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Rust	for	C++	Programmers
This	gitbook	is	a	collection	of	"Rust	for	C++	programmers"	posts	by	Nick	Cameron.

I	found	it	a	bit	hard	to	read	the	posts	on	his	blog,	hence	I	started	copy-pasting	them	into	a	git
repo	to	make	it	easier	to	read.	Of	course,	all	the	credit	for	content	goes	to	Nick	Cameron.

After	a	while,	I	decided	to	turn	them	into	a	gitbook,	so	here	it	is!

Update	(June	2015):	I've	realized	that	Nick	has	created	a	repo	for	his	posts	on	GitHub
(nrc/r4cppp);	I've	merged	new	content	and	will	look	into	possibility	of	merging	this	repo	with
Nick's.
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Introduction	-	hello	world!
This	is	the	first	in	a	series	of	blog	posts	(none	written	yet)	which	aim	to	help	experienced
C++	programmers	learn	Rust.	Expect	updates	to	be	sporadic	at	best.	In	this	first	blog	post
we'll	just	get	setup	and	do	a	few	super	basic	things.	Much	better	resources	are	at	the	tutorial
and	reference	manual.

First	you	need	to	install	Rust.	You	can	download	a	nightly	build	from	http://www.rust-
lang.org/install.html	(I	recommend	the	nightlies	rather	than	'stable'	versions	-	the	nightlies
are	stable	in	that	they	won't	crash	too	much	(no	more	than	the	stable	versions)	and	you're
going	to	have	to	get	used	to	Rust	evolving	under	you	sooner	or	later	anyway).	Assuming	you
manage	to	install	things	properly,	you	should	then	have	a		rustc		command	available	to	you.
Test	it	with		rustc	-v	.

Now	for	our	first	program.	Create	a	file,	copy	and	paste	the	following	into	it	and	save	it	as
	hello.rs		or	something	equally	imaginative.

fn	main()	{
				println!("Hello	world!");
}

Compile	this	using		rustc	hello.rs	,	and	then	run		./hello	.	It	should	display	the	expected
greeting	\o/

Two	compiler	options	you	should	know	are		-o	ex_name		to	specify	the	name	of	the
executable	and		-g		to	output	debug	info;	you	can	then	debug	as	expected	using	gdb	or	lldb,
etc.	Use		-h		to	show	other	options.

OK,	back	to	the	code.	A	few	interesting	points	-	we	use		fn		to	define	a	function	or	method.
	main()		is	the	default	entry	point	for	our	programs	(we'll	leave	program	args	for	later).	There
are	no	separate	declarations	or	header	files	as	with	C++.		println!		is	Rust's	equivalent	of
printf.	The		!		means	that	it	is	a	macro,	for	now	you	can	just	treat	it	like	a	regular	function.	A
subset	of	the	standard	library	is	available	without	needing	to	be	explicitly	imported/included
(we'll	talk	about	that	later).	The		println!		macros	is	included	as	part	of	that	subset.

Lets	change	our	example	a	little	bit:

fn	main()	{
				let	world	=	"world";
				println!("Hello	{}!",	world);
}

Rust	for	C++	Programmers

4Hello	world!

http://www.rust-lang.org/install.html


	let		is	used	to	introduce	a	variable,	world	is	the	variable	name	and	it	is	a	string	(technically
the	type	is		&'static	str	,	but	more	on	that	in	a	later	post).	We	don't	need	to	specify	the
type,	it	will	be	inferred	for	us.

Using		{}		in	the		println!		statement	is	like	using		%s		in	printf.	In	fact,	it	is	a	bit	more
general	than	that	because	Rust	will	try	to	convert	the	variable	to	a	string	if	it	is	not	one

already1.	You	can	easily	play	around	with	this	sort	of	thing	-	try	multiple	strings	and	using
numbers	(integer	and	float	literals	will	work).

If	you	like,	you	can	explicitly	give	the	type	of		world	:

let	world:	&'static	str	=	"world";

In	C++	we	write		T	x		to	declare	a	variable		x		with	type		T	.	In	Rust	we	write		x:	T	,
whether	in		let		statements	or	function	signatures,	etc.	Mostly	we	omit	explicit	types	in		let	
statements,	but	they	are	required	for	function	arguments.	Lets	add	another	function	to	see	it
work:

fn	foo(_x:	&'static	str)	->	&'static	str	{
				"world"
}

fn	main()	{
				println!("Hello	{}!",	foo("bar"));
}

The	function		foo		has	a	single	argument		_x		which	is	a	string	literal	(we	pass	it	"bar"	from
	main	).	We	don't	actually	use	that	argument	in		foo	.	Usually,	Rust	will	warn	us	about	this.
By	prefixing	the	argument	name	with		_		we	avoid	these	warnings.	In	fact,	we	don't	need	to
name	the	argument	at	all,	we	could	just	use		_	.

The	return	type	for	a	function	is	given	after		->	.	If	the	function	doesn't	return	anything	(a
void	function	in	C++),	we	don't	need	to	give	a	return	type	at	all	(as	in		main	).	If	you	want	to
be	super-explicit,	you	can	write		->	()	,		()		is	the	void	type	in	Rust.		foo		returns	a	string
literal.

You	don't	need	the		return		keyword	in	Rust,	if	the	last	expression	in	a	function	body	(or	any
other	body,	we'll	see	more	of	this	later)	is	not	finished	with	a	semicolon,	then	it	is	the	return
value.	So		foo		will	always	return	"world".	The		return		keyword	still	exists	so	we	can	do
early	returns.	You	can	replace		"world"		with		return	"world";		and	it	will	have	the	same
effect.

1

Rust	for	C++	Programmers

5Hello	world!



This	is	a	programmer	specified	conversion	which	uses	the		Display		trait,	which	works	a	bit
like		toString		in	Java.	You	can	also	use		{:?}		which	gives	a	compiler	generated
representation	which	is	sometimes	useful	for	debugging.	As	with	printf,	there	are	many	other
options.

TODO	check	this	footnote	hack	works
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I	realise	that	in	terms	of	learning	Rust,	I	had	jumped	straight	to	the	'how'	and	skipped	the
'why'.	I	guess	I	am	in	enough	of	a	Rust	bubble	that	I	can't	imagine	why	you	wouldn't	want	to
learn	it.	So,	I	will	make	a	bit	more	of	an	effort	to	explain	why	things	are	how	they	are.	Here	I
will	try	to	give	a	bit	of	an	overview/motivation.

If	you	are	using	C	or	C++,	it	is	probably	because	you	have	to	-	either	you	need	low-level
access	to	the	system,	or	need	every	last	drop	of	performance,	or	both.	Rust	aims	to	do	offer
the	same	level	of	abstraction	around	memory,	the	same	performance,	but	be	safer	and
make	you	more	productive.

Concretely,	there	are	many	languages	out	there	that	you	might	prefer	to	use	to	C++:	Java,
Scala,	Haskell,	Python,	and	so	forth,	but	you	can't	because	either	the	level	of	abstraction	is
too	high	(you	don't	get	direct	access	to	memory,	you	are	forced	to	use	garbage	collection,
etc.),	or	there	are	performance	issues	(either	performance	is	unpredictable	or	it's	simply	not
fast	enough).	Rust	does	not	force	you	to	use	garbage	collection,	and	as	in	C++,	you	get	raw
pointers	to	memory	to	play	with.	Rust	subscribes	to	the	'pay	for	what	you	use'	philosophy	of
C++.	If	you	don't	use	a	feature,	then	you	don't	pay	any	performance	overhead	for	its
existence.	Furthermore,	all	language	features	in	Rust	have	predictable	(and	usually	small)
cost.

Whilst	these	constraints	make	Rust	a	(rare)	viable	alternative	to	C++,	Rust	also	has	benefits:
it	is	memory	safe	-	Rust's	type	system	ensures	that	you	don't	get	the	kind	of	memory	errors
which	are	common	in	C++	-	memory	leaks,	accessing	un-	initialised	memory,	dangling
pointers	-	all	are	impossible	in	Rust.	Furthermore,	whenever	other	constraints	allow,	Rust
strives	to	prevent	other	safety	issues	too	-	for	example,	all	array	indexing	is	bounds	checked
(of	course,	if	you	want	to	avoid	the	cost,	you	can	(at	the	expense	of	safety)	-	Rust	allows	you
to	do	this	in	unsafe	blocks,	along	with	many	other	unsafe	things.	Crucially,	Rust	ensures	that
unsafety	in	unsafe	blocks	stays	in	unsafe	blocks	and	can't	affect	the	rest	of	your	program).
Finally,	Rust	takes	many	concepts	from	modern	programming	languages	and	introduces
them	to	the	systems	language	space.	Hopefully,	that	makes	programming	in	Rust	more
productive,	efficient,	and	enjoyable.

I	would	like	to	motivate	some	of	the	language	features	from	part	1.	Local	type	inference	is
convenient	and	useful	without	sacrificing	safety	or	performance	(it's	even	in	modern	versions
of	C++	now).	A	minor	convenience	is	that	language	items	are	consistently	denoted	by
keyword	(	fn	,		let	,	etc.),	this	makes	scanning	by	eye	or	by	tools	easier,	in	general	the
syntax	of	Rust	is	simpler	and	more	consistent	than	C++.	The		println!		macro	is	safer	than
printf	-	the	number	of	arguments	is	statically	checked	against	the	number	of	'holes'	in	the
string	and	the	arguments	are	type	checked.	This	means	you	can't	make	the	printf	mistakes
of	printing	memory	as	if	it	had	a	different	type	or	addressing	memory	further	down	the	stack
by	mistake.	These	are	fairly	minor	things,	but	I	hope	they	illustrate	the	philosophy	behind	the
design	of	Rust.

Rust	for	C++	Programmers
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Control	flow

If
The		if		statement	is	pretty	much	the	same	in	Rust	as	C++.	One	difference	is	that	the
braces	are	mandatory,	but	brackets	around	the	expression	being	tested	are	not.	Another	is
that		if		is	an	expression,	so	you	can	use	it	the	same	way	as	the	ternary		?		operator	in
C++	(remember	from	last	time	that	if	the	last	expression	in	a	block	is	not	terminated	by	a
semi-colon,	then	it	becomes	the	value	of	the	block).	There	is	no	ternary		?		in	Rust.	So,	the
following	two	functions	do	the	same	thing:

fn	foo(x:	i32)	->	&'static	str	{
				let	mut	result:	&'static	str;
				if	x	<	10	{
								result	=	"less	than	10";
				}	else	{
								result	=	"10	or	more";
				}
				return	result;
}

fn	bar(x:	i32)	->	&'static	str	{
				if	x	<	10	{
								"less	than	10"
				}	else	{
								"10	or	more"
				}
}

The	first	is	a	fairly	literal	translation	of	what	you	might	write	in	C++.	The	second	is	better
Rust	style.

You	can	also	write		let	x	=	if	...	,	etc.

Loops
Rust	has	while	loops,	again	just	like	C++:

Rust	for	C++	Programmers
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fn	main()	{
				let	mut	x	=	10;
				while	x	>	0	{
								println!("Current	value:	{}",	x);
								x	-=	1;
				}
}

There	is	no	do...while	loop	in	Rust,	but	we	do	have	the		loop		statement	which	just	loops
forever:

fn	main()	{
				loop	{
								println!("Just	looping");			
				}
}

Rust	has		break		and		continue		just	like	C++.

For	loops
Rust	also	has		for		loops,	but	these	are	a	bit	different.	Lets	say	you	have	a	vector	of
integers	and	you	want	to	print	them	all	(we'll	cover	vectors/arrays,	iterators,	and	generics	in
more	detail	in	the	future.	For	now,	know	that	a		Vec<T>		is	a	sequence	of		T	s	and		iter()	
returns	an	iterator	from	anything	you	might	reasonably	want	to	iterate	over).	A	simple		for	
loop	would	look	like:

fn	print_all(all:	Vec<i32>)	{
				for	a	in	all.iter()	{
								println!("{}",	a);
				}
}

TODO	also	&all/all	instead	of	all.iter()

If	we	want	to	index	over	the	indices	of		all		(a	bit	more	like	a	standard	C++	for	loop	over	an
array),	you	could	do

fn	print_all(all:	Vec<i32>)	{
				for	i	in	..all.len()	{
								println!("{}:	{}",	i,	all.get(i));
				}
}

Rust	for	C++	Programmers
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Hopefully,	it	is	obvious	what	the		len		function	does.	TODO	range	notation

Switch/Match
Rust	has	a	match	expression	which	is	similar	to	a	C++	switch	statement,	but	much	more
powerful.	This	simple	version	should	look	pretty	familiar:

fn	print_some(x:	i32)	{
				match	x	{
								0	=>	println!("x	is	zero"),
								1	=>	println!("x	is	one"),
								10	=>	println!("x	is	ten"),
								y	=>	println!("x	is	something	else	{}",	y),
				}
}

There	are	some	syntactic	differences	-	we	use		=>		to	go	from	the	matched	value	to	the
expression	to	execute,	and	the	match	arms	are	separated	by		,		(that	last		,		is	optional).
There	are	also	some	semantic	differences	which	are	not	so	obvious:	the	matched	patterns
must	be	exhaustive,	that	is	all	possible	values	of	the	matched	expression	(	x		in	the	above
example)	must	be	covered.	Try	removing	the		y	=>	...		line	and	see	what	happens;	that	is
because	we	only	have	matches	for	0,	1,	and	10,	but	there	are	obviously	lots	of	other	integers
which	don't	get	matched.	In	that	last	arm,		y		is	bound	to	the	value	being	matched	(	x		in
this	case).	We	could	also	write:

fn	print_some(x:	i32)	{
				match	x	{
								x	=>	println!("x	is	something	else	{}",	x)
				}
}

Here	the		x		in	the	match	arm	introduces	a	new	variable	which	hides	the	argument		x	,	just
like	declaring	a	variable	in	an	inner	scope.

If	we	don't	want	to	name	the	variable,	we	can	use		_		for	an	unnamed	variable,	which	is	like
having	a	wildcard	match.	If	we	don't	want	to	do	anything,	we	can	provide	an	empty	branch:

Rust	for	C++	Programmers
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fn	print_some(x:	i32)	{
				match	x	{
								0	=>	println!("x	is	zero"),
								1	=>	println!("x	is	one"),
								10	=>	println!("x	is	ten"),
								_	=>	{}
				}
}

Another	semantic	difference	is	that	there	is	no	fall	through	from	one	arm	to	the	next.

We'll	see	in	later	posts	that	match	is	extremely	powerful.	For	now	I	want	to	introduce	just	a
couple	more	features	-	the	'or'	operator	for	values	and		if		clauses	on	arms.	Hopefully	an
example	is	self-explanatory:

fn	print_some_more(x:	i32)	{
				match	x	{
								0	|	1	|	10	=>	println!("x	is	one	of	zero,	one,	or	ten"),
								y	if	y	<	20	=>	println!("x	is	less	than	20,	but	not	zero,	one,	or	ten"),
								y	if	y	==	200	=>	println!("x	is	200	(but	this	is	not	very	stylish)"),
								_	=>	{}
				}
}

Just	like		if		expressions,		match		statements	are	actually	expressions	so	we	could	re-write
the	last	example	as:

fn	print_some_more(x:	i32)	{
				let	msg	=	match	x	{
								0	|	1	|	10	=>	"one	of	zero,	one,	or	ten",
								y	if	y	<	20	=>	"less	than	20,	but	not	zero,	one,	or	ten",
								y	if	y	==	200	=>	"200	(but	this	is	not	very	stylish)",
								_	=>	"something	else"
				};

				println!("x	is	{}",	msg);
}

Note	the	semi-colon	after	the	closing	brace,	that	is	because	the		let		statement	is	a
statement	and	must	take	the	form		let	msg	=	...;	.	We	fill	the	rhs	with	a	match	expression
(which	doesn't	usually	need	a	semi-colon),	but	the		let		statement	does.	This	catches	me
out	all	the	time.

Motivation:	Rust	match	statements	avoid	the	common	bugs	with	C++	switch	statements	-
you	can't	forget	a		break		and	unintentionally	fall	through;	if	you	add	a	case	to	an	enum
(more	later	on)	the	compiler	will	make	sure	it	is	covered	by	your		match		statement.
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Method	call
Finally,	just	a	quick	note	that	methods	exist	in	Rust,	similarly	to	C++.	They	are	always	called
via	the		.		operator	(no		->	,	more	on	this	in	another	post).	We	saw	a	few	examples	above
(	len	,		iter	).	We'll	go	into	more	detail	in	the	future	about	how	they	are	defined	and	called.
Most	assumptions	you	might	make	from	C++	or	Java	are	probably	correct.
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Primitive	types	and	operators
TODO	int/uint	->	isuze/usize

Rust	has	pretty	much	the	same	arithmetic	and	logical	operators	as	C++.		bool		is	the	same
in	both	languages	(as	are	the		true		and		false		literals).	Rust	has	similar	concepts	of
integers,	unsigned	integers,	and	floats.	However	the	syntax	is	a	bit	different.	Rust	uses		int	
to	mean	an	integer	and		uint		to	mean	an	unsigned	integer.	These	types	are	pointer	sized.
E.g.,	on	a	32	bit	system,		uint		means	a	32	bit	unsigned	integer.	Rust	also	has	explicitly
sized	types	which	are		u		or		i		followed	by	8,	16,	32,	or	64.	So,	for	example,		u8		is	an	8	bit
unsigned	integer	and		i32		is	a	32	bit	signed	integer.	For	floats,	Rust	has		f32		and		f64	.

Numeric	literals	can	take	suffixes	to	indicate	their	type	(using		i		and		u		instead	of		int	
and		uint	).	If	no	suffix	is	given,	Rust	tries	to	infer	the	type.	If	it	can't	infer,	it	uses		int		or
	f64		(if	there	is	a	decimal	point).	Examples:

fn	main()	{
				let	x:	bool	=	true;
				let	x	=	34;			//	type	int
				let	x	=	34u;		//	type	uint
				let	x:	u8	=	34u8;
				let	x	=	34i64;
				let	x	=	34f32;
}

As	a	side	note,	Rust	lets	you	redefine	variables	so	the	above	code	is	legal	-	each		let	
statement	creates	a	new	variable		x		and	hides	the	previous	one.	This	is	more	useful	than
you	might	expect	due	to	variables	being	immutable	by	default.

Numeric	literals	can	be	given	as	binary,	octal,	and	hexadecimal,	as	well	as	decimal.	Use	the
	0b	,		0o	,	and		0x		prefixes,	respectively.	You	can	use	an	underscore	anywhere	in	a
numeric	literal	and	it	will	be	ignored.	E.g,

fn	main()	{
				let	x	=	12;
				let	x	=	0b1100;
				let	x	=	0o14;
				let	x	=	0xe;
				let	y	=	0b_1100_0011_1011_0001;
}

Rust	for	C++	Programmers
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Rust	has	chars	and	strings,	but	since	they	are	Unicode,	they	are	a	bit	different	from	C++.	I'm
going	to	postpone	talking	about	them	until	after	I've	introduced	pointers,	references,	and
vectors	(arrays).

Rust	does	not	implicitly	coerce	numeric	types.	In	general,	Rust	has	much	less	implicit
coercion	and	subtyping	than	C++.	Rust	uses	the		as		keyword	for	explicit	coercions	and
casting.	Any	numeric	value	can	be	cast	to	another	numeric	type.		as		cannot	be	used	to
convert	between	booleans	and	numeric	types.	E.g.,

fn	main()	{
				let	x	=	34u	as	int;					//	cast	unsigned	int	to	int
				let	x	=	10	as	f32;						//	int	to	float
				let	x	=	10.45f64	as	i8;	//	float	to	int	(loses	precision)
				let	x	=	4u8	as	u64;					//	gains	precision
				let	x	=	400u16	as	u8;			//	144,	loses	precision	(and	thus	changes	the	value)
				println!("`400u16	as	u8`	gives	{}",	x);
				let	x	=	-3i8	as	u8;					//	253,	signed	to	unsigned	(changes	sign)
				println!("`-3i8	as	u8`	gives	{}",	x);
				//let	x	=	45u	as	bool;		//	FAILS!
}

Rust	has	the	following	numeric	operators:		+	,		-	,		*	,		/	,		%	;	bitwise	operators:		|	,		&	,
	̂ 	,		<<	,		>>	;	comparison	operators:		==	,		!=	,		>	,		<	,		>=	,		<=	;	short-circuit	logical
operators:		||	,		&&	.	All	of	these	behave	as	in	C++,	however,	Rust	is	a	bit	stricter	about	the
types	the	operators	can	be	applied	to	-	the	bitwise	operators	can	only	be	applied	to	integers
and	the	logical	operators	can	only	be	applied	to	booleans.	Rust	has	the		-		unary	operator
which	negates	a	number.	The		!		operator	negates	a	boolean	and	inverts	every	bit	on	an
integer	type	(equivalent	to		~		in	C++	in	the	latter	case).	Rust	has	compound	assignment
operators	as	in	C++,	e.g.,		+=	,	but	does	not	have	increment	or	decrement	operators	(e.g.,
	++	).

Rust	for	C++	Programmers

14Primitive	types	and	operators



Unique	pointers
Rust	is	a	systems	language	and	therefore	must	give	you	raw	access	to	memory.	It	does	this
(as	in	C++)	via	pointers.	Pointers	are	one	area	where	Rust	and	C++	are	very	different,	both
in	syntax	and	semantics.	Rust	enforces	memory	safety	by	type	checking	pointers.	That	is
one	of	its	major	advantages	over	other	languages.	Although	the	type	system	is	a	bit
complex,	you	get	memory	safety	and	bare-metal	performance	in	return.

I	had	intended	to	cover	all	of	Rust's	pointers	in	one	post,	but	I	think	the	subject	is	too	large.
So	this	post	will	cover	just	one	kind	-	unique	pointers	-	and	other	kinds	will	be	covered	in
follow	up	posts.

First,	an	example	without	pointers:

fn	foo()	{
				let	x	=	75;

				//	...	do	something	with	`x`	...
}

When	we	reach	the	end	of		foo	,		x		goes	out	of	scope	(in	Rust	as	in	C++).	That	means	the
variable	can	no	longer	be	accessed	and	the	memory	for	the	variable	can	be	reused.

In	Rust,	for	every	type		T		we	can	write		Box<T>		for	an	owning	(aka	unique)	pointer	to		T	.
We	use		Box::new(...)		to	allocate	space	on	the	heap	and	initialise	that	space	with	the
supplied	value.	This	is	similar	to		new		in	C++.	For	example,

fn	foo()	{
				let	x	=	Box::new(75);
}

Here		x		is	a	pointer	to	a	location	on	the	heap	which	contains	the	value		75	.		x		has	type
	Box<int>	;	we	could	have	written		let	x:	Box<int>	=	Box::new(75);	.	This	is	similar	to	writing
	int*	x	=	new	int(75);		in	C++.	Unlike	in	C++,	Rust	will	tidy	up	the	memory	for	us,	so	there
is	no	need	to	call		free		or		delete	.	Unique	pointers	behave	similarly	to	values	-	they	are
deleted	when	the	variable	goes	out	of	scope.	In	our	example,	at	the	end	of	the	function
	foo	,		x		can	no	longer	be	accessed	and	the	memory	pointed	at	by		x		can	be	reused.

Owning	pointers	are	dereferenced	using	the		*		as	in	C++.	E.g.,
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fn	foo()	{
				let	x	=	Box::new(75);
				println!("`x`	points	to	{}",	*x);
}

As	with	primitive	types	in	Rust,	owning	pointers	and	the	data	they	point	to	are	immutable	by
default.	Unlike	C,	you	can't	have	a	mutable	(unique)	pointer	to	immutable	data	or	vice-versa.
Mutability	of	the	data	follows	from	the	pointer.	E.g.,

fn	foo()	{
				let	x	=	Box::new(75);
				let	y	=	Box::new(42);
				//	x	=	y;									//	Not	allowed,	x	is	immutable.
				//	*x	=	43;							//	Not	allowed,	*x	is	immutable.
				let	mut	x	=	Box::new(75);
				x	=	y;												//	OK,	x	is	mutable.
				*x	=	43;										//	OK,	*x	is	mutable.
}

Owning	pointers	can	be	returned	from	a	function	and	continue	to	live	on.	If	they	are	returned,
then	their	memory	will	not	be	freed,	i.e.,	there	are	no	dangling	pointers	in	Rust.	The	memory
will	not	leak.	However,	it	will	eventually	go	out	of	scope	and	then	it	will	be	free.	E.g.,

fn	foo()	->	Box<i32>	{
				let	x	=	Box::new(75);
				x
}

fn	bar()	{
				let	y	=	foo();
				//	...	use	y	...
}

Here,	memory	is	initialised	in		foo	,	and	returned	to		bar	.		x		is	returned	from		foo		and
stored	in		y	,	so	it	is	not	deleted.	At	the	end	of		bar	,		y		goes	out	of	scope	and	so	the
memory	is	reclaimed.

Owning	pointers	are	unique	(also	called	linear)	because	there	can	be	only	one	(owning)
pointer	to	any	piece	of	memory	at	any	time.	This	is	accomplished	by	move	semantics.	When
one	pointer	points	at	a	value,	any	previous	pointer	can	no	longer	be	accessed.	E.g.,
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fn	foo()	{
				let	x	=	Box::new(75);
				let	y	=	x;
				//	x	can	no	longer	be	accessed
				//	let	z	=	*x;			//	Error.
}

Likewise,	if	an	owning	pointer	is	passed	to	another	function	or	stored	in	a	field,	it	can	no
longer	be	accessed:

fn	bar(y:	Box<int>)	{
}

fn	foo()	{
				let	x	=	Box::new(75);
				bar(x);
				//	x	can	no	longer	be	accessed
				//	let	z	=	*x;			//	Error.
}

Rust's	unique	pointers	are	similar	to	C++		std::unique_ptr	s.	In	Rust,	as	in	C++,	there	can
be	only	one	unique	pointer	to	a	value	and	that	value	is	deleted	when	the	pointer	goes	out	of
scope.	Rust	does	most	of	its	checking	statically	rather	than	at	runtime.	So,	in	C++	accessing
a	unique	pointer	whose	value	has	moved	will	result	in	a	runtime	error	(since	it	will	be	null).	In
Rust	this	produces	a	compile	time	error	and	you	cannot	go	wrong	at	runtime.

We'll	see	later	that	it	is	possible	to	create	other	pointer	types	which	point	at	a	unique
pointer's	value	in	Rust.	This	is	similar	to	C++.	However,	in	C++	this	allows	you	to	cause
errors	at	runtime	by	holding	a	pointer	to	freed	memory.	That	is	not	possible	in	Rust	(we'll	see
how	when	we	cover	Rust's	other	pointer	types).

As	shown	above,	owning	pointers	must	be	dereferenced	to	use	their	values.	However,
method	calls	automatically	dereference,	so	there	is	no	need	for	a		->		operator	or	to	use		*	
for	method	calls.	In	this	way,	Rust	pointers	are	a	bit	similar	to	both	pointers	and	references	in
C++.	E.g.,

fn	bar(x:	Box<Foo>,	y:	Box<Box<Box<Box<Foo>>>>)	{
				x.foo();
				y.foo();
}

Assuming	that	the	type		Foo		has	a	method		foo()	,	both	these	expressions	are	OK.

Calling	Box::new()	with	an	existing	value	does	not	take	a	reference	to	that	value,	it	copies
that	value.	So,
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fn	foo()	{
				let	x	=	3;
				let	mut	y	=	Box::new(x);
				*y	=	45;
				println!("x	is	still	{}",	x);
}

In	general,	Rust	has	move	rather	than	copy	semantics	(as	seen	above	with	unique	pointers).
Primitive	types	have	copy	semantics,	so	in	the	above	example	the	value		3		is	copied,	but
for	more	complex	values	it	would	be	moved.	We'll	cover	this	in	more	detail	later.

Sometimes	when	programming,	however,	we	need	more	than	one	reference	to	a	value.	For
that,	Rust	has	borrowed	pointers.	I'll	cover	those	in	the	next	post.
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Borrowed	pointers
In	the	last	post	I	introduced	unique	pointers.	This	time	I	will	talk	about	another	kind	of	pointer
which	is	much	more	common	in	most	Rust	programs:	borrowed	pointers	(aka	borrowed
references,	or	just	references).

If	we	want	to	have	a	reference	to	an	existing	value	(as	opposed	to	creating	a	new	value	on
the	heap	and	pointing	to	it,	as	with	unique	pointers),	we	must	use		&	,	a	borrowed	reference.
These	are	probably	the	most	common	kind	of	pointer	in	Rust,	and	if	you	want	something	to
fill	in	for	a	C++	pointer	or	reference	(e.g.,	for	passing	a	parameter	to	a	function	by
reference),	this	is	probably	it.

We	use	the		&		operator	to	create	a	borrowed	reference	and	to	indicate	reference	types,	and
	*		to	dereference	them.	The	same	rules	about	automatic	dereferencing	apply	as	for	unique
pointers.	For	example,

fn	foo()	{
				let	x	=	&3;			//	type:	&i32
				let	y	=	*x;			//	3,	type:	i32
				bar(x,	*x);
				bar(&y,	y);
}

fn	bar(z:	&i32,	i:	i32)	{
				//	...
}

The		&		operator	does	not	allocate	memory	(we	can	only	create	a	borrowed	reference	to	an
existing	value)	and	if	a	borrowed	reference	goes	out	of	scope,	no	memory	gets	deleted.

Borrowed	references	are	not	unique	-	you	can	have	multiple	borrowed	references	pointing	to
the	same	value.	E.g.,

fn	foo()	{
				let	x	=	5;																//	type:	i32
				let	y	=	&x;															//	type:	&i32
				let	z	=	y;																//	type:	&i32
				let	w	=	y;																//	type:	&i32
				println!("These	should	all	5:	{}	{}	{}",	*w,	*y,	*z);
}
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Like	values,	borrowed	references	are	immutable	by	default.	You	can	also	use		&mut		to	take
a	mutable	reference,	or	to	denote	mutable	reference	types.	Mutable	borrowed	references
are	unique	(you	can	only	take	a	single	mutable	reference	to	a	value,	and	you	can	only	have
a	mutable	reference	if	there	are	no	immutable	references).	You	can	use	mutable	reference
where	an	immutable	one	is	wanted,	but	not	vice	versa.	Putting	all	that	together	in	an
example:

fn	bar(x:	&i32)	{	...	}
fn	bar_mut(x:	&mut	i32)	{	...	}		//	&mut	i32	is	a	reference	to	an	i32	which
																																	//	can	be	mutated

fn	foo()	{
				let	x	=	5;
				//let	xr	=	&mut	x;					//	Error	-	can't	make	a	mutable	reference	to	an
																											//	immutable	variable
				let	xr	=	&x;											//	Ok	(creates	an	immutable	ref)
				bar(xr);
				//bar_mut(xr);									//	Error	-	expects	a	mutable	ref

				let	mut	x	=	5;
				let	xr	=	&x;											//	Ok	(creates	an	immutable	ref)
				//*xr	=	4;													//	Error	-	mutating	immutable	ref
				//let	xr	=	&mut	x;					//	Error	-	there	is	already	an	immutable	ref,	so	we
																											//	can't	make	a	mutable	one

				let	mut	x	=	5;
				let	xr	=	&mut	x;							//	Ok	(creates	a	mutable	ref)
				*xr	=	4;															//	Ok
				//let	xr	=	&x;									//	Error	-	there	is	already	a	mutable	ref,	so	we
																											//	can't	make	an	immutable	one
				//let	xr	=	&mut	x;					//	Error	-	can	only	have	one	mutable	ref	at	a	time
				bar(xr);															//	Ok
				bar_mut(xr);											//	Ok
}

Note	that	the	reference	may	be	mutable	(or	not)	independently	of	the	mutableness	of	the
variable	holding	the	reference.	This	is	similar	to	C++	where	pointers	can	be	const	(or	not)
independently	of	the	data	they	point	to.	This	is	in	contrast	to	unique	pointers,	where	the
mutableness	of	the	pointer	is	linked	to	the	mutableness	of	the	data.	For	example,
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fn	foo()	{
				let	mut	x	=	5;
				let	mut	y	=	6;
				let	xr	=	&mut	x;
				//xr	=	&mut	y;								//	Error	xr	is	immutable

				let	mut	x	=	5;
				let	mut	y	=	6;
				let	mut	xr	=	&mut	x;
				xr	=	&mut	y;										//	Ok

				let	mut	x	=	5;
				let	mut	y	=	6;
				let	mut	xr	=	&x;
				xr	=	&y;														//	Ok	-	xr	is	mut,	even	though	the	referenced	data	is	not
}

If	a	mutable	value	is	borrowed,	it	becomes	immutable	for	the	duration	of	the	borrow.	Once
the	borrowed	pointer	goes	out	of	scope,	the	value	can	be	mutated	again.	This	is	in	contrast
to	unique	pointers,	which	once	moved	can	never	be	used	again.	For	example,

fn	foo()	{
				let	mut	x	=	5;												//	type:	i32
				{
								let	y	=	&x;											//	type:	&i32
								//x	=	4;														//	Error	-	x	has	been	borrowed
								println!("{}",	x);				//	Ok	-	x	can	be	read
				}
				x	=	4;																				//	OK	-	y	no	longer	exists
}

The	same	thing	happens	if	we	take	a	mutable	reference	to	a	value	-	the	value	still	cannot	be
modified.	In	general	in	Rust,	data	can	only	ever	be	modified	via	one	variable	or	pointer.
Furthermore,	since	we	have	a	mutable	reference,	we	can't	take	an	immutable	reference.
That	limits	how	we	can	use	the	underlying	value:

fn	foo()	{
				let	mut	x	=	5;												//	type:	i32
				{
								let	y	=	&mut	x;							//	type:	&mut	i32
								//x	=	4;														//	Error	-	x	has	been	borrowed
								//println!("{}",	x);		//	Error	-	requires	borrowing	x
				}
				x	=	4;																				//	OK	-	y	no	longer	exists
}
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Unlike	C++,	Rust	won't	automatically	reference	a	value	for	you.	So	if	a	function	takes	a
parameter	by	reference,	the	caller	must	reference	the	actual	parameter.	However,	pointer
types	will	automatically	be	converted	to	a	reference:

fn	foo(x:	&i32)	{	...	}

fn	bar(x:	i32,	y:	Box<i32>)	{
				foo(&x);
				//	foo(x);			//	Error	-	expected	&i32,	found	i32
				foo(y);						//	Ok
				foo(&*y);				//	Also	ok,	and	more	explicit,	but	not	good	style
}

	mut		vs		const	
At	this	stage	it	is	probably	worth	comparing		mut		in	Rust	to		const		in	C++.	Superficially	they
are	opposites.	Values	are	immutable	by	default	in	Rust	and	can	be	made	mutable	by	using
	mut	.	Values	are	mutable	by	default	in	C++,	but	can	be	made	constant	by	using		const	.	The
subtler	and	more	important	difference	is	that	C++	const-ness	applies	only	to	the	current	use
of	a	value,	whereas	Rust's	immutability	applies	to	all	uses	of	a	value.	So	in	C++	if	I	have	a
	const		variable,	someone	else	could	have	a	non-const	reference	to	it	and	it	could	change
without	me	knowing.	In	Rust	if	you	have	an	immutable	variable,	you	are	guaranteed	it	won't
change.

As	we	mentioned	above,	all	mutable	variables	are	unique.	So	if	you	have	a	mutable	value,
you	know	it	is	not	going	to	change	unless	you	change	it.	Furthermore,	you	can	change	it
freely	since	you	know	that	no	one	else	is	relying	on	it	not	changing.

Borrowing	and	lifetimes
One	of	the	primary	safety	goals	of	Rust	is	to	avoid	dangling	pointers	(where	a	pointer
outlives	the	memory	it	points	to).	In	Rust,	it	is	impossible	to	have	a	dangling	borrowed
reference.	It	is	only	legal	to	create	a	borrowed	reference	to	memory	which	will	be	alive
longer	than	the	reference	(well,	at	least	as	long	as	the	reference).	In	other	words,	the	lifetime
of	the	reference	must	be	shorter	than	the	lifetime	of	the	referenced	value.

That	has	been	accomplished	in	all	the	examples	in	this	post.	Scopes	introduced	by		{}		or
functions	are	bounds	on	lifetimes	-	when	a	variable	goes	out	of	scope	its	lifetime	ends.	If	we
try	to	take	a	reference	to	a	shorter	lifetime,	such	as	in	a	narrower	scope,	the	compiler	will
give	us	an	error.	For	example,
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fn	foo()	{
				let	x	=	5;
				let	mut	xr	=	&x;		//	Ok	-	x	and	xr	have	the	same	lifetime
				{
								let	y	=	6;
								//xr	=	&y					//	Error	-	xr	will	outlive	y
				}																	//	y	is	released	here
}																					//	x	and	xr	are	released	here

In	the	above	example,	x	and	xr	don't	have	the	same	lifetime	because	xr	starts	later	than	x,
but	it's	the	end	of	lifetimes	which	is	more	interesting,	since	you	can't	reference	a	variable
before	it	exists	in	any	case	-	something	else	which	Rust	enforces	and	which	makes	it	safer
than	C++.

Explicit	lifetimes
After	playing	with	borrowed	pointers	for	a	while,	you'll	probably	come	across	borrowed
pointers	with	an	explicit	lifetime.	These	have	the	syntax		&'a	T		(cf		&T	).	They're	kind	of	a
big	topic	since	I	need	to	cover	lifetime-polymorphism	at	the	same	time	so	I'll	leave	it	for
another	post	(there	are	a	few	more	less	common	pointer	types	to	cover	first	though).	For
now,	I	just	want	to	say	that		&T		is	a	shorthand	for		&'a	T		where		a		is	the	current	scope,
that	is	the	scope	in	which	the	type	is	declared.
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Reference	counted	and	raw	pointers
TODO	remove	all	references	to	Gc	pointers

TODO	add	discussion	of	custom	pointers	and	Deref	trait	(maybe	later,	not	here)

So	far	we've	covered	unique	and	borrowed	pointers.	Unique	pointers	are	very	similar	to	the
new	std::unique_ptr	in	C++	and	borrowed	references	are	the	'default'	pointer	you	usually
reach	for	if	you	would	use	a	pointer	or	reference	in	C++.	Rust	has	a	few	more,	rarer	pointers
either	in	the	libraries	or	built	in	to	the	language.	These	are	mostly	similar	to	various	kinds	of
smart	pointers	you	might	be	used	to	in	C++.

This	post	took	a	while	to	write	and	I	still	don't	like	it.	There	are	a	lot	of	loose	ends	here,	both
in	my	write	up	and	in	Rust	itself.	I	hope	some	will	get	better	with	later	posts	and	some	will
get	better	as	the	language	develops.	If	you	are	learning	Rust,	you	might	even	want	to	skip
this	stuff	for	now,	hopefully	you	won't	need	it.	Its	really	here	just	for	completeness	after	the
posts	on	other	pointer	types.

It	might	feel	like	Rust	has	a	lot	of	pointer	types,	but	it	is	pretty	similar	to	C++	once	you	think
about	the	various	kinds	of	smart	pointers	available	in	libraries.	In	Rust,	however,	you	are
more	likely	to	meet	them	when	you	first	start	learning	the	language.	Because	Rust	pointers
have	compiler	support,	you	are	also	much	less	likely	to	make	errors	when	using	them.

I'm	not	going	to	cover	these	in	as	much	detail	as	unique	and	borrowed	references	because,
frankly,	they	are	not	as	important.	I	might	come	back	to	them	in	more	detail	later	on.

Rc
Reference	counted	pointers	come	as	part	of	the	rust	standard	library.	They	are	in	the
	std::rc		module	(we'll	cover	modules	soon-ish.	The	modules	are	the	reason	for	the		use	
incantations	in	the	examples).	A	reference	counted	pointer	to	an	object	of	type		T		has	type
	Rc<T>	.	You	create	reference	counted	pointers	using	a	static	method	(which	for	now	you	can
think	of	like	C++'s,	but	we'll	see	later	they	are	a	bit	different)	-		Rc::new(...)		which	takes	a
value	to	create	the	pointer	to.	This	constructor	method	follows	Rust's	usual	move/copy
semantics	(like	we	discussed	for	unique	pointers)	-	in	either	case,	after	calling	Rc::new,	you
will	only	be	able	to	access	the	value	via	the	pointer.

As	with	the	other	pointer	types,	the		.		operator	does	all	the	dereferencing	you	need	it	to.
You	can	use		*		to	manually	dereference.
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To	pass	a	ref-counted	pointer	you	need	to	use	the		clone		method.	This	kinda	sucks,	and
hopefully	we'll	fix	that,	but	that	is	not	for	sure	(sadly).	You	can	take	a	(borrowed)	reference	to
the	pointed	at	value,	so	hopefully	you	don't	need	to	clone	too	often.	Rust's	type	system
ensures	that	the	ref-counted	variable	will	not	be	deleted	before	any	references	expire.
Taking	a	reference	has	the	added	advantage	that	it	doesn't	need	to	increment	or	decrement
the	ref	count,	and	so	will	give	better	performance	(although,	that	difference	is	probably
marginal	since	Rc	objects	are	limited	to	a	single	thread	and	so	the	ref	count	operations	don't
have	to	be	atomic).	As	in	C++,	you	can	also	take	a	reference	to	the	Rc	pointer.

An	Rc	example:

use	std::rc::Rc;

fn	bar(x:	Rc<int>)	{	}
fn	baz(x:	&int)	{	}

fn	foo()	{
				let	x	=	Rc::new(45);
				bar(x.clone());			//	Increments	the	ref-count
				baz(&*x);									//	Does	not	increment
				println!("{}",	100	-	*x);
}		//	Once	this	scope	closes,	all	Rc	pointers	are	gone,	so	ref-count	==	0
			//	and	the	memory	will	be	deleted.

Ref	counted	pointers	are	always	immutable.	If	you	want	a	mutable	ref-counted	object	you
need	to	use	a	RefCell	(or	Cell)	wrapped	in	an		Rc	.

Cell	and	RefCell
Cell	and	RefCell	are	structs	which	allow	you	to	'cheat'	the	mutability	rules.	This	is	kind	of
hard	to	explain	without	first	covering	Rust	data	structures	and	how	they	work	with	mutability,
so	I'm	going	to	come	back	to	these	slightly	tricky	objects	later.	For	now,	you	should	know
that	if	you	want	a	mutable,	ref	counted	object	you	need	a	Cell	or	RefCell	wrapped	in	an	Rc.
As	a	first	approximation,	you	probably	want	Cell	for	primitive	data	and	RefCell	for	objects
with	move	semantics.	So,	for	a	mutable,	ref-counted	int	you	would	use		Rc<Cell<int>>	.

*T	-	unsafe	pointers
TODO	raw	pointers	must	be	const	or	mut	now
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Finally	Rust	has	unsafe	pointers.	These	are	denoted		*T		and	are	created	using		&		(you
might	need	to	specify	a	type	to	get	a		*T		rather	than	a		&T		since	the		&		operator	can
create	either	a	borrowed	reference	or	an	unsafe	pointer).	These	are	like	C	pointers,	just	a
pointer	to	memory	with	no	restrictions	on	how	they	are	used	(you	can't	do	pointer	arithmetic
without	casting,	but	you	can	do	it	that	way	if	you	must).	Unsafe	pointers	are	the	only	pointer
type	in	Rust	which	can	be	null.	There	is	no	automatic	dereferencing	of	unsafe	pointers	(so	to
call	a	method	you	have	to	write		(*x).foo()	)	and	no	automatic	referencing.	The	most
important	restriction	is	that	they	can't	be	dereferenced	(and	thus	can't	be	used)	outside	of	an
unsafe	block.	In	regular	Rust	code	you	can	only	pass	them	around.

So,	what	is	unsafe	code?	Rust	has	strong	safety	guarantees,	and	(rarely)	they	prevent	you
doing	something	you	need	to	do.	Since	Rust	aims	to	be	a	systems	language,	it	has	to	be
able	to	do	anything	that	is	possible	and	sometimes	that	means	doing	things	the	compiler
can't	verify	is	safe.	To	accomplish	that,	Rust	has	the	concept	of	unsafe	blocks,	marked	by
the		unsafe		keyword.	In	unsafe	code	you	can	do	unsafe	things	-	dereference	an	unsafe
pointer,	index	into	an	array	without	bounds	checking,	call	code	written	in	another	language
via	the	FFI,	or	cast	variables.	Obviously,	you	have	to	be	much	more	careful	writing	unsafe
code	than	writing	regular	Rust	code.	In	fact,	you	should	only	very	rarely	write	unsafe	code.
Mostly	it	is	used	in	very	small	chunks	in	libraries,	rather	than	in	client	code.	In	unsafe	code
you	must	do	all	the	things	you	normally	do	in	C++	to	ensure	safety.	Furthermore,	you	must
ensure	that	by	the	time	the	unsafe	block	finishes,	you	have	re-established	all	of	the
invariants	that	the	Rust	compiler	would	usually	enforce,	otherwise	you	risk	causing	bugs	in
safe	code	too.

An	example	of	using	an	unsafe	pointer:

fn	foo()	{
				let	x	=	5;
				let	xp:	*int	=	&5;
				println!("x+5={}",	add_5(xp));
}

fn	add_5(p:	*int)	->	int	{
				unsafe	{
								if	!p.is_null()	{	//	Note	that	*-pointers	do	not	auto-deref,	so	this	is
																										//	a	method	implemented	on	*int,	not	int.
												*p	+	5
								}	else	{
												-1												//	Not	a	recommended	error	handling	strategy.
								}
				}
}

As	with	borrowed	references,	unsafe	pointers	are	immutable	by	default	and	can	be	made
mutable	using	the		mut		keyword,	for	example		*mut	int	.
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And	that	concludes	our	tour	of	Rust's	pointers.	Next	time	we'll	take	a	break	from	pointers
and	look	at	Rust's	data	structures.	We'll	come	back	to	borrowed	references	again	in	a	later
post	though.
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Data	types
In	this	post	I'll	discuss	Rust's	data	types.	These	are	roughly	equivalent	to	classes,	structs,
and	enums	in	C++.	One	difference	with	Rust	is	that	data	and	behaviour	are	much	more
strictly	separated	in	Rust	than	C++	(or	Java,	or	other	OO	languages).	Behaviour	is	defined
by	functions	and	those	can	be	defined	in	traits	and		impl	s	(implementations),	but	traits
cannot	contain	data,	they	are	similar	to	Java's	interfaces	in	that	respect.	I'll	cover	traits	and
impls	in	a	later	post,	this	one	is	all	about	data.

Structs
A	rust	struct	is	similar	to	a	C	struct	or	a	C++	struct	without	methods.	Simply	a	list	of	named
fields.	The	syntax	is	best	seen	with	an	example:

struct	S	{
				field1:	int,
				field2:	SomeOtherStruct
}

Here	we	define	a	struct	called		S		with	two	fields.	The	fields	are	comma	separated;	if	you
like,	you	can	comma-terminate	the	last	field	too.

Structs	introduce	a	type.	In	the	example,	we	could	use		S		as	a	type.		SomeOtherStruct		is
assumed	to	be	another	struct	(used	as	a	type	in	the	example),	and	(like	C++)	it	is	included
by	value,	that	is,	there	is	no	pointer	to	another	struct	object	in	memory.

Fields	in	structs	are	accessed	using	the		.		operator	and	their	name.	An	example	of	struct
use:

fn	foo(s1:	S,	s2:	&S)	{
				let	f	=	s1.field1;
				if	f	==	s2.field1	{
								println!("field1	matches!");
				}
}

Here		s1		is	struct	object	passed	by	value	and		s2		is	a	struct	object	passed	by	reference.
As	with	method	call,	we	use	the	same		.		to	access	fields	in	both,	no	need	for		->	.
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Structs	are	initialised	using	struct	literals.	These	are	the	name	of	the	struct	and	values	for
each	field.	For	example,

fn	foo(sos:	SomeOtherStruct)	{
				let	x	=	S	{	field1:	45,	field2:	sos	};		//	initialise	x	with	a	struct	literal
				println!("x.field1	=	{}",	x.field1);
}

Structs	cannot	be	recursive,	that	is	you	can't	have	cycles	of	struct	names	involving
definitions	and	field	types.	This	is	because	of	the	value	semantics	of	structs.	So	for	example,
	struct	R	{	r:	Option<R>	}		is	illegal	and	will	cause	a	compiler	error	(see	below	for	more
about	Option).	If	you	need	such	a	structure	then	you	should	use	some	kind	of	pointer;	cycles
with	pointers	are	allowed:

struct	R	{
				r:	Option<Box<R>>
}

If	we	didn't	have	the		Option		in	the	above	struct,	there	would	be	no	way	to	instantiate	the
struct	and	Rust	would	signal	an	error.

Structs	with	no	fields	do	not	use	braces	in	either	their	definition	or	literal	use.	Definitions	do
need	a	terminating	semi-colon	though,	presumably	just	to	facilitate	parsing.

struct	Empty;

fn	foo()	{
				let	e	=	Empty;
}

Tuples
Tuples	are	anonymous,	heterogeneous	sequences	of	data.	As	a	type,	they	are	declared	as
a	sequence	of	types	in	parentheses.	Since	there	is	no	name,	they	are	identified	by	structure.
For	example,	the	type		(int,	int)		is	a	pair	of	integers	and		(i32,	f32,	S)		is	a	triple.	Tuple
values	are	initialised	in	the	same	way	as	tuple	types	are	declared,	but	with	values	instead	of
types	for	the	components,	e.g.,		(4,	5)	.	An	example:

//	foo	takes	a	struct	and	returns	a	tuple
fn	foo(x:	SomeOtherStruct)	->	(i32,	f32,	S)	{
				(23,	45.82,	S	{	field1:	54,	field2:	x	})
}
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Tuples	can	be	used	by	destructuring	using	a		let		expression,	e.g.,

fn	bar(x:	(int,	int))	{
				let	(a,	b)	=	x;
				println!("x	was	({},	{})",	a,	b);
}

We'll	talk	more	about	destructuring	next	time.

Tuple	structs
Tuple	structs	are	named	tuples,	or	alternatively,	structs	with	unnamed	fields.	They	are
declared	using	the		struct		keyword,	a	list	of	types	in	parentheses,	and	a	semicolon.	Such	a
declaration	introduces	their	name	as	a	type.	Their	fields	must	be	accessed	by	destructuring
(like	a	tuple),	rather	than	by	name.	Tuple	structs	are	not	very	common.

struct	IntPoint	(int,	int);

fn	foo(x:	IntPoint)	{
				let	IntPoint(a,	b)	=	x;		//	Note	that	we	need	the	name	of	the	tuple
																													//	struct	to	destructure.
				println!("x	was	({},	{})",	a,	b);
}

Enums
Enums	are	types	like	C++	enums	or	unions,	in	that	they	are	types	which	can	take	multiple
values.	The	simplest	kind	of	enum	is	just	like	a	C++	enum:

enum	E1	{
				Var1,
				Var2,
				Var3
}

fn	foo()	{
				let	x:	E1	=	Var2;
				match	x	{
								Var2	=>	println!("var2"),
								_	=>	{}
				}
}
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However,	Rust	enums	are	much	more	powerful	than	that.	Each	variant	can	contain	data.
Like	tuples,	these	are	defined	by	a	list	of	types.	In	this	case	they	are	more	like	unions	than
enums	in	C++.	Rust	enums	are	tagged	unions	rather	untagged	(as	in	C++),	that	means	you
can't	mistake	one	variant	of	an	enum	for	another	at	runtime.	An	example:

enum	Expr	{
				Add(int,	int),
				Or(bool,	bool),
				Lit(int)
}

fn	foo()	{
				let	x	=	Or(true,	false);			//	x	has	type	Expr
}

Many	simple	cases	of	object-oriented	polymorphism	are	better	handled	in	Rust	using
enums.

To	use	enums	we	usually	use	a	match	expression.	Remember	that	these	are	similar	to	C++
switch	statements.	I'll	go	into	more	depth	on	these	and	other	ways	to	destructure	data	next
time.	Here's	an	example:

fn	bar(e:	Expr)	{
				match	e	{
								Add(x,	y)	=>	println!("An	`Add`	variant:	{}	+	{}",	x,	y),
								Or(..)	=>	println!("An	`Or`	variant"),
								_	=>	println!("Something	else	(in	this	case,	a	`Lit`)"),
				}
}

Each	arm	of	the	match	expression	matches	a	variant	of		Expr	.	All	variants	must	be	covered.
The	last	case	(	_	)	covers	all	remaining	variants,	although	in	the	example	there	is	only		Lit	.
Any	data	in	a	variant	can	be	bound	to	a	variable.	In	the		Add		arm	we	are	binding	the	two	ints
in	an		Add		to		x		and		y	.	If	we	don't	care	about	the	data,	we	can	use		..		to	match	any
data,	as	we	do	for		Or	.

Option
One	particularly	common	enum	in	Rust	is		Option	.	This	has	two	variants	-		Some		and		None	.
	None		has	no	data	and		Some		has	a	single	field	with	type		T		(	Option		is	a	generic	enum,
which	we	will	cover	later,	but	hopefully	the	general	idea	is	clear	from	C++).	Options	are	used
to	indicate	a	value	might	be	there	or	might	not.	Any	place	you	use	a	null	pointer	in	C++	to
indicate	a	value	which	is	in	some	way	undefined,	uninitialised,	or	false,	you	should	probably
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use	an	Option	in	Rust.	Using	Option	is	safer	because	you	must	always	check	it	before	use;
there	is	no	way	to	do	the	equivalent	of	dereferencing	a	null	pointer.	They	are	also	more
general,	you	can	use	them	with	values	as	well	as	pointers.	An	example:

use	std::rc::Rc;

struct	Node	{
				parent:	Option<Rc<Node>>,
				value:	int
}

fn	is_root(node:	Node)	->	bool	{
				match	node.parent	{
								Some(_)	=>	false,
								None	=>	true
				}
}

Here,	the	parent	field	could	be	either	a		None		or	a		Some		containing	an		Rc<Node>	.	In	the
example,	we	never	actually	use	that	payload,	but	in	real	life	you	usually	would.

There	are	also	convenience	methods	on	Option,	so	you	could	write	the	body	of		is_root		as
	node.is_none()		or		!node.is_some()	.

Inherited	mutabilty	and	Cell/RefCell
Local	variables	in	Rust	are	immutable	by	default	and	can	be	marked	mutable	using		mut	.
We	don't	mark	fields	in	structs	or	enums	as	mutable,	their	mutability	is	inherited.	This	means
that	a	field	in	a	struct	object	is	mutable	or	immutable	depending	on	whether	the	object	itself
is	mutable	or	immutable.	Example:
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struct	S1	{
				field1:	int,
				field2:	S2
}
struct	S2	{
				field:	int
}

fn	main()	{
				let	s	=	S1	{	field1:	45,	field2:	S2	{	field:	23	}	};
				//	s	is	deeply	immutable,	the	following	mutations	are	forbidden
				//	s.field1	=	46;
				//	s.field2.field	=	24;

				let	mut	s	=	S1	{	field1:	45,	field2:	S2	{	field:	23	}	};
				//	s	is	mutable,	these	are	OK
				s.field1	=	46;
				s.field2.field	=	24;
}

Inherited	mutability	in	Rust	stops	at	references.	This	is	similar	to	C++	where	you	can	modify
a	non-const	object	via	a	pointer	from	a	const	object.	If	you	want	a	reference	field	to	be
mutable,	you	have	to	use		&mut		on	the	field	type:

struct	S1	{
				f:	int
}
struct	S2<'a>	{
				f:	&'a	mut	S1			//	mutable	reference	field
}
struct	S3<'a>	{
				f:	&'a	S1							//	immutable	reference	field
}

fn	main()	{
				let	mut	s1	=	S1{f:56};
				let	s2	=	S2	{	f:	&mut	s1};
				s2.f.f	=	45;			//	legal	even	though	s2	is	immutable
				//	s2.f	=	&mut	s1;	//	illegal	-	s2	is	not	mutable
				let	s1	=	S1{f:56};
				let	mut	s3	=	S3	{	f:	&s1};
				s3.f	=	&s1;					//	legal	-	s3	is	mutable
				//	s3.f.f	=	45;	//	illegal	-	s3.f	is	immutable
}

(The		'a		parameter	on		S2		and		S3		is	a	lifetime	parameter,	we'll	cover	those	soon).
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Sometimes	whilst	an	object	is	logically	immutable,	it	has	parts	which	need	to	be	internally
mutable.	Think	of	various	kinds	of	caching	or	a	reference	count	(which	would	not	give	true
logical	immutability	since	the	effect	of	changing	the	ref	count	can	be	observed	via
destructors).	In	C++,	you	would	use	the		mutable		keyword	to	allow	such	mutation	even
when	the	object	is	const.	In	Rust	we	have	the	Cell	and	RefCell	structs.	These	allow	parts	of
immutable	objects	to	be	mutated.	Whilst	that	is	useful,	it	means	you	need	to	be	aware	that
when	you	see	an	immutable	object	in	Rust,	it	is	possible	that	some	parts	may	actually	be
mutable.

RefCell	and	Cell	let	you	get	around	Rust's	strict	rules	on	mutation	and	aliasability.	They	are
safe	to	use	because	they	ensure	that	Rust's	invariants	are	respected	dynamically,	even
though	the	compiler	cannot	ensure	that	those	invariants	hold	statically.	Cell	and	RefCell	are
both	single	threaded	objects.

Use	Cell	for	types	which	have	copy	semantics	(pretty	much	just	primitive	types).	Cell	has
	get		and		set		methods	for	changing	the	stored	value,	and	a		new		method	to	initialise	the
cell	with	a	value.	Cell	is	a	very	simple	object	-	it	doesn't	need	to	do	anything	smart	since
objects	with	copy	semantics	can't	keep	references	elsewhere	(in	Rust)	and	they	can't	be
shared	across	threads,	so	there	is	not	much	to	go	wrong.

Use	RefCell	for	types	which	have	move	semantics,	that	means	nearly	everything	in	Rust,
struct	objects	are	a	common	example.	RefCell	is	also	created	using		new		and	has	a		set	
method.	To	get	the	value	in	a	RefCell,	you	must	borrow	it	using	the	borrow	methods
(	borrow	,		borrow_mut	,		try_borrow	,		try_borrow_mut	)	these	will	give	you	a	borrowed
reference	to	the	object	in	the	RefCell.	These	methods	follow	the	same	rules	as	static
borrowing	-	you	can	only	have	one	mutable	borrow,	and	can't	borrow	mutably	and	immutably
at	the	same	time.	However,	rather	than	a	compile	error	you	get	a	runtime	failure.	The		try_	
variants	return	an	Option	-	you	get		Some(val)		if	the	value	can	be	borrowed	and		None		if	it
can't.	If	a	value	is	borrowed,	calling		set		will	fail	too.

Here's	an	example	using	a	ref-counted	pointer	to	a	RefCell	(a	common	use-case):
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use	std::rc::Rc;
use	std::cell::RefCell;

Struct	S	{
				field:	int
}

fn	foo(x:	Rc<RefCell<S>>)	{
				{
								let	s	=	x.borrow();
								println!("the	field,	twice	{}	{}",	s.f,	x.borrow().field);
								//	let	s	=	x.borrow_mut();	//	Error	-	we've	already	borrowed	the	contents	of	x
				}

				let	s	=	x.borrow_mut();	//	O,	the	earlier	borrows	are	out	of	scope
				s.f	=	45;
				//	println!("The	field	{}",	x.borrow().field);	//	Error	-	can't	mut	and	immut	borrow
				println!("The	field	{}",	s.f);
}

If	you're	using	Cell/RefCell,	you	should	try	to	put	them	on	the	smallest	object	you	can.	That
is,	prefer	to	put	them	on	a	few	fields	of	a	struct,	rather	than	the	whole	struct.	Think	of	them
like	single	threaded	locks,	finer	grained	locking	is	better	since	you	are	more	likely	to	avoid
colliding	on	a	lock.
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Destructuring
Last	time	we	looked	at	Rust's	data	types.	Once	you	have	some	data	structure,	you	will	want
to	get	that	data	out.	For	structs,	Rust	has	field	access,	just	like	C++.	For	tuples,	tuple	structs,
and	enums	you	must	use	destructuring	(there	are	various	convenience	functions	in	the
library,	but	they	use	destructuring	internally).	Destructuring	of	data	structures	doesn't	happen
in	C++,	but	it	might	be	familiar	from	languages	such	as	Python	or	various	functional
languages.	The	idea	is	that	just	as	you	can	create	a	data	structure	by	filling	out	its	fields	with
data	from	a	bunch	of	local	variables,	you	can	fill	out	a	bunch	of	local	variables	with	data	from
a	data	structure.	From	this	simple	beginning,	destructuring	has	become	one	of	Rust's	most
powerful	features.	To	put	it	another	way,	destructuring	combines	pattern	matching	with
assignment	into	local	variables.

Destructuring	is	done	primarily	through	the	let	and	match	statements.	The	match	statement
is	used	when	the	structure	being	desctructured	can	have	difference	variants	(such	as	an
enum).	A	let	expression	pulls	the	variables	out	into	the	current	scope,	whereas	match
introduces	a	new	scope.	To	compare:

fn	foo(pair:	(int,	int))	{
				let	(x,	y)	=	pair;
				//	we	can	now	use	x	and	y	anywhere	in	foo

				match	pair	{
								(x,	y)	=>	{
												//	x	and	y	can	only	be	used	in	this	scope
								}
				}
}

The	syntax	for	patterns	(used	after		let		and	before		=>		in	the	above	example)	in	both
cases	is	(pretty	much)	the	same.	You	can	also	use	these	patterns	in	argument	position	in
function	declarations:

fn	foo((x,	y):	(int,	int))	{
}

(Which	is	more	useful	for	structs	or	tuple-structs	than	tuples).

Most	initialisation	expressions	can	appear	in	a	destructuring	pattern	and	they	can	be
arbitrarily	complex.	That	can	include	references	and	primitive	literals	as	well	as	data
structures.	For	example,
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struct	St	{
				f1:	int,
				f2:	f32
}

enum	En	{
				Var1,
				Var2,
				Var3(int),
				Var4(int,	St,	int)
}

fn	foo(x:	&En)	{
				match	x	{
								&Var1	=>	println!("first	variant"),
								&Var3(5)	=>	println!("third	variant	with	number	5"),
								&Var3(x)	=>	println!("third	variant	with	number	{}	(not	5)",	x),
								&Var4(3,	St	{	f1:	3,	f2:	x	},	45)	=>	{
												println!("destructuring	an	embedded	struct,	found	{}	in	f2",	x)
								}
								&Var4(_,	x,	_)	=>	{
												println!("Some	other	Var4	with	{}	in	f1	and	{}	in	f2",	x.f1,	x.f2)
								}
								_	=>	println!("other	(Var2)")
				}
}

Note	how	we	destructure	through	a	reference	by	using		&		in	the	patterns	and	how	we	use	a
mix	of	literals	(	5	,		3	,		St	{	...	}	),	wildcards	(	_	),	and	variables	(	x	).

You	can	use		_		wherever	a	variable	is	expected	if	you	want	to	ignore	a	single	item	in	a
pattern,	so	we	could	have	used		&Var3(_)		if	we	didn't	care	about	the	integer.	In	the	first
	Var4		arm	we	destructure	the	embedded	struct	(a	nested	pattern)	and	in	the	second		Var4	
arm	we	bind	the	whole	struct	to	a	variable.	You	can	also	use		..		to	stand	in	for	all	fields	of	a
tuple	or	struct.	So	if	you	wanted	to	do	something	for	each	enum	variant	but	don't	care	about
the	content	of	the	variants,	you	could	write:

fn	foo(x:	En)	{
				match	x	{
								Var1	=>	println!("first	variant"),
								Var2	=>	println!("second	variant"),
								Var3(..)	=>	println!("third	variant"),
								Var4(..)	=>	println!("fourth	variant")
				}
}

When	destructuring	structs,	the	fields	don't	need	to	be	in	order	and	you	can	use		..		to	elide
the	remaining	fields.	E.g.,
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struct	Big	{
				field1:	int,
				field2:	int,
				field3:	int,
				field4:	int,
				field5:	int,
				field6:	int,
				field7:	int,
				field8:	int,
				field9:	int,
}

fn	foo(b:	Big)	{
				let	Big	{	field6:	x,	field3:	y,	..}	=	b;
				println!("pulled	out	{}	and	{}",	x,	y);
}

As	a	shorthand	with	structs	you	can	use	just	the	field	name	which	creates	a	local	variable
with	that	name.	The	let	statement	in	the	above	example	created	two	new	local	variables		x	
and		y	.	Alternatively,	you	could	write

fn	foo(b:	Big)	{
				let	Big	{	field6,	field3,	..	}	=	b;
				println!("pulled	out	{}	and	{}",	field3,	field6);
}

Now	we	create	local	variables	with	the	same	names	as	the	fields,	in	this	case		field3		and
	field6	.

There	are	a	few	more	tricks	to	Rust's	destructuring.	Lets	say	you	want	a	reference	to	a
variable	in	a	pattern.	You	can't	use		&		because	that	matches	a	reference,	rather	than
creates	one	(and	thus	has	the	effect	of	dereferencing	the	object).	For	example,

struct	Foo	{
				field:	&'static	int
}

fn	foo(x:	Foo)	{
				let	Foo	{	field:	&y	}	=	x;
}

Here,		y		has	type		int		and	is	a	copy	of	the	field	in		x	.

To	create	a	reference	to	something	in	a	pattern,	you	use	the		ref		keyword.	For	example,
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fn	foo(b:	Big)	{
				let	Big	{	field3:	ref	x,	ref	field6,	..}	=	b;
				println!("pulled	out	{}	and	{}",	*x,	*field6);
}

Here,		x		and		field6		both	have	type		&int		and	are	references	to	the	fields	in		b	.

One	last	trick	when	destructuring	is	that	if	you	are	detructuring	a	complex	object,	you	might
want	to	name	intermediate	objects	as	well	as	individual	fields.	Going	back	to	an	earlier
example,	we	had	the	pattern		&Var4(3,	St{	f1:	3,	f2:	x	},	45)	.	In	that	pattern	we	named
one	field	of	the	struct,	but	you	might	also	want	to	name	the	whole	struct	object.	You	could
write		&Var4(3,	s,	45)		which	would	bind	the	struct	object	to		s	,	but	then	you	would	have	to
use	field	access	for	the	fields,	or	if	you	wanted	to	only	match	with	a	specific	value	in	a	field
you	would	have	to	use	a	nested	match.	That	is	not	fun.	Rust	lets	you	name	parts	of	a	pattern
using		@		syntax.	For	example		&Var4(3,	s	@	St{	f1:	3,	f2:	x	},	45)		lets	us	name	both	a
field	(	x	,	for		f2	)	and	the	whole	struct	(	s	).

That	just	about	covers	your	options	with	Rust	pattern	matching.	There	are	a	few	features	I
haven't	covered,	such	as	matching	vectors,	but	hopefully	you	know	how	to	use		match		and
	let		and	have	seen	some	of	the	powerful	things	you	can	do.	Next	time	I'll	cover	some	of	the
subtle	interactions	between	match	and	borrowing	which	tripped	me	up	a	fair	bit	when
learning	Rust.
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Destructuring	pt2	-	match	and	borrowing
When	destructuring	there	are	some	surprises	in	store	where	borrowing	is	concerned.
Hopefully,	nothing	surprising	once	you	understand	borrowed	references	really	well,	but	worth
discussing	(it	took	me	a	while	to	figure	out,	that's	for	sure.	Longer	than	I	realised,	in	fact,
since	I	screwed	up	the	first	version	of	this	blog	post).

Imagine	you	have	some		&Enum		variable		x		(where		Enum		is	some	enum	type).	You	have
two	choices:	you	can	match		*x		and	list	all	the	variants	(	Variant1	=>	...	,	etc.)	or	you	can
match		x		and	list	reference	to	variant	patterns	(	&Variant1	=>	...	,	etc.).	(As	a	matter	of
style,	prefer	the	first	form	where	possible	since	there	is	less	syntactic	noise).		x		is	a
borrowed	reference	and	there	are	strict	rules	for	how	a	borrowed	reference	can	be
dereferenced,	these	interact	with	match	expressions	in	surprising	ways	(at	least	surprising	to
me),	especially	when	you	a	modifying	an	existing	enum	in	a	seemingly	innocuous	way	and
then	the	compiler	explodes	on	a	match	somewhere.

Before	we	get	into	the	details	of	the	match	expression,	lets	recap	Rust's	rules	for	value
passing.	In	C++,	when	assigning	a	value	into	a	variable	or	passing	it	to	a	function	there	are
two	choices	-	pass-by-value	and	pass-by-reference.	The	former	is	the	default	case	and
means	a	value	is	copied	either	using	a	copy	constructor	or	a	bitwise	copy.	If	you	annotate
the	destination	of	the	parameter	pass	or	assignment	with		&	,	then	the	value	is	passed	by
reference	-	only	a	pointer	to	the	value	is	copied	and	when	you	operate	on	the	new	variable,
you	are	also	operating	on	the	old	value.

Rust	has	the	pass-by-reference	option,	although	in	Rust	the	source	as	well	as	the
destination	must	be	annotated	with		&	.	For	pass-by-value	in	Rust,	there	are	two	further
choices	-	copy	or	move.	A	copy	is	the	same	as	C++'s	semantics	(except	that	there	are	no
copy	constructors	in	Rust).	A	move	copies	the	value	but	destroys	the	old	value	-	Rust's	type
system	ensures	you	can	no	longer	access	the	old	value.	As	examples,		int		has	copy
semantics	and		Box<int>		has	move	semantics:

				fn	foo()	{
				let	x	=	7i;
				let	y	=	x;																//	x	is	copied
				println!("x	is	{}",	x);			//	OK

				let	x	=	box	7i;
				let	y	=	x;																//	x	is	moved
				//println!("x	is	{}",	x);	//	error:	use	of	moved	value:	`x`
}
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Rust	determines	if	an	object	has	move	or	copy	semantics	by	looking	for	destructors.
Destructors	probably	need	a	post	of	their	own,	but	for	now,	an	object	in	Rust	has	a
destructor	if	it	implements	the		Drop		trait.	Just	like	C++,	the	destructor	is	executed	just
before	an	object	is	destroyed.	If	an	object	has	a	destructor	then	it	has	move	semantics.	If	it
does	not,	then	all	of	its	fields	are	examined	and	if	any	of	those	do	then	the	whole	object	has
move	semantics.	And	so	on	down	the	object	structure.	If	no	destructors	are	found	anywhere
in	an	object,	then	it	has	copy	semantics.

Now,	it	is	important	that	a	borrowed	object	is	not	moved,	otherwise	you	would	have	a
reference	to	the	old	object	which	is	no	longer	valid.	This	is	equivalent	to	holding	a	reference
to	an	object	which	has	been	destroyed	after	going	out	of	scope	-	it	is	a	kind	of	dangling
pointer.	If	you	have	a	pointer	to	an	object,	there	could	be	other	references	to	it.	So	if	an
object	has	move	semantics	and	you	have	a	pointer	to	it,	it	is	unsafe	to	dereference	that
pointer.	(If	the	object	has	copy	semantics,	dereferencing	creates	a	copy	and	the	old	object
will	still	exist,	so	other	references	will	be	fine).

OK,	back	to	match	expressions.	As	I	said	earlier,	if	you	want	to	match	some		x		with	type
	&T		you	can	dereference	once	in	the	match	clause	or	match	the	reference	in	every	arm	of
the	match	expression.	Example:

enum	Enum1	{
				Var1,
				Var2,
				Var3
}

fn	foo(x:	&Enum1)	{
				match	*x	{		//	Option	1:	deref	here.
								Var1	=>	{}
								Var2	=>	{}
								Var3	=>	{}
				}

				match	x	{
								//	Option	2:	'deref'	in	every	arm.
								&Var1	=>	{}
								&Var2	=>	{}
								&Var3	=>	{}
				}
}

In	this	case	you	can	take	either	approach	because		Enum1		has	copy	semantics.	Let's	take	a
closer	look	at	each	approach:	in	the	first	approach	we	dereference		x		to	a	temporary
variable	with	type		Enum1		(which	copies	the	value	in		x	)	and	then	do	a	match	against	the
three	variants	of		Enum1	.	This	is	a	'one	level'	match	because	we	don't	go	deep	into	the
value's	type.	In	the	second	approach	there	is	no	dereferencing.	We	match	a	value	with	type
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	&Enum1		against	a	reference	to	each	variant.	This	match	goes	two	levels	deep	-	it	matches
the	type	(always	a	reference)	and	looks	inside	the	type	to	match	the	referred	type	(which	is
	Enum1	).

Either	way,	we	must	ensure	that	we	(that	is,	the	compiler)	must	ensure	we	respect	Rust's
invariants	around	moves	and	references	-	we	must	not	move	any	part	of	an	object	if	it	is
referenced.	If	the	value	being	matched	has	copy	semantics,	that	is	trivial.	If	it	has	move
semantics	then	we	must	make	sure	that	moves	don't	happen	in	any	match	arm.	This	is
accomplished	either	by	ignoring	data	which	would	move,	or	making	references	to	it	(so	we
get	by-reference	passing	rather	than	by-move).

enum	Enum2	{
				//	Box	has	a	destructor	so	Enum2	has	move	semantics.
				Var1(Box<int>),
				Var2,
				Var3
}

fn	foo(x:	&Enum2)	{
				match	*x	{
								//	We're	ignoring	nested	data,	so	this	is	OK
								Var1(..)	=>	{}
								//	No	change	to	the	other	arms.
								Var2	=>	{}
								Var3	=>	{}
				}

				match	x	{
								//	We're	ignoring	nested	data,	so	this	is	OK
								&Var1(..)	=>	{}
								//	No	change	to	the	other	arms.
								&Var2	=>	{}
								&Var3	=>	{}
				}
}

In	either	approach	we	don't	refer	to	any	of	the	nested	data,	so	none	of	it	is	moved.	In	the	first
approach,	even	though		x		is	referenced,	we	don't	touch	its	innards	in	the	scope	of	the
dereference	(i.e.,	the	match	expression)	so	nothing	can	escape.	We	also	don't	bind	the
whole	value	(i.e.,	bind		*x		to	a	variable),	so	we	can't	move	the	whole	object	either.

We	can	take	a	reference	to	any	variant	in	the	second	match,	but	not	in	the	derferenced
version.	So,	in	the	second	approach	replacing	the	second	arm	with		a	@	&Var2	=>	{}		is	OK
(	a		is	a	reference),	but	under	the	first	approach	we	couldn't	write		a	@	Var2	=>	{}		since	that
would	mean	moving		*x		into		a	.	We	could	write		ref	a	@	Var2	=>	{}		(in	which		a		is	also	a
reference),	although	it's	not	a	construct	you	see	very	often.
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But	what	about	if	we	want	to	use	the	data	nested	inside		Var1	?	We	can't	write:

match	*x	{
				Var1(y)	=>	{}
				_	=>	{}
}

or

match	x	{
				&Var1(y)	=>	{}
				_	=>	{}
}

because	in	both	cases	it	means	moving	part	of		x		into		y	.	We	can	use	the	'ref'	keyword	to
get	a	reference	to	the	data	in		Var1	:		&Var1(ref	y)	=>	{}	.That	is	OK,	because	now	we	are
not	dereferencing	anywhere	and	thus	not	moving	any	part	of		x	.	Instead	we	are	creating	a
pointer	which	points	into	the	interior	of		x	.

Alternatively,	we	could	destructure	the	Box	(this	match	is	going	three	levels	deep):
	&Var1(box	y)	=>	{}	.	This	is	OK	because		int		has	copy	semantics	and		y		is	a	copy	of	the
	int		inside	the		Box		inside		Var1		(which	is	'inside'	a	borrowed	reference).	Since		int		has
copy	semantics,	we	don't	need	to	move	any	part	of		x	.	We	could	also	create	a	reference	to
the	int	rather	than	copy	it:		&Var1(box	ref	y)	=>	{}	.	Again,	this	is	OK,	because	we	don't	do
any	dereferencing	and	thus	don't	need	to	move	any	part	of		x	.	If	the	contents	of	the	Box
had	move	semantics,	then	we	could	not	write		&Var1(box	y)	=>	{}	,	we	would	be	forced	to
use	the	reference	version.	We	could	also	use	similar	techniques	with	the	first	approach	to
matching,	which	look	the	same	but	without	the	first		&	.	For	example,		Var1(box	ref	y)	=>
{}	.

Now	lets	get	more	complex.	Lets	say	you	want	to	match	against	a	pair	of	reference-to-enum
values.	Now	we	can't	use	the	first	approach	at	all:
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fn	bar(x:	&Enum2,	y:	&Enum2)	{
				//	Error:	x	and	y	are	being	moved.
				//	match	(*x,	*y)	{
				//					(Var2,	_)	=>	{}
				//					_	=>	{}
				//	}

				//	OK.
				match	(x,	y)	{
								(&Var2,	_)	=>	{}
								_	=>	{}
				}
}

The	first	approach	is	illegal	because	the	value	being	matched	is	created	by	dereferencing
	x		and		y		and	then	moving	them	both	into	a	new	tuple	object.	So	in	this	circumstance,	only
the	second	approach	works.	And	of	course,	you	still	have	to	follow	the	rules	above	for
avoiding	moving	parts	of		x		and		y	.

If	you	do	end	up	only	being	able	to	get	a	reference	to	some	data	and	you	need	the	value
itself,	you	have	no	option	except	to	copy	that	data.	Usually	that	means	using		clone()	.	If	the
data	doesn't	implement	clone,	you're	going	to	have	to	further	destructure	to	make	a	manual
copy	or	implement	clone	yourself.

What	if	we	don't	have	a	reference	to	a	value	with	move	semantics,	but	the	value	itself.	Now
moves	are	OK,	because	we	know	no	one	else	has	a	reference	to	the	value	(the	compiler
ensures	that	if	they	do,	we	can't	use	the	value).	For	example,

fn	baz(x:	Enum2)	{
				match	x	{
								Var1(y)	=>	{}
								_	=>	{}
				}
}

There	are	still	a	few	things	to	be	aware	of.	Firstly,	you	can	only	move	to	one	place.	In	the
above	example	we	are	moving	part	of		x		into		y		and	we'll	forget	about	the	rest.	If	we	wrote
	a	@	Var1(y)	=>	{}		we	would	be	attempting	to	move	all	of		x		into		a		and	part	of		x		into
	y	.	That	is	not	allowed,	an	arm	like	that	is	illegal.	Making	one	of		a		or		y		a	reference
(using		ref	a	,	etc.)	is	not	an	option	either,	then	we'd	have	the	problem	described	above
where	we	move	whilst	holding	a	reference.	We	can	make	both		a		and		y		references	and
then	we're	OK	-	neither	is	moving,	so		x		remains	in	tact	and	we	have	pointers	to	the	whole
and	a	part	of	it.
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Similarly	(and	more	common),	if	we	have	a	variant	with	multiple	pieces	of	nested	data,	we
can't	take	a	reference	to	one	datum	and	move	another.	For	example	if	we	had	a		Var4	
declared	as		Var4(Box<int>,	Box<int>)		we	can	have	a	match	arm	which	references	both
(	Var4(ref	y,	ref	z)	=>	{}	)	or	a	match	arm	which	moves	both	(	Var4(y,	z)	=>	{}	)	but	you
cannot	have	a	match	arm	which	moves	one	and	references	the	other	(	Var4(ref	y,	z)	=>
{}	).	This	is	because	a	partial	move	still	destroys	the	whole	object,	so	the	reference	would
be	invalid.
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Arrays	and	Vectors
Rust	arrays	are	pretty	different	from	C	arrays.	For	starters	they	come	in	statically	and
dynamically	sized	flavours.	These	are	more	commonly	known	as	fixed	length	arrays	and
slices.	As	we'll	see,	the	former	is	kind	of	a	bad	name	since	both	kinds	of	array	have	fixed	(as
opposed	to	growable)	length.	For	a	growable	'array',	Rust	provides	the		Vec		collection.

Fixed	length	arrays
The	length	of	a	fixed	length	array	is	known	statically	and	features	in	it's	type.	E.g.,		[i32;	4]	
is	the	type	of	an	array	of		i32	s	with	length	four.

Array	literal	and	array	access	syntax	is	the	same	as	C:

let	a:	[i32;	4]	=	[1,	2,	3,	4];					//	As	usual,	the	type	annotation	is	optional.
println!("The	second	element	is	{}",	a[1]);

You'll	notice	that	array	indexing	is	zero-based,	just	like	C.

However,	unlike	C/C++,	array	indexing	is	bounds	checked.	In	fact	all	access	to	arrays	is
bounds	checked,	which	is	another	way	Rust	is	a	safer	language.

If	you	try	to	do		a[4]	,	then	you	will	get	a	runtime	panic.	Unfortunately,	the	Rust	compiler	is
not	clever	enough	to	give	you	a	compile	time	error,	even	when	it	is	obvious	(as	in	this
example).

If	you	like	to	live	dangerously,	or	just	need	to	get	every	last	ounce	of	performance	out	of	your
program,	you	can	still	get	unchecked	access	to	arrays.	To	do	this,	use	the		get_unchecked	
method	on	an	array.	Unchecked	array	accesses	must	be	inside	an	unsafe	block.	You	should
only	need	to	do	this	in	the	rarest	circumstances.

Just	like	other	data	structures	in	Rust,	arrays	are	immutable	by	default	and	mutability	is
inherited.	Mutation	is	also	done	via	the	indexing	syntax:

let	mut	a	=	[1,	2,	3,	4];
a[3]	=	5;
println!("{:?}",	a);

And	just	like	other	data,	you	can	borrow	an	array	by	taking	a	reference	to	it:
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fn	foo(a:	&[i32;	4])	{
				println!("First:	{};	last:	{}",	a[0],	a[3]);
}

fn	main()	{
				foo(&[1,	2,	3,	4]);
}

Notice	that	indexing	still	works	on	a	borrowed	array.

This	is	a	good	time	to	talk	about	the	most	interesting	aspect	of	Rust	arrays	for	C++
programmers	-	their	representation.	Rust	arrays	are	value	types:	they	are	allocated	on	the
stack	like	other	values	and	an	array	object	is	a	sequence	of	values,	not	a	pointer	to	those
values	(as	in	C).	So	from	our	examples	above,		let	a	=	[1_i32,	2,	3,	4];		will	allocate	16
bytes	on	the	stack	and	executing		let	b	=	a;		will	copy	16	bytes.	If	you	want	a	C-like	array,
you	have	to	explicitly	make	a	pointer	to	the	array,	this	will	give	you	a	pointer	to	the	first
element.

A	final	point	of	difference	between	arrays	in	Rust	and	C++	is	that	Rust	arrays	can	implement
traits,	and	thus	have	methods.	To	find	the	length	of	an	array,	for	example,	you	use		a.len()	.

Slices
A	slice	in	Rust	is	just	an	array	whose	length	is	not	known	at	compile	time.	The	syntax	of	the
type	is	just	like	a	fixed	length	array,	except	there	is	no	length:	e.g.,		[i32]		is	a	slice	of	32	bit
integers	(with	no	statically	known	length).

There	is	a	catch	with	slices:	since	the	compiler	must	know	the	size	of	all	objects	in	Rust,	and
it	can't	know	the	size	of	a	slice,	then	we	can	never	have	a	value	with	slice	type.	If	you	try	and
write		fn	foo(x:	[i32])	,	for	example,	the	compiler	will	give	you	an	error.

So,	you	must	always	have	pointers	to	slices	(there	are	some	very	technical	exceptions	to
this	rule	so	that	you	can	implement	your	own	smart	pointers,	but	you	can	safely	ignore	them
for	now).	You	must	write		fn	foo(x:	&[i32])		(a	borrowed	reference	to	a	slice)	or		fn	foo(x:
*mut	[i32])		(a	mutable	raw	pointer	to	a	slice),	etc.

The	simplest	way	to	create	a	slice	is	by	coercion.	There	are	far	fewer	implicit	coercions	in
Rust	than	there	are	in	C++.	One	of	them	is	the	coercion	from	fixed	length	arrays	to	slices.
Since	slices	must	be	pointer	values,	this	is	effectively	a	coercion	between	pointers.	For
example,	we	can	coerce		&[i32;	4]		to		&[i32]	,	e.g.,

let	a:	&[i32]	=	&[1,	2,	3,	4];
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Here	the	right	hand	side	is	a	fixed	length	array	of	length	four,	allocated	on	the	stack.	We
then	take	a	reference	to	it	(type		&[i32;	4]	).	That	reference	is	coerced	to	type		&[i32]		and
given	the	name		a		by	the	let	statement.

Again,	access	is	just	like	C	(using		[...]	),	and	access	is	bounds	checked.	You	can	also
check	the	length	yourself	by	using		len()	.	So	clearly	the	length	of	the	array	is	known
somewhere.	In	fact	all	arrays	of	any	kind	in	Rust	have	known	length,	since	this	is	essential
for	bounds	checking,	which	is	an	integral	part	of	memory	safety.	The	size	is	known
dynamically	(as	opposed	to	statically	in	the	case	of	fixed	length	arrays),	and	we	say	that
slice	types	are	dynamically	sized	types	(DSTs,	there	are	other	kinds	of	dynamically	sized
types	too,	they'll	be	covered	elsewhere).

Since	a	slice	is	just	a	sequence	of	values,	the	size	cannot	be	stored	as	part	of	the	slice.
Instead	it	is	stored	as	part	of	the	pointer	(remember	that	slices	must	always	exist	as	pointer
types).	A	pointer	to	a	slice	(like	all	pointers	to	DSTs)	is	a	fat	pointer	-	it	is	two	words	wide,
rather	than	one,	and	contains	the	pointer	to	the	data	plus	a	payload.	In	the	case	of	slices,
the	payload	is	the	length	of	the	slice.

So	in	the	example	above,	the	pointer		a		will	be	128	bits	wide	(on	a	64	bit	system).	The	first
64	bits	will	store	the	address	of	the		1		in	the	sequence		[1,	2,	3,	4]	,	and	the	second	64
bits	will	contain		4	.	Usually,	as	a	Rust	programmer,	these	fat	pointers	can	just	be	treated	as
regular	pointers.	But	it	is	good	to	know	about	(in	can	affect	the	things	you	can	do	with	casts,
for	example).

Slicing	notation	and	ranges

A	slice	can	be	thought	of	as	a	(borrowed)	view	of	an	array.	So	far	we	have	only	seen	a	slice
of	the	whole	array,	but	we	can	also	take	a	slice	of	part	of	an	array.	There	is	a	special
notation	for	this	which	is	like	the	indexing	syntax,	but	takes	a	range	instead	of	a	single
integer.	E.g.,		a[0..4]	,	which	takes	a	slice	of	the	first	four	elements	of		a	.	Note	that	the
range	is	exclusive	at	the	top	and	inclusive	at	the	bottom.	Examples:

let	a:	[i32;	4]	=	[1,	2,	3,	4];
let	b:	&[i32]	=	&a;			//	Slice	of	the	whole	array.
let	c	=	&a[0..4];					//	Another	slice	of	the	whole	array,	also	has	type	&[i32].
let	c	=	&a[1..3];					//	The	middle	two	elements,	&[i32].
let	c	=	&a[1..];						//	The	last	three	elements.
let	c	=	&a[..3];						//	The	first	three	element.
let	c	=	&a[..];							//	The	whole	array,	again.
let	c	=	&b[1..3];					//	We	can	also	slice	a	slice.

Rust	for	C++	Programmers

48Arrays	and	vecs



Note	that	in	the	last	example,	we	still	need	to	borrow	the	result	of	slicing.	The	slicing	syntax
produces	an	unborrowed	slice	(type:		[i32]	)	which	we	must	then	borrow	(to	give	a		&
[i32]	),	even	if	we	are	slicing	a	borrowed	slice.

Range	syntax	can	also	be	used	outside	of	slicing	syntax.		a..b		produces	an	iterator	which
runs	from		a		to		b-1	.	This	can	be	combined	with	other	iterators	in	the	usual	way,	or	can	be
used	in		for		loops:

//	Print	all	numbers	from	1	to	10.
for	i	in	1..11	{
				println!("{}",	i);
}

Vecs
A	vector	is	heap	allocated	and	is	an	owning	reference.	Therefore	(and	like		Box<_>	),	it	has
move	semantics.	We	can	think	of	a	fixed	length	array	analogously	to	a	value,	a	slice	to	a
borrowed	reference.	Similarly,	a	vector	in	Rust	is	analogous	to	a		Box<_>		pointer.

It	helps	to	think	of		Vec<_>		as	a	kind	of	smart	pointer,	just	like		Box<_>	,	rather	than	as	a
value	itself.	Similarly	to	a	slice,	the	length	is	stored	in	the	'pointer',	in	this	case	the	'pointer'	is
the	Vec	value.

A	vector	of		i32	s	has	type		Vec<i32>	.	There	are	no	vector	literals,	but	we	can	get	the	same
effect	by	using	the		vec!		macro.	We	can	also	create	an	empty	vector	using		Vec::new()	:

let	v	=	vec![1,	2,	3,	4];						//	A	Vec<i32>	with	length	4.
let	v:	Vec<i32>	=	Vec::new();		//	An	empty	vector	of	i32s.

In	the	second	case	above,	the	type	annotation	is	necessary	so	the	compiler	can	know	what
the	vector	is	a	vector	of.	If	we	were	to	use	the	vector,	the	type	annotation	would	probably	not
be	necessary.

Just	like	arrays	and	slices,	we	can	use	indexing	notation	to	get	a	value	from	the	vector	(e.g.,
	v[2]	).	Again,	these	are	bounds	checked.	We	can	also	use	slicing	notation	to	take	a	slice	of
a	vector	(e.g.,		&v[1..3]	).

The	extra	feature	of	vectors	is	that	their	size	can	change	-	they	can	get	longer	or	shorter	as
needed.	For	example,		v.push(5)		would	add	the	element		5		to	the	end	of	the	vector	(this
would	require	that		v		is	mutable).	Note	that	growing	a	vector	can	cause	reallocation,	which
for	large	vectors	can	mean	a	lot	of	copying.	To	guard	against	this	you	can	pre-allocate	space
in	a	vector	using		with_capacity	,	see	the	Vec	docs	for	more	details.
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The		Index		traits
Note	for	readers:	there	is	a	lot	of	material	in	this	section	that	I	haven't	covered	properly	yet.	If
you're	following	the	tutorial,	you	can	skip	this	section,	it	is	a	somewhat	advanced	topic	in	any
case.

The	same	indexing	syntax	used	for	arrays	and	vectors	is	also	used	for	other	collections,
such	as		HashMap	s.	And	you	can	use	it	yourself	for	your	own	collections.	You	opt-in	to	using
the	indexing	(and	slicing)	syntax	by	implementing	the		Index		trait.	This	is	a	good	example	of
how	Rust	makes	available	nice	syntax	to	user	types,	as	well	as	built-ins	(	Deref		for
dereferencing	smart	pointers,	as	well	as		Add		and	various	other	traits,	work	in	a	similar
way).

The		Index		trait	looks	like

pub	trait	Index<Idx:	?Sized>	{
				type	Output:	?Sized;

				fn	index(&self,	index:	Idx)	->	&Self::Output;
}

	Idx		is	the	type	used	for	indexing.	For	most	uses	of	indexing	this	is		usize	.	For	slicing	this
is	one	of	the		std::ops::Range		types.		Output		is	the	type	returned	by	indexing,	this	will	be
different	for	each	collection.	For	slicing	it	will	be	a	slice,	rather	than	the	type	of	a	single
element.		index		is	a	method	which	does	the	work	of	getting	the	element(s)	out	of	the
collection.	Note	that	the	collection	is	taken	by	reference	and	the	method	returns	a	reference
to	the	element	with	the	same	lifetime.

Let's	look	at	the	implementation	for		Vec		to	see	how	what	an	implementation	looks	like:

impl<T>	Index<usize>	for	Vec<T>	{
				type	Output	=	T;

				fn	index(&self,	index:	usize)	->	&T	{
								&(**self)[index]
				}
}

As	we	said	above,	indexing	is	done	using		usize	.	For	a		Vec<T>	,	indexing	will	return	a
single	element	of	type		T	,	thus	the	value	of		Output	.	The	implementation	of		index		is	a	bit
weird	-		(**self)		gets	a	view	of	the	whole	vec	as	a	slice,	then	we	use	indexing	on	slices	to
get	the	element,	and	finally	take	a	reference	to	it.
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If	you	have	your	own	collections,	you	can	implement		Index		in	a	similar	way	to	get	indexing
and	slicing	syntax	for	your	collection.

Initialiser	syntax
As	with	all	data	in	Rust,	arrays	and	vectors	must	be	properly	initialised.	Often	you	just	want
an	array	full	of	zeros	to	start	with	and	using	the	array	literal	syntax	is	a	pain.	So	Rust	gives
you	a	little	syntactic	sugar	to	initialise	an	array	full	of	a	given	value:		[value;	len]	.	So	for
example	to	create	an	array	with	length	100	full	of	zeros,	we'd	use		[0;	100]	.

Similarly	for	vectors,		vec![42;	100]		would	give	you	a	vector	with	100	elements,	each	with
the	value	42.

The	initial	value	is	not	limited	to	integers,	it	can	be	any	expression.	For	array	initialisers,	the
length	must	be	an	integer	constant	expression.	For		vec!	,	it	can	be	any	expression	with
type		usize	.
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Graphs	and	arena	allocation
(Note	you	can	run	the	examples	in	this	chapter	by	downloading	this	directory	and	running
	cargo	run	).

Graphs	are	a	bit	awkward	to	construct	in	Rust	because	of	Rust's	stringent	lifetime	and
mutability	requirements.	Graphs	of	objects	are	very	common	in	OO	programming.	In	this
tutorial	I'm	going	to	go	over	a	few	different	approaches	to	implementation.	My	preferred
approach	uses	arena	allocation	and	makes	slightly	advanced	use	of	explicit	lifetimes.	I'll
finish	up	by	discussing	a	few	potential	Rust	features	which	would	make	using	such	an
approach	easier.

A	graph	is	a	collection	of	nodes	with	edges	between	some	of	those	nodes.	Graphs	are	a
generalisation	of	lists	and	trees.	Each	node	can	have	multiple	children	and	multiple	parents
(we	usually	talk	about	edges	into	and	out	of	a	node,	rather	than	parents/children).	Graphs
can	be	represented	by	adjacency	lists	or	adjacency	matrices.	The	former	is	basically	a	node
object	for	each	node	in	the	graph,	where	each	node	object	keeps	a	list	of	its	adjacent	nodes.
An	adjacency	matrix	is	a	matrix	of	booleans	indicating	whether	there	is	an	edge	from	the	row
node	to	the	column	node.	We'll	only	cover	the	adjacency	list	representation,	adjacency
matrices	have	very	different	issues	which	are	less	Rust-specific.

There	are	essentially	two	orthogonal	problems:	how	to	handle	the	lifetime	of	the	graph	and
how	to	handle	it's	mutability.

The	first	problem	essentially	boils	down	to	what	kind	of	pointer	to	use	to	point	to	other	nodes
in	the	graph.	Since	graph-like	data	structures	are	recursive	(the	types	are	recursive,	even	if
the	data	is	not)	we	are	forced	to	use	pointers	of	some	kind	rather	than	have	a	totally	value-
based	structure.	Since	graphs	can	be	cyclic,	and	ownership	in	Rust	cannot	be	cyclic,	we
cannot	use		Box<Node>		as	our	pointer	type	(as	we	might	do	for	tree-like	data	structures	or
linked	lists).

No	graph	is	truly	immutable.	Because	there	may	be	cycles,	the	graph	cannot	be	created	in	a
single	statement.	Thus,	at	the	very	least,	the	graph	must	be	mutable	during	its	initialisation
phase.	The	usual	invariant	in	Rust	is	that	all	pointers	must	either	be	unique	or	immutable.
Graph	edges	must	be	mutable	(at	least	during	initialisation)	and	there	can	be	more	than	one
edge	into	any	node,	thus	no	edges	are	guaranteed	to	be	unique.	So	we're	going	to	have	to
do	something	a	little	bit	advanced	to	handle	mutability.

One	solution	is	to	use	mutable	raw	pointers	(	*mut	Node	).	This	is	the	most	flexible	approach,
but	also	the	most	dangerous.	You	must	handle	all	the	lifetime	management	yourself	without
any	help	from	the	type	system.	You	can	make	very	flexible	and	efficient	data	structures	this
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way,	but	you	must	be	very	careful.	This	approach	handles	both	the	lifetime	and	mutability
issues	in	one	fell	swoop.	But	it	handles	them	by	essentially	ignoring	all	the	benefits	of	Rust	-
you	will	get	no	help	from	the	compiler	here	(it's	also	not	particularly	ergonomic	since	raw
pointers	don't	automatically	(de-)reference).	Since	a	graph	using	raw	pointers	is	not	much
different	from	a	graph	in	C++,	I'm	not	going	to	cover	that	option	here.

The	options	you	have	for	lifetime	management	are	reference	counting	(shared	ownership,
using		Rc<...>	)	or	arena	allocation	(all	nodes	have	the	same	lifetime,	managed	by	an
arena;	using	borrowed	references		&...	).	The	former	is	more	flexible	(you	can	have
references	from	outside	the	graph	to	individual	nodes	with	any	lifetime),	the	latter	is	better	in
every	other	way.

For	managing	mutability,	you	can	either	use		RefCell	,	i.e.,	make	use	of	Rust's	facility	for
dynamic,	interior	mutability,	or	you	can	manage	the	mutability	yourself	(in	this	case	you	have
to	use		UnsafeCell		to	communicate	the	interior	mutability	to	the	compiler).	The	former	is
safer,	the	latter	is	more	efficient.	Neither	is	particularly	ergonomic.

Note	that	if	your	graph	might	have	cycles,	then	if	you	use		Rc	,	further	action	is	required	to
break	the	cycles	and	not	leak	memory.	Since	Rust	has	no	cycle	collection	of		Rc		pointers,	if
there	is	a	cycle	in	your	graph,	the	ref	counts	will	never	fall	to	zero,	and	the	graph	will	never
be	deallocated.	You	can	solve	this	by	using		Weak		pointers	in	your	graph	or	by	manually
breaking	cycles	when	you	know	the	graph	should	be	destroyed.	The	former	is	more	reliable.
We	don't	cover	either	here,	in	our	examples	we	just	leak	memory.	The	approach	using
borrowed	references	and	arena	allocation	does	not	have	this	issue	and	is	thus	superior	in
that	respect.

To	compare	the	different	approaches	I'll	use	a	pretty	simple	example.	We'll	just	have	a		Node	
object	to	represent	a	node	in	the	graph,	this	will	hold	some	string	data	(representative	of
some	more	complex	data	payload)	and	a		Vec		of	adjacent	nodes	(	edges	).	We'll	have	an
	init		function	to	create	a	simple	graph	of	nodes,	and	a		traverse		function	which	does	a
pre-order,	depth-first	traversal	of	the	graph.	We'll	use	this	to	print	the	payload	of	each	node
in	the	graph.	Finally,	we'll	have	a		Node::first		method	which	returns	a	reference	to	the	first
adjacent	node	to	the		self		node	and	a	function		foo		which	prints	the	payload	of	an
individual	node.	These	functions	stand	in	for	more	complex	operations	involving
manipulation	of	a	node	interior	to	the	graph.

To	try	and	be	as	informative	as	possible	without	boring	you,	I'll	cover	two	combinations	of
possibilities:	ref	counting	and		RefCell	,	and	arena	allocation	and		UnsafeCell	.	I'll	leave	the
other	two	combinations	as	an	exercise.

	Rc<RefCell<Node>>	
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See	full	example.

This	is	the	safer	option	because	there	is	no	unsafe	code.	It	is	also	the	least	efficient	and
least	ergonomic	option.	It	is	pretty	flexible	though,	nodes	of	the	graph	can	be	easily	reused
outside	the	graph	since	they	are	ref-counted.	I	would	recommend	this	approach	if	you	need
a	fully	mutable	graph,	or	need	your	nodes	to	exist	independently	of	the	graph.

The	node	structure	looks	like

struct	Node	{
				datum:	&'static	str,
				edges:	Vec<Rc<RefCell<Node>>>,
}

Creating	a	new	node	is	not	too	bad:		Rc::new(RefCell::new(Node	{	...	}))	.	To	add	an	edge
during	initialisation,	you	have	to	borrow	the	start	node	as	mutable,	and	clone	the	end	node
into	the	Vec	of	edges	(this	clones	the	pointer,	incrementing	the	reference	count,	not	the
actual	node).	E.g.,

let	mut	mut_root	=	root.borrow_mut();
mut_root.edges.push(b.clone());

The		RefCell		dynamically	ensures	that	we	are	not	already	reading	or	writing	the	node	when
we	write	it.

Whenever	you	access	a	node,	you	have	to	use		.borrow()		to	borrow	the		RefCell	.	Our
	first		method	has	to	return	a	ref-counted	pointer,	rather	than	a	borrowed	reference,	so
callers	of		first		also	have	to	borrow:

fn	first(&self)	->	Rc<RefCell<Node>>	{
				self.edges[0].clone()
}

pub	fn	main()	{
				let	g	=	...;
				let	f	=	g.first();
				foo(&*f.borrow());
}

	&Node		and		UnsafeCell	
See	full	example.
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In	this	approach	we	use	borrowed	references	as	edges.	This	is	nice	and	ergonomic	and	lets
us	use	our	nodes	with	'regular'	Rust	libraries	which	primarily	operate	with	borrowed
references	(note	that	one	nice	thing	about	ref	counted	objects	in	Rust	is	that	they	play	nicely
with	the	lifetime	system.	We	can	create	a	borrowed	reference	into	the		Rc		to	directly	(and
safely)	reference	the	data.	In	the	previous	example,	the		RefCell		prevents	us	doing	this,	but
an		Rc	/	UnsafeCell		approach	should	allow	it).

Destruction	is	correctly	handled	too	-	the	only	constraint	is	that	all	the	nodes	must	be
destroyed	at	the	same	time.	Destruction	and	allocation	of	nodes	is	handled	using	an	arena.

On	the	other	hand,	we	do	need	to	use	quite	a	few	explicit	lifetimes.	Unfortunately	we	don't
benefit	from	lifetime	elision	here.	At	the	end	of	the	section	I'll	discuss	some	future	directions
for	the	language	which	could	make	things	better.

During	construction	we	will	mutate	our	nodes	which	might	be	multiply	referenced.	This	is	not
possible	in	safe	Rust	code,	so	we	must	initialise	inside	an		unsafe		block.	Since	our	nodes
are	mutable	and	multiply	referenced,	we	must	use	an		UnsafeCell		to	communicate	to	the
Rust	compiler	that	it	cannot	rely	on	its	usual	invariants.

When	is	this	approach	feasible?	The	graph	must	only	be	mutated	during	initialisation.	In
addition,	we	require	that	all	nodes	in	the	graph	have	the	same	lifetime	(we	could	relax	these
constraints	somewhat	to	allow	adding	nodes	later	as	long	as	they	can	all	be	destroyed	at	the
same	time).	Similarly,	we	could	rely	on	more	complicated	invariants	for	when	the	nodes	can
be	mutated,	but	it	pays	to	keep	things	simple,	since	the	programmer	is	responsible	for	safety
in	those	respects.

Arena	allocation	is	a	memory	management	technique	where	a	set	of	objects	have	the	same
lifetime	and	can	be	deallocated	at	the	same	time.	An	arena	is	an	object	responsible	for
allocating	and	deallocating	the	memory.	Since	large	chunks	of	memory	are	allocated	and
deallocated	at	once	(rather	than	allocating	individual	objects),	arena	allocation	is	very
efficient.	Usually,	all	the	objects	are	allocated	from	a	contiguous	chunk	of	memory,	that
improves	cache	coherency	when	you	are	traversing	the	graph.

In	Rust,	arena	allocation	is	supported	by	the	libarena	crate	and	is	used	throughout	the
compiler.	There	are	two	kinds	of	arenas	-	typed	and	untyped.	The	former	is	more	efficient
and	easier	to	use,	but	can	only	allocate	objects	of	a	single	type.	The	latter	is	more	flexible
and	can	allocate	any	object.	Arena	allocated	objects	all	have	the	same	lifetime,	which	is	a
parameter	of	the	arena	object.	The	type	system	ensures	references	to	arena	allocated
objects	cannot	live	longer	than	the	arena	itself.

Our	node	struct	must	now	include	the	lifetime	of	the	graph,		'a	.	We	wrap	our		Vec		of
adjacent	nodes	in	an		UnsafeCell		to	indicate	that	we	will	mutate	it	even	when	it	should	be
immutable:
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struct	Node<'a>	{
				datum:	&'static	str,
				edges:	UnsafeCell<Vec<&'a	Node<'a>>>,
}

Our	new	function	must	also	use	this	lifetime	and	must	take	as	an	argument	the	arena	which
will	do	the	allocation:

fn	new<'a>(datum:	&'static	str,	arena:	&'a	TypedArena<Node<'a>>)	->	&'a	Node<'a>	{
				arena.alloc(Node	{
								datum:	datum,
								edges:	UnsafeCell::new(Vec::new()),
				})
}

We	use	the	arena	to	allocate	the	node.	The	lifetime	of	the	graph	is	derived	from	the	lifetime
of	the	reference	to	the	arena,	so	the	arena	must	be	passed	in	from	the	scope	which	covers
the	graph's	lifetime.	For	our	examples,	that	means	we	pass	it	into	the		init		method.	(One
could	imagine	an	extension	to	the	type	system	which	allows	creating	values	at	scopes
outside	their	lexical	scope,	but	there	are	no	plans	to	add	such	a	thing	any	time	soon).	When
the	arena	goes	out	of	scope,	the	whole	graph	is	destroyed	(Rust's	type	system	ensures	that
we	can't	keep	references	to	the	graph	beyond	that	point).

Adding	an	edge	is	a	bit	different	looking:

(*root.edges.get()).push(b);

We're	essentially	doing	the	obvious		root.edges.push(b)		to	push	a	node	(	b	)	on	to	the	list	of
edges.	However,	since		edges		is	wrapped	in	an		UnsafeCell	,	we	have	to	call		get()		on	it.
That	gives	us	a	mutable	raw	pointer	to	edges	(	*mut	Vec<&Node>	),	which	allows	us	to	mutate
	edges	.	However,	it	also	requires	us	to	manually	dereference	the	pointer	(raw	pointers	do
not	auto-deref),	thus	the		(*...)		construction.	Finally,	dereferencing	a	raw	pointer	is	unsafe,
so	the	whole	lot	has	to	be	wrapped	up	in	an	unsafe	block.

The	interesting	part	of		traverse		is:

for	n	in	&(*self.edges.get())	{
				n.traverse(f,	seen);
}
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We	follow	the	previous	pattern	for	getting	at	the	edges	list,	which	requires	an	unsafe	block.
In	this	case	we	know	it	is	in	fact	safe	because	we	must	be	post-	initialisation	and	thus	there
will	be	no	mutation.

Again,	the		first		method	follows	the	same	pattern	for	getting	at	the		edges		list.	And	again
must	be	in	an	unsafe	block.	However,	in	contrast	to	the	graph	using		Rc<RefCell<_>>	,	we
can	return	a	straightforward	borrowed	reference	to	the	node.	That	is	very	convenient.	We
can	reason	that	the	unsafe	block	is	safe	because	we	do	no	mutation	and	we	are	post-
initialisation.

fn	first(&'a	self)	->	&'a	Node<'a>	{
				unsafe	{
								(*self.edges.get())[0]
				}
}

Future	language	improvements	for	this	approach

I	believe	that	arena	allocation	and	using	borrowed	references	are	an	important	pattern	in
Rust.	We	should	do	more	in	the	language	to	make	these	patterns	safer	and	easier	to	use.	I
hope	use	of	arenas	becomes	more	ergonomic	with	the	ongoing	work	on	allocators.	There
are	three	other	improvements	I	see:

Safe	initialisation

There	has	been	lots	of	research	in	the	OO	world	on	mechanisms	for	ensuring	mutability	only
during	initialisation.	How	exactly	this	would	work	in	Rust	is	an	open	research	question,	but	it
seems	that	we	need	to	represent	a	pointer	which	is	mutable	and	not	unique,	but	restricted	in
scope.	Outside	that	scope	any	existing	pointers	would	become	normal	borrowed	references,
i.e.,	immutable	or	unique.

The	advantage	of	such	a	scheme	is	that	we	have	a	way	to	represent	the	common	pattern	of
mutable	during	initialisation,	then	immutable.	It	also	relies	on	the	invariant	that,	while
individual	objects	are	multiply	owned,	the	aggregate	(in	this	case	a	graph)	is	uniquely
owned.	We	should	then	be	able	to	adopt	the	reference	and		UnsafeCell		approach,	without
the		UnsafeCell	s	and	the	unsafe	blocks,	making	that	approach	more	ergonomic	and	more
safer.

Alex	Summers	and	Julian	Viereck	at	ETH	Zurich	are	investigating	this	further.

Generic	modules
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The	'lifetime	of	the	graph'	is	constant	for	any	particular	graph.	Repeating	the	lifetime	is	just
boilerplate.	One	way	to	make	this	more	ergonomic	would	be	to	allow	the	graph	module	to	be
parameterised	by	the	lifetime,	so	it	would	not	need	to	be	added	to	every	struct,	impl,	and
function.	The	lifetime	of	the	graph	would	still	need	to	be	specified	from	outside	the	module,
but	hopefully	inference	would	take	care	of	most	uses	(as	it	does	today	for	function	calls).

See	ref_graph_generic_mod.rs	for	how	that	might	look.	(We	should	also	be	able	to	use	safe
initialisation	(proposed	above)	to	remove	the	unsafe	code).

See	also	this	RFC	issue.

This	feature	would	vastly	reduce	the	syntactic	overhead	of	the	reference	and		UnsafeCell	
approach.

Lifetime	elision

We	currently	allow	the	programmer	to	elide	some	lifetimes	in	function	signatures	to	improve
ergonomics.	One	reason	the		&Node		approach	to	graphs	is	a	bit	ugly	is	because	it	doesn't
benefit	from	any	of	the	lifetime	elision	rules.

A	common	pattern	in	Rust	is	data	structures	with	a	common	lifetime.	References	into	such
data	structures	give	rise	to	types	like		&'a	Foo<'a>	,	for	example		&'a	Node<'a>		in	the	graph
example.	It	would	be	nice	to	have	an	elision	rule	that	helps	in	this	case.	I'm	not	really	sure
how	it	should	work	though.

Looking	at	the	example	with	generic	modules,	it	doesn't	look	like	we	need	to	extend	the
lifetime	elision	rules	very	much	(I'm	not	actually	sure	if		Node::new		would	work	without	the
given	lifetimes,	but	it	seems	like	a	fairly	trivial	extension	to	make	it	work	if	it	doesn't).	We
might	want	to	add	some	new	rule	to	allow	elision	of	module-generic	lifetimes	if	they	are	the
only	ones	in	scope	(other	than		'static	),	but	I'm	not	sure	how	that	would	work	with	multiple
in-	scope	lifetimes	(see	the		foo		and		init		functions,	for	example).

If	we	don't	add	generic	modules,	we	might	still	be	able	to	add	an	elision	rule	specifically	to
target		&'a	Node<'a>	,	not	sure	how	though.
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