
Getting Started
Version: 3.4

generated on November 4, 2018

Getting Started (3.4)

This work is licensed under the “Attribution-Share Alike 3.0 Unported” license (http://creativecommons.org/
licenses/by-sa/3.0/).

You are free to share (to copy, distribute and transmit the work), and to remix (to adapt the work) under the
following conditions:

• Attribution: You must attribute the work in the manner specified by the author or licensor (but not in
any way that suggests that they endorse you or your use of the work).

• Share Alike: If you alter, transform, or build upon this work, you may distribute the resulting work only
under the same, similar or a compatible license. For any reuse or distribution, you must make clear to
others the license terms of this work.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor SensioLabs shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by
the information contained in this work.

If you find typos or errors, feel free to report them by creating a ticket on the Symfony ticketing system
(http://github.com/symfony/symfony-docs/issues). Based on tickets and users feedback, this book is
continuously updated.

Contents at a Glance

Installing & Setting up the Symfony Framework ..4

Create your First Page in Symfony ...10

Routing ..15

Controller...24

Creating and Using Templates...35

Configuring Symfony (and Environments) ...46

PDF brought to you by

generated on November 4, 2018

Contents at a Glance | iii

Listing 1-1

Chapter 1

Installing & Setting up the Symfony

Framework

This article explains how to install Symfony in different ways and how to solve the most common issues
that may appear during the installation process.

Do you prefer video tutorials? Check out the Joyful Development with Symfony1 screencast series.

Creating Symfony Applications

Symfony provides a dedicated application called the Symfony Installer to ease the creation of Symfony
applications. This installer is a PHP 5.4 compatible executable that needs to be installed on your system
only once:

1
2
3
4
5
6
7

Linux and macOS systems
$ sudo mkdir -p /usr/local/bin
$ sudo curl -LsS https://symfony.com/installer -o /usr/local/bin/symfony
$ sudo chmod a+x /usr/local/bin/symfony

Windows systems
c:\> php -r "file_put_contents('symfony', file_get_contents('https://symfony.com/installer'));"

1. https://symfonycasts.com/screencast/symfony3

PDF brought to you by

generated on November 4, 2018

Chapter 1: Installing & Setting up the Symfony Framework | 4

Listing 1-2

Listing 1-3

Listing 1-4

Listing 1-5

In Linux and macOS, a global symfony command is created. In Windows, move the symfony file

to a directory that's included in the PATH environment variable and create a symfony.bat file to
create the global command or move it to any other directory convenient for you:

1
2
3
4
5
6
7
8
9

10
11
12
13

for example, if WAMP is used ...
c:\> move symfony c:\wamp\bin\php
create symfony.bat in the same folder
c:\> cd c:\wamp\bin\php
c:\> (echo @ECHO OFF & echo php "%~dp0symfony" %*) > symfony.bat
... then, execute the command as:
c:\> symfony

moving it to your projects folder ...
c:\> move symfony c:\projects
... then, execute the command as
c:\> cd projects
c:\projects\> php symfony

Once the Symfony Installer is installed, create your first Symfony application with the new command:

1 $ symfony new my_project_name 3.4

This command creates a new directory called my_project_name/ that contains an empty project based
on the most recent stable Symfony version available. In addition, the installer checks if your system meets
the technical requirements to execute Symfony applications. If not, you'll see the list of changes needed
to meet those requirements.

If the installer doesn't work for you or doesn't output anything, make sure that the PHP Phar

extension2 is installed and enabled on your computer.

If the SSL certificates are not properly installed in your system, you may get this error:

cURL error 60: SSL certificate problem: unable to get local issuer certificate.

You can solve this issue as follows:

1. Download a file with the updated list of certificates from https://curl.haxx.se/ca/cacert.pem

2. Move the downloaded cacert.pem file to some safe location in your system

3. Update your php.ini file and configure the path to that file:

1
2
3
4
5

; Linux and macOS systems
curl.cainfo = "/path/to/cacert.pem"

; Windows systems
curl.cainfo = "C:\path\to\cacert.pem"

Basing your Project on a Specific Symfony Version

In case your project needs to be based on a specific Symfony version, use the optional second argument

of the new command:

2. https://php.net/manual/en/intro.phar.php

PDF brought to you by

generated on November 4, 2018

Chapter 1: Installing & Setting up the Symfony Framework | 5

Listing 1-6

Listing 1-7

Listing 1-8

1
2
3
4
5
6
7
8
9
10
11
12
13
14

use the most recent version in any Symfony branch
$ symfony new my_project_name 2.8
$ symfony new my_project_name 3.1

use a specific Symfony version
$ symfony new my_project_name 2.8.3
$ symfony new my_project_name 3.1.5

use a beta or RC version (useful for testing new Symfony versions)
$ symfony new my_project 2.7.0-BETA1
$ symfony new my_project 2.7.0-RC1

use the most recent 'lts' version (Long Term Support version)
$ symfony new my_project_name lts

Each version has its own documentation, which you can select on any documentation page.

Read the Symfony Release process to better understand why there are several Symfony versions and
which one to use for your projects.

Creating Symfony Applications with Composer

If you can't use the Symfony installer for any reason, you can create Symfony applications with
Composer3, the dependency manager used by modern PHP applications.

If you don't have Composer installed in your computer, start by installing Composer globally. Then,

execute the create-project command to create a new Symfony application based on its latest stable
version:

1 $ composer create-project symfony/framework-standard-edition my_project_name

You can also install any other Symfony version by passing a second argument to the create-project
command:

1 $ composer create-project symfony/framework-standard-edition my_project_name "2.8.*"

If your Internet connection is slow, you may think that Composer is not doing anything. If that's

your case, add the -vvv flag to the previous command to display a detailed output of everything that
Composer is doing.

Running the Symfony Application

On production servers, Symfony applications use web servers such as Apache or Nginx (see configuring
a web server to run Symfony). However, on your local development machine you can also use the web
server provided by Symfony, which in turn uses the built-in web server provided by PHP.

First, install the Symfony Web Server and then, execute this command:

1
2

$ cd my_project_name/
$ php bin/console server:run

3. https://getcomposer.org/

PDF brought to you by

generated on November 4, 2018

Chapter 1: Installing & Setting up the Symfony Framework | 6

Listing 1-9

Listing 1-10

Listing 1-11

Open your browser and access the http://localhost:8000/ URL to see the Welcome Page of
Symfony:

Symfony Welcome Page

If you see a blank page or an error page instead of the Welcome Page, there is a directory permission
misconfiguration. The solution to this problem is explained in the Setting up or Fixing File Permissions.

When you are finished working on your Symfony application, stop the server by pressing Ctrl+C from
the terminal or command console.

Symfony's web server is great for developing, but should not be used on production. Instead, use
Apache or Nginx. See Configuring a Web Server.

Checking Symfony Application Configuration and Setup

The Symfony Installer checks if your system is ready to run Symfony applications. However, the PHP
configuration for the command console can be different from the PHP web configuration. For that
reason, Symfony provides a visual configuration checker. Access the following URL to check your
configuration and fix any issue before moving on:

1 http://localhost:8000/config.php

Fixing Permissions Problems

If you have any file permission errors or see a white screen, then read Setting up or Fixing File Permissions
for more information.

Updating Symfony Applications

At this point, you've created a fully-functional Symfony application! Every Symfony app depends on a

number of third-party libraries stored in the vendor/ directory and managed by Composer.

Updating those libraries frequently is a good practice to prevent bugs and security vulnerabilities. Execute

the update Composer command to update them all at once (this can take up to several minutes to
complete depending on the complexity of your project):

1
2

$ cd my_project_name/
$ composer update

Symfony provides a command to check whether your project's dependencies contain any known
security vulnerability:

1 $ php bin/console security:check

A good security practice is to execute this command regularly to be able to update or replace
compromised dependencies as soon as possible.

PDF brought to you by

generated on November 4, 2018

Chapter 1: Installing & Setting up the Symfony Framework | 7

Listing 1-12

Installing the Symfony Demo or Other Distributions

You've already downloaded the Symfony Standard Edition4: the default starting project for all Symfony
apps. You'll use this project throughout the documentation to build your app!

Symfony also provides some other projects and starting skeletons that you can use:
The Symfony Demo Application5

This is a fully-functional application that shows the recommended way to develop Symfony
applications. The app has been conceived as a learning tool for Symfony newcomers and its source
code contains tons of comments and helpful notes.

The Symfony CMF Standard Edition6

The Symfony CMF7 is a project that helps make it easier for developers to add CMS functionality to
their Symfony applications. This is a starting project containing the Symfony CMF.

The Symfony REST Edition8

Shows how to build an application that provides a RESTful API using the FOSRestBundle9 and
several other related Bundles.

Installing an Existing Symfony Application

When working collaboratively in a Symfony application, it's uncommon to create a new Symfony
application as explained in the previous sections. Instead, someone else has already created and
submitted it to a shared repository.

It's recommended to not submit some files (parameters.yml) and directories (vendor/, cache, logs) to
the repository, so you'll have to do the following when installing an existing Symfony application:

1
2
3
4
5
6
7
8
9
10

clone the project to download its contents
$ cd projects/
$ git clone ...

make Composer install the project's dependencies into vendor/
$ cd my_project_name/
$ composer install

now Composer will ask you for the values of any undefined parameter
$...

Keep Going!

With setup behind you, it's time to Create your first page in Symfony.

Go Deeper with Setup

• Using Symfony with Homestead/Vagrant
• How to Create and Store a Symfony Project in Git
• How to Use PHP's built-in Web Server
• Configuring a Web Server

4. https://github.com/symfony/symfony-standard

5. https://github.com/symfony/demohttps://github.com/symfony/demo

6. https://github.com/symfony-cmf/standard-editionhttps://github.com/symfony-cmf/standard-edition

7. http://cmf.symfony.com/

8. https://github.com/gimler/symfony-rest-editionhttps://github.com/gimler/symfony-rest-edition

9. https://github.com/FriendsOfSymfony/FOSRestBundle

PDF brought to you by

generated on November 4, 2018

Chapter 1: Installing & Setting up the Symfony Framework | 8

• Installing Composer
• Upgrading a Third-Party Bundle for a Major Symfony Version
• Setting up or Fixing File Permissions
• Using Symfony Flex to Manage Symfony Applications
• How to Create and Store a Symfony Project in Subversion
• How to Install or Upgrade to the Latest, Unreleased Symfony Version
• Upgrading a Major Version (e.g. 2.7.0 to 3.0.0)
• Upgrading a Minor Version (e.g. 2.5.3 to 2.6.1)
• Upgrading a Patch Version (e.g. 2.6.0 to 2.6.1)

PDF brought to you by

generated on November 4, 2018

Chapter 1: Installing & Setting up the Symfony Framework | 9

Listing 2-1

Chapter 2

Create your First Page in Symfony

Creating a new page - whether it's an HTML page or a JSON endpoint - is a two-step process:
1. Create a route: A route is the URL (e.g. /about) to your page and points to a controller;
2. Create a controller: A controller is the PHP function you write that builds the page. You take

the incoming request information and use it to create a Symfony Response object, which can hold
HTML content, a JSON string or even a binary file like an image or PDF.

Do you prefer video tutorials? Check out the Joyful Development with Symfony1 screencast series.

Symfony embraces the HTTP Request-Response lifecycle. To find out more, see Symfony and HTTP
Fundamentals.

Creating a Page: Route and Controller

Before continuing, make sure you've read the Setup article and can access your new Symfony app in
the browser.

Suppose you want to create a page - /lucky/number - that generates a lucky (well, random) number
and prints it. To do that, create a "Controller class" and a "controller" method inside of it that will be

executed when someone goes to /lucky/number:

1
2
3
4
5
6
7
8
9
10

<?php
// src/AppBundle/Controller/LuckyController.php
namespace AppBundle\Controller;

use Symfony\Component\HttpFoundation\Response;
use Symfony\Component\Routing\Annotation\Route;

class LuckyController
{

/**

1. https://symfonycasts.com/screencast/symfony3

PDF brought to you by

generated on November 4, 2018

Chapter 2: Create your First Page in Symfony | 10

Listing 2-2

11
12
13
14
15
16
17
18
19
20
21

* @Route("/lucky/number")
*/

public function numberAction()
{

$number = random_int(0, 100);

return new Response(
'<html><body>Lucky number: '.$number.'</body></html>'

);
}

}

Before diving into this, test it out! If you are using PHP's internal web server go to:

http://localhost:8000/lucky/number

If you see a lucky number being printed back to you, congratulations! But before you run off to play the
lottery, check out how this works. Remember the two steps to creating a page?

1. Create a route: The @Route above numberAction() is the route: it defines the URL pattern for this
page. You'll learn more about routing in its own section, including how to make variable URLs;

2. Create a controller: The method below the route - numberAction() - is called the controller. This is
a function where you build the page and ultimately return a Response object. You'll learn more
about controllers in their own section, including how to return JSON responses.

The Web Debug Toolbar: Debugging Dream

If your page is working, then you should also see a bar along the bottom of your browser. This is
called the Web Debug Toolbar: and it's your debugging best friend. You'll learn more about all the
information it holds along the way, but feel free to experiment: hover over and click the different icons to
get information about routing, performance, logging and more.

Rendering a Template (with the Service Container)

If you're returning HTML from your controller, you'll probably want to render a template. Fortunately,
Symfony comes with Twig2: a templating language that's easy, powerful and actually quite fun.

First, import the base Controller3 class as shown on line 5 below. Then, let your LuckyController
class extend the base class:

1
2
3
4
5
6
7
8
9
10

// src/AppBundle/Controller/LuckyController.php

// ...
// --> add this new use statement
use Symfony\Bundle\FrameworkBundle\Controller\Controller;

class LuckyController extends Controller
{

// ...
}

Now, use the handy render() function to render a template. Pass it our number variable so we can
render that:

2. https://twig.symfony.com

3. https://api.symfony.com/3.4/Symfony/Bundle/FrameworkBundle/Controller/Controller.html

PDF brought to you by

generated on November 4, 2018

Chapter 2: Create your First Page in Symfony | 11

Listing 2-3

Listing 2-4

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

// src/AppBundle/Controller/LuckyController.php

// ...
class LuckyController extends Controller
{

/**
* @Route("/lucky/number")
*/
public function numberAction()
{

$number = random_int(0, 100);

return $this->render('lucky/number.html.twig', array(
'number' => $number,

));
}

}

Finally, template files should live in the app/Resources/views directory. Create a new app/
Resources/views/lucky directory with a new number.html.twig file inside:

1
2
3

{# app/Resources/views/lucky/number.html.twig #}

<h1>Your lucky number is {{ number }}</h1>

The {{ number }} syntax is used to print variables in Twig. Refresh your browser to get your new

lucky number!

http://localhost:8000/lucky/number

In the Creating and Using Templates article, you'll learn all about Twig: how to loop, render other
templates and leverage its powerful layout inheritance system.

Checking out the Project Structure

Great news! You've already worked inside the two most important directories in your project:
app/app/

Contains things like configuration and templates. Basically, anything that is not PHP code goes here.

src/src/

Your PHP code lives here.

99% of the time, you'll be working in src/ (PHP files) or app/ (everything else). As you keep reading,
you'll learn what can be done inside each of these.

So what about the other directories in the project?
bin/bin/

The famous bin/console file lives here (and other, less important executable files).

tests/tests/

The automated tests (e.g. Unit tests) for your application live here.

var/var/

This is where automatically-created files are stored, like cache files (var/cache/), logs (var/logs/) and
sessions (var/sessions/).

PDF brought to you by

generated on November 4, 2018

Chapter 2: Create your First Page in Symfony | 12

Listing 2-5

vendor/vendor/

Third-party (i.e. "vendor") libraries live here! These are downloaded via the Composer4 package
manager.

web/web/

This is the document root for your project: put any publicly accessible files here (e.g. CSS, JS and
images).

Bundles & Configuration

Your Symfony application comes pre-installed with a collection of bundles, like FrameworkBundle
and TwigBundle. Bundles are similar to the idea of a plugin, but with one important difference: all

functionality in a Symfony application comes from a bundle.

Bundles are registered in your app/AppKernel.php file (a rare PHP file in the app/ directory) and
each gives you more tools, sometimes called services:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

class AppKernel extends Kernel
{

public function registerBundles()
{

$bundles = array(
new Symfony\Bundle\FrameworkBundle\FrameworkBundle(),
new Symfony\Bundle\TwigBundle\TwigBundle(),
// ...

);
// ...

return $bundles;
}

// ...
}

For example, TwigBundle is responsible for adding the Twig tool to your app!

Eventually, you'll download and add more third-party bundles to your app in order to get even more
tools. Imagine a bundle that helps you create paginated lists. That exists!

You can control how your bundles behave via the app/config/config.yml file. That file - and other
details like environments & parameters - are discussed in the Configuring Symfony (and Environments)
article.

What's Next?

Congrats! You're already starting to master Symfony and learn a whole new way of building beautiful,
functional, fast and maintainable apps.

Ok, time to finish mastering the fundamentals by reading these articles:

• Routing
• Controller
• Creating and Using Templates
• Configuring Symfony (and Environments)

Then, learn about other important topics like the service container, the form system, using Doctrine (if
you need to query a database) and more!

4. https://getcomposer.org

PDF brought to you by

generated on November 4, 2018

Chapter 2: Create your First Page in Symfony | 13

Have fun!

Go Deeper with HTTP & Framework Fundamentals

• Symfony versus Flat PHP
• Symfony and HTTP Fundamentals

PDF brought to you by

generated on November 4, 2018

Chapter 2: Create your First Page in Symfony | 14

Listing 3-1

Chapter 3

Routing

Beautiful URLs are an absolute must for any serious web application. This means leaving behind ugly

URLs like index.php?article_id=57 in favor of something like /read/intro-to-symfony.

Having flexibility is even more important. What if you need to change the URL of a page from /blog to

/news? How many links should you need to hunt down and update to make the change? If you're using
Symfony's router, the change is simple.

The Symfony router lets you define creative URLs that you map to different areas of your application. By
the end of this article, you'll be able to:

• Create complex routes that map to controllers
• Generate URLs inside templates and controllers
• Load routing resources from bundles (or anywhere else)
• Debug your routes

Routing Examples

A route is a map from a URL path to a controller. For example, suppose you want to match any URL

like /blog/my-post or /blog/all-about-symfony and send it to a controller that can look up and
render that blog post. The route is simple:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

// src/AppBundle/Controller/BlogController.php
namespace AppBundle\Controller;

use Symfony\Bundle\FrameworkBundle\Controller\Controller;
use Symfony\Component\Routing\Annotation\Route;

class BlogController extends Controller
{

/**
* Matches /blog exactly
*
* @Route("/blog", name="blog_list")
*/
public function listAction()
{

// ...

PDF brought to you by

generated on November 4, 2018

Chapter 3: Routing | 15

Listing 3-2

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

}

/**
* Matches /blog/*
*
* @Route("/blog/{slug}", name="blog_show")
*/
public function showAction($slug)
{

// $slug will equal the dynamic part of the URL
// e.g. at /blog/yay-routing, then $slug='yay-routing'

// ...
}

}

Thanks to these two routes:

• If the user goes to /blog, the first route is matched and listAction() is executed;
• If the user goes to /blog/*, the second route is matched and showAction() is executed. Because the route

path is /blog/{slug}, a $slug variable is passed to showAction() matching that value. For example, if the
user goes to /blog/yay-routing, then $slug will equal yay-routing.

Whenever you have a {placeholder} in your route path, that portion becomes a wildcard: it matches

any value. Your controller can now also have an argument called $placeholder (the wildcard and
argument names must match).

Each route also has an internal name: blog_list and blog_show. These can be anything (as long as
each is unique) and don't have any meaning yet. Later, you'll use it to generate URLs.

Routing in Other Formats

The @Route above each method is called an annotation. If you'd rather configure your routes in
YAML, XML or PHP, that's no problem!

In these formats, the _controller "defaults" value is a special key that tells Symfony which

controller should be executed when a URL matches this route. The _controller string is called
the logical name. It follows a pattern that points to a specific PHP class and method, in this

case the AppBundle\Controller\BlogController::listAction and

AppBundle\Controller\BlogController::showAction methods.

This is the goal of the Symfony router: to map the URL of a request to a controller. Along the way, you'll
learn all sorts of tricks that make mapping even the most complex URLs easy.

Adding {wildcard} Requirements

Imagine the blog_list route will contain a paginated list of blog posts, with URLs like /blog/2 and

/blog/3 for pages 2 and 3. If you change the route's path to /blog/{page}, you'll have a problem:

• blog_list: /blog/{page} will match /blog/*;
• blog_show: /blog/{slug} will also match /blog/*.

When two routes match the same URL, the first route that's loaded wins. Unfortunately, that means that

/blog/yay-routing will match the blog_list. No good!

To fix this, add a requirement that the {page} wildcard can only match numbers (digits):

PDF brought to you by

generated on November 4, 2018

Chapter 3: Routing | 16

Listing 3-3

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

// src/AppBundle/Controller/BlogController.php
namespace AppBundle\Controller;

use Symfony\Bundle\FrameworkBundle\Controller\Controller;
use Symfony\Component\Routing\Annotation\Route;

class BlogController extends Controller
{

/**
* @Route("/blog/{page}", name="blog_list", requirements={"page"="\d+"})
*/
public function listAction($page)
{

// ...
}

/**
* @Route("/blog/{slug}", name="blog_show")
*/
public function showAction($slug)
{

// ...
}

}

The \d+ is a regular expression that matches a digit of any length. Now:

URL Route Parameters

/blog/2 blog_list $page = 2

/blog/yay-routing blog_show $slug = yay-routing

To learn about other route requirements - like HTTP method, hostname and dynamic expressions - see
How to Define Route Requirements.

Giving {placeholders} a Default Value

In the previous example, the blog_list has a path of /blog/{page}. If the user visits /blog/1, it

will match. But if they visit /blog, it will not match. As soon as you add a {placeholder} to a route,
it must have a value.

So how can you make blog_list once again match when the user visits /blog? By adding a default

value:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

// src/AppBundle/Controller/BlogController.php
namespace AppBundle\Controller;

use Symfony\Bundle\FrameworkBundle\Controller\Controller;
use Symfony\Component\Routing\Annotation\Route;

class BlogController extends Controller
{

/**
* @Route("/blog/{page}", name="blog_list", requirements={"page"="\d+"})
*/
public function listAction($page = 1)
{

// ...
}

}

PDF brought to you by

generated on November 4, 2018

Chapter 3: Routing | 17

Listing 3-4

Now, when the user visits /blog, the blog_list route will match and $page will default to a value of

1.

Advanced Routing Example

With all of this in mind, check out this advanced example:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

// src/AppBundle/Controller/ArticleController.php

// ...
class ArticleController extends Controller
{

/**
* @Route(
* "/articles/{_locale}/{year}/{slug}.{_format}",
* defaults={"_format": "html"},
* requirements={
* "_locale": "en|fr",
* "_format": "html|rss",
* "year": "\d+"
* }
*)
*/
public function showAction($_locale, $year, $slug)
{
}

}

As you've seen, this route will only match if the {_locale} portion of the URL is either en or fr and if

the {year} is a number. This route also shows how you can use a dot between placeholders instead of a
slash. URLs matching this route might look like:

• /articles/en/2010/my-post

• /articles/fr/2010/my-post.rss

• /articles/en/2013/my-latest-post.html

The Special_format Routing Parameter

This example also highlights the special _format routing parameter. When using this parameter,

the matched value becomes the "request format" of the Request object.

Ultimately, the request format is used for such things as setting the Content-Type of the response

(e.g. a json request format translates into a Content-Type of application/json). It can also

be used in the controller to render a different template for each value of _format. The _format
parameter is a very powerful way to render the same content in different formats.

In Symfony versions previous to 3.0, it is possible to override the request format by adding a query

parameter named _format (for example: /foo/bar?_format=json). Relying on this behavior
not only is considered a bad practice but it will complicate the upgrade of your applications to
Symfony 3.

Sometimes you want to make certain parts of your routes globally configurable. Symfony provides
you with a way to do this by leveraging service container parameters. Read more about this in "How
to Use Service Container Parameters in your Routes".

PDF brought to you by

generated on November 4, 2018

Chapter 3: Routing | 18

Special Routing Parameters

As you've seen, each routing parameter or default value is eventually available as an argument in the
controller method. Additionally, there are four parameters that are special: each adds a unique piece of
functionality inside your application:
_controller_controller

As you've seen, this parameter is used to determine which controller is executed when the route is
matched.

_format_format

Used to set the request format (read more).

_fragment_fragment

Used to set the fragment identifier, the optional last part of a URL that starts with a # character and
is used to identify a portion of a document.

New in version 3.2: The _fragment parameter was introduced in Symfony 3.2.

_locale_locale

Used to set the locale on the request (read more).

Redirecting URLs with Trailing Slashes

Historically, URLs have followed the UNIX convention of adding trailing slashes for directories (e.g.

https://example.com/foo/) and removing them to refer to files (https://example.com/foo).
Although serving different contents for both URLs is OK, nowadays it's common to treat both URLs as
the same URL and redirect between them.

Symfony follows this logic to redirect between URLs with and without trailing slashes (but only for GET
and HEAD requests):

Route
path

If the requested URL is /foo/foo If the requested URL is /foo//foo/

/foo It matches (200 status response) It doesn't match (404 status response)

/foo/ It makes a 301 redirect to /foo/ It matches (200 status response)

In summary, adding a trailing slash in the route path is the best way to ensure that both URLs work. Read

the Redirect URLs with a Trailing Slash article to learn how to avoid the 404 error when the request URL
contains a trailing slash and the route path does not.

Controller Naming Pattern

If you use YAML, XML or PHP route configuration, then each route must have a _controller
parameter, which dictates which controller should be executed when that route is matched. This
parameter uses a simple string pattern called the logical controller name, which Symfony maps to a
specific PHP method and class. The pattern has three parts, each separated by a colon:

bundle:controller:action

For example, a _controller value of AppBundle:Blog:show means:

PDF brought to you by

generated on November 4, 2018

Chapter 3: Routing | 19

Listing 3-5

Listing 3-6

Bundle Controller Class Method Name

AppBundle BlogController showAction()

The controller might look like this:

1
2
3
4
5
6
7
8
9
10
11
12

// src/AppBundle/Controller/BlogController.php
namespace AppBundle\Controller;

use Symfony\Bundle\FrameworkBundle\Controller\Controller;

class BlogController extends Controller
{

public function showAction($slug)
{

// ...
}

}

Notice that Symfony adds the string Controller to the class name (Blog => BlogController) and

Action to the method name (show => showAction()).

You could also refer to this controller using its fully-qualified class name and method:

AppBundle\Controller\BlogController::showAction. But if you follow some simple
conventions, the logical name is more concise and allows more flexibility.

To refer to an action that is implemented as the __invoke() method of a controller class, you
do not have to pass the method name, but can just use the fully qualified class name (e.g.

AppBundle\Controller\BlogController).

In addition to using the logical name or the fully-qualified class name, Symfony supports a third
way of referring to a controller. This method uses just one colon separator (e.g.

service_name:indexAction) and refers to the controller as a service (see How to Define

Controllers as Services).

Loading Routes

Symfony loads all the routes for your application from a single routing configuration file: app/config/
routing.yml. But from inside of this file, you can load any other routing files you want. In fact, by

default, Symfony loads annotation route configuration from your AppBundle's Controller/ directory,
which is how Symfony sees our annotation routes:

1
2
3
4

app/config/routing.yml
app:

resource: "@AppBundle/Controller/"
type: annotation

For more details on loading routes, including how to prefix the paths of loaded routes, see How to Include
External Routing Resources.

Generating URLs

The routing system should also be used to generate URLs. In reality, routing is a bidirectional system:
mapping the URL to a controller and a route back to a URL.

PDF brought to you by

generated on November 4, 2018

Chapter 3: Routing | 20

Listing 3-7

Listing 3-8

Listing 3-9

Listing 3-10

To generate a URL, you need to specify the name of the route (e.g. blog_show) and any wildcards (e.g.

slug = my-blog-post) used in the path for that route. With this information, any URL can easily be
generated:

1
2
3
4
5
6
7
8
9
10
11
12
13

class MainController extends Controller
{

public function showAction($slug)
{

// ...

// /blog/my-blog-post
$url = $this->generateUrl(

'blog_show',
array('slug' => 'my-blog-post')

);
}

}

The generateUrl() method defined in the base Controller1 class is just a shortcut for this
code:

$url = $this->container->get('router')->generate(
'blog_show',
array('slug' => 'my-blog-post')

);

Generating URLs with Query Strings

The generate() method takes an array of wildcard values to generate the URI. But if you pass extra
ones, they will be added to the URI as a query string:

1
2
3
4
5

$this->get('router')->generate('blog', array(
'page' => 2,
'category' => 'Symfony',

));
// /blog/2?category=Symfony

Generating URLs from a Template

To generate URLs inside Twig, see the templating article: Linking to Pages. If you also need to generate
URLs in JavaScript, see How to Generate Routing URLs in JavaScript.

Generating Absolute URLs

By default, the router will generate relative URLs (e.g. /blog). From a controller, pass

UrlGeneratorInterface::ABSOLUTE_URL to the third argument of the generateUrl() method:

use Symfony\Component\Routing\Generator\UrlGeneratorInterface;

$this->generateUrl('blog_show', array('slug' => 'my-blog-post'), UrlGeneratorInterface::ABSOLUTE_URL);
// http://www.example.com/blog/my-blog-post

1. https://api.symfony.com/3.4/Symfony/Bundle/FrameworkBundle/Controller/Controller.html

PDF brought to you by

generated on November 4, 2018

Chapter 3: Routing | 21

Listing 3-11

Listing 3-12

The host that's used when generating an absolute URL is automatically detected using the current

Request object. When generating absolute URLs from outside the web context (for instance in a
console command) this doesn't work. See How to Generate URLs from the Console to learn how to
solve this problem.

Troubleshooting

Here are some common errors you might see while working with routing:

Controller "AppBundle\Controller\BlogController::showAction()" requires that you provide a value
for the "$slug" argument.

This happens when your controller method has an argument (e.g. $slug):

public function showAction($slug)
{

// ..
}

But your route path does not have a {slug} wildcard (e.g. it is /blog/show). Add a {slug} to your

route path: /blog/show/{slug} or give the argument a default value (i.e. $slug = null).

Some mandatory parameters are missing ("slug") to generate a URL for route "blog_show".

This means that you're trying to generate a URL to the blog_show route but you are not passing a slug
value (which is required, because it has a {slug}) wildcard in the route path. To fix this, pass a slug
value when generating the route:

$this->generateUrl('blog_show', array('slug' => 'slug-value'));

// or, in Twig
// {{ path('blog_show', {'slug': 'slug-value'}) }}

Translating Routes

Symfony doesn't support defining routes with different contents depending on the user language. In those
cases, you can define multiple routes per controller, one for each supported language; or use any of
the bundles created by the community to implement this feature, such as JMSI18nRoutingBundle2 and
BeSimpleI18nRoutingBundle3.

Summary

Routing is a system for mapping the URL of incoming requests to the controller function that should be
called to process the request. It both allows you to specify beautiful URLs and keeps the functionality
of your application decoupled from those URLs. Routing is a bidirectional mechanism, meaning that it
should also be used to generate URLs.

2. https://github.com/schmittjoh/JMSI18nRoutingBundle

3. https://github.com/BeSimple/BeSimpleI18nRoutingBundle

PDF brought to you by

generated on November 4, 2018

Chapter 3: Routing | 22

Keep Going!

Routing, check! Now, uncover the power of controllers.

Learn more about Routing

• How to Restrict Route Matching through Conditions
• How to Create a custom Route Loader
• How to Visualize And Debug Routes
• How to Include External Routing Resources
• How to Pass Extra Information from a Route to a Controller
• How to Generate Routing URLs in JavaScript
• How to Match a Route Based on the Host
• How to Define Optional Placeholders
• How to Configure a Redirect without a custom Controller
• Redirect URLs with a Trailing Slash
• How to Define Route Requirements
• Looking up Routes from a Database: Symfony CMF DynamicRouter
• How to Force Routes to Always Use HTTPS or HTTP
• How to Use Service Container Parameters in your Routes
• How to Allow a "/" Character in a Route Parameter

PDF brought to you by

generated on November 4, 2018

Chapter 3: Routing | 23

Listing 4-1

Chapter 4

Controller

A controller is a PHP function you create that reads information from the Symfony's Request object

and creates and returns a Response object. The response could be an HTML page, JSON, XML, a file
download, a redirect, a 404 error or anything else you can dream up. The controller executes whatever
arbitrary logic your application needs to render the content of a page.

See how simple this is by looking at a Symfony controller in action. This renders a page that prints a lucky
(random) number:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

// src/AppBundle/Controller/LuckyController.php
namespace AppBundle\Controller;

use Symfony\Component\HttpFoundation\Response;
use Symfony\Component\Routing\Annotation\Route;

class LuckyController
{

/**
* @Route("/lucky/number")
*/
public function numberAction()
{

$number = random_int(0, 100);

return new Response(
'<html><body>Lucky number: '.$number.'</body></html>'

);
}

}

But in the real world, your controller will probably do a lot of work in order to create the response. It
might read information from the request, load a database resource, send an email or set information on

the user's session. But in all cases, the controller will eventually return the Response object that will be
delivered back to the client.

If you haven't already created your first working page, check out Create your First Page in Symfony
and then come back!

PDF brought to you by

generated on November 4, 2018

Chapter 4: Controller | 24

Listing 4-2

A Simple Controller

While a controller can be any PHP callable (a function, method on an object, or a Closure), a controller
is usually a method inside a controller class:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

// src/AppBundle/Controller/LuckyController.php
namespace AppBundle\Controller;

use Symfony\Component\HttpFoundation\Response;
use Symfony\Component\Routing\Annotation\Route;

class LuckyController
{

/**
* @Route("/lucky/number/{max}")
*/
public function numberAction($max)
{

$number = random_int(0, $max);

return new Response(
'<html><body>Lucky number: '.$number.'</body></html>'

);
}

}

The controller is the numberAction() method, which lives inside a controller class

LuckyController.

This controller is pretty straightforward:

• line 2: Symfony takes advantage of PHP's namespace functionality to namespace the entire
controller class.

• line 4: Symfony again takes advantage of PHP's namespace functionality: the use keyword imports
the Response class, which the controller must return.

• line 7: The class can technically be called anything - but should end in the word Controller (this isn't
required, but some shortcuts rely on this).

• line 12: Each action method in a controller class is suffixed with Action (again, this isn't required,
but some shortcuts rely on this). This method is allowed to have a $max argument thanks to the {max}

wildcard in the route.
• line 16: The controller creates and returns a Response object.

Mapping a URL to a Controller

In order to view the result of this controller, you need to map a URL to it via a route. This was done above

with the @Route("/lucky/number/{max}") annotation.

To see your page, go to this URL in your browser:

http://localhost:8000/lucky/number/100

For more information on routing, see Routing.

PDF brought to you by

generated on November 4, 2018

Chapter 4: Controller | 25

Listing 4-3

Listing 4-4

Listing 4-5

The Base Controller Classes & Services

For convenience, Symfony comes with two optional base Controller1 and AbstractController2

classes. You can extend either to get access to a number of helper methods3.

Add the use statement atop the Controller class and then modify LuckyController to extend it:

1
2
3
4
5
6
7
8
9

// src/AppBundle/Controller/LuckyController.php
namespace AppBundle\Controller;

use Symfony\Bundle\FrameworkBundle\Controller\Controller;

class LuckyController extends Controller
{

// ...
}

That's it! You now have access to methods like $this->render() and many others that you'll learn about
next.

You can extend either Controller or AbstractController. The difference is that when you

extend AbstractController, you can't access to your services via $this->get() or $this-
>container->get(), only to a set of common Symfony services. This forces you to write more
robust code to access services.

Moreover, in Symfony 4.2 Controller was deprecated in favor of AbstractController, so
using the latter will make your apps future-proof.

New in version 3.3: The AbstractController class was added in Symfony 3.3.

Generating URLs

The generateUrl()4 method is just a helper method that generates the URL for a given route:

$url = $this->generateUrl('blog_show', array('slug' => 'slug-value'));

Redirecting

If you want to redirect the user to another page, use the redirectToRoute() and redirect()
methods:

1
2
3
4
5
6
7
8
9
10
11
12
13
14

public function indexAction()
{

// redirects to the "homepage" route
return $this->redirectToRoute('homepage');

// does a permanent - 301 redirect
return $this->redirectToRoute('homepage', array(), 301);

// redirects to a route with parameters
return $this->redirectToRoute('blog_show', array('slug' => 'my-page'));

// redirects to a route and mantains the original query string parameters
return $this->redirectToRoute('blog_show', $request->query->all());

1. https://api.symfony.com/3.4/Symfony/Bundle/FrameworkBundle/Controller/Controller.html

2. https://api.symfony.com/3.4/Symfony/Bundle/FrameworkBundle/Controller/AbstractController.html

3. https://github.com/symfony/symfony/blob/master/src/Symfony/Bundle/FrameworkBundle/Controller/ControllerTrait.php

4. https://api.symfony.com/3.4/Symfony/Bundle/FrameworkBundle/Controller/Controller.html#method_generateUrl

PDF brought to you by

generated on November 4, 2018

Chapter 4: Controller | 26

Listing 4-6

Listing 4-7

Listing 4-8

Listing 4-9

15
16
17

// redirects externally
return $this->redirect('http://symfony.com/doc');

}

For more information, see the Routing article.

The redirect() method does not check its destination in any way. If you redirect to some
URL provided by the end-users, your application may be open to the unvalidated redirects security

vulnerability5.

The redirectToRoute() method is simply a shortcut that creates a Response object that
specializes in redirecting the user. It's equivalent to:

1
2
3
4
5
6

use Symfony\Component\HttpFoundation\RedirectResponse;

public function indexAction()
{

return new RedirectResponse($this->generateUrl('homepage'));
}

Rendering Templates

If you're serving HTML, you'll want to render a template. The render() method renders a template

and puts that content into a Response object for you:

// renders app/Resources/views/lucky/number.html.twig
return $this->render('lucky/number.html.twig', array('number' => $number));

Templates can also live in deeper sub-directories. Just try to avoid creating unnecessarily deep structures:

// renders app/Resources/views/lottery/lucky/number.html.twig
return $this->render('lottery/lucky/number.html.twig', array(

'number' => $number,
));

The Symfony templating system and Twig are explained more in the Creating and Using Templates article.

Fetching Services as Controller Arguments

New in version 3.3: The ability to type-hint a controller argument in order to receive a service was added
in Symfony 3.3.

Symfony comes packed with a lot of useful objects, called services. These are used for rendering templates,
sending emails, querying the database and any other "work" you can think of.

If you need a service in a controller, just type-hint an argument with its class (or interface) name. Symfony
will automatically pass you the service you need:

1
2
3
4
5
6
7
8
9

use Psr\Log\LoggerInterface
// ...

/**
* @Route("/lucky/number/{max}")
*/
public function numberAction($max, LoggerInterface $logger)
{

$logger->info('We are logging!');

5. https://www.owasp.org/index.php/Open_redirect

PDF brought to you by

generated on November 4, 2018

Chapter 4: Controller | 27

Listing 4-10

Listing 4-11

Listing 4-12

10
11

// ...
}

Awesome!

What other services can you type-hint? To see them, use the debug:autowiring console command:

1 $ php bin/console debug:autowiring

If you need control over the exact value of an argument, you can bind the argument by its name:

1
2
3
4
5
6
7
8
9
10

app/config/services.yml
services:

...

explicitly configure the service
AppBundle\Controller\LuckyController:

public: true
bind:

for any $logger argument, pass this specific service
$logger: '@monolog.logger.doctrine'

You can of course also use normal constructor injection in your controllers.

You can only pass services to your controller arguments in this way. It's not possible, for example,

to pass a service parameter as a controller argument, even by using bind. If you need a parameter,

use the $this->getParameter('kernel.debug') shortcut or pass the value through your

controller's __construct() method and specify its value with bind.

For more information about services, see the Service Container article.

If this isn't working, make sure your controller is registered as a service, is autoconfigured and

extends either Controller6 or AbstractController7. If you use the services.yml configuration
from the Symfony Standard Edition, then your controllers are already registered as services and
autoconfigured.

If you're not using the default configuration, you can tag your service manually with

controller.service_arguments.

Accessing the Container Directly

If you extend the base Controller class, you can access any Symfony service via the get()8 method.
Here are several common services you might need:

1
2
3
4
5
6
7
8

$templating = $this->get('templating');

$router = $this->get('router');

$mailer = $this->get('mailer');

// you can also fetch parameters
$someParameter = $this->getParameter('some_parameter');

If you receive an error like:

6. https://api.symfony.com/3.4/Symfony/Bundle/FrameworkBundle/Controller/Controller.html

7. https://api.symfony.com/3.4/Symfony/Bundle/FrameworkBundle/Controller/AbstractController.html

8. https://api.symfony.com/3.4/Symfony/Bundle/FrameworkBundle/Controller/Controller.html#method_get

PDF brought to you by

generated on November 4, 2018

Chapter 4: Controller | 28

Listing 4-13

Listing 4-14

Listing 4-15

Listing 4-16

1 You have requested a non-existent service "my_service_id"

Check to make sure the service exists (use debug:container) and that it's public.

Managing Errors and 404 Pages

When things are not found, you should play well with the HTTP protocol and return a 404 response. To

do this, you'll throw a special type of exception. If you're extending the base Controller or the base

AbstractController class, do the following:

1
2
3
4
5
6
7
8
9
10

public function indexAction()
{

// retrieve the object from database
$product = ...;
if (!$product) {

throw $this->createNotFoundException('The product does not exist');
}

return $this->render(...);
}

The createNotFoundException()9 method is just a shortcut to create a special

NotFoundHttpException10 object, which ultimately triggers a 404 HTTP response inside Symfony.

If you throw an exception that extends or is an instance of HttpException11, Symfony will use the
appropriate HTTP status code. Otherwise, the response will have a 500 HTTP status code:

// this exception ultimately generates a 500 status error
throw new \Exception('Something went wrong!');

In every case, an error page is shown to the end user and a full debug error page is shown to the

developer (i.e. when you're using the app_dev.php front controller - see The imports Key: Loading
other Configuration Files).

You'll want to customize the error page your user sees. To do that, see the How to Customize Error Pages
article.

The Request object as a Controller Argument

What if you need to read query parameters, grab a request header or get access to an uploaded file? All

of that information is stored in Symfony's Request object. To get it in your controller, just add it as an
argument and type-hint it with the Request class:

1
2
3
4
5
6
7
8

use Symfony\Component\HttpFoundation\Request;

public function indexAction(Request $request, $firstName, $lastName)
{

$page = $request->query->get('page', 1);

// ...
}

Keep reading for more information about using the Request object.

9. https://api.symfony.com/3.4/Symfony/Bundle/FrameworkBundle/Controller/Controller.html#method_createNotFoundException

10. https://api.symfony.com/3.4/Symfony/Component/HttpKernel/Exception/NotFoundHttpException.html

11. https://api.symfony.com/3.4/Symfony/Component/HttpKernel/Exception/HttpException.html

PDF brought to you by

generated on November 4, 2018

Chapter 4: Controller | 29

Listing 4-17

Listing 4-18

Managing the Session

Symfony provides a nice session object that you can use to store information about the user between
requests. By default, Symfony stores the token in a cookie and writes the attributes to a file by using
native PHP sessions.

New in version 3.3: The ability to request a Session instance in controllers was introduced in Symfony
3.3.

To retrieve the session, add the SessionInterface12 type-hint to your argument and Symfony will
provide you with a session:

1
2
3
4
5
6
7
8
9
10
11
12
13

use Symfony\Component\HttpFoundation\Session\SessionInterface;

public function indexAction(SessionInterface $session)
{

// stores an attribute for reuse during a later user request
$session->set('foo', 'bar');

// gets the attribute set by another controller in another request
$foobar = $session->get('foobar');

// uses a default value if the attribute doesn't exist
$filters = $session->get('filters', array());

}

Stored attributes remain in the session for the remainder of that user's session.

Every SessionInterface implementation is supported. If you have your own implementation,
type-hint this in the arguments instead.

Flash Messages

You can also store special messages, called "flash" messages, on the user's session. By design, flash
messages are meant to be used exactly once: they vanish from the session automatically as soon as you
retrieve them. This feature makes "flash" messages particularly great for storing user notifications.

For example, imagine you're processing a form submission:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

use Symfony\Component\HttpFoundation\Request;

public function updateAction(Request $request)
{

// ...

if ($form->isSubmitted() && $form->isValid()) {
// do some sort of processing

$this->addFlash(
'notice',
'Your changes were saved!'

);
// $this->addFlash() is equivalent to $request->getSession()->getFlashBag()->add()

return $this->redirectToRoute(...);
}

return $this->render(...);
}

12. https://api.symfony.com/3.4/Symfony/Component/HttpFoundation/Session/SessionInterface.html

PDF brought to you by

generated on November 4, 2018

Chapter 4: Controller | 30

Listing 4-19

Listing 4-20

After processing the request, the controller sets a flash message in the session and then redirects. The

message key (notice in this example) can be anything: you'll use this key to retrieve the message.

In the template of the next page (or even better, in your base layout template), read any flash messages

from the session using app.flashes():

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

{# app/Resources/views/base.html.twig #}

{# you can read and display just one flash message type... #}
{% for message in app.flashes('notice') %}

<div class="flash-notice">
{{ message }}

</div>
{% endfor %}

{# ...or you can read and display every flash message available #}
{% for label, messages in app.flashes %}

{% for message in messages %}
<div class="flash-{{ label }}">

{{ message }}
</div>

{% endfor %}
{% endfor %}

New in version 3.3: The app.flashes() Twig function was introduced in Symfony 3.3. Prior, you had

to use app.session.flashBag().

It's common to use notice, warning and error as the keys of the different types of flash
messages, but you can use any key that fits your needs.

You can use the peek()13 method instead to retrieve the message while keeping it in the bag.

The Request and Response Object

As mentioned earlier, the framework will pass the Request object to any controller argument that is

type-hinted with the Request class:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

use Symfony\Component\HttpFoundation\Request;

public function indexAction(Request $request)
{

$request->isXmlHttpRequest(); // is it an Ajax request?

$request->getPreferredLanguage(array('en', 'fr'));

// retrieves GET and POST variables respectively
$request->query->get('page');
$request->request->get('page');

// retrieves SERVER variables
$request->server->get('HTTP_HOST');

// retrieves an instance of UploadedFile identified by foo
$request->files->get('foo');

// retrieves a COOKIE value

13. https://api.symfony.com/3.4/Symfony/Component/HttpFoundation/Session/Flash/FlashBagInterface.html#method_peek

PDF brought to you by

generated on November 4, 2018

Chapter 4: Controller | 31

Listing 4-21

Listing 4-22

20
21
22
23
24
25

$request->cookies->get('PHPSESSID');

// retrieves an HTTP request header, with normalized, lowercase keys
$request->headers->get('host');
$request->headers->get('content_type');

}

The Request class has several public properties and methods that return any information you need
about the request.

Like the Request, the Response object has also a public headers property. This is a

ResponseHeaderBag14 that has some nice methods for getting and setting response headers. The

header names are normalized so that using Content-Type is equivalent to content-type or even

content_type.

The only requirement for a controller is to return a Response object. The Response15 class is an
abstraction around the HTTP response - the text-based message filled with headers and content that's
sent back to the client:

1
2
3
4
5
6
7
8

use Symfony\Component\HttpFoundation\Response;

// creates a simple Response with a 200 status code (the default)
$response = new Response('Hello '.$name, Response::HTTP_OK);

// creates a CSS-response with a 200 status code
$response = new Response('<style> ... </style>');
$response->headers->set('Content-Type', 'text/css');

There are special classes that make certain kinds of responses easier:

• For files, there is BinaryFileResponse16. See Serving Files.
• For streamed responses, there is StreamedResponse17. See Streaming a Response.

Now that you know the basics you can continue your research on Symfony Request and Response object in the
HttpFoundation component documentation.

JSON Helper

To return JSON from a controller, use the json() helper method on the base controller. This returns a

special JsonResponse object that encodes the data automatically:

1
2
3
4
5
6
7
8
9

// ...
public function indexAction()
{

// returns '{"username":"jane.doe"}' and sets the proper Content-Type header
return $this->json(array('username' => 'jane.doe'));

// the shortcut defines three optional arguments
// return $this->json($data, $status = 200, $headers = array(), $context = array());

}

If the serializer service is enabled in your application, contents passed to json() are encoded with it.

Otherwise, the json_encode18 function is used.

14. https://api.symfony.com/3.4/Symfony/Component/HttpFoundation/ResponseHeaderBag.html

15. https://api.symfony.com/3.4/Symfony/Component/HttpFoundation/Response.html
16. https://api.symfony.com/3.4/Symfony/Component/HttpFoundation/BinaryFileResponse.html
17. https://api.symfony.com/3.4/Symfony/Component/HttpFoundation/StreamedResponse.html

18. https://secure.php.net/manual/en/function.json-encode.php

PDF brought to you by

generated on November 4, 2018

Chapter 4: Controller | 32

Listing 4-23

Listing 4-24

File helper

New in version 3.2: The file() helper was introduced in Symfony 3.2.

You can use the file()19 helper to serve a file from inside a controller:

1
2
3
4
5

public function fileAction()
{

// send the file contents and force the browser to download it
return $this->file('/path/to/some_file.pdf');

}

The file() helper provides some arguments to configure its behavior:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

use Symfony\Component\HttpFoundation\File\File;
use Symfony\Component\HttpFoundation\ResponseHeaderBag;

public function fileAction()
{

// load the file from the filesystem
$file = new File('/path/to/some_file.pdf');

return $this->file($file);

// rename the downloaded file
return $this->file($file, 'custom_name.pdf');

// display the file contents in the browser instead of downloading it
return $this->file('invoice_3241.pdf', 'my_invoice.pdf', ResponseHeaderBag::DISPOSITION_INLINE);

}

Final Thoughts

Whenever you create a page, you'll ultimately need to write some code that contains the logic for that
page. In Symfony, this is called a controller, and it's a PHP function where you can do anything in order

to return the final Response object that will be returned to the user.

To make life easier, you'll probably extend the base Controller class because this gives access to

shortcut methods (like render() and redirectToRoute()).

In other articles, you'll learn how to use specific services from inside your controller that will help you
persist and fetch objects from a database, process form submissions, handle caching and more.

Keep Going!

Next, learn all about rendering templates with Twig.

Learn more about Controllers

• Extending Action Argument Resolving
• How to Manually Validate a CSRF Token in a Controller
• How to Customize Error Pages
• How to Forward Requests to another Controller
• How to Define Controllers as Services
• How to Create a SOAP Web Service in a Symfony Controller

19. https://api.symfony.com/3.4/Symfony/Bundle/FrameworkBundle/Controller/Controller.html#method_file

PDF brought to you by

generated on November 4, 2018

Chapter 4: Controller | 33

• How to Upload Files

PDF brought to you by

generated on November 4, 2018

Chapter 4: Controller | 34

Listing 5-1

Chapter 5

Creating and Using Templates

As explained in the previous article, controllers are responsible for handling each request that comes into
a Symfony application and they usually end up rendering a template to generate the response contents.

In reality, the controller delegates most of the heavy work to other places so that code can be tested and
reused. When a controller needs to generate HTML, CSS or any other content, it hands the work off to
the templating engine.

In this article, you'll learn how to write powerful templates that can be used to return content to the
user, populate email bodies, and more. You'll learn shortcuts, clever ways to extend templates and how
to reuse template code.

Templates

A template is simply a text file that can generate any text-based format (HTML, XML, CSV, LaTeX ...).
The most familiar type of template is a PHP template - a text file parsed by PHP that contains a mix of
text and PHP code:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

<!DOCTYPE html>
<html>

<head>
<title>Welcome to Symfony!</title>

</head>
<body>

<h1><?= $page_title ?></h1>

<ul id="navigation">
<?php foreach ($navigation as $item): ?>

<a href="<?= $item->getHref() ?>">

<?= $item->getCaption() ?>

<?php endforeach ?>

</body>

</html>

PDF brought to you by

generated on November 4, 2018

Chapter 5: Creating and Using Templates | 35

Listing 5-2

Listing 5-3

Listing 5-4

But Symfony packages an even more powerful templating language called Twig1. Twig allows you to write
concise, readable templates that are more friendly to web designers and, in several ways, more powerful
than PHP templates:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

<!DOCTYPE html>
<html>

<head>
<title>Welcome to Symfony!</title>

</head>
<body>

<h1>{{ page_title }}</h1>

<ul id="navigation">
{% for item in navigation %}

{{ item.caption }}
{% endfor %}

</body>

</html>

Twig defines three types of special syntax:
{{ ... }}{{ ... }}

"Says something": prints a variable or the result of an expression to the template.

{% ... %}{% ... %}

"Does something": a tag that controls the logic of the template; it is used to execute statements such
as for-loops for example.

{# ... #}{# ... #}

"Comment something": it's the equivalent of the PHP /* comment */ syntax. It's used to add single or
multi-line comments. The content of the comments isn't included in the rendered pages.

Twig also contains filters, which modify content before being rendered. The following makes the title
variable all uppercase before rendering it:

1 {{ title|upper }}

Twig comes with a long list of tags2, filters3 and functions4 that are available by default. You can even add
your own custom filters, functions (and more) via a Twig Extension.

Twig code will look similar to PHP code, with subtle, nice differences. The following example uses a

standard for tag and the cycle() function to print ten div tags, with alternating odd, even classes:

1
2
3
4
5

{% for i in 1..10 %}
<div class="{{ cycle(['even', 'odd'], i) }}">
<!-- some HTML here -->

</div>
{% endfor %}

Throughout this article, template examples will be shown in both Twig and PHP.

1. https://twig.symfony.com

2. https://twig.symfony.com/doc/2.x/tags/index.html

3. https://twig.symfony.com/doc/2.x/filters/index.html

4. https://twig.symfony.com/doc/2.x/functions/index.html

PDF brought to you by

generated on November 4, 2018

Chapter 5: Creating and Using Templates | 36

Listing 5-5

Listing 5-6

Why Twig?

Twig templates are meant to be simple and won't process PHP tags. This is by design: the Twig
template system is meant to express presentation, not program logic. The more you use Twig, the
more you'll appreciate and benefit from this distinction. And of course, you'll be loved by web
designers everywhere.

Twig can also do things that PHP can't, such as whitespace control, sandboxing, automatic HTML
escaping, manual contextual output escaping, and the inclusion of custom functions and filters that
only affect templates. Twig contains little features that make writing templates easier and more

concise. Take the following example, which combines a loop with a logical if statement:

1
2
3
4
5
6
7

{% for user in users if user.active %}

{{ user.username }}
{% else %}

No users found
{% endfor %}

Twig Template Caching

Twig is fast because each template is compiled to a native PHP class and cached. But don't worry: this
happens automatically and doesn't require you to do anything. And while you're developing, Twig is
smart enough to re-compile your templates after you make any changes. That means Twig is fast in
production, but easy to use while developing.

Template Inheritance and Layouts

More often than not, templates in a project share common elements, like the header, footer, sidebar or
more. In Symfony, this problem is thought about differently: a template can be decorated by another
one. This works exactly the same as PHP classes: template inheritance allows you to build a base "layout"
template that contains all the common elements of your site defined as blocks (think "PHP class with
base methods"). A child template can extend the base layout and override any of its blocks (think "PHP
subclass that overrides certain methods of its parent class").

First, build a base layout file:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

{# app/Resources/views/base.html.twig #}
<!DOCTYPE html>
<html>

<head>
<meta charset="UTF-8">
<title>{% block title %}Test Application{% endblock %}</title>

</head>
<body>

<div id="sidebar">
{% block sidebar %}

Home
Blog

{% endblock %}

</div>

<div id="content">
{% block body %}{% endblock %}

</div>
</body>

</html>

PDF brought to you by

generated on November 4, 2018

Chapter 5: Creating and Using Templates | 37

Listing 5-7

Listing 5-8

Though the discussion about template inheritance will be in terms of Twig, the philosophy is the
same between Twig and PHP templates.

This template defines the base HTML skeleton document of a simple two-column page. In this example,

three {% block %} areas are defined (title, sidebar and body). Each block may be overridden by
a child template or left with its default implementation. This template could also be rendered directly.

In that case the title, sidebar and body blocks would simply retain the default values used in this
template.

A child template might look like this:

1
2
3
4
5
6
7
8
9
10
11

{# app/Resources/views/blog/index.html.twig #}
{% extends 'base.html.twig' %}

{% block title %}My cool blog posts{% endblock %}

{% block body %}
{% for entry in blog_entries %}

<h2>{{ entry.title }}</h2>
<p>{{ entry.body }}</p>

{% endfor %}
{% endblock %}

The parent template is stored in app/Resources/views/, so its path is simply

base.html.twig. The template naming conventions are explained fully in Template Naming and
Locations.

The key to template inheritance is the {% extends %} tag. This tells the templating engine to first
evaluate the base template, which sets up the layout and defines several blocks. The child template is

then rendered, at which point the title and body blocks of the parent are replaced by those from the

child. Depending on the value of blog_entries, the output might look like this:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

<!DOCTYPE html>
<html>

<head>
<meta charset="UTF-8">
<title>My cool blog posts</title>

</head>
<body>

<div id="sidebar">

Home
Blog

</div>

<div id="content">
<h2>My first post</h2>
<p>The body of the first post.</p>

<h2>Another post</h2>
<p>The body of the second post.</p>

</div>
</body>

</html>

Notice that since the child template didn't define a sidebar block, the value from the parent template

is used instead. Content within a {% block %} tag in a parent template is always used by default.

PDF brought to you by

generated on November 4, 2018

Chapter 5: Creating and Using Templates | 38

Listing 5-9

You can use as many levels of inheritance as you want! See How to Organize Your Twig Templates
Using Inheritance for more info.

When working with template inheritance, here are some tips to keep in mind:

• If you use {% extends %} in a template, it must be the first tag in that template;

• The more {% block %} tags you have in your base templates, the better. Remember, child
templates don't have to define all parent blocks, so create as many blocks in your base templates
as you want and give each a sensible default. The more blocks your base templates have, the more
flexible your layout will be;

• If you find yourself duplicating content in a number of templates, it probably means you should

move that content to a {% block %} in a parent template. In some cases, a better solution may be

to move the content to a new template and include it (see Including other Templates);

• If you need to get the content of a block from the parent template, you can use the {{ parent()
}} function. This is useful if you want to add to the contents of a parent block instead of completely
overriding it:

1
2
3
4
5
6
7

{% block sidebar %}
<h3>Table of Contents</h3>

{# ... #}

{{ parent() }}
{% endblock %}

Template Naming and Locations

By default, templates can live in two different locations:
app/Resources/views/app/Resources/views/

The application's views directory can contain application-wide base templates (i.e. your application's
layouts and templates of the application bundle) as well as templates that override third party
bundle templates (see How to Override Templates from Third-Party Bundles).

vendor/path/to/CoolBundle/Resources/views/vendor/path/to/CoolBundle/Resources/views/

Each third party bundle houses its templates in its Resources/views/ directory (and subdirectories).
When you plan to share your bundle, you should put the templates in the bundle instead of the app/

directory.

Most of the templates you'll use live in the app/Resources/views/ directory. The path you'll use

will be relative to this directory. For example, to render/extend app/Resources/views/
base.html.twig, you'll use the base.html.twig path and to render/extend app/Resources/
views/blog/index.html.twig, you'll use the blog/index.html.twig path.

Referencing Templates in a Bundle

If you need to refer to a template that lives in a bundle, Symfony uses the Twig namespaced syntax

(@BundleName/directory/filename.html.twig). This allows for several types of templates,
each which lives in a specific location:

• @AcmeBlog/Blog/index.html.twig: This syntax is used to specify a template for a specific

page. The three parts of the string, each separated by a slash (/), mean the following:

PDF brought to you by

generated on November 4, 2018

Chapter 5: Creating and Using Templates | 39

• @AcmeBlog: is the bundle name without the Bundle suffix. This template lives in the
AcmeBlogBundle (e.g. src/Acme/BlogBundle);

• Blog: (directory) indicates that the template lives inside the Blog subdirectory of Resources/views/;
• index.html.twig: (filename) the actual name of the file is index.html.twig.

Assuming that the AcmeBlogBundle lives at src/Acme/BlogBundle, the final path to the layout

would be src/Acme/BlogBundle/Resources/views/Blog/index.html.twig.

• @AcmeBlog/layout.html.twig: This syntax refers to a base template that's specific to the

AcmeBlogBundle. Since the middle, "directory", portion is missing (e.g. Blog), the template lives at

Resources/views/layout.html.twig inside AcmeBlogBundle.

In the How to Override Templates from Third-Party Bundles section, you'll find out how each template
living inside the AcmeBlogBundle, for example, can be overridden by placing a template of the same

name in the app/Resources/AcmeBlogBundle/views/ directory. This gives the power to override
templates from any vendor bundle.

Template Suffix

Every template name also has two extensions that specify the format and engine for that template.

Filename Format Engine

blog/index.html.twig HTML Twig

blog/index.html.php HTML PHP

blog/index.css.twig CSS Twig

By default, any Symfony template can be written in either Twig or PHP, and the last part of the extension

(e.g. .twig or .php) specifies which of these two engines should be used. The first part of the extension,

(e.g. .html, .css, etc) is the final format that the template will generate. Unlike the engine, which
determines how Symfony parses the template, this is simply an organizational tactic used in case the same

resource needs to be rendered as HTML (index.html.twig), XML (index.xml.twig), or any other
format. For more information, read the How to Work with Different Output Formats in Templates section.

Tags and Helpers

You already understand the basics of templates, how they're named and how to use template inheritance.
The hardest parts are already behind you. In this section, you'll learn about a large group of tools available
to help perform the most common template tasks such as including other templates, linking to pages and
including images.

Symfony comes bundled with several specialized Twig tags and functions that ease the work of the
template designer. In PHP, the templating system provides an extensible helper system that provides
useful features in a template context.

You've already seen a few built-in Twig tags like {% block %} and {% extends %}. Here you will
learn a few more.

Including other Templates

You'll often want to include the same template or code fragment on several pages. For example, in an
application with "news articles", the template code displaying an article might be used on the article detail
page, on a page displaying the most popular articles, or in a list of the latest articles.

PDF brought to you by

generated on November 4, 2018

Chapter 5: Creating and Using Templates | 40

Listing 5-10

Listing 5-11

Listing 5-12

When you need to reuse a chunk of PHP code, you typically move the code to a new PHP class or
function. The same is true for templates. By moving the reused template code into its own template, it
can be included from any other template. First, create the template that you'll need to reuse.

1
2
3
4
5
6
7

{# app/Resources/views/article/article_details.html.twig #}
<h2>{{ article.title }}</h2>
<h3 class="byline">by {{ article.authorName }}</h3>

<p>
{{ article.body }}

</p>

Including this template from any other template is simple:

1
2
3
4
5
6
7
8
9
10

{# app/Resources/views/article/list.html.twig #}
{% extends 'layout.html.twig' %}

{% block body %}
<h1>Recent Articles<h1>

{% for article in articles %}
{{ include('article/article_details.html.twig', { 'article': article }) }}

{% endfor %}
{% endblock %}

The template is included using the {{ include() }} function. Notice that the template name follows

the same typical convention. The article_details.html.twig template uses an article variable,
which we pass to it. In this case, you could avoid doing this entirely, as all of the variables available in

list.html.twig are also available in article_details.html.twig (unless you set with_context5

to false).

The {'article': article} syntax is the standard Twig syntax for hash maps (i.e. an array with

named keys). If you needed to pass in multiple elements, it would look like this: {'foo': foo,
'bar': bar}.

Linking to Pages

Creating links to other pages in your application is one of the most common jobs for a template. Instead

of hardcoding URLs in templates, use the path Twig function (or the router helper in PHP) to generate
URLs based on the routing configuration. Later, if you want to modify the URL of a particular page, all
you'll need to do is change the routing configuration: the templates will automatically generate the new
URL.

First, link to the "welcome" page, which is accessible via the following routing configuration:

1
2
3
4
5
6
7
8
9
10
11
12
13

// src/AppBundle/Controller/WelcomeController.php

// ...
use Symfony\Component\Routing\Annotation\Route;

class WelcomeController extends Controller
{

/**
* @Route("/", name="welcome")
*/
public function indexAction()
{

// ...

5. https://twig.symfony.com/doc/2.x/functions/include.html

PDF brought to you by

generated on November 4, 2018

Chapter 5: Creating and Using Templates | 41

Listing 5-13

Listing 5-14

Listing 5-15

Listing 5-16

Listing 5-17

14
15

}
}

To link to the page, just use the path() Twig function and refer to the route:

1 Home

As expected, this will generate the URL /. Now, for a more complicated route:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

// src/AppBundle/Controller/ArticleController.php

// ...
use Symfony\Component\Routing\Annotation\Route;

class ArticleController extends Controller
{

/**
* @Route("/article/{slug}", name="article_show")
*/
public function showAction($slug)
{

// ...
}

}

In this case, you need to specify both the route name (article_show) and a value for the {slug}
parameter. Using this route, revisit the recent_list.html.twig template from the previous section
and link to the articles correctly:

1
2
3
4
5
6

{# app/Resources/views/article/recent_list.html.twig #}
{% for article in articles %}

{{ article.title }}

{% endfor %}

You can also generate an absolute URL by using the url() Twig function:

1 Home

Linking to Assets

Templates also commonly refer to images, JavaScript, stylesheets and other assets. Of course you could

hard-code the path to these assets (e.g. /images/logo.png), but Symfony provides a more dynamic

option via the asset() Twig function:

1
2
3

<link href="{{ asset('css/blog.css') }}" rel="stylesheet" />

The asset() function's main purpose is to make your application more portable. If your application

lives at the root of your host (e.g. http://example.com), then the rendered paths should be

/images/logo.png. But if your application lives in a subdirectory (e.g. http://example.com/
my_app), each asset path should render with the subdirectory (e.g. /my_app/images/logo.png).

PDF brought to you by

generated on November 4, 2018

Chapter 5: Creating and Using Templates | 42

Listing 5-18

Listing 5-19

Listing 5-20

The asset() function takes care of this by determining how your application is being used and
generating the correct paths accordingly.

The asset() function supports various cache busting techniques via the version, version_format,
and json_manifest_path configuration options.

If you need absolute URLs for assets, use the absolute_url() Twig function as follows:

1

Including Stylesheets and JavaScripts in Twig

No site would be complete without including JavaScript files and stylesheets. In Symfony, the inclusion
of these assets is handled elegantly by taking advantage of Symfony's template inheritance.

This section will teach you the philosophy behind including stylesheet and JavaScript assets in
Symfony. Symfony is also compatible with another library, called Assetic, which follows this
philosophy but allows you to do much more interesting things with those assets. For more
information on using Assetic see How to Use Assetic for Asset Management.

Start by adding two blocks to your base template that will hold your assets: one called stylesheets
inside the head tag and another called javascripts just above the closing body tag. These blocks will
contain all of the stylesheets and JavaScripts that you'll need throughout your site:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

{# app/Resources/views/base.html.twig #}
<html>

<head>
{# ... #}

{% block stylesheets %}
<link href="{{ asset('css/main.css') }}" rel="stylesheet" />

{% endblock %}
</head>
<body>

{# ... #}

{% block javascripts %}
<script src="{{ asset('js/main.js') }}"></script>

{% endblock %}
</body>

</html>

That's easy enough! But what if you need to include an extra stylesheet or JavaScript from a child

template? For example, suppose you have a contact page and you need to include a contact.css
stylesheet just on that page. From inside that contact page's template, do the following:

1
2
3
4
5
6
7
8
9
10

{# app/Resources/views/contact/contact.html.twig #}
{% extends 'base.html.twig' %}

{% block stylesheets %}
{{ parent() }}

<link href="{{ asset('css/contact.css') }}" rel="stylesheet" />
{% endblock %}

{# ... #}

PDF brought to you by

generated on November 4, 2018

Chapter 5: Creating and Using Templates | 43

Listing 5-21

Listing 5-22

In the child template, you simply override the stylesheets block and put your new stylesheet tag
inside of that block. Of course, since you want to add to the parent block's content (and not actually

replace it), you should use the parent() Twig function to include everything from the stylesheets
block of the base template.

You can also include assets located in your bundles' Resources/public folder. You will need to run

the php bin/console assets:install target [--symlink] command, which copies (or
symlinks) files into the correct location. (target is by default the "web/" directory of your application).

1 <link href="{{ asset('bundles/acmedemo/css/contact.css') }}" rel="stylesheet" />

The end result is a page that includes main.js and both the main.css and contact.css stylesheets.

Referencing the Request, User or Session

Symfony also gives you a global app variable in Twig that can be used to access the current user, the
Request and more.

See How to Access the User, Request, Session & more in Twig via the app Variable for details.

Output Escaping

Twig performs automatic "output escaping" when rendering any content in order to protect you from
Cross Site Scripting (XSS) attacks.

Suppose description equals I <3 this product:

1
2
3
4
5

<!-- output escaping is on automatically -->
{{ description }} <!-- I <3 this product -->

<!-- disable output escaping with the raw filter -->
{{ description|raw }} <!-- I <3 this product -->

PHP templates do not automatically escape content.

For more details, see How to Escape Output in Templates.

Final Thoughts

The templating system is just one of the many tools in Symfony. And its job is simple: allow us to render
dynamic & complex HTML output so that this can ultimately be returned to the user, sent in an email or
something else.

Keep Going!

Before diving into the rest of Symfony, check out the configuration system.

Learn more

PDF brought to you by

generated on November 4, 2018

Chapter 5: Creating and Using Templates | 44

• How to Use PHP instead of Twig for Templates
• How to Access the User, Request, Session & more in Twig via the app Variable
• How to Dump Debug Information in Twig Templates
• How to Embed Controllers in a Template
• How to Escape Output in Templates
• How to Work with Different Output Formats in Templates
• How to Inject Variables into all Templates (i.e. global Variables)
• How to Embed Asynchronous Content with hinclude.js
• How to Organize Your Twig Templates Using Inheritance
• How to Use and Register Namespaced Twig Paths
• How to Override Templates from Third-Party Bundles
• How to Render a Template without a custom Controller
• How to Check the Syntax of Your Twig Templates
• How to Write a custom Twig Extension

PDF brought to you by

generated on November 4, 2018

Chapter 5: Creating and Using Templates | 45

Listing 6-1

Chapter 6

Configuring Symfony (and Environments)

Every Symfony application consists of a collection of bundles that add useful tools (services) to your

project. Each bundle can be customized via configuration files that live - by default - in the app/config
directory.

Configuration: config.yml

The main configuration file is called config.yml:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

app/config/config.yml
imports:

- { resource: parameters.yml }
- { resource: security.yml }
- { resource: services.yml }

framework:
secret: '%secret%'
router: { resource: '%kernel.project_dir%/app/config/routing.yml' }
...

Twig Configuration
twig:

debug: '%kernel.debug%'
strict_variables: '%kernel.debug%'

...

Most top-level keys - like framework and twig - are configuration for a specific bundle (i.e.

FrameworkBundle and TwigBundle).

PDF brought to you by

generated on November 4, 2018

Chapter 6: Configuring Symfony (and Environments) | 46

Listing 6-2

Listing 6-3

Listing 6-4

Configuration Formats

Throughout the documentation, all configuration examples will be shown in three formats (YAML,
XML and PHP). YAML is used by default, but you can choose whatever you like best. There is no
performance difference:

• The YAML Format: Simple, clean and readable;
• XML: More powerful than YAML at times & supports IDE autocompletion;
• PHP: Very powerful but less readable than standard configuration formats.

Configuration Reference & Dumping

There are two ways to know what keys you can configure:
1. Use the Reference Section;
2. Use the config:dump-reference command.

For example, if you want to configure something in Twig, you can see an example dump of all available
configuration options by running:

1 $ php bin/console config:dump-reference twig

The imports Key: Loading other Configuration Files

Symfony's main configuration file is app/config/config.yml. But, for organization, it also loads

other configuration files via its imports key:

1
2
3
4
5
6

app/config/config.yml
imports:

- { resource: parameters.yml }
- { resource: security.yml }
- { resource: services.yml }

...

The imports key works a lot like the PHP include() function: the contents of parameters.yml,

security.yml and services.yml are read and loaded. You can also load XML files or PHP files.

If your application uses unconventional file extensions (for example, your YAML files have a .res
extension) you can set the file type explicitly with the type option:

1
2
3
4

app/config/config.yml
imports:

- { resource: parameters.res, type: yml }
...

The parameters Key: Parameters (Variables)

Another special key is called parameters: it's used to define variables that can be referenced in

any other configuration file. For example, in config.yml, a locale parameter is defined and then

referenced below under the framework key:

PDF brought to you by

generated on November 4, 2018

Chapter 6: Configuring Symfony (and Environments) | 47

Listing 6-5

Listing 6-6

Listing 6-7

1
2
3
4
5
6
7
8
9
10
11
12
13

app/config/config.yml
...

parameters:
locale: en

framework:
...

any string surrounded by two % is replaced by that parameter value
default_locale: "%locale%"

...

You can define whatever parameter names you want under the parameters key of any configuration

file. To reference a parameter, surround its name with two percent signs - e.g. %locale%.

You can also set parameters dynamically, like from environment variables. See How to Set external
Parameters in the Service Container.

For more information about parameters - including how to reference them from inside a controller - see
Service Parameters.

The Special parameters.yml File

On the surface, parameters.yml is just like any other configuration file: it is imported by

config.yml and defines several parameters:

1
2
3
4

parameters:
...
database_user: root
database_password: ~

Not surprisingly, these are referenced from inside of config.yml and help to configure DoctrineBundle
and other parts of Symfony:

1
2
3
4
5
6
7

app/config/config.yml
doctrine:

dbal:
driver: pdo_mysql
...
user: '%database_user%'
password: '%database_password%'

But the parameters.yml file is special: it defines the values that usually change on each server. For
example, the database credentials on your local development machine might be different from your
workmates. That's why this file is not committed to the shared repository and is only stored on your
machine.

Because of that, parameters.yml is not committed to your version control. In fact, the .gitignore
file that comes with Symfony prevents it from being committed.

However, a parameters.yml.dist file is committed (with dummy values). This file isn't read by
Symfony: it's just a reference so that Symfony knows which parameters need to be defined in the

parameters.yml file. If you add or remove keys to parameters.yml, add or remove them from

parameters.yml.dist too so both files are always in sync.

PDF brought to you by

generated on November 4, 2018

Chapter 6: Configuring Symfony (and Environments) | 48

The Interactive Parameter Handler

When you install an existing Symfony project, you will need to create the parameters.yml file

using the committed parameters.yml.dist file as a reference. To help with this, after you run

composer install, a Symfony script will automatically create this file by interactively asking you

to supply the value for each parameter defined in parameters.yml.dist. For more details - or to

remove or control this behavior - see the Incenteev Parameter Handler1 documentation.

Environments & the Other Config Files

You have just one app, but whether you realize it or not, you need it to behave differently at different
times:

• While developing, you want your app to log everything and expose nice debugging tools;
• After deploying to production, you want that same app to be optimized for speed and only log

errors.

How can you make one application behave in two different ways? With environments.

You've probably already been using the dev environment without even knowing it. After you deploy,

you'll use the prod environment.

To learn more about how to execute and control each environment, see How to Master and Create new
Environments.

Keep Going!

Congratulations! You've tackled the basics in Symfony. Next, learn about each part of Symfony
individually by following the guides. Check out:

• Forms
• Databases and the Doctrine ORM
• Service Container
• Security
• How to Send an Email
• Logging

And the many other topics.

Learn more

• How to Organize Configuration Files
• How to Master and Create new Environments
• How to Set external Parameters in the Service Container
• Understanding how the Front Controller, Kernel and Environments Work together
• Building your own Framework with the MicroKernelTrait
• How To Create Symfony Applications with Multiple Kernels
• How to Override Symfony's default Directory Structure
• Using Parameters within a Dependency Injection Class

1. https://github.com/Incenteev/ParameterHandler

PDF brought to you by

generated on November 4, 2018

Chapter 6: Configuring Symfony (and Environments) | 49

	Getting Started Version: 3.4 generated on November 4, 2018
	

	Contents at a Glance
	Installing & Setting up the Symfony Framework
	Creating Symfony Applications
	Basing your Project on a Specific Symfony Version

	Creating Symfony Applications with Composer
	Running the Symfony Application
	Checking Symfony Application Configuration and Setup
	Fixing Permissions Problems
	Updating Symfony Applications
	Installing the Symfony Demo or Other Distributions
	Installing an Existing Symfony Application

	Keep Going!
	Go Deeper with Setup

	Create your First Page in Symfony
	Creating a Page: Route and Controller
	The Web Debug Toolbar: Debugging Dream
	Rendering a Template (with the Service Container)
	Checking out the Project Structure
	Bundles & Configuration
	What's Next?
	Go Deeper with HTTP & Framework Fundamentals

	Routing
	Routing Examples
	Adding {wildcard} Requirements
	Giving {placeholders} a Default Value
	Advanced Routing Example
	Special Routing Parameters
	Redirecting URLs with Trailing Slashes

	Controller Naming Pattern
	Loading Routes
	Generating URLs
	Generating URLs with Query Strings
	Generating URLs from a Template
	Generating Absolute URLs

	Troubleshooting
	Translating Routes
	Summary
	Keep Going!
	Learn more about Routing

	Controller
	A Simple Controller
	Mapping a URL to a Controller

	The Base Controller Classes & Services
	Generating URLs
	Redirecting
	Rendering Templates
	Fetching Services as Controller Arguments
	Accessing the Container Directly

	Managing Errors and 404 Pages
	The Request object as a Controller Argument
	Managing the Session
	Flash Messages

	The Request and Response Object
	JSON Helper
	File helper

	Final Thoughts
	Keep Going!
	Learn more about Controllers

	Creating and Using Templates
	Templates
	Twig Template Caching

	Template Inheritance and Layouts
	Template Naming and Locations
	Referencing Templates in a Bundle
	Template Suffix

	Tags and Helpers
	Including other Templates
	Linking to Pages
	Linking to Assets

	Including Stylesheets and JavaScripts in Twig
	Referencing the Request, User or Session
	Output Escaping
	Final Thoughts
	Keep Going!
	Learn more

	Configuring Symfony (and Environments)
	Configuration: config.yml
	Configuration Reference & Dumping
	The imports Key: Loading other Configuration Files
	The parameters Key: Parameters (Variables)
	The Special parameters.yml File

	Environments & the Other Config Files
	Keep Going!
	Learn more

