
1.1

1.2

1.2.1

1.2.2

1.2.3

1.2.4

1.2.5

1.3

1.3.1

1.3.2

1.3.3

1.3.4

1.3.5

1.3.6

1.3.7

1.3.8

1.3.9

1.3.10

1.3.11

1.3.12

1.3.13

1.4

1.4.1

1.4.2

1.4.3

1.4.4

1.4.5

1.4.6

1.4.7

1.4.8

Table	of	Contents
Introduction

The	shell

Running	a	list	of	commands

Converting	date	and	time

Simulating	user	inputs

Running	a	command	for	each	item	in	a	list

Generating	random	numbers

Managing	files	and	directories

Watching	directories

Listing	file	and	folder	sizes

Generating	random	file	with	particular	size

Printing	a	file	in	text	or	hex

Splitting	and	merging	files

Converting	files	to	different	format

Generating	checksum

Generating	mime

Counting	number	of	lines	or	characters

Copying	and	showing	progress

Batch	renaming

Counting	word	frequency

Comparing	file	names	in	2	directories

Strings	and	text

Searching	text	in	files

Removing	duplicated	lines

Printing	a	range	of	lines

Converting	tab	to	space

Comparing	2	text	files

Sorting	lines	based	on	a	certain	field

Merging	content	of	2	files	side	by	side

Joining	all	lines	in	a	file

1

1.4.9

1.4.10

1.4.11

1.4.12

1.5

1.5.1

1.5.2

1.5.3

1.6

1.6.1

1.6.2

1.6.3

1.7

1.7.1

Adding	text	to	the	beginning	of	a	file

Replacing	strings

Changing	case

Deleting	lines	that	contain	a	specific	string

Finding	things

Finding	files	based	on	name

Finding	files	based	on	size

Finding	files	in	a	folder

Administration

Shutting	down

Execute	a	command	at	a	specified	time

Pausing	execution

Miscellaneous

Doing	mathematics

2

A	cookbook	for	using	command	line	tools	to	do	everyday's	job.

In	everyday's	job,	you	often	encounter	various	types	of	repetitive	manual	tasks,	such	as
renaming	a	lot	of	files,	finding	texts,	processing	texts	and	so	on.	These	tasks	take	a	lot	of
time	doing	manually	using	GUI.	This	book	aims	to	leverage	the	power	of	the	command	line
tools	to	make	your	job	less	tedious	and	more	enjoyable.

This	book	presents	"recipes"	for	preparing	or	accomplishing	specific	tasks.	Each	recipe
contains	a	"Problem"	statement	and	a	"Solution"	section.	The	solution	section	lists	one	or
several	best	ways	to	accomplish	the	task	that	the	author	knows	of.

Since	I	want	to	focus	on	having	at	least	one	workable	solution	that	you	can	just	copy	and
paste,	not	on	teaching	Bash	by	examples,	there	will	not	be	a	lot	of	detailed	explanations
about	what	each	command	does.	Readers	are	encouraged	to	do	extensive	research	about
particular	commands	or	patterns	they	are	interested	in.	By	doing	that,	they	will	discover	even
much	more	usage	in	situations	they	may	not	think	of	at	the	moment.	Doing	so	however	will
require	more	time	which	normally	we	don't	have.	This	is	the	practical	reason	why	I	chose
this	approach.

The	recipes	are	ordered	randomly.	All	commands	should	be	applicable	on	most	Linux
distros,	MacOS	(there	might	be	some	missing	default	commands	you	might	have	to	install
using	HomeBrew).	On	Windows	you	have	to	install		cygwin		or	something	similar.	On	some
occasions,	I	use	external	tools	from	Python,	Perl	or	Nodejs	community	since	they're	super
easy	to	install	and	use,	just	like	your	default	Linux	or	GNU	commands.

This	book	is	always	a	work	in	progress.

read	online	at:

https://minhhh.gitbooks.io/command-line-cookbook/content/

download	a	.pdf,	.epub,	or	.mobi	file	from:

https://www.gitbook.com/book/minhhh/command-line-cookbook/details

contribute	content,	suggestions,	and	fixes	on	github:

https://github.com/minhhh/cli-cookbook

References
The	Linux	Cookbook
Commandline	fu

Introduction

3

https://minhhh.gitbooks.io/command-line-cookbook/content/
https://www.gitbook.com/book/minhhh/command-line-cookbook/details
https://github.com/minhhh/cli-cookbook
http://dsl.org/cookbook/cookbook_toc.html
http://www.commandlinefu.com/

Introduction

4

This	chapter	focus	on	using	the	shell	to	run	and/or	coordinate	different	programs	together.
Even	though	there	are	many	different	shell,	we	focus	on		bash	,	which	is	the	standard	on
most	Linux	systems,	including	MacOS.

The	shell

5

Running	a	list	of	commands

Problem
You	want	to	run	a	list	of	commands	in	order,	sometimes	in	parallel.	Sometimes	you	want	to
run	a	command	only	if	another	command	succeeds	or	fails.

Solution
To	run	more	than	one	command	in	order,	simply	type	each	command	in	the	order	you	want
them	to	run,	separating	them	with	a	semicolon		;	

				echo	1;	echo	2;	echo	3;
				>	1
				>	2
				>	3

To	run	a	command	only	if	the	previous	ones	succeed,	we	can	use		&&	

				ls	<file>	&&	rm	<file>	-rf

To	run	a	command	only	if	the	previous	ones	fail,	we	use		||	

				ls	file	&>	/dev/null	||	echo	"File	not	exist"
				>	File	not	exist

To	run	several	commands	in	parallel,	you	can	run	them	as	background	process	using		&	
then		wait	

process1	&
process2	&
process3	&
process4	&
wait
process5	&
process6	&
process7	&
process8	&
wait

Running	a	list	of	commands

6

If	you	want	to	make	sure	that	all	processes	succeeds	together,	you	can	use	npm	package
	parallelshell	

				parallelshell	"echo	1"	"echo	2"	"echo	3"

References
http://stackoverflow.com/questions/19543139/bash-script-processing-commands-in-
parallel

Running	a	list	of	commands

7

https://github.com/keithamus/parallelshell
http://stackoverflow.com/questions/19543139/bash-script-processing-commands-in-parallel

Converting	date	and	time

Problem
We	want	to	quickly	convert	standard	date	time	format	to	POSIX	time	and	vice	versa.

Solution
The	standard		date		can	do	this	easily

Convert	from	date	to	POSIX

				date	-d	"17	June	2015	15:00:00"	+%s
				>	1434520800

				#	get	current	date	in	POSIX
				date	+%s

Convert	from	POSIX	to	date

				date	-d	@1232144092
				>	Sat	Jan	17	07:14:52	JST	2009

By	the	way	to	set	the	current	date

				date	--set	"25	July	2014	15:00:00"

Converting	date	and	time

8

Simulating	user	inputs

Problem
Some	programs	require	user	to	enter	certain	command	before	proceeding,	we	want	to	be
able	to	send	input	to	those	programs	automatically.

Solution
The		expect		program	can	be	used	for	this	purpose.	It	will	detect	certain	text	that	the
program	output	such	as	a	question,	or	a	prompt,	then	it	sends	the	the	texts	that	we've
prepares	to	the	program.

For	instance,	send	ssh	password	automatically

				expect	-c	"ssh	abc@10.0.0.10\n	;		expect	password:	;	send	mypassword\n	;	interact	
"

Simulating	user	inputs

9

Replacing	strings

Problem
A	super	common	thing	you	need	to	do	is	to	do	something	repetively	to	a	lot	of	files.	For
instance,	change	all	the	file	names.	For	simple	task	like	just	changing	the	extension,	you	can
do		mv	*.png	*.jpg	.	But	what	if	you	want	to	replace	spaces	in	the	file	name	with		-		or		_	.
Or	maybe	you	want	to	add	a	hash	to	the	file	name.	Things	are	a	little	bit	more	complicated.

Solution
The	universal	solution	to	all	of	these	problems	is		xargs	.	Basically,	you	can	print	all	of	the
items	that	you	need	to	do	something	with	and	pass	it	to		xargs		to	process	them	one	by	one.

The	way	to	do	this	is:

				...previous	command	|	xargs	-n	1	command

The		-n	1		part	is	to	ensure	that	you	process	the	list	one	at	a	time.	This	only	work	if	the
previous	command	doesn't	generate	string	with	newline	and	spaces.	If	it	does	then	we	have
to	specify	another	character	as	delimiter	by	xargs,	usually	the	null	character		\0	.	With	the
find	command	we	can	use	option	-print0.

Let's	try	to	add	an	extra	extension	to	all	our	files	in	a	folder

				find	.	!	-path	.	-print0	|	xargs	-n	1	-0	-I	{}	sh	-c	'mv	"{}"	"{}.extra"'

The		find	.	!	-path	.	-print0		part	find	all	files	and	folder,	excluding	current	dir		.	.	Then
	xargs		take	each	of	the	name	as		{}	,	and	execute	move	command		sh	-c	'mv	"{}"	"
{}.extra"'		to	them.

Let's	see	how	can	we	replace	all	spaces	in	all	filenames	in	a	folder	with		-	.

				find	.	!	-path	.	|	awk	'{	str=$0;	gsub("	",	"-",	str);	print	"mv	\""$0"\"	\""str"\
""	"\0";	}'	|	xargs	-n	3	-0	-I	{}	sh	-c	'{}'

Running	a	command	for	each	item	in	a	list

10

This	time	we	have	to	do	a	little	more	quoting	so	that	we	can	deal	with	filenames	with	space.
Basically	we	generate	a	string	of	the	command	we	want	to	run	using		awk	.	Then	we	pass
the	whole	command	string	to	xargs	and	run	it.

It's	worth	knowing	that	we	can	also	do	this	directly	with		awk	

				previous	command	|	awk	'{system("command	\""$0"\"")}'

So	the	previous	command	becomes

				find	.	!	-path	.	|	awk	'{	str=$0;	gsub("	",	"-",	str);	system("mv	\""$0"\"	\""str"
\""	"\0");	}'

In	this	case	using		awk		is	simpler.	However	when	you	have	to	process	several
parameters/lines	at	a	time,		xargs		proves	to	be	more	straight	forward.

Running	a	command	for	each	item	in	a	list

11

Generating	random	numbers

Problem
You	want	to	generate	a	random	number.	Or	maybe	you	want	to	generate	a	random	hash	to
be	used	as	password.

Solution
Reading	from		/dev/random		or		/dev/urandom		is	the	way	to	generate	randomness	in	Linux.

To	generate	random	number	we	do	it	like	so

				#	generate	one	byte	of	random,	i.e.	0	to	255
				od	-A	n	-t	d	-N	1	/dev/urandom
				>	87

				#	generate	2	byte	of	random,	i.e.	0	to	65535
				od	-A	n	-t	d	-N	2	/dev/urandom
				>	30651

Generate	random	password	or	hash

				#	From	your	current	date,	obviously	not	very	random	if	you	generate	several	in	a	r
ow.	Take	32	characters	only
				date	+%s	|	sha256sum	|	base64	|	head	-c	32	;	echo

				#	another	way	to	use	date
				date	|	md5sum

				#	another	way	is	to	use	the	existing	openssl	if	you	have	it	in	your	system
				openssl	rand	-base64	32

				#	get	random	from	/dev/urandom
				cat	/dev/urandom	|	tr	-dc	_A-Z-a-z-0-9	|	head	-c${1:-32};echo;

Generating	random	numbers

12

This	chapter	focus	on	the	tools	for	manipulating	files	and	directories.

Managing	files	and	directories

13

Watching	a	directory	and	execute
command	on	file	change

Problem
Watch	a	file	sets	or	directory	and	run	a	command	when	anything	is	added,	changed	or
deleted.

Solution
Use	python	watchdog	module,	which	has	a	command	line	tool	called		watchmedo	

				watchmedo	shell-command	--recursive	--command	'echo	${watch_event_type}'	-w	-W	.	\
				|	xargs	-n	1	-I	{}	sh	-c	'if	["{}"	=	"modified"];	then	clear;	make	unittest;	fi'

Alternatively,	can	use	nodejs	onchange	module

				onchange	'app/**/*.js'	'test/**/*.js'	--	npm	test

Watching	directories

14

https://pypi.python.org/pypi/watchdog
https://www.npmjs.com/package/onchange

Listing	file	and	folder	sizes

Problem
You	want	to	print	the	sizes	of	all	files	and	folders	in	the	current	folder	from	largest	to	smallest

Solution
We	simply	run		du		command	on	each	file	and	folder	in	the	current	folder	then	sort	them
using		sort	

				ls	-A	|	awk	'{system("du	-sm	\""$0"\"")}'|	sort	-nr	|	head

To	list	only	folders

				ls	-Al	\
				|	egrep	'^d'	\
				|	awk	'{printf	$9;	for	(x=10;	x	<=	NF;	x)	{printf	"	"$x;};	print	""}'	\
				|	awk	'{system("du	-sh	\""$0"\"")}'

To	list	only	files

				ls	-Al	|	egrep	-v	'^d'	\
				|	awk	'{printf	$9;	for	(x=10;	x	<=	NF;	x){printf	"	"$x;};	print	""}'	\
				|	awk	'{system("du	-sh	\""$0"\"")}'

References
http://groups.google.com/group/comp.unix.shell/browse_thread/thread/aebcbd0591714
584/5e496ed7cfbe6eb1
http://en.wikipedia.org/wiki/Xargs
http://www.cyberciti.biz/faq/linux-list-just-directories-or-directory-names/

Listing	file	and	folder	sizes

15

http://groups.google.com/group/comp.unix.shell/browse_thread/thread/aebcbd0591714584/5e496ed7cfbe6eb1
http://en.wikipedia.org/wiki/Xargs
http://www.cyberciti.biz/faq/linux-list-just-directories-or-directory-names/

Generating	random	file	with	particular	size

Problem
You	want	to	generate	a	random	file	used	for	testing	with	a	particular	size.

Solution
You	can	use		dd		to	generate	file	with	random	content	like	this

				dd	if=/dev/urandom	of=myFile.dat	bs=64M	count=16

Generating	random	file	with	particular	size

16

Printing	a	file	in	text	or	hex

Problem
We	want	to	print	a	file	with	different	representation.	We	also	want	to	print	various	information
related	to	the	file.

Solution
For	text	file	we	can	use	various	command	like		cat	,		head	,		tail	,		more	,		less	

If	we	want	to	see	file	in	hex	format	we	can	use		hexdump	

				hexdump	<file>

To	print	information	about	the	file	such	as	file	type	we	can	use		file		command

				file	<file>

Printing	a	file	in	text	or	hex

17

Splitting	and	merging	files

Problem
We	want	to	split	a	big	file	into	smaller	files	and	join	them	back	later	to	the	original	file.

Solution
Use		split		to	split	file	easily

				#	Default	split	will	create	xaa,	xab,	etc	files
				split	<FILE>
				>	xaa
				>	xab
				>	xac
				>	xad

				#	Split	with	fixed	number	of	files,	numeric	suffix	of	3	digits,	and	prefix
				split	<FILE>	-n	10	-a	3	-d	<PREFIX>

				#	Split	with	fixed	file	size,	numeric	suffix	of	3	digits,	and	prefix
				split	<FILE>	--bytes=1000	-a	3	-d	<PREFIX>

To	merge	splitted	files,	simply		cat		them	together

				cat	prefix*	>	<NEWFILENAME>

Splitting	and	merging	files

18

Converting	files	to	different	format

Problem
You	want	to	convert	a	file	to/from	different	formats

Solution
	iconv		can	be	used	to	easily	convert	files	from	one	character	set	to	another

				#	convert	from	UTF-8	to	ISO-8859-15/latin-1
				iconv	-f	UTF-8	-t	ISO-8859-15	<infile>	>	<outfile>

	recode		can	do	the	same	thing	but		in-place	

				recode	UTF8..ISO-8859-15	<infile>

	recode		can	also	be	used	to	convert	line	endings

				#	convert	newlines	from	LF	to	CR-LF
				recode	../CR-LF	<infile>

				#	base64	encode	file
				recode	../Base64	<infile>

	recode		can	also	combine	transform	character	set,	line	endings	and	encode

				recode	utf8/Base64..l1/CR-LF/Base64	<infile>

Converting	files	to	different	format

19

Generating	checksum

Problem
You	want	to	generate	different	type	of	checksum	for	a	file

Solution
You	can	use	various	checksum	tool

				cksum	<file>
				md5	<file>
				shasum	<file>

Generating	checksum

20

Generating	mime

Problem
You	want	to	encode	and	decode	MIME	format.

Solution
You	can	use		mimencode		and		mmdecode	

				mimencode	<file>
				mmdecode	<file>

Generating	mime

21

https://en.wikipedia.org/wiki/MIME

Counting	number	of	lines	or	characters

Problem
We	want	to	count	the	number	of	lines,	characters	or	words	in	a	file

Solution
To	count	the	number	of	characters,	words	or	lines,	we	use		wc	

				#	this	shows	number	of	line,	words,	character	respectively
				wc	<file>

				#	show	number	of	lines
				wc	-l	<file>

				#	show	number	of	words
				wc	-w	<file>

				#	show	number	of	characters
				wc	-c	<file>

Counting	number	of	lines	or	characters

22

Copying	and	showing	progress

Problem
You	constantly	copying	big	folders	or	big	files.	You	see	the	files	are	being	copied,	but	it's
quite	annoying	when	copying	big	files	that	you	don't	know	how	much	of	the	file	has	been
copied.

Solution
You	can	use		rsync		with		-P		options

				rsync	-larP	source	dest
				>	t/a
				>									19	100%				0.04kB/s				0:00:00	(xfer#843,	to-check=8/1137)
				>	t/b
				>									35	100%				0.08kB/s				0:00:00	(xfer#844,	to-check=7/1137)
				>	...

What's	even	better	about		rsync		is	that	it	won't	copy	files	that	are	the	same	in	the
destination	so	the	next	time	you	change	something	in	the	source	folder	you	can	execute	the
same	command	again	and	it	will	only	copy	the	change,	not	the	whole	folder	again.

Still,	when	copying	a	folder	with	a	lot	of	files,	you	still	don't	know	the	copying	progress.	In
this	case,	we	can	pipe	the	result	of		rsync		to	another	program	called		pv	.	This		pv	
program	will	show	you	a	progress	bar	and	ETA	time.

				export	SOURCE=<source>	DEST=<dest>	&&	export	SC=$(find	"$SOURCE"	|	wc	-l)	&&	rsync
	-vrltd		--stats	--human-readable	"$SOURCE"	"$DEST"	|	pv	-lep	-s	$SC	>	/dev/null

Even	though	this	looks	complicated,	it's	actually	quite	straight	forward.	First	we	use
temporary	variables	to	store	the	source	and	the	destination	folders.	Then	we	count	how
many	items	are	there	in	the	source	folder.	Then	we	use		rsync		to	copy	files	one	by	one	and
print	them	out.		pv		will	pick	up	the	number	of	lines	and	use	that	with	the	total	number	of
items	to	calculate	the	complete	percentage.

Note	that	if	you	want	to	copy	a	folder	inside	another	folder	then	you	should	not	include		/		in
	<source>	,	for	instance,	set	it	to		MyFolder	.	If	you	want	to	copy	and	rename		MyFolder		to
	AnotherFolder		then		<source>		should	be	set	to		MyFolder/	.

Copying	and	showing	progress

23

Copying	and	showing	progress

24

Batch	renaming

Problem
This	is	actually	one	of	the	most	common	problems	that	we	encouter	everyday.	Sometime
somewhere	someone	will	name	all	the	files	incorrectly	and	we	want	to	change	the
extensions	or	some	part	of	the	filename	to	suit	our	needs.

Solution
To	change	one	kind	of	file	name	to	another,	we	use		bash		for	loop	with		find	

				#	change	from	.html	to	.txt
				for	file	in	*.html;	do
								mv	"$file"	"`basename	$file	.html`.txt"
				done

You	can	probably	do	the	same	with		awk		as	well.	The	principle	is	to	list	the	file	first	then
rename	them	one	by	one.

However,	there's	a	more	convenient	way	to	batch	rename,	which	is	the		rename		command.
You	can	use	it	like	so

				rename	's/\.html$/\.txt/'	*.html

The	syntax	is		rename	"regex-rule"	<files>	.	So	if	you	can	do	some	simple	regex,	it's	better
to	do	this	way.

Another	example	is	to	change	all	filenames	to	lower	case	or	upper	case.	Again,	you	can	use
	rename	

				#	uppper	to	lower
				rename	-f	'y/A-Z/a-z/'	*

				#		lower	to	uppper
				rename	-f	'y/a-z/A-Z/'	*

Batch	renaming

25

Batch	renaming

26

Counting	number	of	lines	or	characters

Problem
We	want	to	count	word	frequency	and	sort	it	from	top	to	bottom.

Solution
To	make	a	list	of	word	frequency	in	a	document,	we	can	combine		wc	,		sort		and		awk		like
so

				cat	~/bitbucket/wiki/about.md	|	tr	'	'	'
				'	|	sort	|	uniq	-c	|	sort	-rnk1

				#	result
				51	to
				39	and
				36	I
				31	of
				31	a
				30	the
				...

Counting	word	frequency

27

Comparing	file	names	in	2	directories

Problem
You	want	to	compare	the	content	of	2	directory	by	filenames,	assuming	files	with	the	same
name	will	have	the	same	content

Solution
You	can	use		diff		like	so

				diff	-rqu	<directory-1>	<directory-2>
				#	Only	in	directory-1:	file1
				#	Only	in	directory-1:	file2
				#	Only	in	directory-2:	file3
				#	Only	in	directory-2:	file4

Comparing	file	names	in	2	directories

28

This	chapter	focuses	on	text	manipulation.

Strings	and	text

29

Searching	text	from	files

Problem
You	want	to	search	for	text	in	a	lot	of	files	swiftly.

Solution
You	can	use		grep		or		egrep	

				#list	only	file	name
				find	.	|	xargs	grep	'string'	-sl
				find	/	-type	f	-print0	|	xargs	-0	grep	-l	"test"

				#	print	text	and	file	name
				grep	-r	"redeem	reward"	/home/tom

				#	egrep	with	regular	expression
				egrep	"^\s+\""	file1

				#	grep	excluding	files
				grep	-ircl	--exclude=*.{png,jpg}	"foo="	*
				grep	-Ir	--exclude="*\.svn*"	"pattern"	*

However	the	much	better	solution	is	to	use		ag		or		ack	

				ag	-Q	--smart-case	--ignore=pack*.js	--ignore=Code/tag	\
				--ignore-dir=build	--ignore-dir=Code/JSON	--ignore-dir=Tools	--js	"test"

				ack	-Q	--smart-case	"test"	--js	--ignore-file=match:/packed.*\.js/	\
				--ignore-file=is:Code/tag	--ignore-dir=build	--js	"test"

Searching	text	in	files

30

Removing	duplicated	lines

Problem
You	want	to	remove	duplicated	lines	in	a	file	or	from	stdin.

Solution
You	can	combine		uniq		and		sort		to	achieve	this.

				sort	garbage.txt	|	uniq	-u
				cat	garbage.txt	|	sort	|	uniq	-u

Removing	duplicated	lines

31

Printing	a	range	of	lines

Problem
You	want	to	print	a	range	of	lines	from	a	file	or	from	stdin,	not	the	whole	thing.	For	instance,
you	may	want	to	print	only	the	first	3	lines,	or	the	last	5	lines,	or	everything	except	the	first
line,	or	everything	except	the	last	2	lines.

Solution
First,	we	can	count	the	number	of	lines	in	a	file	like	this

				wc	-l	<file>
				cat	<file>	|	wc	-l

Print	the	first		n		line	with		head	

				head	-n	10

Print	last		n		line	with		tail	

				tail	-n	10

Print	everything	except	the	first		n		line	with		tail	

				tail	-n	+7

Print	everything	except	the	last		n		line	with		head	

				head	-n	-2

Print	from	line		x		to	line		y		with		sed	

				sed	-n	"1,3p"

Printing	a	range	of	lines

32

Printing	a	range	of	lines

33

Converting	tab	to	space

Problem
You	want	to	convert	tab	to	space	and	vice	versa.

Solution
To	convert	from	tab	to	space	you	can	use		expand	

				#	convert	tab	to	4	space	in	all	java	files
				find	.	-name	'*.java'	!	-type	d	-exec	bash	-c	'expand	-t	4	"$0"	>	/tmp/e	&&	mv	/tm
p/e	"$0"'	{}	\;

To	convert	all	4	spaces	to	tab,	use		unexpand	

				unexpand	-t	4	<input_file>

Converting	tab	to	space

34

Comparing	2	text	files

Problem
You	want	to	compare	2	text	files	side	by	side.

Solution
Linux	already	has	a	tool	to	do	this	called		diff	

				diff	file1	file2

The	output	will	be	something	like	this

1c1
<	1

>	2

where	the		<		part	is	in	the	first	file	only	and	the		>		part	is	in	the	second	file	only.

If	you	want	more	visual	diff	you	can	use		colordiff	

Comparing	2	text	files

35

Sorting	lines	based	on	a	certain	field

Problem
You	want	to	sort	a	list	of	lines	from	a	file	or	from	stdin	based	on	a	certain	field,	provided	all
the	lines	follow	the	same	format.

Solution
First,	you	can	sort	the	whole	line	with		sort	.

For	instance,	you	can	sort	lines	in		/etc/password	,	which	will	sort	by	the	username	since	the
username	is	the	first	field	in	each	line.

				#	sort	password	file	by	username
				sort	/etc/passwd

				#	original	content
				_kadmin_changepw:*:219:-2:Kerberos	Change	Password	Service:/var/empty:/usr/bin/fal
se
				_devicemgr:*:220:220:Device	Management	Server:/var/empty:/usr/bin/false
				_webauthserver:*:221:221:Web	Auth	Server:/var/empty:/usr/bin/false
				_netbios:*:222:222:NetBIOS:/var/empty:/usr/bin/false
				_warmd:*:224:224:Warm	Daemon:/var/empty:/usr/bin/false
				_dovenull:*:227:227:Dovecot	Authentication:/var/empty:/usr/bin/false

				#	content	after	sorting
				_devicemgr:*:220:220:Device	Management	Server:/var/empty:/usr/bin/false
				_dovenull:*:227:227:Dovecot	Authentication:/var/empty:/usr/bin/false
				_kadmin_changepw:*:219:-2:Kerberos	Change	Password	Service:/var/empty:/usr/bin/fal
se
				_netbios:*:222:222:NetBIOS:/var/empty:/usr/bin/false
				_warmd:*:224:224:Warm	Daemon:/var/empty:/usr/bin/false
				_webauthserver:*:221:221:Web	Auth	Server:/var/empty:/usr/bin/false

However,	most	of	the	time	we	want	to	sort	the	file	based	on	a	field	in	the	middle.	In	this	case
we	use	sort	by		field		feature.

Sorting	lines	based	on	a	certain	field

36

				#	Sort	by	the	second	field
				cat	somefile.txt	|	sort	-rnk2

				#	original	content
				x			1			2
				x			2			2
				x			3			2
				x			12			2
				x			9			2
				x			3			2

				#	content	after	sorting
				x			12			2
				x			9			2
				x			3			2
				x			3			2
				x			2			2
				x			1			2

In	a	more	general	case,	we	want	to	sort	by	calculating	a	value	based	on	some	fields,	for
instance,	the	ratio	between	field	2	and	field	3.	In	such	cases,	we	will	use		awk		to	calculate
the	derived	field	then	use		sort		on	the	final	result

Sorting	lines	based	on	a	certain	field

37

				#	sort	based	on	field	3	/	field	2	then	print	the	result	at	the	beginning	of	the	li
ne
				cat	somefile.txt	|	awk	'{ratio	=	$2/$1;	print	ratio,	$0;}'	|	sort	-rnk1

				#	original	content
				x			1			2
				x			2			2
				x			3			2
				x			12			2
				x			9			2
				x			3			2

				#	content	with	the	calculated	value	inserted	as	the	first	field:	cat	somefile.txt	
|	awk	'{ratio	=	$2/$1;	print	ratio,	$0;}'
				2	x			1			2
				1	x			2			2
				0.666667	x			3			2
				0.166667	x			12			2
				0.222222	x			9			2
				0.666667	x			3			2

				#	content	after	sorting
				2	x			1			2
				1	x			2			2
				0.666667	x			3			2
				0.666667	x			3			2
				0.222222	x			9			2
				0.166667	x			12			2

Real	world	example:	Counting	unique	ip	access	in	apache	log	in	a	month

				grep	Jan/2004	access.log	|	grep	foo.php	|	\
				awk	'{	print	$1;	}'	|		sort	-n	|	uniq	-c	|	\
				sort	-rn	|	head

Sorting	lines	based	on	a	certain	field

38

Merge	content	of	2	files	side	by	side

Problem
You	want	to	show	the	content	of	2	files	next	to	each	other,	line	by	line.	For	instance,	one	file
contains	id	and	the	other	contains	names.

Solution
You	can	use		paste		to	achieve	this.

Suppose		file1		contains	names

Mark	Smith
Bobby	Brown
Sue	Miller
Jenny	Igotit

and		file2		contains	numbers

555-1234
555-9876
555-6743
867-5309

You	can	use		paste		like	so

				#	Merge	with	default	separator:	tab
				paste	file1	file2
				>	Mark	Smith				555-1234
				>	Bobby	Brown				555-9876
				>	Sue	Miller				555-6743
				>	Jenny	Igotit				867-5309

				#	merge	with	delimiter	comma	(,)
				paste	-d,	file1	file2
				>	Mark	Smith,555-1234
				>	Bobby	Brown,555-9876
				>	Sue	Miller,555-6743
				>	Jenny	Igotit,867-5309

Merging	content	of	2	files	side	by	side

39

Merging	content	of	2	files	side	by	side

40

Joining	all	lines	in	a	file

Problem
You	want	to	join	all	lines	in	a	file,	often	separated	by	a	comma

Solution
You	can	use		paste		to	achieve	this	like	so

				#	Join	with	tab	separate	each	line
				paste	-s	<filename>

				#	join	with	delimiter	comma
				paste	-d,	-s	<filename>

Joining	all	lines	in	a	file

41

Adding	text	to	the	beginning	of	a	file

Problem
You	want	to	quickly	add	a	piece	of	text	to	the	beginning	of	a	file.

Solution
The	simplest	way	is	to	just	print	the	text	together	with	the	content	of	the	file	to	a	temporary
file,	then	copy	the	temporary	file	to	the	original	file.

				echo	'Begin'	|	cat	-	<file>	>	temp	&&	mv	temp	<file>

Another	way	is	to	use		sed		program	to	insert	the	text	to	the	beginning	of	the	file	and	use	edit
in	place	functionality	of		sed		so	that	we	don't	have	to	create	temporary	file.

				sed	-i	'1s/^/Begin\n/'	<file>

				#	A	shorter	version
				sed	-i	'1iBegin'	<file>

Adding	text	to	the	beginning	of	a	file

42

Replacing	strings

Problem
You	want	to	replace	one	string	by	another	in	one	or	many	files.

Solution
You	can	use		sed		to	do	various	string	manipulation	tasks

To	replace		old-word		by		new-word	

				sed	-i	's/old-word/new-word/g'	*.txt

				#in	mac
				sed	's/old-word/new-word/g'	-i	''	*.txt
				sed	's/old-word/new-word/g'	*.txt

Some	times	the	words	contain	single	quotes,	in	these	cases,	we	have	to	escape	them	like
so

				sed	's/old-word/new'\''word/g'	*.txt

If	you	want		sed		to	read	from	standard	input,	you	have	to	use		-e		option

				echo	"hello	world"	|	sed	-e	's/hello/hi/g'
				>	hi	world

Replacing	strings

43

Changing	cases

Problem
You	want	to	convert	lower	case	to	upper	case	and	vice	versa

Solution
You	can	use	multiple	tools	to	do	this	task.	One	simple	solution	is	the		tr		program

				#	convert	upper	to	lower	case
				echo	"HELLO"	|	tr	'[:upper:]'	'[:lower:]'
				>	hello

				#	convert	lower	case	to	upper	case
				echo	"hello"	|	tr	'[:lower:]'	'[:upper:]'
				>	HELLO

Changing	case

44

Deleting	lines	that	contain	a	specific	string

Problem
In	a	lot	of	occasions,	you	would	want	to	remove	a	particular	line	in	a	file	if	it	exists.

Solution
You	can	use	a	lot	of	tools	to	do	this	such	as		awk	,		bash	,		sed	,	etc.

Using		sed		is	pretty	intuitive.	To	remove	a	line	contains	a	specific	string	we	do	like	this

				#	Will	remove	all	lines	containing	helloworld
				sed	-i	'/helloworld/d'	./infile

Sometimes	we	want	to	match	the	whole	line,	we	can	do	like	this

				#	Will	remove	all	lines	which	are	exactly	`helloworld`
				sed	-i	'/^helloworld$/d'	./infile

Deleting	lines	that	contain	a	specific	string

45

This	chapter	focuses	on	finding	things	in	the	file	system.

Finding	things

46

Finding	files	based	on	name

Problem
You	want	to	find	files	or	folders	in	a	directory	by	name.

Solution
Use		find		to	find	files	or	folders	in	a	folder	by	name.

Find	all	files	or	folder	in	the	current	directory	whose	name	is		password.txt	.

				#	This	command	would	match	any	files	whose	name	consisted	of	the	letters	`password
.txt',	regardless	of	case,	including	'password.txt',	'PASSWORD.TXT',	and	'password.TXT
'.
				find	.	-iname	password.txt

We	can	use	some	wildcard	patterns	to	make	the	searching	easier	in	case	we	don't	know	the
exact	names,	or	we	just	want	to	find	all	files	with	similar	patterns.

				#	search	all	files	begin	with	`pass`
				find	.	-iname	'pass*'

				#	file	all	files	with	a	certain	extension
				find	.	-iname	'*.png'
				find	.	-iname	'*.txt'

				#	search	all	files	whose	name	contains	`pass`	somewhere
				find	.	-iname	'*pass*'

To	find	only	file	or	folder	we	have	to	specify	the	type	like	so

				#	search	only	files
				find	.	-type	f	-iname	'win*'

				#	search	only	folder
				find	.	-type	d	-iname	'win*'

To	exclude	specific	folders	we	use	the		-not	-iname		option

Finding	files	based	on	name

47

				find	-name	"*.js"	-not	-iname	"hello.js"

To	exclude	specific	folders	we	use	the		-not	-path		option

				find	-name	"*.js"	-not	-path	"./directory/*"

Running	commands	on	the	files	you	find.

				find	.	-name	'*.md'	-exec	echo	'Found	{}'	';'
				>	Found	./android_cli.md
				>	Found	./awk.md
				>	Found	./bash.md
				>	Found	./curl.md
				>	Found	./daemons.md
				>	Found	./docker.md
				>	...

This	is	similar	to	"Running	a	command	for	each	item	in	a	list"	part.	You	can	use		awk		or
	xargs		to	do	more	advanced	things.	For	simple	operations	you	can	use		find	.

Finding	files	based	on	name

48

Finding	files	based	on	size

Problem
You	want	to	find	the	largest	file	or	folders,	maybe	recursively.	You	also	want	to	find	files	that
are	bigger/smaller	than	X	bytes

Solution
Find	the	largest	file/folder	non-recursively	OR	sort	files	and	folders	by	size

				ls	-A	|	awk	'{system("du	-sh	\""$0"\"")}'|	sort	-hr	|	head

Find	the	largest	file	in	a	folder	and	all	subfolders	recursively

				find	.	-type	f	-print0	|	xargs	-0	-n	1	du	-sh	|	sort	-hr	|	head

				#	display	in	block	of	1024-byte
				find	.	-type	f	-print0	|	xargs	-0	-n	1	du	-sk	|	sort	-nr	|	head

This	command	use		find		to	search	for	all	file	recursively.	The	option		-print0		removes	the
need	for		sed		to	escape	spaces	since	all	fields	now	are	separated	by	null	character.		args
-0		makes	sure	we	use	null	separator.

To	find	files	smaller/larger	than	X	bytes	we	will	also	use		find		command	with	the		-size	
option

				//	find	files	larger	than	4096	bytes
				find	.	-type	f	-size	+4096c

				//	find	files	smaller	than	1M
				find	.	-type	f	-size	-1M

Options	for	the		-size		switch

Finding	files	based	on	size

49

				-size	n[ckMGTP]
								True	if	the	file's	size,	rounded	up,	in	512-byte	blocks	is	n.		If	n	is	followe
d	by	a	c,	then	the	primary	is	true	if	the
								file's	size	is	n	bytes	(characters).		Similarly	if	n	is	followed	by	a	scale	in
dicator	then	the	file's	size	is	compared	to	n
								scaled	as:

								k							kilobytes	(1024	bytes)
								M							megabytes	(1024	kilobytes)
								G							gigabytes	(1024	megabytes)
								T							terabytes	(1024	gigabytes)
								P							petabytes	(1024	terabytes)

Finding	files	based	on	size

50

Finding	files	in	a	folder

Problem
You	want	to	find	a	file	by	name	in	a	folder,	but	also	want	to	exclude	certain	folder	in	the	find
path.	Also,	you	want	to	run	some	command	after	finding	the	files.

Solution
The		find		tool	can	find	file/folders	by	name,	exclude	certain	folders/files	and	execute
command	on	found	items.

Find	files	by	name,	excluding	the	git	folders

				find	.	-not	-path	"./.git/*"	-iname	"my.png"

Remove	all	.svn	files	in	a	directory

				find	.	-name	".svn"	-exec	rm	-rf	{}	\;

Finding	files	in	a	folder

51

This	chapter	introduces	several	simple	admistratrative	tasks.	Most	of	these	commands
should	be	run	using		root		account.

Administration

52

Shutting	down

Problem
You	want	to	shutdown	system,	sometimes	immediately,	sometimes	at	a	certain	time	or	after
a	certain	duration.

Solution
Use	the		shutdown		command	with		root		privilege.

To	immediately	shut	down	and	halt	the	system

				sudo	shutdown	-h	now

To	immediately	reboot	the	system

				sudo	shutdown	-r	now

You	can	optionally	send	a	warning	message	to	all	user	with		-c		option

				sudo	shutdown	-h	now	"The	system	is	being	shut	down	now!"

To	shut	down	the	system	at	a	certain	time

				#	At	4.23	AM
				sudo	shutdown	-h	4:23

				#	At	8.00	PM
				sudo	shutdown	-h	20:00

To	shut	down	and	halt	the	system	after	a	period	of	time

				#	In	5	minutes
				sudo	shutdown	-h	+5

To	cancel	a	shutdown

Shutting	down

53

				sudo	shutdown	-c

Shutting	down

54

Execute	a	command	at	a	specified	time

Problem
You	want	to	run	a	command	at	a	specified	time,	or	at	a	certain	amount	of	time	from	now.

Solution
Use		at		command	to	run	arbitrary	commands	and	scripts	at	a	specified	time.

There	are	2	ways	to	run		at	:	from	user	input	or	from	a	script

To	run	from	user	input

				at	<time>
				...type	in	the	commands
				Ctrl-D

To	run	from	a	script

				at	<time>	-f	<script>

To	run	a	command	immediately

				at	now

To	run	a	command	at	a	specific	time	in	the	future

				#	run	this	job	at	10:00	Jan	10,	2015
				at	10:00	Jan	10	2015

				#	run	this	job	at	midnight,	noon,	or	teatime,	respectively
				at	midnight
				at	noon
				at	teatime

				#	run	this	job	at	noon	today	or	tomorrow
				at	noon	today
				at	noon	tomorrow

Execute	a	command	at	a	specified	time

55

To	run	a	command	after	an	amount	of	time	has	elapsed	from	now,	just	add		+		to	the	time

				#	run	this	job	after	3	minutes
				at	now	+	3	minutes

				#	run	this	job	at	4pm	3	days	from	now
				at	4pm	+	3	days

To	list	current	jobs,	use		atq	

				atq

To	remove	a	job	listed	by		atq	,	use		atrm	

				atrm	10

	batch		is	similar	to		at	,	but	it	only	executes	command	when	system	load	levels	permit,	i.e.,
when	the	load	average	drops	below	1.5.

Execute	a	command	at	a	specified	time

56

Pausing	execution

Problem
You	want	to	pause/sleep	for	some	seconds	on	the	command	line.

Solution
You	can	use		sleep		and		usleep	

				#	sleep	for	1	second
				sleep	1

				#	sleep	for	1000	milliseconds
				usleep	1000

Pausing	execution

57

Stuff	that	does	not	fit	anywhere	should	go	here

Miscellaneous

58

Doing	mathematics

Problem
We	want	to	do	simple	mathematics

Solution
Use		bc		command

				echo	"5.1	*	2"	|	bc	-	l
				>	10.2

				echo	"scale=10;	1/2"	|	bc	-l
				>	.5000000000

Doing	mathematics

59

	Introduction
	The shell
	Running a list of commands
	Converting date and time
	Simulating user inputs
	Running a command for each item in a list
	Generating random numbers

	Managing files and directories
	Watching directories
	Listing file and folder sizes
	Generating random file with particular size
	Printing a file in text or hex
	Splitting and merging files
	Converting files to different format
	Generating checksum
	Generating mime
	Counting number of lines or characters
	Copying and showing progress
	Batch renaming
	Counting word frequency
	Comparing file names in 2 directories

	Strings and text
	Searching text in files
	Removing duplicated lines
	Printing a range of lines
	Converting tab to space
	Comparing 2 text files
	Sorting lines based on a certain field
	Merging content of 2 files side by side
	Joining all lines in a file
	Adding text to the beginning of a file
	Replacing strings
	Changing case
	Deleting lines that contain a specific string

	Finding things
	Finding files based on name
	Finding files based on size
	Finding files in a folder

	Administration
	Shutting down
	Execute a command at a specified time
	Pausing execution

	Miscellaneous
	Doing mathematics

