
1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

1.10

1.11

1.12

Table	of	Contents
Introduction

Preface

Use	the	Tools	Available

Style

Considering	Safety

Considering	Maintainability

Considering	Portability

Considering	Threadability

Considering	Performance

Enable	Scripting

Further	Reading

Final	Thoughts

1

cppbestpractices

Collaborative	Collection	of	C++	Best	Practices

This	document	is	available	as	a	download	via	gitbook

For	more	information	please	see	the	Preface.

This	book	has	inspired	an	O'Reilly	video:	Learning	C++	Best	Practices

Introduction

2

https://gitter.im/lefticus/cppbestpractices?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge
https://www.gitbook.com/book/lefticus/cpp-best-practices
http://shop.oreilly.com/product/0636920049814.do

Preface
C++	Best	Practices:	A	Forkable	Coding	Standards	Document

This	document	is	meant	to	be	a	collaborative	discussion	of	the	best	practices	in	C++.	It
complements	books	such	as	Effective	C++	(Meyers)	and	C++	Coding	Standards
(Alexandrescu,	Sutter).	We	fill	in	some	of	the	lower	level	details	that	they	don't	discuss	and
provide	specific	stylistic	recommendations	while	also	discussing	how	to	ensure	overall	code
quality.

In	all	cases	brevity	and	succinctness	is	preferred.	Examples	are	preferred	for	making	the
case	for	why	one	option	is	preferred	over	another.	If	necessary,	words	will	be	used.

C++	Best	Practices	by	Jason	Turner	is	licensed	under	a	Creative	Commons	Attribution-
NonCommercial	4.0	International	License.

Disclaimer

This	document	is	based	on	my	personal	experiences.	You	are	not	supposed	to	agree	with	it
100%.	It	exists	as	a	book	on	GitHub	so	that	you	can	fork	it	for	your	own	uses	or	submit	back
proposed	changes	for	everyone	to	share.

This	book	has	inspired	an	O'Reilly	video:	Learning	C++	Best	Practices

Preface

3

http://creativecommons.org/licenses/by-nc/4.0/
http://cppbestpractices.com
http://creativecommons.org/licenses/by-nc/4.0/
https://github.com/lefticus/cppbestpractices
http://shop.oreilly.com/product/0636920049814.do

Use	The	Tools	Available
An	automated	framework	for	executing	these	tools	should	be	established	very	early	in	the
development	process.	It	should	not	take	more	than	2-3	commands	to	checkout	the	source
code,	build,	and	execute	the	tests.	Once	the	tests	are	done	executing,	you	should	have	an
almost	complete	picture	of	the	state	and	quality	of	the	code.

Source	Control
Source	control	is	an	absolute	necessity	for	any	software	development	project.	If	you	are	not
using	one	yet,	start	using	one.

GitHub	-	allows	for	unlimited	public	repositories,	must	pay	for	a	private	repository.
Bitbucket	-	allows	for	unlimited	private	repositories	with	up	to	5	collaborators,	for	free.
SourceForge	-	open	source	hosting	only.
GitLab	-	allows	for	unlimited	public	and	private	repositories,	unlimited	CI	Runners
included,	for	free.
Visual	Studio	Online	(http://www.visualstudio.com/what-is-visual-studio-online-vs)	-
allows	for	unlimited	public	repositories,	must	pay	for	private	repository.	Repositories	can
be	git	or	TFVC.	Additionally:	Issue	tracking,	project	planning	(multiple	Agile	templates,
such	as	SCRUM),	integrated	hosted	builds,	integration	of	all	this	into	Microsoft	Visual
Studio.	Windows	only.

Build	Tool
Use	an	industry	standard	widely	accepted	build	tool.	This	prevents	you	from	reinventing	the
wheel	whenever	you	discover	/	link	to	a	new	library	/	package	your	product	/	etc.	Examples
include:

CMake
Consider:	https://github.com/sakra/cotire/	for	build	performance
Consider:	https://github.com/toeb/cmakepp	for	enhanced	usability

Conan	-	a	crossplatform	dependency	manager	for	C++
C++	Archive	Network	(CPPAN)	-	a	crossplatform	dependency	manager	for	C++
Waf
FASTBuild
Ninja	-	can	greatly	improve	the	incremental	build	time	of	your	larger	projects.	Can	be
used	as	a	target	for	CMake.

Use	the	Tools	Available

4

https://github.com/
https://bitbucket.org/
http://sourceforge.net/
https://gitlab.com/
https://visualstudio.com
http://www.visualstudio.com/what-is-visual-studio-online-vs
http://www.cmake.org/
https://github.com/sakra/cotire/
https://github.com/toeb/cmakepp
https://www.conan.io/
https://cppan.org/
https://waf.io/
http://www.fastbuild.org/
https://ninja-build.org/

Bazel	-	Note:	MacOS	and	Linux	only.
gyp	-	Google's	build	tool	for	chromium.
maiken	-	Crossplatform	build	tool	with	Maven-esque	configuration	style.
Qt	Build	Suite	-	Crossplatform	build	tool	From	Qt.
meson	-	Open	source	build	system	meant	to	be	both	extremely	fast,	and,	even	more
importantly,	as	user	friendly	as	possible.

Remember,	it's	not	just	a	build	tool,	it's	also	a	programming	language.	Try	to	maintain	good
clean	build	scripts	and	follow	the	recommended	practices	for	the	tool	you	are	using.

Continuous	Integration
Once	you	have	picked	your	build	tool,	set	up	a	continuous	integration	environment.

Continuous	Integration	(CI)	tools	automatically	build	the	source	code	as	changes	are	pushed
to	the	repository.	These	can	be	hosted	privately	or	with	a	CI	host.

Travis	CI
works	well	with	C++
designed	for	use	with	GitHub
free	for	public	repositories	on	GitHub

AppVeyor
supports	Windows,	MSVC	and	MinGW
free	for	public	repositories	on	GitHub

Hudson	CI	/	Jenkins	CI
Java	Application	Server	is	required
supports	Windows,	OS	X,	and	Linux
extendable	with	a	lot	of	plugins

TeamCity
has	a	free	option	for	open	source	projects

Decent	CI
simple	ad-hoc	continuous	integration	that	posts	results	to	GitHub
supports	Windows,	OS	X,	and	Linux
used	by	ChaiScript

Visual	Studio	Online	(http://www.visualstudio.com/what-is-visual-studio-online-vs)
Tightly	integrated	with	the	source	repositories	from	Visual	Studio	Online
Uses	MSBuild	(Visual	Studio's	build	engine),	which	is	available	on	Windows,	OS	X
and	Linux
Provides	hosted	build	agents	and	also	allows	for	user-provided	build	agents
Can	be	controlled	and	monitored	from	within	Microsoft	Visual	Studio
On-Premise	installation	via	Microsoft	Team	Foundation	Server

Use	the	Tools	Available

5

http://bazel.io/
https://chromium.googlesource.com/external/gyp/
https://github.com/Dekken/maiken
http://doc.qt.io/qbs/
http://mesonbuild.com/index.html
http://travis-ci.org
http://www.appveyor.com/
http://hudson-ci.org/
https://jenkins-ci.org/
https://www.jetbrains.com/teamcity
https://github.com/lefticus/decent_ci
http://chaiscript.com/ChaiScript-BuildResults/full_dashboard.html
https://visualstudio.com
http://www.visualstudio.com/what-is-visual-studio-online-vs

If	you	have	an	open	source,	publicly-hosted	project	on	GitHub:

go	enable	Travis	Ci	and	AppVeyor	integration	right	now.	We'll	wait	for	you	to	come	back.
For	a	simple	example	of	how	to	enable	it	for	your	C++	CMake-based	application,	see
here:	https://github.com/ChaiScript/ChaiScript/blob/master/.travis.yml
enable	one	of	the	coverage	tools	listed	below	(Codecov	or	Coveralls)
enable	Coverity	Scan

These	tools	are	all	free	and	relatively	easy	to	set	up.	Once	they	are	set	up	you	are	getting
continuous	building,	testing,	analysis	and	reporting	of	your	project.	For	free.

Compilers
Use	every	available	and	reasonable	set	of	warning	options.	Some	warning	options	only	work
with	optimizations	enabled,	or	work	better	the	higher	the	chosen	level	of	optimization	is,	for
example		-Wnull-dereference		with	GCC.

You	should	use	as	many	compilers	as	you	can	for	your	platform(s).	Each	compiler
implements	the	standard	slightly	differently	and	supporting	multiple	will	help	ensure	the	most
portable,	most	reliable	code.

GCC	/	Clang
	-Wall	-Wextra	-Wshadow	-Wnon-virtual-dtor	-pedantic	

	-Wall	-Wextra		reasonable	and	standard
	-Wshadow		warn	the	user	if	a	variable	declaration	shadows	one	from	a	parent	context
	-Wnon-virtual-dtor		warn	the	user	if	a	class	with	virtual	functions	has	a	non-virtual
destructor.	This	helps	catch	hard	to	track	down	memory	errors
	-Wold-style-cast		warn	for	c-style	casts
	-Wcast-align		warn	for	potential	performance	problem	casts
	-Wunused		warn	on	anything	being	unused
	-Woverloaded-virtual		warn	if	you	overload	(not	override)	a	virtual	function
	-pedantic	

	-Wconversion		warn	on	type	conversions	that	may	lose	data
	-Wsign-conversion		warn	on	sign	conversions
	-Wmisleading-indentation		warn	if	identation	implies	blocks	where	blocks	do	not	exist

Consider	using		-Weverything		and	disabling	the	few	warnings	you	need	to	on	Clang

	-Weffc++		warning	mode	can	be	too	noisy,	but	if	it	works	for	your	project,	use	it	also.

MSVC

Use	the	Tools	Available

6

https://github.com/ChaiScript/ChaiScript/blob/master/.travis.yml
https://scan.coverity.com
https://gcc.gnu.org/onlinedocs/gcc/Warning-Options.html#index-Wnull-dereference-367

	/W4	/W44640		-	use	these	and	consider	the	following

	/W4		All	reasonable	warnings
	/w14242		'identfier':	conversion	from	'type1'	to	'type1',	possible	loss	of	data
	/w14254		'operator':	conversion	from	'type1:field_bits'	to	'type2:field_bits',	possible	loss
of	data
	/w14263		'function':	member	function	does	not	override	any	base	class	virtual	member
function
	/w14265		'classname':	class	has	virtual	functions,	but	destructor	is	not	virtual	instances
of	this	class	may	not	be	destructed	correctly
	/w14287		'operator':	unsigned/negative	constant	mismatch
	/we4289		nonstandard	extension	used:	'variable':	loop	control	variable	declared	in	the
for-loop	is	used	outside	the	for-loop	scope
	/w14296		'operator':	expression	is	always	'boolean_value'
	/w14311		'variable':	pointer	truncation	from	'type1'	to	'type2'
	/w14545		expression	before	comma	evaluates	to	a	function	which	is	missing	an
argument	list
	/w14546		function	call	before	comma	missing	argument	list
	/w14547		'operator':	operator	before	comma	has	no	effect;	expected	operator	with	side-
effect
	/w14549		'operator':	operator	before	comma	has	no	effect;	did	you	intend	'operator'?
	/w14555		expression	has	no	effect;	expected	expression	with	side-effect
	/w14619		pragma	warning:	there	is	no	warning	number	'number'
	/w14640		Enable	warning	on	thread	un-safe	static	member	initialization
	/w14826		Conversion	from	'type1'	to	'type_2'	is	sign-extended.	This	may	cause
unexpected	runtime	behavior.
	/w14905		wide	string	literal	cast	to	'LPSTR'
	/w14906		string	literal	cast	to	'LPWSTR'
	/w14928		illegal	copy-initialization;	more	than	one	user-defined	conversion	has	been
implicitly	applied

Not	recommended

	/Wall		-	Also	warns	on	files	included	from	the	standard	library,	so	it's	not	very	useful
and	creates	too	many	extra	warnings.

General

Start	with	very	strict	warning	settings	from	the	beginning.	Trying	to	raise	the	warning	level
after	the	project	is	underway	can	be	painful.

Use	the	Tools	Available

7

Consider	using	the	treat	warnings	as	errors	setting.		/Wx		with	MSVC,		-Werror		with	GCC	/
Clang

LLVM-based	tools
include-what-you-use,	example	results
clang-modernize,	example	results
clang-check
clang-tidy

Static	Analyzers
The	best	bet	is	the	static	analyzer	that	you	can	run	as	part	of	your	automated	build	system.
Cppcheck	and	clang	meet	that	requirement	for	free	options.

Coverity	Scan

Coverity	has	a	free	(for	open	source)	static	analysis	toolkit	that	can	work	on	every	commit	in
integration	with	Travis	CI	and	AppVeyor.

PVS-Studio

PVS-Studio	is	a	tool	for	bug	detection	in	the	source	code	of	programs,	written	in	C,	C++	and
C#.	It	is	free	for	personal	academic	projects,	open	source	non-commercial	projects	and
independent	projects	of	individual	developers.	It	works	in	Windows	and	Linux	environment.

Cppcheck

Cppcheck	is	free	and	open	source.	It	strives	for	0	false	positives	and	does	a	good	job	at	it.
Therefore	all	warnings	should	be	enabled:		--enable=all	

Clang's	Static	Analyzer

Clang's	analyzer's	default	options	are	good	for	the	respective	platform.	It	can	be	used
directly	from	CMake.	They	can	also	be	called	via	clang-check	and	clang-tidy	from	the	LLVM-
based	Tools.

MSVC's	Static	Analyzer

Use	the	Tools	Available

8

https://github.com/include-what-you-use
https://github.com/ChaiScript/ChaiScript/commit/c0bf6ee99dac14a19530179874f6c95255fde173
http://clang.llvm.org/extra/clang-modernize.html
https://github.com/ChaiScript/ChaiScript/commit/6eab8ddfe154a4ebbe956a5165b390ee700fae1b
http://clang.llvm.org/docs/ClangCheck.html
http://clang.llvm.org/extra/clang-tidy.html
https://scan.coverity.com/
http://travis-ci.org
http://www.appveyor.com/
http://www.viva64.com/en/pvs-studio/
http://cppcheck.sourceforge.net/
http://garykramlich.blogspot.com/2011/10/using-scan-build-from-clang-with-cmake.html

Can	be	enabled	with	the		/analyze		command	line	option.	For	now	we	will	stick	with	the
default	options.

Flint	/	Flint++

Flint	and	Flint++	are	linters	that	analyze	C++	code	against	Facebook's	coding	standards.

ReSharper	C++	/	CLion

Both	of	these	tools	from	JetBrains	offer	some	level	of	static	analysis	and	automated	fixes	for
common	things	that	can	be	done	better.	They	have	options	available	for	free	licenses	for
open	source	project	leaders.

Cevelop

The	Eclipse	based	Cevelop	IDE	has	various	static	analysis	and	refactoring	/	code	fix	tools
available.	For	example,	you	can	replace	macros	with	C++		constexprs	,	refactor
namespaces	(extract/inline		using	,	qualify	name),	and	refactor	your	code	to	C++11's
uniform	initialization	syntax.	Cevelop	is	free	to	use.

Qt	Creator

Qt	Creator	can	plug	into	the	clang	static	analyzer.

Runtime	Checkers

Code	Coverage	Analysis

A	coverage	analysis	tool	shall	be	run	when	tests	are	executed	to	make	sure	the	entire
application	is	being	tested.	Unfortunately,	coverage	analysis	requires	that	compiler
optimizations	be	disabled.	This	can	result	in	significantly	longer	test	execution	times.

Codecov
integrates	with	Travis	CI	and	AppVeyor
free	for	open	source	projects

Coveralls
integrates	with	Travis	CI	and	AppVeyor
free	for	open	source	projects

LCOV
very	configurable

Use	the	Tools	Available

9

http://msdn.microsoft.com/en-us/library/ms173498.aspx
https://github.com/facebook/flint
https://github.com/L2Program/FlintPlusPlus
https://www.jetbrains.com/cpp/
https://www.cevelop.com/
https://codecov.io/
https://coveralls.io/
http://ltp.sourceforge.net/coverage/lcov.php

Gcovr

Valgrind

Valgrind	is	a	runtime	code	analyzer	that	can	detect	memory	leaks,	race	conditions,	and	other
associated	problems.	It	is	supported	on	various	Unix	platforms.

Dr	Memory

Similar	to	Valgrind.	http://www.drmemory.org

GCC	/	Clang	Sanitizers

These	tools	provide	many	of	the	same	features	as	Valgrind,	but	built	into	the	compiler.	They
are	easy	to	use	and	provide	a	report	of	what	went	wrong.

AddressSanitizer
MemorySanitizer
ThreadSanitizer
UndefinedBehaviorSanitizer

Fuzzy	Analyzers

If	your	project	accepts	user	defined	input,	considering	running	a	fuzzy	input	tester.

Both	of	these	tools	use	coverage	reporting	to	find	new	code	execution	paths	and	try	to	breed
novel	inputs	for	your	code.	They	can	find	crashes,	hangs,	and	inputs	you	didn't	know	were
considered	valid.

american	fuzzy	lop
LibFuzzer
KLEE	-	Can	be	used	to	fuzz	individual	functions

Ignoring	Warnings
If	it	is	determined	by	team	consensus	that	the	compiler	or	analyzer	is	warning	on	something
that	is	either	incorrect	or	unavoidable,	the	team	will	disable	the	specific	error	to	as	localized
part	of	the	code	as	possible.

Testing

Use	the	Tools	Available

10

http://gcovr.com/
http://www.valgrind.org/
http://www.drmemory.org
http://lcamtuf.coredump.cx/afl/
http://llvm.org/docs/LibFuzzer.html
http://klee.github.io/

CMake,	mentioned	above,	has	a	built	in	framework	for	executing	tests.	Make	sure	whatever
build	system	you	use	has	a	way	to	execute	tests	built	in.

To	further	aid	in	executing	tests,	consider	a	library	such	as	Google	Test,	Catch,	CppUTest	or
Boost.Test	to	help	you	organize	the	tests.

Unit	Tests

Unit	tests	are	for	small	chunks	of	code,	individual	functions	which	can	be	tested	standalone.

Integration	Tests

There	should	be	a	test	enabled	for	every	feature	or	bug	fix	that	is	committed.	See	also	Code
Coverage	Analysis.	These	are	tests	that	are	higher	level	than	unit	tests.	They	should	still	be
limited	in	scope	to	individual	features.

Negative	Testing

Don't	forget	to	make	sure	that	your	error	handling	is	being	tested	and	works	properly	as	well.
This	will	become	obvious	if	you	aim	for	100%	code	coverage.

Debugging

uftrace

uftrace	can	be	used	to	generating	function	call	graphs	of	a	program	execution

rr

rr	is	a	free	(open	source)	reverse	debugger	that	supports	C++.

Other	Tools

Metrix++

Metrix++	can	identify	and	report	on	the	most	complex	sections	of	your	code.	Reducing
complex	code	helps	you	and	the	compiler	understand	it	better	and	optimize	it	better.

ABI	Compliance	Checker

Use	the	Tools	Available

11

https://github.com/google/googletest
https://github.com/philsquared/Catch
https://github.com/cpputest/cpputest
http://www.boost.org/doc/libs/release/libs/test/
https://github.com/namhyung/uftrace
http://rr-project.org/
http://metrixplusplus.sourceforge.net/

ABI	Compliance	Checker	(ACC)	can	analyze	two	library	versions	and	generates	a	detailed
compatibility	report	regarding	API	and	C++	ABI	changes.	This	can	help	a	library	developer
spot	unintentional	breaking	changes	to	ensure	backward	compatibility.

CNCC

Customizable	Naming	Convention	Checker	can	report	on	identifiers	in	your	code	that	do	not
follow	certain	naming	conventions.

ClangFormat

ClangFormat	can	check	and	correct	code	formatting	to	match	organizational	conventions
automatically.

SourceMeter

SourceMeter	offers	a	free	version	which	provides	many	different	metrics	for	your	code	and
can	also	call	into	cppcheck.

Use	the	Tools	Available

12

http://ispras.linuxbase.org/index.php/ABI_compliance_checker
https://github.com/mapbox/cncc
http://clang.llvm.org/docs/ClangFormat.html
https://www.sourcemeter.com/

Style
Consistency	is	the	most	important	aspect	of	style.	The	second	most	important	aspect	is
following	a	style	that	the	average	C++	programmer	is	used	to	reading.

C++	allows	for	arbitrary-length	identifier	names,	so	there's	no	reason	to	be	terse	when
naming	things.	Use	descriptive	names,	and	be	consistent	in	the	style.

	CamelCase	

	snake_case	

are	common	examples.	snake_case	has	the	advantage	that	it	can	also	work	with	spell
checkers,	if	desired.

Common	C++	Naming	Conventions
Types	start	with	upper	case:		MyClass	.
Functions	and	variables	start	with	lower	case:		myMethod	.
Constants	are	all	upper	case:		const	double	PI=3.14159265358979323;	.

C++	Standard	Library	(and	other	well-known	C++	libraries	like	Boost)	use	these	guidelines:

Macro	names	use	upper	case	with	underscores:		INT_MAX	.
Template	parameter	names	use	camel	case:		InputIterator	.
All	other	names	use	snake	case:		unordered_map	.

Distinguish	Private	Object	Data
Name	private	data	with	a		m_		prefix	to	distinguish	it	from	public	data.		m_		stands	for
"member"	data.

Distinguish	Function	Parameters
The	most	important	thing	is	consistency	within	your	codebase;	this	is	one	possibility	to	help
with	consistency.

Name	function	parameters	with	an		t_		prefix.		t_		can	be	thought	of	as	"the",	but	the
meaning	is	arbitrary.	The	point	is	to	distinguish	function	parameters	from	other	variables	in
scope	while	giving	us	a	consistent	naming	strategy.

Style

13

http://www.boost.org/

Any	prefix	or	postfix	can	be	chosen	for	your	organization.	This	is	just	one	example.	This
suggestion	is	controversial,	for	a	discussion	about	it	see	issue	#11.

struct	Size
{
		int	width;
		int	height;

		Size(int	t_width,	int	t_height)	:	width(t_width),	height(t_height)	{}
};

//	This	version	might	make	sense	for	thread	safety	or	something,
//	but	more	to	the	point,	sometimes	we	need	to	hide	data,	sometimes	we	don't.
class	PrivateSize
{
		public:
				int	width()	const	{	return	m_width;	}
				int	height()	const	{	return	m_height;	}
				PrivateSize(int	t_width,	int	t_height)	:	m_width(t_width),	m_height(t_height)	{}

		private:
				int	m_width;
				int	m_height;
};

Don't	Name	Anything	Starting	With		_	
If	you	do,	you	risk	colliding	with	names	reserved	for	compiler	and	standard	library
implementation	use:

http://stackoverflow.com/questions/228783/what-are-the-rules-about-using-an-underscore-
in-a-c-identifier

Well-Formed	Example

Style

14

https://github.com/lefticus/cppbestpractices/issues/11
http://stackoverflow.com/questions/228783/what-are-the-rules-about-using-an-underscore-in-a-c-identifier

class	MyClass
{
public:
		MyClass(int	t_data)
				:	m_data(t_data)
		{
		}

		int	getData()	const
		{
				return	m_data;
		}

private:
		int	m_data;
};

Enable	Out-of-Source-Directory	Builds
Make	sure	generated	files	go	into	an	output	folder	that	is	separate	from	the	source	folder.

Use		nullptr	
C++11	introduces		nullptr		which	is	a	special	value	denoting	a	null	pointer.	This	should	be
used	instead	of		0		or		NULL		to	indicate	a	null	pointer.

Comments
Comment	blocks	should	use		//	,	not		/*	*/	.	Using		//		makes	it	much	easier	to	comment
out	a	block	of	code	while	debugging.

//	this	function	does	something
int	myFunc()
{
}

To	comment	out	this	function	block	during	debugging	we	might	do:

Style

15

/*
//	this	function	does	something
int	myFunc()
{
}
*/

which	would	be	impossible	if	the	function	comment	header	used		/*	*/	.

Never	Use		using	namespace		in	a	Header	File
This	causes	the	namespace	you	are		using		to	be	pulled	into	the	namespace	of	all	files	that
include	the	header	file.	It	pollutes	the	namespace	and	it	may	lead	to	name	collisions	in	the
future.	Writing		using	namespace		in	an	implementation	file	is	fine	though.

Include	Guards
Header	files	must	contain	a	distinctly-named	include	guard	to	avoid	problems	with	including
the	same	header	multiple	times	and	to	prevent	conflicts	with	headers	from	other	projects.

#ifndef	MYPROJECT_MYCLASS_HPP
#define	MYPROJECT_MYCLASS_HPP

namespace	MyProject	{
		class	MyClass	{
		};
}

#endif

You	may	also	consider	using	the		#pragma	once		directive	instead	which	is	quasi-standard
across	many	compilers.	It's	short	and	makes	the	intent	clear.

{}	Are	Required	for	Blocks.
Leaving	them	off	can	lead	to	semantic	errors	in	the	code.

Style

16

//	Bad	Idea
//	This	compiles	and	does	what	you	want,	but	can	lead	to	confusing
//	errors	if	modification	are	made	in	the	future	and	close	attention
//	is	not	paid.
for	(int	i	=	0;	i	<	15;	++i)
		std::cout	<<	i	<<	std::endl;

//	Bad	Idea
//	The	cout	is	not	part	of	the	loop	in	this	case	even	though	it	appears	to	be.
int	sum	=	0;
for	(int	i	=	0;	i	<	15;	++i)
		++sum;
		std::cout	<<	i	<<	std::endl;

//	Good	Idea
//	It's	clear	which	statements	are	part	of	the	loop	(or	if	block,	or	whatever).
int	sum	=	0;
for	(int	i	=	0;	i	<	15;	++i)	{
		++sum;
		std::cout	<<	i	<<	std::endl;
}

Keep	Lines	a	Reasonable	Length

//	Bad	Idea
//	hard	to	follow
if	(x	&&	y	&&	myFunctionThatReturnsBool()	&&	caseNumber3	&&	(15	>	12	||	2	<	3))	{
}

//	Good	Idea
//	Logical	grouping,	easier	to	read
if	(x	&&	y	&&	myFunctionThatReturnsBool()
				&&	caseNumber3
				&&	(15	>	12	||	2	<	3))	{
}

Many	projects	and	coding	standards	have	a	soft	guideline	that	one	should	try	to	use	less
than	about	80	or	100	characters	per	line.	Such	code	is	generally	easier	to	read.	It	also
makes	it	possible	to	have	two	separate	files	next	to	each	other	on	one	screen	without	having
a	tiny	font.

Use	""	for	Including	Local	Files
...		<>		is	reserved	for	system	includes.

Style

17

http://blog2.emptycrate.com/content/when-use-include-verses-include

//	Bad	Idea.	Requires	extra	-I	directives	to	the	compiler
//	and	goes	against	standards.
#include	<string>
#include	<includes/MyHeader.hpp>

//	Worse	Idea
//	Requires	potentially	even	more	specific	-I	directives	and
//	makes	code	more	difficult	to	package	and	distribute.
#include	<string>
#include	<MyHeader.hpp>

//	Good	Idea
//	Requires	no	extra	params	and	notifies	the	user	that	the	file
//	is	a	local	file.
#include	<string>
#include	"MyHeader.hpp"

Initialize	Member	Variables
...with	the	member	initializer	list.

Style

18

//	Bad	Idea
class	MyClass
{
public:
		MyClass(int	t_value)
		{
				m_value	=	t_value;
		}

private:
		int	m_value;
};

//	Good	Idea
//	C++'s	member	initializer	list	is	unique	to	the	language	and	leads	to
//	cleaner	code	and	potential	performance	gains	that	other	languages	cannot
//	match.
class	MyClass
{
public:
		MyClass(int	t_value)
				:	m_value(t_value)
		{
		}

private:
		int	m_value;
};

In	C++11	you	may	consider	always	giving	each	member	a	default	value,	e.g.	by	writing

//	...	//
private:
		int	m_value	=	0;
//	...	//

inside	the	class	body.	This	makes	sure	that	no	constructor	ever	"forgets"	to	initialize	a
member	object.

Use	brace	initialization;	it	does	not	allow	narrowing	at	compile-time:

Style

19

//	Best	Idea

//	...	//
private:
		int	m_value{	0	};	//	allowed
		unsigned	m_value_2	{	-1	};	//	compile-time	error,	narrowing	from	signed	to	unsigned.
//	...	//

Prefer	{}	initialization	over	alternatives	unless	you	have	a	strong	reason	not	to.

Forgetting	to	initialize	a	member	is	a	source	of	undefined	behavior	bugs	which	are	often
extremely	hard	to	find.

Always	Use	Namespaces
There	is	almost	never	a	reason	to	declare	an	identifier	in	the	global	namespace.	Instead,
functions	and	classes	should	exist	in	an	appropriately	named	namespace	or	in	a	class	inside
of	a	namespace.	Identifiers	which	are	placed	in	the	global	namespace	risk	conflicting	with
identifiers	from	other	libraries	(mostly	C,	which	doesn't	have	namespaces).

Use	the	Correct	Integer	Type	for	Standard
Library	Features
The	standard	library	generally	uses		std::size_t		for	anything	related	to	size.	The	size	of
	size_t		is	implementation	defined.

In	general,	using		auto		will	avoid	most	of	these	issues,	but	not	all.

Make	sure	you	stick	with	the	correct	integer	types	and	remain	consistent	with	the	C++
standard	library.	It	might	not	warn	on	the	platform	you	are	currently	using,	but	it	probably	will
when	you	change	platforms.

Note	that	you	can	cause	integer	underflow	when	peforming	some	operations	on	unsigned
values.	For	example:

std::vector<int>	v1{2,3,4,5,6,7,8,9};
std::vector<int>	v2{9,8,7,6,5,4,3,2,1};
const	auto	s1	=	v1.size();
const	auto	s2	=	v2.size();
const	auto	diff	=	s1	-	s2;	//	diff	underflows	to	a	very	large	number

Style

20

Use	.hpp	and	.cpp	for	Your	File	Extensions
Ultimately	this	is	a	matter	of	preference,	but	.hpp	and	.cpp	are	widely	recognized	by	various
editors	and	tools.	So	the	choice	is	pragmatic.	Specifically,	Visual	Studio	only	automatically
recognizes	.cpp	and	.cxx	for	C++	files,	and	Vim	doesn't	necessarily	recognize	.cc	as	a	C++
file.

One	particularly	large	project	(OpenStudio)	uses	.hpp	and	.cpp	for	user-generated	files	and
.hxx	and	.cxx	for	tool-generated	files.	Both	are	well	recognized	and	having	the	distinction	is
helpful.

Never	Mix	Tabs	and	Spaces
Some	editors	like	to	indent	with	a	mixture	of	tabs	and	spaces	by	default.	This	makes	the
code	unreadable	to	anyone	not	using	the	exact	same	tab	indentation	settings.	Configure
your	editor	so	this	does	not	happen.

Never	Put	Code	with	Side	Effects	Inside	an
assert()

assert(registerSomeThing());	//	make	sure	that	registerSomeThing()	returns	true

The	above	code	succeeds	when	making	a	debug	build,	but	gets	removed	by	the	compiler
when	making	a	release	build,	giving	you	different	behavior	between	debug	and	release
builds.	This	is	because		assert()		is	a	macro	which	expands	to	nothing	in	release	mode.

Don't	Be	Afraid	of	Templates
They	can	help	you	stick	to	DRY	principles.	They	should	be	preferred	to	macros,	because
macros	do	not	honor	namespaces,	etc.

Use	Operator	Overloads	Judiciously
Operator	overloading	was	invented	to	enable	expressive	syntax.	Expressive	in	the	sense
that	adding	two	big	integers	looks	like		a	+	b		and	not		a.add(b)	.	Another	common	example
is	std::string,	where	it	is	very	common	to	concatenate	two	strings	with		string1	+	string2	.

Style

21

https://github.com/NREL/OpenStudio
http://en.wikipedia.org/wiki/Don%27t_repeat_yourself

However,	you	can	easily	create	unreadable	expressions	using	too	much	or	wrong	operator
overloading.	When	overloading	operators,	there	are	three	basic	rules	to	follow	as	described
on	stackoverflow.

Specifically,	you	should	keep	these	things	in	mind:

Overloading		operator=()		when	handling	resources	is	a	must.	See	Consider	the	Rule	of
Zero	below.
For	all	other	operators,	only	overload	them	when	they	are	used	in	a	context	that	is
commonly	connected	to	these	operators.	Typical	scenarios	are	concatenating	things
with	+,	negating	expressions	that	can	be	considered	"true"	or	"false",	etc.
Always	be	aware	of	the	operator	precedence	and	try	to	circumvent	unintuitive
constructs.
Do	not	overload	exotic	operators	such	as	~	or	%	unless	implementing	a	numeric	type	or
following	a	well	recognized	syntax	in	specific	domain.
Never	overload		operator,()		(the	comma	operator).
Use	non-member	functions		operator>>()		and		operator<<()		when	dealing	with
streams.	For	example,	you	can	overload		operator<<(std::ostream	&,	MyClass	const	&)	
to	enable	"writing"	your	class	into	a	stream,	such	as		std::cout		or	an		std::fstream		or
	std::stringstream	.	The	latter	is	often	used	to	create	a	string	representation	of	a	value.
There	are	more	common	operators	to	overload	described	here.

More	tips	regarding	the	implementation	details	of	your	custom	operators	can	be	found	here.

Avoid	Implicit	Conversions

Single	Parameter	Constructors

Single	parameter	constructors	can	be	applied	at	compile	time	to	automatically	convert
between	types.	This	is	handy	for	things	like		std::string(const	char	*)		but	should	be
avoided	in	general	because	they	can	add	to	accidental	runtime	overhead.

Instead	mark	single	parameter	constructors	as		explicit	,	which	requires	them	to	be
explicitly	called.

Conversion	Operators

Similarly	to	single	parameter	constructors,	conversion	operators	can	be	called	by	the
compiler	and	introduce	unexpected	overhead.	They	should	also	be	marked	as		explicit	.

Style

22

http://stackoverflow.com/questions/4421706/operator-overloading/4421708#4421708
http://en.cppreference.com/w/cpp/language/operator_precedence
http://stackoverflow.com/questions/5602112/when-to-overload-the-comma-operator?answertab=votes#tab-top
http://stackoverflow.com/questions/4421706/operator-overloading?answertab=votes#tab-top
http://courses.cms.caltech.edu/cs11/material/cpp/donnie/cpp-ops.html

//bad	idea
struct	S	{
		operator	int()	{
				return	2;
		}
};

//good	idea
struct	S	{
		explicit	operator	int()	{
				return	2;
		}
};

Consider	the	Rule	of	Zero
The	Rule	of	Zero	states	that	you	do	not	provide	any	of	the	functions	that	the	compiler	can
provide	(copy	constructor,	copy	assignment	operator,	move	constructor,	move	assignment
operator,	destructor)	unless	the	class	you	are	constructing	does	some	novel	form	of
ownership.

The	goal	is	to	let	the	compiler	provide	optimal	versions	that	are	automatically	maintained
when	more	member	variables	are	added.

The	original	article	provides	the	background,	while	a	follow	up	article	explains	techniques	for
implementing	nearly	100%	of	the	time.

Style

23

http://flamingdangerzone.com/cxx11/rule-of-zero/
http://www.nirfriedman.com/2015/06/27/cpp-rule-of-zero/

Considering	Safety

Const	as	Much	as	Possible
	const		tells	the	compiler	that	a	variable	or	method	is	immutable.	This	helps	the	compiler
optimize	the	code	and	helps	the	developer	know	if	a	function	has	a	side	effect.	Also,	using
	const	&		prevents	the	compiler	from	copying	data	unnecessarily.	The	comments	on		const	
from	John	Carmack	are	also	a	good	read.

//	Bad	Idea
class	MyClass
{
public:
		void	do_something(int	i);
		void	do_something(std::string	str);
};

//	Good	Idea
class	MyClass
{
public:
		void	do_something(const	int	i);
		void	do_something(const	std::string	&str);
};

Carefully	Consider	Your	Return	Types

Getters
Returning	by		&		or		const	&		can	have	significant	performance	savings	when	the
normal	use	of	the	returned	value	is	for	observation
Returning	by	value	is	better	for	thread	safety	and	if	the	normal	use	of	the	returned
value	is	to	make	a	copy	anyhow,	there's	no	performance	lost
If	your	API	uses	covariant	return	types,	you	must	return	by		&		or		*	

Temporaries	and	local	values
Always	return	by	value.

references:	https://github.com/lefticus/cppbestpractices/issues/21
https://twitter.com/lefticus/status/635943577328095232

Do	not	pass	and	return	simple	types	by	const	ref

Considering	Safety

24

http://kotaku.com/454293019
https://github.com/lefticus/cppbestpractices/issues/21
https://twitter.com/lefticus/status/635943577328095232

//	Very	Bad	Idea
class	MyClass
{
public:
		explicit	MyClass(const	int&	t_int_value)
				:	m_int_value(t_int_value)
		{
		}

		const	int&	get_int_value()	const
		{
				return	m_int_value;
		}

private:
		int	m_int_value;
}

Instead,	pass	and	return	simple	types	by	value.	If	you	plan	not	to	change	passed	value,
declare	them	as		const	,	but	not		const		refs:

//	Good	Idea
class	MyClass
{
public:
		explicit	MyClass(const	int	t_int_value)
				:	m_int_value(t_int_value)
		{
		}

		int	get_int_value()	const
		{
				return	m_int_value;
		}

private:
		int	m_int_value;
}

Why?	Because	passing	and	returning	by	reference	leads	to	pointer	operations	instead	by
much	more	faster	passing	values	in	processor	registers.

Avoid	Raw	Memory	Access
Raw	memory	access,	allocation	and	deallocation,	are	difficult	to	get	correct	in	C++	without
risking	memory	errors	and	leaks.	C++11	provides	tools	to	avoid	these	problems.

Considering	Safety

25

http://blog2.emptycrate.com/content/nobody-understands-c-part-6-are-you-still-using-pointers

//	Bad	Idea
MyClass	*myobj	=	new	MyClass;

//	...
delete	myobj;

//	Good	Idea
auto	myobj	=	std::make_unique<MyClass>(constructor_param1,	constructor_param2);	//	C++
14
auto	myobj	=	std::unique_ptr<MyClass>(new	MyClass(constructor_param1,	constructor_para
m2));	//	C++11
auto	mybuffer	=	std::make_unique<char[]>(length);	//	C++14
auto	mybuffer	=	std::unique_ptr<char[]>(new	char[length]);	//	C++11

//	or	for	reference	counted	objects
auto	myobj	=	std::make_shared<MyClass>();	

//	...
//	myobj	is	automatically	freed	for	you	whenever	it	is	no	longer	used.

Use		std::array		or		std::vector		Instead	of	C-
style	Arrays
Both	of	these	guarantee	contiguous	memory	layout	of	objects	and	can	(and	should)
completely	replace	your	usage	of	C-style	arrays	for	many	of	the	reasons	listed	for	not	using
bare	pointers.

Also,	avoid	using		std::shared_ptr		to	hold	an	array.

Use	Exceptions
Exceptions	cannot	be	ignored.	Return	values,	such	as	using		boost::optional	,	can	be
ignored	and	if	not	checked	can	cause	crashes	or	memory	errors.	An	exception,	on	the	other
hand,	can	be	caught	and	handled.	Potentially	all	the	way	up	the	highest	level	of	the
application	with	a	log	and	automatic	restart	of	the	application.

Stroustrup,	the	original	designer	of	C++,	makes	this	point	much	better	than	I	ever	could.

Use	C++-style	cast	instead	of	C-style	cast

Considering	Safety

26

http://stackoverflow.com/questions/3266443/can-you-use-a-shared-ptr-for-raii-of-c-style-arrays
http://www.stroustrup.com/bs_faq2.html#exceptions-why

Use	the	C++-style	cast	(static_cast<>,	dynamic_cast<>	...)	instead	of	the	C-style	cast.	The
C++-style	cast	allows	more	compiler	checks	and	is	considerable	safer.

//	Bad	Idea
double	x	=	getX();
int	i	=	(int)	x;

//	Not	a	Bad	Idea
int	i	=	static_cast<int>(x);

Additionally	the	C++	cast	style	is	more	visible	and	has	the	possibility	to	search	for.

But	consider	refactoring	of	program	logic	(for	example,	additional	checking	on	overflow	and
underflow)	if	you	need	to	cast		double		to		int	.	Measure	three	times	and	cut
0.9999999999981	times.

Do	not	define	a	variadic	function
Variadic	functions	can	accept	a	variable	number	of	parameters.	The	probably	best	known
example	is	printf().	You	have	the	possibility	to	define	this	kind	of	functions	by	yourself	but
this	is	a	possible	security	risk.	The	usage	of	variadic	functions	is	not	type	safe	and	the	wrong
input	parameters	can	cause	a	program	termination	with	an	undefined	behavior.	This
undefined	behavior	can	be	exploited	to	a	security	problem.	If	you	have	the	possibility	to	use
a	compiler	that	supports	C++11,	you	can	use	variadic	templates	instead.

It	is	technically	possible	to	make	typesafe	C-style	variadic	functions	with	some	compilers

Additional	Resources
How	to	Prevent	The	Next	Heartbleed	by	David	Wheeler	is	a	good	analysis	of	the	current
state	of	code	safety	and	how	to	ensure	safe	code.

Considering	Safety

27

https://github.com/lefticus/cppbestpractices/issues/53
http://www.dwheeler.com/essays/heartbleed.html

Considering	Maintainability

Avoid	Compiler	Macros
Compiler	definitions	and	macros	are	replaced	by	the	preprocessor	before	the	compiler	is
ever	run.	This	can	make	debugging	very	difficult	because	the	debugger	doesn't	know	where
the	source	came	from.

//	Bad	Idea
#define	PI	3.14159;

//	Good	Idea
namespace	my_project	{
		class	Constants	{
		public:
				//	if	the	above	macro	would	be	expanded,	then	the	following	line	would	be:
				//			static	const	double	3.14159	=	3.14159;
				//	which	leads	to	a	compile-time	error.	Sometimes	such	errors	are	hard	to	understa
nd.
				static	const	double	PI	=	3.14159;
		};
}

Consider	Avoiding	Boolean	Parameters
They	do	not	provide	any	additional	meaning	while	reading	the	code.	You	can	either	create	a
separate	function	that	has	a	more	meaningful	name,	or	pass	an	enumeration	that	makes	the
meaning	more	clear.

See	http://mortoray.com/2015/06/15/get-rid-of-those-boolean-function-parameters/	for	more
information.

Avoid	Raw	Loops
Know	and	understand	the	existing	C++	standard	algorithms	and	put	them	to	use.	See	C++
Seasoning	for	more	details.

Properly	Utilize	'override'	and	'final'

Considering	Maintainability

28

http://mortoray.com/2015/06/15/get-rid-of-those-boolean-function-parameters/
https://www.youtube.com/watch?v=qH6sSOr-yk8

These	keywords	make	it	clear	to	other	developers	how	virtual	functions	are	being	utilized,
can	catch	potential	errors	if	the	signature	of	a	virtual	function	changes,	and	can	possibly	hint
to	the	compiler	of	optimizations	that	can	be	performed.

Considering	Maintainability

29

http://stackoverflow.com/questions/7538820/how-does-the-compiler-benefit-from-cs-new-final-keyword

Considering	Portability

Know	Your	Types
Most	portability	issues	that	generate	warnings	are	because	we	are	not	careful	about	our
types.	Standard	library	and	arrays	are	indexed	with		size_t	.	Standard	container	sizes	are
reported	in		size_t	.	If	you	get	the	handling	of		size_t		wrong,	you	can	create	subtle	lurking
64-bit	issues	that	arise	only	after	you	start	to	overflow	the	indexing	of	32-bit	integers.	char	vs
unsigned	char.

http://www.viva64.com/en/a/0010/

Other	Concerns
Most	of	the	other	concerns	in	this	document	ultimately	come	back	to	portability	issues.	Avoid
statics	is	particularly	of	note.

Considering	Portability

30

http://www.viva64.com/en/a/0010/

Considering	Threadability

Avoid	Global	Data
Global	data	leads	to	unintended	side	effects	between	functions	and	can	make	code	difficult
or	impossible	to	parallelize.	Even	if	the	code	is	not	intended	today	for	parallelization,	there	is
no	reason	to	make	it	impossible	for	the	future.

Statics

Besides	being	global	data,	statics	are	not	always	constructed	and	deconstructed	as	you
would	expect.	This	is	particularly	true	in	cross-platform	environments.	See	for	example,	this
g++	bug	regarding	the	order	of	destruction	of	shared	static	data	loaded	from	dynamic
modules.

Shared	Pointers

	std::shared_ptr		is	"as	good	as	a	global"	(http://stackoverflow.com/a/18803611/29975)
because	it	allows	multiple	pieces	of	code	to	interact	with	the	same	data.

Singletons

A	singleton	is	often	implemented	with	a	static	and/or		shared_ptr	.

Avoid	Heap	Operations
Much	slower	in	threaded	environments.	In	many	or	maybe	even	most	cases,	copying	data	is
faster.	Plus	with	move	operations	and	such	and	things.

Mutex	and	mutable	go	together	(M&M	rule,
C++11)
For	member	variables	it	is	good	practice	to	use	mutex	and	mutable	together.	This	applies	in
both	ways:

A	mutable	member	variable	is	presumed	to	be	a	shared	variable	so	it	should	be

Considering	Threadability

31

https://gcc.gnu.org/bugzilla/show_bug.cgi?id=66830
http://stackoverflow.com/a/18803611/29975

synchronized	with	a	mutex	(or	made	atomic)
If	a	member	variable	is	itself	a	mutex,	it	should	be	mutable.	This	is	required	to	use	it
inside	a	const	member	function.

For	more	information	see	the	following	article	from	Herb	Sutter:
http://herbsutter.com/2013/05/24/gotw-6a-const-correctness-part-1-3/

See	also	related	safety	discussion	about		const	&		return	values

Considering	Threadability

32

http://herbsutter.com/2013/05/24/gotw-6a-const-correctness-part-1-3/

Considering	Performance

Build	Time

Forward	Declare	When	Possible

This:

//	some	header	file
class	MyClass;

void	doSomething(const	MyClass	&);

instead	of:

//	some	header	file
#include	"MyClass.hpp"

void	doSomething(const	MyClass	&);

This	applies	to	templates	as	well:

template<typename	T>	class	MyTemplatedType;

This	is	a	proactive	approach	to	reduce	compilation	time	and	rebuilding	dependencies.

Avoid	Unnecessary	Template	Instantiations

Templates	are	not	free	to	instantiate.	Instantiating	many	templates,	or	templates	with	more
code	than	necessary	increases	compiled	code	size	and	build	time.

For	more	examples	see	this	article.

Avoid	Recursive	Template	Instantiations

Recursive	template	instantiations	can	result	in	a	significant	load	on	the	compiler	and	more
difficult	to	understand	code.

Consider	using	variadic	expansions	and	folds	when	possible	instead.

Considering	Performance

33

http://blog2.emptycrate.com/content/template-code-bloat-revisited-smaller-makeshared
http://articles.emptycrate.com/2016/05/14/folds_in_cpp11_ish.html

Analyze	the	Build

The	tool	Templight	can	be	used	to	analyze	the	build	time	of	your	project.	It	takes	some	effort
to	get	built,	but	once	you	do,	it's	a	drop	in	replacement	for	clang++.

After	you	build	using	Templight,	you	will	need	to	analyze	the	results.	The	templight-tools
project	provides	various	methods.	(Author's	Note:	I	suggest	using	the	callgrind	converter	and
visualizing	the	results	with	kcachegrind).

Firewall	Frequently	Changing	Header	Files

Don't	Unnecessarily	Include	Headers

The	compiler	has	to	do	something	with	each	include	directive	it	sees.	Even	if	it	stops	as
soon	as	it	seems	the		#ifndef		include	guard,	it	still	had	to	open	the	file	and	begin
processing	it.

include-what-you-use	is	a	tool	that	can	help	you	identify	which	headers	you	need.

Reduce	the	load	on	the	preprocessor

This	is	a	general	form	of	"Firewall	Frequently	Changing	Header	Files"	and	"Don't
Unnecessarily	Include	Headers."	Tools	like	BOOST_PP	can	be	very	helpful,	but	they	also
put	a	huge	burden	on	the	preprocessor.

Consider	using	precompiled	headers

The	usage	of	precompiled	headers	can	considerably	reduce	the	compile	time	in	large
projects.	Selected	headers	are	compiled	to	an	intermediate	form	(PCH	files)	that	can	be
faster	processed	by	the	compiler.	It	is	recommended	to	define	only	frequently	used	header
that	changes	rarely	as	precompiled	header	(e.g.	system	and	library	headers)	to	achieve	the
compile	time	reduction.	But	you	have	to	keep	in	mind,	that	using	precompiled	headers	has
several	disadvantages:

The	usage	of	precompiled	header	is	not	portable.
The	generated	PCH	files	are	machine	dependent.
The	generated	PCH	files	can	be	quite	large.
It	can	break	your	header	dependencies.	Because	of	the	precompiled	headers,	every	file
has	the	possibility	to	include	every	header	that	is	marked	as	a	precompiled	header.	In
result	it	can	happen,	that	the	build	fails	if	you	disable	the	precompiled	headers.	This	can
be	an	issue	if	you	ship	something	like	a	library.	Because	of	this	it	is	highly	recommend
to	build	once	with	precompiled	header	enabled	and	a	second	time	without	them.

Considering	Performance

34

https://github.com/mikael-s-persson/templight
https://github.com/mikael-s-persson/templight-tools
https://code.google.com/p/include-what-you-use

Precompiled	headers	is	supported	by	the	most	common	compiler,	like	GCC,	Clang	and
Visual	Studio.	Tools	like	cotire	(a	plugin	for	cmake)	can	help	you	to	add	precompiled	headers
to	your	build	system.

Consider	Using	Tools

These	are	not	meant	to	supersede	good	design

ccache
warp,	Facebook's	preprocessor

Put	tmp	on	Ramdisk

See	this	YouTube	video	for	more	details.

Use	the	gold	linker

If	on	Linux,	consider	using	the	gold	linker	for	GCC.

Runtime

Analyze	the	Code!

There's	no	real	way	to	know	where	your	bottlenecks	are	without	analyzing	the	code.

http://developer.amd.com/tools-and-sdks/opencl-zone/codexl/
http://www.codersnotes.com/sleepy

Simplify	the	Code

The	cleaner,	simpler,	and	easier	to	read	the	code	is,	the	better	chance	the	compiler	has	at
implementing	it	well.

Use	Initializer	Lists

//	This
std::vector<ModelObject>	mos{mo1,	mo2};

//	-or-
auto	mos	=	std::vector<ModelObject>{mo1,	mo2};

Considering	Performance

35

https://gcc.gnu.org/onlinedocs/gcc/Precompiled-Headers.html
http://clang.llvm.org/docs/PCHInternals.html
https://msdn.microsoft.com/en-us/library/szfdksca.aspx
https://github.com/sakra/cotire/
https://ccache.samba.org/
https://github.com/facebook/warp
https://www.youtube.com/watch?v=t4M3yG1dWho
http://developer.amd.com/tools-and-sdks/opencl-zone/codexl/
http://www.codersnotes.com/sleepy

//	Don't	do	this
std::vector<ModelObject>	mos;
mos.push_back(mo1);
mos.push_back(mo2);

Initializer	lists	are	significantly	more	efficient;	reducing	object	copies	and	resizing	of
containers.

Reduce	Temporary	Objects

//	Instead	of
auto	mo1	=	getSomeModelObject();
auto	mo2	=	getAnotherModelObject();

doSomething(mo1,	mo2);

//	consider:

doSomething(getSomeModelObject(),	getAnotherModelObject());

This	sort	of	code	prevents	the	compiler	from	performing	a	move	operation...

Enable	move	operations

Move	operations	are	one	of	the	most	touted	features	of	C++11.	They	allow	the	compiler	to
avoid	extra	copies	by	moving	temporary	objects	instead	of	copying	them	in	certain	cases.

Certain	coding	choices	we	make	(such	as	declaring	our	own	destructor	or	assignment
operator	or	copy	constructor)	prevents	the	compiler	from	generating	a	move	constructor.

For	most	code,	a	simple

ModelObject(ModelObject	&&)	=	default;

would	suffice.	However,	MSVC2013	doesn't	seem	to	like	this	code	yet.

Kill		shared_ptr		Copies

	shared_ptr		objects	are	much	more	expensive	to	copy	than	you'd	think	they	would	be.	This
is	because	the	reference	count	must	be	atomic	and	thread-safe.	So	this	comment	just	re-
enforces	the	note	above:	avoid	temporaries	and	too	many	copies	of	objects.	Just	because
we	are	using	a	pImpl	it	does	not	mean	our	copies	are	free.

Considering	Performance

36

Reduce	Copies	and	Reassignments	as	Much	as	Possible

For	more	simple	cases,	the	ternary	operator	can	be	used:

//	Bad	Idea
std::string	somevalue;

if	(caseA)	{
		somevalue	=	"Value	A";
}	else	{
		somevalue	=	"Value	B";
}

//	Better	Idea
const	std::string	somevalue	=	caseA?"Value	A":"Value	B";

More	complex	cases	can	be	facilitated	with	an	immediately-invoked	lambda.

//	Bad	Idea
std::string	somevalue;

if	(caseA)	{
		somevalue	=	"Value	A";
}	else	if(caseB)	{
		somevalue	=	"Value	B";
}	else	{
		somevalue	=	"Value	C";
}

//	Better	Idea
const	std::string	somevalue	=	[&](){
				if	(caseA)	{
						return	"Value	A";
				}	else	if	(caseB)	{
						return	"Value	B";
				}	else	{
						return	"Value	C";
				}
		}();

Avoid	Excess	Exceptions

Exceptions	which	are	thrown	and	captured	internally	during	normal	processing	slow	down
the	application	execution.	They	also	destroy	the	user	experience	from	within	a	debugger,	as
debuggers	monitor	and	report	on	each	exception	event.	It	is	best	to	just	avoid	internal

Considering	Performance

37

http://blog2.emptycrate.com/content/complex-object-initialization-optimization-iife-c11

exception	processing	when	possible.

Get	rid	of	“new”

We	already	know	that	we	should	not	be	using	raw	memory	access,	so	we	are	using
	unique_ptr		and		shared_ptr		instead,	right?	Heap	allocations	are	much	more	expensive
than	stack	allocations,	but	sometimes	we	have	to	use	them.	To	make	matters	worse,
creating	a		shared_ptr		actually	requires	2	heap	allocations.

However,	the		make_shared		function	reduces	this	down	to	just	one.

std::shared_ptr<ModelObject_Impl>(new	ModelObject_Impl());

//	should	become
std::make_shared<ModelObject_Impl>();	//	(it's	also	more	readable	and	concise)

Prefer		unique_ptr		to		shared_ptr	

If	possible	use		unique_ptr		instead	of		shared_ptr	.	The		unique_ptr		does	not	need	to	keep
track	of	its	copies	because	it	is	not	copyable.	Because	of	this	it	is	more	efficient	than	the
	shared_ptr	.	Equivalent	to		shared_ptr		and		make_shared		you	should	use		make_unique	
(C++14	or	greater)	to	create	the		unique_ptr	:

std::make_unique<ModelObject_Impl>();

Current	best	practices	suggest	returning	a		unique_ptr		from	factory	functions	as	well,	then
converting	the		unique_ptr		to	a		shared_ptr		if	necessary.

std::unique_ptr<ModelObject_Impl>	factory();

auto	shared	=	std::shared_ptr<ModelObject_Impl>(factory());

Get	rid	of	std::endl

	std::endl		implies	a	flush	operation.	It's	equivalent	to		"\n"	<<	std::flush	.

Limit	Variable	Scope

Variables	should	be	declared	as	late	as	possible,	and	ideally	only	when	it's	possible	to
initialize	the	object.	Reduced	variable	scope	results	in	less	memory	being	used,	more
efficient	code	in	general,	and	helps	the	compiler	optimize	the	code	further.

Considering	Performance

38

//	Good	Idea
for	(int	i	=	0;	i	<	15;	++i)
{
		MyObject	obj(i);
		//	do	something	with	obj
}

//	Bad	Idea
MyObject	obj;	//	meaningless	object	initialization
for	(int	i	=	0;	i	<	15;	++i)
{
		obj	=	MyObject(i);	//	unnecessary	assignment	operation
		//	do	something	with	obj
}
//	obj	is	still	taking	up	memory	for	no	reason

This	topic	has	an	associated	discussion	thread.

Prefer		double		to		float	,	But	Test	First

Depending	on	the	situation	and	the	compiler's	ability	to	optimize,	one	may	be	faster	over	the
other.	Choosing		float		will	result	in	lower	precision	and	may	be	slower	due	to	conversions.
On	vectorizable	operations		float		may	be	faster	if	you	are	able	to	sacrifice	precision.

	double		is	the	recomended	default	choice	as	it	is	the	default	type	for	floating	point	values	in
C++.

See	this	stackoverflow	discussion	for	some	more	information.

Prefer		++i		to		i++	

...	when	it	is	semantically	correct.	Pre-increment	is	faster	than	post-increment	because	it
does	not	require	a	copy	of	the	object	to	be	made.

//	Bad	Idea
for	(int	i	=	0;	i	<	15;	i++)
{
		std::cout	<<	i	<<	'\n';
}

//	Good	Idea
for	(int	i	=	0;	i	<	15;	++i)
{
		std::cout	<<	i	<<	'\n';
}

Considering	Performance

39

https://github.com/lefticus/cppbestpractices/issues/52
http://stackoverflow.com/questions/4584637/double-or-float-which-is-faster
http://blog2.emptycrate.com/content/why-i-faster-i-c

Even	if	many	modern	compilers	will	optimize	these	two	loops	to	the	same	assembly	code,	it
is	still	good	practice	to	prefer		++i	.	There	is	absolutely	no	reason	not	to	and	you	can	never
be	certain	that	your	code	will	not	pass	a	compiler	that	does	not	optimize	this.	You	should	be
also	aware	that	the	compiler	will	not	be	able	optimize	this	only	for	integer	types	and	not
necessarily	for	all	iterator	or	other	user	defined	types.
The	bottom	line	is	that	it	is	always	easier	and	recommended	to	use	the	pre-increment
operator	if	it	is	semantically	identical	to	the	post-increment	operator.

Char	is	a	char,	string	is	a	string

//	Bad	Idea
std::cout	<<	someThing()	<<	"\n";

//	Good	Idea
std::cout	<<	someThing()	<<	'\n';

This	is	very	minor,	but	a		"\n"		has	to	be	parsed	by	the	compiler	as	a		const	char	*		which
has	to	do	a	range	check	for		\0		when	writing	it	to	the	stream	(or	appending	to	a	string).	A
'\n'	is	known	to	be	a	single	character	and	avoids	many	CPU	instructions.

If	used	inefficiently	very	many	times	it	might	have	an	impact	on	your	performance,	but	more
importantly	thinking	about	these	two	usage	cases	gets	you	thinking	more	about	what	the
compiler	and	runtime	has	to	do	to	execute	your	code.

Never	Use		std::bind	

	std::bind		is	almost	always	way	more	overhead	(both	compile	time	and	runtime)	than	you
need.	Instead	simply	use	a	lambda.

//	Bad	Idea
auto	f	=	std::bind(&my_function,	"hello",	std::placeholders::_1);
f("world");

//	Good	Idea
auto	f	=	[](const	std::string	&s)	{	return	my_function("hello",	s);	};
f("world");

Considering	Performance

40

Enable	Scripting
The	combination	of	scripting	and	compiled	languages	is	very	powerful.	It	gives	us	the	things
we've	come	to	love	about	compiled	languages:	type	safety,	performance,	thread	safety
options,	consistent	memory	model	while	also	giving	us	the	flexibility	to	try	something	new
quickly	without	a	full	rebuild.

The	VM	based	compiled	languages	have	learned	this	already:	JRuby,	Jython,	IronRuby,
IronPython

ChaiScript
AngelScript
luabind
sol2	(bindings	for	Lua)
SWIG

Enable	Scripting

41

Further	Reading
Note:	This	book	has	now	inspired	a	video	series	from	O'Reilly,	Learning	C++	Best	Practices

https://github.com/isocpp/CppCoreGuidelines	The	C++	Core	Guidelines	are	a	set	of
tried-and-true	guidelines,	rules,	and	best	practices	about	coding	in	C++
https://www.gitbook.com/book/alexastva/the-ultimate-question-of-programming-
refactoring-/details	-	The	Ultimate	Question	of	Programming,	Refactoring,	and
Everything
http://llvm.org/docs/CodingStandards.html	-	LLVM	Coding	Standards	-	very	well	written
http://geosoft.no/development/cppstyle.html
https://google.github.io/styleguide/cppguide.html	(Note	that	Google's	standard
document	makes	several	recommendations	which	we	will	NOT	be	following.	For
example,	they	explicitly	forbid	the	use	of	exceptions,	which	makes	RAII	impossible.)
https://isocpp.org/faq/
http://www.cplusplus.com/
http://www.gamasutra.com/view/news/128836/InDepth_Static_Code_Analysis.php	-
Article	from	John	Carmack	on	the	advantages	of	static	analysis
https://svn.boost.org/trac/boost/wiki/BestPracticeHandbook	-	Best	Practice	Handbook
from	Nial	Douglas
http://sourceforge.net/apps/mediawiki/cppcheck/index.php?title=ListOfChecks
http://emptycrate.com/
http://stackoverflow.com/questions/tagged/c%2b%2b-faq?sort=votes&pageSize=15	-
StackOverflow	C++	FAQ
http://codergears.com/qacenter/	discussion	center	for	C	and	C++	best	practices

Further	Reading

42

http://shop.oreilly.com/product/0636920049814.do
https://github.com/isocpp/CppCoreGuidelines
https://www.gitbook.com/book/alexastva/the-ultimate-question-of-programming-refactoring-/details
http://llvm.org/docs/CodingStandards.html
http://geosoft.no/development/cppstyle.html
https://google.github.io/styleguide/cppguide.html
http://blog2.emptycrate.com/content/nobody-understands-c-part-2-raii
https://isocpp.org/faq/
http://www.cplusplus.com/
http://www.gamasutra.com/view/news/128836/InDepth_Static_Code_Analysis.php
https://svn.boost.org/trac/boost/wiki/BestPracticeHandbook
http://sourceforge.net/apps/mediawiki/cppcheck/index.php?title=ListOfChecks
http://emptycrate.com/
http://stackoverflow.com/questions/tagged/c%2b%2b-faq?sort=votes&pageSize=15
http://codergears.com/qacenter/

Final	Thoughts
Expand	your	horizons	and	use	other	programming	languages.	Other	languages	have
different	constructs	and	expressions.	Learning	what	else	is	out	there	will	encourage	you	to
be	more	creative	with	your	C++	and	write	cleaner,	more	expressive	code.

Final	Thoughts

43

	Introduction
	Preface
	Use the Tools Available
	Style
	Considering Safety
	Considering Maintainability
	Considering Portability
	Considering Threadability
	Considering Performance
	Enable Scripting
	Further Reading
	Final Thoughts

