

1.1

1.2

1.2.1

1.2.2

1.2.3

1.2.4

1.2.5

1.2.6

1.3

1.3.1

1.3.2

1.3.3

1.3.4

1.3.5

1.3.6

1.3.7

1.3.8

1.3.9

1.3.10

1.3.11

1.3.12

1.3.13

1.3.14

1.3.15

1.3.16

1.3.17

1.3.18

1.3.19

1.4

1.4.1

Table	of	Contents
Introduction

Process

Build	Fast	Feedback	Loops

Instant	Feedback

Fast	Feedback

Slower	Feedback

Agree	The	Language	You	Use	For	Tests

Use	Coverage	As	A	Tool	Not	A	Target

Style

Consider	Code	Generators	Carefully

Optimise	For	Readability

Prefer	Readable	Code	To	Comments

Javadoc	Judiciously

Remember	Kiss	And	Yagni

Prefer	Composition

Keep	It	Solid

Keep	Your	Code	Dry

Prefer	Reversible	Decisions

Make	Dependencies	Explicit

Prefer	Immutable	Objects

Use	A	Consistent	Code	Layout

Group	Methods	For	Easy	Comprehension

Keep	Methods	Small	And	Simple

Methods	Should	Do	One	Thing

Avoid	Null

Use	Final	Liberally

Provide	No	More	Than	One	Worker	Constructor

Avoid	Checked	Exceptions

Specifics

Know	How	To	Implement	Hashcode	And	Equals

2

1.4.2

1.4.3

1.4.4

1.4.5

1.4.6

1.4.7

1.4.8

1.4.9

1.4.10

1.4.11

1.5

1.5.1

1.5.2

1.5.3

1.5.4

1.5.5

1.5.6

1.5.7

1.5.8

1.5.9

1.5.10

1.6

1.6.1

1.6.2

1.6.3

Do	Not	Reassign	Parameters

Limit	Scope

Prefer	For	Each	Loops	To	For	Loops

Prefer	Maps	And	Filters	To	Imperative	Loops

Avoid	Apis	From	Prehistory

Beware	Casts	And	Generics	Warnings

Do	Not	Use	Magic	Numbers

Do	Not	Use	The	Assert	Keyword

Avoid	Floats	And	Doubles

Do	Not	Use	Reflection

Tests

Write	Specifications	Not	Tests

Think	Units	Not	Methods

Name	Tests	With	A	Specification	Style

Pick	Examples	Carefully

Make	Tests	Easy	To	Understand

Understand	How	To	Use	Mocks	And	Stubs

Understand	Your	Options	For	Code	Reuse

Write	Repeatable	Tests

Only	Unit	Test	Code	It	Makes	Sense	To	Unit	Test

Testing	FAQS

Bad	advice

Single	Exit	Point	Rules

Always	Use	A	StringBuffer

Hungarian	Notation

3

Introduction

What	is	This?
This	book	is	an	attempt	to	capture	what	"good"	Java	code	looks	like	and	the	practices	that
help	produce	it.

This	is	a	problematic	document	to	write.

There	is	no	one	right	answer	to	what	good	code	looks	like	and	there	are	many	well-
respected	books	that	serve	the	same	purpose	such	as	Effective	Java,	Clean	Code	and
others.

So	why	this	document?

It	differentiates	itself	by	being	:

Freely	distributable
Open	for	update	-	contributions,	corrections	and	updates	are	encouraged
Brief	-	much	is	left	out	in	an	attempt	to	be	easily	digestible
Narrow	-	it	captures	one	opinion	of	"good"	appropriate	for	a	specific	context

This	last	point	is	important.

We	assume	a	number	of	things	about	you	and	the	environment	you	are	working	in.

We	assume	you	are	writing	server	side	Java	in	small	teams.
We	assume	your	teams	are	of	mixed	experience	(some	experts,	some	beginners).
We	assume	you	are	writing	code	in	a	general	"business"	context.
We	assume	you	expect	the	code	to	still	be	in	use	in	five	years'	time.

Some	of	the	suggestions	may	be	valid	in	other	contexts,	others	might	constitute	terrible
advice	for	those	contexts.

It	is	also	just	one	opinion	from	many	valid	alternatives.	To	be	useful	it	needs	to	be	an	opinion
that	you	can	agree	with	and	sign	up	to.	If	you	disagree	with	something	in	this	book	please
make	your	own	thoughts	known	so	it	can	be	improved.

Finally,	not	all	the	code	we	work	on	is	perfect.	Sometimes	we	inherit	our	own	mistakes,
sometimes	we	inherit	other	people's.

The	point	of	this	document	is	not	to	say	that	all	code	must	look	like	this	but	to	have	an
agreed	destination	that	we	are	aiming	for.

Introduction

4

Who	is	This	For?
This	document	is	intended	for	consumption	by	anyone	involved	with	writing	server	side	Java
code.	From	developers	writing	Java	for	the	first	time	through	to	seasoned	technical	leads
serving	multiple	teams.

Some	sections	will	be	more	relevant	to	some	audiences	than	others	but	we	encourage
everyone	to	at	least	skim	all	sections	even	if	you	do	not	read	them	in	depth.

Structure
The	document	is	split	into	five	sections:

Process	-	Discussion	on	development	philosophy	and	workflow
Style	-	Good	style	and	design	at	a	high	level
Specifics	-	More	specific	advice	on	Java	language	features	and	gotchas
Good	tests	-	How	to	write	good	tests
Bad	advice	-	Discussion	of	some	commonly	circulated	bad	advice	and	patterns

Version
This	book	is	updated	often.	The	latest	changes	to	the	book	can	be	viewed	online	at
gitbook.com.

Versioned	releases	are	available	for	free	from	the	book's	website.

If	you	are	reading	a	PDF	or	print	copy	of	this	book	the	release	version	will	be	displayed	on
the	inside	cover.	If	there	is	no	inside	cover	then	you	are	reading	an	unreleased	version	of	the
book.

History
Most	of	the	content	of	this	book	began	life	as	internal	wiki	pages	at	NCR	Edinburgh.	We
started	to	convert	the	wiki	into	this	book	at	the	end	of	2015	so	that	it	could	be	easily	shared
with	other	parts	of	our	company.

Rather	than	keep	this	as	an	internal	document	we	decided	to	open	it	up	to	everyone	in	the
hope	that	together	we	could	make	it	better.

Introduction

5

https://ncrcoe.gitbooks.io/java-for-small-teams/content/
http://javabook.ncredinburgh.com
http://ncredinburgh.com

A	word	on	Trade-Offs
There	are	no	right	answers	in	software	engineering.

It	is	a	balancing	act	in	which	we	must	trade	off	one	concern	against	another	and	make	a
judgement	call	about	which	balance	is	better	for	the	specific	scenario	we	have	found
ourselves	in.

One	of	the	most	common	mistakes	we've	seen	experienced	programmers	make	is	to	blindly
consider	only	one	or	two	concerns	(often	the	ones	with	catchy	acronyms)	without	thought	for
others.

We've	carefully	set	out	the	context	in	which	we	think	the	advice	in	this	book	will	be	useful,
but	the	context	is	still	very	broad.	Slightly	different	situations	might	benefit	from	very	different
trade	offs.	What	worked	well	for	you	in	one	project	might	not	work	so	well	in	the	next.

For	this	reason	we	rarely	use	words	like	always	or	never.

When	we	do	use	them	we	have	thought	carefully	before	doing	so,	but	what	we	really	mean
is	almost-always	or	almost-never.

Having	said	this	if	you	find	yourself	discounting	any	of	the	recommendations	in	this	book
please	stop	and	think	first.	Don't	fall	into	the	trap	of	thinking	certain	advice	cannot	apply	to
you.	We	often	make	our	worst	mistakes	when	we	believe	we	are	being	elegant	or	clever.
The	full	horror	of	our	ineptitude	sometimes	does	not	become	apparent	for	months	or	years.

Advice	is	here	to	save	us	from	ourselves.

A	note	on	Java	Versions
This	document	is	intended	to	apply	to	Java	7	and	8,	but	will	be	largely	applicable	to	Java	5
and	6.

Where	there	are	differences	between	Java	8	and	7	we	will	point	them	out.	If	you	are	unlucky
enough	to	be	working	with	an	earlier	version	of	Java	you	will	have	to	discover	any
differences	to	Java	7	on	your	own.

License
This	work	is	Copyright	©	NCR,	but	may	be	read	and	shared	with	others	under	the	terms	of
the	Creative	Commons	Attribution	Share	Alike	licence	v4.0.

Introduction

6

Author
This	document	was	written	by	Henry	Coles	and	numerous	contributors.

Contributors

Francesco	Burato
Gary	Duprex
Grant	Forrester
Kevin	Grant
Keir	Lawson
Marco	Di	Paola
Gordon	Rogers
Herve	Saint-Amand
Ewan	Summers

Cover
The	cover	was	produced	by	Peter	Berry	based	on	a	wood	engraving	of	a	Long	billed	curlew
from	the	1885	text	"Nouveau	dictionnaire	encyclopédique	universel	illustré"

To	our	knowledge	Long	Billed	Curlews	are	not	especially	proficient	in	Java.

Introduction

7

https://twitter.com/0hjc

Process
Code	(good	and	bad)	doesn't	just	appear	from	nowhere,	someone	needs	to	sit	down	and
write	it.	How	the	coder	approaches	this	task	can	influence	the	amount	of	time	spent
swearing	at	the	code	later.

This	section	looks	at	development	philosophy,	workflow,	and	other	factors	that	teams	should
consider	before	starting	to	work	together.

Process

8

Build	Fast	Feedback	Loops
Good	code	is	all	about	getting	good	and	timely	feedback.	The	sooner	you	find	out	something
is	wrong	the	easier	it	is	to	fix.

Working	on	a	legacy	project,	where	the	only	way	to	discover	if	a	code	change	is	good	is	to
deploy	it	to	a	dev/test/qa	environment,	is	frustrating	and	demoralizing.

Make	sure	your	project	has	a	well	designed	development	workflow	-	the	effort	of	setting	this
up	will	be	repaid	many	times	over.

Ideally	all	feedback	would	be	instantaneous,	but	in	practice	it	is	either	impractical	or
impossible	to	get	all	feedback	this	way.

Instead	software	development	is	organized	as	nested	levels	of	feedback,	as	shown	here:

Build	Fast	Feedback	Loops

9

Instant	Feedback
A	modern	IDE	such	as	Eclipse	or	IntelliJ	will	provide	instant	feedback	as	you	type,	using	the
underlying	compiler	and	configurable	static	analysis	tools.

You	can	increase	the	amount	of	instant	feedback	you	receive	by	making	good	use	of	the
Java	type	system	and	configuring	the	static	analysis	tools.

While	feedback	from	the	IDE	is	fast	and	convenient,	it	has	some	drawbacks.

It	may	differ	from	machine	to	machine	depending	on	the	IDE	configuration
It	is	often	non	binary	(i.e.	not	pass/fail)
It	can	be	ignored	/	overlooked
The	expectation	of	speed	limits	what	it	can	achieve

For	these	reasons	you	should	avoid	purely	IDE	centric	work	flows.	Code	should	not	be
considered	complete	by	a	developer	until	tests	have	been	run	via	the	build	file.

Instant	Feedback

10

Fast	Feedback

The	Build	File	is	Truth
The	build	script	provides	less-immediate	feedback	than	the	IDE	because	it	must	be	explicitly
triggered.

Feedback	from	the	build	script	has	two	major	advantages,	however:

It	is	repeatable	across	all	machines
With	the	aid	of	a	CI	server,	you	can	ensure	it	is	not	ignored

Because	slower	feedback	is	acceptable	from	the	build	script,	a	larger	set	of	static	and
dynamic	analysis	can	be	run	from	here.	This	will	usually	include	a	repeat	of	your	instant
feedback.

Locally	Runnable	Tests
After	the	compiler	and	static	analysis,	the	next	fastest	levels	of	feedback	are	the	test	suites.

At	least	two	suites	should	be	maintained	that	are	runnable	locally	on	any	developer
machine.

Because	they	are	typically	run	immediately	after	compiling	or	before	committing/pushing
code,	Martin	Fowler	refers	to	these	as:

The	compile	suite
The	commit	suite

In	Maven,	these	map	naturally	to	the		test		and		integration-test		phases.

The	criteria	for	a	test	being	placed	in	the	compile	suite	should,	however,	be	more	than	just
its	execution	speed.

They	must	be	fast	(milliseconds	or	less	per	test)	but	must	also	be	highly	deterministic	and
repeatable.	This	ensures	that	the	suite	provides	clean	feedback	-	the	only	reason	that	a	test
should	fail	after	a	code	change	is	if	the	change	has	caused	regression.

Although	this	sounds	simple,	in	practice	it	requires	considerable	rigor	to	ensure	that	tests
cannot	interfere	with	each	other	or	be	affected	by	external	factors.

Fast	Feedback

11

Tests	in	the	commit	suite	may	be	slower	and	may	also	be	slightly	less	repeatable.	They
should	aim	to	be	100%	repeatable	but	they	may	do	things	that	carry	the	risk	of	occasionally
causing	a	failure,	like	use	network	IO	or	write	to	disk.

Although	many	tests	in	this	suite	may	do	no	more	than	launch	code	within	the	same	JVM	as
the	tests	themselves,	some	of	the	tests	should	also	launch	the	built	artifact	(war,	ear,	jar)	and
perform	at	least	some	degree	of	testing	against	it.

Although	the	commit	suite	will	likely	depend	on	external	resources	such	as	containers,
databases,	queues,	etc.,	it	should	still	be	runnable	on	any	machine	with	a	single	command.

Installing	and	starting	dependent	resources	should	be	handled	automatically	by	the	build
scripts	and	tests	-	your	project	should	not	come	with	a	page	of	notes	on	how	to	set	up	a
development	machine.

Commonly,	the	Maven	Cargo	plugin	is	used	to	download	and	configure	containers	for
testing.

Fast	Feedback

12

Slower	Feedback

Both	the	compile	suite	and	the	commit	suite	should	be	run	on	a	CI	server,	normally	triggered
by	a	commit/push	to	the	repository.

In	addition	to	the	compile	and	commit	suites,	other	suites	should	be	created.

These	suites	may	require	resources	not	available	on	a	local	machine	and/or	take	large
amounts	of	time	to	execute.

They	may	also	re-run	the	same	tests	against	more	realistic	dependencies.	If	an	in-memory
database	is	normally	used	when	running	integration	tests	locally,	the	same	tests	might	be
run	again	against	a	production	database.

For	a	Maven	build,	these	suites	are	likely	to	be	implemented	using	profiles	or	as	separate
Maven	modules.

These	suites	will	be	run	as	frequently	as	possible.	Most	likely,	this	will	mean	on	a	timed
basis	because	it	is	likely	they	will	consume	too	much	time	to	be	run	on	commit.	Here,	"too
much	time"	is	defined	as	taking	longer	than	the	likely	interval	between	commits/pushes	to
the	monitored	repository.

Timed	test	runs	also	sometimes	run	the	suites	when	no	code	changes	have	occurred	-	this
can	provide	useful	information	when	identifying	flaky	tests.

Slower	Feedback

13

Agree	the	Language	You	Use	When	Discussing
Tests

The	Testing	Pyramid

Unfortunately,	the	language	of	testing	is	heavily	overloaded,	with	different	communities
referring	to	different	things	by	the	same	names.

The	testing	pyramid	is	a	widely	recognized	diagram	of	how	testing	should	be	approached.

It	shows	large	numbers	of	unit	tests	at	the	bottom,	with	a	smaller	number	of	integration	tests
above	them	and	a	yet	smaller	number	of	system	tests	at	the	peak.	Often,	some	clouds	of
manual	testing	are	added	at	the	top.

This	diagram	has	probably	been	drawn	thousands	of	times.	Although	unit	tests	will	appear	at
the	bottom	of	each	version,	the	words	used	at	the	other	levels	will	vary	wildly.

Even	when	the	same	words	are	used	the	meanings	attached	to	them	might	be	different.

Agree	The	Language	You	Use	For	Tests

14

Although	people	might	nod	when	you	discuss	"unit	tests",	"integration	tests",	"system	tests",
"end	2	end	tests",	"service	tests",	there	is	no	guarantee	that	they	are	thinking	of	the	same
thing	as	you.

Depending	on	who	you	speak	to,	a	"unit	test"	might	be	anything	from	a	word	document	full	of
instructions,	"any	test	written	by	a	programmer",	through	to	various	formal	(but	by	no	means
authoritative)	definitions	that	appeared	in	text	books.

The	number	of	possible	meanings	of	"integration	test"	is	even	greater.

Unit	Tests

A	fairly	tight	definition	of	unit	tests	is	now	in	common	use	in	the	Java	community.	We
recommend	that	you	and	your	team	use	this	definition.

To	be	a	unit	test,	a	test	must	be:

Fast	(milliseconds	or	less)
Isolated	(test	only	one	unit)
Repeatable	(able	to	be	run	millions	of	times	on	any	machine	with	the	same	result)
Self	verifying	(either	passes	or	fails)
Timely	(written	first)

Note:	Although	writing	your	tests	first	is	often	a	very	good	idea,	a	test	that	meets	the	other
criteria	is	still	a	unit	test	regardless	of	when	it	was	written.

When	we	talk	about	"unit"	testing,	what	constitutes	a	unit	isn't	necessarily	that	obvious.

A	somewhat	circular	definition	is	that	a	unit	is	the	smallest	thing	that	makes	sense	to	test
independently.

It	will	often	be	a	single	class,	but	this	is	not	necessarily	the	case.	It	may	make	sense	to	treat
a	group	of	classes	as	a	unit	(particularly	if	most	of	them	are	non-public)	or	occasionally	even
a	method.

If	we	accept	that	a	unit	is	a	small	thing,	and	that	we'll	know	it	when	we	see	it,	then	we	can
see	that	the	criteria	for	being	a	unit	test	largely	matches	the	criteria	we	put	forward	for	the
compile	suite.

The	only	difference	is	that	the	compile	suite	does	not	care	about	isolation.

If	we	choose	to	write	a	test	that	tests	two	(or	more)	units	in	tandem,	it	still	belongs	in	the
compile	suite	if	it	meets	the	other	criteria.

System	Tests

Agree	The	Language	You	Use	For	Tests

15

System	tests	are	also	fairly	well-defined.	They	are	tests	that	exercise	the	overall	system	-	i.e
all	your	code	and	all	the	code	it	interacts	with	in	a	realistic	environment.

Integration	Tests

Integration	tests	are	harder	to	define.	They	occupy	the	large	space	of	everything	that	doesn't
fit	the	unit	or	system	tests	definitions.

The	two	following	diagrams	show	how	this	terminology	fits	into	our	world	of	test	suites.

This	document	will	use	the	terminology	unit	test,	Integration	test	and	System	test	as	shown
in	these	diagrams.

For	clarity,	it	will	sometimes	state	exactly	what	is	being	tested	when	discussing	integration
tests	-	e.g	"test	via	the	REST	API	of	the	war	file	running	in	Tomcat".

Although	it	is	tedious,	this	long-hand	terminology	is	clear.	It	is	recommended	that	you	use	it
when	discussing	testing	across	teams.	Within	your	own	team	it	is	likely	you	will	develop	a
shorter	language	you	all	understand.

This	maps	to	our	suites	as	shown	below:

Agree	The	Language	You	Use	For	Tests

16

Agree	The	Language	You	Use	For	Tests

17

Use	Coverage	as	a	Tool,	not	a	Target
Code	coverage	is	a	useful	tool	for	catching	your	mistakes.

The	tool	should	work	for	you;	you	do	not	work	for	the	tool.

It	is	most	useful	when	code	coverage	is	run	at	the	point	at	which	the	code	and	tests	are
being	written,	rather	than	on	a	CI	server	hours	later.

Gaps	in	code	coverage	highlight	areas	of	code	that	have	not	been	tested.	Some	of	these
gaps	may	be	expected	and	intentional,	others	may	be	a	surprise.	It	is	these	surprise	gaps
that	provide	useful	information.

This	is	all	that	code	coverage	does.

Code	that	has	100%	branch	coverage	may	or	may	not	have	been	tested.	Code	coverage
tells	you	that	some	tests	have	executed	the	code,	not	that	they	have	meaningfully	tested	it.
Don't	let	it	lull	you	into	a	false	sense	of	security.

Some	teams	set	coverage	targets	that	code	must	meet	(75%	seems	to	be	a	common	figure).
Although	well-intentioned,	this	practice	is	often	damaging.

Code	coverage	is	easy	to	measure.	Other	properties	of	tests	that	are	desirable	(or	highly
undesirable)	are	not	easy	to	measure	e.g.:

Is	the	test	meaningful?
Is	the	test	easy	to	read	and	understand?
Is	the	test	tightly	tied	to	a	particular	implementation?

This	last	point	is	particularly	important.

For	a	test	to	be	of	value,	it	must	enable	refactoring;	tests	that	are	tied	to	one	particular	way
of	solving	the	problem	often	have	negative	value	because	they	must	be	modified	or	rewritten
whenever	the	code	is	changed.	Unfortunately,	it	is	easy	to	write	tests	in	this	way	for	a
number	of	months	or	years	before	you	realize	you	were	doing	it	wrong.

By	concentrating	on	the	one	property	that	is	easy	to	measure,	the	others	are	de-
emphasized.	But,	much	worse	than	this,	trying	to	meet	a	coverage	target	can	actively	push
developers	towards	writing	tests	that	are	tied	to	the	implementation.	Bad	tests	are	easier	to
write	than	good	tests.

It	is	probably	fair	to	say	that	there	is	a	problem	when	code	has	only	30%	unit	test	coverage.
On	the	other	hand,	if	coverage	is	achieved	by	setting	a	target,	code	with	80%	coverage	may
be	harder	to	work	with	than	code	with	a	lower	figure.

Use	Coverage	As	A	Tool	Not	A	Target

18

So	don't	set	targets,	instead	make	sure	your	team	is	committed	to	writing	good	tests.

A	good	test	is	one	which	helps	explains	the	code,	catches	regression	and	doesn't	get	in	the
way	when	changes	are	made.	Writing	the	tests	before	the	code	can	help	encourage	good
tests	and	will	ensure	that	code	has	high	coverage.

Use	Coverage	As	A	Tool	Not	A	Target

19

Style
There	are	many	aspects	to	programming	style,	from	the	mundane	questions	of	where	to
place	braces	and	new	lines	through	to	the	more	interesting	questions	of	how	you	design	and
structure	your	code.

This	section	looks	at	all	of	these	aspects,	starting	with	the	more	abstract	concerns	before
drilling	down	to	the	more	concrete.

Although	static	analysis	tools	can	measure	aspects	of	many	of	the	things	discussed	in	most
cases	they	cannot	make	break-the-build	decisions	about	whether	the	code	is	good.	A	skilled
human	is	required	to	make	trade	offs	and	apply	discretion.

Style

20

Summary
Code	generators	can	automatically	implement	certain	types	of	functionality,	saving	time	and
eliminating	the	possibility	of	certain	classes	of	bugs.

Although	they	have	much	to	recommend	them,	code	generators	also	have	a	cost	that	should
be	considered	carefully	before	incorporating	them	into	your	project.

Favor	generators	that	allow	a	clear	separation	between	generated	and	non-generated
functionality,	but	make	sure	you	understand	the	trade-offs	you	are	making	before	including
any	generator	into	your	project.

Details
Code	generators	can	be	grouped	into	three	general	types:

Boilerplate	generators
Compile	time	annotation	processors
Runtime	generators/frameworks

Boilerplate	Generators

Boilerplate	generators	are	the	simplest	form	of	code	generation.	They	can	be	further	split
into	:

Generators	that	insert	code	into	existing	classes	(e.g.	methods	auto	generated	by	an
IDE).
Generators	that	produce	scaffolding	that	is	checked	into	version	control	and	modified.
Generators	that	produce	new	classes	from	a	model.	The	generated	code	is	not	normally
checked	into	version	control.

We	recommend	that	the	first	type	are	using	sparingly,	if	at	all.	This	is	discussed	further	in
"Know	How	to	Implement	Hashcode	and	Equals".

Generating	code	from	a	model	(such	as	a	schema	or	grammar)	can	be	a	useful	approach	as
long	as	the	generated	code	is	not	modified	and	is	packaged	separately.	If	generated	and
non-generated	code	are	packaged	within	the	same	module	then	this	can	start	to	cause
friction	(see	below).

Compile	Time	Annotation	Processors

Consider	Code	Generators	Carefully

21

JSR	269	introduced	a	standard	framework	for	processing	annotations	at	build	time.	Several
tools	exist	that	use	JSR	269	to	generate	code.

Most	use	the	annotated	classes	purely	as	input,	from	which	new	classes	are	generated.
Often,	the	new	classes	extend	or	implement	the	annotated	class	or	interface	but	remain
separate.	These	are	really	just	a	subset	of	model	based	boilerplate	generators	where	the
model	input	model	is	annotated	Java	classes.

Some	(such	as	project	Lombok)	update	the	annotated	classes	themselves,	adding	additional
behavior.	This	is	likely	to	increase	both	surprise	and	friction	which	are	discussed	below.

Downsides

There	are	clearly	a	lot	of	upsides	to	code	generators,	so	why	wouldn't	they	always	make
sense?

The	main	issues	they	cause	are	surprise	and	friction.

Surprise

If	you	generate	code	at	compile	or	runtime	the	you	are	no	longer	programming	in	Java.

You	are	programming	in	an	augmented	Java	that	does	things	that	developers	maintaining
the	code	may	not	be	aware	of.

It	may	do	things	that	they	do	not	expect.

It	may	break	fundamental	assumptions	that	programmers	have	about	what	can	or	cannot
happen	within	their	code.

Runtime	generators	will	usually	generate	more	surprise	than	compile	time	systems	-	they
add	an	element	of	magic	that	breaks	the	usual	Java	rules.	Runtime	generators	also	often
weaken	type	safety,	moving	classes	of	problem	a	developer	would	normally	expect	to	occur
at	compile	time	to	runtime.

The	first	time	a	developer	encounters	a	code	generator	in	a	project,	everything	it	does	will	be
surprising.

After	a	period	of	learning,	most	of	the	surprise	should	go	away	but	each	developer	will	need
to	go	through	this	learning	period.	The	learning	involved	can	be	significant	-	gaining	a
complete	understanding	of	framework	such	as	Spring	is,	for	example,	a	significant	effort.

The	most	worrying	problem	is	when	there	is	still	some	surprise	left	after	the	initial	learning
period.

Consider	Code	Generators	Carefully

22

If	you	find	yourself	asking	the	question	"could	this	be	because	of	the	code	generator?"	when
something	unexpected	happens	with	your	system,	and	having	to	eliminate	that	possibility
each	time,	then	you	have	introduced	a	very	real	cost	into	your	project.

Friction

Code	using	compile-time	generators	will	not	import	cleanly	into	IDEs	unless	the	IDE
understands	how	to	run	the	generator.	Even	when	the	system	is	supported	by	an	IDE	it	may
require	plugins	to	be	installed,	configuration	options	to	be	set	etc.

The	amount	of	friction,	and	how	often	it	is	encountered,	will	depend	on	the	IDE	and	the
quality	of	the	support.	There	may	be	little	friction	and	it	may	only	be	encountered	when	a
new	developer	joins	a	project.	Or	it	may	be	considerable	and	triggered	each	time	code	is
cleaned.

The	most	effective	way	to	reduce	the	friction	is	to	package	the	generated	code	separately
from	the	code	that	depends	upon	it.	The	generated	code	then	becomes	a	normal	binary
dependency	and	the	fact	that	it	is	automated	becomes	an	internal	implementation	detail.

While	this	works	well,	it	may	also	have	a	downside.	It	may	create	artificial	modules.	If	the
code	was	not	auto-generated,	would	it	have	made	sense	to	package	it	as	a	separate
module?

Runtime	generators	do	not	usually	introduce	much	friction,	although	sometimes	issues	might
be	experienced	if	javaagents	are	not	present	when	running	tests	from	the	IDE.

The	Trade-off

So	those	are	the	issues.

Surprise	and	friction	sound	like	minor	concerns	compared	to	the	promise	of	functionality	for
free,	but	their	impact	can	be	significant.

Whether	or	not	it	makes	sense	to	introduce	a	code	generator	often	depends	on	how	much	it
will	be	used.	If	there	is	a	large	amount	of	functionality	that	can	be	auto-generated	then	it
probably	makes	sense,	if	the	amount	is	relatively	small	it	may	be	best	to	stick	with	vanilla
Java.

Consider	Code	Generators	Carefully

23

Optimize	for	Readability	not	Performance

Summary

Don't	optimize	your	code	prematurely.

Concentrate	on	making	it	simple	and	understandable	instead.

Details

Many	new	programmers	worry	about	the	performance	of	each	method	they	write,	avoid	code
they	expect	to	be	inefficient	and	write	in	a	style	that	attempts	to	minimize	object	allocations,
method	calls,	assignments	or	other	factors	they	expect	to	have	a	cost.

Although	it	often	decreases	readability	and	increases	complexity,	most	micro-performance
optimization	provides	no	performance	benefit	at	all.

Within	the	context	in	which	we	work,	performance	should	be	one	of	the	concerns	considered
last.	Instead,	attention	should	be	paid	to	making	code	as	simple	and	readable	as	possible.

If	a	performance	issue	arises,	profiling	should	be	used	to	identify	where	the	problems
actually	lie.

This	does	not	mean	the	performance	should	be	disregarded	completely,	but	it	should	always
be	trumped	by	code	readability	and	simplicity	until	it	can	be	proven	that	there	is	a	real
benefit	to	optimization.	Where	code	can	be	written	in	a	more	efficient	manner	without	any
increase	in	complexity	or	trade-off	with	readability	then	the	(presumed)	more	efficient	code
should	be	preferred.

Optimise	For	Readability

24

Prefer	Readable	Code	to	Comments

Summary

Use	comments	only	to	explain	what	you	cannot	make	the	code	itself	explain.

If	you	are	about	to	write	a	comment,	first	think	if	there	is	a	way	you	could	change	the	code
so	that	it	would	be	understandable	without	comments.

Details

From	Clean	Code	by	Robert	C	Martin.

"Nothing	can	be	quite	so	helpful	as	a	well-placed	comment.	Nothing	can	clutter	up	a	module
more	than	frivolous	dogmatic	comments.	Nothing	can	be	quite	so	damaging	as	an	old	crufty
comment	that	propagates	lies	and	misinformation."

Comments	should	be	used	only	to	explain	the	intent	behind	code	that	cannot	be	refactored
to	explain	itself.

Bad

//	Check	to	see	if	the	employee	is	eligible	for	full	benefits
if	((employee.flags	&	HOURLY_FLAG)	&&
(employee.age	>	65))

Better

if	(employee.isEligibleForFullBenefits())

A	comment	is	only	useful	if	it	explains	something	that	the	code	itself	cannot.

This	means	that	any	comments	you	do	write	should	provide	the	why,	not	the	what	or	the
how

Bad

//	make	sure	the	port	is	greater	or	equal	to	1024
if	(port	<	1024)	{
		throw	new	InvalidPortError(port);
}

Prefer	Readable	Code	To	Comments

25

Better

//	port	numbers	below	1024	(the	privileged	or	“well-known	ports”)
//	require	root	access,	which	we	don’t	have
if	(port	<	1024)	{
		throw	new	InvalidPortError(port);
}

Better	still

if	(requiresRootPrivileges(port))	{
		throw	new	InvalidPortError(port);
}

private	boolean	requiresRootPrivileges(int	port)	{
		//	port	numbers	below	1024	(the	privileged	or	"well-known	ports")
		//	require	root	access	on	unix	systems
		return	port	<	1024;
}

Here,	the	functional	intent	has	been	captured	in	the	method	name,	the	comment	has	been
used	solely	to	provide	some	context	as	to	why	the	logic	makes	sense.

The	magic	number	might	also	be	replaced	with	a	constant.

final	static	const	HIGHEST_PRIVILEDGED_PORT	=	1023;

private	boolean	requiresRootPrivileges(int	port)	{
		//	The	privileged	or	"well-known	ports"	require	root	access	on	unix	systems
		return	port	<=	HIGHEST_PRIVILEDGED_PORT;
}

The	comment	arguably	still	adds	value	however	-	if	nothing	else	it	gives	a	reader	unfamiliar
with	the	topic	two	key	phrases	to	search	for	on	the	web.

Prefer	Readable	Code	To	Comments

26

Javadoc	Judiciously

Summary

Javadoc	can	help	document	code	but	often	there	are	better	ways	to	do	so.	Think	carefully
before	deciding	to	write	it.

Details

Javadoc	is	Good

Javadoc	is	invaluable	for	external	teams	that	must	consume	your	code	without	access	to	the
source.

All	externally	consumed	code	should	have	javadoc	for	its	public	methods.

Ensure	that	all	such	javadoc	concentrates	on	what	a	method	does,	not	how	it	does	it.

Javadoc	is	Bad

Javadoc	duplicates	information	that	ought	to	be	clear	from	the	code	itself	and	carries	a
constant	maintenance	cost.

If	it	is	not	updated	in	tandem	with	the	code	then	it	becomes	misleading.

Do	not	Javadoc	code	that	will	be	consumed	and	maintained	only	by	your	immediate	team.
Instead	spend	effort	ensuring	that	the	code	speaks	for	itself.

Javadoc	Judiciously

27

Remember	KISS	and	YAGNI

Summary

Keep	your	design	as	simple	as	possible.

Create	only	the	functionality	you	need	now	-	not	what	you	think	you	might	need	in	the	future.

Details

The	KISS	(Keep	It	Simple,	Stupid)	and	YAGNI	(You	Ain't	Going	To	Need	It)	acronyms
provide	good	advice	that	is	worth	remembering	while	coding.

KISS	advises	that	we	keep	our	code	and	designs	as	simple	as	possible.

Few	people	would	disagree	with	this,	but	unfortunately	it	is	not	always	obvious	what	simple
means.

Given	two	solutions	to	a	problem	which	one	is	simpler?

The	one	with	the	least	lines	of	code?
The	one	with	the	least	number	of	classes?
The	one	that	uses	fewer	third	party	dependencies?
The	one	with	fewer	branch	statements?
The	one	where	the	logic	is	most	explicit?
The	one	which	is	consistent	with	a	solution	used	elsewhere?

All	of	the	above	are	reasonable	definitions	of	simple.	None	of	them	is	the	single	definition
always	makes	sense	to	follow.

Recognizing	simple	isn't	easy	and	keeping	things	simple	takes	a	lot	of	work.

If	we	could	somehow	measure	the	complexity	of	our	software,	we	would	find	that	there	is
some	minimum	value	that	each	piece	of	software	must	contain.

If	the	software	were	any	simpler,	then	it	would	be	less	functional.

Real	programs	will	always	contain	this	inherent	complexity	plus	a	bit.	This	extra	complexity
is	the	accidental	complexity	we	have	added	because	we	are	less	than	perfect.

Telling	accidental	complexity	apart	from	inherent	complexity	is	of	course	also	hard.

Fortunately	YAGNI	gives	us	some	useful	advice	on	how	to	keep	things	simple	without	having
to	tell	accidental	and	inherent	complexity	apart.

Remember	Kiss	And	Yagni

28

The	more	a	system	does,	the	higher	its	overall	complexity	will	be.	If	we	make	a	system	that
does	less,	it	will	be	simpler	-	it	will	have	less	inherent	complexity	and	less	accidental
complexity

Your	goal	is,	therefore,	to	create	the	minimum	amount	of	functionality	that	solves	the
problems	you	have	right	now.

Don't	implement	things	because	you	think	you	might	need	them	later.	Implement	in	the
future	if	you	need	it.
Don't	try	and	make	things	"flexible"	or	"configurable".	Make	them	do	just	what	they	need
to	do	-	parameterize	them	at	the	point	you	have	a	need	to	do	so.

If	you	create	more	than	the	minimum	amount	of	functionality,	you	will	have	more	code	to
debug,	understand	and	maintain	from	that	point	forward	until	someone	has	the	confidence	to
delete	it.

Remember	Kiss	And	Yagni

29

Prefer	Composition	to	Inheritance

Summary

Composition	usually	results	in	more	flexible	designs.

First	consider	using	composition,	then	fall	back	to	using	inheritance	only	when	composition
does	not	seem	to	be	a	good	fit.

Details

Composition	means	building	things	by	adding	other	things	together.	Inheritance	is	building
things	by	extending	behavior	based	on	an	existing	class	by	creating	a	child	classes.

To	take	a	minimal	example-	If	there	is	a	requirement	for	a	class	to	accept	and	store	String
values,	some	programmers	new	to	Java	will	reach	for	inheritance	as	follows:

class	InheritanceAbuse	extends	ArrayList<String>	{

		public	void	performBusinessLogic(int	i)	{
				//	do	things	with	stored	strings
		}

}

The	same	functionality	can	be	implemented	using	composition.

class	UsesComposition	{

		private	final	List<String>	values	=	new	ArrayList<String>();

		public	void	performBusinessLogic(int	i)	{
				//	do	things	with	stored	strings
		}

		public	void	add(String	value)	{
				this.values.add(value);
		}

}

Despite	requiring	more	code,	an	experienced	Java	programmer	would	not	even	consider	the
first	approach.	So	why	is	it	that	the	second	version	is	preferable?

Prefer	Composition

30

There	are	several	overlapping	explanations,	we'll	start	with	the	most	abstract	and	move	on
to	more	practical	ones.

Inheritance	is	a	Strong	Relationship

Inheritance	is	used	to	model	an	IS-A	relationship	-	i.e.	we	are	saying	that	our
	InheritanceAbuse		class	is	an	ArrayList	and	we	should	be	able	to	pass	one	to	any	piece	of
code	that	accepts	an	ArrayList.

Composition	creates	a	HAS-A	relationship;	this	is	a	weaker	relationship	and	we	should
always	favor	weaker	relationships	in	our	code.

So	favoring	composition	over	inheritance	is	just	one	specific	instance	of	the	more	general
advice	to	favor	weak	relationships	between	our	classes.

Using	inheritance	makes	sense	when	there	is	an	IS-A	relationship	there	but	it	is	an
inappropriate	mechanism	to	use	purely	for	reusing	code.

Inheritance	Breaks	Encapsulation

The	inheritance	implementation	fails	to	encapsulate	an	implementation	detail	-	that	we're
storing	things	in	an	ArrayList.

The	interface	to	our	class	includes	all	sort	of	methods	from	ArrayList	such	as:

clear
remove
contains

Do	these	methods	make	sense	for	our	class?	If	someone	calls	them,	could	it	interfere	with
the	logic	in		performBusinessLogic	?

We	don't	know	enough	about	what	our	example	class	is	meant	to	do	to	answer	these
questions	definitively,	but	the	answer	is	most	likely	that	we	would	prefer	not	to	expose	these
methods.

If	we	switch	from	ArrayList	to	some	other	list	implementation	this	is	visible	to	the	classes
clients.	Code	that	previously	compiled	may	now	break	even	if	no	methods	specific	to
ArrayList	are	called	-	the	change	of	type	alone	might	cause	compilation	failures.

We	Can	Only	Do	This	Once

Prefer	Composition

31

Java	doesn't	support	multiple	inheritance	so	we	only	get	to	pick	one	thing	to	extend.	If	our
class	also	needed	to	store	Integers	then	inheritance	isn't	even	an	option	so	we'd	have	to	use
composition.

Composition	is	inherently	more	flexible	in	single	inheritance	languages.

Composition	Aids	Testing

This	is	not	relevant	to	our	simple	example,	but	it	is	trivial	to	test	how	classes	linked	together
by	composition	interact.	It	is	far	harder	when	inheritance	is	used.

class	MyUntestableClass	extends	SomeDependency	{
		public	void	performBusinessLogic(int	i)	{
				//	do	things	using	methods	from	SomeDependency
		}
}

class	MyClass	{
		private	final	SomeDependency	dependency;

		MyClass(SomeDependency	dependency)	{
				this.dependency	=	dependency;
		}

		public	void	performBusinessLogic(int	i)	{
				//	do	things	with	dependency
		}
}

It	is	easy	to	inject	a	mock	into		MyClass	.	Tricks	exist	to	isolate	the	code	in
	MyUntestableClass		from		SomeDependency		for	the	purpose	of	unit	testing,	but	they	are	far
more	involved.

Inheritance	is	Static

Inheritance	sets	a	fixed	relationship	between	concrete	classes	at	compile	time.	With
composition	it	is	possible	to	swap	in	different	concrete	classes	at	runtime.

Again	composition	is	inherently	more	flexible.

Interface	Inheritance

Prefer	Composition

32

The	advice	to	prefer	composition	to	inheritance	refers	to	implementation	inheritance	(i.e.
extending	a	class).	The	disadvantages	discussed	above	do	not	apply	to	interface	inheritance
(i.e.	implementing	an	interface).

In	fact,	the	design	choice	you	often	have	to	make	is	between	implementation	inheritance	or
a	combination	of	composition	and	interface	inheritance.

In	these	situations,	the	advice	is	still	to	prefer	the	approach	that	uses	composition.

For	example,	the	well	known	composition	based	Decorator	pattern:

class	ProcessorUpperCaseDecorator	implements	Processor	{

		private	final	Processor	child;

		ProcessorUpperCaseDecorator(Processor	child)	{
				this.child	=	child;
		}

		@Override
		public	void	process(String	someString)	{
				child.process(someString.toUpperCase());
		}

}

Could	also	be	implemented	using	inheritance

class	InheritanceUpperCaseDecorator	extends	ConcreteProcessor	{

		@Override
		public	void	process(String	someString)	{
				super.process(someString.toUpperCase());
		}

}

But,	again,	this	solution	would	be	less	flexible.

With	the	composition	based	version	we	can	decorate	any		Processor	.	With	the	inheritance
version	we	would	need	to	re-implement	the	decorator	for	each	concrete	type	to	which	we
wished	to	add	the	upper	case	behavior.

Many	common	OO	patterns	rely	on	the	combination	of	Composition	and	interface
inheritance.

When	to	Use	Implementation	Inheritance

Prefer	Composition

33

Almost	anything	that	can	be	achieved	with	implementation	inheritance	can	also	be	achieved
using	the	combination	of	interface	inheritance	and	composition.

So	when	should	implementation	inheritance	be	used?

Implementation	inheritance	has	one	single	advantage	over	composition	-	it's	less	verbose.

So	implementation	inheritance	should	be	used	when	both	of	the	following	conditions	are
met

1.	 There	is	an	IS-A	relationship	to	be	modelled
2.	 The	composition	based	approach	would	result	in	too	much	boilerplate	code

The	2nd	point	is	unfortunately	entirely	subjective.

Prefer	Composition

34

Keep	It	SOLID

Summary

The	SOLID	acronym	provides	some	guidance	on	design	that	you	should	follow.

Single	Responsibility	Principle
Open	Closed	Principle
Liskov	Substitution	Principle
Interface	Segregation	Principle
Dependency	Inversion	Principle

Details

Single	Responsibility	Principle

Separate	your	concerns	-	a	class	should	do	one	thing	and	one	thing	only.	To	put	it	another
way,	a	class	should	have	a	single	reason	to	change.

Open	/	Closed	Principle

You	should	be	able	to	extend	behavior,	without	modifying	existing	code.

"..	you	should	design	modules	that	never	change.	When	requirements	change,	you	extend
the	behavior	of	such	modules	by	adding	new	code,	not	by	changing	old	code	that	already
works."

—	Robert	Martin

An	indication	that	you	might	not	be	following	this	principle	is	the	presence	of		switch	
statements	or		if/else		logic	in	your	code.

Liskov	Substitution	Principle

Derived	classes	must	be	substitutable	for	their	base	classes.

One	indication	that	you	are	breaking	this	principle	is	the	presence	of		instanceof		statements
in	your	code.

Interface	Segregation	Principle

Keep	It	Solid

35

The	Interface	Segregation	Principle	states	that	clients	should	not	be	forced	to	implement
interfaces	they	don't	use;	prefer	small,	tailored	interfaces	to	large,	catch-all	ones.

One	indication	that	you	might	be	breaking	this	principle	is	the	presence	of	empty	methods	or
methods	throwing		OperationNotSupportedException		in	your	code.

Dependency	Inversion	Principle

High-level	modules	should	not	depend	upon	low-level	modules.	Both	should	depend	upon
abstractions.

Abstractions	should	never	depend	upon	details.	Details	should	depend	upon	abstractions.

In	practice	this	means	you	should	follow	one	of	two	patterns:

1.	 Package	the	interfaces	a	'high-level'	component	depends	upon	with	that	component
2.	 Package	the	interface	a	component	depends	upon	separately	from	both	the	client	and

implementation

This	first	approach	is	classic	dependency	inversions	(contrast	it	with	the	traditional	approach
of	have	the	high	level	component	depend	upon	the	lower	layers).

The	second	approach	is	known	as	the	"Separated	Interface	Pattern".	It	is	a	little	more	heavy
weight,	but	also	more	flexible	as	it	makes	no	assumption	about	who	should	own	the
interface.

An	indication	that	you	are	breaking	this	principle	is	the	presence	of	package	cycles	within
your	code.

Keep	It	Solid

36

Keep	Your	Code	DRY

Summary

Don't	Repeat	Yourself	(DRY)	-	avoid	writing	the	same	logic	more	than	once.

Every	time	you	copy	and	paste	code,	flick	yourself	in	the	eye.	This	is	a	great	disincentive	to
doing	it	again	but	over	time	may	cause	blindness.

Details

If	the	same	logic	is	required	more	than	once	then	it	should	not	be	duplicated;	it	should
instead,	be	extracted	to	a	well	named	class	or	method.

This	will	be	both	easier	to	read	and	easier	to	maintain	because	a	change	will	only	be
required	in	one	place	should	the	logic	need	to	change.

Bad

class	Foo	{
			private	int	status;
			private	boolean	approved;

			foo()	{
					if	(status	==	12	||	approved)	{
							doFoo();
					}
			}

			bar()	{
					if	(status	==	12	||	approved)	{
							doBar();
					}
			}
}

Better

Keep	Your	Code	Dry

37

class	Foo	{
			private	final	static	int	PRE_APPROVED	=	12;

			private	int	status;
			private	boolean	approved;

			foo()	{
					if	(isApproved())	{
							doFoo();
					}
			}

			bar()	{
					if	(isApproved())	{
							doBar();
					}
			}

			private	isApproved()	{
					return	status	==	PRE_APPROVED	||	approved;
			}
}

Things	are	a	little	trickier	when	we	have	similar	but	not	identical	logic.

Although	it	is	quick	and	easy,	the	worst	thing	we	can	do	is	copy	and	paste.

Terrible

public	void	doSomething(List<Widget>	widgets)	{
		for	(Widget	widget	:	widgets)	{
				reportExistence(widget);
				if	(widget.snortles()	>	0)	{
						reportDeviance(widget);
						performSideEffect(widget);
				}
		}
}

public	void	doSomethingSimilar(List<Widget>	widgets)	{
		for	(Widget	widget	:	widgets)	{
				reportExistence(widget);
				if	(widget.snortles()	>	0)	{
						reportDeviance(widget);
						performDifferentSideEffect(widget);
				}
		}
}

Keep	Your	Code	Dry

38

This	seemed	quick	and	easy	now,	but	is	the	start	of	a	codebase	that	will	suck	time	each	time
we	try	to	understand	or	change	it.

A	straightforward	but	very	limited	approach	to	re-use	code	is	to	introduce	Boolean	flags.

Not	great

public	void	doSomething(List<Widget>	widgets)	{
		doThings(widgets,	false);
}

public	void	doSomethingSimilar(List<Widget>	widgets)	{
		doThings(widgets,	true);
}

private	void	doThings(List<Widget>	widgets,	boolean	doDifferentSideEffect)	{
		for	(Widget	widget	:	widgets)	{
				reportExistence(widget);
				if	(widget.snortles()	>	0)	{
						reportDeviance(widget);
						if	(doDifferentSideEffect)	{
								performDifferentSideEffect(widget);
						}	else	{
								performSideEffect(widget);
						}
				}
		}
}

This	is	ugly	and	gets	worse	as	the	number	of	possibilities	increases.

A	much	more	scalable	approach	is	to	use	the	Strategy	pattern.

If	we	introduce	an	interface:

interface	WidgetAction	{
			void	apply(Widget	widget);
}

Then	we	can	use	it	as	follows:

Better

Keep	Your	Code	Dry

39

public	void	doSomething(List<Widget>	widgets)	{
		doThings(widgets,	performSideEffect());
}

public	void	doSomethingSimilar(List<Widget>	widgets)	{
		doThings(widgets,	performDifferentSideEffect());
}

private	WidgetAction	performSideEffect()	{
		return	new	WidgetAction()	{
				@Override
				public	void	apply(Widget	widget)	{
						performSideEffect(widget);
				}
		};
}

private	WidgetAction	performDifferentSideEffect()	{
		return	new	WidgetAction()	{
				@Override
				public	void	apply(Widget	widget)	{
						performDifferentSideEffect(widget);
				}
		};
}

private	void	doThings(List<Widget>	widgets,	WidgetAction	action)	{
		for	(Widget	widget	:	widgets)	{
				reportExistence(widget);
				if	(widget.snortles()	>	0)	{
						reportDeviance(widget);
						action.apply(widget);
				}
		}
}

The	Java	7	version	is	quite	verbose	due	to	the	anonymous	inner	class	boiler	plate.

Arguably,	Boolean	flags	might	be	preferable	for	very	simple	cases	such	as	this	but,	if	we
extract	the	logic	in		performSideEffect		and		performDifferentSideEffect		methods	into	top-
level	classes	implementing		WidgetAction	,	then	the	Strategy	version	becomes	compelling.

In	Java	8,	there	is	little	question	that	the	Strategy	pattern	is	preferable	in	even	the	simplest
of	cases.

Better	with	Java	8

Keep	Your	Code	Dry

40

public	void	doSomething(List<Widget>	widgets)	{
		doThings(widgets,	widget	->	performSideEffect(widget));
}

public	void	doSomethingSimilar(List<Widget>	widgets)	{
		doThings(widgets,	widget	->	performDifferentSideEffect(widget));
}

private	void	doThings(List<Widget>	widgets,	Consumer<Widget>	action)	{
		for	(Widget	widget	:	widgets)	{
				reportExistence(widget);
				if	(widget.snortles()	>	0)	{
						reportDeviance(widget);
						action.accept(widget);
				}
		}
}

We	do	not	need	to	introduce	our	own	interface	-	the	built-in		Consumer<T>		is	enough.	We
should	consider	introducing	one	if	the		doThings		method	were	exposed	publicly	or	if	the
logic	in		performSideEffect		was	complex	enough	to	pull	into	a	top-level	class.

The	loop	might	also	be	converted	to	a	pipeline.

As	a	pipeline

private	void	doThings(List<Widget>	widgets,	Consumer<Widget>	action)	{
		widgets
		.stream()
		.peek(widget	->	reportExistence(widget))
		.filter(widget	->	widget.snortles()	>	0)
		.peek(widget	->	reportDeviance(widget))
		.forEach(action);
}

Keep	Your	Code	Dry

41

Prefer	Reversible	Decisions

Summary

Prefer	design	decisions	that	will	be	easy	to	change.

Details

Many	of	the	decisions	you	make	while	designing	your	code	will	eventually	turn	out	to	be
wrong.

If	you	can	make	your	decisions	reversible	by	containing	their	consequences	and	adding
abstractions	then	this	future	change	will	not	matter.

For	example	-	if	you	introduce	a	third	party	library	and	reference	it	throughout	your	code,
then	you	have	made	high	the	cost	of	reversing	the	decision	to	use	that	library.	If	you
constrain	it	to	a	single	location	and	create	an	interface	for	it,	the	cost	of	reversing	the
decision	is	low.

But	don't	forget	KISS	and	YAGNI	-	if	your	abstractions	complicate	the	design	then	it	is	better
to	leave	them	out.

Prefer	Reversible	Decisions

42

Make	Dependencies	Explicit	and	Visible

Summary

Make	sure	that	the	dependencies	of	a	class	are	clearly	visible.

Always	inject	dependencies	into	a	class	using	its	constructor.	Do	not	use	other	methods
such	as	setters	or	annotations	on	fields.

Never	introduce	dependencies	using	hidden	routes	such	as		Singletons		or		ThreadLocals	.

Details

Code	is	easier	to	understand	if	the	interfaces	and	classes	that	each	object	depends	on	are
conspicuous	and	visible.

The	most	visible	dependencies	are	the	ones	that	are	injected	into	a	method	as	a	parameter.

Less	visible	are	the	ones	stored	as	fields	but,	depending	on	how	those	fields	are	populated,
the	dependencies	can	still	be	relatively	easy	to	discover.

Constructor	Injection

Constructor	dependency	injection	clearly	communicates	an	object's	dependencies	in	a
single	location	and	ensures	objects	are	only	ever	created	in	valid	states.	It	allows	fields	to	be
made	final	so	that	their	life	cycle	is	unambiguous.

This	is	the	only	way	in	which	dependencies	should	be	injected.

Setter	Injection

Setter	injection	increases	the	number	of	possible	states	an	object	could	be	in.	Many	of	those
states	will	be	invalid.

If	setter	injection	is	used,	a	class	can	be	constructed	in	a	half-initialized	state.	What
constitutes	a	fully-initialized	state	can	only	be	determined	by	examining	the	code.

Bad

Make	Dependencies	Explicit

43

public	class	Foo()	{
		private	Bar	bar;

		public	void	doStuff()	{
				bar.doBarThings();
		}

		public	void	setBar(Bar	bar)	{
				this.bar	=	bar;
		}
}

Here,	a		NullPointerException		will	be	thrown	if		Foo		is	constructed	without	calling		setBar	.

Better

public	class	Foo()	{
		private	final	Bar	bar;

		public	Foo(Bar	bar)	{
				this.bar	=	bar;
		}

		public	void	doStuff()	{
				bar.doBarThings();
		}
}

Here,	it	is	clear	that	we	must	supply	a		Bar		as	we	are	unable	to	construct	the	class	without
it.

Field	Annotations

While	annotations	on	fields	seem	convenient	they	mean	that	the	dependency	will	not	be
visible	in	the	public	API.	They	also	tie	construction	of	your	class	to	the	frameworks	that
understand	them	and	prevent	fields	from	being	made	final.

Field	annotations	should	not	be	used.

If	you	are	working	with	a	dependency	injection	framework	such	as	Spring,	either	move
construction	of	your	objects	into	configuration	classes	or	restrict	the	use	on	annotations	to
constructors.	Both	methods	allow	your	classes	to	be	constructed	normally	and	ensure	that
all	dependencies	are	visible.

Hidden	Dependencies

Make	Dependencies	Explicit

44

Anything	that	is	not	injected	into	a	class	using	a	constructor	or	as	a	method	parameter	is	a
hidden	dependency.

These	are	evil.

They	are	pulled	in	from		Singletons	,		ThreadLocals	,	static	method	calls	or	by	simply	calling
	new	.

Bad

public	class	HiddenDependencies	{
		public	void	doThings()	{
				Connection	connection	=	Database.getInstance().getConnection();
				//	do	things	with	connection
			
		}
}

Here	we	must	ensure	that	the		Database		class	is	in	a	valid	state	before	calling	the		doThings	
method	of	the	code	below,	but	we	have	no	way	of	knowing	this	without	looking	through	every
line	of	code.

Better

public	class	HiddenDependencies	{
		private	final	Database	database;

		public	HiddenDependencies(Database	database)	{
				this.database	=	database;
		}

		public	void	doThings()	{
				Connection	connection	=	database.getConnection();
				//	do	things	with	connection
			
		}
}

Injecting	via	the	constructor	makes	the	dependency	clearly	visible.

By	definition,	hidden	dependencies	are	hard	to	discover	but	they	have	a	second	issue	-	they
are	also	hard	to	replace.

Seams

Seams	are	a	concept	introduced	by	Michael	Feathers	in	"Working	Effectively	with	legacy
code"

Make	Dependencies	Explicit

45

He	defines	it	as:

"a	place	where	you	can	alter	behavior	in	your	program	without	editing	in	that	place."

In	the	original	version	of		HiddenDependencies		if	we	wanted	to	replace		Database		with	a	mock
or	stub	we	could	only	do	so	if	the	singleton	provided	some	method	to	modify	the	instance	it
returns.

Not	a	good	approach

public	class	Database	implements	IDatabase	{
		private	static	IDatabase	instance	=	new	Database();

		public	static	IDatabase	getInstance()	{
				return	instance;
		}

		public	static	void	setInstanceForTesting(IDatabase	database)	{
				instance	=	database;
		}

}

This	approach	introduces	a	seam	but	does	not	address	our	concerns	around	visibility.	The
dependency	remains	hidden.

If	we	used	this	approach,	our	codebase	would	remain	hard	to	understand	and	we	would	find
ourselves	constantly	fighting	test	order	dependencies.

With	constructor	injection,	we	gain	a	seam	and	make	the	dependency	visible.	Even	if
	Database		is	a	singleton,	we	are	still	able	to	isolate	our	code	from	it	for	testing.

Make	Dependencies	Explicit

46

Prefer	Immutable	Objects

Summary

Where	possible,	create	objects	that	cannot	be	changed	-	especially	if	those	objects	will	be
long-lived	or	globally	accessible.

Details

Mutable	state	makes	programs	harder	to	understand	and	maintain.

When	objects	are	short-lived,	and	do	not	leave	method	scope,	mutable	state	causes	few
problems.	Writes	and	reads	will	be	close	together	and	there	will	be	a	clear	order	in	which
this	happens.

For	longer-lived	objects,	things	are	more	complex.

If	an	object	escapes	from	a	method	then	it	may	be	accessed	from	more	than	one	location
within	the	code.

We	must	start	by	assuming	that	anything	that	can	happen	to	these	objects	will.	We	can	only
confirm	that	certain	situations	do	not	occur	by	examining	the	whole	program.

The	set	of	things	that	might	happen	to	an	immutable	object	is	far	smaller	than	for	a	mutable
one.	By	constraining	how	long	lived	objects	can	behave	we	have	made	things	simpler.	There
are	fewer	possibilities	that	we	must	consider.

Unfortunately,	it	is	not	always	easy	to	tell	from	a	class	definition	what	the	lifecycle	of	objects
of	that	type	will	be.	Perhaps	only	short-lived	instances	will	be	created.	Perhaps	only	long-
lived	ones.	Perhaps	a	mixture	of	the	two.

If	we	design	immutable	classes	by	default	we	do	not	need	to	worry	about	this.

The	Problem	With	Mutable	Objects

If	we	have	a	very	simple	class	such	as		Foo	

Prefer	Immutable	Objects

47

public	class	Foo	{
		private	Long	id;

		public	Long	getId()	{
				return	id;
		}

		public	void	setId(Long	id)	{
				this.id	=	id;
		}

		@Override
		public	int	hashCode()	{
				return	Objects.hashCode(id);
		}

		@Override
		public	boolean	equals(Object	obj)	{
				if	(this	==	obj)
						return	true;
				if	(obj	==	null)
						return	false;
				if	(getClass()	!=	obj.getClass())
						return	false;
				Foo	other	=	(Foo)	obj;
				return	Objects.equals(id,	other.id);
		}
}

We	would	need	to	search	our	codebase	for	all	usages	of	it	to	establish	the	following	:

It	is	Never	Accessed	from	Multiple	Threads

	Foo		is	not	thread	safe.

Writes	to	longs	are	not	atomic	and	nothing	within		Foo		itself	establishes	a	happens-before
relationship	between	the	field	write	and	read.

If		setId		and		getId		are	ever	called	from	different	threads	we	might	get	back	stale	or
garbage	values.

	setId		Is	Never	Called	After		Foo		Has	Been	Placed	in	a	Set

The		hashcode		of	this	class	relies	on	a	mutable	field.	If	we	modify	it	after	we	place	it	in	a	set
then	our	program	will	not	behave	as	we	expect.

The	Flow	of	Our	Data

Prefer	Immutable	Objects

48

Even	if	our	program	behaves	correctly,	we	need	to	do	work	in	order	to	understand	how	it
functions.

	setId		can	be	called	at	any	point	after	the	object	is	created.	We	can,	therefore,	only
understand	how	data	flows	through	our	program	by	looking	for	all	calls	to		setId		-	perhaps
there	are	several,	perhaps	there	is	only	one.	The	only	way	we	can	discover	this	is	by
examining	the	entire	program.

Immutable	Objects

If	we	can	make	our	objects	immutable	we	gain	guarantees	that	mean	we	do	not	need	to
worry	about	how	our	objects	are	used.

@Immutable
public	final	class	Foo	{
		private	final	Long	id;

		public	Foo(Long	id)	{
				this.id	=	id;
		}

		public	Long	getId()	{
				return	id;
		}

		@Override
		public	int	hashCode()	{
				return	Objects.hashCode(id);
		}

		@Override
		public	boolean	equals(Object	obj)	{
				if	(this	==	obj)
						return	true;
				if	(obj	==	null)
						return	false;
				if	(getClass()	!=	obj.getClass())
						return	false;
				Foo	other	=	(Foo)	obj;
				return	Objects.equals(id,	other.id);
		}
}

It	no	longer	matters	if		Foo		is	long	or	short	lived.

It	is	inherently	thread-safe.

Prefer	Immutable	Objects

49

We	know	that	whatever	value	we	construct	it	with	will	remain	until	it	dies.	There	is	only	one
possible	point	where	data	is	written	so	we	do	not	need	to	search	for	others.

Annotations

The	example	uses	the	JSR3051		javax.annotation.concurrent.Immutable		annotation.

This	does	not	in	any	way	change	the	object's	functionality	but	provides	a	way	to
communicate	the	intent	of	this	being	an	immutable	class.	Static	analysis	tools	such	as
Mutablility	Detector	can	check	if	this	intent	has	been	violated.

We	can	tell	at	a	glance	that		Foo		is	immutable	as	it	has	final	fields	of	a	well	known
immutable	type.

The		final		keyword	ensures	only	that	the	reference	a	field	points	to	will	not	change.

If	the	field	were	of	type		Bar		then	we	would	not	know	if	it	were	mutable	or	not	without
examining		Bar		to	see	if	it	too	were	immutable.	Even	if	we	were	not	using	a	static	analysis
tool	the	use	of	the		Immutable		annotation	would	make	this	assessment	faster.

Instead	of	updating	the	state	of	immutable	objects,	we	create	new	instances	that	retain	the
state	we	do	not	wish	to	modify.

This	pattern	seems	strange	to	some	Java	programmers	at	first,	but	the	programming	model
is	similar	to	how	the	familiar		String		class	works.

@Immutable
public	final	class	Bar	{
		private	int	anInt;
		private	String	aString;

		public	Bar(int	anInt,	String	aString)	{
				this.anInt	=	anInt;
				this.aString	=	aString;
		}

		@CheckReturnValue
		public	Bar	withAnInt(int	anInt)	{
				return	new	Bar(anInt,	this.aString);
		}

		@CheckReturnValue
		public	Bar	withAString(String	aString)	{
				return	new	Bar(this.antInt,	aString);
		}
}

Prefer	Immutable	Objects

50

https://github.com/MutabilityDetector/MutabilityDetector

Instances	of		Bar		with	new	values	can	be	obtained	by	calling		withAString		and		withAnInt	.

The	JSR305		javax.annotation.CheckReturnValue		enables	static	analysis	tools	such	as	Error
Prone	to	issue	a	warning	if	a	mistake	is	made	such	as	in	the	code	below.

public	Bar	doThings(Bar	bar)	{
		if(someLogic())	{
				bar.withAnInt(42);
		}
		return	bar;
}

The	call	here	to		withAnInt		achieves	nothing	because	the	return	value	is	not	stored.	Most
likely,	the	programmer	intended	to	write:

public	Bar	doThings(Bar	bar)	{
		if(someLogic())	{
				return	bar.withAnInt(42);
		}
		return	bar;
}

When	to	Use	Mutable	Objects

Mutable	objects	require	slightly	less	boilerplate	to	create	than	immutable	ones.

If	you	know	that	a	class	will	only	ever	be	used	to	create	short-lived,	local	objects	then	you
might	consider	making	it	mutable.	But	you	must	weigh	this	against	the	additional	work
required	to	ensure	that	the	class	is	only	ever	used	in	this	fashion	as	the	codebase	grows.

Options	exist	to	auto-generate	both	immutable	and	mutable	classes,	thereby	removing
mutable	objects'	main	advantage.	Two	of	these	options	are	discussed	further	in	"Know	How
to	Implement	Hashcode	and	Equals".

Mutable	objects	used	to	be	the	norm	in	Java.	As	a	result,	many	common	frameworks	require
mutable	objects.	Persistence	and	serialization	frameworks	often	require	Java	beans	with	no
args	constructors	and	setters.	Other	frameworks	might	require	you	to	use	two-stage
construction	with	a	lifecycle	method	such	as	init.

It	is	not	always	highlighted	in	the	documentation	but	some	long	standing	frameworks	have
been	updated	to	support	immutable	objects.

Jackson	for	example	now	allows	constructors	and	factory	methods	to	be	annotated	:-

Prefer	Immutable	Objects

51

https://github.com/google/error-prone

public	class	Foo		{
		private	final	int	x
		private	final	int	y;

		@JsonCreator
		public	Foo(@JsonProperty("x")	int	x,	@JsonProperty("y")	int	y)	{
			this.x	=	x;
			this.y	=	y;
		}
}

Other	frameworks,	such	as	Hibernate,	can	only	be	used	with	classes	that	provide	a	default
constructor.	Although	they	can	be	configured	to	set	fields	directly	without	the	need	for	setters
this	causes	more	problems	than	it	solves.

If	you	are	tied	to	a	framework	that	requires	mutability	then	you	will	need	to	use	mutable
objects	where	you	interface	with	that	framework.

Prefer	Immutable	Objects

52

Use	a	Consistent	Code	Layout	Within	Each
Project

Summary

Agree	and	enforce	a	standard	code	formatting	scheme	within	each	codebase.

Detail

The	way	in	which	Java	code	is	formatted	and	laid	out	is	largely	a	matter	of	personal
preference.

Some	styles	(such	as	omitting	braces	in	conditional	statements)	can	arguably	make	certain
types	of	bug	slightly	more	likely.

Others	might	require	more	work	to	keep	the	code	compliant	(such	as	aligning	fields	into
columns)	but,	to	a	first	approximation,	no	particular	scheme	is	greatly	superior	to	any	other.

Despite	this,	programmers	tend	to	have	strong	opinions	on	the	matter.

Every	codebase	should,	however,	have	a	single	agreed	formatting	style	which	is	consistently
applied	and	is	understood	by	everyone	working	on	that	codebase.

This	prevents	commit	wars	in	which	different	team	members	re-format	things	to	their
personal	preference.	It	also	makes	code	easier	to	understand	as	there	is	a	cognitive	cost	for
the	reader	if	formatting	changes	radically	from	file	to	file.

Although	there	is	value	in	consistency,	there	is	also	a	cost.

Unless	there	is	already	broad	agreement	across	teams	about	how	things	should	be
formatted,	trying	to	enforce	one	official	set	of	rules	is	likely	to	create	more	ill	will	than	benefit.

A	global	preferred	reference	should	therefore	be	set,	but	teams	should	be	free	to	deviate
from	this	as	they	see	fit	as	long	as	a	consistent	style	is	used	for	the	code	they	maintain.

Suggested	Formatting	Rules

If	your	do	not	have	your	own	strong	preferences	we	suggest	you	follow	the	Google	Java
Style.

These	formatting	rules	are	well	thought	out,	clearly	documented	and	not	overly	prescriptive.

Use	A	Consistent	Code	Layout

53

https://google.github.io/styleguide/javaguide.html

We	will	not	describe	them	in	any	detail	here,	but	code	formatted	to	these	rules	will	look
something	like	the	following	:-

class	Example	{
		int[]	myArray	=	{1,	2,	3,	4,	5,	6};
		int	theInt	=	1;
		String	someString	=	"Hello";
		double	aDouble	=	3.0;

		void	foo(int	a,	int	b,	int	c,	int	d,	int	e,	int	f)	{
				if	(f	==	5)	{
						System.out.println("fnord");
				}	else	{
						System.out.println(someString);
				}

				switch	(a)	{
						case	0:
								Other.doFoo();
								break;
						default:
								Other.doBaz();
				}
		}

		void	bar(List<Integer>	v)	{
				for	(int	i	=	0;	i	<	10;	i++)	{
						v.add(new	Integer(i));
				}
		}
}

However,	we	suggest	that	the	guidance	in	the	Google	guide	on	when	to	write	Javadoc	is
ignored	in	favor	of	our	own.

Notable	Points	About	This	Style

Spaces	not	Tabs

Tabs	may	appear	differently	depending	on	how	an	editor	is	configured.	This	will	result	in
constant	reformatting	as	different	programmers	adapt	the	file	to	their	editor	settings.	Spaces
avoid	this	problem.

In	some	languages	(e.g.	JavaScript	before	the	rise	of	code	minifiers)	tabs	have/had	an
advantage	as	they	reduced	the	size	of	the	source	file	compared	to	using	multiple	spaces.
The	increase	in	size	of	the	source	file	is	of	no	relevance	for	Java.

One	True	Brace	Style

Use	A	Consistent	Code	Layout

54

There	are	various	arguments	about	the	supposed	advantages	of	this	style,	but	we	suggest
its	use	mainly	because	it	is	common	in	the	Java	community.

Although	simple		if	else		statements	can	be	more	concisely	written	by	omitting	the	braces
we	suggest	that	they	are	always	included.	This	reduces	the	chance	of	a	statement	being
placed	outside	the	conditional	when	this	was	not	the	intent.

Use	A	Consistent	Code	Layout

55

Group	Methods	for	Easy	Comprehension

Summary

The	public	methods	of	a	class	should	appear	at	the	top	of	the	file,	the	private	methods
towards	the	bottom	and	any	protected	or	package	default	methods	in	between.

In	addition	to	arranging	by	accessibility,	they	should	also	be	ordered	into	a	logical	flow.

Detail

This	scheme	tries	to	achieve	two	goals:

1.	 Highlight	the	public	API	by	separating	it	from	implementation	detail
2.	 Allow	the	reader	to	follow	the	logical	flow	with	the	minimal	of	scrolling

To	achieve	the	2nd	goal,	methods	should	be	arranged	into	logical	groups,	with	methods
always	appearing	above	the	ones	they	call.

The	two	goals	clearly	conflict	because	grouping	the	public	API	methods	together	at	the	top
of	the	file	prevents	grouping	them	with	the	implementation	methods	that	they	used.	If	this
causes	a	large	problem	it	may	be	an	indication	that	the	class	has	too	many	responsibilities
and	could	be	refactored	into	one	or	more	smaller	classes.

Questions	of	the	"correct"	location	of	a	method	will	also	occur	when	an	implementation
method	is	called	from	multiple	locations	or	methods	have	recursive	relationships.	There	is,	of
course,	no	one	right	answer	and	any	ordering	that	broadly	meets	the	second	goal	may	be
used.

Constructors	and	static	factory	methods	should	usually	be	placed	first	in	the	class.	The	fact
that	a	method	is	static	should	not,	however,	generally	influence	where	it	is	placed.

Example

Group	Methods	For	Easy	Comprehension

56

public	class	Layout	{

		private	int	a;

		Layout()	{...}

		public	static	Layout	create()	{...}

		public	void	api1()	{
				if	(...)	{
						doFoo();
				}
		}

		public	void	api2()	{
				if(...)	{
						doBar();
				}
		}

		private	void	doFoo()	{
				while(...)	{
						handleA();
						handleB();
				}
				leaf();
		}

		private	void	handleA()	{...}

		private	void	handleB()	{...}

		private	static	void	doBar()	{
				if	(...)	{
						leaf();
				}
		}

		private	void	leaf()	{...}
}

Fields	should	always	be	placed	at	the	top	of	the	class	before	any	methods.

Group	Methods	For	Easy	Comprehension

57

Keep	Methods	Small	and	Simple

Summary

Keep	methods	small	and	simple.

Details

Small	things	are	easier	to	understand	than	big	things.	Methods	are	no	different.

One	way	to	measure	the	size	of	a	method	is	via	the	number	of	lines	of	code	it	contains.

As	a	guide	methods	should	not	usually	be	longer	than	7	lines	in	length.	This	is	not	a	hard
rule	-	just	a	guide	of	when	to	feel	uncomfortable	with	a	method's	size.

Another	way	to	gauge	the	size	of	a	method	is	to	see	how	many	possible	paths	there	are
through	it.	The	Cyclomatic	complexity	of	a	method	gives	a	measure	of	this	-	it	will	increase
as	the	amount	of	conditional	logic	and	number	of	loops	grows.

As	a	guide,	methods	should	not	usually	have	a	complexity	above	5.	Again,	this	is	not	a	hard
rule,	just	a	guide	of	when	to	feel	uncomfortable.

Your	code	will	naturally	contain	some	methods	that	are	larger	than	others	-	some	concepts
are	inherently	more	complex	than	others	and	the	implementation	will	not	become	simpler	if
broken	down	further	or	expressed	in	a	different	way.

But	most	large	methods	can	be	made	smaller	in	one	of	three	ways	:

Refactoring	into	a	number	of	smaller	methods
Re-expressing	the	logic
Using	appropriate	language	features

Splitting	a	Method	into	Smaller	Concerns

Many	large	methods	have	smaller	methods	within	them	trying	to	find	a	way	out.

We	can	make	our	code	easier	to	maintain	by	freeing	them.

Bad

Keep	Methods	Small	And	Simple

58

protected	static	Map<String,	String>	getHttpHeaders(HttpServletRequest	request)	{
		Map<String,	String>	httpHeaders	=	new	HashMap<String,	String>();

		if	(request	==	null	||	request.getHeaderNames()	==	null)	{
				return	httpHeaders;
		}

		Enumeration	names	=	request.getHeaderNames();

		while	(names.hasMoreElements())	{
				String	name	=	(String)names.nextElement();
				String	value	=	request.getHeader(name);
				httpHeaders.put(name.toLowerCase(),	value);
		}

		return	httpHeaders;
}

Better

protected	static	Map<String,	String>	getHttpHeaders(HttpServletRequest	request)	{
		if	(isInValidHeader(request))	{
				return	Collections.emptyMap();
		}
		return	extractHeaders(request);
}

private	static	boolean	isInValidHeader(HttpServletRequest	request)	{
		return	(request	==	null	||	request.getHeaderNames()	==	null);
}

private	static	Map<String,	String>	extractHeaders(HttpServletRequest	request)	{
		Map<String,	String>	httpHeaders	=	new	HashMap<String,	String>();
		for	(String	name	:	Collections.list(request.getHeaderNames()))	{
				httpHeaders.put(name.toLowerCase(),	request.getHeader(name));
		}
		return	httpHeaders;
}

Re-expressing	logic

Terrible

Keep	Methods	Small	And	Simple

59

public	boolean	isFnardy(String	item)	{
		if	(item.equals("AAA"))	{
				return	true;
		}	else	if	(item.equals("ABA"))	{
				return	true;
		}	else	if	(item.equals("CC"))	{
				return	true;
		}	else	if	(item.equals("FWR"))	{
				return	true;
		}	else	{
				return	false;
		}
}

This	can	be	easily	re-expressed	with	less	noise	as	:

Better

public	boolean	isFnardy(String	item)	{
		return	item.equals("AAA")
						||	item.equals("ABA")
						||	item.equals("CC")
						||	item.equals("FWR");
}

Or	with	a	move	to	a	more	declarative	style	:

private	final	static	Set<String>	FNARDY_STRINGS
		=	ImmutableSet.of("AAA",
																				"ABA",
																				"CC",
																				"FWR");

public	boolean	isFnardy(String	item)	{
		return	FNARDY_STRINGS.contains(item);
}

Neither	of	the	above	changes	alter	the	structure	of	our	program	or	even	affect	the	signature
of	the	method.	Both	still	reduce	both	line	count	and	complexity	while	increasing	readability.

Simplifying	things	with	a	series	of	higher	impact	changes	that	extract	a	model	of	our	domain
is,	however,	often	the	best	approach.

It	is	difficult	to	guess	what	this	model	might	look	like	for	our	contrived	example,	but	is	likely
that	this	conditional	logic	could	be	replaced	with	polymorphism.

Keep	Methods	Small	And	Simple

60

enum	ADomainConcept	{
		AAA(true),
		ABA(true),
		CC(true),
		FWR(true),
		OTHER(false),
		ANDANOTHER(false);

		private	final	boolean	isFnardy;
		private	ADomainConcept(boolean	isFnardy)	{
				this.isFnardy	=	isFnardy;
		}

		boolean		isFnardy()	{
				return	isFnardy;
		}
}

Using	Appropriate	Language	Features

Methods	are	sometimes	bloated	by	boilerplate	that	solves	common	programming	problems.
The	need	for	some	of	this	boilerplate	has	been	removed	by	new	language	features.

Some	of	these	new	features	aren't	all	that	new,	but	code	is	still	written	without	them:

Java	5	Generics	removes	the	need	for	ugly	casts
The	Java	5	for-each-loop	can	replace	code	using	iterators	and	indexed	loops
The	Java	7	try-with-resources	can	replace	complex	try,	catch	finally	blocks
The	Java	7	multi-catch	can	replace	repeated	catch	blocks
Java	8	lambda	expressions	can	replace	anonymous	class	boilerplate

Keep	Methods	Small	And	Simple

61

Methods	Should	Do	Only	One	Thing

Summary

Methods	should	do	only	one	thing.

Details

A	useful	guide	as	to	whether	a	function	is	doing	only	one	thing	is	given	in	"Clean	Code"	by
Robert	C	Martin.

"another	way	to	know	that	a	function	is	doing	more	than	“one	thing”	is	if	you	can	extract
another	function	from	it	with	a	name	that	is	not	merely	a	restatement	of	its	implementation."

Bad

		public	void	updateFooStatusAndRepository(Foo	foo)	{
					if	(foo.hasFjord())	{
								this.repository(foo.getIdentifier(),	this.collaborator.calculate(foo));
					}

					if	(importantBusinessLogic())	{
							foo.setStatus(FNAGLED);
							this.collaborator.collectFnagledState(foo);
					}
		}

Better

Methods	Should	Do	One	Thing

62

		public	void	registerFoo(Foo	foo)	{
					handleFjords(foo);
					updateFnagledState(foo);
		}

		private	void	handleFjords(Foo	foo)	{
						if	(foo.hasFjord())	{
								this.repository(foo.getIdentifier(),	this.collaborator.calculate(foo));
					}
		}

		private	void	updateFnagledState(Foo	foo)	{
				if	(importantBusinessLogic())	{
							foo.setStatus(FNAGLED);
							this.collaborator.collectFnagledState(foo);
					}
		}

You've	gone	too	far

		public	void	registerFoo(Foo	foo)	{
					handleFjords(foo);
					updateFnagledState(foo);
		}

		private	void	handleFjords(Foo	foo)	{
						if	(foo.hasFjord())	{
								this.repository(foo.getIdentifier(),	this.collaborator.calculate(foo));
					}
		}

		private	void	updateFnagledState(Foo	foo)	{
				if	(importantBusinessLogic())	{
							updateFooStatus(foo);
							this.collaborator.collectFnagledState(foo);
					}
		}

		private	void	updateFooStatus(Foo	foo)	{
				foo.setStatus(FNAGLED);
		}

Methods	Should	Do	One	Thing

63

Avoid	Null	Whenever	Possible

Summary

Null	is	a	billion	dollar	mistake,	make	sure	you	know	how	to	avoid	using	it	in	your	code.

Try	to	limit	the	times	you	or	your	clients	need	to	write	the	following:

		if	(!=	null)	{
				...
		}

Details

Although	it	is	likely	that	libraries	and	frameworks	you	interact	with	will	return	null,	you	should
try	to	ensure	that	this	practice	is	isolated	to	third	party	code.

The	core	of	your	application	should	assume	that	it	does	not	have	to	worry	about	null	values.

Strategies	to	avoid	null	include	:

The	null	object	pattern	-	when	you	have	something	you	think	is	optional
The	type-safe	null	pattern	(aka	Option,	Optional	&	Maybe)	-	when	you	need	to	express
that	an	interface	might	not	return	something
Design	by	contract

The	Null	Object	Pattern

The	null	object	pattern	is	the	classic	OO	approach	to	avoiding	null.	You	should	use	it
whenever	you	think	you	have	a	dependency	that	you	think	is	optional.

The	pattern	is	very	simple,	just	provide	an	implementation	of	the	interface	that	does
"nothing"	or	has	a	neutral	behavior.	This	can	then	be	safely	referenced	by	its	clients,	with	no
need	to	check	for	null.

Type-Safe	Nulls	(aka	Optional)

The	type-safe	null	pattern	is	familiar	in	most	functional	programming	languages	where	it	is
variously	known	as	Maybe,	Option	or	Optional.	Java	8	finally	adds	an	Optional	type,	but
implementations	are	available	for	earlier	versions	via	Guava	and	other	libraries.

Avoid	Null

64

It	is	a	simple	pattern.	An	Optional	is	basically	just	a	box	that	can	hold	either	one	or	zero
values.	You	can	check	if	the	box	is	empty	(using		isPresent)	and	retrieve	its	value	via	a	get
method.

Optional	should	be	used	whenever	a	public	method	might	not	return	a	value	as	part	of
normal	program	flow.

If	you	call	get	on	an	empty	Optional,	it	will	throw	a		NoSuchElementException	.

It	might	not	be	immediately	obvious	what	value	Optional	provides	over	just	using	null.	If	you
need	to	check	that	an	Optional	has	something	in	it	before	calling		get	,	how	is	this	different
from	checking	a	value	is	not	null	to	avoid	a		NullPointerException	?

There	are	several	important	differences.

Firstly,	if	your	method	declares	that	it	returns		Optional<Person>		then	you	can	instantly	see
from	the	type	signature	that	it	might	not	return	a	value.	If	it	only	returned		Person		you	would
only	know	that	it	might	return	null	if	you	looked	at	the	source,	tests	or	documentation.

Equally	important,	if	you	know	that	you	always	return		Optional		within	your	codebase	when
something	might	not	be	present,	then	you	know	at	a	glance	that	a	method	returning		Person	
will	always	return	a	value	and	will	never	return	null.

Finally,	the	preferred	way	to	use	Optionals	is	not	to	call	the	get	method	or	to	explicitly	check
if	it	contains	a	value.	Instead	the	values	that	are	contained	(or	not	contained)	in	an	Optional
can	be	safely	mapped,	consumed	and	filtered	by	various	method	on	the	class.

In	the	simplest	case	a	possibly	empty	Optional	can	be	accessed	by	calling	the		orElse	
method	which	takes	a	default	value	to	use	if	the	Optional	is	empty.

As	mentioned,	the	sweet	spot	for	using	Optionals	is	for	the	return	types	for	methods.	They
should	not	generally	be	held	as	fields	(use	the	null	object	pattern	here	instead)	or	passed	to
public	methods	(instead	provide	overloaded	versions	that	do	not	require	the	parameter).

One	objection	that	is	sometimes	raised	by	Java	programmers	encountering	Optional	for	the
first	time	is	that	it	is	possible	for	an	Optional	to	be	null	itself.	While	this	is	true,	returning	a
null	Optional	from	a	method	is	a	perverse	thing	to	do	and	should	be	considered	a	coding
error.

Static	analysis	rules	exists	that	can	check	for	code	that	returns	null	Optionals.

Design	by	Contract

We	wish	for	all	code	that	we	control	to	be	able	to	ignore	the	existence	of	null	(unless	it
interfaces	with	some	third	party	code	that	forces	us	to	consider	it).

Avoid	Null

65

	Objects.requireNonNull		can	be	used	to	add	a	runtime	assertion	that	null	has	not	been
passed	to	a	method.

Because	your	core	code	should	generally	assume	that	null	will	never	be	passed	around,
there	is	little	value	in	documenting	this	behavior	with	tests;	assertions	add	value	because
they	ensure	that	an	error	occurs	close	to	the	point	where	the	mistake	was	made.

We	can	also	check	this	contract	at	build	time.

JSR-305	provides	annotations	that	can	be	used	to	declare	where	null	is	acceptable.

Although	JSR-305	is	dormant,	and	shows	no	signs	of	being	incorporated	into	Java	in	the
near	future,	the	annotations	are	available	at	the	maven	co-ordinates	:-

<dependency>
				<groupId>com.google.code.findbugs</groupId>
				<artifactId>jsr305</artifactId>
				<version>3.0.1</version>
</dependency>

They	are	supported	by	several	static	analysis	tools	including	:-

Findbugs
Error	Prone

These	can	be	configured	to	break	the	build	when	null	is	passed	as	a	parameter	where	we	do
not	expect	it.

Annotating	every	class,	method	or	parameter	with		@Nonnull		would	quickly	become	tedious
and	it	would	be	debatable	whether	the	gain	would	be	worth	the	amount	of	noise	this	would
generate.

Fortunately,	it	is	possible	to	make		@Nonnull		the	default	by	annotating	a	package	in	its
package-info.java	file	as	follows

@javax.annotation.ParametersAreNonnullByDefault
package	com.example.somepackage	;

Sadly,	sub-packages	do	not	inherit	their	parent's	annotations,	so	a	package-info.java	file
must	be	created	for	each	package.

Once	non	null	parameters	have	been	made	the	default	behavior,	any	parameters	that	do
accept	null	can	be	annotated	with		@Nullable	.

Avoid	Null

66

http://findbugs.sourceforge.net/
http://errorprone.info/

Avoid	Null

67

Use	Final	Liberally

Summary

Consider	making	final	any	variable	or	parameter	that	does	not	change.

Details

Making	parameters	and	variables	that	are	assigned	once	final	makes	a	method	easier	to
understand	because	it	constrains	the	things	that	could	possibly	happen	within	the	code.

It	would	be	reasonable	to	make	all	parameters	and	assign-once	variables	final,	but	this
needs	to	be	weighed	against	the	noise	created	by	inserting	the		final		keyword	everywhere.

For	short	methods,	whether	the	benefit	outweighs	the	cost	is	arguable,	but	if	a	method	is
large	and	unwieldy	then	the	case	for	making	things	final	is	much	stronger.

Each	team	should	agree	a	policy	for	making	final	variables.

At	a	minimum,	everything	should	be	made	final	within	large	methods.	This	may	also	be
extended	to	shorter	methods	at	the	team's	discretion.	A	blanket	policy	has	the	advantage	of
being	easy	to	automate/understand.	A	more	nuanced	policy	is	harder	to	communicate.

When	working	with	legacy	code,	making	parameters	and	variables	final	is	also	a	useful	first
step	in	gaining	understanding	of	the	method	before	re-factoring.	Methods	that	have	proved
difficult	to	express	in	smaller	chunks	will	also	become	easier	to	understand	when	single
assignment	variables	are	final.

Use	Final	Liberally

68

Provide	no	More	Than	One	Worker	Constructor

Summary

Although	a	class	may	provide	many	constructors,	only	one	should	write	to	fields	and	initialize
the	class.

Details

Having	a	single	place	where	fields	are	assigned	during	construction	makes	it	easy	to
understand	the	states	that	class	can	be	constructed	in.

Classes	should	not	provide	multiple	constructors	that	set	fields.

Bad

public	class	Foo	{
		private	final	String	a;
		private	final	Integer	b;
		private	final	Float	c;

		public	Foo(String	value)	{
				this.a	=	Objects.requireNonNull(value);
				this.b	=	42;
				this.c	=	1.0f;
		}

		public	Foo(Integer	value)	{
				this.a	=	"";
				this.b	=	Objects.requireNonNull(value);
				this.c	=	1.0f;
		}

		public	Foo(Float	value)	{
				this.a	=	"";
				this.b	=	42;
				this.c	=	Objects.requireNonNull(value);
		}
}

The	duplication	of	values	in	the	above	code	could	be	removed	but	it	would	remain	confusing
because	the	concern	of	initializing	the	class	is	spread	across	three	locations.

If	more	fields	were	added	it	would	be	easy	to	forget	to	initialize	them	in	the	existing
constructors.

Provide	No	More	Than	One	Worker	Constructor

69

Fortunately,	we	have	made	all	fields	final	so	this	would	give	a	compilation	error.	If	the	class
was	mutable,	we	would	have	a	bug	to	discover	at	runtime.

Better

public	class	Foo	{
		private	final	String	a;
		private	final	Integer	b;
		private	final	Float	c;

		private	Foo(String	a,	Integer	b,	Float	c)	{
				this.a	=	Objects.requireNonNull(a);
				this.b	=	Objects.requireNonNull(b);
				this.c	=	Objects.requireNonNull(c);
		}

		public	Foo(String	value)	{
				this(value,	42,	1.0f);
		}

		public	Foo(Integer	value)	{
				this("",	value,	1.0f);
		}

		public	Foo(Float	value)	{
				this("",	42,	value);
		}
}

Fields	are	now	only	written	in	one	location,	resulting	in	less	duplication.

We	can	also	see	at	a	glance	that		Foo		cannot	be	constructed	with	null	values.	In	the
previous	version,	this	could	only	be	determined	by	scanning	three	different	locations.

Following	this	pattern,	it	is	difficult	to	forget	to	set	a	field	even	if	it	is	non-final.

Provide	No	More	Than	One	Worker	Constructor

70

Avoid	Checked	Exceptions

Summary

Do	not	declare	checked	exceptions	unless	there	is	a	clear	course	of	action	that	should	be
taken	when	one	is	thrown.

Details

Exceptions	are	for	exceptional	circumstances	-	design	your	code	such	that	they	are	not
thrown	in	scenarios	that	are	expected	to	happen.

This	means	that	they	should	not	be	used	for	normal	control	flow.

Checked	exceptions	bloat	and	complicate	code.	You	should	avoid	adding	them	to	your	API,
except	when	there	is	a	clear	action	that	the	caller	can	always	take	to	recover	from	the	error
scenario.

This	is	surprisingly	rare.

If	you	are	working	with	a	library	that	uses	checked	exceptions,	you	can	wrap	them	by	re-
throwing	a	runtime	exception.

When	you	do,	be	sure	to	maintain	the	stack	trace.

try	{
		myObject.methodThrowingException();
}	catch	(SomeCheckedException	e)	{
		throw	new	RuntimeException(e);
}

If	you	have	caught	an		Exception		or	a		Throwable	,	so	are	unsure	of	the	exact	type,	you	can
avoid	creating	unnecessary	wrappers	using	Guava's		Throwables.propagate	.

try	{
		myObject.methodThrowingException();
}	catch	(Exception	e)	{
		throw	Throwables.propagate(e);
}

This	will	wrap	checked	exceptions	and	re-throw	unchecked	exception	as	is.

Avoid	Checked	Exceptions

71

Avoid	Checked	Exceptions

72

Specifics
This	section	provides	some	more	specific	advice	on	various	Java	language	features	and
gotchas.

A	lot	of	what	is	covered	in	this	section	can	be	automated	by	tools	such	as	FindBugs,	PMD,
Checkstyle	and	Sonar.

Specifics

73

Know	How	to	Implement	Hashcode	and	Equals

Summary

Implementing		hashCode		and		equals		is	not	straightforward.	Do	not	implement	them	unless
it	is	necessary	to	do	so.	If	you	do	implement	them,	make	sure	you	know	what	you	are	doing.

Details

It	is	well	known	that	if	you	override	equals	then	you	must	also	override	the		hashCode	
method	(see	Effective	Java	item	9).

If	logically-equal	objects	do	not	have	the	same		hashCode		they	will	behave	in	a	surprising
manner	if	placed	in	a	hash	based	collection	such	as		HashMap	.

By	"surprising",	we	mean	your	program	will	behave	incorrectly	in	a	fashion	that	is	very
difficult	to	debug.

Unfortunately,	implementing		equals		is	surprisingly	hard	to	do	correctly.	Effective	Java	item
8	spends	about	12	pages	discussing	the	topic.

The	contract	for	equals	is	handily	stated	in	the	Javadoc	of		java.lang.Object	.	We	will	not
repeat	it	here	or	repeat	the	discussion	of	what	it	means,	that	can	be	found	in	Effective	Java
and	large	swathes	of	the	internet.	Instead	we	will	look	at	strategies	for	implementing	it.

Whichever	strategy	you	adopt,	it	is	important	that	you	first	write	tests	for	your
implementation.

It	is	easy	for	an	equals	method	to	cause	hard-to-diagnose	bugs	if	the	code	changes	(e.g.	if
fields	are	added	or	their	type	changes).	Writing	tests	for	equals	methods	used	to	be	a	painful
and	time-consuming	procedure,	but	libraries	now	exist	that	make	it	trivial	to	specify	the
common	cases	(see	Testing	FAQs).

Don't

This	is	the	simplest	strategy	and	the	one	you	should	adopt	by	default	in	the	interests	of
keeping	your	codebase	small.

Most	classes	do	not	need	an	equals	method.	Unless	your	class	represents	some	sort	of
value	it	makes	little	sense	to	compare	it	with	another	so	stick	with	the	inherited
implementation	from	Object.

Know	How	To	Implement	Hashcode	And	Equals

74

An	irritating	gray	area	are	classes	where	the	production	code	never	has	a	requirement	to
compare	equality	but	the	test	code	does.	The	dilemma	here	is	whether	to	implement	the
methods	purely	for	the	benefit	of	the	tests	or	to	complicate	the	test	code	with	custom
equality	checks.

There	is,	of	course,	no	right	answer	here;	we	would	suggest	first	trying	the	compare-it-in-the
test	approach	before	falling	back	to	providing	a	custom	equals	method.

The	custom	equality	checks	can	be	cleanly	shared	by	implementing	a	custom	assertion
using	a	library	such	as	AssertJ	or	Hamcrest.

Effective	Java	tentatively	suggests	having	your	class	throw	an	error	if	equals	is	unexpectedly
called

@Override	public	boolean	equals(Object	o)	{
		throw	new	AssertionError();	//	Method	is	never	called
}

This	seems	like	a	good	idea	but,	unfortunately,	it	will	confuse	most	static	analysis	tools.	On
balance,	it	probably	creates	more	problems	than	it	solves.

Auto-Generate	With	an	IDE

Most	IDEs	provide	some	method	of	auto-generating		hashCode		and		equals		methods.	This
is	an	easily-accessible	approach,	but	the	resulting	methods	are	(depending	on	the	IDE	and
its	settings)	often	ugly	and	complex	such	as	the	ones	generated	by	Eclipse	shown	below:

		@Override
		public	int	hashCode()	{
				final	int	prime	=	31;
				int	result	=	1;
				result	=	prime	*	result	+	((field1	==	null)	?	0	:	field1.hashCode());
				result	=	prime	*	result	+	((field2	==	null)	?	0	:	field2.hashCode());
				return	result;
		}

Know	How	To	Implement	Hashcode	And	Equals

75

		@Override
		public	boolean	equals(Object	obj)	{
				if	(this	==	obj)
						return	true;
				if	(obj	==	null)
						return	false;
				if	(getClass()	!=	obj.getClass())
						return	false;
			MyClass		other	=	(MyClass)	obj;
				if	(field1	==	null)	{
						if	(other.field1	!=	null)
								return	false;
				}	else	if	(!field1.equals(other.field1))
						return	false;
				if	(field2	==	null)	{
						if	(other.field2	!=	null)
								return	false;
				}	else	if	(!field2.equals(other.field2))
						return	false;
				return	true;
		}

Unless	your	IDE	can	be	configured	to	produce	clean	methods	(as	discussed	below)	we	do
not	generally	recommend	this	approach.	It	is	easy	for	bugs	to	be	introduced	into	this	code	by
hand	editing	over	time.

Hand	Roll	Clean	Methods

Java	7	introduced	the		java.util.Objects		class	that	makes	implementing		hashCode		trivial.
Guava	provides	the	similar		com.google.common.base.Objects		class	which	may	be	used	with
earlier	versions	of	Java.

		@Override
		public	int	hashCode()	{
				return	Objects.hash(field1,	field2);
		}

The		Objects		class	also	simplifies	implementing	equals	a	little	by	pushing	most	null	checks
into	the		Objects.equals		method.

Know	How	To	Implement	Hashcode	And	Equals

76

		@Override
		public	boolean	equals(Object	obj)	{
				if	(this	==	obj)	//	<-	performance	optimisation
						return	true;
				if	(obj	==	null)
						return	false;
				if	(getClass()	!=	obj.getClass())	//	<-	see	note	on	inheritance
						return	false;
				MyClass	other	=	(MyClass)	obj;
				return	Objects.equals(field1,	other.field1)	&&
								Objects.equals(field2,	other.field2);
		}

The	first		if		statement	is	not	logically	required	and	could	be	safely	omitted;	it	may,	however,
provide	performance	benefits.

Usually,	we	would	recommend	that	such	micro-optimizations	are	not	included	unless	they
have	been	proven	to	provide	a	benefit.	In	the	case	of	equals	methods,	we	suggest	that	the
optimization	is	left	in	place.	It	is	likely	to	justify	itself	in	at	least	some	of	your	classes	and
there	is	value	in	having	all	methods	follow	an	identical	template.

The	example	above	uses		getClass		to	check	that	objects	are	of	the	same	type.	An
alternative	is	to	use		instanceof		as	follows

		@Override
		public	boolean	equals(Object	obj)	{
				if	(this	==	obj)
						return	true;
				if	(obj	==	null)
						return	false;
				if	(!(obj	instanceof	MyClass))	//	<-	compare	with	instanceof
						return	false;
				MyClass	other	=	(MyClass)	obj;
				return	Objects.equals(field1,	other.field1)	&&
								Objects.equals(field2,	other.field2);
		}

This	results	in	a	behavioral	difference	-	comparing	instances	of		MyClass		with	its	subclasses
will	return	true	with		instanceof		but	false	with		getClass	.

In	Effective	Java	Josh	Bloch	argues	in	favor	of		instanceof		as	the		getClass	
implementation	violates	a	strict	interpretation	of	the	Liskov	substitution	principle.

However,	if		instanceof		is	used,	it	is	easy	for	the	symmetric	property	of	the	equals	contract
to	be	violated	if	a	subclass	overrides	equals.	i.e.:

Know	How	To	Implement	Hashcode	And	Equals

77

MyClass	a	=	new	MyClass();
ExtendsMyClassWithCustomEqual	b	=	new	ExtendsMyClassWithCustomEqual();

a.equals(b)	//	true
b.equals(a)	//	false,	a	violation	of	symmetry

If	you	find	yourself	in	a	situation	where	you	need	to	consider	the	nuances	of	whether
subclasses	are	equal	to	their	parents	then	we	strongly	suggest	you	reconsider	your	design.

Having	to	think	about	maintaining	the	equals	contract	in	a	class	hierarchy	is	painful	and	you
shouldn't	need	to	put	yourself,	or	your	team,	through	this	for	normal	server-side	coding
tasks.

In	the	majority	of	cases,	if	you	think	it	makes	sense	for	your	class	to	implement		hashCode	
and		equals	,	we	strongly	suggest	you	make	your	class	final	so	hierarchies	do	not	need	to
be	considered.

If	you	believe	you	have	a	case	where	it	makes	sense	for	subclasses	to	be	treated	as
equivalent	to	their	parent,	use		instanceof		but	ensure	that	the	parent	equals	method	is
made	final.

Avoid	relationships	that	are	more	complex	than	this.

Commons	EqualsBuilder	and	HashCodeBuilder

The	Apache	commons	hashcode	and	equals	builders	were	once	a	popular	way	of
generating	these	methods.	We	do	not	recommend	their	use	in	new	code	as	most	of	what
they	achieved	is	now	provided	by		java.util.Objects		without	bringing	in	a	3rd	party	library,
or	by	the	Guava	equivalent.

These	classes	do	provide	the	option	of	a	single	line	reflection	based	implementation.

public	boolean	equals(Object	obj)	{
		return	EqualsBuilder.reflectionEquals(this,	obj);
}

public	int	hashCode()	{
		return	HashCodeBuilder.reflectionHashCode(this);
}

The	brevity	of	these	implementations	is	attractive,	but	their	performance	is	measurably
poorer	than	others	discussed	so	far.	Good	performance	tests	and	regular	profiling	can	help
determine	whether	a	poorly	performing	method	genuinely	leads	to	performance	bottlenecks

Know	How	To	Implement	Hashcode	And	Equals

78

in	your	application.	If	you	are	confident	that	you	would	detect	such	adverse	impacts	then
using	these	methods	as	initial	placeholder	implementations	may	be	a	reasonable	approach.
But	in	general	we	suggest	you	avoid	them.

Code	Generators

A	number	of	projects	exist	that	can	auto-generate	value	objects	at	build-time.	Two	of	the
better	known	options	are	:

Google	auto
Project	Lombok

But	many	others	are	available.

Google	Auto

Google	Auto	will	create	a	subclass	with	the	obvious	implementation	of	an	abstract	class
annotated	with		@AutoValue	.	This	implementation	will	include	functioning		hashcode		and
	equals		methods.

import	com.google.auto.value.AutoValue;

@AutoValue
abstract	class	Animal	{
		static	Animal	create(String	name,	int	numberOfLegs)	{
				return	new	AutoValue_Animal(name,	numberOfLegs);
		}

		Animal()	{}

		abstract	String	name();
		abstract	int	numberOfLegs();
}

This	is	clearly	far	less	effort	than	hand	crafting	a	complete		Animal		class,	but	there	are	some
downsides.

Some	of	the	issues	with	code	generators	are	discussed	in	"Consider	Code	Generators
Carefully",	which	categorized	them	into	friction	and	surprise.

Here,	Google	Auto	introduces	some	friction	as	the	code	shown	above	will	not	compile	within
an	IDE	until	the	generator	has	run	to	produce	the		AutoValue_Animal		class.

There	is	also	some	surprise.

Know	How	To	Implement	Hashcode	And	Equals

79

https://github.com/google/auto/tree/master/value
https://projectlombok.org/

Because	it	is	a	value,	Animal	would	normally	be	implemented	as	a	final	class	-	but	we	have
been	forced	to	make	it	abstract.	The	team	behind	Auto	recommend	you	add	a	package-
private	constructor	to	prevent	other	child	classes	being	created.

Unlike	normal	Java,	the	order	in	which	accessors	are	declared	is	important	because	it	is
used	by	the	generator	to	define	the	order	of	the	constructor	parameters.	Re-ordering	the
accessors	can,	therefore,	have	the	surprising	effect	of	introducing	a	bug.

Lombok

Lombok	can	also	(amongst	other	things)	generate	full	implementations	of	value	objects.

It	takes	a	different	approach	to	Google	auto.

Given	an	annotated	class	such	as:

@Value
public	class	ValueExample	{
		String	name;
		@NonFinal	int	age;
		double	score;
}

It	will	alter	the	class	at	build-time	to	produce	an	implementation	along	the	lines	of:

Know	How	To	Implement	Hashcode	And	Equals

80

public	final	class	ValueExample	{
		private	final	String	name;
		private	int	age;
		private	final	double	score;

		public	ValueExample(String	name,	int	age,	double	score)	{
				this.name	=	name;
				this.age	=	age;
				this.score	=	score;
			}

		public	String	getName()	{
				return	this.name;
		}

		public	int	getAge()	{
				return	this.age;
		}

		public	double	getScore()	{
				return	this.score;
		}

		public	boolean	equals(Object	o)	{
			//	valid	implementation	of	equality	based	on	all	fields
		}

		public	int	hashCode()	{
			//	valid	hashcode	implementation	based	on	all	fields
		}

While	Google	Value	asks	the	programmer	to	provide	a	valid	public	API	for	a	class,	Lombok
creates	the	public	API	based	on	a	description	of	its	internal	state.	The	description	is	valid
Java	syntax	but	has	a	different	meaning	when	interpreted	by	Lombok.

Lombok	causes	some	friction.	It	is	not	practical	to	use	Lombok	without	an	IDE	that
understands	it	-	code	using	the	autogenerated	api	will	appear	to	be	invalid.	An	IDE	plugin
must	be	installed.

While	it	(arguably)	introduces	less	friction	than	auto	once	the	IDE	plugin	is	installed,	the
behavior	of	Lombok	is	much	more	surprising.	It	is	easy	to	explain	what	Auto	does	-	it
generates	a	class	at	build-time	that	implements	an	interface	you	define.	It	is	much	harder	to
predict	or	explain	what	Lombok	will	do.

Although	Lombok	requires	the	programmer	to	write	less	code	than	solutions	such	as	Auto,	it
deviates	further	from	normal	Java.

Know	How	To	Implement	Hashcode	And	Equals

81

If	you	consider	using	a	code	generator	for	Value	classes,	we	would	recommend	you
consider	approaches	such	as	Auto	before	Lombok.

To	its	credit	Lombok	does	provide	an	escape	route	(see	"Prefer	reversible	decisions")	in	the
form	of	delombok	which	allows	you	to	output	the	generated	classes.	These	can	then	be
used	to	replace	the	annotated	originals.

Removing	Auto	is	similarly	straightforward	-	the	generated	classes	can	be	checked	into	the
source	tree.	The	artificial	abstract	class/implementation	split	can	then	be	removed	via	simple
refactorings.

Know	How	To	Implement	Hashcode	And	Equals

82

Do	Not	Re-Assign	Parameters

Summary

Parameters	to	methods	should	never	be	re-assigned.

Detail

Reassigning	to	parameters	makes	code	harder	to	understand	and	provides	no	meaningful
advantage	over	creating	a	new	variable.

If	the	method	is	large,	it	can	be	difficult	to	track	the	lifecycle	of	a	parameter.	Even	within
short	methods,	re-using	parameters	will	cause	problem.	As	the	variable	is	being	used	to
represent	two	separate	concepts,	it	is	often	not	possible	to	name	it	meaningfully.

If	another	variable	of	the	same	type	as	a	parameter	is	needed,	it	should	be	declared	locally.

Bad

public	String	foo(String	currentStatus)	{
		if	(someLogic())	{
				currentStatus		=	"FOO";
		}
		return	currentStatus;
}

Better

public	String	foo(final	String	currentStatus)	{
		String	desiredStatus	=	currentStatus;
		if	(someLogic())	{
				desiredStatus	=	"FOO";
		}

		return	desiredStatus	;
}

Parameters	may	be	declared	final	so	that	the	reader	can	tell	at	a	glance	that	its	value	will	not
change.

Do	Not	Reassign	Parameters

83

Limit	Variables	to	the	Smallest	Possible	Scope

Summary

Variables	should	be	declared	as	late	as	possible	so	that	they	have	the	narrowest	possible
scope.

Details

Bad

public	void	foo(String	value)	{
				String	calculatedValue;
				if	(someCondition())	{
								calculatedValue	=	calculateStr(value);
								doSomethingWithValue(calculatedValue);
				}
}

Better

public	void	foo(String	value)	{
				if	(someCondition())	{
								String	calculatedValue	=	calculateStr(value);
								doSomethingWithValue(calculatedValue);
				}
}

Better	still

public	void	foo(String	value)	{
				if	(someCondition())	{
								doSomethingWithValue(calculateStr(value));
				}
}

Sometimes,	assigning	to	well-named,	temporary	variables	will	result	in	more	readable	code
than	calling	a	method	inline	because	it	helps	the	reader	follow	the	data	and	logical	flow.

As	a	rule	of	thumb,	if	you	are	unable	to	come	up	with	a	name	for	a	variable	that	does	little
more	than	mirror	a	method	from	which	its	value	was	retrieved,	then	the	variable	should	be
eliminated.

Limit	Scope

84

Limit	Scope

85

Prefer	For-Each	Loops	to	For	Loops

Summary

Use		for	each		loops	in	preference	to	indexed	for	loops.

Details

The		for	each		loop	introduced	with	Java	5	avoids	the	potential	out-by-one	errors	of	indexed
for	loops	and	is	more	concise	than	code	using	iterators.

Bad

		public	List<String>	selectValues(List<Integer>	someIntegers)	{
				List<String>	filteredStrings	=	new	ArrayList<String>();
				for	(int	i	=	0;	i	!=	someIntegers.size();	i++)	{
						Integer	value	=	someIntegers.get(i);
						if	(value	>	20)	{
								filteredStrings.add(value.toString());
						}
				}
				return	filteredStrings;
		}

A	little	better

		public	List<String>	selectValues(List<Integer>	someIntegers)	{
				List<String>	filteredStrings	=	new	ArrayList<String>();
				for	(Integer	value	:	someIntegers)	{
						if	(value	>	20)	{
								filteredStrings.add(value.toString());
						}
				}
				return	filteredStrings;
		}

Prefer	For	Each	Loops	To	For	Loops

86

Prefer	Maps	and	Filters	to	Imperative	Loops

Summary

Imperative	loops	hide	application	logic	inside	boilerplate	code	-	prefer	maps	and	filters	as
these	separate	the	logic	from	the	implementation.

Details

Most	loop	based	code	can	be	re-written	in	a	more	declarative	style	using	filters	and	maps.

Java	8	made	this	easy	by	introducing	lambdas	and	the	streams	API,	but	the	same	style	can
be	applied	in	Java	7	using	anonymous	inner	classes	and	third	party	libraries	such	as	Guava.

Filters	and	maps	highlight	what	the	code	is	intended	to	achieve.	This	is	less	clear	in	the
imperative	implementation.

Bad

		public	List<String>	selectValues(List<Integer>	someIntegers)	{
				List<String>	filteredStrings	=	new	ArrayList<String>();
				for	(Integer	value	:	someIntegers)	{
						if	(value	>	20)	{
								filteredStrings.add(value.toString());
						}
				}
				return	filteredStrings;
		}

Better	(Java	8)

		public	List<String>	selectValues(List<Integer>	someIntegers)	{
				return	someIntegers.stream()
								.filter(i	->	i	>	20)
								.map(i	->	i.toString())
								.collect(Collectors.toList());
		}

Better	(Java	7	using	Guava)

Prefer	Maps	And	Filters	To	Imperative	Loops

87

		public	List<String>	selectValues(List<Integer>	someIntegers)	{
				return	FluentIterable
				.from(someIntegers)
				.filter(greaterThan(20))
				.transform(Functions.toStringFunction())
				.toList();
		}

		private	static	Predicate<Integer>	greaterThan(final	int	limit)	{
				return	new	Predicate<Integer>()	{
						@Override
						public	boolean	apply(Integer	input)	{
								return	input	>	limit;
						}
				};
		}

Note	that,	although	the	Java	7	version	requires	more	lines	of	code	(in	the	form	of	the	ugly
boilerplate	for	the	anonymous	inner	class),	the	logic	of	the		selectValues		method	is	clearer.
If	the	logic	required	in	the	Predicate	or	mapping	Function	is	required	in	multiple	places	then
it	is	straightforward	to	move	this	to	a	common	location.	This	is	harder	to	achieve	with	the
imperative	version.

Also	note	that	the	method	that	creates	the	Predicate	has	been	made	static.	It	is	a	good	idea
to	do	this,	where	possible,	when	returning	an	anonymous	class	to	prevent	a	long	lived
instance	preventing	the	parent	class	from	being	garbage	collected.	Although	the	Predicate	is
only	short-lived	in	this	instance,	applying	static	dogmatically	in	all	cases	avoids	the	overhead
of	thinking.

Prefer	Maps	And	Filters	To	Imperative	Loops

88

Avoid	APIs	from	Pre-History

Summary

Do	not	use		Vector	,		StringBuffer		and	other	archaic	parts	of	the	JDK.

Details

Java	has	been	around	for	over	20	years.	In	order	to	maintain	backwards	compatibility,	it	has
hoarded	all	manner	of	APIs	that	no	longer	make	sense	to	use.	Some	of	them	are	handily
marked	with	@Deprecated	annotation,	others	are	not.

Unfortunately,	many	are	still	used	in	university	courses	and	online	examples.	New	Java
programmers	may	not	be	aware	they	have	been	replaced	-	a	few	to	watch	out	for	include:

	java.util.Vector		-	use		ArrayList		instead
	java.lang.StringBuffer		-	use		StringBuilder		instead
	java.util.Stack		-	use	a		Dequeue		(e.g.		ArrayDeqeue)
	java.util.Hashtable		-	use	a		Map		(e.g.		HashMap)
	java.util.Enumeration		-	use	an		Iterator		or	an		Iterable	

Each	of	these	replacements	(except		Enumeration)	differ	from	the	originals	by	not	being
synchronized.	If	you	think	you	need	a	synchronized	collection	go	away	somewhere	quiet	and
think	again.

Avoid	Apis	From	Prehistory

89

Beware	Casts	and	Generics	Warnings

Summary

Casts	dilute	the	benefit	of	Java's	type	system,	making	code	both	less	readable	and	less
safe.

Avoid	casts	wherever	possible.

If	you	find	yourself	writing	one,	stop	and	ask	yourself	why	you	are	writing	it.

What	would	need	to	be	changed	in	your	code	so	you	did	not	need	to	write	that	cast?

Why	can't	you	make	that	change?

Detail

Java's	type	system	is	there	to	help	us	-	it	catches	bugs	at	compile-time	and	documents	our
code,	making	it	easier	to	understand	and	navigate.

When	we	add	a	cast	to	our	code,	we	lose	both	these	benefits.

Casts	get	introduced	into	code	for	three	main	reasons:

1.	 We	have	reached	the	limits	of	Java's	type	system	and	the	programmer	must	take
control

2.	 The	overall	design	of	the	code	is	poor
3.	 The	code	uses	raw	generic	types

We'll	look	at	these	in	reverse	order.

Code	with	Raw	Types

If	code	contains	raw	generic	types	(either	because	the	code	pre-dates	Java	5	or	the
programmer	is	not	familiar	with	Java)	then	it	will	create	the	need	to	cast.

For	example:

List	list	=	numberList();
for	(Object	each	:	list)	{
		Integer	i	=	(Integer)	each;
		//	do	things	with	integers
}

Beware	Casts	And	Generics	Warnings

90

The	compiler	will	not	be	happy	that	we	have	failed	to	fully	declare	the	type	of		List		we	are
dealing	with	and	will	(depending	on	how	it's	been	configured)	generate	an	error	or	warning
on	the	line	where		list		is	declared	e.g.

List	is	a	raw	type.	References	to	generic	type	List<E>	should	be	parameterized

Similarly,	for	errant	code	such	as:

List	l	=	new	ArrayList<Number>();
List<String>	ls	=	l;

The	compiler	will	issue:

The	expression	of	type	List	needs	unchecked	conversion	to	conform	to	List<String>

Make	sure	that	all	such	warnings	are	addressed,	either	by	imposing	a	zero	compiler
warnings	policy	or	by	configuring	the	compiler	to	treat	them	as	errors.

In	this	case,	removing	both	the	cast	and	the	warning	is	straight	forward:

List<Integer>	list	=	numberList();
for	(Integer	each	:	list)	{
			//	do	things	with	each
}

Poor	Design

Sometimes,	removing	a	cast	or	fixing	a	warning	is	non-trivial.	We	have	bumped	into	issue
two	-	poor	design.

For	example:

List<Widget>	widgets	=	getWidgets();
List	results	=	process(widgets);

for	(Object	each	:	results)	{
		if	(each	instanceof	String)	{
				//	handle	failure	using	data	from	string
		}	else	{
				EnhancedWidget	widget	=	(EnhancedWidget)	each;
				widget.doSomething();
		}
}

Beware	Casts	And	Generics	Warnings

91

Normally,	objects	placed	into	a	collection	should	be	of	a	single	type	or	of	multiple	types
related	by	a	common	superclass	or	interface.

Here,	unrelated	types	have	been	placed	into	the	same	list	with	a	String	used	to
communicate	some	sort	of	information	about	how	"processing"	of	a	widget	has	failed.

The	classic	OO	fix	for	this	code	would	be	to	introduce	a		ProcessResult		interface	with	two
concrete	implementations.

interface	ProcessResult	{
	void	doSomething();
}

class	Success	implements	ProcessResult	{

		private	final	EnhancedWidget	result;

		@Override
		public	void	doSomething()	{
				result.doSomething();
		}

}

class	Failure	implements	ProcessResult	{

		private	final	String	result;

		@Override
		public	void	doSomething()	{
				//	do	something	with	result	string
		}

}

The	original	code	can	then	be	fixed	as	follows:

List<Widget>	widgets	=	getWidgets();
List<ProcessResult>	results	=	process(widgets);

for	(ProcessResult	each	:	results)	{
				each.doSomething();
		}
}

Or,	more	concisely	in	Java	8:

Beware	Casts	And	Generics	Warnings

92

	List<ProcessResult>	results	=	process(widgets);
	results.stream().forEach(ProcessResult::doSomething);

It	may	also	sometimes	make	sense	to	use	a	disjoint	union	type	aka		Either	.

This	technique	can	be	particularly	useful	as	an	interim	step	when	reworking	legacy	code	that
uses	mixed	type	raw	collections,	but	can	also	be	a	sensible	approach	when	dealing	with
error	conditions.

Unfortunately,	Java	does	not	provide	an		Either		type	out	of	the	box	but	at	its	simplest	it
looks	something	like:

public	class	Either<L,R>	{
		private	final	L	left;
		private	final	R	right;

		private	Either(L	left,	R	right)	{
				this.left	=	left;
				this.right	=	right;
		}

		public	static	<L,	R>	Either<L,	R>	left(final	L	left)	{
				return	new	Either<L,	R>(left,null);
		}

		public	static	<L,	R>	Either<L,	R>	right(final	R	right)	{
				return	new	Either<L,	R>(null,right);
		}

		boolean	isLeft()	{
				return	left	!=	null;
		}

		L	left()	{
				return	left;
		}

		R	right()	{
				return	right;
		}

}

Libraries	such	as	Atlassian's	Fugue	provide	implementations	with	much	richer	functionality.

Using	the	simplistic	form	of		Either		with	Java	7	the	code	could	be	re-written	as:

Beware	Casts	And	Generics	Warnings

93

List<Widget>	widgets	=	getWidgets();
List<Either<ProcessResult,String>>	results	=	process(widgets);

for	(Either<ProcessResult,String>	each	:	results)	{
		if	(each.isLeft())	{
				//	handle	failure	using	data	from	string
		}	else	{
				each.right().doSomething();
		}
}

While	most	Java	programmers	will	prefer	the	earlier	OO	version,	this	version	has	two
advantages:

1.	 It	requires	no	change	to	the	structure	of	the	original	code	-	all	we	have	really	done	is
make	the	types	document	what	is	happening

2.	 It	requires	less	code

This	pattern	can	help	quickly	tame	a	legacy	code	base	that	is	difficult	to	comprehend.

Limits	of	the	Type	System

Sometimes	we	do	reach	the	limits	of	Java's	type	system	and	need	to	cast.

Before	we	do	this,	we	must	make	certain	that	the	cast	is	safe	and	there	is	no	better	solution
to	our	problem.

Similarly,	we	may	need	to	sometimes	suppress	a	Generics	warning,	this	can	be	done	by
annotating	with		@SuppressWarnings		e.g.

@SuppressWarnings("unchecked")
<T>	T	read(final	Class<T>	type,	String	xml)	{
		return	(T)	fromXml(xml);
}

Object	fromXml(final	String	xml)	{
		return	...	//	de-serialise	from	string
}

Here,	the	compiler	has	no	way	of	knowing	what	type	has	been	serialized	to	the	String.
Hopefully	the	programmer	does	or	else	a	runtime	error	will	occur.

Beware	Casts	And	Generics	Warnings

94

Do	Not	Use	Magic	Numbers

Summary

Magic	numbers	should	be	replaced	with	well-named	constants	that	describe	their	meaning.

Detail

Placing	numeric	or	string	literals	directly	into	source	code	causes	two	problems:

1.	 It	is	unlikely	that	the	meaning	of	the	literal	will	be	clear
2.	 If	the	value	changes	updates	are	required	where	ever	the	literal	has	been	duplicated

Literals	should	therefore	be	replaced	with	well-named	constants	and	Enums.

Bad

public	void	fnord(int	i)	{
		if	(i	==	1)	{
				performSideEffect();
		}
}

Better

public	void	fnord(int	i)	{
		if	(i	==	VALID)	{
				performSideEffect();
		}
}

You've	missed	the	point

public	void	fnord(int	i)	{
		if	(i	==	ONE)	{
				performSideEffect();
		}
}

If	the	constants	you	extract	relate	to	an	identifiable	concept,	create	an	Enum	instead:

Good

Do	Not	Use	Magic	Numbers

95

public	void	fnord(FnordStatus	status)	{
		if	(status	==	FnordStatus.VALID)	{
				performSideEffect();
		}
}

Some	coding	standards	make	statements	such	as	"0	and	1	are	exceptions	to	this	rule".	This
is,	however,	an	oversimplification.

Sometimes	0	and	1	will	have	a	clear	local	meaning	as	they	are	being	used	as	part	of	low
level	code	e.g.:

		if	(list.size()	==	0)	{...}

But	0	and	1	may	also	have	domain-specific	values	that	should	be	extracted	into	constants
like	any	other	literal.

Server-side	Java	can	also	often	be	re-written	in	a	cleaner	fashion	without	the	use	of	numeric
literals,	e.g.:

		if	(list.isEmpty())	{...}

Do	Not	Use	Magic	Numbers

96

Don't	Use	the	Assert	Keyword

Summary

Assertions	are	a	useful	coding	technique	that	can	provide	many	benefits	but	in	most
circumstances	it	is	better	to	implement	them	using	third	party	libraries	rather	than	the
	assert		keyword.

Details

Assertions	written	with	the	assert	keyword	are	only	enabled	when	the		-ea		JVM	flag	is	set.

The	intent	of	this	flag	is	to	allow	the	assertions	to	be	enabled	in	development	and	testing	but
disabled	in	production	to	avoid	the	performance	overhead	of	assertion	logic.	This	is	usually	a
premature	optimization	and	increases	the	opportunity	for	mistakes	as	the	code	will	behave
differently	in	development	vs	production.

Switching	off	assertions	in	production	also	greatly	dilutes	their	value.	If	a	coding	error	has
been	made	assertions	ensure	that	it	is	reported	early,	close	to	the	bug.	If	assertions	are
turned	off	in	production	bugs	may	propagate	silently.	This	may	make	their	consequences
more	severe	and	will	certainly	make	the	issue	harder	to	diagnose.

So	for	these	reasons,	unless	you	are	working	in	a	very	performance	sensitive	domain,
assertions	should	always	be	enabled.

For	always-on	assertions	third	party	libraries	such	as	Guava's	preconditions	provide	a	better
solution	than	the		assert		keyword.

A	separate	issue	is	the	use	of	the		assert		keyword	in	tests.	This	is	usually	the	result	of	a
lack	of	familiarity	with	Java	and	JUnit.

In	codebases	found	in	the	wild	where		assert		has	been	used	in	tests	the		-ea		flag	is	rarely
set,	meaning	that	the	tests	can	never	fail.	For	tests	JUnit's	built	in	assertions	or	modern	test
focused	assertion	libraries	such	as	AssertJ	should	always	be	used.

Do	Not	Use	The	Assert	Keyword

97

Avoid	Floats	and	Doubles

Summary

Avoid	using	floats	and	doubles	(both	the	primitives	and	their	wrappers).

Detail

Floats	and	doubles	introduce	a	minefield	of	rounding	and	comparison	issues.	While	they	are
a	sensible	choice	for	some	domains	where	you	do	not	care	about	rounding	errors	integers	or
	BigDecimal		are	usually	a	better	choice	for	server-side	business	code.

The	core	issue	is	that	floating	point	numbers	are	not	able	to	represent	many	numbers	(e.g.
	0.1).

This	leads	to	unexpected	results	that	may	not	be	caught	by	simple	test	cases

				double	balance	=	2.00;
				double	transationCost	=	0.10;
				int	numberTransactions	=	6;

				System.out.printf("After	%s	transactions	balance	is	%s"
																				,	numberTransactions
																				,	balance	-	(transationCost	*	numberTransactions));
				//	Gives	After	6	transactions	balance	is	1.4	:-)

But

				double	balance	=	2.00;
				double	transationCost	=	0.10;
				int	numberTransactions	=	7;

				System.out.printf("After	%s	transactions	balance	is	%s"
																					,	numberTransactions
																					,	balance	-	(transationCost	*	numberTransactions));
				//	Gives	After	7	transactions	balance	is	1.2999999999999998	:-(

The	simplest	solution	in	this	case	would	be	to	replace	the	floats	with	integer	values	(i.e.	track
the	balance	in	units	of	cents	rather	than	dollars).

In	situations	where	floats	can't	be	replaced	by	integers	code	can	be	re-written	to	use
	BigDecimal	.

Avoid	Floats	And	Doubles

98

				BigDecimal	balance	=	new	BigDecimal("2.00");
				BigDecimal	transationCost	=	new	BigDecimal("0.10");

				BigDecimal	numberTransactions	=	BigDecimal.valueOf(7);

				System.out.printf("After	%s	transactions	balance	is	%s"
																					,	numberTransactions
																					,	balance.subtract(transationCost.multiply(numberTransactions)));

			//	Gives	After	7	transactions	balance	is	1.30	:-)

Note	that	although		BigDecimal		can	be	constructed	from	a	float	this	would	take	us	back	to
where	we	started.

				BigDecimal	balance	=	new	BigDecimal("2.00");
				BigDecimal	transationCost	=	new	BigDecimal(0.10);	//	<-	float	used	to	construct

				BigDecimal	numberTransactions	=	BigDecimal.valueOf(7);

				System.out.printf("After	%s	transactions	balance	is	%s"
																					,	numberTransactions
																					,	balance.subtract(transationCost.multiply(numberTransactions)));

			//	Gives	After	7	transactions
			//	balance	is	1.2999999999999999611421941381195210851728916168212890625

When	to	use	floats	and	doubles

Floats	and	doubles	clearly	can't	be	all	bad	or	it	is	unlikely	that	they	would	have	been
included	in	the	Java	language.

The	primitive	floating	point	types	have	performance	advantages	over		BigDecimal		that	can
be	significant	in	highly	numerical	domains	such	as	machine	learning,	physics	engines,
scientific	applications	etc.	In	these	domains	the	performance	benefit	may	greatly	out-weigh
the	additional	risk	of	error.

Code	using		BigDecimal		is	also	inherently	more	verbose	and	clumsy	than	code	that	uses
primitives.	If	you	are	working	in	a	domain	where	the	imprecision	of	floating	point	types	is
acceptable	you	might	prefer	the	cleaner	code	they	allow,	but	be	sure	you	are	making	this
choice	consciously	with	an	understanding	of	the	pitfalls	involved.

Avoid	Floats	And	Doubles

99

Don't	use	Reflection

Summary

Do	not	use	reflection	in	your	code	(i.e.	anything	from	the		java.lang.reflect		package).

Details

Reflection	is	a	powerful	tool;	it	allows	Java	to	do	things	that	would	otherwise	be	either
impossible	or	require	large	amounts	of	boilerplate	code.

But,	while	it	is	sometimes	useful	when	creating	a	framework	or	library	it	is	unlikely	to	be	a
good	way	to	solve	the	types	of	problem	we	encounter	in	normal	server-side	application
code.

So	why	would	we	want	to	avoid	using	a	powerful	tool	that	Java	provides?

Reflection	has	three	main	drawbacks:

Loss	of	Compile	Time	Safety

Reflection	moves	errors	from	compile	time	to	runtime	-	this	is	a	Bad	Thing	™

The	compiler	is	our	first	form	of	defense	against	defects	and	the	type	system	is	one	of	the
most	effective	tools	we	have	to	document	our	code.	We	should	not	throw	these	things	away
lightly.

Loss	of	Refactor	Safety

Refactoring	and	code	analysis	tools	are	blind	to	reflection.

Although	they	may	make	some	attempt	to	take	it	into	account,	the	additional	possibilities
reflection	creates	for	how	a	program	might	behave	means	the	tools	can	no	longer	provide
rigorous	guarantees	that	they	have	understood	the	program.	In	the	presence	of	reflection
refactorings	that	would	otherwise	be	safe	may	change	program	and	analysis	tools	may
report	incorrect	results.

Harder	Code	Comprehension

In	the	same	way	that	Reflection	makes	it	harder	for	automated	tools	to	understand	code,	it
also	makes	it	harder	for	humans	to	understand	code.

Do	Not	Use	Reflection

100

Reflection	introduces	surprises.

This	method	is	never	called,	I	can	safely	delete	it.	Oh.	Reflection.

I	can	safely	change	the	behavior	of	this	private	method	as	I	know	where	it	is	called	from.	Oh.
Reflection.

Do	Not	Use	Reflection

101

Good	Tests
The	testing	pyramid	and	different	levels	of	tests	are	discussed	in	"Agree	the	language	you
use	for	tests".

As	discussed	in	that	section	it	is	important	to	maintain	a	layered	strategy	with	many	fast
running	unit	tests	and	smaller	numbers	of	integration	and	system	tests.	The	precise
proportions	that	work	best	will	vary	from	project	to	project	but	the	pyramid	formation	will
hold.

Although	it	is	important	to	write	tests	at	all	these	levels	this	section	mainly	concerns	itself
with	unit	tests	as	these	are	the	ones	we	write	most	of	and	run	most	frequently.

Tests

102

Write	Specifications	Not	Tests
Before	you	sit	down	to	write	a	test	it's	important	to	understand	why	you	are	doing	it.

What	is	it	that	you	want	to	achieve?

There	is	an	unfortunate	tendency	for	developers	to	look	at	tests	as	a	thing	you	have	to	do
because	it's	"best	practice".	Some	extra	work	to	be	performed	after	the	real	work	is	done.	A
chore.

The	reason	for	writing	them	has	become	lost.

Why	Write	Tests?

The	reason	to	write	tests	is	to	make	our	lives	easier.

If	we	are	not	writing	tests	that	do	this	we	should	stop	writing	them.

A	good	test	should	do	all	of	the	following:

Enable	refactoring	by	preventing	regression	when	the	implementation	changes
Catch	bugs	during	initial	coding
Document	how	the	code	behaves
Inform	the	design	of	the	code

When	tests	are	viewed	as	a	chore	to	be	completed	after	the	code	is	written	only	this	first
point	is	considered.

Often	it	is	not	achieved.

Tests	written	with	this	mindset	can	have	a	negative	value:

Instead	of	enabling	refactoring	they	can	increase	its	cost.
Instead	of	documenting	what	the	code	does,	the	tests	are	harder	to	understand	than	the
code	itself.
Instead	of	aiding	development	they	increase	the	work	that	must	be	done

This	first	problem	causes	the	most	pain.

If	you	have	a	test	that	is	tied	to	the	code's	implementation,	to	change	the	way	the	code	is
implemented	you	have	to	spend	effort	changing	the	test.

If	the	test	must	change	whenever	the	implementation	changes	then	we	cannot	trust	that	the
test	will	stop	regression.	How	do	we	know	we	did	not	introduce	a	bug	into	the	test	when	we
changed	it?

Write	Specifications	Not	Tests

103

Executable	Specifications

So	how	do	we	make	sure	we	do	not	write	negative	value	tests?	How	do	we	make	sure	we
write	tests	that	provide	the	benefits	in	our	list?

The	first	thing	to	do	is	let	go	of	the	idea	that	we	are	testing.

We	are	not	testing,	we're	specifying.

To	test	something	you	only	need	to	verify	that	it	"does	what	it	does".	To	specify	you	need	to
describe	the	important	things	that	it	must	do	in	a	way	that	can	be	clearly	understood.

A	good	specification	describes	only	the	important	things.

It	describes	what	something	must	do	without	making	assumptions	about	how	it	will	do	it.	It
allows	for	multiple	implementations.	If	a	specification	is	tied	to	one	implementation	then	it	is
over-specified	and	will	have	to	change	when	the	implementation	does.

So	this	is	what	we	must	aim	for	-	an	executable	specification	of	our	code.

Unfortunately	it	is	very	hard	to	do.

Specification	First

One	simple	technique	that	can	help	is	to	write	the	specification	before	the	code.	i.e.	TDD.

A	rigorous	TDD	cycle	proceeds	in	very	small	steps.

First	write	a	test	and	run	it	to	ensure	that	it	fails.

Next	write	just	enough	code	to	make	that	test	pass	(and	no	more).

Take	a	moment	to	see	if	there	is	a	sensible	refactoring	that	would	improve	the	code,	then
write	the	next	test	and	continue	the	cycle.

This	has	several	advantages:

It	guarantees	that	all	the	code	can	be	tested
As	there	is	no	implementation	when	the	test	is	written	it	is	harder	to	write	a	test	that	is
tied	to	one
It	guarantees	that	all	behavior	is	covered	by	tests
It	discourages	writing	superfluous	code

There	are	two	important	aspects	to	TDD:

1.	 Writing	the	specification	first
2.	 Moving	in	very	small	steps

Write	Specifications	Not	Tests

104

Both	of	these	practices	are	a	good	idea	individually,	even	if	they	are	not	combined.

If	we	wrote	our	specification	first,	but	moved	in	larger	steps	(possibly	because	we	believed
we	knew	what	our	implementation	should	look	like)	we	would	realize	our	first	advantage	-	a
guarantee	that	the	code	we	wrote	could	be	tested.

What	do	we	mean	by	this?

If	code	is	not	written	with	testing	in	mind	then	it	can	be	difficult	to	write	a	test	for	it	that	fits
our	definition	of	a	unit	test.

We	can	make	our	code	more	likely	to	be	testable	by	following	simple	rules	such	as:

Always	inject	dependencies
Avoid	global	state	(singletons,	static	variables,	ThreadLocals,	registries	etc)

But	even	if	we	follow	these	rules	we	can	still	find	that	it	is	difficult	to	test	our	code	if	we	have
not	designed	for	it.	Writing	our	specification	first	requires	our	design	to	consider	testing.

Although	we	ensured	our	code	was	testable,	because	we	moved	in	large	steps	with	an
implementation	in	mind	we	might	not	achieve	the	other	benefits.

If	we	were	to	write	our	code	without	first	writing	a	test	we	might	discover	we	were	finished
that	our	code	was	difficult	to	test.	The	process	of	writing	that	code	would	however	have	been
easier	if	we	had	applied	the	second	technique	-	moving	in	small	steps.

If	we	wrote	only	a	small	amount	of	code	before	executing	it	and	observing	the	result	of	each
small	code	change,	we	would	probably	spend	less	time	debugging,	be	less	likely	to	write
code	we	did	not	need	and	move	faster	over	all.

TDD	has	many	advantages	but	it	is	not	magic.

Even	if	it	is	applied	rigorously	it	is	entirely	possible	to	write	terrible	code	and	specifications.
TDD	doesn't	mean	you	can	stop	thinking.

Despite	this,	if	you	have	a	good	understanding	of	the	technologies	and	domain	in	which	you
are	working,	TDD	is	usually	the	best	approach	if	you	wish	to	optimize	for	quality.

If	you	do	not	understand	your	domain	or	technology	well	you	may	find	writing	a	specification
first	hard.

The	classic	solution	to	this	problem	is	to	first	gain	understanding	by	producing	a	throw	away
spike.

Spikes

Write	Specifications	Not	Tests

105

A	spike	is	just	some	quick	and	dirty	code	to	explore	how	you	might	tackle	the	problem.	At	the
end	of	the	spike	you	will	know	if	that	approach	works	well	or	if	it	is	worth	looking	for
alternative	approaches.

By	producing	a	spike,	you	gain	more	understanding	of	both	the	domain	and	the	technology
you	are	working	with.	Even	if	the	conclusion	at	the	end	of	the	spike	is	that	it	was	a	poor
approach,	the	spike	was	still	useful	as	it	increased	your	understanding.

Once	you	have	learned	what	you	can	from	the	spike,	it	should	be	thrown	away	and	the	final
code	test	driven	using	the	knowledge	you	have	gained.

Spike	and	Stabilize

Traditionally,	spikes	are	thrown	away	as	they	are	inherently	of	low	quality.	Discarding	the
spike	is	done	to	optimize	code	quality	at	the	expense	of	a	(probably)	slower	delivery.

Sometimes	this	is	not	the	trade-off	you	want.

An	alternative	is	to	try	to	stabilize	the	spike	so	that	it	is	fit	for	use.	If	you	do	this,	you	will
usually	end	up	with	something	of	lower	quality	than	if	you	had	started	again.

You	will	also	end	up	spending	more	effort	on	this	piece	of	code	over	the	lifetime	of	the
project	than	if	you	had	thrown	the	spike	away.

What	you	gain	for	this	loss	in	quality	and	increase	in	effort	is	a	faster	first	delivery.
Sometimes	this	is	a	trade-off	worth	making,	sometimes	it	is	not.

Write	Specifications	Not	Tests

106

Think	Units,	Not	Methods
Each	behavior	that	a	unit	test	describes	should	normally	relate	to	the	overall	unit	rather	than
the	responsibilities	of	an	individual	method.

What	is	a	Unit?

To	think	in	terms	of	units	we	have	to	first	answer	the	difficult	question	of	what	a	unit	actually
is.

Testing	in	terms	of	methods	is	effectively	the	same	as	saying	that	a	unit	is	a	method.	It	is
easy	to	show	why	this	does	not	always	work.

If	we	were	to	try	and	write	a	unit	test	for	the		push		method	of		java.util.Stack		we	might	end
up	with	something	like:

@Test
public	void	testPush()	{
			Stack<String>	testee	=	new	Stack<String>();
			testee.push("foo");
			assertThat(testee.pop()).isEqualTo("foo");
};

Now	lets	test	the		pop		method:

@Test
public	void	testPop()	{
			Stack<String>	testee	=	new	Stack<String>();
			testee.push("foo");
			assertThat(testee.pop()).isEqualTo("foo");
};

Oh.	That	looks	familiar.

The	problem	we	are	hitting	is	that	we	have	defined	too	small	a	unit.	We	are	trying	to
describe	the	behavior	of	something	that	is	only	useful	when	it	collaborates	with	other	units	of
the	same	size.

If	we	start	thinking	of		java.util.Stack		as	our	unit	then	tests	become	much	easier	to	write:

Think	Units	Not	Methods

107

@Test
public	void	shouldRetrieveValuesInOrderTheyAreAdded()	{
		Stack<String>	testee	=	new	Stack<String>();
		testee.push("a");
		testee.push("b");
		assertThat(testee.pop()).isEqualTo("b");
		assertThat(testee.pop()).isEqualTo("a");
}

We	have	written	a	test	that,	instead	of	trying	to	describe	what	a	method	does,	describes	the
behavior	of	the	class	as	a	whole.

The	idea	that	our	job	is	to	test	methods	is	common	with	developers	that	are	new	to	unit
testing,	and	is	unfortunately	re-enforced	by	some	IDEs	and	tools	that	provide	templates	to
generate	tests	for	each	method	of	a	class.

As	we	have	seen,	for		Stack		it	makes	far	more	sense	to	consider	the	behavior	of	the	class
of	a	whole.

Are	Classes	Units?

It	often	does	make	sense	to	treat	a	class	as	a	unit	so	this	is	a	good	default	definition,	but	it
isn't	always	the	right	granularity.

If	we	were	to	try	to	test	the		java.util.Collections		class	we	would	find	that	it	is	perfectly
reasonable	to	treat	the		sort	,		reverse		,		singleton	,	etc.	methods	as	separate	units.	Each
one	represents	a	self	contained	logical	behavior.

So	sometimes	units	are	as	small	as	methods.

Sometimes	they	are	also	larger	than	a	single	class.

If	we	were	to	inherit	the	code	below	without	any	tests	what	tests	might	we	write	for	it?

Think	Units	Not	Methods

108

public	class	ThingaMeBob	{

		private	final	Iterable<MatchingBinaryOperator>	actions;

		ThingaMeBob()	{
				actions	=	Arrays.asList(new	Addition(),	new	Subtraction());
		}

		public	int	process(String	s,	int	a,	int	b)	{
				for	(MatchingBinaryOperator	each	:	actions)	{
						if	(each.match(s))	{
								return	each.apply(a,b);
						}
				}

				throw	new	RuntimeException();
		}

}

class	Addition	implements	MatchingBinaryOperator	{
		public	boolean	match(String	s)	{
				return	"add".equals(s);
		}
		public	int	apply(int	a,	int	b)	{
				return	a	+	b;
		}
}

class	Subtraction	implements	MatchingBinaryOperator	{
		public	boolean	match(String	s)	{
				return	"minus".equals(s);
		}
		public	int	apply(int	a,	int	b)	{
				return	a	-	b;
		}
}

We	might	write	tests	for	the	Addition	and	Subtraction	classes:

Think	Units	Not	Methods

109

public	class	AdditionTest	{

		Addition	testee	=	new	Addition();

		@Test
		public	void	shouldMatchWhenStringIsAdd()	{
		}

		@Test
		public	void	shouldNotMatchWhenStringIsNotAdd()	{
		}

		@Test
		public	void	shouldAddTwoNumbers()	{
		}

		//	etc

}

And	for	the		ThingaMeBob		class:

public	class	ThingaMeBobTest	{

		ThingaMeBob	testee	=	new	ThingaMeBob();

		@Test
		public	void	shouldAddTwoNumbers()	{
		}

		@Test
		public	void	shouldSubtractTwoNumbers()	{
		}

		//	etc

}

At	some	point	we	would	hopefully	question	why	this	code	is	so	over-engineered	and
consider	refactoring	to	something	simpler	like.

Think	Units	Not	Methods

110

public	class	ThingaMeBob	{

		public	int	process(String	s,	int	a,	int	b)	{
				if	("add".equals(s))	{
						return	a	+	b;
				}

				if	("minus".equals(s))	{
						return	a	-	b;
				}

				throw	new	RuntimeException();
		}

}

What	happens	to	our	tests?

Which	ones	were	most	valuable?

The	answer	of	course	is	that	the	test	which	exercised	all	three	classes	through	the	public
interface	of		ThingaMeBob		proved	the	most	useful.	We	did	not	have	to	change	it	at	all.	When
it	ran	green	we	knew	our	refactoring	was	successful	and	everything	still	works.

We	deleted	the	ones	for		Addition		and		Subtraction	.	The	smaller	units	we	created	were
just	implementation	detail.

Lets	re-wind	and	imagine	things	happened	differently.

What	if	we	were	asked	to	test	drive	the	desired	behavior	from	scratch?	What	would	we
write?

We	would	most	likely	write	something	that	looked	like	our	2nd	simpler	version	of
	ThingaMeBob		and	a	test	that	looked	something	like		ThingAMeBobTest	.

If	we	were	then	asked	to	add	support	for	another	10	operations,	we	might	leave	our	design
fundamentally	the	same.

What	if	a	new	requirement	came	for	the	behavior	in		ThingAMeBob		to	be	more	dynamic,	with
different	operations	being	enabled	and	disabled	at	runtime?

It	would	then	make	sense	to	refactor	to	something	like	our	earlier	more	complex	version.

What	should	we	do	with	the	tests?

We	would	already	have	tests	written	in	terms	of		ThingaMeBob		that	describe	all	supported
behaviors.	Should	we	also	fully	describe		Addition	,		Subtraction		and	the	other	10
operations	with	tests	as	we	extract	them	into	classes?

Think	Units	Not	Methods

111

There	is	no	right	answer	here,	but	I	hope	it	is	clear	that	the	most	useful	unit	that	we	have
identified	is		ThingaMeBob	.	The	smaller	units	are	part	of	just	one	implementation	of	the
functionality	we	require.

If	we	choose	to	write	tests	for	each	extracted	class	those	tests	would	have	some	value.

The	test	written	in	terms	of		ThingaMeBob		would	do	a	poor	job	of	describing	what	each	of	the
small	extracted	units	does.	If	a	test	was	failing	it	wouldn't	be	instantly	obvious	which	class
the	bug	was	in.	If	we	had	to	change	one	of	the	extracted	classes	it	wouldn't	be	instantly
obvious	which	test	to	run.

So	there	is	definitely	value	in	writing	tests	for	each	of	the	extracted	classes.	At	the	same
time,	if	we	were	not	to	do	so,	that	would	also	be	a	reasonable	decision	and	it	would	reduce
the	cost	of	the	refactoring.

The		ThingaMeBob		tests	will	be	fast	and	repeatable	and	allow	us	to	work	easily	with	the	code.
If	we	could	only	have	tests	at	one	level,	the	level	we	would	choose	is		ThingaMeBob	.

So,	as	a	starting	point,	assume	that	a	unit	will	be	a	class,	but	recognize	that	this	is	not	a	hard
rule.

A	unit	is	really	a	"single	self	contained	logical	concern"	-	it	may	make	sense	to	have	several
classes	collaborate	in	order	to	capture	that	concern	-	as	long	as	that	collaboration	provides	a
single	well	defined	entry	point.

Making	units	too	small	may	be	a	form	of	over-specifying.

Making	units	too	large	may	result	in	tests	that	are	difficult	to	understand	and	expensive	to
maintain.

As	a	rule	of	thumb,	if	you	might	reasonably	have	made	one	or	more	classes	inner	classes	of
a	different	class,	perhaps	they	should	be	treated	as	a	single	unit.

Think	Units	Not	Methods

112

Name	Test	Cases	With	a	Specification	Style
Use	the	name	of	each	test	case	to	describe	one	(and	only	one)	behavior	of	the	unit	under
test.	The	name	should	be	a	proposition	-	i.e.	a	statement	that	could	be	true	or	false.

The	method	name	should	start	with	should.

This	is	superfluous	once	you	get	good	at	writing	test	names,	but	in	a	mixed	team	it	is	useful
as	it	encourages	thinking	about	the	test	in	the	right	way.

The	rest	of	the	name	should	describe	a	behavior	and,	optionally,	a	scenario	(identified	by	the
word	When).

For	example,	we	might	start	to	describe		java.util.Stack		with:

	shouldBeEmptyWhenCreated	

	shouldReturnItemsInOrderTheyWereAdded	

	shouldThrowAnErrorWhenItemsRemovedFromEmptyStack	

Contrast	this	with	common	naming	patterns	found	in	some	code	bases:

	emptyStack	

	testEmptyStack	

	testPush	

These	names	alone	tell	us	nothing	about	how	a		Stack		should	behave.

If	we	omit	should	we	can	create	more	concise	names

	isEmptyWhenCreated	

	returnsItemsInOrderTheyAreAdded	

	throwsAnErrorWhenItemsRemovedFromEmptyStack	

Although	more	verbose	the	formulaic	should	form	has	an	advantage	-	it	provides	a	clear
pattern	to	follow.

If	a	developer	knows	that	a	test	name	must	start	with	should	(often	because	they	have	seen
this	pattern	within	existing	tests)	it	is	hard	for	them	to	revert	to	a	different	style	and	write	a
test	that	is	not	a	proposition.

The	verbosity	of	should	pays	for	itself	by	forcing	developers	to	think	about	tests	in	the	right
fashion.

Kevlin	Henney	compares	shoulds	to	training	wheels	on	a	bike	-	a	device	to	help	while	we	are
learning.

Name	Tests	With	A	Specification	Style

113

So	when	should	we	take	the	training	wheels	off?

This	depends	on	the	makeup	of	the	team	and	how	often	the	team	changes.

If	the	majority	of	people	who	are	likely	to	work	on	the	codebase	over	its	lifetime	are
accustomed	to	writing	tests	in	this	style	then	the	added	verbosity	is	not	worth	it.	If	a
sufficiently	large	proportion	are	not	then	it	is	probably	best	for	the	team	to	stick	with	the
convention.

Use	the	Example	Style	When	Specification	Style	Does	Not
Work

Occasionally,	it	is	not	possible	to	follow	the	specification	naming	style	because	the
descriptions	become	too	long	and	unwieldy.	If	it	feels	like	your	method	names	are	becoming
overly	long	ask	yourself	two	questions:

1.	 Am	I	really	testing	only	one	thing?
2.	 Is	my	unit	doing	too	much?

If	you're	confident	the	answer	is	"no"	to	both	then	switch	to	a	different	style	-	example	style.

In	example	style	the	name	describes	only	the	"When"	part.	It	does	not	describe	the	expected
behavior,	e.g.:

	emptyStack	

	oneItemAdded	

	removalFromEmptyStack	

To	understand	tests	named	with	the	example	style,	you	must	read	the	code	within	the	tests.
For	this	reason,	this	specification	style	should	be	preferred	when	possible.

Avoid	Method	Names	in	Test	Descriptions	Where	Possible

Where	possible,	avoid	including	method	names	in	test	names.

On	a	practical	level	this	avoids	the	extra	overhead	of	updating	test	names	if	method	names
are	ever	refactored.

More	subtly,	including	names	can	make	you	think	in	the	wrong	fashion	-	verifying	method
implementation	rather	than	specifying	unit	behavior.

This	is	not	a	hard	rule	-	sometimes	it	will	be	difficult	or	impossible	to	describe	a	meaningful
behavior	without	referring	to	the	unit's	interface.

The	domain	language	may	also	overlap	with	the	method	names,	so	you	may	find	yourself
using	the	same	words	as	are	also	used	as	a	method	name.

Name	Tests	With	A	Specification	Style

114

Name	Tests	With	A	Specification	Style

115

Pick	Examples	Carefully
Traditional	testing	is	performed	with	examples.

The	overall	behavior	of	the	component	or	unit	is	explained	by	supplying	a	series	of	example
input	and	output	values,	or	example	interactions	with	other	components.

Our	goal	is	to	use	examples	to

Communicate	the	general	expected	behavior
Communicate	the	behavior	at	any	edge	cases
Gain	confidence	that	our	code	is	correct	and	remains	correct	when	we	change	it

So	how	should	we	pick	these	examples?

One	approach	is	to	look	at	the	possible	inputs	to	the	component	under	test.

We	could	fully	specify	our	code	if	we	provided	the	expected	output	for	each	possible	input.
Usually,	this	is	not	practical	because	the	possible	range	of	inputs	is	far	too	large.	Instead,	we
can	look	for	categories	of	values	within	the	possible	range	of	inputs	(e.g	valid	and	invalid)
and	pick	an	example	from	each	one.

However,	the	best	approach	is	usually	not	to	think	in	terms	of	possible	inputs	and	examples,
but	to	instead	think	first	of	the	behaviors	we	would	like	our	code	to	exhibit.

Once	we	have	identified	the	behavior	we	can	then	pick	examples	that	demonstrate	it.	The
actual	values	used	are	often	unimportant	-	"Make	tests	easy	to	understand"	discusses	some
techniques	to	make	unimportant	values	less	prominent	in	tests	and	highlight	the	important
ones.

Property-based	testing	takes	this	a	stage	further.

Properties	are	identified	that	must	hold	true	for	all	inputs	or	for	a	subset	of	possible	inputs
that	meet	certain	criteria.	The	tests	do	not	contain	any	example	values	-	just	a	description	of
how	they	must	be	constrained.	The	examples	used	to	check	the	properties	are	generated
randomly	and	only	ever	seen	if	the	check	fails.

There	are	some	compelling	advantages	to	property	based	testing:

The	tests	describe	what	is	important	about	the	input	values.	In	example	testing	this
must	be	inferred	by	the	reader
The	tests	will	automatically	find	edge	cases	and	bad	assumptions	made	by	the
programmer

Pick	Examples	Carefully

116

There	is	currently	little	experience	with	property-based	testing	in	the	Java	community,	so
questions	remain	on	how	best	to	use	it.

One	obvious	issue	is	that	it	introduces	randomness,	although	most	frameworks	provide
some	mechanism	to	control	it	and	repeat	test	runs.

Follow	the	Zero,	One	and	Many	Rule
If	your	components	deals	with	numbers	or	collections	of	things,	make	sure	you	use	sufficient
examples	to	describe	its	behavior.

A	good	rule	thumb	is	that	test	cases	covering	0	(or	empty),	1	and	"many"	are	likely	to	be
necessary.	There	will	also	be	important	edge	cases,	e.g.	algorithmic	code	dealing	with
integers	might	need	to	consider		Integer.MAX		and		Integer.MIN	.

The	zero,	one	many	rule	defines	the	minimum	number	of	cases	you	can	hope	to	consider.
To	properly	describe	your	code's	behavior	will	likely	require	many	more.

When	test	driving,	it	is	usually	easiest	to	start	with	the	zero	test	case.

Test	One	Thing	at	a	Time

Each	test	case	should	specify	one	thing	and	one	thing	only.

Multiple	assertions	within	a	test	may	be	an	indicator	that	the	test	is	testing	more	than	one
thing.	Multiple	assertions	should	be	treated	with	suspicion,	but	are	not	necessarily	a	problem
e.g.

		@Test
		public	void	shouldReturnItemsInOrderTheyWereAdded()	{
					ArrayDeque<String>	testee	=	new	ArrayDeque<String>();

					testee.add("foo");
					testee.add("bar");

					assertEquals("foo",testee.pop());
					assertEquals("bar",testee.pop());
		}

This	test	tests	only	one	concern,	but	uses	multiple	asserts	to	do	so.

Test	Each	Thing	Only	Once

Pick	Examples	Carefully

117

Once	you've	tested	a	concern,	don't	let	it	leak	into	other	tests	-	if	you	do	then	those	tests	are
no	longer	testing	only	one	thing.

This	is	a	particularly	easy	mistake	to	make	with	interaction-based	testing.	If	it	is	vitally
important	that	the	method		anImportantSideEffect		is	called,	it	is	easy	to	find	yourself
verifying	that	method	in	each	test	case.

If	the	contract	ever	changes	so	that	this	side	effect	is	not	longer	important,	all	tests	will	need
to	be	updated.

This	concern	should	instead	by	covered	by	a	single	test	case
	shouldPerformImportantSideEffect	.

Although	we	shouldn't	let	a	property	leak	into	test	cases	where	it	does	not	belong	this	does
not	necessarily	mean	that	it	will	be	confined	to	a	single	test	case.	It	may	take	several
examples	to	fully	demonstrate	a	property.

Pick	Examples	Carefully

118

Make	Tests	Easy	to	Understand
One	of	our	goals	when	writing	a	test	is	to	document	what	the	code	under	tests	does.

We	achieve	this	in	part	by	choosing	clear	specification	style	names	for	each	test	case,	but
we	must	also	ensure	that	the	code	implementing	each	test	case	is	easy	to	understand.

Some	techniques	that	help	achieve	this	are	discussed	below.

Make	Test	Structure	Clear

A	test	can	be	viewed	as	having	three	parts:

Given	-	create	the	values	and	objects	required	for	the	test
When	-	executes	the	code	under	test
Then	-	verifies	the	output/behavior	is	as	expected

These	stages	are	also	sometimes	called	arrange,	act	and	assert	by	people	particularly
attached	to	the	letter	'a'.

Although	it	is	important	that	these	three	stages	are	visible,	trying	to	rigorously	separate	them
or	label	them	with	comments	adds	noise	to	a	test.

Bad

		@Test
		public	void	shouldRetrieveValuesInOrderTheyAreAdded()	{

				//	given
				Stack<String>	testee	=	new	Stack<String>();
				String	expectedFirstValue	=	"a";
				String	expectedSecondValue	=	"b";

				//	when
				testee.push(expectedFirstValue);
				testee.push(expectedSecondValue);
				String	actualFirstValue	=	testee.pop();
				String	actualSecondValue	=	testee.pop();

				//	then
				assertThat(actualFirstValue).isEqualTo(secondValue);
				assertThat(actualSecondValue).isEqualTo(firstValue);
		}

Better

Make	Tests	Easy	To	Understand

119

		@Test
		public	void	shouldRetrieveValuesInOrderTheyAreAdded()	{
				Stack<String>	testee	=	new	Stack<String>();
				testee.push("a");
				testee.push("b");
				assertThat(testee.pop()).isEqualTo("b");
				assertThat(testee.pop()).isEqualTo("a");
		}

Follow	Standard	TEA	Naming	Convention	for	Test	Variables

Establishing	simple	conventions	can	make	some	very	basic	things	about	a	test	clear	to	a
reader.

If	the	unit	you	are	testing	is	a	class	make	this	clear	by	always	naming	it		testee		within	a
test.

If	you	need	to	store	an	expected	value	in	a	variable,	call	it		expected		(but	don't	store	it	in	a
variable	just	for	the	sake	of	it).

If	you	need	to	store	a	result	that	you	will	compare	against	an	expected	value	in	variable,
name	it		actual		(but	don't	store	it	in	a	variable	just	for	the	sake	of	it).

If	you	have	stubbed	a	participant	consider	naming	it		stubbedFoo	,	if	it	is	acting	as	a	mock
name	it		mockedFoo	.	This	rule	is	less	hard	than	the	others	-	decide	on	a	case	by	case	basis
whether	you	think	it	makes	your	test	more	or	less	readable.

Highlight	What	is	Important,	Hide	What	is	Not

It	should	be	possible	to	read	each	test	case	at	a	glance	-	so	make	things	clear	by
highlighting	what	is	important	for	that	test	case	and	hiding	what	is	not.

If	an	aspect	of	the	input	is	important	to	the	test	case,	highlight	it	by	setting	it	explicitly	in	the
test	case	-	don't	rely	on	that	value	being	set	in	a	generic	setup	method.

Even	if	the	same	value	is	set	by	default,	it	is	better	to	re-supply	it	in	the	test	so	it	is	clearly
visible.

If	a	particular	value	is	not	important,	indicate	this	to	the	reader	by	using	well-known	neutral
values	such	as		"foo"		for	strings,	or	use	clear	names	such	as		someInt		or		anInt		for
variables	and	methods	that	supply	values.

Supplying	values	via	a	method	call	makes	them	less	visible.

What	is	important	in	the	test	below?

Make	Tests	Easy	To	Understand

120

Bad

		@Test
		public	void	shouldXXX()	{
				MyClass	testee	=	new	MyClass();
				assertThat(testee.process(0,	"",	3))
						.isEqualTo(Status.FAIL);
		}

How	about	this	version?

Better

		@Test
		public	void	shouldXXX()	{
				int	invalidValue	=	3;
				MyClass	testee	=	new	MyClass();
				assertThat(testee.process(anInt(),	aString(),	invalidValue))
						.isEqualTo(Status.FAIL);
		}

While	we	need	additional	context	to	understand	why		3		is	an	invalid	value,	it	should	be
clear	that	the	first	two	parameters	to	the		process		method	are	not	important	to	the	behavior
we	are	specifying.

Why	is	it	important	that	the	testee	below	returns	the	enum		CONTINUE	?

Bad

		@Test
		public	void	shouldXXX()	{
				assertThat(testee.process()).isEqualTo(CONTINUE);
		}

If	we	look	through	the	rest	of	the	class	we	might	find:

		@Before
		public	void	setup()	{
					MyClass	testee	=	new	MyClass();
					testee.setDefaultProcessState(CONTINUE);
		}

Other	tests	might	not	need	to	care	about	what	the	default	state	is,	but	this	test	does	so	we
should	write:

Better

Make	Tests	Easy	To	Understand

121

		@Test
		public	void	shouldXXX()	{
				testee.setDefaultProcessState(CONTINUE);
				assertThat(testee.process()).isEqualTo(CONTINUE);
		}

As	we	start	to	deal	with	more	complex	domain	objects,	it	becomes	harder	to	separate	the
important	values	from	the	ones	that	are	required	to	construct	valid	objects	but	not	of
particular	interest	to	our	test.	Fortunately,	we	can	use	the	builder	pattern	to	ease	the	pain,
reduce	duplication,	and	keep	the	tests	readable.

Name	Values	Meaningfully

If	a	value	has	an	important	meaning,	make	that	meaning	clear	e.g.:

		Foo	testee	=	new	Foo(PERFORM_VALIDATION);

instead	of:

		Foo	testee	=	new	Foo(true);

Write	DAMP	Test	Code

As	we	have	seen,	in	order	to	highlight	that	a	value	is	important	to	a	test,	we	need	to	keep	it
within	the	test	method	that	uses	it.	This	may	introduce	duplication	which	we	might	not	accept
in	normal	code	-	but	test	code	is	a	little	different.

Copy	and	paste	coding	is	bad	in	tests	as	well	as	production	code	-	the	more	code	there	is,
the	harder	it	is	to	read	and	a	change	to	a	concern	will	result	in	shotgun	surgery	if	it	has	been
duplicated	throughout	the	tests.

Repetition	should	therefore	generally	be	avoided	in	test	code.

Test	code	is	different	from	production	code	however.

Test	code	must	tell	more	of	a	story	-	highlighting	what	is	important	and	hiding	what	is	not.
Test	code	should	not	be	as	DRY	(Don't	Repeat	Yourself)	as	production	code.	It	should	be
DAMP	(contain	Descriptive	And	Meaningful	Phrases).

If	refactoring	a	small	amount	of	code	out	of	a	test	method	into	a	shared	method	hides	what
is	happening,	accept	the	duplication	and	leave	it	in	place.	If	it	does	not	affect	readability	then
refactor	mercilessly.

Make	Tests	Easy	To	Understand

122

Choose	the	Right	Assertion	Method
When	a	test	fails,	a	good	assertion	tells	you	what	is	wrong.

Although	JUnit	allows	you	to	supply	an	assertion	message	this	adds	noise	to	the	test.	Like
comments,	these	messages	should	be	saved	for	those	occasions	when	you	cannot
communicate	using	code	alone.

Bad

assertTrue("Expected	2	but	got	"	+	actual,	actual	==	2);

Good

assertEquals(2,	actual);

The	built	in	assertions	are	fairly	limited.	Alternative	assertion	libraries	such	as	AssertJ
provide	richer	functionality	and	result	in	more	readable	code.

Make	Tests	Easy	To	Understand

123

Understand	How	to	Use	Mocks	and	Stubs
There	are	two	sorts	of	code	and	they	require	two	different	sorts	of	test.

Worker	code	does	stuff.	We	can	test	worker	code	with	state	based	testing	-	i.e.	asserting
that	expected	values	are	returned	from	methods,	or	objects	are	left	in	expected	states.

State	based	testing	is	easily	recognized	as	it	will	use	assert	statements.

Manager	code	does	stuff	by	co-coordinating	others.

Manager	code	is	harder	to	test	than	worker	code	because	we	need	to	make	a	choice	-	do
we	try	to	infer	its	behavior	from	its	outputs	using	state	based	testing,	or	do	we	use
interaction	based	testing?

In	interaction	based	testing,	we	check	that	objects	talk	to	each	other	in	the	expected	fashion.
To	do	this	we	need	to	somehow	eavesdrop	on	the	conversation.	This	is	achieved	by	using
objects	that	impersonate	real	ones.

Usually	these	are	created	using	a	mocking	framework.

Mocking	Frameworks

Although	it	is	common	to	refer	to	all	objects	created	by	a	mocking	framework	as	mocks	this
is	inaccurate.

A	more	correct	generic	term	for	these	objects	is	test	double.

These	can	be	subdivided	based	on	how	they	behave:

Dummy	object	-	needs	to	be	present	to	satisfy	a	type	signature	but	is	never	actually
used
Stub	-	must	be	present	and	may	supply	indirect	inputs
Mock	-	verifies	that	expected	interactions	take	place
Fake	-	like	a	real	thing	but	less	heavy	-	e.g	an	in	memory	database
Spy	-	object	that	records	its	interactions	with	others

Of	these	only	stubs,	mocks	and	spies	might	be	created	by	a	mocking	framework.

We	will	talk	about	spies	in	a	moment,	but	most	test	doubles	can	be	conceptually	viewed	as
being	either	a	stub	or	a	mock.

The	important	difference	between	them	is	that	a	mock	has	an	expectation	that	will	cause	a
test	to	fail	if	it	is	not	met.	i.e.	if	an	expected	method	is	not	called	on	a	mock	the	test	will	fail.

Understand	How	To	Use	Mocks	And	Stubs

124

A	stub	does	not	care	if	it	is	called	or	not	-	its	role	is	simply	to	supply	values.

Traditional	Mocks	present	a	code	readability	dilemma.	They	define	an	expected	outcome	(a
then),	but	are	also	part	of	the	fixture	required	for	the	test	to	execute	(a	given).

For	example	with	JMock	we	would	write:

		Mockery	context	=	new	Mockery();

		//	given	/	arrange
		Subscriber	subscriber	=	context.mock(Subscriber.class);
		Publisher	publisher	=	new	Publisher();
		publisher.add(subscriber);

		final	String	message	=	"message";

		//	then	/	assert	.	.	.	but	we	haven't	had	a	when	yet
		context.checking(new	Expectations()	{{
				oneOf	(subscriber).receive(message);
		}});

		//	when	/	act
		publisher.publish(message);

		//	then	/	assert
		context.assertIsSatisfied();

Spies	solve	this	problem	neatly.

Spies

Spies	record	their	interactions	with	other	objects.

In	practice	this	means	that	Spies	act	as	stubs	by	default,	but	as	mocks	when	we	want	them
to.

The	given/when/then	flow	becomes	easy	and	natural	to	maintain.

For	example,	using	Mockito:

Understand	How	To	Use	Mocks	And	Stubs

125

		//	given
		Subscriber	subscriber	=	Mockito.mock(Subscriber.class);
		Publisher	publisher	=	new	Publisher();
		publisher.add(subscriber);
		String	message	=	"message";

		//	when
		publisher.publish(message);

		//	then
		Mockito.verify(subscriber).receive(message);

For	this	reason	we	recommend	using	a	spy	framework.

When	spies	act	as	mocks	that	must	also	supply	indirect	inputs,	it	is	best	to	make	them	as
forgiving	as	possible	when	supplying	values	but	as	specific	as	possible	when	verifying.

What	does	this	mean?

Lets	imagine	that,	for	some	reason,	the	subscribers	in	our	example	had	to	return	a	positive
integer	in	order	for	the	code	to	execute	without	error.	Perhaps	there	is	some	sort	of	assert
statement	in	the	code:

public	interface	Subscriber	{
		int	receive(String	message);
}

We	could	ensure	our	test	passed	as	follows:

		String	message	=	"amessage";
		Subscriber	subscriber	=	Mockito.mock(Subscriber.class);
		//	inject	indirect	value
		Mockito.when(subscriber.receive(message)).thenReturn(1);

		Publisher	publisher	=	new	Publisher();
		publisher.add(subscriber);

		publisher.publish(message);

		Mockito.verify(subscriber).receive(message);

We	will	not	discuss	the	Mockito	API	in	any	detail	here,	but	this	line:

		Mockito.when(subscriber.receive(message)).thenReturn(1);

Understand	How	To	Use	Mocks	And	Stubs

126

Ensures	that	when	the		receive		method	is	called	on	the	spy	with	a	string	that	equals	the
	message		variable,	it	will	return		1	.

If	this	line	was	not	present	the	spy	would	do	what	Mockito	does	by	default,	which	is	to	return
	0	.

What	would	our	test	do	if,	due	to	a	bug,		receive		was	called	with	a	different	string?

The	answer	is	that,	instead	of	failing	due	to	the	verification:

				Mockito.verify(subscriber).receive(message);

It	would	throw	an	error	before	it	reached	this	point	because	the	assertion	in	our	production
code	would	trigger.

We	were	too	specific.

If	we	instead	setup	our	spy	as	follows

				Mockito.when(subscriber.receive(anyString())).thenReturn(1);

The	test	would	fail	cleanly.

This	pattern	of	being	lenient	when	supplying	values,	but	specific	when	verifying	also	tends	to
result	in	tests	that	are	less	brittle	when	things	change.

Stubs	in	State-Based	Tests

By	definition,	state-based	testing	will	never	include	mocks	(in	the	strict	sense	of	the	word),
but	they	may	use	stubs	to	supply	indirect	values.

It	can	be	tempting	to	also	use	a	mocking	framework	to	stub	values	instead	of	using	their
constructors	and	modifier	methods.	For	complex	objects	using	stubs	can	appear	easier	than
constructing	real	ones.

Don't	do	this.

Mocking	frameworks	should	be	used	only	to	isolate	our	tests	from	objects	with	behavior.	If
you	have	values	that	are	difficult	to	construct	consider	the	test	data	builder	pattern	instead

Choosing	Between	State	and	Interaction	Testing

Understand	How	To	Use	Mocks	And	Stubs

127

Sometimes	there	is	no	choice	about	which	to	use.	For	example,	it	is	not	possible	to
meaningfully	specify	how	a	cache	should	behave	from	its	inputs	and	outputs	alone.	Other
times	we	must	weigh	the	pros	and	cons.

A	state-based	test	for	manager	code	is	likely	to	be	less	easy	to	read	and	understand	as	it
must	rely	on	the	behaviors	of	the	objects	the	SUT	interacts	with.	The	test	will	also	be
coupled	to	these	behaviors	and	will	require	changes	if	those	behaviors	change	-	you	have
effectively	increased	the	size	of	the	"unit"	you	are	testing	as	discussed	in	"Think	units	not
methods".

Interaction-based	testing	requires	us	to	peek	beyond	the	unit's	external	interface	and	into	its
implementation.	This	carries	the	risk	that	we	might	over-specify	and	create	an
implementation-specific	test.

On	balance,	it	is	preferable	to	lean	towards	state	based	testing	and	where	possible	enable	it
in	the	design	of	your	code.	There	will,	however,	be	many	situations	in	which	you	will	decide
that	interaction	based	testing	is	preferable.

Understand	How	To	Use	Mocks	And	Stubs

128

Understand	Your	Options	for	Code	Reuse
Reusing	code	is	a	good	thing.

When	people	start	programming	in	an	OO	language	for	the	first	time	they	tend	to	over-use
inheritance	for	this	purpose	before	discovering	that	composition	is	generally	a	better	idea.

Unfortunately,	it	is	not	easy	to	use	composition	to	reuse	code	in	JUnit	tests	and	this	can	lead
you	to	write	difficult-to-maintain	test	class	hierarchies.

A	small	amount	of	duplication	may	be	preferable	to	introducing	a	class	hierarchy	when	other
options	do	not	exist,	but	some	types	of	test	can	be	reused	without	inheritance.

Assertions

Code	related	to	assertions	is	straightforward	to	reuse	outside	of	class	hierarchies.	This	can
be	done	trivially,	by	creating	classes	containing	static	assert	methods	that	can	be	statically
imported	(as	the	built	in	JUnit	assertions	now	are),	or	more	elegantly	by	creating	custom
matchers	for	hamcrest	or	AssertJ.

Object	Creation

For	small,	simple	objects,	the	mother	pattern	can	be	used,	but	this	can	quickly	become	a
maintenance	issue	if	the	objects	become	more	complex	over	time.

A	better	pattern	is	the	Builder	pattern,	this	can	have	the	added	advantage	of	allowing	tests	to
clearly	highlight	important	and	unimportant	input.

Repeated	Behaviors

If	you	are	using	JUnit	then	repeated	section	of	code	within	a	test	can	be	packaged	and	re-
used	as	custom	rules.

Understand	Your	Options	For	Code	Reuse

129

https://github.com/junit-team/junit/wiki/Rules

Write	Repeatable	Unit	Tests
Unit	tests	must	be	repeatable	and	deterministic	-	it	must	be	possible	to	run	them	thousands
of	times	in	any	order	and	get	the	same	result.	This	means	that	they	must	have	no
dependency	on	any	external	factor.

In	practice	this	means	unit	tests	must	not:

Read	or	write	from	databases
Perform	network	IO
Write	to	disk
Modify	static	state

If	your	test	does	any	of	these	things	then	it	is	not	a	unit	test.	This	is	not	to	say	that	your	test
is	not	valuable.

Write	Repeatable	Tests

130

Only	Unit	Test	Code	That	It	Makes	Sense	to
Unit	Test
In	most	cases,	there	is	little	value	in	unit	testing:

Auto	generated	code
Logging
Code	whose	sole	concern	is	integration	with	another	system

The	canonical	example	of	code	with	a	pure	integration	concern	is	a	DAO.

If	a	compatible	in-memory	fake	database	is	available	then	it	can	be	meaningfully	unit	tested
against	that.	If	no	fake	is	available,	there	is	no	value	in	writing	tests	that	mock	out	the	JDBC
driver	-	the	first	level	of	testing	should	instead	be	integration	testing	against	a	real	database.

There	is	also	little	value	in	explicitly	specifying	the	behavior	of	very	simple	boiler	plate	code
such	as	get/set	methods.	The	expected	behavior	is	clear	without	the	presence	of	a	test	and
their	actual	behavior	ought	to	be	verified	by	other	tests	that	use	the	code	while	testing	more
complex	logic.	If	code	coverage	indicates	that	these	methods	have	not	been	executed	by
other	tests	perhaps	you	can	delete	them?

Code	that	is	not	unit	tested	should	always	be	integration	tested.

Only	Unit	Test	Code	It	Makes	Sense	To	Unit	Test

131

Testing	FAQ

How	Do	I	Test	a	Private	Method?

You	don't	test	methods	(private	or	public),	you	test	the	behavior	of	a	unit	as	a	whole.

If	you	cannot	exercise	the	logic	of	a	private	method	via	the	public	interface,	is	that	logic
actually	required?	If	it	is	required,	and	is	sufficiently	complex	that	it	is	causing	you	testing
pain,	then	perhaps	you	should	extract	that	concern	into	a	separate	unit	that	can	be	tested	in
isolation	and	injected	in	via	the	constructor?

How	Do	I	Test	a	Void	Method?

You	don't	test	methods	(void	or	not),	you	test	the	behavior	of	a	unit	as	a	whole.

If	the	method	is	void,	it	must	be	performing	some	sort	of	side	effect	that	can	be	checked	by
either	state	testing	or	interaction	testing.

For	example,	if	you	are	trying	to	'test	the	add	method'	of	collection	class,	you	should
probably	instead	be	writing	tests	like:

@Test
public	void	shouldIncreaseInSizeWhenItemsAdded()	{
				Collection	testee	=	new	ArrayList();
				assertEquals(0,	testee.size());
				testee.add("itemA");
				assertEquals(1,	testee.size());
				testee.add("itemB");
				assertEquals(2,	testee.size());
}

How	do	I	Test	Code	That	Reasons	About	the	Current
Date/Time?

A	bad	solution	is	to	use	a	static	method	(such	as	joda	time's		setCurrentMillisFixed)	to	set
the	current	date.

A	good	solution	is	to	inject	a	strategy	for	retrieving	the	date/time	into	your	class	as	a
dependency.

Java	8	provides	the		java.time.Clock		class	which	can	be	used	for	this	purpose.

Testing	FAQS

132

The	static	factory	method		fixed		will	create	an	instance	that	represents	a	constant	time.
Other	methods	provide	implementations	suitable	for	production	use.

Java	7	does	not	provide	an	out	of	the	box	class	for	this	purpose	so	you	will	need	to	roll	your
own.

Do	I	Need	to	Implement	a	Teardown	Method	for	my	Test?

This	used	to	be	a	requirement	for	all	JUnit	3	tests.	If	you	didn't	nullify	all	members	of	a	test
class	in	a	teardown	your	test	suite	began	to	eat	memory	as	it	grew.

This	is	not	a	requirement	for	vanilla	JUnit	4	tests,	but	it	is	possible	that	you	may	need	to	do
so	if	you	are	using	a	custom	runner.

What's	the	Difference	Between	Errors	and	Failures?

You	should	try	to	design	your	tests	to	produce	failures	when	the	code	is	logically	wrong.
Your	tests	should	only	produce	errors	when	something	unexpected	has	happened.

How	Should	I	Test	for	Expected	Exceptions?

It	depends.

The	built	in:

@Test(expected	=	FooException.class)
public	void	shouldThrowFooExceptionWhenFeelsLikeIt

Is	concise	and	suffices	for	simple	scenarios,	but	has	a	gotcha.	If	the	test	method	exercises
more	than	one	method	of	the	testee,	the	expectation	applies	to	the	whole	test	method	rather
than	the	specific	interaction	with	the	testee	that	is	expected	to	throw	it.

If	data	held	within	the	exception	is	important,	it	is	also	not	possible	to	assert	on	it	with	this
method.

The	traditional	solution	is	to	use	a	try	catch	block:

Testing	FAQS

133

@Test
public	void	shouldThrowFooExceptionWhenFeelsLikeIt()	{
		try	{
				testee.doStuff();
				fail("Expected	an	exception");
		}	catch	(FooException	expectedException)	{
				assertThat(expectedException.getMessage(),	is("felt	like	it"));
		}
}

This	is	easy	to	follow,	but	a	little	verbose.	It	is	also	easy	to	forget	to	include	the	call	to
	fail()		if	you	are	not	test	driving	your	code.

JUnit	now	provides	an	alternate	solution	in	the	form	of	the	'ExpectedException'	method	rule.
This	allows	for	more	fine	grained	exception	checking:

@Rule
public	ExpectedException	thrown=	ExpectedException.none();

@Test
public	void	foo()	throws	IOException	{
		thrown.expect(FooException.class);
		thrown.expectMessage("felt	like	it");

		testee.doStuff();
}

This	is	more	concise,	but	breaks	the	usual	given/when/then	flow	of	a	test	by	moving	the	then
part	to	the	start	of	the	method.

For	Java	8	AssertJ	provides	some	custom	assertions	that	can	be	used	without	breaking	this
flow.

@Test
public	void	testException()	{
		assertThatThrownBy(()	->	{	testee.doStuff();	})
			.isInstanceOf(Exception.class)
			.hasMessageContaining("felt	like	it");
}

Although	it	maintains	the	flow,	the	lambda	in	which	the	testee	is	called	looks	a	little	ugly.

When	it	can	be	used	we	recommend	sticking	with	the	concise		expected	=		format.	For	more
complex	situations	it	is	largely	a	matter	of	taste.

How	Do	I	Test	an	Abstract	Class?

Testing	FAQS

134

An	abstract	class	is	just	a	dependency	that	some	other	code	will	use	-	a	dependency	that
you	have	made	harder	than	usual	to	isolate	due	to	your	choice	to	make	it	an	abstract	class.

So	first	off,	would	your	design	look	better	if	the	functionality	was	being	re-used	by
composition	rather	than	inheritance?

Assuming	that	you	can't	improve	your	design	by	getting	rid	of	the	abstract	class	you	can
either:

Treat	it	as	an	implementation	detail	and	check	that	each	of	its	clients	behaves	as
expected.
Test	it	in	isolation	by	creating	an	anonymous	concrete	class

The	first	approach	will	result	in	tests	that	are	less	tied	to	the	implementation,	but	there	will	be
repetition	between	the	tests	for	each	subclass.

The	second	approach	will	avoid	repetition	but	is	tied	to	the	implementation	and	is	likely	to	be
brittle.

How	Do	I	test	Hashcode	and	Equals?

Testing	hashcode	and	equals	can	be	fiddly	and	time	consuming,	which	raises	questions
about	whether	it	is	time	well	spent	given	that	the	code	is	likely	to	have	been	auto-generated.

Equals	verifier	project	provides	a	good	(partial)	solution:

http://www.jqno.nl/equalsverifier/

It	checks	that	a	class	fulfills	the	hashcode-equals	contract	with	a	single	line	test	that	is	trivial
to	write:

		@Test
		public	void	shouldObeyHashCodeEqualsContract()	{
				EqualsVerifier.forClass(MyValue.class).verify();
		}

It	does,	however,	do	a	very	thorough	job	of	checking	the	contract	-	including	how	it	interacts
with	inheritance.	It	is	non-trivial	to	make	a	non-final	class	conform	to	the	contract.

Although	equals	verifier	does	a	good	job	of	checking	the	hashcode	equals	contract,	it	has	no
knowledge	of	how	you	expect	the	methods	to	actually	behave.	If	you	wish	equality	to	(for
example)	be	defined	by	a	single	ID	field	only,	you	must	write	additional	tests	that	verify	this
behavior.

For	the	common	scenario	of	a	class	that	should	be	considered	equal	based	on	all	of	its	fields
the	behavior	may	be	checked	in	a	single	test:

Testing	FAQS

135

http://www.jqno.nl/equalsverifier/

		@Test
		public	void	shouldObeyHashCodeEqualsContract()	{
				EqualsVerifier.forClass(MyValue.class).allFieldsShouldBeUsed().verify();
		}

This	may	become	the	default	behavior	in	a	future	version	of	EqualsVerifier,	but	must	be
specifically	specified	in	1.7.5

Testing	FAQS

136

Bad	Advice
Some	truly	terrible	ideas	are	commonly	circulated	as	"best	practice".	In	this	section	we
provide	examples	and	explain	why	they	should	be	ignored.

Bad	advice

137

Bad	Advice	-	Single	Exit	Point	Rules
Some	coding	standards	mandate	that	all	methods	should	have	a	single	exit	point.

Doing	so	can	be	damaging,	particularly	when	it	is	enforced	by	static	analysis.

Details
Single	exit	point	is	an	idea	with	a	long	history	dating	back	to	the	era	of	liberally	applied	gotos
and	spaghetti	code.

In	that	context,	adding	constraints	on	what	could	happen	within	a	function	was	helpful.
Knowing	that	there	is	only	one	point	that	a	large	function	can	exit	from	makes	it	easier	to
understand.

Many	modern	functional	languages	continue	to	either	enforce	or	encourage	single	exit
points.

So	it	must	be	a	good	idea	to	add	this	constraint	to	Java	right?

Lets	look	what	happens	when	we	are	told	we	must	only	have	one	exit	point:

Single	exit	with	statements

public	class	Example	{
		private	int	value;

		public	int	single(int	x)	{
				int	retVal	=	0;

				if	(x	==	10)	{
						retVal	=	-value;
				}	else	if	(x	>	0)	{
						retVal	=	value	+	x;
				}

				return	retVal;
		}

}

If	we	remove	the	single	exit	point	constraint	we	get:

Multiple	exit

Single	Exit	Point	Rules

138

public	class	Example	{
		private	int	value;

		public	int	multi(int	x)	{
				if	(x	==	10)	{
						return	-value;
				}

				if	(x	>	0)	{
						return	value	+	x;
				}

				return	0;
		}
}

Which	version	is	better?

There	isn't	much	in	it,	but	the	multiple	exit	point	version	is	easier	to	comprehend.

Trying	to	apply	the	single	exit	point	constraint	resulted	in	an	additional	local	variable	to	hold
return	state.	In	the	multi	exit	version	we	can	clearly	see	what	is	returned	when	none	of	the
conditions	match.	In	the	single	exit	version	it	is	slightly	less	clear	as	the	returned	value	is
declared	at	the	start	of	the	method	then	overwritten.

So	does	this	mean	that	single	exit	point	methods	are	bad?

No.

It	is	possible	to	write	alternate	single	exit	implementations.

		public	int	oneAssignment(int	x)	{
				final	int	retVal;

				if	(x	==	10)	{
						retVal	=	-value;
				}	else	if	(x	>	0)	{
						retVal	=	value	+	x;
				}	else	{
						retVal	=	0;
				}

				return	retVal;
		}

We've	addressed	the	issues	we	identified	earlier.	We	only	assign	to		retVal		once	and	it	is
clear	what	is	assigned	when	none	of	the	conditions	match.

Is	this	superior	in	some	way	to	the	multi	exit	version?

Single	Exit	Point	Rules

139

Not	really.

We	can	also	write	a	single	exit	method	using	the		?		operator:

Single	exit	with	the	?	operator

		public	int	expression(int	x)	{
				return		x	==		10	?	-value
								:	x	>	0		?	value	+	x
								:	0;
		}

We	have	switched	from	using	a	statement	(if)	to	working	with	expressions	(i.e.	things	that
return	a	value).	This	allows	us	to	get	rid	of	the	additional	variable	while	maintaining	a	single
exit	point.

Is	this	version	clearer	than	the	multi-exit	version?	That	is	debatable	and	ultimately	a	matter
of	personal	taste.

The	code	using		?		is	terse	and	some	will	find	it	harder	to	understand.

The	multi-exit	version	is	more	verbose	but	its	proponents	would	argue	it	is	easier	to
comprehend.

If	your	personal	preference	is	for	the		?		operator	version,	it	still	does	not	follow	that	the
single	exit	point	rule	is	something	you	should	try	to	universally	apply.

The	most	likely	result	is	that	you	will	push	people	towards	writing	code	like	the	earlier
bloated	version	of	our	method.	As	Java	is	a	largely	statement-based	language,	you	will	also
encounter	logic	where	the	multi-exit	version	is	undeniably	clearer.

Martin	Fowler	and	Kent	Beck	express	things	nicely	in	"Refactoring:	Improving	the	Design	of
Existing	Code"

".	.	.	one	exit	point	is	really	not	a	useful	rule.	Clarity	is	the	key	principle:	If	the	method	is
clearer	with	one	exit	point,	use	one	exit	point;	otherwise	don't"

There	is	nothing	wrong	with	single	exit	functions,	but	only	write	them	when	it	makes	sense	to
do	so.

Single	Exit	Point	Rules

140

Bad	Advice	-	Always	Use	a	StringBuffer	to
Concatenate
This	advice	is	doubly	wrong.

Firstly	it	advocates	using	the	synchronized		StringBuffer		rather	than	a		StringBuilder	.

Secondly	it	is	an	oversimplification	or	misunderstanding	of	the	more	nuanced	and
reasonable	advice	to	not	concatenate	Strings	in	a	loop.

Avoiding	concatenation	in	a	loop	is	reasonable.	Using	a		StringBuilder		is	likely	to	be	more
efficient	if	the	loop	executes	a	reasonable	number	of	times	as	it	will	avoid	string	allocations.

The	performance	difference	is	unlikely	to	be	significant	in	most	cases,	but	the	resulting	code
isn't	noticeably	less-readable	-	so	it	is	a	premature	optimization	without	a	cost.

Lets	see	what	happens	when	we	apply	this	advice	when	no	loop	is	present:

		public	String	buffer(String	s,	int	i)	{
				StringBuilder	sb	=	new	StringBuilder();
				sb.append("Foo");
				sb.append(s);
				sb.append(i);
				return	sb.toString();
		}

		public	String	concat(String	s,	int	i)	{
				return	"Foo"	+	s	+	i;
		}

The		concat		version	is	far	clearer.

Is	it	less	efficient?

The	eclipse	compiler	generates	the	following	bytecode	for		concat	:

Always	Use	A	StringBuffer

141

				NEW	java/lang/StringBuilder
				DUP
				LDC	"Foo"
				INVOKESPECIAL	java/lang/StringBuilder.<init>	(Ljava/lang/String;)V
				ALOAD	1
				INVOKEVIRTUAL	java/lang/StringBuilder.append	/
							(Ljava/lang/String;)Ljava/lang/StringBuilder;
				ILOAD	2
				INVOKEVIRTUAL	java/lang/StringBuilder.append	(I)Ljava/lang/StringBuilder;
				INVOKEVIRTUAL	java/lang/StringBuilder.toString	()Ljava/lang/String;
				ARETURN

A		StringBuilder		is	created	by	the	compiler	behind	the	scenes	to	handle	the	concatenation
so	our	simpler	cleaner	code	produces	identical	bytecode	to	the	more	verbose	option.

The	presence	of	loops	in	the	code	may	prevent	the	compiler	performing	this	optimization,
but	code	without	branches	will	be	optimized	every	time.	Although	compilers	may	exist	that
do	not	support	this	optimization	it	is	unlikely	that	you	will	ever	use	them.

Always	Use	A	StringBuffer

142

Bad	Advice	-	Hungarian	Notation
The	idea	of	Hungarian	notation	and	similar	schemes	is	to	reflect	the	type,	scope	or	other
attribute	of	a	variable	in	its	name.

For	example:

bFlag
nSize
m_nSize

Where		b		indicates	a	Boolean	type,		n		an	integer	type	and		m_		that	the	named	variable	is
a	field.

This	is	a	terrible	idea.

Such	notation	might	be	useful	if	you	are	reading	code	printed	to	paper,	but	all	the	information
it	provides	is	readily	available	in	a	modern	IDE.

Naming	things	is	hard	enough	without	adding	additional	concerns	that	the	name	must
handle.

These	types	of	notation	are	like	comments.	They	add	noise	and	must	be	maintained	in
tandem	with	the	information	they	duplicate.	If	extra	effort	is	not	spent	to	maintain	them	they
become	misleading.

Uncle	Bob	Martin	puts	it	nicely:

"nowadays,	HN	and	other	forms	of	type	encoding	are	simply	impediments.	They	make	it
harder	to	change	the	name	or	type	of	a	variable,	function,	member	or	class.	They	make
it	harder	to	read	the	code.	And	they	create	the	possibility	that	the	encoding	system	will
mislead	the	reader"

Hungarian	Notation

143

	Introduction
	Process
	Build Fast Feedback Loops
	Instant Feedback
	Fast Feedback
	Slower Feedback
	Agree The Language You Use For Tests
	Use Coverage As A Tool Not A Target

	Style
	Consider Code Generators Carefully
	Optimise For Readability
	Prefer Readable Code To Comments
	Javadoc Judiciously
	Remember Kiss And Yagni
	Prefer Composition
	Keep It Solid
	Keep Your Code Dry
	Prefer Reversible Decisions
	Make Dependencies Explicit
	Prefer Immutable Objects
	Use A Consistent Code Layout
	Group Methods For Easy Comprehension
	Keep Methods Small And Simple
	Methods Should Do One Thing
	Avoid Null
	Use Final Liberally
	Provide No More Than One Worker Constructor
	Avoid Checked Exceptions

	Specifics
	Know How To Implement Hashcode And Equals
	Do Not Reassign Parameters
	Limit Scope
	Prefer For Each Loops To For Loops
	Prefer Maps And Filters To Imperative Loops
	Avoid Apis From Prehistory
	Beware Casts And Generics Warnings
	Do Not Use Magic Numbers
	Do Not Use The Assert Keyword
	Avoid Floats And Doubles
	Do Not Use Reflection

	Tests
	Write Specifications Not Tests
	Think Units Not Methods
	Name Tests With A Specification Style
	Pick Examples Carefully
	Make Tests Easy To Understand
	Understand How To Use Mocks And Stubs
	Understand Your Options For Code Reuse
	Write Repeatable Tests
	Only Unit Test Code It Makes Sense To Unit Test
	Testing FAQS

	Bad advice
	Single Exit Point Rules
	Always Use A StringBuffer
	Hungarian Notation

