit

case3:
; do something
JMP exit

case4:
; do something
JMP exit

case5:
; do something
JMP exit

default:

...

exit:

....

jump_table dd case1
dd case2
dd case3
dd case4
dd case5
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The jump to the address in the jump table may also be implemented using this
instruction: JMP jump_table[REG*4]. Or JMP jump_table[REG*8] in x64.

A jumptable is just array of pointers, like the one described later: 16.4 on page 102.

12.3 When there are several case statements in one
block

Here is a very widespread construction: several case statements for a single block:

#include <stdio.h>

void f(int a)
{

switch (a)
{
case 1:
case 2:
case 7:
case 10:

printf ("1, 2, 7, 10\n");
break;

case 3:
case 4:
case 5:
case 6:

printf ("3, 4, 5\n");
break;

case 8:
case 9:
case 20:
case 21:

printf ("8, 9, 21\n");
break;

case 22:
printf ("22\n");
break;

default:
printf ("default\n");
break;

};
};
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int main()
{

f(4);
};

It’s too wasteful to generate a block for each possible case, so what is usually done
is to generate each block plus some kind of dispatcher.

12.3.1 MSVC

Listing 12.6: Optimizing MSVC 2010
1 $SG2798 DB '1, 2, 7, 10', 0aH, 00H
2 $SG2800 DB '3, 4, 5', 0aH, 00H
3 $SG2802 DB '8, 9, 21', 0aH, 00H
4 $SG2804 DB '22', 0aH, 00H
5 $SG2806 DB 'default', 0aH, 00H
6
7 _a$ = 8
8 _f PROC
9 mov eax, DWORD PTR _a$[esp-4]

10 dec eax
11 cmp eax, 21
12 ja SHORT $LN1@f
13 movzx eax, BYTE PTR $LN10@f[eax]
14 jmp DWORD PTR $LN11@f[eax*4]
15 $LN5@f:
16 mov DWORD PTR _a$[esp-4], OFFSET $SG2798 ; '1, 2, ⤦

Ç 7, 10'
17 jmp DWORD PTR __imp__printf
18 $LN4@f:
19 mov DWORD PTR _a$[esp-4], OFFSET $SG2800 ; '3, 4, ⤦

Ç 5'
20 jmp DWORD PTR __imp__printf
21 $LN3@f:
22 mov DWORD PTR _a$[esp-4], OFFSET $SG2802 ; '8, 9, ⤦

Ç 21'
23 jmp DWORD PTR __imp__printf
24 $LN2@f:
25 mov DWORD PTR _a$[esp-4], OFFSET $SG2804 ; '22'
26 jmp DWORD PTR __imp__printf
27 $LN1@f:
28 mov DWORD PTR _a$[esp-4], OFFSET $SG2806 ; 'default⤦

Ç '
29 jmp DWORD PTR __imp__printf
30 npad 2 ; align $LN11@f table on 16-byte boundary
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31 $LN11@f:
32 DD $LN5@f ; print '1, 2, 7, 10'
33 DD $LN4@f ; print '3, 4, 5'
34 DD $LN3@f ; print '8, 9, 21'
35 DD $LN2@f ; print '22'
36 DD $LN1@f ; print 'default'
37 $LN10@f:
38 DB 0 ; a=1
39 DB 0 ; a=2
40 DB 1 ; a=3
41 DB 1 ; a=4
42 DB 1 ; a=5
43 DB 1 ; a=6
44 DB 0 ; a=7
45 DB 2 ; a=8
46 DB 2 ; a=9
47 DB 0 ; a=10
48 DB 4 ; a=11
49 DB 4 ; a=12
50 DB 4 ; a=13
51 DB 4 ; a=14
52 DB 4 ; a=15
53 DB 4 ; a=16
54 DB 4 ; a=17
55 DB 4 ; a=18
56 DB 4 ; a=19
57 DB 2 ; a=20
58 DB 2 ; a=21
59 DB 3 ; a=22
60 _f ENDP

We see two tables here: the first table ($LN10@f) is an index table, and the second
one ($LN11@f) is an array of pointers to blocks.

First, the input value is used as an index in the index table (line 13).

Here is a short legend for the values in the table: 0 is the first case block (for values
1, 2, 7, 10), 1 is the second one (for values 3, 4, 5), 2 is the third one (for values 8, 9,
21), 3 is the fourth one (for value 22), 4 is for the default block.

There we get an index for the second table of code pointers and we jump to it (line
14).

What is also worth noting is that there is no case for input value 0. That’s why we
see the DEC instruction at line 10, and the table starts at a = 1, because there is
no need to allocate a table element for a = 0.

This is a very widespread pattern.
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So why is this economical? Why isn’t it possible to make it as before ( 12.2.1 on
page 69), just with one table consisting of block pointers? The reason is that the
elements in index table are 8-bit, hence it’s all more compact.

12.4 Fall-through

Another very popular usage of switch() is the fall-through. Here is a small ex-
ample:

1 #define R 1
2 #define W 2
3 #define RW 3
4
5 void f(int type)
6 {
7 int read=0, write=0;
8
9 switch (type)

10 {
11 case RW:
12 read=1;
13 case W:
14 write=1;
15 break;
16 case R:
17 read=1;
18 break;
19 default:
20 break;
21 };
22 printf ("read=%d, write=%d\n", read, write);
23 };

If type = 1 (R), read is to be set to 1, if type = 2 (W), write is to be set to 2. In case
of type = 3 (RW), both read and write is to be set to 1.

The code at line 14 is executed in two cases: if type = RW or if type = W . There
is no “break” for “case RW”x and that’s OK.

12.4.1 MSVC x86

Listing 12.7: MSVC 2012
$SG1305 DB 'read=%d, write=%d', 0aH, 00H
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_write$ = -12 ; size = 4
_read$ = -8 ; size = 4
tv64 = -4 ; size = 4
_type$ = 8 ; size = 4
_f PROC

push ebp
mov ebp, esp
sub esp, 12
mov DWORD PTR _read$[ebp], 0
mov DWORD PTR _write$[ebp], 0
mov eax, DWORD PTR _type$[ebp]
mov DWORD PTR tv64[ebp], eax
cmp DWORD PTR tv64[ebp], 1 ; R
je SHORT $LN2@f
cmp DWORD PTR tv64[ebp], 2 ; W
je SHORT $LN3@f
cmp DWORD PTR tv64[ebp], 3 ; RW
je SHORT $LN4@f
jmp SHORT $LN5@f

$LN4@f: ; case RW:
mov DWORD PTR _read$[ebp], 1

$LN3@f: ; case W:
mov DWORD PTR _write$[ebp], 1
jmp SHORT $LN5@f

$LN2@f: ; case R:
mov DWORD PTR _read$[ebp], 1

$LN5@f: ; default
mov ecx, DWORD PTR _write$[ebp]
push ecx
mov edx, DWORD PTR _read$[ebp]
push edx
push OFFSET $SG1305 ; 'read=%d, write=%d'
call _printf
add esp, 12
mov esp, ebp
pop ebp
ret 0

_f ENDP

The code mostly resembles what is in the source. There are no jumps between
labels $LN4@f and $LN3@f: so when code flow is at $LN4@f, read is first set to 1,
then write. This is why it’s called fall-through: code flow falls through one piece
of code (setting read) to another (setting write). If type =W , we land at $LN3@f,
so no code setting read to 1 is executed.
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Chapter 13

Loops

13.1 Simple example

13.1.1 x86

There is a special LOOP instruction in x86 instruction set for checking the value
in register ECX and if it is not 0, to decrement ECX and pass control flow to the
label in the LOOP operand. Probably this instruction is not very convenient, and
there are no any modern compilers which emit it automatically. So, if you see this
instruction somewhere in code, it is most likely that this is a manually written piece
of assembly code.

In C/C++ loops are usually constructed using for(), while() or do/while()
statements.

Let’s start with for().

This statement defines loop initialization (set loop counter to initial value), loop
condition (is the counter bigger than a limit?), what is done at each iteration (incre-
ment/decrement) and of course loop body.

for (initialization; condition; at each iteration)
{

loop_body;
}

The generated code is consisting of four parts as well.

Let’s start with a simple example:
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#include <stdio.h>

void printing_function(int i)
{

printf ("f(%d)\n", i);
};

int main()
{

int i;

for (i=2; i<10; i++)
printing_function(i);

return 0;
};

Result (MSVC 2010):

Listing 13.1: MSVC 2010
_i$ = -4
_main PROC

push ebp
mov ebp, esp
push ecx
mov DWORD PTR _i$[ebp], 2 ; loop initialization
jmp SHORT $LN3@main

$LN2@main:
mov eax, DWORD PTR _i$[ebp] ; here is what we do after
each iteration:
add eax, 1 ; add 1 to (i) value
mov DWORD PTR _i$[ebp], eax

$LN3@main:
cmp DWORD PTR _i$[ebp], 10 ; this condition is checked
*before* each iteration
jge SHORT $LN1@main ; if (i) is biggest or equals
to 10, lets finish loop'
mov ecx, DWORD PTR _i$[ebp] ; loop body:
call printing_function(i)
push ecx
call _printing_function
add esp, 4
jmp SHORT $LN2@main ; jump to loop begin

$LN1@main: ; loop end
xor eax, eax
mov esp, ebp
pop ebp
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ret 0
_main ENDP

As we see, nothing special.

Listing 13.2: Optimizing MSVC
_main PROC

push esi
mov esi, 2

$LL3@main:
push esi
call _printing_function
inc esi
add esp, 4
cmp esi, 10 ; 0000000aH
jl SHORT $LL3@main
xor eax, eax
pop esi
ret 0

_main ENDP

What happens here is that space for the i variable is not allocated in the local stack
anymore, but uses an individual register for it, ESI. This is possible in such small
functions where there aren’t many local variables.

One very important thing is that the f() function must not change the value in
ESI. Our compiler is sure here. And if the compiler decides to use the ESI register
in f() too, its value would have to be saved at the function’s prologue and restored
at the function’s epilogue, almost like in our listing: please note PUSH ESI/POP
ESI at the function start and end.

13.1.2 One more thing

In the generated code we can see: after initializing i, the body of the loop is not
to be executed, as the condition for i is checked first, and only after that loop body
can be executed. And that is correct. Because, if the loop condition is not met at
the beginning, the body of the loop must not be executed. This is possible in the
following case:

for (i=0; i<total_entries_to_process; i++)
loop_body;

If total_entries_to_process is 0, the body of the loo must not be executed at all. This
is why the condition checked before the execution.
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However, an optimizing compiler may swap the condition check and loop body, if
it sure that the situation described here is not possible (like in the case of our very
simple example and Keil, Xcode (LLVM), MSVC in optimization mode).

13.2 Memory blocks copying routine

Real-world memory copy routines may copy 4 or 8 bytes at each iteration, use
SIMD1, vectorization, etc. But for the sake of simplicity, this example is the sim-
plest possible.

#include <stdio.h>

void my_memcpy (unsigned char* dst, unsigned char* src, size_t ⤦
Ç cnt)

{
size_t i;
for (i=0; i<cnt; i++)

dst[i]=src[i];
};

13.2.1 Straight-forward implementation

Listing 13.3: GCC 4.9 x64 optimized for size (-Os)
my_memcpy:
; RDI = destination address
; RSI = source address
; RDX = size of block

; initialize counter (i) at 0
xor eax, eax

.L2:
; all bytes copied? exit then:

cmp rax, rdx
je .L5

; load byte at RSI+i:
mov cl, BYTE PTR [rsi+rax]

; store byte at RDI+i:
mov BYTE PTR [rdi+rax], cl
inc rax ; i++
jmp .L2

.L5:

1Single instruction, multiple data
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ret

13.3 Conclusion

Rough skeleton of loop from 2 to 9 inclusive:

Listing 13.4: x86
mov [counter], 2 ; initialization
jmp check

body:
; loop body
; do something here
; use counter variable in local stack
add [counter], 1 ; increment

check:
cmp [counter], 9
jle body

The increment operation may be represented as 3 instructions in non-optimized
code:

Listing 13.5: x86
MOV [counter], 2 ; initialization
JMP check

body:
; loop body
; do something here
; use counter variable in local stack
MOV REG, [counter] ; increment
INC REG
MOV [counter], REG

check:
CMP [counter], 9
JLE body

If the body of the loop is short, a whole register can be dedicated to the counter
variable:

Listing 13.6: x86
MOV EBX, 2 ; initialization
JMP check

body:
; loop body
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; do something here
; use counter in EBX, but do not modify it!
INC EBX ; increment

check:
CMP EBX, 9
JLE body

Some parts of the loop may be generated by compiler in different order:

Listing 13.7: x86
MOV [counter], 2 ; initialization
JMP label_check

label_increment:
ADD [counter], 1 ; increment

label_check:
CMP [counter], 10
JGE exit
; loop body
; do something here
; use counter variable in local stack
JMP label_increment

exit:

Usually the condition is checked before loop body, but the compiler may rearrange
it in a way that the condition is checked after loop body. This is done when the
compiler is sure that the condition is always true on the first iteration, so the body
of the loop is to be executed at least once:

Listing 13.8: x86
MOV REG, 2 ; initialization

body:
; loop body
; do something here
; use counter in REG, but do not modify it!
INC REG ; increment
CMP REG, 10
JL body

Using the LOOP instruction. This is rare, compilers are not using it. When you see
it, it’s a sign that this piece of code is hand-written:

Listing 13.9: x86
; count from 10 to 1
MOV ECX, 10

body:
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; loop body
; do something here
; use counter in ECX, but do not modify it!
LOOP body
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Chapter 14

Simple C-strings processing

14.1 strlen()

Let’s talk about loops one more time. Often, the strlen() function1 is imple-
mented using a while() statement. Here is how it is done in the MSVC standard
libraries:

int my_strlen (const char * str)
{

const char *eos = str;

while( *eos++ ) ;

return( eos - str - 1 );
}

int main()
{

// test
return my_strlen("hello!");

};

1counting the characters in a string in the C language
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14.1.1 x86

Non-optimizing MSVC

Let’s compile:

_eos$ = -4 ; size = 4
_str$ = 8 ; size = 4
_strlen PROC

push ebp
mov ebp, esp
push ecx
mov eax, DWORD PTR _str$[ebp] ; place pointer to string
from "str"
mov DWORD PTR _eos$[ebp], eax ; place it to local
variable "eos"

$LN2@strlen_:
mov ecx, DWORD PTR _eos$[ebp] ; ECX=eos

; take 8-bit byte from address in ECX and place it as 32-bit
value to EDX with sign extension

movsx edx, BYTE PTR [ecx]
mov eax, DWORD PTR _eos$[ebp] ; EAX=eos
add eax, 1 ; increment EAX
mov DWORD PTR _eos$[ebp], eax ; place EAX back to "eos"
test edx, edx ; EDX is zero?
je SHORT $LN1@strlen_ ; yes, then finish loop
jmp SHORT $LN2@strlen_ ; continue loop

$LN1@strlen_:

; here we calculate the difference between two pointers

mov eax, DWORD PTR _eos$[ebp]
sub eax, DWORD PTR _str$[ebp]
sub eax, 1 ; subtract 1 and return
result
mov esp, ebp
pop ebp
ret 0

_strlen_ ENDP

We get two new instructions here: MOVSX and TEST.

The first one—MOVSX—takes a byte from an address inmemory and stores the value
in a 32-bit register. MOVSX stands for MOV with Sign-Extend. MOVSX sets the rest
of the bits, from the 8th to the 31th, to 1 if the source byte is negative or to 0 if is
positive.
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And here is why.

By default, the char type is signed in MSVC and GCC. If we have two values of
which one is char and the other is int, (int is signed too), and if the first value
contain -2 (coded as 0xFE) and we just copy this byte into the int container, it
makes 0x000000FE, and this from the point of signed int view is 254, but not -2.
In signed int, -2 is coded as 0xFFFFFFFE. So if we need to transfer 0xFE from a
variable of char type to int, we need to identify its sign and extend it. That is what
MOVSX does.

You can also read about it in “Signed number representations” section ( 22 on page 157).

It’s hard to say if the compiler needs to store a char variable in EDX, it could just take
a 8-bit register part (for example DL). Apparently, the compiler’s register allocator
works like that.

Then we see TEST EDX, EDX. You can read more about the TEST instruction in
the section about bit fields ( 17 on page 112). Here this instruction just checks if
the value in EDX equals to 0.

Optimizing MSVC

Now let’s compile all this in MSVC 2012, with optimizations turned on (/Ox):

Listing 14.1: Optimizing MSVC 2012 /Ob0
_str$ = 8 ; size = 4
_strlen PROC

mov edx, DWORD PTR _str$[esp-4] ; EDX -> pointer to
the string

mov eax, edx ; move to EAX
$LL2@strlen:

mov cl, BYTE PTR [eax] ; CL = *EAX
inc eax ; EAX++
test cl, cl ; CL==0?
jne SHORT $LL2@strlen ; no, continue loop
sub eax, edx ; calculate pointers

difference
dec eax ; decrement EAX
ret 0

_strlen ENDP

Now it is all simpler. Needless to say, the compiler could use registers with such
efficiency only in small functions with a few local variables.

INC/DEC— are increment/decrement instructions, in other words: add or substract
1 to/from a variable.
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Chapter 15

Replacing arithmetic
instructions to other ones

In the pursuit of optimization, one instruction may be replaced by another, or even
with a group of instructions. For example, ADD and SUB can replace each other:
line 18 in listing.??.

15.1 Multiplication

15.1.1 Multiplication using addition

Here is a simple example:

Listing 15.1: Optimizing MSVC 2010
unsigned int f(unsigned int a)
{

return a*8;
};

Multiplication by 8 is replaced by 3 addition instructions, which do the same. Ap-
parently, MSVC’s optimizer decided that this code can be faster.

_TEXT SEGMENT
_a$ = 8 ; size ⤦

Ç = 4
_f PROC
; File c:\polygon\c\2.c
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mov eax, DWORD PTR _a$[esp-4]
add eax, eax
add eax, eax
add eax, eax
ret 0

_f ENDP
_TEXT ENDS
END

15.1.2 Multiplication using shifting

Multiplication and division instructions by a numbers that’s a power of 2 are often
replaced by shift instructions.

unsigned int f(unsigned int a)
{

return a*4;
};

Listing 15.2: Non-optimizing MSVC 2010
_a$ = 8 ; size = 4
_f PROC

push ebp
mov ebp, esp
mov eax, DWORD PTR _a$[ebp]
shl eax, 2
pop ebp
ret 0

_f ENDP

Multiplication by 4 is just shifting the number to the left by 2 bits and inserting 2
zero bits at the right (as the last two bits). It is just like multiplying 3 by 100 —we
need to just add two zeroes at the right.

That’s how the shift left instruction works:

..7. 6. 5. 4. 3. 2. 1. 0..

7

.

6

.

5

.

4

.

3

.

2

.

1

.

0

.

CF

.

0

The added bits at right are always zeroes.
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15.1.3 Multiplication using shifting, subtracting, and adding

It’s still possible to get rid of the multiplication operation when you multiply by
numbers like 7 or 17 again by using shifting. The mathematics used here is rela-
tively easy.

32-bit

#include <stdint.h>

int f1(int a)
{

return a*7;
};

int f2(int a)
{

return a*28;
};

int f3(int a)
{

return a*17;
};

x86

Listing 15.3: Optimizing MSVC 2012
; a*7
_a$ = 8
_f1 PROC

mov ecx, DWORD PTR _a$[esp-4]
; ECX=a

lea eax, DWORD PTR [ecx*8]
; EAX=ECX*8

sub eax, ecx
; EAX=EAX-ECX=ECX*8-ECX=ECX*7=a*7

ret 0
_f1 ENDP

; a*28
_a$ = 8
_f2 PROC
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mov ecx, DWORD PTR _a$[esp-4]
; ECX=a

lea eax, DWORD PTR [ecx*8]
; EAX=ECX*8

sub eax, ecx
; EAX=EAX-ECX=ECX*8-ECX=ECX*7=a*7

shl eax, 2
; EAX=EAX<<2=(a*7)*4=a*28

ret 0
_f2 ENDP

; a*17
_a$ = 8
_f3 PROC

mov eax, DWORD PTR _a$[esp-4]
; EAX=a

shl eax, 4
; EAX=EAX<<4=EAX*16=a*16

add eax, DWORD PTR _a$[esp-4]
; EAX=EAX+a=a*16+a=a*17

ret 0
_f3 ENDP

64-bit

#include <stdint.h>

int64_t f1(int64_t a)
{

return a*7;
};

int64_t f2(int64_t a)
{

return a*28;
};

int64_t f3(int64_t a)
{

return a*17;
};

x64
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Listing 15.4: Optimizing MSVC 2012
; a*7
f1:

lea rax, [0+rdi*8]
; RAX=RDI*8=a*8

sub rax, rdi
; RAX=RAX-RDI=a*8-a=a*7

ret

; a*28
f2:

lea rax, [0+rdi*4]
; RAX=RDI*4=a*4

sal rdi, 5
; RDI=RDI<<5=RDI*32=a*32

sub rdi, rax
; RDI=RDI-RAX=a*32-a*4=a*28

mov rax, rdi
ret

; a*17
f3:

mov rax, rdi
sal rax, 4

; RAX=RAX<<4=a*16
add rax, rdi

; RAX=a*16+a=a*17
ret

15.2 Division

15.2.1 Division using shifts

Example of division by 4:

unsigned int f(unsigned int a)
{

return a/4;
};

We get (MSVC 2010):

Listing 15.5: MSVC 2010
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_a$ = 8 ; size ⤦
Ç = 4

_f PROC
mov eax, DWORD PTR _a$[esp-4]
shr eax, 2
ret 0

_f ENDP

The SHR (SHift Right) instruction in this example is shifting a number by 2 bits to
the right. The two freed bits at left (e.g., two most significant bits) are set to zero.
The two least significant bits are dropped. In fact, these two dropped bits are the
division operation remainder.

The SHR instruction works just like SHL, but in the other direction.

..7. 6. 5. 4. 3. 2. 1. 0..

7

.

6

.

5

.

4

.

3

.

2

.

1

.

0

.

0

.

CF

It is easy to understand if you imagine the number 23 in the decimal numeral
system. 23 can be easily divided by 10 just by dropping last digit (3—division re-
mainder). 2 is left after the operation as a quotient.

So the remainder is dropped, but that’s OK, we work on integer values anyway,
these are not a real numbers!
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Chapter 16

Arrays

An array is just a set of variables in memory that lie next to each other and that
have the same type1.

16.1 Simple example

#include <stdio.h>

int main()
{

int a[20];
int i;

for (i=0; i<20; i++)
a[i]=i*2;

for (i=0; i<20; i++)
printf ("a[%d]=%d\n", i, a[i]);

return 0;
};

1AKA2 “homogeneous container”
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16.1.1 x86

MSVC

Let’s compile:

Listing 16.1: MSVC 2008
_TEXT SEGMENT
_i$ = -84 ; size = 4
_a$ = -80 ; size = 80
_main PROC

push ebp
mov ebp, esp
sub esp, 84 ; 00000054H
mov DWORD PTR _i$[ebp], 0
jmp SHORT $LN6@main

$LN5@main:
mov eax, DWORD PTR _i$[ebp]
add eax, 1
mov DWORD PTR _i$[ebp], eax

$LN6@main:
cmp DWORD PTR _i$[ebp], 20 ; 00000014H
jge SHORT $LN4@main
mov ecx, DWORD PTR _i$[ebp]
shl ecx, 1
mov edx, DWORD PTR _i$[ebp]
mov DWORD PTR _a$[ebp+edx*4], ecx
jmp SHORT $LN5@main

$LN4@main:
mov DWORD PTR _i$[ebp], 0
jmp SHORT $LN3@main

$LN2@main:
mov eax, DWORD PTR _i$[ebp]
add eax, 1
mov DWORD PTR _i$[ebp], eax

$LN3@main:
cmp DWORD PTR _i$[ebp], 20 ; 00000014H
jge SHORT $LN1@main
mov ecx, DWORD PTR _i$[ebp]
mov edx, DWORD PTR _a$[ebp+ecx*4]
push edx
mov eax, DWORD PTR _i$[ebp]
push eax
push OFFSET $SG2463
call _printf
add esp, 12 ; 0000000cH
jmp SHORT $LN2@main
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$LN1@main:
xor eax, eax
mov esp, ebp
pop ebp
ret 0

_main ENDP

Nothing very special, just two loops: the first is a filling loop and second is a printing
loop. The shl ecx, 1 instruction is used for value multiplication by 2 in ECX,
more about below 15.2.1 on page 92.

80 bytes are allocated on the stack for the array, 20 elements of 4 bytes.

16.2 Buffer overflow

16.2.1 Reading outside array bounds

So, array indexing is just array[index]. If you study the generated code closely, you’ll
probably note the missing index bounds checking, which could check if it is less
than 20. What if the index is 20 or greater? That’s the one C/C++ feature it is often
blamed for.

Here is a code that successfully compiles and works:

#include <stdio.h>

int main()
{

int a[20];
int i;

for (i=0; i<20; i++)
a[i]=i*2;

printf ("a[20]=%d\n", a[20]);

return 0;
};

Compilation results (MSVC 2008):

Listing 16.2: Non-optimizing MSVC 2008
$SG2474 DB 'a[20]=%d', 0aH, 00H

_i$ = -84 ; size = 4
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_a$ = -80 ; size = 80
_main PROC

push ebp
mov ebp, esp
sub esp, 84
mov DWORD PTR _i$[ebp], 0
jmp SHORT $LN3@main

$LN2@main:
mov eax, DWORD PTR _i$[ebp]
add eax, 1
mov DWORD PTR _i$[ebp], eax

$LN3@main:
cmp DWORD PTR _i$[ebp], 20
jge SHORT $LN1@main
mov ecx, DWORD PTR _i$[ebp]
shl ecx, 1
mov edx, DWORD PTR _i$[ebp]
mov DWORD PTR _a$[ebp+edx*4], ecx
jmp SHORT $LN2@main

$LN1@main:
mov eax, DWORD PTR _a$[ebp+80]
push eax
push OFFSET $SG2474 ; 'a[20]=%d'
call DWORD PTR __imp__printf
add esp, 8
xor eax, eax
mov esp, ebp
pop ebp
ret 0

_main ENDP
_TEXT ENDS
END

The code produced this result:

Figure 16.1: OllyDbg: console output

It is just something that was lying in the stack near to the array, 80 bytes away from
its first element.
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16.2.2 Writing beyond array bounds

OK, we read some values from the stack illegally, but what if we could write some-
thing to it?

Here is what we have got:

#include <stdio.h>

int main()
{

int a[20];
int i;

for (i=0; i<30; i++)
a[i]=i;

return 0;
};

MSVC

And what we get:

Listing 16.3: Non-optimizing MSVC 2008
_TEXT SEGMENT
_i$ = -84 ; size = 4
_a$ = -80 ; size = 80
_main PROC
push ebp
mov ebp, esp
sub esp, 84
mov DWORD PTR _i$[ebp], 0
jmp SHORT $LN3@main
$LN2@main:
mov eax, DWORD PTR _i$[ebp]
add eax, 1
mov DWORD PTR _i$[ebp], eax
$LN3@main:
cmp DWORD PTR _i$[ebp], 30 ; 0000001eH
jge SHORT $LN1@main
mov ecx, DWORD PTR _i$[ebp]
mov edx, DWORD PTR _i$[ebp] ; that instruction is

obviously redundant
mov DWORD PTR _a$[ebp+ecx*4], edx ; ECX could be used as

second operand here instead

97



CHAPTER 16. ARRAYS CHAPTER 16. ARRAYS

jmp SHORT $LN2@main
$LN1@main:
xor eax, eax
mov esp, ebp
pop ebp
ret 0
_main ENDP

The compiled program crashes after running. No wonder. Let’s see where exactly
does it is crash.
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Let’s load it into OllyDbg, and trace until all 30 elements are written:

Figure 16.2: OllyDbg: after restoring the value of EBP
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Trace until the function end:

Figure 16.3: OllyDbg: EIP was restored, but OllyDbg can’t disassemble at 0x15

Now please keep your eyes on the registers.

EIP is 0x15 now. It is not a legal address for code—at least for win32 code! We got
there somehow against our will. It is also interesting that the EBP register contain
0x14, ECX and EDX—0x1D.

Let’s study stack layout a bit more.

After the control flow was passed to main(), the value in the EBP register was
saved on the stack. Then, 84 bytes were allocated for the array and the i variable.
That’s (20+1)*sizeof(int). ESP now points to the _i variable in the local
stack and after the execution of the next PUSH something, something is appear-
ing next to _i.

That’s the stack layout while the control is in main():

ESP 4 bytes allocated for i variable
ESP+4 80 bytes allocated for a[20] array
ESP+84 saved EBP value
ESP+88 return address
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a[19]=something statement writes the last int in the bounds of the array (in
bounds so far!)

a[20]=something statement writes something to the place where the value of
EBP is saved.

Please take a look at the register state at the moment of the crash. In our case,
20 was written in the 20th element. At the function end, the function epilogue
restores the original EBP value. (20 in decimal is 0x14 in hexadecimal). Then RET
gets executed, which is effectively equivalent to POP EIP instruction.

The RET instruction takes the return address from the stack (that is the address in
CRT), which was called main()), and 21 iss stored there (0x15 in hexadecimal).
The CPU traps at address 0x15, but there is no executable code there, so exception
gets raised.

Welcome! It is called a buffer overflow3.

Replace the int array with a string (char array), create a long string deliberately and
pass it to the program, to the function, which doesn’t check the length of the string
and copies it in a short buffer, and you’ll able to point the program to an address
to which it must jump. It’s not that simple in reality, but that is how it emerged4

16.3 One more word about arrays

Now we understand why it is impossible to write something like this in C/C++ code:

void f(int size)
{

int a[size];
...
};

That’s just because the compiler must know the exact array size to allocate space
for it in the local stack layout on at the compiling stage.

If you need an array of arbitrary size, allocate it by using malloc(), then access
the allocated memory block as an array of variables of the type you need.

Or use the C99 standard feature[ISO07, pp. 6.7.5/2], and it works like alloca() ( 5.2.4
on page 17) internally.

It’s also possible to use garbage collecting libraries for C. And there are also li-
braries supporting smart pointers for C++.

3wikipedia
4Classic article about it: [One96].
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16.4 Array of pointers to strings

Here is an example for an array of pointers.

Listing 16.4: Get month name
#include <stdio.h>

const char* month1[]=
{

"January",
"February",
"March",
"April",
"May",
"June",
"July",
"August",
"September",
"October",
"November",
"December"

};

// in 0..11 range
const char* get_month1 (int month)
{

return month1[month];
};

16.4.1 x64

Listing 16.5: Optimizing MSVC 2013 x64
_DATA SEGMENT
month1 DQ FLAT:$SG3122

DQ FLAT:$SG3123
DQ FLAT:$SG3124
DQ FLAT:$SG3125
DQ FLAT:$SG3126
DQ FLAT:$SG3127
DQ FLAT:$SG3128
DQ FLAT:$SG3129
DQ FLAT:$SG3130
DQ FLAT:$SG3131
DQ FLAT:$SG3132
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DQ FLAT:$SG3133
$SG3122 DB 'January', 00H
$SG3123 DB 'February', 00H
$SG3124 DB 'March', 00H
$SG3125 DB 'April', 00H
$SG3126 DB 'May', 00H
$SG3127 DB 'June', 00H
$SG3128 DB 'July', 00H
$SG3129 DB 'August', 00H
$SG3130 DB 'September', 00H
$SG3156 DB '%s', 0aH, 00H
$SG3131 DB 'October', 00H
$SG3132 DB 'November', 00H
$SG3133 DB 'December', 00H
_DATA ENDS

month$ = 8
get_month1 PROC

movsxd rax, ecx
lea rcx, OFFSET FLAT:month1
mov rax, QWORD PTR [rcx+rax*8]
ret 0

get_month1 ENDP

The code is very simple:

• The first MOVSXD instruction copies a 32-bit value from ECX (where month

argument is passed) to RAX with sign-extension (because the month argu-
ment is of type int). The reason for the sign extension is that this 32-bit
value is to be used in calculations with other 64-bit values. Hence, it has to
be promoted to 64-bit5.

• Then the address of the pointer table is loaded into RCX.

• Finally, the input value (month) is multiplied by 8 and added to the address.
Indeed: we are in a 64-bit environment and all address (or pointers) require
exactly 64 bits (or 8 bytes) for storage. Hence, each table element is 8 bytes
wide. And that’s why to pick a specific element, month ∗ 8 bytes has to be
skipped from the start. That’s what MOV does. In addition, this instruction
also loads the element at this address. For 1, an element would be a pointer
to a string that contains “February”, etc.

Optimizing GCC 4.9 can do the job even better6:
5It is somewhat weird, but negative array index could be passed here asmonth . And if this happens,

the negative input value of int type is sign-extended correctly and the corresponding element before
table is picked. It is not going to work correctly without sign-extension.

6“0+” was left in the listing because GCC assembler output is not tidy enough to eliminate it. It’s
displacement, and it’s zero here.
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Listing 16.6: Optimizing GCC 4.9 x64
movsx rdi, edi
mov rax, QWORD PTR month1[0+rdi*8]
ret

32-bit MSVC

Let’s also compile it in the 32-bit MSVC compiler:

Listing 16.7: Optimizing MSVC 2013 x86
_month$ = 8
_get_month1 PROC

mov eax, DWORD PTR _month$[esp-4]
mov eax, DWORD PTR _month1[eax*4]
ret 0

_get_month1 ENDP

The input value does not need to be extended to 64-bit value, so it is used as is.
And it’s multiplied by 4, because the table elements are 32-bit (or 4 bytes) wide.

16.5 Multidimensional arrays

Internally, a multidimensional array is essentially the same thing as a linear array.
Since the computer memory is linear, it is an one-dimensional array. For conve-
nience, this multi-dimensional array can be easily represented as one-dimensional.

For example, this is how the elements of the 3x4 array are placed in one-dimensional
array of 12 cells:
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Offset in memory array element
0 [0][0]
1 [0][1]
2 [0][2]
3 [0][3]
4 [1][0]
5 [1][1]
6 [1][2]
7 [1][3]
8 [2][0]
9 [2][1]
10 [2][2]
11 [2][3]

Table 16.1: Two-dimensional array represented in memory as one-dimensional

Here is how each cell of 3*4 array are placed in memory:

0 1 2 3
4 5 6 7
8 9 10 11

Table 16.2: Memory addresses of each cell of two-dimensional array

So, in order to calculate the address of the element we need, we first multiply the
first index by 4 (array width) and then add the second index. That’s called row-major
order, and this method of array and matrix representation is used in at least C/C++
and Python. The term row-major order in plain English language means: “first,
write the elements of the first row, then the second row …and finally the elements
of the last row”.

Another method for representation is called column-major order (the array indices
are used in reverse order) and it is used at least in FORTRAN, MATLAB and R. column-
major order term in plain English language means: “first, write the elements of the
first column, then the second column …and finally the elements of the last column”.

Which method is better? In general, in terms of performance and cache memory,
the best scheme for data organization is the one, in which the elements are ac-
cessed sequentially. So if your function accesses data per row, row-major order is
better, and vice versa.
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16.5.1 Two-dimensional array example

We are going to work with an array of type char, which implies that each element
requires only one byte in memory.

Row filling example

Let’s fill the second row with these values 0..3:

Listing 16.8: Row filling example
#include <stdio.h>

char a[3][4];

int main()
{

int x, y;

// clear array
for (x=0; x<3; x++)

for (y=0; y<4; y++)
a[x][y]=0;

// fill second row by 0..3:
for (y=0; y<4; y++)

a[1][y]=y;
};

All three rows are marked with red. We see that second row now has values 0, 1, 2
and 3:

Figure 16.4: OllyDbg: array is filled
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Column filling example

Let’s fill the third column with values: 0..2:

Listing 16.9: Column filling example
#include <stdio.h>

char a[3][4];

int main()
{

int x, y;

// clear array
for (x=0; x<3; x++)

for (y=0; y<4; y++)
a[x][y]=0;

// fill third column by 0..2:
for (x=0; x<3; x++)

a[x][2]=x;
};

The three rows are also marked in red here. We see that in each row, at third
position these values are written: 0, 1 and 2.

Figure 16.5: OllyDbg: array is filled

16.5.2 Access two-dimensional array as one-dimensional

We can be easily assured that it’s possible to access a two-dimensional array as
one-dimensional array in at least two ways:

#include <stdio.h>

char a[3][4];
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char get_by_coordinates1 (char array[3][4], int a, int b)
{

return array[a][b];
};

char get_by_coordinates2 (char *array, int a, int b)
{

// treat input array as one-dimensional
// 4 is array width here
return array[a*4+b];

};

char get_by_coordinates3 (char *array, int a, int b)
{

// treat input array as pointer,
// calculate address, get value at it
// 4 is array width here
return *(array+a*4+b);

};

int main()
{

a[2][3]=123;
printf ("%d\n", get_by_coordinates1(a, 2, 3));
printf ("%d\n", get_by_coordinates2(a, 2, 3));
printf ("%d\n", get_by_coordinates3(a, 2, 3));

};

Compile and run it: it shows correct values.

What MSVC 2013 did is fascinating, all three routines are just the same!

Listing 16.10: Optimizing MSVC 2013 x64
array$ = 8
a$ = 16
b$ = 24
get_by_coordinates3 PROC
; RCX=address of array
; RDX=a
; R8=b

movsxd rax, r8d
; EAX=b

movsxd r9, edx
; R9=a

add rax, rcx
; RAX=b+address of array

movzx eax, BYTE PTR [rax+r9*4]
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; AL=load byte at address RAX+R9*4=b+address of
array+a*4=address of array+a*4+b

ret 0
get_by_coordinates3 ENDP

array$ = 8
a$ = 16
b$ = 24
get_by_coordinates2 PROC

movsxd rax, r8d
movsxd r9, edx
add rax, rcx
movzx eax, BYTE PTR [rax+r9*4]
ret 0

get_by_coordinates2 ENDP

array$ = 8
a$ = 16
b$ = 24
get_by_coordinates1 PROC

movsxd rax, r8d
movsxd r9, edx
add rax, rcx
movzx eax, BYTE PTR [rax+r9*4]
ret 0

get_by_coordinates1 ENDP

16.5.3 Three-dimensional array example

It’s thing in multidimensional arrays. Now we are going to work with an array of
type int: each element requires 4 bytes in memory.

Let’s see:

Listing 16.11: simple example
#include <stdio.h>

int a[10][20][30];

void insert(int x, int y, int z, int value)
{

a[x][y][z]=value;
};
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x86

We get (MSVC 2010):

Listing 16.12: MSVC 2010
_DATA SEGMENT
COMM _a:DWORD:01770H
_DATA ENDS
PUBLIC _insert
_TEXT SEGMENT
_x$ = 8 ; size = 4
_y$ = 12 ; size = 4
_z$ = 16 ; size = 4
_value$ = 20 ; size = 4
_insert PROC

push ebp
mov ebp, esp
mov eax, DWORD PTR _x$[ebp]
imul eax, 2400 ; eax=600*4*x
mov ecx, DWORD PTR _y$[ebp]
imul ecx, 120 ; ecx=30*4*y
lea edx, DWORD PTR _a[eax+ecx] ; edx=a + 600*4*x + ⤦
Ç 30*4*y
mov eax, DWORD PTR _z$[ebp]
mov ecx, DWORD PTR _value$[ebp]
mov DWORD PTR [edx+eax*4], ecx ; *(edx+z*4)=value
pop ebp
ret 0

_insert ENDP
_TEXT ENDS

Nothing special. For index calculation, three input arguments are used in the for-
mula address = 600 ⋅4 ⋅x+30 ⋅4 ⋅y+4z, to represent the array as multidimensional.
Do not forget that the int type is 32-bit (4 bytes), so all coefficients must be multi-
plied by 4.

Listing 16.13: GCC 4.4.1
public insert

insert proc near

x = dword ptr 8
y = dword ptr 0Ch
z = dword ptr 10h
value = dword ptr 14h

push ebp
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mov ebp, esp
push ebx
mov ebx, [ebp+x]
mov eax, [ebp+y]
mov ecx, [ebp+z]
lea edx, [eax+eax] ; edx=y*2
mov eax, edx ; eax=y*2
shl eax, 4 ; eax=(y*2)⤦

Ç <<4 = y*2*16 = y*32
sub eax, edx ; eax=y*32 ⤦

Ç - y*2=y*30
imul edx, ebx, 600 ; edx=x*600
add eax, edx ; eax=eax+⤦

Ç edx=y*30 + x*600
lea edx, [eax+ecx] ; edx=y*30 ⤦

Ç + x*600 + z
mov eax, [ebp+value]
mov dword ptr ds:a[edx*4], eax ; *(a+edx⤦

Ç *4)=value
pop ebx
pop ebp
retn

insert endp

The GCC compiler does it differently. For one of the operations in the calculation
(30y), GCC produces code without multiplication instructions. This is how it done:
(y+y)≪ 4− (y+y) = (2y)≪ 4−2y = 2 ⋅16 ⋅y−2y = 32y−2y = 30y. Thus, for the
30y calculation, only one addition operation, one bitwise shift operation and one
subtraction operation are used. This works faster.

16.6 Conclusion

An array is a pack of values in memory located adjacently. It’s true for any element
type, including structures. Access to a specific array element is just a calculation
of its address.
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Chapter 17

Manipulating specific bit(s)

A lot of functions define their input arguments as flags in bit fields. Of course, they
could be substituted by a set of bool-typed variables, but it is not frugally.

17.1 Specific bit checking

17.1.1 x86

Win32 API example:

HANDLE fh;

fh=CreateFile ("file", GENERIC_WRITE | GENERIC_READ, ⤦
Ç FILE_SHARE_READ, NULL, OPEN_ALWAYS, FILE_ATTRIBUTE_NORMAL⤦
Ç , NULL);

We get (MSVC 2010):

Listing 17.1: MSVC 2010
push 0
push 128 ; ⤦

Ç 00000080H
push 4
push 0
push 1
push -1073741824 ; ⤦

Ç c0000000H
push OFFSET $SG78813
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call DWORD PTR __imp__CreateFileA@28
mov DWORD PTR _fh$[ebp], eax

Let’s take a look in WinNT.h:

Listing 17.2: WinNT.h
#define GENERIC_READ (0x80000000L)
#define GENERIC_WRITE (0x40000000L)
#define GENERIC_EXECUTE (0x20000000L)
#define GENERIC_ALL (0x10000000L)

Everything is clear, GENERIC_READ | GENERIC_WRITE = 0x80000000 |
0x40000000 = 0xC0000000, and that value is used as the second argument
for the CreateFile()1function.

How would CreateFile() check these flags? If we look in KERNEL32.DLL in
Windows XP SP3 x86, we’ll find this fragment of code in CreateFileW:

Listing 17.3: KERNEL32.DLL (Windows XP SP3 x86)
.text:7C83D429 test byte ptr [ebp+⤦

Ç dwDesiredAccess+3], 40h
.text:7C83D42D mov [ebp+var_8], 1
.text:7C83D434 jz short loc_7C83D417
.text:7C83D436 jmp loc_7C810817

Here we see the TEST instruction, however it doesn’t take the whole second argu-
ment, but only the most significant byte (ebp+dwDesiredAccess+3) and checks
it for flag 0x40 (which implies the GENERIC_WRITE flag here) TEST is basically
the same instruction as AND, but without saving the result (recall the fact CMP is
merely the same as SUB, but without saving the result ( 7.3.1 on page 35)).

The logic of this code fragment is as follows:

if ((dwDesiredAccess&0x40000000) == 0) goto loc_7C83D417

If AND instruction leaves this bit, the ZF flag is to be cleared and the JZ condi-
tional jump is not to be triggered. The conditional jump is triggered only if the
0x40000000 bit is absent in dwDesiredAccess variable —then the result of
AND is 0, ZF is to be set and the conditional jump is to be triggered.

17.2 Setting and clearing specific bits

For example:
1msdn.microsoft.com/en-us/library/aa363858(VS.85).aspx

113

http://go.yurichev.com/17065


CHAPTER 17. MANIPULATING SPECIFIC BIT(S) CHAPTER 17. MANIPULATING SPECIFIC BIT(S)

#include <stdio.h>

#define IS_SET(flag, bit) ((flag) & (bit))
#define SET_BIT(var, bit) ((var) |= (bit))
#define REMOVE_BIT(var, bit) ((var) &= ~(bit))

int f(int a)
{

int rt=a;

SET_BIT (rt, 0x4000);
REMOVE_BIT (rt, 0x200);

return rt;
};

int main()
{

f(0x12340678);
};

17.2.1 x86

Non-optimizing MSVC

We get (MSVC 2010):

Listing 17.4: MSVC 2010
_rt$ = -4 ; size = 4
_a$ = 8 ; size = 4
_f PROC

push ebp
mov ebp, esp
push ecx
mov eax, DWORD PTR _a$[ebp]
mov DWORD PTR _rt$[ebp], eax
mov ecx, DWORD PTR _rt$[ebp]
or ecx, 16384 ; 00004000H
mov DWORD PTR _rt$[ebp], ecx
mov edx, DWORD PTR _rt$[ebp]
and edx, -513 ; fffffdffH
mov DWORD PTR _rt$[ebp], edx
mov eax, DWORD PTR _rt$[ebp]
mov esp, ebp
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pop ebp
ret 0

_f ENDP

The OR instruction sets one bit to value while ignoring the rest.

AND resets one bit. It can be said that AND just copies all bits except one. Indeed,
in the second AND operand only the bits that need to be saved are set, just the
one do not want to copy is not (which is 0 in the bitmask). It is the easier way to
memorize the logic.

Optimizing MSVC

If we compile it in MSVCwith optimization turned on (/Ox), the code is even shorter:

Listing 17.5: Optimizing MSVC
_a$ = 8 ; size = 4
_f PROC

mov eax, DWORD PTR _a$[esp-4]
and eax, -513 ; fffffdffH
or eax, 16384 ; 00004000H
ret 0

_f ENDP

17.3 Shifts

Bit shifts in C/C++ are implemented using≪ and≫ operators.

The x86 ISA has the SHL (SHift Left) and SHR (SHift Right) instructions for this.

Shift instructions are often used in division and multiplications by powers of two:
2n (e.g., 1, 2, 4, 8, etc): 15.1.2 on page 88, 15.2.1 on page 91.

Shifting operations are also so important because they are often used for specific
bit isolation or for constructing a value of several scattered bits.

17.4 Counting bits set to 1

Here is a simple example of a function that calculates the number of bits set in the
input value.
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This operation is also called “population count”2.

#include <stdio.h>

#define IS_SET(flag, bit) ((flag) & (bit))

int f(unsigned int a)
{

int i;
int rt=0;

for (i=0; i<32; i++)
if (IS_SET (a, 1<<i))

rt++;

return rt;
};

int main()
{

f(0x12345678); // test
};

In this loop, the iteration count value i is counting from 0 to 31, so the 1 ≪ i

statement is counting from 1 to 0x80000000. Describing this operation in natural
language, we would say shift 1 by n bits left. In other words, 1 ≪ i statement
consequently produces all possible bit positions in a 32-bit number. The freed bit
at right is always cleared.

Here is a table of all possible 1≪ i for i = 0 . . .31:
2modern x86 CPUs (supporting SSE4) even have a POPCNT instruction for it
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C/C++ expression Power of two Decimal form Hexadecimal form
1≪ 0 1 1 1
1≪ 1 21 2 2
1≪ 2 22 4 4
1≪ 3 23 8 8
1≪ 4 24 16 0x10
1≪ 5 25 32 0x20
1≪ 6 26 64 0x40
1≪ 7 27 128 0x80
1≪ 8 28 256 0x100
1≪ 9 29 512 0x200
1≪ 10 210 1024 0x400
1≪ 11 211 2048 0x800
1≪ 12 212 4096 0x1000
1≪ 13 213 8192 0x2000
1≪ 14 214 16384 0x4000
1≪ 15 215 32768 0x8000
1≪ 16 216 65536 0x10000
1≪ 17 217 131072 0x20000
1≪ 18 218 262144 0x40000
1≪ 19 219 524288 0x80000
1≪ 20 220 1048576 0x100000
1≪ 21 221 2097152 0x200000
1≪ 22 222 4194304 0x400000
1≪ 23 223 8388608 0x800000
1≪ 24 224 16777216 0x1000000
1≪ 25 225 33554432 0x2000000
1≪ 26 226 67108864 0x4000000
1≪ 27 227 134217728 0x8000000
1≪ 28 228 268435456 0x10000000
1≪ 29 229 536870912 0x20000000
1≪ 30 230 1073741824 0x40000000
1≪ 31 231 2147483648 0x80000000

These constant numbers (bit masks) very often appear in code and a practicing
reverse engineer must be able to spot them quickly. You probably haven’t to
memorize the decimal numbers, but the hexadecimal ones are very easy to remem-
ber.

These constants are very often used for mapping flags to specific bits. For example,
here is excerpt from ssl_private.h from Apache 2.4.6 source code:

/**
* Define the SSL options
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*/
#define SSL_OPT_NONE (0)
#define SSL_OPT_RELSET (1<<0)
#define SSL_OPT_STDENVVARS (1<<1)
#define SSL_OPT_EXPORTCERTDATA (1<<3)
#define SSL_OPT_FAKEBASICAUTH (1<<4)
#define SSL_OPT_STRICTREQUIRE (1<<5)
#define SSL_OPT_OPTRENEGOTIATE (1<<6)
#define SSL_OPT_LEGACYDNFORMAT (1<<7)

Let’s get back to our example.

The IS_SET macro checks bit presence in a. The IS_SET macro is in fact the
logical AND operation (AND) and it returns 0 if the specific bit is absent there, or
the bit mask, if the bit is present. The if() operator in C/C++ triggers if the expression
in it is not zero, it might be even 123456, that is why it always works correctly.

17.4.1 x86

MSVC

Let’s compile (MSVC 2010):

Listing 17.6: MSVC 2010
_rt$ = -8 ; size = 4
_i$ = -4 ; size = 4
_a$ = 8 ; size = 4
_f PROC

push ebp
mov ebp, esp
sub esp, 8
mov DWORD PTR _rt$[ebp], 0
mov DWORD PTR _i$[ebp], 0
jmp SHORT $LN4@f

$LN3@f:
mov eax, DWORD PTR _i$[ebp] ; increment of i
add eax, 1
mov DWORD PTR _i$[ebp], eax

$LN4@f:
cmp DWORD PTR _i$[ebp], 32 ; 00000020H
jge SHORT $LN2@f ; loop finished?
mov edx, 1
mov ecx, DWORD PTR _i$[ebp]
shl edx, cl ; EDX=EDX<<CL
and edx, DWORD PTR _a$[ebp]
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je SHORT $LN1@f ; result of AND instruction
was 0?

; then skip next
instructions
mov eax, DWORD PTR _rt$[ebp] ; no, not zero
add eax, 1 ; increment rt
mov DWORD PTR _rt$[ebp], eax

$LN1@f:
jmp SHORT $LN3@f

$LN2@f:
mov eax, DWORD PTR _rt$[ebp]
mov esp, ebp
pop ebp
ret 0

_f ENDP

17.4.2 x64

Let’s modify the example slightly to extend it to 64-bit:

#include <stdio.h>
#include <stdint.h>

#define IS_SET(flag, bit) ((flag) & (bit))

int f(uint64_t a)
{

uint64_t i;
int rt=0;

for (i=0; i<64; i++)
if (IS_SET (a, 1ULL<<i))

rt++;

return rt;
};

Optimizing MSVC 2010

Listing 17.7: MSVC 2010
a$ = 8
f PROC
; RCX = input value

xor eax, eax
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mov edx, 1
lea r8d, QWORD PTR [rax+64]

; R8D=64
npad 5

$LL4@f:
test rdx, rcx

; there are no such bit in input value?
; skip the next INC instruction then.

je SHORT $LN3@f
inc eax ; rt++

$LN3@f:
rol rdx, 1 ; RDX=RDX<<1
dec r8 ; R8--
jne SHORT $LL4@f
fatret 0

f ENDP

Here the ROL instruction is used instead of SHL, which is in fact “rotate left” instead
of “shift left”, but in this example it works just as SHL.

R8 here is counting from 64 to 0. It’s just like an inverted i.

Here is a table of some registers during the execution:

RDX R8
0x0000000000000001 64
0x0000000000000002 63
0x0000000000000004 62
0x0000000000000008 61
... ...
0x4000000000000000 2
0x8000000000000000 1

Optimizing MSVC 2012

Listing 17.8: MSVC 2012
a$ = 8
f PROC
; RCX = input value

xor eax, eax
mov edx, 1
lea r8d, QWORD PTR [rax+32]

; EDX = 1, R8D = 32
npad 5

$LL4@f:
; pass 1 ------------------------------------
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test rdx, rcx
je SHORT $LN3@f
inc eax ; rt++

$LN3@f:
rol rdx, 1 ; RDX=RDX<<1

; -------------------------------------------
; pass 2 ------------------------------------

test rdx, rcx
je SHORT $LN11@f
inc eax ; rt++

$LN11@f:
rol rdx, 1 ; RDX=RDX<<1

; -------------------------------------------
dec r8 ; R8--
jne SHORT $LL4@f
fatret 0

f ENDP

Optimizing MSVC 2012 does almost the same job as optimizing MSVC 2010, but
somehow, it generates two identical loop bodies and the loop count is now 32
instead of 64. To be honest, it’s not possible to say why. Some optimization trick?
Maybe it’s better for the loop body to be slightly longer? Anyway, such code is
relevant here to show that sometimes the compiler output may be really weird and
illogical, but perfectly working.

17.5 Conclusion

Analogous to the C/C++ shifting operators ≪ and ≫, the shift instructions in x86
are SHR/SHL (for unsigned values) and SAR/SHL (for signed values).

The shift instructions in ARM are LSR/LSL (for unsigned values) and ASR/LSL (for
signed values). It’s also possible to add shift suffix to some instructions (which are
called “data processing instructions”).

17.5.1 Check for specific bit (known at compile stage)

Test if the 1000000 bit (0x40) is present in the register’s value:

Listing 17.9: C/C++
if (input&0x40)

...
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Listing 17.10: x86
TEST REG, 40h
JNZ is_set
; bit is not set

Listing 17.11: x86
TEST REG, 40h
JZ is_cleared
; bit is set

Sometimes, AND is used instead of TEST, but the flags that are set are the same.

17.5.2 Check for specific bit (specified at runtime)

This is usually done by this C/C++ code snippet (shift value by n bits right, then cut
off lowest bit):

Listing 17.12: C/C++
if ((value>>n)&1)

....

This is usually implemented in x86 code as:

Listing 17.13: x86
; REG=input_value
; CL=n
SHR REG, CL
AND REG, 1

Or (shift 1 bit n times left, isolate this bit in input value and check if it’s not zero):

Listing 17.14: C/C++
if (value & (1<<n))

....

This is usually implemented in x86 code as:

Listing 17.15: x86
; CL=n
MOV REG, 1
SHL REG, CL
AND input_value, REG

122



CHAPTER 17. MANIPULATING SPECIFIC BIT(S) CHAPTER 17. MANIPULATING SPECIFIC BIT(S)

17.5.3 Set specific bit (known at compile stage)

Listing 17.16: C/C++
value=value|0x40;

Listing 17.17: x86
OR REG, 40h

17.5.4 Set specific bit (specified at runtime)

Listing 17.18: C/C++
value=value|(1<<n);

This is usually implemented in x86 code as:

Listing 17.19: x86
; CL=n
MOV REG, 1
SHL REG, CL
OR input_value, REG

17.5.5 Clear specific bit (known at compile stage)

Just apply AND operation with the inverted value:

Listing 17.20: C/C++
value=value&(~0x40);

Listing 17.21: x86
AND REG, 0FFFFFFBFh

Listing 17.22: x64
AND REG, 0FFFFFFFFFFFFFFBFh

This is actually leaving all bits set except one.
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17.5.6 Clear specific bit (specified at runtime)

Listing 17.23: C/C++
value=value&(~(1<<n));

Listing 17.24: x86
; CL=n
MOV REG, 1
SHL REG, CL
NOT REG
AND input_value, REG
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Chapter 18

Linear congruential generator as
pseudorandom number
generator

The linear congruential generator is probably the simplest possible way to generate
random numbers. It’s not in favour in modern times1, but it’s so simple (just one
multiplication, one addition and one AND operation), we can use it as an example.

#include <stdint.h>

// constants from the Numerical Recipes book
#define RNG_a 1664525
#define RNG_c 1013904223

static uint32_t rand_state;

void my_srand (uint32_t init)
{

rand_state=init;
}

int my_rand ()
{

rand_state=rand_state*RNG_a;
rand_state=rand_state+RNG_c;
return rand_state & 0x7fff;

}

1Mersenne twister is better
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There are two functions: the first one is used to initialize the internal state, and the
second one is called to generate pseudorandom numbers.

We see that two constants are used in the algorithm. They are taken from [Pre+07].
Let’s define them using a #define C/C++ statement. It’s a macro. The difference
between a C/C++ macro and a constant is that all macros are replaced with their
value by C/C++ preprocessor, and they don’t take any memory, unlike variables. In
contrast, a constant is a read-only variable. It’s possible to take a pointer (or
address) of a constant variable, but impossible to do so with a macro.

The last AND operation is needed because by C-standard my_rand() has to return
a value in the 0..32767 range. If you want to get 32-bit pseudorandom values, just
omit the last AND operation.

18.1 x86

Listing 18.1: Optimizing MSVC 2013
_BSS SEGMENT
_rand_state DD 01H DUP (?)
_BSS ENDS

_init$ = 8
_srand PROC

mov eax, DWORD PTR _init$[esp-4]
mov DWORD PTR _rand_state, eax
ret 0

_srand ENDP

_TEXT SEGMENT
_rand PROC

imul eax, DWORD PTR _rand_state, 1664525
add eax, 1013904223 ; 3c6ef35fH
mov DWORD PTR _rand_state, eax
and eax, 32767 ; 00007fffH
ret 0

_rand ENDP

_TEXT ENDS

Here we see it: both constants are embedded into the code. There is no memory
allocated for them. The my_srand() function just copies its input value into the
internal rand_state variable.

my_rand() takes it, calculates the next rand_state, cuts it and leaves it in the
EAX register.
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The non-optimized version is more verbose:

Listing 18.2: Non-optimizing MSVC 2013
_BSS SEGMENT
_rand_state DD 01H DUP (?)
_BSS ENDS

_init$ = 8
_srand PROC

push ebp
mov ebp, esp
mov eax, DWORD PTR _init$[ebp]
mov DWORD PTR _rand_state, eax
pop ebp
ret 0

_srand ENDP

_TEXT SEGMENT
_rand PROC

push ebp
mov ebp, esp
imul eax, DWORD PTR _rand_state, 1664525
mov DWORD PTR _rand_state, eax
mov ecx, DWORD PTR _rand_state
add ecx, 1013904223 ; 3c6ef35fH
mov DWORD PTR _rand_state, ecx
mov eax, DWORD PTR _rand_state
and eax, 32767 ; 00007fffH
pop ebp
ret 0

_rand ENDP

_TEXT ENDS

18.2 x64

The x64 version is mostly the same and uses 32-bit registers instead of 64-bit ones
(because we are working with int values here). But my_srand() takes its input
argument from the ECX register rather than from stack:

Listing 18.3: Optimizing MSVC 2013 x64
_BSS SEGMENT
rand_state DD 01H DUP (?)
_BSS ENDS
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init$ = 8
my_srand PROC
; ECX = input argument

mov DWORD PTR rand_state, ecx
ret 0

my_srand ENDP

_TEXT SEGMENT
my_rand PROC

imul eax, DWORD PTR rand_state, 1664525 ; ⤦
Ç 0019660dH

add eax, 1013904223 ; 3⤦
Ç c6ef35fH

mov DWORD PTR rand_state, eax
and eax, 32767 ; 00007⤦

Ç fffH
ret 0

my_rand ENDP

_TEXT ENDS
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Chapter 19

Structures

A C/C++ structure, with some assumptions, is just a set of variables, always stored
in memory together, not necessary of the same type 1.

19.1 MSVC: SYSTEMTIME example

Let’s take the SYSTEMTIME2 win32 structure that describes time.

This is how it’s defined:

Listing 19.1: WinBase.h
typedef struct _SYSTEMTIME {
WORD wYear;
WORD wMonth;
WORD wDayOfWeek;
WORD wDay;
WORD wHour;
WORD wMinute;
WORD wSecond;
WORD wMilliseconds;

} SYSTEMTIME, *PSYSTEMTIME;

Let’s write a C function to get the current time:

#include <windows.h>
#include <stdio.h>

1AKA “heterogeneous container”
2MSDN: SYSTEMTIME structure
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void main()
{

SYSTEMTIME t;
GetSystemTime (&t);

printf ("%04d-%02d-%02d %02d:%02d:%02d\n",
t.wYear, t.wMonth, t.wDay,
t.wHour, t.wMinute, t.wSecond);

return;
};

We get (MSVC 2010):

Listing 19.2: MSVC 2010 /GS-
_t$ = -16 ; size = 16
_main PROC

push ebp
mov ebp, esp
sub esp, 16
lea eax, DWORD PTR _t$[ebp]
push eax
call DWORD PTR __imp__GetSystemTime@4
movzx ecx, WORD PTR _t$[ebp+12] ; wSecond
push ecx
movzx edx, WORD PTR _t$[ebp+10] ; wMinute
push edx
movzx eax, WORD PTR _t$[ebp+8] ; wHour
push eax
movzx ecx, WORD PTR _t$[ebp+6] ; wDay
push ecx
movzx edx, WORD PTR _t$[ebp+2] ; wMonth
push edx
movzx eax, WORD PTR _t$[ebp] ; wYear
push eax
push OFFSET $SG78811 ; '%04d-%02d-%02d %02d:%02d:%02d', 0⤦
Ç aH, 00H
call _printf
add esp, 28
xor eax, eax
mov esp, ebp
pop ebp
ret 0

_main ENDP

130



CHAPTER 19. STRUCTURES CHAPTER 19. STRUCTURES

16 bytes are allocated for this structure in the local stack—that is exactlysizeof(WORD)*8
(there are 8 WORD variables in the structure).

Pay attention to the fact that the structure begins with the wYear field. It can
be said that a pointer to the SYSTEMTIME structure is passed to the GetSystem-
Time()3, but it is also can be said that a pointer to the wYear field is passed, and
that is the same! GetSystemTime()writes the current year to the WORD pointer
pointing to, then shifts 2 bytes ahead, writes current month, etc, etc.

19.1.1 Replacing the structure with array

The fact that the structure fields are just variables located side-by-side, can be
easily demonstrated by doing the following. Keeping in mind the SYSTEMTIME
structure description, it’s possible to rewrite this simple example like this:

#include <windows.h>
#include <stdio.h>

void main()
{

WORD array[8];
GetSystemTime (array);

printf ("%04d-%02d-%02d %02d:%02d:%02d\n",
array[0] /* wYear */, array[1] /* wMonth */, array[3] ⤦

Ç /* wDay */,
array[4] /* wHour */, array[5] /* wMinute */, array[6] ⤦

Ç /* wSecond */);

return;
};

The compiler grumbles a bit:

systemtime2.c(7) : warning C4133: 'function' : incompatible ⤦
Ç types - from 'WORD [8]' to 'LPSYSTEMTIME'

But nevertheless, it produces this code:

Listing 19.3: Non-optimizing MSVC 2010
$SG78573 DB '%04d-%02d-%02d %02d:%02d:%02d', 0aH, 00H

_array$ = -16 ; size = 16
_main PROC

3MSDN: SYSTEMTIME structure
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push ebp
mov ebp, esp
sub esp, 16
lea eax, DWORD PTR _array$[ebp]
push eax
call DWORD PTR __imp__GetSystemTime@4
movzx ecx, WORD PTR _array$[ebp+12] ; wSecond
push ecx
movzx edx, WORD PTR _array$[ebp+10] ; wMinute
push edx
movzx eax, WORD PTR _array$[ebp+8] ; wHoure
push eax
movzx ecx, WORD PTR _array$[ebp+6] ; wDay
push ecx
movzx edx, WORD PTR _array$[ebp+2] ; wMonth
push edx
movzx eax, WORD PTR _array$[ebp] ; wYear
push eax
push OFFSET $SG78573
call _printf
add esp, 28
xor eax, eax
mov esp, ebp
pop ebp
ret 0

_main ENDP

And it works just as the same!

It is very interesting that the result in assembly form cannot be distinguished from
the result of the previous compilation. So by looking at this code, one cannot say
for sure if there was a structure declared, or an array.

Nevertheless, no sane person would do it, as it is not convenient. Also the struc-
ture fields may be changed by developers, swapped, etc.

19.2 Let’s allocate space for a structure using malloc()

Sometimes it is simpler to place structures not the in local stack, but in the heap:

#include <windows.h>
#include <stdio.h>

void main()
{

SYSTEMTIME *t;
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t=(SYSTEMTIME *)malloc (sizeof (SYSTEMTIME));

GetSystemTime (t);

printf ("%04d-%02d-%02d %02d:%02d:%02d\n",
t->wYear, t->wMonth, t->wDay,
t->wHour, t->wMinute, t->wSecond);

free (t);

return;
};

Let’s compile it now with optimization (/Ox) so it would be easy see what we need.

Listing 19.4: Optimizing MSVC
_main PROC

push esi
push 16
call _malloc
add esp, 4
mov esi, eax
push esi
call DWORD PTR __imp__GetSystemTime@4
movzx eax, WORD PTR [esi+12] ; wSecond
movzx ecx, WORD PTR [esi+10] ; wMinute
movzx edx, WORD PTR [esi+8] ; wHour
push eax
movzx eax, WORD PTR [esi+6] ; wDay
push ecx
movzx ecx, WORD PTR [esi+2] ; wMonth
push edx
movzx edx, WORD PTR [esi] ; wYear
push eax
push ecx
push edx
push OFFSET $SG78833
call _printf
push esi
call _free
add esp, 32
xor eax, eax
pop esi
ret 0

_main ENDP
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So, sizeof(SYSTEMTIME) = 16 and that is exact number of bytes to be allo-
cated by malloc(). It returns a pointer to a freshly allocated memory block in
the EAX register, which is then moved into the ESI register. GetSystemTime()
win32 function takes care of saving value in ESI, and that is why it is not saved
here and continues to be used after the GetSystemTime() call.

New instruction —MOVZX (Move with Zero eXtend). It may be used in most cases as
MOVSX, but it sets the remaining bits to 0. That’s because printf() requires a
32-bit int, but we got a WORD in the structure —that is 16-bit unsigned type. That’s
why by copying the value from a WORD into int, bits from 16 to 31 must be cleared,
because a random noise may be there, which is left from the previous operations
on the register(s).

In this example, it’s possible to represent the structure as an array of 8 WORDs:

#include <windows.h>
#include <stdio.h>

void main()
{

WORD *t;

t=(WORD *)malloc (16);

GetSystemTime (t);

printf ("%04d-%02d-%02d %02d:%02d:%02d\n",
t[0] /* wYear */, t[1] /* wMonth */, t[3] /* wDay */,
t[4] /* wHour */, t[5] /* wMinute */, t[6] /* wSecond ⤦

Ç */);

free (t);

return;
};

We get:

Listing 19.5: Optimizing MSVC
$SG78594 DB '%04d-%02d-%02d %02d:%02d:%02d', 0aH, 00H

_main PROC
push esi
push 16
call _malloc
add esp, 4
mov esi, eax
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push esi
call DWORD PTR __imp__GetSystemTime@4
movzx eax, WORD PTR [esi+12]
movzx ecx, WORD PTR [esi+10]
movzx edx, WORD PTR [esi+8]
push eax
movzx eax, WORD PTR [esi+6]
push ecx
movzx ecx, WORD PTR [esi+2]
push edx
movzx edx, WORD PTR [esi]
push eax
push ecx
push edx
push OFFSET $SG78594
call _printf
push esi
call _free
add esp, 32
xor eax, eax
pop esi
ret 0

_main ENDP

Again, we got the code cannot be distinguished from the previous one. And again
it should be noted, you haven’t to do this in practice, unless you really know what
you are doing.

19.3 Fields packing in structure

One important thing is fields packing in structures4.

Let’s take a simple example:

#include <stdio.h>

struct s
{

char a;
int b;
char c;
int d;

};

4See also: Wikipedia: Data structure alignment
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void f(struct s s)
{

printf ("a=%d; b=%d; c=%d; d=%d\n", s.a, s.b, s.c, s.d);
};

int main()
{

struct s tmp;
tmp.a=1;
tmp.b=2;
tmp.c=3;
tmp.d=4;
f(tmp);

};

As we see, we have two char fields (each is exactly one byte) and two more —int
(each — 4 bytes).

19.3.1 x86

This compiles to:

Listing 19.6: MSVC 2012 /GS- /Ob0
1 _tmp$ = -16
2 _main PROC
3 push ebp
4 mov ebp, esp
5 sub esp, 16
6 mov BYTE PTR _tmp$[ebp], 1 ; set field a
7 mov DWORD PTR _tmp$[ebp+4], 2 ; set field b
8 mov BYTE PTR _tmp$[ebp+8], 3 ; set field c
9 mov DWORD PTR _tmp$[ebp+12], 4 ; set field d

10 sub esp, 16 ; allocate place for
temporary structure

11 mov eax, esp
12 mov ecx, DWORD PTR _tmp$[ebp] ; copy our structure to

the temporary one
13 mov DWORD PTR [eax], ecx
14 mov edx, DWORD PTR _tmp$[ebp+4]
15 mov DWORD PTR [eax+4], edx
16 mov ecx, DWORD PTR _tmp$[ebp+8]
17 mov DWORD PTR [eax+8], ecx
18 mov edx, DWORD PTR _tmp$[ebp+12]
19 mov DWORD PTR [eax+12], edx
20 call _f
21 add esp, 16
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22 xor eax, eax
23 mov esp, ebp
24 pop ebp
25 ret 0
26 _main ENDP
27
28 _s$ = 8 ; size = 16
29 ?f@@YAXUs@@@Z PROC ; f
30 push ebp
31 mov ebp, esp
32 mov eax, DWORD PTR _s$[ebp+12]
33 push eax
34 movsx ecx, BYTE PTR _s$[ebp+8]
35 push ecx
36 mov edx, DWORD PTR _s$[ebp+4]
37 push edx
38 movsx eax, BYTE PTR _s$[ebp]
39 push eax
40 push OFFSET $SG3842
41 call _printf
42 add esp, 20
43 pop ebp
44 ret 0
45 ?f@@YAXUs@@@Z ENDP ; f
46 _TEXT ENDS

We pass the structure as a whole, but in fact, as we can see, the structure is being
copied to a temporary one (a place in stack is allocated in line 10 for it, and then
all 4 fields, one by one, are copied in lines 12 … 19), and then its pointer (address)
is to be passed. The structure is copied because it’s not known whether the f()
function going to modify the structure or not. If it gets changed, then the structure
in main() has to remain as it was. We could use C/C++ pointers, and the resulting
code will be almost the same, but without the copying.

As we can see, each field’s address is aligned on a 4-byte boundary. That’s why
each char occupies 4 bytes here (like int). Why? Because it is easier for the CPU to
access memory at aligned addresses and to cache data from it.

However, it is not very economical.

Let’s try to compile it with option (/Zp1) (/Zp[n] pack structures on n-byte boundary).

Listing 19.7: MSVC 2012 /GS- /Zp1
1 _main PROC
2 push ebp
3 mov ebp, esp
4 sub esp, 12
5 mov BYTE PTR _tmp$[ebp], 1 ; set field a
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6 mov DWORD PTR _tmp$[ebp+1], 2 ; set field b
7 mov BYTE PTR _tmp$[ebp+5], 3 ; set field c
8 mov DWORD PTR _tmp$[ebp+6], 4 ; set field d
9 sub esp, 12 ; allocate place for

temporary structure
10 mov eax, esp
11 mov ecx, DWORD PTR _tmp$[ebp] ; copy 10 bytes
12 mov DWORD PTR [eax], ecx
13 mov edx, DWORD PTR _tmp$[ebp+4]
14 mov DWORD PTR [eax+4], edx
15 mov cx, WORD PTR _tmp$[ebp+8]
16 mov WORD PTR [eax+8], cx
17 call _f
18 add esp, 12
19 xor eax, eax
20 mov esp, ebp
21 pop ebp
22 ret 0
23 _main ENDP
24
25 _TEXT SEGMENT
26 _s$ = 8 ; size = 10
27 ?f@@YAXUs@@@Z PROC ; f
28 push ebp
29 mov ebp, esp
30 mov eax, DWORD PTR _s$[ebp+6]
31 push eax
32 movsx ecx, BYTE PTR _s$[ebp+5]
33 push ecx
34 mov edx, DWORD PTR _s$[ebp+1]
35 push edx
36 movsx eax, BYTE PTR _s$[ebp]
37 push eax
38 push OFFSET $SG3842
39 call _printf
40 add esp, 20
41 pop ebp
42 ret 0
43 ?f@@YAXUs@@@Z ENDP ; f

Now the structure takes only 10 bytes and each char value takes 1 byte. What does
it give to us? Size economy. And as drawback —the CPU accessing these fields
slower than it could.

The structure is also copied in main(). Not field-by-field, but directly 10 bytes,
using three pairs of MOV. Why not 4? The compiler decided that it’s better to copy
10 bytes using 3 MOV pairs than to copy two 32-bit words and two bytes using 4
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MOV pairs.

As it can be easily guessed, if the structure is used in many source and object files,
all these must be compiled with the same convention about structures packing.

Aside from MSVC /Zp option which sets how to align each structure field, there is
also the #pragma pack compiler option, which can be defined right in the source
code. It is available in both MSVC5and GCC6.

Let’s get back to the SYSTEMTIME structure that consists of 16-bit fields. How
does our compiler know to pack them on 1-byte alignment boundary?

WinNT.h file has this:

Listing 19.8: WinNT.h
#include "pshpack1.h"

And this:

Listing 19.9: WinNT.h
#include "pshpack4.h" // 4 byte packing is ⤦

Ç the default

The file PshPack1.h looks like:

Listing 19.10: PshPack1.h
#if ! (defined(lint) || defined(RC_INVOKED))
#if ( _MSC_VER >= 800 && !defined(_M_I86)) || defined(⤦

Ç _PUSHPOP_SUPPORTED)
#pragma warning(disable:4103)
#if !(defined( MIDL_PASS )) || defined( __midl )
#pragma pack(push,1)
#else
#pragma pack(1)
#endif
#else
#pragma pack(1)
#endif
#endif /* ! (defined(lint) || defined(RC_INVOKED)) */

This tell the compiler how to pack the structures defined after #pragma pack.
5MSDN: Working with Packing Structures
6Structure-Packing Pragmas
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19.3.2 One more word

Passing a structure as a function argument (instead of a passing pointer to structure)
is the same as passing all structure fields one by one. If the structure fields are
packed by default, the f() function can be rewritten as:

void f(char a, int b, char c, int d)
{

printf ("a=%d; b=%d; c=%d; d=%d\n", a, b, c, d);
};

And that leads to the same code.

19.4 Nested structures

Now what about situations when one structure is defined inside of another?

#include <stdio.h>

struct inner_struct
{

int a;
int b;

};

struct outer_struct
{

char a;
int b;
struct inner_struct c;
char d;
int e;

};

void f(struct outer_struct s)
{

printf ("a=%d; b=%d; c.a=%d; c.b=%d; d=%d; e=%d\n",
s.a, s.b, s.c.a, s.c.b, s.d, s.e);

};

int main()
{

struct outer_struct s;
s.a=1;
s.b=2;
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s.c.a=100;
s.c.b=101;
s.d=3;
s.e=4;
f(s);

};

… in this case, both inner_struct fields are to be placed between the a,b and
d,e fields of the outer_struct.

Let’s compile (MSVC 2010):

Listing 19.11: Optimizing MSVC 2010 /Ob0
$SG2802 DB 'a=%d; b=%d; c.a=%d; c.b=%d; d=%d; e=%d', 0aH, 00⤦

Ç H

_TEXT SEGMENT
_s$ = 8
_f PROC

mov eax, DWORD PTR _s$[esp+16]
movsx ecx, BYTE PTR _s$[esp+12]
mov edx, DWORD PTR _s$[esp+8]
push eax
mov eax, DWORD PTR _s$[esp+8]
push ecx
mov ecx, DWORD PTR _s$[esp+8]
push edx
movsx edx, BYTE PTR _s$[esp+8]
push eax
push ecx
push edx
push OFFSET $SG2802 ; 'a=%d; b=%d; c.a=%d; c.b=%d; d=%d; ⤦
Ç e=%d'
call _printf
add esp, 28
ret 0

_f ENDP

_s$ = -24
_main PROC

sub esp, 24
push ebx
push esi
push edi
mov ecx, 2
sub esp, 24
mov eax, esp
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mov BYTE PTR _s$[esp+60], 1
mov ebx, DWORD PTR _s$[esp+60]
mov DWORD PTR [eax], ebx
mov DWORD PTR [eax+4], ecx
lea edx, DWORD PTR [ecx+98]
lea esi, DWORD PTR [ecx+99]
lea edi, DWORD PTR [ecx+2]
mov DWORD PTR [eax+8], edx
mov BYTE PTR _s$[esp+76], 3
mov ecx, DWORD PTR _s$[esp+76]
mov DWORD PTR [eax+12], esi
mov DWORD PTR [eax+16], ecx
mov DWORD PTR [eax+20], edi
call _f
add esp, 24
pop edi
pop esi
xor eax, eax
pop ebx
add esp, 24
ret 0

_main ENDP

One curious thing here is that by looking onto this assembly code, we do not even
see that another structure was used inside of it! Thus, we would say, nested struc-
tures are unfolded into linear or one-dimensional structure.

Of course, if we replace thestruct inner_struct c; declarationwithstruct
inner_struct *c; (thus making a pointer here) the situation will be quite dif-
ferent.

19.5 Bit fields in a structure

19.5.1 CPUID example

The C/C++ language allows to define the exact number of bits for each structure
field. It is very useful if one needs to save memory space. For example, one bit is
enough for a bool variable. But of course, it is not rational if speed is important.

Let’s consider the CPUID7instruction example. This instruction returns information
about the current CPU and its features.

If the EAX is set to 1 before the instruction’s execution, CPUID returning this infor-
mation packed into the EAX register:

7wikipedia
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3:0 (4 bits) Stepping
7:4 (4 bits) Model
11:8 (4 bits) Family
13:12 (2 bits) Processor Type
19:16 (4 bits) Extended Model
27:20 (8 bits) Extended Family

MSVC 2010 has CPUID macro, but GCC 4.4.1 does not. So let’s make this function
by ourselves for GCC with the help of its built-in assembler8.

#include <stdio.h>

#ifdef __GNUC__
static inline void cpuid(int code, int *a, int *b, int *c, int ⤦

Ç *d) {
asm volatile("cpuid":"=a"(*a),"=b"(*b),"=c"(*c),"=d"(*d):"a"(⤦
Ç code));

}
#endif

#ifdef _MSC_VER
#include <intrin.h>
#endif

struct CPUID_1_EAX
{

unsigned int stepping:4;
unsigned int model:4;
unsigned int family_id:4;
unsigned int processor_type:2;
unsigned int reserved1:2;
unsigned int extended_model_id:4;
unsigned int extended_family_id:8;
unsigned int reserved2:4;

};

int main()
{

struct CPUID_1_EAX *tmp;
int b[4];

#ifdef _MSC_VER
__cpuid(b,1);

#endif

#ifdef __GNUC__

8More about internal GCC assembler
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cpuid (1, &b[0], &b[1], &b[2], &b[3]);
#endif

tmp=(struct CPUID_1_EAX *)&b[0];

printf ("stepping=%d\n", tmp->stepping);
printf ("model=%d\n", tmp->model);
printf ("family_id=%d\n", tmp->family_id);
printf ("processor_type=%d\n", tmp->processor_type);
printf ("extended_model_id=%d\n", tmp->extended_model_id);
printf ("extended_family_id=%d\n", tmp->extended_family_id)⤦
Ç ;

return 0;
};

After CPUID fills EAX/EBX/ECX/EDX, these registers are to be written in the b[]
array. Then, we have a pointer to the CPUID_1_EAX structure and we point it to
the value in EAX from the b[] array.

In other words, we treat a 32-bit int value as a structure. Then we read specific bits
from the structure.

MSVC

Let’s compile it in MSVC 2008 with /Ox option:

Listing 19.12: Optimizing MSVC 2008
_b$ = -16 ; size = 16
_main PROC

sub esp, 16
push ebx

xor ecx, ecx
mov eax, 1
cpuid
push esi
lea esi, DWORD PTR _b$[esp+24]
mov DWORD PTR [esi], eax
mov DWORD PTR [esi+4], ebx
mov DWORD PTR [esi+8], ecx
mov DWORD PTR [esi+12], edx

mov esi, DWORD PTR _b$[esp+24]
mov eax, esi
and eax, 15
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push eax
push OFFSET $SG15435 ; 'stepping=%d', 0aH, 00H
call _printf

mov ecx, esi
shr ecx, 4
and ecx, 15
push ecx
push OFFSET $SG15436 ; 'model=%d', 0aH, 00H
call _printf

mov edx, esi
shr edx, 8
and edx, 15
push edx
push OFFSET $SG15437 ; 'family_id=%d', 0aH, 00H
call _printf

mov eax, esi
shr eax, 12
and eax, 3
push eax
push OFFSET $SG15438 ; 'processor_type=%d', 0aH, 00H
call _printf

mov ecx, esi
shr ecx, 16
and ecx, 15
push ecx
push OFFSET $SG15439 ; 'extended_model_id=%d', 0aH, 00H
call _printf

shr esi, 20
and esi, 255
push esi
push OFFSET $SG15440 ; 'extended_family_id=%d', 0aH, 00H
call _printf
add esp, 48
pop esi

xor eax, eax
pop ebx

add esp, 16
ret 0

_main ENDP
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The SHR instruction shifting the value in EAX by the number of bits that must be
skipped, e.g., we ignore some bits at the right side.

The AND instruction clears the unneeded bits on the left, or, in other words, leaves
only those bits in the EAX register we need.
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Chapter 20

64-bit values in 32-bit
environment

20.1 Returning of 64-bit value

#include <stdint.h>

uint64_t f ()
{

return 0x1234567890ABCDEF;
};

20.1.1 x86

In a 32-bit environment, 64-bit values are returned from functions in the EDX:EAX
register pair.

Listing 20.1: Optimizing MSVC 2010
_f PROC

mov eax, -1867788817 ; 90abcdefH
mov edx, 305419896 ; 12345678H
ret 0

_f ENDP
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20.2 Arguments passing, addition, subtraction

#include <stdint.h>

uint64_t f_add (uint64_t a, uint64_t b)
{

return a+b;
};

void f_add_test ()
{
#ifdef __GNUC__

printf ("%lld\n", f_add(12345678901234, 23456789012345)⤦
Ç );

#else
printf ("%I64d\n", f_add(12345678901234, ⤦

Ç 23456789012345));
#endif
};

uint64_t f_sub (uint64_t a, uint64_t b)
{

return a-b;
};

20.2.1 x86

Listing 20.2: Optimizing MSVC 2012 /Ob1
_a$ = 8 ; size = 8
_b$ = 16 ; size = 8
_f_add PROC

mov eax, DWORD PTR _a$[esp-4]
add eax, DWORD PTR _b$[esp-4]
mov edx, DWORD PTR _a$[esp]
adc edx, DWORD PTR _b$[esp]
ret 0

_f_add ENDP

_f_add_test PROC
push 5461 ; 00001555H
push 1972608889 ; 75939f79H
push 2874 ; 00000b3aH
push 1942892530 ; 73ce2ff_subH
call _f_add
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push edx
push eax
push OFFSET $SG1436 ; '%I64d', 0aH, 00H
call _printf
add esp, 28
ret 0

_f_add_test ENDP

_f_sub PROC
mov eax, DWORD PTR _a$[esp-4]
sub eax, DWORD PTR _b$[esp-4]
mov edx, DWORD PTR _a$[esp]
sbb edx, DWORD PTR _b$[esp]
ret 0

_f_sub ENDP

We can see in the f_add_test() function that each 64-bit value is passed using
two 32-bit values, high part first, then low part.

Addition and subtraction occur in pairs as well.

In addition, the low 32-bit part are added first. If carry was occurred while adding,
the CF flag is set. The following ADC instruction adds the high parts of the values,
and also adds 1 if CF = 1.

Subtraction also occurs in pairs. The first SUB may also turn on the CF flag, which
is to be checked in the subsequent SBB instruction: if the carry flag is on, then 1
is also to be subtracted from the result.

It is easy to see how the f_add() function result is then passed to printf().

20.3 Multiplication, division

#include <stdint.h>

uint64_t f_mul (uint64_t a, uint64_t b)
{

return a*b;
};

uint64_t f_div (uint64_t a, uint64_t b)
{

return a/b;
};
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uint64_t f_rem (uint64_t a, uint64_t b)
{

return a % b;
};

20.3.1 x86

Listing 20.3: Optimizing MSVC 2013 /Ob1
_a$ = 8 ; size = 8
_b$ = 16 ; size = 8
_f_mul PROC

push ebp
mov ebp, esp
mov eax, DWORD PTR _b$[ebp+4]
push eax
mov ecx, DWORD PTR _b$[ebp]
push ecx
mov edx, DWORD PTR _a$[ebp+4]
push edx
mov eax, DWORD PTR _a$[ebp]
push eax
call __allmul ; long long multiplication
pop ebp
ret 0

_f_mul ENDP

_a$ = 8 ; size = 8
_b$ = 16 ; size = 8
_f_div PROC

push ebp
mov ebp, esp
mov eax, DWORD PTR _b$[ebp+4]
push eax
mov ecx, DWORD PTR _b$[ebp]
push ecx
mov edx, DWORD PTR _a$[ebp+4]
push edx
mov eax, DWORD PTR _a$[ebp]
push eax
call __aulldiv ; unsigned long long division
pop ebp
ret 0

_f_div ENDP
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_a$ = 8 ; size = 8
_b$ = 16 ; size = 8
_f_rem PROC

push ebp
mov ebp, esp
mov eax, DWORD PTR _b$[ebp+4]
push eax
mov ecx, DWORD PTR _b$[ebp]
push ecx
mov edx, DWORD PTR _a$[ebp+4]
push edx
mov eax, DWORD PTR _a$[ebp]
push eax
call __aullrem ; unsigned long long remainder
pop ebp
ret 0

_f_rem ENDP

Multiplication and division are more complex operations, so usually the compiler
embeds calls to a library functions doing that.

20.4 Shifting right

#include <stdint.h>

uint64_t f (uint64_t a)
{

return a>>7;
};

20.4.1 x86

Listing 20.4: Optimizing MSVC 2012 /Ob1
_a$ = 8 ; size = 8
_f PROC

mov eax, DWORD PTR _a$[esp-4]
mov edx, DWORD PTR _a$[esp]
shrd eax, edx, 7
shr edx, 7
ret 0

_f ENDP
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Shifting also occurs in two passes: first the lower part is shifted, then the higher
part. But the lower part is shifted with the help of the SHRD instruction, it shifts
the value of EDX by 7 bits, but pulls new bits from EAX, i.e., from the higher part.
The higher part is shifted using the more popular SHR instruction: indeed, the freed
bits in the higher part must be filled with zeroes.

20.5 Converting 32-bit value into 64-bit one

#include <stdint.h>

int64_t f (int32_t a)
{

return a;
};

20.5.1 x86

Listing 20.5: Optimizing MSVC 2012
_a$ = 8
_f PROC

mov eax, DWORD PTR _a$[esp-4]
cdq
ret 0

_f ENDP

Here we also run into necessity to extend a 32-bit signed value into a 64-bit signed
one. Unsigned values are converted straightforwardly: all bits in the higher part
must be set to 0. But this is not appropriate for signed data types: the sign has to
be copied into the higher part of the resulting number. The CDQ instruction does
that here, it takes its input value in EAX, extends it to 64-bit and leaves it in the
EDX:EAX register pair. In other words, CDQ gets the number sign from EAX (by
getting the most significant bit in EAX), and depending of it, sets all 32 bits in EDX
to 0 or 1. Its operation is somewhat similar to the MOVSX instruction.
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Chapter 21

64 bits

21.1 x86-64

It is a 64-bit extension to the x86 architecture.

From the reverse engineer’s perspective, the most important changes are:

• Almost all registers (except FPU and SIMD) were extended to 64 bits and got
a R- prefix. 8 additional registers wer added. Now GPR’s are: RAX, RBX, RCX,
RDX, RBP, RSP, RSI, RDI, R8, R9, R10, R11, R12, R13, R14, R15.

It is still possible to access the older register parts as usual. For example, it
is possible to access the lower 32-bit part of the RAX register using EAX:

7th (byte number) 6th 5th 4th 3rd 2nd 1st 0th
RAXx64

EAX
AX

AH AL

The new R8-R15 registers also have their lower parts: R8D-R15D (lower
32-bit parts), R8W-R15W (lower 16-bit parts), R8L-R15L (lower 8-bit parts).

7th (byte number) 6th 5th 4th 3rd 2nd 1st 0th
R8

R8D
R8W

R8L

The number of SIMD registers was doubled from 8 to 16: XMM0-XMM15.
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• In Win64, the function calling convention is slightly different, somewhat re-
sembling fastcall . The first 4 arguments are stored in the RCX, RDX, R8, R9
registers, the rest —in the stack. The caller function must also allocate 32
bytes so the callee may save there 4 first arguments and use these registers
for its own needs. Short functions may use arguments just from registers, but
larger ones may save their values on the stack.

System V AMD64 ABI (Linux, *BSD, Mac OS X)[Mit13] also somewhat resem-
bles fastcall, it uses 6 registers RDI, RSI, RDX, RCX, R8, R9 for the first 6
arguments. All the rest are passed via the stack.

• The C/C++ int type is still 32-bit for compatibility.

• All pointers are 64-bit now.

This provokes irritation sometimes: now one needs twice as much memory
for storing pointers, including cache memory, despite the fact that x64 CPUs
can address only 48 bits of external RAM1.

Since now the number of registers is doubled, the compilers have more space for
maneuvering called register allocation. For us this implies that the emitted code
containing less number of local variables.

By the way, there are CPUs with much more GPR’s, e.g. Itanium (128 registers).

1Random-access memory
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Chapter 22

Signed number representations

There are several methods for representing signed numbers1, but “two’s comple-
ment” is the most popular one in computers.

Here is a table for some byte values:

binary hexadecimal unsigned signed (2’s complement)
01111111 0x7f 127 127
01111110 0x7e 126 126

...
00000110 0x6 6 6
00000101 0x5 5 5
00000100 0x4 4 4
00000011 0x3 3 3
00000010 0x2 2 2
00000001 0x1 1 1
00000000 0x0 0 0
11111111 0xff 255 -1
11111110 0xfe 254 -2
11111101 0xfd 253 -3
11111100 0xfc 252 -4
11111011 0xfb 251 -5
11111010 0xfa 250 -6

...
10000010 0x82 130 -126
10000001 0x81 129 -127
10000000 0x80 128 -128

1wikipedia
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The difference between signed and unsigned numbers is that if we represent0xFFFFFFFE
and 0x0000002 as unsigned, then the first number (4294967294) is bigger than
the second one (2). If we represent them both as signed, the first one is to be −2, and
it is smaller than the second (2). That is the reason why conditional jumps ( 11 on
page 50) are present both for signed (e.g. JG, JL) and unsigned (JA, JB) operations.

For the sake of simplicity, that is what one need to know:

• Numbers can be signed or unsigned.

• C/C++ signed types:

– int64_t (-9,223,372,036,854,775,808..9,223,372,036,854,775,807) (- 9.2.. 9.2
quintillions) or
0x8000000000000000..0x7FFFFFFFFFFFFFFF),

– int (-2,147,483,648..2,147,483,647 (- 2.15.. 2.15Gb) or0x80000000..0x7FFFFFFF),

– char (-128..127 or 0x80..0x7F),

– ssize_t.

Unsigned:

– uint64_t (0..18,446,744,073,709,551,615 ( 18 quintillions) or0..0xFFFFFFFFFFFFFFFF),

– unsigned int (0..4,294,967,295 ( 4.3Gb) or 0..0xFFFFFFFF),

– unsigned char (0..255 or 0..0xFF),

– size_t.

• Signed types have the sign in the most significant bit: 1 mean “minus”, 0
mean “plus”.

• Promoting to a larger data types is simple: 20.5 on page 152.

• Negation is simple: just invert all bits and add 1. We can remember that a
number of inverse sign is located on the opposite side at the same proximity
from zero. The addition of one is needed because zero is present in the
middle.

• The addition and subtraction operations work well for both signed and un-
signed values. But for multiplication and division operations, x86 has differ-
ent instructions: IDIV/IMUL for signed and DIV/MUL for unsigned.
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Chapter 23

Memory

There are 3 main types of memory:

• Global memory. AKA “static memory allocation”. No need to allocate explic-
itly, the allocation is done just by declaring variables/arrays globally. These
are global variables, residing in the data or constant segments. The are
available globally (hence, considered as an anti-pattern). Not convenient
for buffers/arrays, because they must have a fixed size. Buffer overflows
that occur here usually overwrite variables or buffers reside next to them in
memory. There’s an example in this book: 7.2 on page 30.

• Stack. AKA “allocate on stack”. The allocation is done just by declaring vari-
ables/arrays locally in the function. These are usually local variables for the
function. Sometimes these local variable are also available to descending
functions (to callee functions, if caller passes a pointer to a variable to the
callee to be executed). Allocation and deallocation are very fast, it’s just
SP needs to be shifted. But they’re also not convenient for buffers/arrays, be-
cause the buffer size has to be fixed, unless alloca() ( 5.2.4 on page 17)
(or a variable-length array) is used. Buffer overflows usually overwrite im-
portant stack structures: 16.2 on page 95.

• Heap. AKA “dynamic memory allocation”. Allocation is done by calling mal-
loc()/free() ornew/delete in C++. This is themost convenientmethod:
the block size may be set at runtime. Resizing is possible (using realloc()),
but can be slow. This is the slowest way to allocate memory: the memory
allocator must support and update all control structures while allocating and
deallocating. Buffer overflows usually overwrite these structures. Heap al-
locations are also source of memory leak problems: each memory block has
to be deallocated explicitly, but one may forget about it, or do it incorrectly.
Another problem is the “use after free”—using a memory block after free()
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was called on it, which is very dangerous. Example in this book: 19.2 on
page 132.
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Minimalism it is not a prominent feature of modern software.

But not because the programmers are writing a lot, but because a lot of libraries are
commonly linked statically to executable files. If all external libraries were shifted
into an external DLL files, the world would be different. (Another reason for C++
are the STL and other template libraries.)

Thus, it is very important to determine the origin of a function, if it is from standard
library or well-known library (like Boost1, libpng2), or if it is related to what we are
trying to find in the code.

It is just absurd to rewrite all code in C/C++ to find what we’re looking for.

One of the primary tasks of a reverse engineer is to find quickly the code he/she
needs.

The IDA disassembler allow us to search among text strings, byte sequences and
constants. It is even possible to export the code to .lst or .asm text files and then
use grep, awk, etc.

When you try to understand what some code is doing, this easily could be some
open-source library like libpng. So when you see some constants or text strings
which look familiar, it is always worth to google them. And if you find the open-
source project where they are used, then it’s enough just to compare the functions.
It may solve some part of the problem.

For example, if a program uses XML files, the first step may be determining which
XML library is used for processing, since the standard (or well-known) libraries are
usually used instead of self-made one.

For example, author of these lines once tried to understand how the compres-
sion/decompression of network packets worked in SAP 6.0. It is a huge software,
but a detailed .PDB with debugging information is present, and that is convenient.
He finally came to the idea that one of the functions, that was called CsDecom-
prLZC, was doing the decompression of network packets. Immediately he tried to
google its name and he quickly found the function was used in MaxDB (it is an
open-source SAP project) .

http://www.google.com/search?q=CsDecomprLZC

Astoundingly, MaxDB and SAP 6.0 software shared likewise code for the compres-
sion/decompression of network packets.

1http://go.yurichev.com/17036
2http://go.yurichev.com/17037

162

http://www.google.com/search?q=CsDecomprLZC
http://go.yurichev.com/17036
http://go.yurichev.com/17037


CHAPTER 24. COMMUNICATION WITH THE OUTER WORLD (WIN32) CHAPTER 24. COMMUNICATION WITH THE OUTER WORLD (WIN32)

Chapter 24

Communication with the outer
world (win32)

Sometimes it’s enough to observe some function’s inputs and outputs in order to
understand what it does. That way you can save time.

Files and registry access: for the very basic analysis, Process Monitor1 utility from
SysInternals can help.

For the basic analysis of network accesses, Wireshark2 can be useful.

But then you will have to to look inside anyway.

The first thing to look for is which functions from the OS’s API3s and standard
libraries are used.

If the program is divided into a main executable file and a group of DLL files, some-
times the names of the functions in these DLLs can help.

If we are interested in exactly what can lead to a call to MessageBox() with
specific text, we can try to find this text in the data segment, find the references to
it and find the points from which the control may be passed to the MessageBox()
call we’re interested in.

If we are talking about a video game and we’re interested in which events are more
or less random in it, we may try to find the rand() function or its replacements
(like the Mersenne twister algorithm) and find the places from which those func-
tions are called, and more importantly, how are the results used.

1http://go.yurichev.com/17301
2http://go.yurichev.com/17303
3Application programming interface
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But if it is not a game, and rand() is still used, it is also interesting to know why.
There are cases of unexpected rand() usage in data compression algorithms (for
encryption imitation): blog.yurichev.com.

24.1 Often used functions in the Windows API

These functions may be among the imported. It is worth to note that not every
function might be used in the code that was written by the programmer. A lot of
functions might be called from library functions and CRT code.

• Registry access (advapi32.dll): RegEnumKeyEx4 5, RegEnumValue6 5, RegGet-
Value7 5, RegOpenKeyEx8 5, RegQueryValueEx9 5.

• Access to text .ini-files (kernel32.dll): GetPrivateProfileString 10 5.

• Dialog boxes (user32.dll): MessageBox 11 5, MessageBoxEx 12 5, SetDlgItem-
Text 13 5, GetDlgItemText 14 5.

• Resources access : (user32.dll): LoadMenu 15 5.

• TCP/IP networking (ws2_32.dll): WSARecv 16, WSASend 17.

• File access (kernel32.dll): CreateFile 18 5, ReadFile 19, ReadFileEx 20, WriteFile
21, WriteFileEx 22.

• High-level access to the Internet (wininet.dll): WinHttpOpen 23.
4MSDN
5May have the -A suffix for the ASCII version and -W for the Unicode version
6MSDN
7MSDN
8MSDN
9MSDN

10MSDN
11MSDN
12MSDN
13MSDN
14MSDN
15MSDN
16MSDN
17MSDN
18MSDN
19MSDN
20MSDN
21MSDN
22MSDN
23MSDN
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• Checking the digital signature of an executable file (wintrust.dll): WinVeri-
fyTrust 24.

• The standard MSVC library (if it’s linked dynamically) (msvcr*.dll): assert, itoa,
ltoa, open, printf, read, strcmp, atol, atoi, fopen, fread, fwrite, memcmp, rand,
strlen, strstr, strchr.

24.2 tracer: Intercepting all functions in specific mod-
ule

There are INT3 breakpoints in the tracer, that are triggered only once, however,
they can be set for all functions in a specific DLL.

--one-time-INT3-bp:somedll.dll!.*

Or, let’s set INT3 breakpoints on all functions with the xml prefix in their name:

--one-time-INT3-bp:somedll.dll!xml.*

On the other side of the coin, such breakpoints are triggered only once.

Tracer will show the call of a function, if it happens, but only once. Another drawback—
it is impossible to see the function’s arguments.

Nevertheless, this feature is very useful when you know that the program uses a
DLL, but you do not know which functions are actually used. And there are a lot of
functions.

For example, let’s see, what does the uptime utility from cygwin use:

tracer -l:uptime.exe --one-time-INT3-bp:cygwin1.dll!.*

Thus we may see all that cygwin1.dll library functions that were called at least
once, and where from:

One-time INT3 breakpoint: cygwin1.dll!__main (called from ⤦
Ç uptime.exe!OEP+0x6d (0x40106d))

One-time INT3 breakpoint: cygwin1.dll!_geteuid32 (called from ⤦
Ç uptime.exe!OEP+0xba3 (0x401ba3))

One-time INT3 breakpoint: cygwin1.dll!_getuid32 (called from ⤦
Ç uptime.exe!OEP+0xbaa (0x401baa))

One-time INT3 breakpoint: cygwin1.dll!_getegid32 (called from ⤦
Ç uptime.exe!OEP+0xcb7 (0x401cb7))

24MSDN
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One-time INT3 breakpoint: cygwin1.dll!_getgid32 (called from ⤦
Ç uptime.exe!OEP+0xcbe (0x401cbe))

One-time INT3 breakpoint: cygwin1.dll!sysconf (called from ⤦
Ç uptime.exe!OEP+0x735 (0x401735))

One-time INT3 breakpoint: cygwin1.dll!setlocale (called from ⤦
Ç uptime.exe!OEP+0x7b2 (0x4017b2))

One-time INT3 breakpoint: cygwin1.dll!_open64 (called from ⤦
Ç uptime.exe!OEP+0x994 (0x401994))

One-time INT3 breakpoint: cygwin1.dll!_lseek64 (called from ⤦
Ç uptime.exe!OEP+0x7ea (0x4017ea))

One-time INT3 breakpoint: cygwin1.dll!read (called from uptime.⤦
Ç exe!OEP+0x809 (0x401809))

One-time INT3 breakpoint: cygwin1.dll!sscanf (called from ⤦
Ç uptime.exe!OEP+0x839 (0x401839))

One-time INT3 breakpoint: cygwin1.dll!uname (called from uptime⤦
Ç .exe!OEP+0x139 (0x401139))

One-time INT3 breakpoint: cygwin1.dll!time (called from uptime.⤦
Ç exe!OEP+0x22e (0x40122e))

One-time INT3 breakpoint: cygwin1.dll!localtime (called from ⤦
Ç uptime.exe!OEP+0x236 (0x401236))

One-time INT3 breakpoint: cygwin1.dll!sprintf (called from ⤦
Ç uptime.exe!OEP+0x25a (0x40125a))

One-time INT3 breakpoint: cygwin1.dll!setutent (called from ⤦
Ç uptime.exe!OEP+0x3b1 (0x4013b1))

One-time INT3 breakpoint: cygwin1.dll!getutent (called from ⤦
Ç uptime.exe!OEP+0x3c5 (0x4013c5))

One-time INT3 breakpoint: cygwin1.dll!endutent (called from ⤦
Ç uptime.exe!OEP+0x3e6 (0x4013e6))

One-time INT3 breakpoint: cygwin1.dll!puts (called from uptime.⤦
Ç exe!OEP+0x4c3 (0x4014c3))
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Chapter 25

Strings

25.1 Text strings

25.1.1 C/C++

The normal C strings are zero-terminated (ASCIIZ-strings).

The reason why the C string format is as it is (zero-terminated) is apparently histor-
ical. In [Rit79] we read:

A minor difference was that the unit of I/O was the word, not
the byte, because the PDP-7 was a word-addressed machine. In
practice this meant merely that all programs dealing with charac-
ter streams ignored null characters, because null was used to pad
a file to an even number of characters.

In Hiew or FAR Manager these strings looks like this:

int main()
{

printf ("Hello, world!\n");
};
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Figure 25.1: Hiew

25.1.2 Borland Delphi

The string in Pascal and Borland Delphi is preceded by an 8-bit or 32-bit string
length.

For example:

Listing 25.1: Delphi
CODE:00518AC8 dd 19h
CODE:00518ACC aLoading___Plea db 'Loading... , please wait.',0

...

CODE:00518AFC dd 10h
CODE:00518B00 aPreparingRun__ db 'Preparing run...',0

25.1.3 Unicode

Often, what is called Unicode is a methods for encoding strings where each charac-
ter occupies 2 bytes or 16 bits. This is a common terminological mistake. Unicode
is a standard for assigning a number to each character in the many writing systems
of the world, but does not describe the encoding method.

The most popular encoding methods are: UTF-8 (is widespread in Internet and *NIX
systems) and UTF-16LE (is used in Windows).
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UTF-8

UTF-8 is one of the most successful methods for encoding characters. All Latin
symbols are encoded just like in ASCII, and the symbols beyond the ASCII table
are encoded using several bytes. 0 is encoded as before, so all standard C string
functions work with UTF-8 strings just like any other string.

Let’s see how the symbols in various languages are encoded in UTF-8 and how it
looks like in FAR, using the 437 codepage 1:

Figure 25.2: FAR: UTF-8

As you can see, the English language string looks the same as it is in ASCII. The
Hungarian language uses some Latin symbols plus symbols with diacritic marks.
These symbols are encoded using several bytes, these are underscored with red.
It’s the same story with the Icelandic and Polish languages. There is also the “Euro”

1The example and translations was taken from here: http://go.yurichev.com/17304
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currency symbol at the start, which is encoded with 3 bytes. The rest of the writing
systems here have no connection with Latin. At least in Russian, Arabic, Hebrew
and Hindi we can see some recurring bytes, and that is not surprise: all symbols
from a writing system are usually located in the same Unicode table, so their code
begins with the same numbers.

At the beginning, before the “How much?” string we see 3 bytes, which are in fact
the BOM2. The BOM defines the encoding system to be used.

UTF-16LE

Many win32 functions in Windows have the suffixes -A and -W. The first type of
functions works with normal strings, the other with UTF-16LE strings (wide). In
the second case, each symbol is usually stored in a 16-bit value of type short.

The Latin symbols in UTF-16 strings look in Hiew or FAR like they are interleaved
with zero byte:

int wmain()
{

wprintf (L"Hello, world!\n");
};

Figure 25.3: Hiew

We can see this often in Windows NT system files:
2Byte order mark
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Figure 25.4: Hiew

Strings with characters that occupy exactly 2 bytes are called “Unicode” in IDA:

.data:0040E000 aHelloWorld:

.data:0040E000 unicode 0, <Hello, world!>

.data:0040E000 dw 0Ah, 0

Here is how the Russian language string is encoded in UTF-16LE:

Figure 25.5: Hiew: UTF-16LE

What we can easily spot is that the symbols are interleaved by the diamond char-
acter (which has the ASCII code of 4). Indeed, the Cyrillic symbols are located in
the fourth Unicode plane 3. Hence, all Cyrillic symbols in UTF-16LE are located in
the 0x400-0x4FF range.

3wikipedia
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Let’s go back to the example with the string written in multiple languages. Here is
how it looks like in UTF-16LE.

Figure 25.6: FAR: UTF-16LE

Here we can also see the BOM in the beginning. All Latin characters are interleaved
with a zero byte. Some characters with diacritic marks (Hungarian and Icelandic
languages) are also underscored in red.

25.1.4 Base64

The base64 encoding is highly popular for the cases when you need to transfer
binary data as a text string. In essence, this algorithm encodes 3 binary bytes into
4 printable characters: all 26 Latin letters (both lower and upper case), digits, plus
sign (“+”) and slash sign (“/”), 64 characters in total.

One distinctive feature of base64 strings is that they often (but not always) ends
with 1 or 2 padding equality symbol(s) (“=”), for example:

AVjbbVSVfcUMu1xvjaMgjNtueRwBbxnyJw8dpGnLW8ZW8aKG3v4Y0icuQT+⤦
Ç qEJAp9lAOuWs=
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WVjbbVSVfcUMu1xvjaMgjNtueRwBbxnyJw8dpGnLW8ZW8aKG3v4Y0icuQT+⤦
Ç qEJAp9lAOuQ==

The equality sign (“=”) is never encounter in the middle of base64-encoded strings.

25.2 Error/debug messages

Debugging messages are very helpful if present. In some sense, the debugging
messages are reporting what’s going on in the program right now. Often these are
printf()-like functions, which write to log-files, or sometimes do not writing
anything but the calls are still present since the build is not a debug one but release
one. If local or global variables are dumped in debug messages, it might be helpful
as well since it is possible to get at least the variable names. For example, one of
such function in Oracle RDBMS is ksdwrt().

Meaningful text strings are often helpful. The IDA disassembler may show from
which function and from which point this specific string is used. Funny cases some-
times happen4.

The error messages may help us as well. In Oracle RDBMS, errors are reported
using a group of functions.
You can read more about them here: blog.yurichev.com.

It is possible to find quickly which functions report errors and in which conditions.
By the way, this is often the reason for copy-protection systems to inarticulate
cryptic error messages or just error numbers. No one is happy when the software
cracker quickly understand why the copy-protection is triggered just by the error
message.

25.3 Suspicious magic strings

Some magic strings which are usually used in backdoors looks pretty suspicious.
For example, there was a backdoor in the TP-Link WR740 home router5. The back-
door was activated using the following URL:
http://192.168.0.1/userRpmNatDebugRpm26525557/start_art.html.
Indeed, the “userRpmNatDebugRpm26525557” string is present in the firmware.
This string was not googleable until the wide disclosure of information about the
backdoor. You would not find this in any RFC6. You would not find any computer

4blog.yurichev.com
5http://sekurak.pl/tp-link-httptftp-backdoor/
6Request for Comments
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science algorithm which uses such strange byte sequences. And it doesn’t look
like an error or debugging message. So it’s a good idea to inspect the usage of
such weird strings.

Sometimes, such strings are encoded using base64. So it’s a good idea to
decode them all and to scan them visually, even a glance should be enough.

More precise, this method of hiding backdoors is called “security through obscu-
rity”.
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Chapter 26

Calls to assert()

Sometimes the presence of the assert() macro is useful too: commonly this
macro leaves source file name, line number and condition in the code.

The most useful information is contained in the assert’s condition, we can deduce
variable names or structure field names from it. Another useful piece of information
are the file names—we can try to deduce what type of code is there. Also it is
possible to recognize well-known open-source libraries by the file names.

Listing 26.1: Example of informative assert() calls
.text:107D4B29 mov dx, [ecx+42h]
.text:107D4B2D cmp edx, 1
.text:107D4B30 jz short loc_107D4B4A
.text:107D4B32 push 1ECh
.text:107D4B37 push offset aWrite_c ; "write.c"
.text:107D4B3C push offset aTdTd_planarcon ; "td->⤦

Ç td_planarconfig == PLANARCONFIG_CON"...
.text:107D4B41 call ds:_assert

...

.text:107D52CA mov edx, [ebp-4]

.text:107D52CD and edx, 3

.text:107D52D0 test edx, edx

.text:107D52D2 jz short loc_107D52E9

.text:107D52D4 push 58h

.text:107D52D6 push offset aDumpmode_c ; "dumpmode.c"

.text:107D52DB push offset aN30 ; "(n & 3) == 0"

.text:107D52E0 call ds:_assert

...
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.text:107D6759 mov cx, [eax+6]

.text:107D675D cmp ecx, 0Ch

.text:107D6760 jle short loc_107D677A

.text:107D6762 push 2D8h

.text:107D6767 push offset aLzw_c ; "lzw.c"

.text:107D676C push offset aSpLzw_nbitsBit ; "sp->lzw_nbits <= ⤦
Ç BITS_MAX"

.text:107D6771 call ds:_assert

It is advisable to “google” both the conditions and file names, which can lead us to
an open-source library. For example, if we “google” “sp->lzw_nbits <= BITS_MAX”,
this predictably gives us some open-source code that’s related to the LZW compres-
sion.

176



CHAPTER 27. CONSTANTS CHAPTER 27. CONSTANTS

Chapter 27

Constants

Humans, including programmers, often use round numbers like 10, 100, 1000, in
real life as well as in the code.

The practicing reverse engineer usually know them well in hexadecimal represen-
tation: 10=0xA, 100=0x64, 1000=0x3E8, 10000=0x2710.

The constants 0xAAAAAAAA (10101010101010101010101010101010) and
0x55555555 (01010101010101010101010101010101) are also popular—those
are composed of alternating bits. That may help to distinguish some signal from
the signal where all bits are turned on (1111 …) or off (0000 …). For example, the
0x55AA constant is used at least in the boot sector, MBR1, and in the ROM2 of
IBM-compatible extension cards.

Some algorithms, especially cryptographical ones use distinct constants, which are
easy to find in code using IDA.

For example, the MD53 algorithm initializes its own internal variables like this:

var int h0 := 0x67452301
var int h1 := 0xEFCDAB89
var int h2 := 0x98BADCFE
var int h3 := 0x10325476

If you find these four constants used in the code in a row, it is very highly probable
that this function is related to MD5.

Another example are the CRC16/CRC32 algorithms, whose calculation algorithms
often use precomputed tables like this one:

1Master Boot Record
2Read-only memory
3wikipedia
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Listing 27.1: linux/lib/crc16.c
/** CRC table for the CRC-16. The poly is 0x8005 (x^16 + x^15 +⤦

Ç x^2 + 1) */
u16 const crc16_table[256] = {

0x0000, 0xC0C1, 0xC181, 0x0140, 0xC301, 0x03C0, 0x0280,⤦
Ç 0xC241,

0xC601, 0x06C0, 0x0780, 0xC741, 0x0500, 0xC5C1, 0xC481,⤦
Ç 0x0440,

0xCC01, 0x0CC0, 0x0D80, 0xCD41, 0x0F00, 0xCFC1, 0xCE81,⤦
Ç 0x0E40,

...

27.1 Magic numbers

A lot of file formats define a standard file header where a magic number(s)4 is used,
single one or even several.

For example, all Win32 and MS-DOS executables start with the two characters
“MZ”5.

At the beginning of a MIDI file the “MThd” signature must be present. If we have a
program which uses MIDI files for something, it’s very likely that it must check the
file for validity by checking at least the first 4 bytes.

This could be done like this:

(buf points to the beginning of the loaded file in memory)

cmp [buf], 0x6468544D ; "MThd"
jnz _error_not_a_MIDI_file

…or by calling a function for comparingmemory blocks like memcmp() or any other
equivalent code up to a CMPSB instruction.

When you find such point you already can say where the loading of the MIDI file
starts, also, we could see the location of the buffer with the contents of the MIDI
file, what is used from the buffer, and how.

27.1.1 DHCP

This applies to network protocols as well. For example, the DHCP protocol’s net-
work packets contains the so-called magic cookie: 0x63538263. Any code that

4wikipedia
5wikipedia
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generates DHCP packets somewhere must embed this constant into the packet. If
we find it in the code we may find where this happens and, not only that. Any
program which can receive DHCP packet must verify the magic cookie, comparing
it with the constant.

For example, let’s take the dhcpcore.dll file from Windows 7 x64 and search for the
constant. And we can find it, twice: it seems that the constant is used in two func-
tionswith descriptive names likeDhcpExtractOptionsForValidation() and
DhcpExtractFullOptions():

Listing 27.2: dhcpcore.dll (Windows 7 x64)
.rdata:000007FF6483CBE8 dword_7FF6483CBE8 dd 63538263h ⤦

Ç ; DATA XREF: DhcpExtractOptionsForValidation+79
.rdata:000007FF6483CBEC dword_7FF6483CBEC dd 63538263h ⤦

Ç ; DATA XREF: DhcpExtractFullOptions+97

And here are the places where these constants are accessed:

Listing 27.3: dhcpcore.dll (Windows 7 x64)
.text:000007FF6480875F mov eax, [rsi]
.text:000007FF64808761 cmp eax, cs:dword_7FF6483CBE8
.text:000007FF64808767 jnz loc_7FF64817179

And:

Listing 27.4: dhcpcore.dll (Windows 7 x64)
.text:000007FF648082C7 mov eax, [r12]
.text:000007FF648082CB cmp eax, cs:dword_7FF6483CBEC
.text:000007FF648082D1 jnz loc_7FF648173AF

27.2 Searching for constants

It is easy in IDA: Alt-B or Alt-I. And for searching for a constant in a big pile of files,
or for searching in non-executable files, there is a small utility called binary grep6.

6GitHub
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Chapter 28

Finding the right instructions

If the program is utilizing FPU instructions and there are very few of them in the
code, one can try to check each one manually with a debugger.

For example, we may be interested how Microsoft Excel calculates the formulae
entered by user. For example, the division operation.

If we load excel.exe (from Office 2010) version 14.0.4756.1000 into IDA, make a full
listing and to find every FDIV instruction (except the ones which use constants as
a second operand—obviously, they do not suit us):

cat EXCEL.lst | grep fdiv | grep -v dbl_ > EXCEL.fdiv

…then we see that there are 144 of them.

We can enter a string like =(1/3) in Excel and check each instruction.

By checking each instruction in a debugger or tracer (one may check 4 instruction
at a time), we get lucky and the sought-for instruction is just the 14th:

.text:3011E919 DC 33 fdiv ⤦

Ç qword ptr [ebx]

PID=13944|TID=28744|(0) 0x2f64e919 (Excel.exe!BASE+0x11e919)
EAX=0x02088006 EBX=0x02088018 ECX=0x00000001 EDX=0x00000001
ESI=0x02088000 EDI=0x00544804 EBP=0x0274FA3C ESP=0x0274F9F8
EIP=0x2F64E919
FLAGS=PF IF
FPU ControlWord=IC RC=NEAR PC=64bits PM UM OM ZM DM IM
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FPU StatusWord=
FPU ST(0): 1.000000

ST(0) holds the first argument (1) and second one is in [EBX].

The instruction after FDIV (FSTP) writes the result in memory:

.text:3011E91B DD 1E fstp ⤦

Ç qword ptr [esi]

If we set a breakpoint on it, we can see the result:

PID=32852|TID=36488|(0) 0x2f40e91b (Excel.exe!BASE+0x11e91b)
EAX=0x00598006 EBX=0x00598018 ECX=0x00000001 EDX=0x00000001
ESI=0x00598000 EDI=0x00294804 EBP=0x026CF93C ESP=0x026CF8F8
EIP=0x2F40E91B
FLAGS=PF IF
FPU ControlWord=IC RC=NEAR PC=64bits PM UM OM ZM DM IM
FPU StatusWord=C1 P
FPU ST(0): 0.333333

Also as a practical joke, we can modify it on the fly:

tracer -l:excel.exe bpx=excel.exe!BASE+0x11E91B,set(st0,666)

PID=36540|TID=24056|(0) 0x2f40e91b (Excel.exe!BASE+0x11e91b)
EAX=0x00680006 EBX=0x00680018 ECX=0x00000001 EDX=0x00000001
ESI=0x00680000 EDI=0x00395404 EBP=0x0290FD9C ESP=0x0290FD58
EIP=0x2F40E91B
FLAGS=PF IF
FPU ControlWord=IC RC=NEAR PC=64bits PM UM OM ZM DM IM
FPU StatusWord=C1 P
FPU ST(0): 0.333333
Set ST0 register to 666.000000

Excel shows 666 in the cell, finally convincing us that we have found the right
point.
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Figure 28.1: The practical joke worked

If we try the same Excel version, but in x64, we will find only 12 FDIV instructions
there, and the one we looking for is the third one.

tracer.exe -l:excel.exe bpx=excel.exe!BASE+0x1B7FCC,set(st0⤦
Ç ,666)

It seems that a lot of division operations of float and double types, were replaced
by the compiler with SSE instructions like DIVSD (DIVSD is present 268 times in
total).

182



CHAPTER 29. SUSPICIOUS CODE PATTERNS CHAPTER 29. SUSPICIOUS CODE PATTERNS

Chapter 29

Suspicious code patterns

29.1 XOR instructions

Instructions like XOR op, op (for example, XOR EAX, EAX) are usually used
for setting the register value to zero, but if the operands are different, the “exclu-
sive or” operation is executed. This operation is rare in common programming,
but widespread in cryptography, including amateur one. It’s especially suspicious
if the second operand is a big number. This may point to encrypting/decrypting,
checksum computing,etc.

This AWK script can be used for processing IDA listing (.lst) files:

gawk -e '$2=="xor" { tmp=substr($3, 0, length($3)-1); if (tmp!=⤦
Ç $4) if($4!="esp") if ($4!="ebp") { print $1, $2, tmp, ⤦
Ç ",", $4 } }' filename.lst

29.2 Hand-written assembly code

Modern compilers do not emit the LOOP and RCL instructions. On the other hand,
these instructions are well-known to coders who like to code directly in assembly
language. If you spot these, it can be said that there is a high probability that this
fragment of code was hand-written.

Also the function prologue/epilogue are not commonly present in hand-written
assembly.
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Commonly there is no fixed system for passing arguments to functions in the hand-
written code.

Example from the Windows 2003 kernel (ntoskrnl.exe file):

MultiplyTest proc near ; CODE XREF: ⤦
Ç Get386Stepping

xor cx, cx
loc_620555: ; CODE XREF: MultiplyTest+⤦

Ç E
push cx
call Multiply
pop cx
jb short locret_620563
loop loc_620555
clc

locret_620563: ; CODE XREF: MultiplyTest+⤦
Ç C

retn
MultiplyTest endp

Multiply proc near ; CODE XREF: MultiplyTest⤦
Ç +5

mov ecx, 81h
mov eax, 417A000h
mul ecx
cmp edx, 2
stc
jnz short locret_62057F
cmp eax, 0FE7A000h
stc
jnz short locret_62057F
clc

locret_62057F: ; CODE XREF: Multiply+10
; Multiply+18

retn
Multiply endp

Indeed, if we look in the WRK1 v1.2 source code, this code can be found easily in
file WRK-v1.2\base\ntos\ke\i386\cpu.asm.

1Windows Research Kernel
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Chapter 30

Using magic numbers while
tracing

Often, our main goal is to understand how the program uses a value that was either
read from file or received via network. The manual tracing of a value is often a very
labour-intensive task. One of the simplest techniques for this (although not 100%
reliable) is to use your own magic number.

This resembles X-ray computed tomography is some sense: a radiocontrast agent
is injected into the patient’s blood, which is then used to improve the visibility of
the patient’s internal structure in to the X-rays. It is well known how the blood of
healthy humans percolates in the kidneys and if the agent is in the blood, it can be
easily seen on tomography, how blood is percolating, and are there any stones or
tumors.

We can take a 32-bit number like0x0badf00d, or someone’s birth date like0x11101979
and write this 4-byte number to some point in a file used by the program we inves-
tigate.

Then, while tracing this program with tracer in code coverage mode, with the help
of grep or just by searching in the text file (of tracing results), we can easily see
where the value was used and how.

Example of grepable tracer results in cc mode:

0x150bf66 (_kziaia+0x14), e= 1 [MOV EBX, [EBP+8]] [EBP⤦
Ç +8]=0xf59c934

0x150bf69 (_kziaia+0x17), e= 1 [MOV EDX, [69AEB08h]] [69⤦
Ç AEB08h]=0

0x150bf6f (_kziaia+0x1d), e= 1 [FS: MOV EAX, [2Ch]]
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0x150bf75 (_kziaia+0x23), e= 1 [MOV ECX, [EAX+EDX*4]] [⤦
Ç EAX+EDX*4]=0xf1ac360

0x150bf78 (_kziaia+0x26), e= 1 [MOV [EBP-4], ECX] ECX=0⤦
Ç xf1ac360

This can be used for network packets as well. It is important for the magic number
to be unique and not to be present in the program’s code.

Aside of the tracer, DosBox (MS-DOS emulator) in heavydebugmode is able to write
information about all registers’ states for each executed instruction of the program
to a plain text file1, so this technique may be useful for DOS programs as well.

1See also my blog post about this DosBox feature: blog.yurichev.com
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Chapter 31

Other things

31.1 General idea

A reverse engineer should try to be in programmer’s shoes as often as possible. To
take his/her viewpoint and ask himself, how would one solve some task the specific
case.

31.2 Some binary file patterns

Sometimes, we can clearly spot an array of 16/32/64-bit values visually, in hex
editor. Here is an example of very typical MIPS code. As we may remember, every
MIPS (and also ARM in ARM mode or ARM64) instruction has size of 32 bits (or 4
bytes), so such code is array of 32-bit values. By looking at this screenshot, we
may see some kind of pattern. Vertical red lines are added for clarity:
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Figure 31.1: Hiew: very typical MIPS code

31.3 Memory “snapshots” comparing

The technique of the straightforward comparison of twomemory snapshots in order
to see changes was often used to hack 8-bit computer games and for hacking “high
score” files.

For example, if you had a loaded game on an 8-bit computer (there isn’t much
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memory on these, but the game usually consumes even less memory) and you know
that you have now, let’s say, 100 bullets, you can do a “snapshot” of all memory and
back it up to some place. Then shoot once, the bullet count goes to 99, do a second
“snapshot” and then compare both: the must be must be a byte somewhere which
was 100 in the beginning, and now it is 99. Considering the fact that these 8-bit
games were often written in assembly language and such variables were global,
it can be said for sure which address in memory was holding the bullet count. If
you searched for all references to the address in the disassembled game code, it
was not very hard to find a piece of code decrementing the bullet count, then to
write a NOP instruction there, or a couple of NOP-s, and then have a game with
100 bullets forever. Games on these 8-bit computers were commonly loaded at
the constant address, also, there were not much different versions of each game
(commonly just one version was popular for a long span of time), so enthusiastic
gamers knew which bytes must be overwritten (using the BASIC’s instruction POKE)
at which address in order to hack it. This led to “cheat” lists that contained POKE
instructions, published in magazines related to 8-bit games. See also: wikipedia.

Likewise, it is easy to modify “high score” files, this does not work with just 8-bit
games. Notice your score count and back up the file somewhere. When the “high
score” count gets different, just compare the two files, it can even be done with the
DOS utility FC1 (“high score” files are often in binary form). There will be a point
where a couple of bytes are different and it is easy to see which ones are holding
the score number. However, game developers are fully aware of such tricks and
may defend the program against it.

31.3.1 Windows registry

It is also possible to compare the Windows registry before and after a program
installation. It is a very popularmethod of findingwhich registry elements are used
by the program. Probably, this is the reason why the “windows registry cleaner”
shareware is so popular.

31.3.2 Blink-comparator

Comparison of files or memory snapshots remind us blink-comparator 2: a device
used by astronomers in past, intended to find moving celestial objects. Blink-
comparator allows to switch quickly between two photographies shot in different
time, so astronomer would spot the difference visually. By the way, Pluto was
discovered by blink-comparator in 1930.

1MS-DOS utility for comparing binary files
2http://go.yurichev.com/17348
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Chapter 32

Disassembler

32.1 IDA

An older freeware version is available for download 1.

1hex-rays.com/products/ida/support/download_freeware.shtml

191

http://go.yurichev.com/17031


CHAPTER 33. DEBUGGER CHAPTER 33. DEBUGGER

Chapter 33

Debugger

33.1 tracer

The author often use tracer1 instead of a debugger.

The author of these lines stopped using a debugger eventually, since all he need
from it is to spot function arguments while executing, or registers state at some
point. Loading a debugger each time is toomuch, so a small utility called tracer was
born. It works from command line, allows intercepting function execution, setting
breakpoints at arbitrary places, reading and changing registers state, etc.

However, for learning purposes it is highly advisable to trace code in a debugger
manually, watch how the registers state changes (e.g. classic SoftICE, OllyDbg,
WinDbg highlight changed registers), flags, data, change them manually, watch
the reaction, etc.

1yurichev.com
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Chapter 34

Decompilers

There is only one known, publicly available, high-quality decompiler to C code:
Hex-Rays:
hex-rays.com/products/decompiler/
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Chapter 35

Other tools

• Microsoft Visual Studio Express1: Stripped-down free version of Visual Stu-
dio, convenient for simple experiments.

• Hiew2 for small modifications of code in binary files.

• binary grep: a small utility for searching any byte sequence in a big pile of
files, including non-executable ones: GitHub.

1visualstudio.com/en-US/products/visual-studio-express-vs
2hiew.ru
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Books

36.1 Windows

[RA09].

36.2 C/C++

[ISO13].

36.3 x86 / x86-64

[Int13], [AMD13]

36.4 ARM

ARM manuals: http://go.yurichev.com/17024

36.5 Cryptography

[Sch94]
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Chapter 37

Blogs

37.1 Windows

• Microsoft: Raymond Chen

• nynaeve.net
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Chapter 38

Other

There are two excellent RE1-related subreddits on reddit.com: reddit.com/r/ReverseEngineering/
and reddit.com/r/remath ( on the topics for the intersection of RE andmathematics).

There is also a RE part of the Stack Exchange website:
reverseengineering.stackexchange.com.

On IRC there a ##re channel on FreeNode2.

1Reverse Engineering
2freenode.net
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Chapter 39

Questions?

Do not hesitate tomail any questions to the author: <dennis(a)yurichev.com>

Any suggestions what also should be added to my book?

Please, do not hesitate to send me any corrections (including grammar (you see
how horrible my English is?)),etc.

The author is working on the book a lot, so the page and listing numbers, etc.
are changing very rapidly. Please, do not refer to page and listing numbers in your
emails to me. There is a much simpler method: make a screenshot of the page, in
a graphics editor underline the place where you see the error, and send it to me.
He’ll fix it much faster. And if you familiar with git and LATEX you can fix the error
right in the source code:
GitHub.

Do not worry to bother me while writing me about any petty mistakes you found,
even if you are not very confident. I’m writing for beginners, after all, so beginners’
opinions and comments are crucial for my job.
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Warning: this is a shortened
LITE-version!

It is approximately 6 times shorter than full version
(~150 pages) and intended to those who wants for very
quick introduction to reverse engineering basics. There
are nothing about MIPS, ARM, OllyDBG, GCC, GDB, IDA,

there are no exercises, examples, etc.

If you still interesting in reverse engineering, full version of the book is always
available on my website: beginners.re.
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OS Operating System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

PL Programming language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

ROM Read-only memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

RA Return Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

SP stack pointer. SP/ESP/RSP in x86/x64. SP in ARM. . . . . . . . . . . . . . . . . . . . . . . . . 13

PC Program Counter. IP/EIP/RIP in x86/64. PC in ARM. . . . . . . . . . . . . . . . . . . . . . . 205

IDA Interactive Disassembler and debugger developed by Hex-Rays

MSVC Microsoft Visual C++

AKA Also Known As

CRT C runtime library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

CPU Central processing unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

SIMD Single instruction, multiple data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

DBMS Database management systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

ISA Instruction Set Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

SEH Structured Exception Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

NOP No OPeration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

RAM Random-access memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

API Application programming interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
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ASCIIZ ASCII Zero (null-terminated ASCII string) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

VM Virtual Memory

WRK Windows Research Kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

GPR General Purpose Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

RE Reverse Engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

BOM Byte order mark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

MBR Master Boot Record . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

RFC Request for Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

EOF End of file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
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real number numbers which may contain a dot. this is float and double in C/C++.
92

decrement Decrease by 1. 77, 86, 189

increment Increase by 1. 77, 86

product Multiplication result. 41

stack pointer A register pointing to a place in the stack. 9, 13, 17, 22, 203

quotient Division result. 92

anti-pattern Generally considered as bad practice. 30, 159

callee A function being called by another. 11, 16, 26, 27, 35, 40, 42, 66, 154, 159

caller A function calling another. 5, 9, 35, 40, 41, 44, 66, 154

heap usually, a big chunk of memory provided by the OS so that applications can
divide it by themselves as they wish. malloc()/free() work with the heap. 14,
16, 132

jump offset a part of the JMP or Jcc instruction’s opcode, to be added to the address
of the next instruction, and this is how the new PC1 is calculated. May be
negative as well. 38, 54

NOP “no operation”, idle instruction. 189

PDB (Win32) Debugging information file, usually just function names, but some-
times also function arguments and local variables names. 162

POKE BASIC language instruction for writing a byte at a specific address. 189
1Program Counter. IP/EIP/RIP in x86/64. PC in ARM.
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register allocator The part of the compiler that assigns CPU registers to local vari-
ables. 86, 154

reverse engineering act of understanding how the thing works, sometimes in order
to clone it. iv

stack frame A part of the stack that contains information specific to the current
function: local variables, function arguments, RA, etc. 28, 41

stdout standard output. 18, 66

tracer My own simple debugging tool. You can read more about it here: 33.1 on
page 192. 165, 180, 185, 186

Windows NT Windows NT, 2000, XP, Vista, 7, 8. 170
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Buffer Overflow, 95
C language elements

Pointers, 26, 153
C99
bool, 112
variable length arrays, 101

const, 8
for, 77
if, 50, 65
return, 9, 35
switch, 63, 65
while, 84

C standard library
alloca(), 17, 101, 159
assert(), 175
free(), 159
longjmp(), 66
malloc(), 133, 159
memcmp(), 178
memcpy(), 27
rand(), 125, 163
realloc(), 159
scanf(), 26
strlen(), 84

Compiler’s anomalies, 61, 121
C++

STL, 162
grep usage, 162, 180, 185
Global variables, 30
Buffer overflow, 101
Recursion, 11, 15
Stack, 13, 40, 66

Stack overflow, 15

Stack frame, 28
Syntactic Sugar, 65
OllyDbg, 99, 106, 107
Oracle RDBMS, 9, 173

ARM
Instructions
ASR, 121
CSEL, 62
LSL, 121
LSR, 121
MOV, 5
MOVcc, 62
POP, 13
PUSH, 13
TEST, 86

AWK, 183

Base64, 172
base64, 174
bash, 46
BASIC

POKE, 189
binary grep, 179, 194
Borland Delphi, 168

cdecl, 22
column-major order, 105
Compiler intrinsic, 19
Cygwin, 165

DosBox, 186

Error messages, 173
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fastcall, 10, 25
FORTRAN, 105
Function epilogue, 11, 183
Function prologue, 11, 183

Hiew, 37, 54, 167

IDA, 171
Intel C++, 9

jumptable, 69

MD5, 177
MIDI, 178
MIPS, 187
MS-DOS, 178, 186, 189

Pascal, 168
puts() instead of printf(), 46

Register allocation, 154
row-major order, 105

SAP, 162
Security through obscurity, 174
Shadow space, 43
Signed numbers, 52, 157

tracer, 165, 180, 185, 192

Unicode, 168
UTF-16LE, 168, 170
UTF-8, 168, 169

Windows
KERNEL32.DLL, 113
PDB, 162
Structured Exception Handling, 19
Win32, 112, 170

x86
Instructions
ADC, 149
ADD, 9, 22, 41
AND, 113, 115, 118, 122, 146
CALL, 8, 14

CBW, 158
CDQ, 152, 158
CDQE, 158
CMOVcc, 59, 62
CMP, 35
CMPSB, 178
CPUID, 142
CWD, 158
CWDE, 158
DEC, 86
DIV, 158
DIVSD, 182
FDIV, 180, 181
IDIV, 158
IMUL, 41, 158
INC, 86
INT3, 165
JA, 52, 158
JAE, 52
JB, 52, 158
JBE, 52
Jcc, 61
JE, 66
JG, 52, 158
JGE, 52
JL, 52, 158
JLE, 51
JMP, 14
JNE, 35, 36, 52
JZ, 66
LEA, 29, 42
LOOP, 77, 82, 183
MOV, 5, 9
MOVSX, 85, 158
MOVSXD, 103
MOVZX, 134
MUL, 158
OR, 115
POP, 9, 13, 15
PUSH, 8, 13, 14, 28
RCL, 183
RET, 5, 9, 15
ROL, 120
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SAR, 121, 158
SBB, 149
SHL, 88, 95, 121
SHR, 92, 121, 145
SHRD, 152
SUB, 9, 35, 66
TEST, 85, 113, 122
XOR, 9, 35, 183

Registers
Flags, 35
EAX, 35, 45
EBP, 28, 41
ESP, 22, 28
JMP, 71
ZF, 36, 113

x86-64, 9, 23, 27, 29, 38, 42, 153
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