
SQL:
Triggers, Views, Indexes

Introduction to Databases

CompSci 316 Fall 2014

Announcements (Tue., Sep. 23)

• Homework #1 sample solution posted on Sakai

• Homework #2 due next Thursday
• Midterm on the following Thursday

• Project mixer this Thursday
• See my email about format

• Email me your “elevator pitch” by Wednesday midnight

• Project Milestone #1 due Thursday, Oct. 16
• See project description on what to accomplish by then

2

Announcements (Tue., Sep. 30)

• Homework #2 due date extended to Oct. 7

• Midterm in class next Thursday (Oct. 9)
• Open-book, open-notes

• Same format as sample midterm (from last year)
• Already posted on Sakai

• Solution to be posted later this week

3

“Active” data

• Constraint enforcement: When an operation
violates a constraint, abort the operation or try to
“fix” data

• Example: enforcing referential integrity constraints

• Generalize to arbitrary constraints?

• Data monitoring: When something happens to the
data, automatically execute some action

• Example: When price rises above $20 per share, sell

• Example: When enrollment is at the limit and more
students try to register, email the instructor

4

Triggers

• A trigger is an event-condition-action (ECA) rule
• When event occurs, test condition; if condition is

satisfied, execute action

• Example:
• Event: some user’s popularity is updated

• Condition: the user is a member of
“Jessica’s Circle,” and pop drops below 0.5

• Action: kick that user out of Jessica’s Circle

5

������������	��
���������
	�����������
����������
���
�����

Trigger example

������ ��!""�� #����������
�$��� %#&��� '$ �
� '(%���
��$���(�!(" (�) �') �* ���%���
$'� ���+ �')
)+�(,���%�����
� - .�/0
�(& ,���%������1 !(,*�2��� ��1

$�'3 3�	4��
)+��� ��1 5 6���600

&�2��� $�'3 3�	4��
)+��� ��1 5 ���%������1 �(& ��1 5 6���67

6

Event

Condition

Action

Trigger options

• Possible events include:
• !(*��� '(table

• &�2��� '(table

• %#&��� ['$ column] '(table

• Granularity—trigger can be activated:
• $'� ���+ �') modified

• $'� ���+ *����3�(� that performs modification

• Timing—action can be executed:
• �$��� or 8�$'�� the triggering event

• !(*���& '$ the triggering event on views (more later)

7

Transition variables

• '2& �'): the modified row before the triggering event

• (�) �'): the modified row after the triggering event

• '2& ��82�: a hypothetical read-only table containing
all rows to be modified before the triggering event

• (�) ��82�: a hypothetical table containing all
modified rows after the triggering event

�Not all of them make sense all the time, e.g.
• �$��� !(*��� statement-level triggers

• Can use only (�) ��82�

• 8�$'�� &�2��� row-level triggers
• Can use only '2& �')

• etc.

8

Statement-level trigger example

������ ��!""�� #����������
�$��� %#&��� '$ �
� '(%���
��$���(�!(" (�) ��82� �* ���%����
$'� ���+ *����3�(�
&�2��� $�'3 3�	4��
)+��� ��1 5 6���6
�(& ��1 !(,*�2��� ��1

$�'3 ���%����
)+��� �
� - .�/07

9

8�$'�� trigger example

• Never allow age to decrease

������ ��!""�� (
$
������'9:
���
8�$'�� %#&��� '$ ��� '(%���
��$���(�!(" '2& �') �*
;

(�) �') �* �
$'� ���+ �')
)+�(,����� -
����0
*�� ����� 5
����7
�8�$'�� triggers are often used to

“condition” data

�Another option is to raise an error in the trigger
body to abort the transaction that caused the
trigger to fire

10

Statement- vs. row-level triggers

Why are both needed?

• Certain triggers are only possible at statement level
• If the number of users inserted by this statement

exceeds 100 and their average age is below 13, then …

• Simple row-level triggers are easier to implement
• Statement-level triggers require significant amount of

state to be maintained in '2& ��82� and (�) ��82�
• However, a row-level trigger gets fired for each row, so

complex row-level triggers may be inefficient for
statements that modify many rows

11

System issues

• Recursive firing of triggers
• Action of one trigger causes another trigger to fire

• Can get into an infinite loop
• Some DBMS leave it to programmers/database administrators

(e.g., PostgreSQL)

• Some restrict trigger actions (e.g., Oracle)

• Many set a maximum level of recursion (e.g., 16 in DB2)

• Interaction with constraints (very tricky to get right!)
• When do we check if a triggering event violates constraints?

• After a 8�$'�� trigger (so the trigger can fix a potential violation)

• Before an �$��� trigger

• �$��� triggers also see the effects of, say, cascaded deletes
caused by referential integrity constraint violations

(Based on DB2; other DBMS may implement a different policy)

12

Views

• A view is like a “virtual” table
• Defined by a query, which describes how to compute

the view contents on the fly

• DBMS stores the view definition query instead of view
contents

• Can be used in queries just like a regular table

13

Creating and dropping views

• Example: members of Jessica’s Circle
• ������ <!�) ������������� �*
*�2��� = $�'3 %���
)+��� ��1 !(,*�2��� ��1 $�'3 3�	4��

)+��� ��1 5 6���607
• Tables used in defining a view are called “base tables”

• User and Member above

• To drop a view
• &�'# <!�) �������������7

14

Using views in queries

• Example: find the average popularity of members in
Jessica’s Circle

• *�2��� �<",�
�0 $�'3 �������������7
• To process the query, replace the reference to the view

by its definition

• *�2��� �<",�
�0
$�'3 ,*�2��� = $�'3 %���

)+��� ��1 !(
,*�2��� ��1 $�'3 3�	4��
)+��� ��1 5 6���600

�* �������������7

15

Why use views?

• To hide data from users

• To hide complexity from users

• Logical data independence
• If applications deal with views, we can change the

underlying schema without affecting applications

• Recall physical data independence: change the physical
organization of data without affecting applications

• To provide a uniform interface for different
implementations or sources

�Real database applications use tons of views

16

Modifying views

• Does it even make sense, since views are virtual?

• It does make sense if we want users to really see
views as tables

• Goal: modify the base tables such that the
modification would appear to have been
accomplished on the view

17

A simple case

������ <!�) %���#
� �*
*�2��� ��1; �
� $�'3 %���7

&�2��� $�'3 %���#
�)+��� ��1 5 >?@7

translates to:

&�2��� $�'3 %���)+��� ��1 5 >?@7

18

An impossible case

������ <!�) #
�����%��� �*
*�2��� ��1; �
� $�'3 %���
)+��� �
� A5 .�B7

!(*��� !(�' #
�����%���
<�2%�*,CBD; .�@07

• No matter what we do on User, the inserted row
will not be in PopularUser

19

A case with too many possibilities

������ <!�) �������#
�,�
�0 �*
*�2��� �<",�
�0 $�'3 %���7

• Note that you can rename columns in view definition

%#&��� �������#
� *�� �
� 5 .�/7

• Set everybody’s pop to 0.5?

• Adjust everybody’s pop by the same amount?

• Just lower Jessica’s pop?

20

SQL92 updateable views

• More or less just single-table selection queries
• No join

• No aggregation

• No subqueries

• Arguably somewhat restrictive

• Still might get it wrong in some cases
• See the slide titled “An impossible case”

• Adding)!�+ �+��E '#�!'(to the end of the view
definition will make DBMS reject such modifications

21

!(*���& '$ triggers for views

������ ��!""�� �1�����������#
�
!(*���& '$ %#&��� '(�������#
�
��$���(�!(" '2& �') �*
;

(�) �') �* �
$'� ���+ �')
%#&��� %���
*�� �
� 5 �
� F ,���
�G
��
�07

• What does this trigger do?

22

Indexes

• An index is an auxiliary persistent data structure
• Search tree (e.g., B+-tree), lookup table (e.g., hash table), etc.

�More on indexes later in this course!

• An index on �. � can speed up accesses of the form
• �. �� = ����	

• �. �� > ����	
 (sometimes; depending on the index type)

• An index on �. ��, … , �. �� can speed up
• �. �� = ���	
� ∧ ⋯∧ �. �� = ���	
�

• �. ��, … , �. �� > ���	
�, … , ���	
� (again depends)

�Ordering or index columns is important—is an index
on �. �, �. � equivalent to one on �. �, �. � ?

�How about an index on �. � plus another on �. �?

23

Examples of using indexes

• *�2��� = $�'3 %���)+��� ��	� 5 68���67
• Without an index on User.name: must scan the entire

table if we store User as a flat file of unordered rows

• With index: go “directly” to rows with ��	�568���6

• *�2��� = $�'3 %���; 3�	4��
)+��� %������1 5 3�	4�����1
�(& 3�	4�����1 5 6���67

• With an index on Member.gid or (gid, uid): find relevant
Member rows directly

• With an index on User.uid: for each relevant Member
row, directly look up User rows with matching uid

• Without it: for each Member row, scan the entire User table for
matching uid

• Sorting could help

24

Creating and dropping indexes in SQL

������ H%(!I%�J !(&�K ���
����
 '(
����
���
,���	�����
�;L;���	�����
�07

• With %(!I%�, the DBMS will also enforce that
���	�����
�, … , ���	�����
� is a key of
����
���

&�'# !(&�K ���
����
7

• Typically, the DBMS will automatically create
indexes for #�!3��: E�: and %(!I%� constraint
declarations

25

Choosing indexes to create

More indexes = better performance?

• Indexes take space

• Indexes need to be maintained when data is
updated

• Indexes have one more level of indirection

�Optimal index selection depends on both query
and update workload and the size of tables

• Automatic index selection is now featured in some
commercial DBMS

26

SQL features covered so far

• Query

• Modification

• Constraints

• Triggers

• Views

• Indexes

27

