

1.1

1.1.1

1.1.2

1.1.3

1.1.4

1.1.5

1.2

1.2.1

1.2.2

1.2.3

1.2.4

1.2.5

1.2.6

1.2.7

1.2.8

1.2.9

1.2.10

1.3

1.3.1

1.3.2

1.3.3

1.3.4

1.4

1.4.1

1.4.2

1.5

1.5.1

1.5.2

1.5.3

1.5.4

Table	of	Contents
Introduction

Audience

C++	Popularity

Benefits	of	C++

Contents	of	This	Book

Contribution

Know	Your	Compiler	Output

Test	Applications

Get	Simple	Application	Compiled

Dynamic	Memory	Allocation

Exceptions

RTTI

Removing	Standard	Library	and	C++	Runtime

Static	Objects

Abstract	Classes

Templates

Tag	Dispatching

Basic	Needs

Assertion

Callback

Data	Serialisation

Static	(Fixed	Size)	Queue

Basic	Concepts

Event	Loop

Device-Driver-Component

Peripherals

Timer

UART

GPIO

I2C

2

1.5.5

1.5.6

SPI

Other

3

Practical	Guide	to	Bare	Metal	C++
Once	in	a	while	I	encounter	a	question	whether	C++	is	suitable	for	embedded	development
and	bare	metal	development	in	particular.	There	are	multiple	articles	of	how	C++	is	superior
to	C,	that	everything	you	can	do	in	C	you	can	do	in	C++	with	a	lot	of	extras,	and	that	it
should	be	used	even	with	bare	metal	development.	However,	I	haven't	found	many	practical
guides	or	tutorials	of	how	to	use	C++	superiority	and	boost	development	process	compared
to	conventional	approach	of	using	“C”	programming	language.	With	this	book	I	hope	to
explain	and	show	examples	of	how	to	implement	soft	real	time	systems	without	prioritising
interrupts	and	without	any	need	for	complex	real	time	task	scheduling.	Hopefully	it	will	help
someone	to	get	started	with	using	C++	in	embedded	bare	metal	development.

This	work	is	licensed	under	a	Commons	Attribution-NonCommercial-ShareAlike	4.0

International	License.	

Introduction

4

http://creativecommons.org/licenses/by-nc-sa/4.0/

Audience
The	primary	intended	audience	of	this	document	is	professional	C++	developers	who	want
to	understand	bare	metal	development	a	little	bit	better,	get	to	know	how	to	use	their
favourite	programming	language	in	an	embedded	environment,	and	probably	bring	their	C++
skills	to	an	“expert”	level.	Why	professional?	Because	bare	metal	platform	has	lots	of
limitations.	In	most	cases	no	exceptions	and	no	runtime	type	information	(RTTI)	support	will
be	available.	In	many	cases	the	dynamic	memory	allocation	will	also	be	excluded.	In	order	to
be	able	to	use	C++	effectively	you	will	have	to	have	deep	knowledge	of	existing	C++	idioms,
constructs	and	STL	contents.	You	must	know	how	your	favourite	data	structures	are
implemented	and	whether	it	is	possible	to	reuse	them	in	your	environment.	If	it	is	not
possible	to	use	the	STL	(or	any	other	library)	code	“as	is”,	you	will	have	to	implement	a
reduced	version	of	it,	and	it	is	better	to	know	how	the	library	developers	implemented	the
feature	and	how	to	make	it	work	with	the	constrains	of	your	environment.

The	professional	embedded	developers	with	intermediate	knowledge	of	C++	may	also	find
this	document	useful.	They	will	probably	benefit	from	lots	of	C++	insights	and	will	have
several	“eureka”	moments	with	“I	didn't	know	I	could	do	that!!!”	kind	of	thoughts.

If	your	C++	knowledge	doesn't	go	much	beyond	polymorphism	and	virtual	functions,	if
template	meta-programming	doesn't	mean	anything	to	you,	probably	you	are	not	ready	to
use	C++	in	the	embedded	environment	and	this	document	will	probably	be	too	complex	to
understand.	I'd	like	to	emphasise	the	fact	that	this	is	NOT	a	C++	tutorial.	There	are	lots	of
resources	on	the	web	that	teach	conventional	C++	with	OS	services,	exceptions	and	RTTI.
My	personal	opinion	is	that	you	have	to	master	C++	in	regular	environment	before	using	it
effectively	in	the	bare	metal	world.

Audience

5

C++	Popularity
C++	is	quite	popular	in	the	embedded	world	of	Linux-based	embedded	systems.	However	it
is	not	that	popular	in	bare	metal	development.	Why?	Probably	because	of	its	complexity.
Knowing	C++	syntax	is	not	enough.	To	use	it	effectively	the	developer	must	know	what
Standard	Template	Library	(STL)	provides,	what	can	and	what	cannot	be	used	when
developing	for	specific	platform.	STL	mastery	is	also	not	enough,	the	developer	should	have
some	level	of	proficiency	in	template	meta-programming.	Although	there	is	an	opinion	that
templates	are	dangerous	because	of	executable	code	bloating,	I	think	that	templates	are
developer's	friends,	but	the	one	must	know	the	dangers	and	know	how	to	use	templates
effectively.	But	again,	it	requires	time	and	effort	to	get	to	know	how	to	do	it	right.

Another	reason	why	C++	is	not	used	in	bare	metal	development	is	that	software	in
significant	number	(if	not	majority)	of	projects	gets	written	by	hardware	developers,	at	least
in	its	first	stages	just	to	make	sure	the	hardware	works	as	expected.	The	“C”	programming
language	is	a	natural	choice	for	them.	And	of	course	majority	of	hardware	developers	lack
proficiency	in	software	development.	They	may	have	some	difficulties	writing	code	of	good
quality	in	“C”,	not	to	mention	“C++”.	After	software	reaches	certain	level	of	complexity	it	is
handed	over	to	software	engineers	who	are	not	allowed	to	re-implement	it	from	scratch.
They	are	told	something	like:	“This	code	almost	works,	just	fix	a	couple	of	bugs,	implement
this	short	set	of	features	and	we're	good	to	go.	Throwing	away	the	existing	code	is	a	waste,
we	do	not	have	time	to	re-implement	it.”

The	last	reason,	I	think,	is	psychological	one.	People	prefer	to	be	wrong	in	a	group	than	right
by	themselves.	When	majority	of	bare	metal	products	being	developed	using	“C”,	it	feels
risky	and	unnatural	to	choose	“C++”,	even	though	the	latter	is	better	choice	from	the
technological	perspective.

C++	Popularity

6

Benefits	of	C++
The	primary	reason	to	prefer	C++	over	C	is	code	reuse.	Thanks	to	templates,	it	is	much
easier	to	implement	generic	piece	of	code	that	can	be	reused	between	projects	in	C++	than
in	C.	When	implementing	everything	from	scratch,	then	probably	using	C++	instead	of	C
won't	give	any	significant	advantage	in	terms	of	development	effort,	maybe	even	extend	it.
However,	once	generic	components	have	been	developed,	the	whole	development	process
for	next	projects	will	be	much	easier	and	faster,	thanks	to	reuse	of	the	former.

Benefits	of	C++

7

Contents	of	This	Book
This	document	introduces	several	concepts	that	can	be	used	in	bare-metal	development	as
well	as	shows	how	they	can	be	implemented	using	features	of	latest	(at	the	time	of	writing)
C++11	standard.

The	code	of	generic	components	is	implemented	as	part	of	“Embedded	C++	Library”	project
called	“embxx”	and	can	be	found	at	https://github.com/arobenko/embxx.	It	has	GPLv3
licence.

There	is	also	a	project	that	implements	multiple	simple	bare	metal	applications	using	embxx
which	can	run	on	RaspberryPi	platform.	The	source	code	can	be	found	at
https://github.com/arobenko/embxx_on_rpi.	It	also	has	GPLv3	licence.

Both	projects	require	gcc	version	4.7	or	higher,	because	of	C++11	support	requirement.
They	also	use	CMake	as	their	build	system.	The	code	has	been	tested	with	following	free
toolchains:

GNU	Tools	for	ARM	Embedded	Processors	on	Launchpad
Sourcery	CodeBench	Lite	Edition

The	whole	document	is	ARM	platform	centric.	At	this	moment	I	do	not	try	to	cover	anything
else.

To	compile	Raspberry	Pi	example	applications	in	Linux	environment	use	the	following	steps:

1.	 Checkout	embxx_on_rpi	project

	>	git	clone	https://github.com/arobenko/embxx_on_rpi.git
	>	cd	embxx_on_rpi

2.	 Create	separate	build	directory	and	cd	to	it

	>	mkdir	build
	>	cd	build

3.	 Generate	makefiles

	>	cmake	..

Note	that	last	parameter	to	cmake	is	relative	or	absolute	path	to	the	root	of	the	source
tree.	Also	note	that	embxx	library	will	be	checked	out	as	external	git	submodule	during
this	process.

Contents	of	This	Book

8

https://github.com/arobenko/embxx
https://github.com/arobenko/embxx
https://github.com/arobenko/embxx_on_rpi
http://www.cmake.org
https://launchpad.net/gcc-arm-embedded
http://www.mentor.com/embedded-software/sourcery-tools/sourcery-codebench/editions/lite-edition/
https://github.com/arobenko/embxx_on_rpi
https://github.com/arobenko/embxx

4.	 Build	the	applications

	>	make

5.	 Take	the	generated	image	from		<build_dir>/image/<app_name>/kernel.img	

The	CMake	provides	the	following	build	types,	which	I	believe	are	self-explanatory:

None	(default)
Debug
Release
MinSizeRel
RelWithDebInfo

To	specify	the	required	build	type	use		-DCMAKE_BUILD_TYPE=<value>		option	of	cmake	utility:

>	cmake	-DCMAKE_BUILD_TYPE=Release	..

If	no	build	type	is	specified,	the	default	one	is	None,	which	is	similar	to	Debug,	but	without	“-
g”	compilation	option,	i.e.	no	optimisations	and	no	debugging	information	is	generated.

It	is	possible	to	specify	the	cross-compilation	toolchain	prefix.	By	default		arm-none-eabi-		is
expected,	i.e.		arm-none-eabi-gcc	,		arm-none-eabi-g++		and		arm-none-eabi-as		are	used	to
compile	the	sources.	If	these	utilities	cannot	be	found	in	environment	search	paths,	then	you
should	specify	the	prefix	passing		-DCROSS_COMPILE=<prefix>		option	to	cmake:

>	cmake	-DCROSS_COMPILE=/opt/arm-none-eabi-2013.05/bin/arm-none-eabi-	..

To	see	the	commands	used	to	compile	the	sources,	prefix		make		with		VERBOSE=1	:

>	VERBOSE=1	make

The	embxx	library	has	doxygen	generated	documentation.	It	can	be	found	here.

Contents	of	This	Book

9

https://github.com/arobenko/embxx
https://dl.dropboxusercontent.com/u/46999418/embxx/index.html

Contribution
If	you	have	any	suggestions,	requests,	bug	fixes,	spelling	mistakes	fixes,	or	maybe	you	feel
that	some	things	are	not	explained	properly,	please	feel	free	to	e-mail	me	to
arobenko@gmail.com.

Contribution

10

Know	Your	Compiler	Output
To	successfully	use	C++	language	and	its	libraries	in	bare	metal	development	it	is	important
to	know	what	binary	code	compiler	generates	from	the	C++	source	code.	This	section	will
lead	you	through	the	process	of	building	simple	testing	applications	and	analysis	of	their
binary	code.

Know	Your	Compiler	Output

11

Test	Applications
The	embxx_on_rpi	project	contains	several	simple	test	application,	which	are	intended	to	be
used	for	binary	code	analysis	only	and	not	to	be	executed	on	the	target	platform.	This
applications	reside	in	src/test_cpp	directory.	In	order	to	properly	analyse	the	code	that
compiler	produces	for	production	environment,	let's	compile	all	the	applications	in	Release
mode:

>	git	clone	https://github.com/arobenko/embxx_on_rpi.git
>	mkdir	-p	<build_dir_somewhere>
>	cd	<build_dir_somewhere>
>	cmake	-DCMAKE_BUILD_TYPE=Release	<path/to/embxx_on_rpi>
>	VERBOSE=1	make

The	listing	file	of	every	application	will	be
	<build_dir_somewhere>/src/test_cpp/<app_name>/kernel.list	.

Test	Applications

12

https://github.com/arobenko/embxx_on_rpi
https://github.com/arobenko/embxx_on_rpi/tree/master/src/test_cpp

Get	Simple	Application	Compiled
Let's	try	to	compile	simple	application	of	infinite	loop,	called	test_cpp_simple.

A	linker	script	is	required	to	get	all	the	generated	objects	successfully	linked.	It	states	what
code/data	sections	need	to	be	loaded	at	what	addresses	as	well	as	defines	several	symbols
that	may	be	required	by	the	sources.	Here	is	a	good	manual	of	linker	script	syntax	and	here
is	the	linker	script	I	use	to	get	applications	linked	for	Raspberry	Pi	platform.

Depending	on	your	compiler,	the	link	may	fail	because	some	symbols	are	missing.	For
example		__exidx_start		and		__exidx_end		are	needed	when	the	application	is	compiled	with
exceptions	support,	or		__bss_start__		and		__bss_end__		may	be	required	by	standard	library
if	it	contains	the	code	for	zeroing		.bss		section.

Every	application	must	have	a	startup	code	usually	written	in	Assembler.	This	startup	code
must	perform	the	following	steps:

1.	 Write	the	interrupt	vector	table	at	appropriate	location	(usually	at	address	0x0000).
2.	 Set	the	stack	pointers	for	every	runtime	mode.
3.	 Zero	the	.bss	section
4.	 Call	constructors	of	global	(static)	objects	(applicable	only	to	C++)
5.	 Call	the	main	function.

It	may	happen	that	compiler	generates	some	startup	code	for	you,	especially	if	you	haven't
excluded	standard	library	(stdlib)	from	compilation.	To	check	whether	this	is	the	case,	we
need	to	analyse	assembler	listing	of	the	successfully	compiled	and	linked	image	binary.	All
the	generated	files	for	a	test	application	will	reside	in		<build_dir>/src/test_cpp/<app_name>	.
The	assembler	listing	file	will	have		kernel.list		name.

Side	note:	the	assembler	listing	can	be	generated	using	the	following	command:

>	arm-none-eabi-objdump	-D	-S	app_binary	>	app.list

Open	the	listing	file	and	look	for	function	with	CRT	string	in	it.	CRT	stands	for	“C	Run-Time”.
When	using	this	compiler,	the	function	that	compiler	has	generated,	is	called
	_mainCRTStartup	.	Let's	take	closer	look	what	this	function	does.

00008198	<_mainCRTStartup>:

Load	the	address	of	the	end	of	the	RAM	and	assign	its	value	to	stack	pointer	(sp).

Get	Simple	Application	Compiled

13

https://github.com/arobenko/embxx_on_rpi/tree/master/src/test_cpp/test_cpp_simple
http://www.delorie.com/gnu/docs/binutils/ld_6.html
https://github.com/arobenko/embxx_on_rpi/blob/master/src/raspberrypi.ld
https://launchpad.net/gcc-arm-embedded

				8198:				e59f30f0					ldr				r3,	[pc,	#240]				;	8290	<_mainCRTStartup+0xf8>	
				819c:				e3530000					cmp				r3,	#0	
				81a0:				059f30e4					ldreq				r3,	[pc,	#228]				;	828c	<_mainCRTStartup+0xf4>	
				81a4:				e1a0d003					mov				sp,	r3

Set	the	value	of	sp	for	various	modes,	the	sizes	of	the	stacks	are	determined	by	the	compiler
itself.

				81a8:				e10f2000					mrs				r2,	CPSR	
				81ac:				e312000f					tst				r2,	#15	
				81b0:				0a000015					beq				820c	<_mainCRTStartup+0x74>	
				81b4:				e321f0d1					msr				CPSR_c,	#209				;	0xd1	
				81b8:				e1a0d003					mov				sp,	r3	
				81bc:				e24daa01					sub				sl,	sp,	#4096				;	0x1000	
				81c0:				e1a0300a					mov				r3,	sl	
				81c4:				e321f0d7					msr				CPSR_c,	#215				;	0xd7	
				81c8:				e1a0d003					mov				sp,	r3	
				81cc:				e2433a01					sub				r3,	r3,	#4096				;	0x1000	
				81d0:				e321f0db					msr				CPSR_c,	#219				;	0xdb	
				81d4:				e1a0d003					mov				sp,	r3	
				81d8:				e2433a01					sub				r3,	r3,	#4096				;	0x1000	
				81dc:				e321f0d2					msr				CPSR_c,	#210				;	0xd2	
				81e0:				e1a0d003					mov				sp,	r3	
				81e4:				e2433a02					sub				r3,	r3,	#8192				;	0x2000	
				81e8:				e321f0d3					msr				CPSR_c,	#211				;	0xd3	
				81ec:				e1a0d003					mov				sp,	r3	
				81f0:				e2433902					sub				r3,	r3,	#32768				;	0x8000	
				81f4:				e3c330ff					bic				r3,	r3,	#255				;	0xff	
				81f8:				e3c33cff					bic				r3,	r3,	#65280				;	0xff00	
				81fc:				e5033004					str				r3,	[r3,	#-4]	
				8200:				e9532000					ldmdb				r3,	{sp}^	
				8204:				e38220c0					orr				r2,	r2,	#192				;	0xc0	
				8208:				e121f002					msr				CPSR_c,	r2	
				820c:				e243a801					sub				sl,	r3,	#65536				;	0x10000	
				8210:				e3b01000					movs				r1,	#0	
				8214:				e1a0b001					mov				fp,	r1	
				8218:				e1a07001					mov				r7,	r1

Load	the	addresses	of		__bss_start__		and		__bss_end__		symbols	and	zero	all	the	area	in
between.

				821c:				e59f0078					ldr				r0,	[pc,	#120]				;	829c	<_mainCRTStartup+0x104>	
				8220:				e59f2078					ldr				r2,	[pc,	#120]				;	82a0	<_mainCRTStartup+0x108>	
				8224:				e0522000					subs				r2,	r2,	r0	
				8228:				eb00004a					bl				8358	<memset>	

			...	Then	comes	some	code,	purpose	of	which	is	not	clear

Get	Simple	Application	Compiled

14

Call	the		__libc_init_array		function	provided	by	standard	library	which	will	initialise	all	the
global	objects.	It	will	treat	the	area	between		__init_array_start		and		__init_array_end		as
list	of	pointers	to	initialisation	functions	and	call	them	one	by	one.

				8278:				eb000014					bl				82d0	<__libc_init_array>

Call	the	main	function.

				8284:				eb000010					bl				82cc	<main>

If		main		function	returns	for	some	reason,	call	the	exit	function,	which	probably	must	be
implemented	as	infinite	loop	or	jumping	back	to	the	beginning	of	the	startup	code.

				8288:				eb000008					bl				82b0	<exit>

Here	comes	local	data

				828c:				00080000					andeq				r0,	r8,	r0	
				8290:				04008000					streq				r8,	[r0],	#-0	
				...	
				829c:				00008458					andeq				r8,	r0,	r8,	asr	r4	
				82a0:				00008474					andeq				r8,	r0,	r4,	ror	r4

The	only	missing	stage	in	the	startup	process	is	updating	the	interrupt	vector	table.	After	the
latter	is	updated	properly,	it	is	possible	to	call	the	provided		_mainCRTStartup		function.
However,	if	your	compiler	doesn't	provide	such	function	you	have	no	other	choice	but	to
write	the	whole	startup	code	yourself.	Here	is	an	example	of	such	code.

Please	note,	that		.bss		section	by	definition	contains	uninitialised	data	that	must	be	zeroed
at	startup.	Even	if	you	don't	have	uninitialised	variables	in	your	code,	zeroing		.bss		is	a
must	have	operation.	This	is	because	compiler	might	put	variables	that	are	explicitly
initialised	to	0	into	the		.bss		for	performance	reasons	and	count	on	this	section	being
zeroed	at	startup.

Also	note,	that	pointers	to	initialisation	functions	of	global	variables	reside	in		.init.array	
section.	To	initialise	your	global	objects	you	just	iterate	over	all	entries	in	this	section	and	call
them	one	by	one.

To	implement	the	missing	stage	for	use	the	following	assembler	instructions:

Get	Simple	Application	Compiled

15

https://github.com/arobenko/embxx_on_rpi/blob/master/src/asm/startup.s

_entry:	
				ldr	pc,reset_handler_ptr								;@		Processor	Reset	handler	
				ldr	pc,undefined_handler_ptr				;@		Undefined	instruction	handler	
				ldr	pc,swi_handler_ptr										;@		Software	interrupt	
				ldr	pc,prefetch_handler_ptr					;@		Prefetch/abort	handler.	
				ldr	pc,data_handler_ptr									;@		Data	abort	handler/	
				ldr	pc,unused_handler_ptr							;@	
				ldr	pc,irq_handler_ptr										;@		IRQ	handler	
				ldr	pc,fiq_handler_ptr										;@		Fast	interrupt	handler.	

				;@	Set	the	branch	addresses	
				reset_handler_ptr:						.word	reset	
				undefined_handler_ptr:		.word	hang	
				swi_handler_ptr:								.word	hang	
				prefetch_handler_ptr:			.word	hang	
				data_handler_ptr:							.word	hang	
				unused_handler_ptr:					.word	hang	
				irq_handler_ptr:								.word	irq_handler	
				fiq_handler_ptr:								.word	hang	

reset:	
				;@	Disable	interrupts	
				cpsid	if	

				;@	Copy	interrupt	vector	to	its	place	
				ldr	r0,=_entry	
				mov	r1,#0x0000	

				;@		Here	we	copy	the	branching	instructions	
				ldmia	r0!,{r2,r3,r4,r5,r6,r7,r8,r9}	
				stmia	r1!,{r2,r3,r4,r5,r6,r7,r8,r9}	

				;@		Here	we	copy	the	branching	addresses	
				ldmia	r0!,{r2,r3,r4,r5,r6,r7,r8,r9}	
				stmia	r1!,{r2,r3,r4,r5,r6,r7,r8,r9}

Please	note	that	at	interrupt	vector	table	that	resides	at	address	0x0000	contains	branch
instructions	to	the	appropriate	handlers,	not	just	addresses	of	the	handlers.	Let's	take	a
closer	look	how	these	branching	instructions	look	in	our	assembler	listing	file:

Get	Simple	Application	Compiled

16

_entry:	
				800c:				e59ff018					ldr				pc,	[pc,	#24]				;	802c	<reset_handler_ptr>	
				8010:				e59ff018					ldr				pc,	[pc,	#24]				;	8030	<undefined_handler_ptr>	
				8014:				e59ff018					ldr				pc,	[pc,	#24]				;	8034	<swi_handler_ptr>	
				8018:				e59ff018					ldr				pc,	[pc,	#24]				;	8038	<prefetch_handler_ptr>	
				801c:				e59ff018					ldr				pc,	[pc,	#24]				;	803c	<data_handler_ptr>	
				8020:				e59ff018					ldr				pc,	[pc,	#24]				;	8040	<unused_handler_ptr>	
				8024:				e59ff018					ldr				pc,	[pc,	#24]				;	8044	<irq_handler_ptr>	
				8028:				e59ff018					ldr				pc,	[pc,	#24]				;	8048	<fiq_handler_ptr>	

0000802c	<reset_handler_ptr>:	
				802c:				0000804c					andeq				r8,	r0,	ip,	asr	#32	

00008030	<undefined_handler_ptr>:	
				8030:				000082b4													;	<UNDEFINED>	instruction:	0x000082b4	

00008034	<swi_handler_ptr>:	
				8034:				000082b4													;	<UNDEFINED>	instruction:	0x000082b4	

00008038	<prefetch_handler_ptr>:	
				8038:				000082b4													;	<UNDEFINED>	instruction:	0x000082b4	

0000803c	<data_handler_ptr>:	
				803c:				000082b4													;	<UNDEFINED>	instruction:	0x000082b4	

00008040	<unused_handler_ptr>:	
				8040:				000082b4													;	<UNDEFINED>	instruction:	0x000082b4	

00008044	<irq_handler_ptr>:	
				8044:				000082b8													;	<UNDEFINED>	instruction:	0x000082b8	

00008048	<fiq_handler_ptr>:	
				8048:				000082b4													;	<UNDEFINED>	instruction:	0x000082b4

The	branching	instructions	load	address	of	the	interrupt	function	to	“pc”	register.	However
the	address	of	the	function	is	stored	somewhere	and	compiler	generates	access	to	this
storage	using	relative	offset	to	current	“pc”	register.	This	is	the	reason	why	we	have	to	copy
not	just	the	branching	instructions,	but	also	the	storage	area	where	addresses	of	interrupt
routines	are	stored:

Get	Simple	Application	Compiled

17

				;@	Copy	interrupt	vector	to	its	place	
				ldr	r0,=_entry	
				mov	r1,#0x0000	

				;@		Here	we	copy	the	branching	instructions	
				ldmia	r0!,{r2,r3,r4,r5,r6,r7,r8,r9}	
				stmia	r1!,{r2,r3,r4,r5,r6,r7,r8,r9}	

				;@		Here	we	copy	the	branching	addresses	
				ldmia	r0!,{r2,r3,r4,r5,r6,r7,r8,r9}	
				stmia	r1!,{r2,r3,r4,r5,r6,r7,r8,r9}

Get	Simple	Application	Compiled

18

Dynamic	Memory	Allocation
Let's	try	to	compile	simple	application	that	uses	dynamic	memory	allocation.	The
test_cpp_vector	application	contains	the	following	code:

std::vector<int>	v;	
static	const	int	MaxVecSize	=	256;	
for	(int	i	=	0;	i	<	MaxVecSize;	++i)	{	
				v.push_back(i);	
}

It	may	happen	that	linking	operation	will	fail	with	multiple	referenced	symbols	being
undefined:

unwind-arm.c:(.text+0x224):	undefined	reference	to	`__exidx_end'	
unwind-arm.c:(.text+0x228):	undefined	reference	to	`__exidx_start'	
/usr/bin/../lib/gcc/arm-none-eabi/4.8.3/../../../../arm-none-eabi/lib/libc.a(lib_a-abo
rt.o):	In	function	`abort':	
abort.c:(.text.abort+0x10):	undefined	reference	to	`_exit'	
/usr/bin/../lib/gcc/arm-none-eabi/4.8.3/../../../../arm-none-eabi/lib/libc.a(lib_a-sbr
kr.o):	In	function	`_sbrk_r':	
sbrkr.c:(.text._sbrk_r+0x18):	undefined	reference	to	`_sbrk'	
/usr/bin/../lib/gcc/arm-none-eabi/4.8.3/../../../../arm-none-eabi/lib/libc.a(lib_a-sig
nalr.o):	In	function	`_kill_r':	
signalr.c:(.text._kill_r+0x1c):	undefined	reference	to	`_kill'	
/usr/bin/../lib/gcc/arm-none-eabi/4.8.3/../../../../arm-none-eabi/lib/libc.a(lib_a-sig
nalr.o):	In	function	`_getpid_r':	
signalr.c:(.text._getpid_r+0x4):	undefined	reference	to	`_getpid'	
/usr/bin/../lib/gcc/arm-none-eabi/4.8.3/../../../../arm-none-eabi/lib/libc.a(lib_a-wri
ter.o):	In	function	`_write_r':	
writer.c:(.text._write_r+0x20):	undefined	reference	to	`_write'	
/usr/bin/../lib/gcc/arm-none-eabi/4.8.3/../../../../arm-none-eabi/lib/libc.a(lib_a-clo
ser.o):	In	function	`_close_r':	
closer.c:(.text._close_r+0x18):	undefined	reference	to	`_close'	
/usr/bin/../lib/gcc/arm-none-eabi/4.8.3/../../../../arm-none-eabi/lib/libc.a(lib_a-fst
atr.o):	In	function	`_fstat_r':	
fstatr.c:(.text._fstat_r+0x1c):	undefined	reference	to	`_fstat'	
/usr/bin/../lib/gcc/arm-none-eabi/4.8.3/../../../../arm-none-eabi/lib/libc.a(lib_a-isa
ttyr.o):	In	function	`_isatty_r':	
isattyr.c:(.text._isatty_r+0x18):	undefined	reference	to	`_isatty'	
/usr/bin/../lib/gcc/arm-none-eabi/4.8.3/../../../../arm-none-eabi/lib/libc.a(lib_a-lse
ekr.o):	In	function	`_lseek_r':	
lseekr.c:(.text._lseek_r+0x20):	undefined	reference	to	`_lseek'	
/usr/bin/../lib/gcc/arm-none-eabi/4.8.3/../../../../arm-none-eabi/lib/libc.a(lib_a-rea
dr.o):	In	function	`_read_r':	
readr.c:(.text._read_r+0x20):	undefined	reference	to	`_read'	
collect2:	error:	ld	returned	1	exit	status

Dynamic	Memory	Allocation

19

https://github.com/arobenko/embxx_on_rpi/tree/master/src/test_cpp/test_cpp_vector

The	symbols		__exidx_start		and		__exidx_end		are	required	to	indicate	start	and	end	of
	.ARM.exidx		section.	It	is	used	for	exception	handling.	They	must	be	defined	in	the	linker
script:

.ARM.exidx	:	
{	
				__exidx_start	=	.;	
				(.ARM.exidx	.gnu.linkonce.armexidx.*)	
				__exidx_end	=	.;	
}	>RAM

The	dynamic	memory	allocation	will	require	implementation	of		_sbrk		function	which	will	be
used	to	allocate	chunks	of	memory	for	the	C/C++	heap	management.

All	other	symbols	will	be	required	to	properly	support	exceptions	which	are	used	by	C++
heap	management	system.	Here	is	a	good	resource,	that	lists	all	the	system	calls,	the
developer	may	need	to	implement,	to	get	the	application	compiled.

Now,	after	successful	compilation,	take	a	good	look	at	the	size	of	the	images	of	two	sample
applications	we	compiled.	The	paths	are
	<build_dir>/src/test_cpp/test_cpp_simple/kernel.img		and
	<build_dir>/src/test_cpp/test_cpp_vector/kernel.img	.

Side	note:	The	image	can	be	generated	out	of	elf	binary	using	the	following	instruction:

>	arm-none-eabi-objcopy	<elf_executable>	-O	binary	<binary_image_path>

You	may	notice	that	size	of	test_cpp_vector	image	is	greater	by	approximately	100K	than
test_cpp_simple.	It	is	due	to	C++	heap	management	and	exceptions	handling.	Let's	try	to
see	what	happens	to	the	size	of	the	application	if	"C++"	heap	is	replaced	with	“C”	one
without	exceptions.	You	will	have	to	override	all	the	global	C++	operators	responsible	for
memory	allocation/deallocation:

Dynamic	Memory	Allocation

20

https://sourceware.org/newlib/libc.html#Syscalls
https://github.com/arobenko/embxx_on_rpi/tree/master/src/test_cpp/test_cpp_vector
https://github.com/arobenko/embxx_on_rpi/tree/master/src/test_cpp/test_cpp_simple

#include	<cstdlib>	
#include	<new>	

void*	operator	new(size_t	size)	noexcept	
{	
				return	malloc(size);	
}	

void	operator	delete(void	*p)	noexcept	
{	
				free(p);	
}	

void*	operator	new[](size_t	size)	noexcept	
{	
				return	operator	new(size);	//	Same	as	regular	new
}	

void	operator	delete[](void	*p)	noexcept	
{	
				operator	delete(p);	//	Same	as	regular	delete
}	

void*	operator	new(size_t	size,	std::nothrow_t)	noexcept	
{	
				return	operator	new(size);	//	Same	as	regular	new	
}	

void	operator	delete(void	*p,		std::nothrow_t)	noexcept	
{	
				operator	delete(p);	//	Same	as	regular	delete
}	

void*	operator	new[](size_t	size,	std::nothrow_t)	noexcept	
{	
				return	operator	new(size);	//	Same	as	regular	new
}	

void	operator	delete[](void	*p,		std::nothrow_t)	noexcept	
{	
				operator	delete(p);	//	Same	as	regular	delete
}

Please	compile	the	test_cpp_vector	application	again,	create	its	image	and	take	a	look	at	its
size.	It	will	be	much	closer	to	the	size	of	the	test_cpp_simple	image.	In	fact,	you	may	not
even	need	majority	of	the	system	call	functions	you	have	implemented	before.	Try	to	remove
them	one	by	one	and	see	whether	linker	still	reports	“undefined	reference”	to	these	symbols.

Dynamic	Memory	Allocation

21

https://github.com/arobenko/embxx_on_rpi/tree/master/src/test_cpp/test_cpp_vector
https://github.com/arobenko/embxx_on_rpi/tree/master/src/test_cpp/test_cpp_simple

CONCLUSION:	Usage	of	C++	heap	brings	a	significant	code	size	overhead.	It	is	a	good
practice	to	override	implementation	of		new		and		delete		operators	with	usage	of		malloc	
and		free		when	using	C++	in	bare	metal	development.	Note	that	in	this	case,	if	memory
allocation	fails	nullptr	will	be	returned	instead	of	throwing	std::bad_alloc	exception,	so
beware	of	third	party	C++	libraries	that	count	on	exception	been	thrown	and	do	not	check
the	returned	value	form	operator	new.

Excluding	Usage	of	Dynamic	Memory

The	dynamic	memory	allocation	is	a	core	part	of	conventional	C++.	However,	in	some	bare-
metal	products	the	usage	of	dynamic	memory	may	be	problematic	and/or	forbidden.	The
only	way	(I	know	of)	to	make	to	compilation	fail,	if	dynamic	memory	is	used,	is	to	exclude
standard	library	altogether.	With		gcc		compiler	it	is	achieved	by	using		-nostdlib	
compilation	option.

Excluding	standard	library	from	the	compilation	will	remove	the	whole	C++	run-time
environment,	which	includes	dynamic	memory	(heap)	management	and	exception	handling.
The	implication	of	using	this	compilation	option	will	be	described	later	in	Removing	Standard
Library	and	C++	Runtime	section.

Dynamic	Memory	Allocation

22

http://en.cppreference.com/w/cpp/types/nullptr_t
http://en.cppreference.com/w/cpp/memory/new/bad_alloc
http://en.cppreference.com/w/cpp/memory/new/operator_new

Exceptions
Exception	handling	is	also	a	core	feature	of	the	conventional	C++.	However,	this	feature	is
considered	to	be	too	dangerous,	because	of	unpredictable	code	execution	time	and	too
expensive	(in	terms	of	code	size)	for	bare	metal	platforms.	The	usage	of	single	throw
statement	in	the	source	code	will	result	in	more	than	120KB	of	extra	binary	code	in	the	final
binary	image.	Just	try	it	yourself	with	your	compiler	and	see	the	difference	in	size	of	the
produced	binary	images.

It	is	possible	to	forbid	usage	of	throw	statements	by	providing	certain	options	to	the	compiler.
For	GNU	compiler	(gcc)	please	use		-fno-exceptions		in	conjunction	with		-fno-unwind-
tables		options.	According	to	this	page	of		gcc		manual,	all	the	throw	statements	are
supposed	to	be	replaced	with	call	to		abort()	.	Unfortunately	this	information	seems	to	be
outdated.	The	behaviour	I	see	with	my	latest	(at	the	moment	of	writing)		gcc		version	4.8	is	a
bit	different.

When	the	compilation	is	performed	with	the	options	specified	above	and	there	is	a		throw	
statement	in	the	code	(for	example		throw	std::runtime_error("Some	error")),	the
compilation	fails	with	error	message:

main.cpp:34:42:	error:	exception	handling	disabled,	use	-fexceptions	to	enable
					throw	std::runtime_error("Some	error");

However,	all	the		throw		statements	from	standard	library	are	compiled	in	and	cause	the
whole	exception	handling	support	code	overhead	to	be	included	in	the	final	binary	image,
despite	the	compilation	options	forbidding	the	exceptions.	The	test	application
test_cpp_exceptions	has	simple	code	that	causes	the	exceptions	to	be	thrown:

std::vector<int>	v;
v.at(100)	=	0;

The	generated	code	of	the	main	function	looks	like	this:

00015f60	<main>:
			15f60:				e92d4008					push				{r3,	lr}
			15f64:				e59f0000					ldr				r0,	[pc]				;	15f6c	<main+0xc>
			15f68:				eb0000a8					bl				16210	<_ZSt20__throw_out_of_rangePKc>
			15f6c:				00013868					andeq				r3,	r1,	r8,	ror	#16

Exceptions

23

https://gcc.gnu.org/onlinedocs/libstdc++/manual/using_exceptions.html
https://github.com/arobenko/embxx_on_rpi/tree/master/src/test_cpp/test_cpp_exceptions

We	also	can	see	there	are	multiple	exception	related	functions	in	the	produced	listing,	such
as		__cxa_allocate_exception	,		__cxa_throw	,		_ZSt20__throw_out_of_rangePKc	,
	_ZSt21__throw_bad_exceptionv	,	etc...	The	size	of	the	binary	image	will	also	be	huge	(about
125KB)	due	to	exceptions	handling.

If	you	would	like	to	use	STL	classes	that	may	throw	exceptions,	such	as		std::string	,
	std::vector	,	but	refuse	to	pay	the	expensive	price	of	extra	code	space	for	exceptions
handling,	you'll	have	to	do	two	things.	First,	make	sure	that	exception	conditions	never	occur
in	your	code	run,	i.e.	if		throw		statement	is	about	to	get	executed,	it	means	there	is	a	bug	in
your	code.	Second,	override	the	definition	of	all	the	"_throw*"	functions	the	compiler	tries	to
use.	In	order	to	identify	all	these	functions	you'll	have	to	temporarily	disable	usage	of
standard	library	by	passing		-nostdlib		compilation	option	to	your		gcc		compiler.	For	the
code	example	above	the	compilation	without	standard	library	will	fail	with	error	message:

main.cpp.o:	In	function	`main':
main.cpp:(.text.startup+0x8):	undefined	reference	to	`std::__throw_out_of_range(char	c
onst*)'
collect2:	error:	ld	returned	1	exit	status

Let's	try	to	override		std::__throw_out_of_range(char	const*)	:

namespace	std
{

void	__throw_out_of_range(char	const*)
{
				while	(true)	{}
}

}

This	time	the	compilation	will	succeed.	Let's	now	compile	the	result	code	with	standard
library	included	(without	using		-nostdlib		option)	and	check	the	binary	image	size.	With	my
compiler	the	size	is	1.3KB,	which	is	much	much	better	than	120KB	when	exception	handling
is	used.

CONCLUSION:	Excluding	exception	handling	support	is	a	well	known	and	widely	used
practice	in	C++	bare	metal	development.	Even	when	relevant	compilation	options	are	used
(-fno-exceptions		and		-fno-unwind-tables		in	GNU	compiler),	there	is	still	a	need	to
override	various		__throw_*		functions	used	by	the	compiler	and	provided	by	the	standard
library.

Exceptions

24

Exceptions

25

RTTI
Run	Time	Type	Information	is	also	one	of	the	core	features	of	conventional	C++.	It	allows
retrieval	of	the	object	type	information	(using	typeid	operator)	as	well	as	checking	the
inheritance	hierarchy	(using	dynamic_cast)	at	run	time.	The	RTTI	is	available	only	when
there	is	a	polymorphic	behaviour,	i.e.	the	classes	have	at	least	one	virtual	function.

Let's	try	to	analyse	the	generated	code	when	RTTI	is	in	use.	The	test_cpp_rtti	application	in
embxx_on_rpi	project	contains	the	code	listed	below.

struct	SomeClass
{
				virtual	void	someFunc();
};

Somewhere	in	*.cpp	file:

void	SomeClass::someFunc()
{
}

Somewhere	in		main		function:

SomeClass	someClass;
someClass.someFunc();

Let's	open	the	listing	file	and	see	what's	going	on	in	there.	The	address	of
	SomeClass::someFunc()		seems	to	be		0x8300	:

00008300	<_ZN9SomeClass8someFuncEv>:
				8300:				e12fff1e					bx				lr

The	virtual	table	for		SomeClass		class	must	be	somewhere	in		.rodata		section	and	contain
address	of		SomeClass::someFunc()	,	i.e.	it	must	have	0x8300	value	inside:

RTTI

26

http://en.cppreference.com/w/cpp/language/typeid
http://en.cppreference.com/w/cpp/language/dynamic_cast
https://github.com/arobenko/embxx_on_rpi/tree/master/src/test_cpp/test_cpp_rtti
https://github.com/arobenko/embxx_on_rpi

Disassembly	of	section	.rodata:

...
00009c10	<_ZTV9SomeClass>:
				9c10:				00000000					andeq				r0,	r0,	r0
				9c14:				00009c04					andeq				r9,	r0,	r4,	lsl	#24
				9c18:				00008300					andeq				r8,	r0,	r0,	lsl	#6
				9c1c:				00000000					andeq				r0,	r0,	r0

It	is	visible	that	compiler	added	some	more	entries	to	the	virtual	table	in	addition	to	the	single
virtual	function	we	implemented.	The	address	0x9c04	is	also	located	in		.rodata		section.	It
is	some	type	related	table:

00009c04	<_ZTI9SomeClass>:
				9c04:				00009c28					andeq				r9,	r0,	r8,	lsr	#24
				9c08:				00009bf8					strdeq				r9,	[r0],	-r8
				9c0c:				00000000					andeq				r0,	r0,	r0

Both	0x9c28	and	0x9bf8	are	addresses	in		.rodata*		section(s).	The	0x9bf8	address	seems
to	contain	some	data:

00009bf8	<_ZTS9SomeClass>:
				9bf8:				6d6f5339					stclvs				3,	cr5,	[pc,	#-228]!				;	9b1c	<strcmp+0x180>
				9bfc:				616c4365					cmnvs				ip,	r5,	ror	#6
				9c00:				00007373					andeq				r7,	r0,	r3,	ror	r3

After	a	closer	look	we	may	decode	this	data	to	be	"9SomeClass"	ascii	string.

Address	0x9c28	is	in	the	middle	of	some	type	related	information	table:

00009c20	<_ZTVN10__cxxabiv117__class_type_infoE>:
				9c20:				00000000					andeq				r0,	r0,	r0
				9c24:				00009c50					andeq				r9,	r0,	r0,	asr	ip
				9c28:				00009dc0					andeq				r9,	r0,	r0,	asr	#27
				9c2c:				00009de4					andeq				r9,	r0,	r4,	ror	#27
				9c30:				0000a114					andeq				sl,	r0,	r4,	lsl	r1
				9c34:				0000a11c					andeq				sl,	r0,	ip,	lsl	r1
				9c38:				00009e40					andeq				r9,	r0,	r0,	asr	#28
				9c3c:				00009d48					andeq				r9,	r0,	r8,	asr	#26
				9c40:				00009e10					andeq				r9,	r0,	r0,	lsl	lr
				9c44:				00009e94					muleq				r0,	r4,	lr
				9c48:				00009dac					andeq				r9,	r0,	ip,	lsr	#27
				9c4c:				00000000					andeq				r0,	r0,	r0

RTTI

27

How	these	tables	are	used	by	the	compiler	is	of	little	interest	to	us.	What	is	interesting	is	a
code	size	overhead.	Lets	check	the	size	of	the	binary	image.	With	my	compiler	it	is	a	bit
more	than	13KB.

For	some	bare	metal	platforms	it	may	be	undesirable	or	even	impossible	to	have	this
amount	of	extra	binary	code	added	to	the	binary	image.	The	GNU	compiler	(gcc)	provides
an	ability	to	disable	RTTI	by	using		-no-rtti		option.	Let's	check	the	virtual	table	of
	SomeClass		class	when	this	option	is	used:

Disassembly	of	section	.rodata:

00008320	<_ZTV9SomeClass>:
				...
				8328:				00008300					andeq				r8,	r0,	r0,	lsl	#6
				832c:				00000000					andeq				r0,	r0,	r0

The	virtual	table	looks	much	simpler	now	with	single	pointer	to	the		SomeClass::someFunc()	
virtual	function.	There	is	no	extra	code	size	overhead	needed	to	maintain	type	information.	If
the	application	above	is	compiled	without	exceptions	(using		-fno-exceptions		and		-fno-
unwind-tables)	as	well	as	without	RTTI	support	(using		-no-rtti)	the	binary	image	size	will
be	about	1.3KB	which	is	much	better.

However,	if		-no-rtti		option	is	used,	the	compiler	won't	allow	usage	of	typeid	operator	as
well	as	dynamic_cast.	In	this	case	the	developer	needs	to	come	up	with	other	solutions	to
differentiate	between	objects	of	different	types	(but	having	the	same	'ancestor')	at	run	time.
There	are	multiple	idioms	that	can	be	used,	such	as	using	simple	C-like	approach	of
	switch	-ing	on	some	type	enumerator	member,	or	using	polymorphic	behaviour	of	the
objects	to	perform	double	dispatch.

CONCLUSION:	Disabling	Run	Time	Type	Information	(RTTI)	in	addition	to	eliminating
exception	handling	is	very	common	in	bare	metal	C++	development.	It	allows	to	save	about
10KB	of	space	overhead	in	final	binary	image.

RTTI

28

http://en.cppreference.com/w/cpp/language/typeid
http://en.cppreference.com/w/cpp/language/dynamic_cast
http://en.wikipedia.org/wiki/Double_dispatch

Removing	Standard	Library	and	C++	Runtime
Due	to	platform	RAM/ROM	limitations	it	may	be	required	to	exclude	not	just	support	for
exceptions	and	RTTI	(compiling	with		-fno-exceptions			-fno-unwind-tables			-fno-rtti),	but
for	dynamic	memory	allocation	too.	The	latter	includes	passing		-nostdlib		option	to	the
compiler.	In	case	when	standard	library	is	excluded,	there	is	no	startup	code	help	provided
by	the	compiler,	the	developer	will	have	to	implement	all	the	startup	stages:

updating	the	interrupt	vector	table
setting	up	correct	stack	pointers	for	all	the	modes	of	execution
zeroing		.bss		section
calling	initialisation	functions	for	global	objects
calling	“main”	function.

Here	is	an	example	of	such	startup	code.

There	also	may	be	a	need	to	provide	an	implementation	of	some	functions	or	definition	of
some	global	symbols.	For	example,	if	std::copy	algorithm	is	used	to	copy	multiple	objects
from	place	to	place,	the	compiler	might	decide	to	use	memcpy	function	provided	by	the
standard	library,	and	as	the	result	the	build	process	will	fail	with	“undefined	reference”	error.
The	same	way,	usage	of	std::fill	algorithm	may	require	memset	function.	Be	ready	to
implement	them	when	needed.

Another	example	is	having	call	to	std::bind	function	with	std::placeholders::_1,
std::placeholders::_2,	etc.	There	will	be	a	need	to	define	these	placeholders	as	global
symbols:

#include	<functional>
namespace	std	
{	
namespace	placeholders	
{	

decltype(std::placeholders::_1)	_1;	
decltype(std::placeholders::_2)	_2;	
decltype(std::placeholders::_3)	_3;	
decltype(std::placeholders::_4)	_4;	

}		//	namespace	placeholders	
}		//	namespace	std

Removing	Standard	Library	and	C++	Runtime

29

https://github.com/arobenko/embxx_on_rpi/blob/master/src/asm/startup.s
http://en.cppreference.com/w/cpp/algorithm/copy
http://en.cppreference.com/w/c/string/byte/memcpy
http://en.cppreference.com/w/cpp/algorithm/fill
http://en.cppreference.com/w/c/string/byte/memset
http://en.cppreference.com/w/cpp/utility/functional/bind
http://en.cppreference.com/w/cpp/utility/functional/placeholders
http://en.cppreference.com/w/cpp/utility/functional/placeholders

Even	if	there	is	a	need	for	the	standard	library	in	the	product	being	developed,	it	may	be	a
good	exercise	as	well	as	good	debugging	technique	to	temporarily	exclude	it	from	the
compilation.	The	compilation	will	probably	fail	in	the	linking	stage.	The	list	of	missing
symbols	and/or	functions	will	provide	a	good	indication	of	what	missing	functionality	is
provided	by	the	library.	The	developer	may	notice	that	some	components	still	require
exceptions	handling,	for	example,	resulting	int	the	binary	image	being	too	big.

Removing	Standard	Library	and	C++	Runtime

30

Static	Objects
Let's	analyse	the	code	that	initialises	static	objects.	test_cpp_statics	is	a	simple	application
that	has	two	static	objects,	one	is	in	the	global	scope,	the	other	is	in	the	function	scope.

class	SomeObj	
{	
public:	
			static	SomeObj&	instanceGlobal();	
			static	SomeObj&	instanceLocal();	

private:	
				SomeObj(int	v1,	int	v2);	
				int	m_v1;	
				int	m_v2;	

				static	SomeObj	globalObj;	
};	

SomeObj	SomeObj::globalObj(1,	2);	

SomeObj&	SomeObj::instanceGlobal()	
{	
				return	globalObj;	
}	

SomeObj&	SomeObj::instanceLocal()	
{	
				static	SomeObj	localObj(3,	4);	
				return	localObj;	
}	

int	main(int	argc,	const	char**	argv)	
{	
				static_cast<void>(argc);	
				static_cast<void>(argv);	

				auto&	glob	=	SomeObj::instanceGlobal();	
				auto&	local	=	SomeObj::instanceLocal();	
				static_cast<void>(glob);	
				static_cast<void>(local);	

				while	(true)	{};	
				return	0;	
}

Static	Objects

31

https://github.com/arobenko/embxx_on_rpi/tree/master/src/test_cpp/test_cpp_statics

Note,	that	compiler	will	try	to	inline	the	code	above	if	implemented	in	the	same	file.	To
properly	analyse	the	code	that	initialises	global	variables,	you	should	put	implementation	of
constructor	and		instanceGlobal()	/	instanceLocal()		functions	into	separate	files.	If		-
nostdlib		option	is	passed	to	the	compiler	to	exclude	linking	with	standard	library,	the
compilation	of	the	code	above	will	fail	with	following	error:

main.cpp:(.text.startup+0x1c):	undefined	reference	to	`__cxa_guard_acquire'	
main.cpp:(.text.startup+0x3c):	undefined	reference	to	`__cxa_guard_release'

It	means	that	compiler	attempts	to	make	static	variables	initialisation	thread-safe.	The	get	it
compiled	you	have	to	either	implement	the	locking	functionality	yourself	or	allow	compiler	to
do	it	in	an	unsafe	way	by	adding		-fno-threadsafe-statics		compilation	option.	I	think	it	is
quite	safe	to	use	this	option	in	the	bare-metal	development	if	you	make	sure	the	statics	are
not	accessed	in	the	interrupt	context	or	have	been	initialised	at	the	beginning	of		main()	
function	before	any	interrupts	are	enabled.	To	grab	a	reference	to	such	object	without	any
use	is	enough:

				auto&	local	=	SomeObj::instanceLocal();	
				static_cast<void>(local);

Now,	let's	analyse	the	initialisation	of		globalObj	.	The		.init.array		section	contains	pointer
to	initialisation	function		_GLOBAL__sub_I__ZN7SomeObj9globalObjE	.

Disassembly	of	section	.init.array:

00008180	<__init_array_start>:	
				8180:				00008154					andeq				r8,	r0,	r4,	asr	r1

The	initialisation	function	loads	the	address	of	the	object	and	passes	it	to	the	constructor	of
	SomeObj		together	with	the	initialisation	parameters	(“1”	and	“2”	integer	values).

00008154	<_GLOBAL__sub_I__ZN7SomeObj9globalObjE>:	
				8154:				e59f0008					ldr				r0,	[pc,	#8]				;	8164	<_GLOBAL__sub_I__ZN7SomeObj9gl
obalObjE+0x10>	
				8158:				e3a01001					mov				r1,	#1	
				815c:				e3a02002					mov				r2,	#2	
				8160:				eaffffee					b				8120	<_ZN7SomeObjC1Eii>	
				8164:				00008168					andeq				r8,	r0,	r8,	ror	#2	

00008168	<_ZN7SomeObj9globalObjE>:	
				...

Static	Objects

32

The	code	above	loads	the	address	of	the	global	object	(0x00008168)	into	r0,	and
initialisation	parameters	into	r1	and	r2,	then	invokes	the	constructor	of		SomeObj	.

Please	remember	to	call	all	the	initialisation	functions	from		.init.array		section	in	your
startup	code	before	calling	the		main()		function.

In	the	linker	file:

				.init.array	:
				{
								__init_array_start	=	.;
								*(.init_array)
								(.init_array.)
								__init_array_end	=	.;
				}	>	RAM

In	the	startup	code:

				;@	Call	constructors	of	all	global	objects
				ldr	r0,	=__init_array_start
				ldr	r1,	=__init_array_end

globals_init_loop:
				cmp					r0,r1
				it						lt
				ldrlt			r2,	[r0],	#4
				blxlt			r2
				blt					globals_init_loop

				;@	Main	function
				bl	main
				b	reset	;@	restart	if	main	function	returns

However,	if	standard	library	is	NOT	excluded	explicitly	from	the	compilation,	the
	__libc_init_array		provided	by	the	standard	library	may	be	used:

				;@	Call	constructors	of	all	global	objects
				bl				__libc_init_array

				;@	Main	function
				bl	main
				b	reset	;@	restart	if	main	function	returns

Let's	also	perform	analysis	of	initialisation	of		localObj		in		SomeObj::instanceLocal()	.

Static	Objects

33

000080e4	<_ZN7SomeObj13instanceLocalEv>:	
				80e4:				e92d4010					push				{r4,	lr}	
				80e8:				e59f4028					ldr				r4,	[pc,	#40]				;	8118	<_ZN7SomeObj13instanceLocalEv
+0x34>	
				80ec:				e5943008					ldr				r3,	[r4,	#8]	
				80f0:				e3130001					tst				r3,	#1	
				80f4:				1a000005					bne				8110	<_ZN7SomeObj13instanceLocalEv+0x2c>	
				80f8:				e284000c					add				r0,	r4,	#12	
				80fc:				e3a01003					mov				r1,	#3	
				8100:				e3a02004					mov				r2,	#4	
				8104:				eb000005					bl				8120	<_ZN7SomeObjC1Eii>	
				8108:				e3a03001					mov				r3,	#1	
				810c:				e5843008					str				r3,	[r4,	#8]	
				8110:				e59f0004					ldr				r0,	[pc,	#4]				;	811c	<_ZN7SomeObj13instanceLocalEv+
0x38>	
				8114:				e8bd8010					pop				{r4,	pc}	
				8118:				00008168					andeq				r8,	r0,	r8,	ror	#2	
				811c:				00008174					andeq				r8,	r0,	r4,	ror	r1

The	code	above	loads	the	address	of	the	flag	that	indicates	that	the	object	was	already
initialised	into	r4,	then	loads	the	value	into	r3	and	checks	it	using		tst		instruction.	If	the	flag
indicates	that	the	object	wasn't	initialised,	the	constructor	of	the	object	is	called	and	the	flag
value	is	updated	prior	to	returning	address	of	the	object.	Note	that		tst	r3,	#1		instruction
performs	binary	AND	between	value	r3	and	integer	value	#1,	then	next		bne		instruction
performs	branch	if	result	is	not	0,	i.e.	the	object	was	already	initialised.

CONCLUSION:	Access	to	global	objects	are	a	bit	cheaper	than	access	to	local	static	ones,
because	access	to	the	latter	involves	a	check	whether	the	object	was	already	initialised.

Custom	Destructors

And	what	about	destruction	of	static	objects	with	non-trivial	destructors?	Let's	add	a
destructor	to	the	above	class	and	try	to	compile:

class	SomeObj	
{	
public:	
			~SomeObj();	
				…
}

Somewhere	in	*.cpp	file:

SomeObj::~SomeObj()	{}

Static	Objects

34

This	time	the	compilation	will	fail	with	following	errors:

CMakeFiles/03_test_statics.dir/SomeObj.cpp.o:	In	function	`SomeObj::instanceLocal()':	
SomeObj.cpp:(.text+0x44):	undefined	reference	to	`__aeabi_atexit'	
SomeObj.cpp:(.text+0x58):	undefined	reference	to	`__dso_handle'	
CMakeFiles/03_test_statics.dir/SomeObj.cpp.o:	In	function	`_GLOBAL__sub_I__ZN7SomeObj9
globalObjE':	
SomeObj.cpp:(.text.startup+0x28):	undefined	reference	to	`__aeabi_atexit'	
SomeObj.cpp:(.text.startup+0x34):	undefined	reference	to	`__dso_handle'

According	to	this	document,	the		__aeabi_atexit		function	is	used	to	register	pointer	to	the
destructor	function	together	with	pointer	to	the	relevant	static	object	to	be	destructed	after
	main		function	returns.	The	reason	for	this	behaviour	is	that	these	objects	must	be
destructed	in	the	opposite	order	to	which	they	were	constructed.	The	compiler	cannot	know
the	exact	construction	order	for	local	static	objects.	There	may	even	be	some	static	objects
are	not	constructed	at	all.	The		__dso_handle		is	a	global	pointer	to	the	current	address	where
the	next	{destructor_ptr,	object_ptr}	pair	will	be	stored.	The		main		function	of	most	bare
metal	applications	is	not	supposed	to	return	and	global/static	objects	will	not	be	destructed.
In	this	case	it	will	be	enough	to	implement	the	required	function	the	following	way:

extern	"C"	int	__aeabi_atexit(
				void	*object,	
				void	(*destructor)(void	*),	
				void	*dso_handle)	
{	
				static_cast<void>(object);	
				static_cast<void>(destructor);	
				static_cast<void>(dso_handle);	
				return	0;	
}	

void*	__dso_handle	=	nullptr;

However,	if	your		main		function	returns	and	then	the	code	jumps	back	to	the
initialisation/reset	routine,	there	is	a	need	to	properly	perform	destruction	of	global/static
objects.	You'll	have	to	allocate	enough	space	to	store	all	the	necessary	{destructor_ptr,
object_ptr}	pairs,	then	in		__aeabi_atexit		function	store	the	pair	in	the	area	pointed	by
	__dso_handle	,	while	incrementing	value	of	later.	Note,	that		dso_handle		parameter	to	the
	__aeabi_atexit		function	is	actually	a	pointer	to	the	global		__dso_handle		value.	Then,	when
the		main		function	returns,	invoke	the	stored	destructors	in	the	opposite	order	while	passing
addresses	of	the	relevant	objects	as	their	first	arguments.

To	verify	all	the	stated	above	let's	take	a	look	again	at	the	generated	code	of	initialisation
function	(after	the	destructor	was	added):

Static	Objects

35

http://infocenter.arm.com/help/topic/com.arm.doc.ihi0041d/IHI0041D_cppabi.pdf

00008170	<_GLOBAL__sub_I__ZN7SomeObj9globalObjE>:	
				8170:				e92d4010					push				{r4,	lr}	
				8174:				e59f4020					ldr				r4,	[pc,	#32]				;	819c	<_GLOBAL__sub_I__ZN7SomeObj9g
lobalObjE+0x2c>	
				8178:				e3a01001					mov				r1,	#1	
				817c:				e1a00004					mov				r0,	r4	
				8180:				e3a02002					mov				r2,	#2	
				8184:				ebffffeb					bl				8138	<_ZN7SomeObjC1Eii>	
				8188:				e1a00004					mov				r0,	r4	
				818c:				e59f100c					ldr				r1,	[pc,	#12]				;	81a0	<_GLOBAL__sub_I__ZN7SomeObj9g
lobalObjE+0x30>	
				8190:				e59f200c					ldr				r2,	[pc,	#12]				;	81a4	<_GLOBAL__sub_I__ZN7SomeObj9g
lobalObjE+0x34>	
				8194:				e8bd4010					pop				{r4,	lr}	
				8198:				eaffffe9					b				8144	<__aeabi_atexit>	
				819c:				000081a8					andeq				r8,	r0,	r8,	lsr	#3	
				81a0:				00008140					andeq				r8,	r0,	r0,	asr	#2	
				81a4:				000081bc													;	<UNDEFINED>	instruction:	0x000081bc	

00008140	<_ZN7SomeObjD1Ev>:	
				8140:				e12fff1e					bx				lr	

000081bc	<__dso_handle>:	
				81bc:				00000000					andeq				r0,	r0,	r0

Indeed,	the	call	to	the	constructor	immediately	followed	by	the	call	to		__aeabi_atexit		with
address	of	the	object	in	r0	(first	parameter),	address	of	the	destructor	in	r1	(second
parameter)	and	address	of		__dso_handle		in	r2	(third	parameter).

CONCLUSION:	It	is	better	to	design	the	“main”	function	to	contain	infinite	loop	and	never
return	to	save	the	implementation	of	destructing	global/static	objects	functionality.

Static	Objects

36

Abstract	Classes
The	next	thing	to	test	is	having	abstract	classes	with	pure	virtual	functions	while	excluding
linkage	to	standard	library	(using		-nostdlib		compilation	option).	Below	is	an	excerpt	from
test_cpp_abstract_class	application.

class	AbstractBase	
{	
public:	
				virtual	~AbstractBase();	
				virtual	void	func()	=	0;	
				virtual	void	nonOverridenFunc()	final;	
};	

class	Derived	:	public	AbstractBase	
{	
public:	
				virtual	~Derived();	
				virtual	void	func()	override;	
};	

AbstractBase::~AbstractBase()	
{	
}	

void	AbstractBase::nonOverridenFunc()	
{	
}	

Derived::~Derived()	
{	
}	

void	Derived::func()	
{	
}

Somewhere	in	the	“main”	function:

Derived	obj;	
AbstractBase*	basePtr	=	&obj;	
basePtr->func();

The	compilation	will	fail	with	following	errors:

Abstract	Classes

37

https://github.com/arobenko/embxx_on_rpi/tree/master/src/test_cpp/test_cpp_abstract_class

CMakeFiles/04_test_abstract_class.dir/AbstractBase.cpp.o:	In	function	`AbstractBase::~
AbstractBase()':	
AbstractBase.cpp:(.text+0x24):	undefined	reference	to	`operator	delete(void*)'	
CMakeFiles/04_test_abstract_class.dir/AbstractBase.cpp.o:(.rodata+0x10):	undefined	ref
erence	to	`__cxa_pure_virtual'	
CMakeFiles/04_test_abstract_class.dir/Derived.cpp.o:	In	function	`Derived::~Derived()'
:	
Derived.cpp:(.text+0x3c):	undefined	reference	to	`operator	delete(void*)'

The		__cxa_pure_virtual		is	a	function,	address	of	which	compiler	writes	in	the	virtual	table
when	the	function	is	pure	virtual.	It	may	be	called	due	to	some	unnatural	pointer	abuse	or
when	trying	to	invoke	pure	virtual	function	in	the	destructor	of	the	abstract	base	class.	The
call	to	this	function	should	never	happen	in	the	normal	application	run.	If	it	happens	it	means
there	is	a	bug.	It	is	quite	safe	to	implement	this	function	with	infinite	loop	or	some	way	to
report	the	error	to	the	developer,	by	flashing	leds	for	example.

extern	"C"	void	__cxa_pure_virtual()	
{	
				while	(true)	{}	
}

The	requirement	for		operator	delete(void*)		is	quite	strange	though,	there	is	no	dynamic
memory	allocation	in	the	source	code.	It	has	to	be	investigated.	Let's	stub	the	function	and
check	the	output	of	the	compiler:

void	operator	delete(void	*)	
{	
}

The	virtual	tables	for	the	classes	reside	in		.rodata		section:

Abstract	Classes

38

Disassembly	of	section	.rodata:	

000081a0	<_ZTV12AbstractBase>:	
				...	
				81a8:				000080d8					ldrdeq				r8,	[r0],	-r8				;	<UNPREDICTABLE>	
				81ac:				000080ec					andeq				r8,	r0,	ip,	ror	#1	
				81b0:				0000815c					andeq				r8,	r0,	ip,	asr	r1	
				81b4:				000080e8					andeq				r8,	r0,	r8,	ror	#1	

000081b8	<_ZTV7Derived>:	
				...	
				81c0:				00008110					andeq				r8,	r0,	r0,	lsl	r1	
				81c4:				00008130					andeq				r8,	r0,	r0,	lsr	r1	
				81c8:				0000810c					andeq				r8,	r0,	ip,	lsl	#2	
				81cc:				000080e8					andeq				r8,	r0,	r8,	ror	#1

The	last	entry	for	both	classes	has	the	address	of		AbstractBase::nonOverridenFunc		function:

000080e8	<_ZN12AbstractBase16nonOverridenFuncEv>:	
				80e8:				e12fff1e					bx				lr

The	third	entry	in	the	virtual	table	of	Derived	class	has	the	address	of		Derived::func	
function,	while	the	third	entry	in	the	virtual	table	of	AbstractBase	class	has	the	address	of
	__cxa_pure_virtual	,	just	like	expected.

0000810c	<_ZN7Derived4funcEv>:	
				810c:				e12fff1e					bx				lr	

0000815c	<__cxa_pure_virtual>:	
				815c:				eafffffe					b				815c	<__cxa_pure_virtual>

The	first	two	entries	in	the	virtual	tables	point	to	two	different	implementations	of	the
destructor.	The	first	entry	has	the	address	of	normal	destructor	implementation,	and	the
second	one	has	an	address	of	the	second	destructor	implementation,	that	invokes	operator
delete	(has		_ZdlPv		symbol)	after	the	destruction	of	the	object:

Abstract	Classes

39

000080d8	<_ZN12AbstractBaseD1Ev>:	
				80d8:				e59f3004					ldr				r3,	[pc,	#4]				;	80e4	<_ZN12AbstractBaseD1Ev+0xc>	
				80dc:				e5803000					str				r3,	[r0]	
				80e0:				e12fff1e					bx				lr	
				80e4:				000081a8					andeq				r8,	r0,	r8,	lsr	#3	

000080ec	<_ZN12AbstractBaseD0Ev>:	
				80ec:				e59f3014					ldr				r3,	[pc,	#20]				;	8108	<_ZN12AbstractBaseD0Ev+0x1c>	
				80f0:				e92d4010					push				{r4,	lr}	
				80f4:				e1a04000					mov				r4,	r0	
				80f8:				e5803000					str				r3,	[r0]	
				80fc:				eb000015					bl				8158	<_ZdlPv>	
				8100:				e1a00004					mov				r0,	r4	
				8104:				e8bd8010					pop				{r4,	pc}	
				8108:				000081a8					andeq				r8,	r0,	r8,	lsr	#3	

00008110	<_ZN7DerivedD1Ev>:	
				8110:				e59f3014					ldr				r3,	[pc,	#20]				;	812c	<_ZN7DerivedD1Ev+0x1c>	
				8114:				e92d4010					push				{r4,	lr}	
				8118:				e1a04000					mov				r4,	r0	
				811c:				e5803000					str				r3,	[r0]	
				8120:				ebffffec					bl				80d8	<_ZN12AbstractBaseD1Ev>	
				8124:				e1a00004					mov				r0,	r4	
				8128:				e8bd8010					pop				{r4,	pc}	
				812c:				000081c0					andeq				r8,	r0,	r0,	asr	#3	

00008130	<_ZN7DerivedD0Ev>:	
				8130:				e59f301c					ldr				r3,	[pc,	#28]				;	8154	<_ZN7DerivedD0Ev+0x24>	
				8134:				e92d4010					push				{r4,	lr}	
				8138:				e1a04000					mov				r4,	r0	
				813c:				e5803000					str				r3,	[r0]	
				8140:				ebffffe4					bl				80d8	<_ZN12AbstractBaseD1Ev>	
				8144:				e1a00004					mov				r0,	r4	
				8148:				eb000002					bl				8158	<_ZdlPv>	
				814c:				e1a00004					mov				r0,	r4	
				8150:				e8bd8010					pop				{r4,	pc}	
				8154:				000081c0					andeq				r8,	r0,	r0,	asr	#3	

00008158	<_ZdlPv>:	
				8158:				e12fff1e					bx				lr

It	seems	that	when	there	is	a	virtual	destructor,	the	compiler	will	have	to	support	direct
invocation	of	the	destructor	as	well	as	usage	of	operator	delete.	In	case	of	the	former	the
compiler	will	use	the	first	entry	in	the	virtual	table	for	the	destructor	invocation,	and	in	case	of
the	latter	the	compiler	will	use	the	second	entry.	Let's	try	to	add	the	following	lines	to	our
	main		function:

basePtr->~AbstractBase();	
delete	basePtr;

Abstract	Classes

40

The	compiler	will	add	the	following	instructions	to	the		main		function:

				8190:				e59d3004					ldr				r3,	[sp,	#4]	
				8194:				e1a00004					mov				r0,	r4	
				8198:				e5933000					ldr				r3,	[r3]	
				819c:				e12fff33					blx				r3	
				81a0:				e59d3004					ldr				r3,	[sp,	#4]	
				81a4:				e1a00004					mov				r0,	r4	
				81a8:				e5933004					ldr				r3,	[r3,	#4]	
				81ac:				e12fff33					blx				r3

The	address	of	the	virtual	table	is	written	into	r3,	then	value	of	r3	is	overwritten	with	address
of	the	destructor	function	to	call,	and	the	call	is	executed	using		blx		instruction.	The	first
invocation	takes	the	address	of	destructor	function	from	the	first	entry	of	virtual	table,	while
the	second	invocation	takes	the	address	from	second	entry	(offseted	by		#4).	This	is	just
like	expected.

CONCLUSION:	Having	virtual	destructor	may	require	an	implementation	of		operator
delete(void*)		even	if	there	is	no	dynamic	memory	allocation.

Abstract	Classes

41

Templates
Templates	are	notorious	for	the	code	bloating	they	produce.	Some	organisations	explicitly
forbid	usage	of	templates	in	their	internal	C++	coding	standards.	However,	templates	is	a
very	powerful	tool,	it	is	very	difficult	(if	not	impossible)	to	write	generic	source	code,	that	can
be	reused	in	multiple	independent	projects/platforms	without	using	templates,	and	without
incurring	any	significant	performance	penalties.	I	think	developers,	who	are	afraid	or	not
allowed	to	use	templates,	will	have	to	implement	the	same	concepts/modules	over	and	over
again	with	minor	differences,	which	are	project/platform	specific.	To	properly	master	the
templates	we	have	to	see	the	Assembler	code	duplication,	that	is	generated	by	the	compiler
when	templates	are	used.	Let's	try	to	compile	a	simple	application	test_cpp_templates	that
uses	templated	function	with	different	type	of	input	parameters:

template	<typename	T>	
void	func(T	startValue)	
{	
				for	(volatile	T	i	=	startValue;	i	<	startValue	*	2;	i	+=	1)	{}	
				for	(volatile	T	i	=	startValue;	i	<	startValue	*	2;	i	+=	2)	{}	
				for	(volatile	T	i	=	startValue;	i	<	startValue	*	2;	i	+=	3)	{}	
				for	(volatile	T	i	=	startValue;	i	<	startValue	*	2;	i	+=	4)	{}	
				for	(volatile	T	i	=	startValue;	i	<	startValue	*	2;	i	+=	5)	{}	
				for	(volatile	T	i	=	startValue;	i	<	startValue	*	2;	i	+=	6)	{}	
}	

int	main(int	argc,	const	char**	argv)	
{	
				static_cast<void>(argc);	
				static_cast<void>(argv);	

				int	start1	=	100;	
				unsigned	start2	=	200;	

				func(start1);	
				func(start2);	

				while	(true)	{};	
				return	0;	
}

You	may	notice	that	function		func		is	called	with	two	parameters,	one	of	type		int		the	other
of	type		unsigned	.	These	types	have	both	the	same	size	and	should	generate	more	or	less
identical	code.	Let's	take	a	look	at	the	generated	code	of		main		function:

Templates

42

https://github.com/arobenko/embxx_on_rpi/tree/master/src/test_cpp/test_cpp_templates

00008504	<main>:
				8504:				e92d4008					push				{r3,	lr}
				8508:				e3a00064					mov				r0,	#100				;	0x64
				850c:				ebfffefc					bl				8104	<_Z4funcIiEvT_>
				8510:				e3a000c8					mov				r0,	#200				;	0xc8
				8514:				ebffff3a					bl				8204	<_Z4funcIjEvT_>
				...

Yes,	indeed,	there	are	two	calls	to	two	different	functions.	However,	the	Assembler	code	of
these	functions	is	almost	identical.	Let's	also	try	to	reuse	the	same	function	with	the	same
types	but	from	different	source	file:

void	other()	
{	
				int	start1	=	300;	
				unsigned	start2	=	500;	

				func(start1);	
				func(start2);	
}

The	generated	code	is:

000080d8	<_Z5otherv>:	
				80d8:				e92d4008					push				{r3,	lr}	
				80dc:				e3a00f4b					mov				r0,	#300				;	0x12c	
				80e0:				eb000007					bl				8104	<_Z4funcIiEvT_>	
				80e4:				e3a00f7d					mov				r0,	#500				;	0x1f4	
				80e8:				eb000045					bl				8204	<_Z4funcIjEvT_>	
				80ec:				e8bd8008					pop				{r3,	pc}

We	see	that	the	same	functions	at	the	same	addresses	are	called,	i.	e.	the	linker	does	its	job
of	removing	duplicates	of	the	same	functions	from	different	object	files.

Let's	also	try	to	wrap	the	same	function	with	a	class	and	add	one	more	template	argument:

Templates

43

template	<typename	T,	std::size_t	TDummy>
struct	SomeTemplateClass
{
				static	void	func(T	startValue)
				{
								for	(volatile	T	i	=	startValue;	i	<	startValue	*	2;	i	+=	1)	{}
								for	(volatile	T	i	=	startValue;	i	<	startValue	*	2;	i	+=	2)	{}
								for	(volatile	T	i	=	startValue;	i	<	startValue	*	2;	i	+=	3)	{}
								for	(volatile	T	i	=	startValue;	i	<	startValue	*	2;	i	+=	4)	{}
								for	(volatile	T	i	=	startValue;	i	<	startValue	*	2;	i	+=	5)	{}
								for	(volatile	T	i	=	startValue;	i	<	startValue	*	2;	i	+=	6)	{}
				}
};

Please	note	the	dummy	template	parameter		TDummy		that	is	not	used.	Now,	we	add	two
more	calls	to	the		main		function:

int	main(int	argc,	const	char**	argv)
{
				...
				SomeTemplateClass<int,	5>::func(500);
				SomeTemplateClass<int,	10>::func(500);

				while	(true)	{};
				return	0;
}

Note,	that	the	functionality	of	the	calls	is	identical.	The	only	difference	is	the	dummy	template
argument.	Let's	take	a	look	at	the	generated	code:

00008504	<main>:
				...
				8518:				e3a00f7d					mov				r0,	#500				;	0x1f4
				851c:				ebffff78					bl				8304	<_ZN17SomeTemplateClassIiLj5EE4funcEi>
				8520:				e3a00f7d					mov				r0,	#500				;	0x1f4
				8524:				ebffffb6					bl				8404	<_ZN17SomeTemplateClassIiLj10EE4funcEi>
				8528:				eafffffe					b				8528	<main+0x24>

The	compiler	generated	calls	to	two	different	functions,	binary	code	of	which	is	identical.

CONCLUSION:	The	templates	indeed	require	extra	care	and	consideration.	It	is	also
important	not	to	overthink	things.	The	well	known	notion	of	“Do	not	do	premature
optimisations.	It	is	much	easier	to	make	correct	code	faster,	than	fast	code	correct.”	is	also
applicable	to	code	size.	Do	not	try	to	optimise	your	template	code	before	the	need	arises.
Make	it	work	and	work	correctly	first.

Templates

44

Templates

45

Tag	Dispatching
The	tag	dispatching	is	a	widely	used	idiom	in	C++	development.	It	used	extensively	in	the
following	chapters	of	this	book.

Let's	try	to	compile	test_cpp_tag_dispatch	application	in	embxx_on_rpi	project	and	take	a
look	at	the	code	generated	by	the	compiler.

struct	Tag1	{};
struct	Tag2	{};

class	Dispatcher
{
public:

				template	<typename	TTag>
				static	void	func()
				{
								funcInternal(TTag());
				}

private:
				static	void	funcInternal(Tag1	tag);
				static	void	funcInternal(Tag2	tag);

};

Somewhere	in	the		main		function:

Dispatcher::func<Tag1>();
Dispatcher::func<Tag2>();

The	code	generated	by	the	compiler	looks	like	this:

000080fc	<main>:
				80fc:				e92d4008					push				{r3,	lr}
				8100:				e3a00000					mov				r0,	#0
				8104:				ebfffff3					bl				80d8	<_ZN10Dispatcher12funcInternalE4Tag1>
				8108:				e3a00000					mov				r0,	#0
				810c:				ebfffff2					bl				80dc	<_ZN10Dispatcher12funcInternalE4Tag2>
				...

Although	the		Tag1		and		Tag2		are	empty	classes,	the	compiler	still	uses	integer	value		0		as
a	first	parameter	to	the	function.

Tag	Dispatching

46

http://www.generic-programming.org/languages/cpp/techniques.php#tag_dispatching
https://github.com/arobenko/embxx_on_rpi/tree/master/src/test_cpp/test_cpp_tag_dispatch
https://github.com/arobenko/embxx_on_rpi

Let's	try	to	optimise	this	redundant		mov	r0,	#0		instruction	away	by	making	it	visible	to	the
compiler	that	the	tag	parameter	is	not	used:

class	Dispatcher
{
public:

				template	<typename	TTag>
				static	void	otherFunc()
				{
								otherFuncInternal(TTag());
				}

private:

				static	void	otherFuncInternal(Tag1	tag)
				{
								static_cast<void>(tag);
								otherFuncTag1();
				}

				static	void	otherFuncInternal(Tag2	tag)
				{
								static_cast<void>(tag);
								otherFuncTag2();
				}

				static	void	otherFuncTag1();
				static	void	otherFuncTag2();
};

Somewhere	in	the		main		function:

Dispatcher::otherFunc<Tag1>();
Dispatcher::otherFunc<Tag2>();

The	code	generated	by	the	compiler	looks	like	this:

000080fc	<main>:
				...
				8110:				ebfffff2					bl				80e0	<_ZN10Dispatcher13otherFuncTag1Ev>
				8114:				ebfffff2					bl				80e4	<_ZN10Dispatcher13otherFuncTag2Ev>

In	this	case	the	compiler	optimises	away	the	tag	parameter.

Tag	Dispatching

47

Based	on	the	above	we	may	make	a	CONCLUSION:	When	tag	dispatching	idiom	is	used,
the	function	that	receives	a	dummy	(tag)	parameter	should	be	a	simple	inline	wrapper
around	other	function	that	implements	the	required	functionality.	In	this	case	the	compiler	will
optimise	away	the	creation	of	tag	object	and	will	call	the	wrapped	function	directly.

Tag	Dispatching

48

http://www.generic-programming.org/languages/cpp/techniques.php#tag_dispatching

Basic	Needs
Prior	to	describing	various	embedded	(bare	metal)	development	concepts	I'd	like	to	cover
several	basic	needs	that,	I	think,	most	developers	will	have	to	use	in	their	products.

Basic	Needs

49

Assertion
One	of	the	basic	needs	during	the	development	is	having	an	ability	to	test	various
assumptions	and	invariants	in	runtime	when	compiling	the	application	in	DEBUG	mode	and
remove	the	checks	when	compiling	the	application	in	RELEASE	mode.	The	standard	C++
reuses		assert()		macro	from	standard	C	library.

#include	<cassert>
…
assert(some_condition);

The		assert()		macro	evaluates	to	nothing	in	case		NDEBUG		symbol	is	defined,	otherwise	it
evaluates	the	condition.	If	the	condition	doesn't	return		true	,	it	calls	the		__assert_fail	
function,	provided	by	standard	library,	which	in	turn	calls		printf		to	print	error	message	to
standard	output	followed	by	the	call	to		abort		function,	which	is	supposed	to	terminate	an
application.

Both		printf		and		abort		functions	are	provided	by	standard	library.	However,		printf		will
require	the	implementation	of		_write		function	to	print	characters	to	the	debug	output
terminal,	and		abort		will	require	implementation	of		_exit		function	to	terminate	the
application.

If	standard	library	is	excluded	from	the	compilation	(using		-nostdlib		compilation	option),
the	compilation	will	fail	with	“undefined	reference	to		__assert_func	"	error	message.	The
developer	will	have	to	implement	this	function	with	correct	signature.	To	retrieve	the	correct
signature	you	will	have	to	open		assert.h		standard	header	provided	by	your	compiler.	It	will
be	something	like	this:

void	__assert_fail	(const	char	*expr,	const	char	*file,	unsigned	int	line,	const	char	
*function)	__attribute__	((__noreturn__));

The	attribute	specifies	that	this	function	doesn't	return,	so	the	compiler	will	generate	a	call	to
it	without	setting	any	address	to	return	to.

The	conclusion	from	all	the	stated	above	is	that	using	standard		assert()		macro	is	possible,
but	somewhat	inflexible.	It	is	possible	to	access	only	global	variables	from	the	functions
described	above,	i.e.	if	there	is	a	need	to	flash	a	led	to	indicate	assertion	failure,	then	its
control	must	be	accessible	through	global	variables,	which	is	a	bit	ugly.	Another
disadvantage	of	this	approach	is	that	there	are	no	convenient	means	to	change	the
behaviour	of	the	assert	failure	functionality	and	after	a	while	restore	the	original	behaviour.

Assertion

50

Such	behaviour	may	be	helpful	to	better	identify	the	location	of	the	assert	that	has	failed.	For
example,	override	the	default	assert	failure	behaviour	with	activating	a	specific	led	at	the
entrance	of	some	function,	and	restore	the	original	assertion	failure	behaviour	when	function
returns.

Below	is	a	short	description	of	a	better	way	to	handle	assert	checks	and	failures.	The	code	is
in	embxx	library	and	can	be	reviewed	here.

To	resolve	the	problems	described	above	and	to	handle	the	assertions	C++	way	we	will	have
to	create	generic	assertion	failure	handling	abstract	class:

class	Assert	
{	
public:	
				virtual	void	fail(
								const	char*	expr,	
								const	char*	file,	
								unsigned	int	line,	
								const	char*	function)	=	0;	
};

When	implementing	custom	project	specific	assertion	failure	behaviour	inherit	from	the	class
above:

Assertion

51

https://github.com/arobenko/embxx
https://github.com/arobenko/embxx/blob/master/embxx/util/Assert.h

#include	"embxx/util/Assert.h"	

typedef	...	Led;	
class	LedOnAssert	:	public	embxx::util::Assert	
{	
public:	

				LedOnAssert(Led&	led)	
								:	led_(led)	
				{	
				}	

				virtual	void	fail(
								const	char*	expr,	
								const	char*	file,	
								unsigned	int	line,	
								const	char*	function)	
				{	
								led_.on();	
								while	(true)	{;}	
				}	

private:	
				Led&	led_;	
};

To	manage	an	object	of	the	class	above,	we	will	have	to	create	a	singleton	class	with	static
instance.	It	will	store	a	pointer	to	the	currently	registered	assertion	failure	behaviour:

Assertion

52

class	AssertManager	
{	
public:	
			static	AssertManager&	instance()	
				{	
								static	AssertManager	mgr;	
								return	mgr;	
				}	

				Assert*	reset(Assert*	newAssert	=	nullptr)	
				{	
								auto	prevAssert	=	assert_;	
								assert_	=	newAssert;	
								return	prevAssert;	
				}	

				Assert*	getAssert()	
				{	
								return	assert_;	
				}	

				bool	hasAssertRegistered()	const	
				{	
								return	assert_	!=	nullptr;	
				}	

				void	infiniteLoop()	
				{	
								while	(true)	{};	
				}	

private:	
				AssertManager()	:	assert_(nullptr)	{}	

				Assert*	assert_;	
};

The		reset		member	function	registers	new	object	that	manages	assertion	failure	behaviour
and	returns	previous	one,	which	can	be	used	later	to	restore	original	behaviour.

We	will	require	a	new	macro	to	check	assertion	condition	and	invoke	registered	failing
behaviour:

Assertion

53

#ifndef	NDEBUG	

#define	GASSERT(expr)	\	
				((expr)																															\	
						?	static_cast<void>(0)																					\	
						:	(embxx::util::AssertManager::instance().hasAssertRegistered()	\	
												?	embxx::util::AssertManager::instance().getAssert()->fail(\	
																#expr,	__FILE__,	__LINE__,	GASSERT_FUNCTION_STR)	\	
												:	embxx::util::AssertManager::instance().infiniteLoop()))	

#else	//	#ifndef	NDEBUG	

#define	GASSERT(expr)	static_cast<void>(0)	

#endif	//	#ifndef	NDEBUG

Then	in	case	of	condition	check	failure,	the		GASSERT()		macro	checks	whether	any	custom
assertion	failure	functionality	registered	and	invokes	its	virtual		fail		function.	If	not,	then
infinite	loop	is	executed.

To	complete	the	whole	picture	we	have	to	provide	a	convenient	way	to	register	new
assertion	failure	behaviours:

template	<	typename	TAssert>	
class	EnableAssert	
{	
				static_assert(std::is_base_of<Assert,	TAssert>::value,	
								"TAssert	class	must	be	derived	class	of	Assert");	
public:	
				typedef	TAssert	AssertType;	

				template<typename...	Params>	
				EnableAssert(Params&&...	args)	
								:	assert_(std::forward<Params>(args)...),	
										prevAssert_(AssertManager::instance().reset(&assert_))
				{	
				}	

				~EnableAssert()	
				{	
								AssertManager::instance().reset(prevAssert_);	
				}	

private:	
				AssertType	assert_;	
				Assert*	prevAssert_;	
};

Assertion

54

From	now	on,	all	we	have	do	is	to	instantiate	object	of		EnableAssert		with	the	behaviour	that
we	want.	Note	that	constructor	of		EnableAssert		class	can	receive	any	number	of
parameters	and	forwards	them	to	the	constructor	of	the	internal		assert_		object.

int	main	(int	argc,	const	char*	argv[])	
{	
				...	
				Led	led;	
				embxx::util::EnableAssert<LedOnAssert>	assertion(led);	

				...	//	Rest	of	the	code
}

If	there	is	a	need	to	temporarily	override	the	previous	assertion	failure	behaviour,	just	create
another		EnableAssert		object.	Once	the	latter	is	out	of	scope	(the	object	is	destructed),
previous	behaviour	will	be	restored.

int	main	(int	argc,	const	char*	argv[])	
{	
				...	
				Led	led;	
				embxx::util::EnableAssert<LedOnAssert>	assertion(led);	

				...	
				{	
								embxx::util::EnableAssert<OtherAssert>	otherAssertion(.../*	some	params	*/);	
								...	
				}		//	restore	previous	registered	behaviour	–	LedOnAssert.
}

SUMMARY:	The	approach	described	above	provides	a	flexible	and	convenient	way	to
control	how	the	failures	of	various	debug	mode	checks	are	reported	to	the	developer.	All	the
modules	in	embxx	library	use	the		GASSERT()		macro	to	verify	their	pre-	and	post-conditions
as	well	as	internal	assumptions.

Extra	documentation	for	the	Generic	Assert	functionality	can	be	found	here.

Assertion

55

https://github.com/arobenko/embxx
https://dl.dropboxusercontent.com/u/46999418/embxx/util_assert_page.html

Callback
As	has	been	mentioned	in	the	Benefits	of	C++	chapter,	the	main	reason	for	choosing	C++
over	C	is	code	reuse.	When	having	some	generic	piece	of	code	that	tries	to	use	platform
specific	code	and	needs	to	receive	some	kind	of	notifications	from	the	latter,	the	need	for
some	generic	callback	facility	arises.	C++	provides	std::function	class	for	this	purpose,	it	is
possible	to	provide	any	callable	object,	such	as	lambda	function	or	std::bind	expression:

class	LowLevelPeripheral	{
public:
				template	<typename	TFunc>
				void	setEventCallback(TFunc&&	func)
				{
								eventCallback_	=	std::forward<TFunc>(func);
				}

				void	eventHandler()
				{
								if	(eventCallback_)	{
												eventCallback_();	//	invoke	registered	callback	object
								}
				}
private:
				std::function<void	()>	eventCallback_;
};

class	SomeGenericControl
{
public:
				SomeGenericControl()
				{
								periph_.setEventCallback(
												std::bind(&SomeGenericControl::eventCallbackHandler,	this));
				}

				void	eventCallbackHandler()
				{
								…	//	Handle	the	reported	event.
				}

private:
					LowLevelPeripheral	periph_;
};

Callback

56

http://en.cppreference.com/w/cpp/utility/functional/function
http://en.cppreference.com/w/cpp/language/lambda
http://en.cppreference.com/w/cpp/utility/functional/bind

There	are	two	problems	with	using	std::function.	It	uses	dynamic	memory	allocation	and
throws	exception	in	case	the	function	is	invoked	without	assigning	callable	object	to	it	first.
As	a	result	std::function	may	be	not	suitable	for	use	in	most	of	the	bare	metal	projects.	We
will	have	to	implement	something	similar,	but	without	dynamic	memory	allocations	and
without	exceptions.	Below	is	some	short	explanation	of	how	to	implement	such	a	function
class.	The	implementation	of	the		StaticFunction		class	is	part	of	embxx	library	and	its	full
code	listing	can	be	viewed	here.

The	restriction	of	inability	to	use	dynamic	memory	allocation	requires	to	use	additional
parameter	of	storage	size:

template	<typename	TSignature,	std::size_t	TSize	=	sizeof(void*)	*	3>	
class	StaticFunction;

It	seems	that	in	most	cases	the	callback	object	will	contain	pointer	to	member	function,
pointer	to	handling	object	and	some	additional	single	parameter.	This	is	the	reason	for
specifying	the	default	storage	space	as	equal	to	the	size	of	3	pointers.	The	“signature”
template	parameter	is	exactly	the	same	as	with	std::function	plus	an	optional	storage	area
size	template	parameter:

				typedef	embxx::util::StaticFunction<void	(int)>	MyCallback;
				typedef	embxx::util::StaticFunction<
								void	(int,	int),	sizeof(void*)	*	4>	MyOtherCallback;

To	properly	implement		operator()	,	there	is	a	need	to	split	the	signature	into	the	return	type
and	rest	of	parameters.	To	achieve	this	the	following	template	specialisation	trick	is	used:

template	<std::size_t	TSize,	typename	TRet,	typename...	TArgs>	
class	StaticFunction<TRet	(TArgs...),	TSize>	
{	
public:	
				...	
				TRet	operator()(TArgs...	args)	const	{...}	
				...	
private:
				typedef	…	StorageType;	//	Type	of	the	storage	area,	
																											//	will	be	explained	later.
				StorageType	handler_;	//	Storage	area	where	the	callback	object	
																										//	is	stored
				bool	valid_;	//	flag	indicating	whether	storage	are	contains	
																	//	valid	callback,	initialised	to	false	in	
																	//	default	constructor
};

Callback

57

http://en.cppreference.com/w/cpp/utility/functional/function
http://en.cppreference.com/w/cpp/utility/functional/function
https://github.com/arobenko/embxx
https://github.com/arobenko/embxx/blob/master/embxx/util/StaticFunction.h
http://en.cppreference.com/w/cpp/utility/functional/function

The		StaticFunction		object	needs	an	ability	to	store	any	type	of	callable	object	as	its	internal
data	member	and	then	invoke	it	in	its		operator()		member	function.	To	support	this
functionality	we	will	require	additional	helper	classes:

class	StaticFunction<TRet	(TArgs...),	TSize>	
{	
				...	
private:	

				class	Invoker	
				{	
				public:	
								virtual	~Invoker()	{}	

								//	virtual	invocation	function	
								virtual	TRet	exec(TArgs...	args)	const	=	0;	
				};	

				template	<typename	TBound>	
				class	InvokerBound	:	public	Invoker	
				{	
				public:	

								template	<typename	TFunc>	
								InvokerBound(TFunc&&	func)	
												:	func_(std::forward<TFunc>(func))	
								{	
								}	

								virtual	~InvokerBound()	{}	

								virtual	TRet	exec(TArgs...	args)	const	
								{	
												return	func_(std::forward<TArgs>(args)...);	
								}	

				private:	
								TBound	func_;	
				};	

				...	
};

The	callable	object	that	will	be	stored	in		handler_		data	area	and	it	will	be	of	type
	InvokerBound<...>		while	invoked	through	interface	of	its	base	class		Invoker	.

There	is	a	need	to	properly	define		StorageType		for	the		handler_		data	member:

Callback

58

static	const	std::size_t	StorageAreaSize	=	TSize	+	sizeof(Invoker);
typedef	typename	
				std::aligned_storage<	
								StorageAreaSize,	
								std::alignment_of<Invoker>::value	
			>::type	StorageType;

Note	that		StorageType		is	an	uninitialised	storage	with	alignment	required	to	be	able	to	store
object	of	type		Invoker	.	The		InvokerBound<...>		class	will	have	the	same	alignment
requirements	as	its	base	class		Invoker	,	so	it	is	safe	to	store	any	object	of	type
	InvokerBound<...>		in	the	same	area,	as	long	as	its	size	doesn't	exceed	the	size	of	the
	StorageType	.

Also	note	that	the	actual	size	of	the	storage	area	is	the	requested	TSize	plus	the	area
required	to	store	the	object	of		Invoker		class.	The	size	of		InvokerBound<...>		object	is	size
of	its	private	member	plus	the	size	of	its	base	class		Invoker	,	which	will	contain	a	single
(hidden)	pointer	to	its	virtual	table.

Any	callable	object	may	be	assigned	to		StaticFunction		using	either	constructor	or
assignment	operator:

Callback

59

template	<std::size_t	TSize,	typename	TRet,	typename...	TArgs>	
class	StaticFunction<TRet	(TArgs...),	TSize>	
{	
public:	
				...	

				template	<typename	TFunc>	
				StaticFunction(TFunc&&	func)	
								:	valid_(true)	
				{	
								assignHandler(std::forward<TFunc>(func));	
				}	

				StaticFunction&	operator=(TFunc&&	func)	
				{	
								destroyHandler();	
								assignHandler(std::forward<TFunc>(func));	
								valid_	=	true;	
								return	*this;	
				}	

				...	

private:	
				template	<typename	TFunc>	
				void	assignHandler(TFunc&&	func)	
				{	
								typedef	typename	std::decay<TFunc>::type	DecayedFuncType;	
								typedef	InvokerBound<DecayedFuncType>	InvokerBoundType;	

								static_assert(sizeof(InvokerBoundType)	<=	StorageAreaSize,	
												"Increase	the	TSize	template	argument	of	the	StaticFucntion");	

								static_assert(alignof(Invoker)	==	alignof(InvokerBoundType),	
												"Alignment	requirement	for	Invoker	object	must	be	the	same	"	
												"as	alignment	requirement	for	InvokerBoundType	type	object");	

								new	(&handler_)	InvokerBoundType(std::forward<TFunc>(func));	
				}	

				void	destroyHandler()	
				{	
								if	(valid_)	{	
												auto	invoker	=	reinterpret_cast<Invoker*>(&handler_);	
												invoker->~Invoker();	
								}	
				}	
};

Please	pay	attention	that	assignment	operator	has	to	call	the	destructor	of	previous	function,
that	was	assigned	to	it,	before	storing	a	new	callable	object	in	its	place.

Callback

60

Also	note	that	there	are	compile	time	checks	using	static_assert	that	the	size	of	the	object	to
store	in	the	storage	area	doesn't	exceed	the	allocated	size	as	well	as	alignment
requirements	still	hold.

The	invocation	of	the	function	will	be	implemented	like	this:

template	<std::size_t	TSize,	typename	TRet,	typename...	TArgs>	
class	StaticFunction<TRet	(TArgs...),	TSize>	
{	
public:	
				...	
				TRet	operator()(TArgs...	args)	const	
				{	
								GASSERT(valid_);	
								auto	invoker	=	reinterpret_cast<Invoker*>(&handler_);	
								return	invoker->exec(std::forward<TArgs>(args)...);	
				}	
				...	
};

Note	that	there	are	no	exceptions	in	use	and	then	the	“must	have”	pre-condition	for	function
invocation	is	that	a	valid	callable	object	has	been	assigned	to	it.	That	is	the	reason	for
assertion	check	in	the	body	of	the	function.

To	complete	the	implementation	of		StaticFunction		class	the	following	logic	must	also	be
implemented:

1.	 Check	whether	the		StaticFunction		object	is	valid,	i.e	has	any	callable	object	assigned
to	it.

2.	 Default	construction	-	the	function	is	invalid	and	cannot	be	invoked.
3.	 Copy/move	construction	+	copy/move	assignment	functionality.
4.	 Clearing	the	function	(invalidating).
5.	 Supporting	both	const	and	non-const		operator()		in	the	assigned	callable	object.	It

requires	both	const	and	non-const		operator()		implementation	of		StaticFunction		as
well	as	its	internal		Invoker		and		InvokerBound<...>		classes.

All	this	I	leave	as	an	exercise	to	to	the	reader.	To	see	the	complete	implementation	of	the
functionality	described	above	open	this	link.	Here	and	here	are	doxygen	generated
documentation	pages	relevant	to	the		StaticFunction		class.

Callback

61

http://en.cppreference.com/w/cpp/language/static_assert
https://github.com/arobenko/embxx/blob/master/embxx/util/StaticFunction.h
https://dl.dropboxusercontent.com/u/46999418/embxx/util_static_function_page.html
https://dl.dropboxusercontent.com/u/46999418/embxx/classembxx_1_1util_1_1StaticFunction_3_01TRet_07TArgs_8_8_8_08_00_01TSize_01_4.html

Data	Serialisation
Another	essential	need	in	embedded	development	is	an	ability	to	serialise	data.	Most
embedded	products	read	data	from	some	kind	of	sensors	and/or	communicate	with	the
control	centre	via	some	wired	or	wireless	serial	interface.

Before	data	is	sent	via	a	communication	link,	it	must	be	serialised	into	a	buffer,	and	when
received,	deserialised	from	bytes	also	in	a	different	buffer	on	the	other	end.	The	data	may	be
serialised	using	big	or	little	endian,	based	on	the	communication	protocol	used.	The	embxx
library	provides	a	generic	code	with	an	ability	to	read	and	write	integral	values	from/to	any
buffer.	Here	is	the	source	code	for	the	functions	described	below.

The	functions	below	(defined	in	namespace		embxx::io)	support	read	and	write	of	an
integral	value	using	any	type	of	iterator:

template	<typename	T,	typename	TIter>	
void	writeBig(T	value,	TIter&	iter);	

template	<typename	T,	typename	TIter>	
T	readBig(TIter&	iter);	

template	<typename	T,	typename	TIter>	
void	writeLittle(T	value,	TIter&	iter);	

template	<typename	T,	typename	TIter>	
T	readLittle(TIter&	iter);

These	functions	receive	reference	to	iterator	of	a	buffer/container.	When	bytes	are
read/written	from/to	the	buffer,	the	iterator	is	incremented.	The	iterator	can	be	of	any	type	as
long	as	it	supports	dereferencing	(operator*()),	pre-increment	(operator++)	and
assignment	to	dereferenced	object.	For	example,	serialising	several	values	of	various
lengths	into	the	array	using	big	endian:

std::uint8_t	buf[128];
auto	iter	=	&buf[0];

std::uint16_t	value1	=	0x0102;
std::uint32_t	value2	=	0x03040506;
std::uint64_t	value3	=	0x0708090a0b0c0d0e;

embxx::io::writeBig(value1,	iter);
embxx::io::writeBig(value2,	iter);
embxx::io::writeBig(value3,	iter);

Data	Serialisation

62

https://github.com/arobenko/embxx
https://github.com/arobenko/embxx/blob/master/embxx/io/access.h

The	contents	of	the	buffer	will	be:		{0x01,	0x02,	0x03,	0x04,	0x05,	0x06,	0x07,	0x08,	0x09,
0x0a,	0x0b,	0x0c	0x0d,	0x0e,	…}	

Similar	code	of	reading	values	from	the	buffer	would	be:

std::uint8_t	buf[128];
auto	iter	=	&buf[0];

auto	value1	=	embxx::io::readBig<std::uint16_t>(iter);
auto	value2	=	embxx::io::readBig<std::uint32_t>(iter);
auto	value3	=	embxx::io::readBig<std::uint64_t>(iter);

Another	example	is	serialising	data	into	a	container	that	has		push_back()		member
functions,	such	as	std::vector	or	circular	buffer.	The	data	will	be	added	at	the	end	of	the
existing	one:

std::vector<std::uint8_t>	buf;
auto	iter	=	std::back_inserter(buf);	//	Will	call	push_back	
																																					//	on	assignment
…
//	The	writes	below	will	use	push_back	for	every	byte.
embxx::io::writeBig(value1,	iter);	
embxx::io::writeBig(value2,	iter);
embxx::io::writeBig(value3,	iter);

Depending	on	a	communication	protocol	there	may	be	a	need	to	serialise	only	part	of	the
value.	For	example	some	field	of	communication	protocol	is	defined	having	only	3	bytes.	In
this	case	the	value	will	probably	be	stored	in	a	variable	of		std::uint32_t		type.	There	is
similar	set	of	functions,	but	with	additional	template	parameter	that	specifies	how	many
bytes	to	read/write:

template	<std::size_t	TSize,	typename	T,	typename	TIter>	
void	writeBig(T	value,	TIter&	iter);	

template	<typename	T,	std::size_t	TSize,	typename	TIter>	
T	readBig(TIter&	iter);	

template	<std::size_t	TSize,	typename	T,	typename	TIter>	
void	writeLittle(T	value,	TIter&	iter);	

template	<typename	T,	std::size_t	TSize,	typename	TIter>	
T	readLittle(TIter&	iter);

So	to	read/write	3	bytes	will	look	like	the	following:

Data	Serialisation

63

http://en.cppreference.com/w/cpp/container/vector

auto	value	=	embxx::io::readBig<std::uint32_t,	3>(iter);
embxx::io::writeBig<3>(value,	iter);

Sometimes	the	endianness	of	data	serialisation	may	depend	on	some	traits	class
parameters.	In	order	to	be	able	to	choose	“Little”	or	“Big”	variant	functions	at	compile	time
instead	of	runtime	the	tag	parameter	dispatch	idiom	must	be	used.

There	are	similar	read/write	functions,	but	instead	of	being	differentiated	by	name	they	have
additional	tag	parameter	to	specify	the	endianness	of	serialisation:

Data	Serialisation

64

///	Same	as	writeBig<T,	TIter>(value,	iter);	
template	<typename	T,	typename	TIter>	
void	writeData(
				T	value,	
				TIter&	iter,	
				const	traits::endian::Big&	endian);	

///	Same	as	writeBig<TSize,	T,	TIter>(value,	iter)	
template	<std::size_t	TSize,	typename	T,	typename	TIter>	
void	writeData(
				T	value,	
				TIter&	iter,	
				const	traits::endian::Big&	endian);	

///	Same	as	writeLittle<T,	TIter>(value,	iter)	
template	<typename	T,	typename	TIter>	
void	writeData(
				T	value,	
				TIter&	iter,	
				const	traits::endian::Little&	endian);	

///	Same	as	writeLittle<TSize,	T,	TIter>(value,	iter)	
template	<std::size_t	TSize,	typename	T,	typename	TIter>	
void	writeData(
				T	value,	
				TIter&	iter,	
				const	traits::endian::Little&	endian);	

///	Same	as	readBig<T,	TIter>(iter)	
template	<typename	T,	typename	TIter>	
T	readData(TIter&	iter,	const	traits::endian::Big&	endian);	

///	Same	as	readBig<TSize,	T,	TIter>(iter)	
template	<typename	T,	std::size_t	TSize,	typename	TIter>	
T	readData(TIter&	iter,	const	traits::endian::Big&	endian);	

///	Same	as	readLittle<T,	TIter>(iter)	
template	<typename	T,	typename	TIter>	
T	readData(TIter&	iter,	const	traits::endian::Little&	endian);	

///	Same	as	readLittle<TSize,	T,	TIter>(iter)	
template	<typename	T,	std::size_t	TSize,	typename	TIter>	
T	readData(TIter&	iter,	const	traits::endian::Little&	endian);

The		traits::endian::Big		and		traits::endian::Little		are	defined	as	empty	tag	classes:

Data	Serialisation

65

namespace	traits	
{	

namespace	endian	
{	

struct	Big	{};	

struct	Little	{};	

}		//	namespace	endian	

}		//	namespace	traits

For	example:

template	<typename	TTraits>
class	SomeClass
{
public:
				typedef	typename	TTraits::Endianness	Endianness;

				template	<typename	TIter>
				void	serialise(TIter&	iter)	const
				{
								embxx::io::writeData(data_,	iter,	Endianness());
				}

private:
				std::uint32_t	data_;
};

So	the	code	above	is	not	aware	what	endianness	is	used	to	serialise	the	data.	It	is	provided
as	internal	type	of		Traits		class	named		Endianness	.	The	compiler	will	generate	the	call	to
appropriate		writeData()		function,	which	in	turn	forward	it	to		writeBig()		or		writeLittle()	.

To	serialise	data	using	big	endian	the	traits	should	be	defined	as	following:

struct	MyTraits
{
				typedef	embxx::io::traits::endian::Big	Endianness;
};

SomeClass<MyTraits>	someClassObj;
…
someClassObj.serialise(iter);	//	Will	serialise	using	big	endian

Data	Serialisation

66

The	interface	described	above	is	very	easy	and	convenient	to	use	and	quite	easy	to
implement	using	straightforward	approach.	However,	any	variation	of	template	parameters
create	an	instantiation	of	new	binary	code	which	may	create	significant	code	bloat	if	not
used	carefully.	Consider	the	following:

Read/write	of	signed	vs	unsigned	integer	values.	The	serialisation/deserialisation	code
is	identical	for	both	cases,	but	won't	be	considered	as	such	when	instantiating	the
functions.	To	optimise	this	case,	there	is	a	need	to	implement	read/write	operations	only
for	unsigned	value,	while	the	“signed”	functions	become	wrappers	around	the	former.
Don't	forget	a	sign	extension	operation	when	retrieving	partial	signed	value.
The	read/write	operations	are	more	or	less	the	same	for	any	length	of	the	values,	i.e	of
any	types:		(unsigned)	char	,		(unsigned)	short	,		(unsigned)	int	,	etc...	To	optimise	this
case,	there	is	a	need	for	internal	function	that	receives	length	of	serialised	value	as	a
run	time	parameter,	while	the	functions	described	above	are	mere	wrappers	around	it.
Usage	of	the	iterators	also	require	caution.	For	example	reading	values	may	be
performed	using	regular		iterator		as	well	as		const_iterator	,	i.e.	iterator	pointing	to
const	values.	These	are	two	different	iterator	types	that	will	duplicate	the	“read”
functionality	if	both	of	them	are	used:

char	buf[128]	=	{…};
const	char*	iter1	=	&buf[0];
char*	iter2	=	&buf[0];

//	Instantiation	1
auto	value1	=	embxx::io::readBig<std::uint16_t>(iter1);	

//	Instantiation	2
auto	value2	=	embxx::io::readBig<std::uint16_t>(iter2);

It	is	possible	to	optimise	the	case	above	for	random	access	iterator	by	using	temporary
pointers	to	unsigned	characters	to	read	the	required	value.	After	retrieval	is	complete,	just
increment	the	value	of	the	passed	iterator	with	number	of	characters	read.

All	the	consideration	points	stated	above	require	quite	complex	implementation	of	the
serialisation/deserialisation	functionality	with	multiple	levels	of	abstraction	which	is	beyond
the	scope	of	this	book.	It	would	be	a	nice	exercise	to	try	and	implement	it	yourself.	Another
option	is	to	use	the	code	as	is	from	embxx	library.

Data	Serialisation

67

https://github.com/arobenko/embxx

Static	(Fixed	Size)	Queue:
There	is	almost	always	a	need	to	have	some	kind	of	a	queuing	functionality.	A	circular	buffer
is	a	good	compromise	between	speed	of	execution	and	memory	consumption	(vs	std::deque
for	example).	If	your	product	allows	usage	of	dynamic	memory	allocation	and/or	exceptions
than	boost::circular_buffer	can	be	a	good	choice.	However,	if	using	dynamic	memory
allocation	is	not	an	option,	then	there	is	no	other	choice	but	to	implement	a	circular	buffer
with	maximum	length	known	at	compile	time	over	C	array	or	std::array.	Here	is	the
implementation	of		StaticQueue		functionality	from	embxx	library.	I	won't	go	into	too	much
details	or	explain	every	line	of	code.	Instead	I	will	emphasise	several	important	points	that
must	be	taken	into	consideration.

Invalid	operations

There	can	always	be	an	attempt	to	perform	an	invalid	operation,	such	as	access	an	element
outside	the	queue	boundaries,	or	inserting	new	element	when	the	queue	is	full,	or	popping
an	element	when	queue	is	empty,	etc...	The	conventional	way	in	C++	to	handle	these	cases
is	to	throw	an	exception.	However,	in	embedded	and	especially	in	bare	metal	programming
it's	not	an	option.	The	right	way	to	handle	these	errors	would	be	asserting	on	pre-conditions.
The		StaticQueue		implementation	in	embxx	library	uses		GASSERT()		macro	described	earlier.
The	checks	will	be	compiled	only	in	non-Release	mode	(NDEBUG	not	defined)	and	in	case
of	the	failure	it	will	invoke	the	project	specific	code	the	developer	has	written	to	report
assertion	failure.

template	<typename	T,	std::size_t	TSize>	
class	StaticQueue	
{	
public:	
				...	
				void	popFront()	
				{	
								GASSERT(!empty());	
								...	
				}	
};

Construction/Destruction	of	the	elements

When	the	queue	is	created	it	doesn't	contain	any	elements.	However	it	must	contain
uninitialised	space	where	elements	can	be	created	in	the	future.	The	space	must	be	of
sufficient	size	and	be	properly	aligned.

Static	(Fixed	Size)	Queue

68

http://en.cppreference.com/w/cpp/container/deque
http://www.boost.org/doc/libs/1_55_0/doc/html/circular_buffer.html
http://en.cppreference.com/w/cpp/container/array
https://github.com/arobenko/embxx/blob/master/embxx/container/StaticQueue.h
https://github.com/arobenko/embxx
https://github.com/arobenko/embxx

template	<typename	T,	std::size_t	TSize>	
class	StaticQueue	
{	
public:	
				typedef	T	ValueType;	
				...	
private:	
				typedef	
								typename	std::aligned_storage<	
												sizeof(ValueType),	
												std::alignment_of<ValueType>::value	
								>::type	StorageType;	

				typedef	std::array<StorageType,	TSize>	ArrayType;	

				ArrayType	array_;	
				...	
};

When	adding	a	new	element	to	the	queue,	the	“in-place”	construction	must	be	performed:

template	<typename	T,	std::size_t	TSize>	
class	StaticQueue	
{	
public:	
				...	
				typedef	T	ValueType;	
				...	

				template	<typename	U>	
				void	pushBack(U&&	newElem)	
				{	
								auto*	spacePtr	=	...;	//	get	pointer	to	the	right	place	
								new	(spacePtr)	ValueType(std::forward<U>(newElem));	
								...
				}	
};

When	an	element	removed	from	the	queue,	explicit	destruction	must	be	performed:

Static	(Fixed	Size)	Queue

69

template	<typename	T,	std::size_t	TSize>	
class	StaticQueue	
{	
public:	
				...	
				typedef	T	ValueType;	
				...	
			void	popBack()	
				{	
								auto*	spacePtr	=	...;	//	get	pointer	to	the	right	place	
								auto*	elemPtr	=	reinterpret_cast<ValueType*>(spacePtr);	
								elemPtr->~T();	//	call	the	destructor;	
								...	
				}	
};

Iteration

There	is	often	a	need	to	iterate	over	the	elements	of	the	queue.	The	standard	sequential
random	access	containers	such	as	std::array,	std::vector	or	std::deque	may	use	a	simple
pointer	(or	a	wrapper	class	around	it)	as	iterator	because	address	of	every	element	is
greater	than	address	of	its	predecessor.	Incrementing	a	pointer	during	the	iteration	would	be
enough	to	get	an	access	to	the	next	element.	However,	in	circular	queue/buffer	there	may	be
a	case	when	address	of	the	beginning	of	the	queue	is	greater	than	address	of	the	end	of	the
queue:

In	this	case	having	a	simple	pointer	as	iterator	is	not	enough.	There	is	a	need	to	check	a
wrap-around	case	when	incrementing	an	iterator.	However	always	using	this	kind	of	iterator
may	incur	undesired	performance	penalties.	That	is	when	“leniarisation”	concept	pops	up.
When	the	queue	is	linearised,	address	of	every	element	is	greater	than	the	address	of	its
predecessor	and	simple	pointer	(linearised	iterator)	may	be	used	to	iterate	over	all	the
elements	in	the	queue:

Static	(Fixed	Size)	Queue

70

http://en.cppreference.com/w/cpp/container/array
http://en.cppreference.com/w/cpp/container/vector
http://en.cppreference.com/w/cpp/container/deque

When	the	queue	is	not	linearised,	it	either	must	be	linearised	(may	be	a	bit	expensive,
depending	on	the	size	of	the	queue)	or	iterate	over	all	the	elements	in	two	stages:	first	on
the	first	(top)	part,	then	on	the	second	(bottom)	part.	The		StaticQueue		implementation	in
embxx	library	provides	two	functions		arrayOne()		and		arrayTwo()		that	return	these	two
ranges.

However,	there	may	be	a	need	to	read/write	data	from/to	the	queue	without	worrying	about
the	wrap-around	case.	Good	example	of	such	case	would	be	having	such	circular
queue/buffer	to	contain	data	read	from	some	communication	interface,	such	as	serial	port,
and	there	is	a	need	to	deserialise	4	byte	value	from	this	buffer.	The	most	convenient	way
would	be	to	use		embxx::io::readBig<4>(iter)		described	previously.	To	properly	support	this
case	we	will	need	to	have	a	bit	more	expensive	iterator	that	properly	handles	wrap-around
when	incremented	and/or	dereferenced.	This	is	the	reason	for	having	two	types	of	iterators
for		StaticQueue	:		LinearisedIterator		and		Iterator	.	The	former	is	a	simple		typedef		for	a
pointer	which	can	be	used	only	on	the	linearised	part	of	the	queue	and	the	latter	may	be
used	when	iterating	without	any	knowledge	whether	there	is	a	wrap-around	case	during	the
iteration.

When	defining	a	new	custom	iterator	class,	there	is	a	need	to	properly	support
std::iterator_traits	for	it.	The	traits	are	used	to	implement	functions	such	as	std::advance	or
std::distance.	The	requirement	is	to	define	the	following	internal	types:

template	<typename	T,	std::size_t	TSize>	
class	StaticQueue	
{	
public:	
				class	Iterator	
				{	
				public:	
								typedef	std::random_access_iterator_tag	iterator_category;	
								typedef	T	value_type;	
								typedef	T*	pointer;	
								typedef	T&	reference;	
								typedef	typename	std::iterator_traits<pointer>::difference_type	difference_typ
e;	
								...	
				};	

				...	
};

Copying	queues

Static	(Fixed	Size)	Queue

71

https://github.com/arobenko/embxx
http://en.cppreference.com/w/cpp/iterator/iterator_traits
http://en.cppreference.com/w/cpp/iterator/advance
http://en.cppreference.com/w/cpp/iterator/distance

Care	must	be	taken	when	copying/moving	elements	between	the	queues.	The	compiler	is
not	aware	of	the	right	type	of	the	elements	that	are	stored	in	the	queue	as	well	as	number	of
valid	elements	in	the	queue	is	unknown	at	compile	time.	When	using	default	copy/move
constructor	and/or	assignment	operator	the	compiler	will	generate	a	code	that	copies	raw
bytes	in	the	storage	space	between	the	queues.	It	may	work	for	the	basic	type	or	POD
structs,	but	it	is	not	the	right	way	to	do	the	copying.	There	is	a	need	to	use	copy/move
constructors	in	case	of	constructions	or	copy/move	assignment	operator	in	case	of
assignment	of	the	valid	elements	and	not	copy/move	garbage	data	from	unused	space.

In	addition	to	regular	copy/move	constructors	and	assignment	operators,	there	may	also	be
a	need	to	provide	copy/move	construction	and/or	copy/move	assignment	from	the	queue
that	contains	elements	of	the	same	type,	but	has	different	capacity:

template	<typename	T,	std::size_t	TSize>	
class	StaticQueue	
{	
public:	
				...	

				template	<std::size_t	TAnySize>	
				StaticQueue(const	StaticQueue<T,	TAnySize>&	queue)	
								:	Base(&array_[0],	TSize)	
				{	
								...	//	Copy	all	the	elements	from	other	queue	
				}	

				template	<std::size_t	TAnySize>	
				StaticQueue(StaticQueue<T,	TAnySize>&&	queue)	
								:	Base(&array_[0],	TSize)	
				{	
								...	//	Move	all	the	elements	from	other	queue	
				}	

				template	<std::size_t	TAnySize>	
				StaticQueue&	operator=(const	StaticQueue<T,	TAnySize>&	queue)	
				{	
								...	//	Copy	all	the	elements	from	other	queueu	
				}	

				template	<std::size_t	TAnySize>	
				StaticQueue&	operator=(StaticQueue<T,	TAnySize>&&	queue)	
				{	
								...	//	Move	all	the	elements	from	other	queue	
				}	
				...	
};

Optimising	code	generation

Static	(Fixed	Size)	Queue

72

As	we	all	know	and	confirmed	in	Templates	chapter,	any	difference	in	the	value	of	template
parameter	will	create	new	instantiation	of	executable	code.	It	means	that	having	multiple
queues	of	the	same	type,	but	different	sizes	may	bloat	the	executable	in	an	unacceptable
way.	The	best	way	to	solve	this	problem	would	be	defining	a	base	class	that	is	templated
only	on	the	type	of	the	stored	values	and	implements	the	whole	logic	of	the	queue	while	the
derived		StaticQueue		class	will	just	provide	the	necessary	storage	area	and	reuse	(wrap)	all
the	functions	implemented	in	the	base	class:

namespace	details
{

template	<typename	T>	
class	StaticQueueBase	
{	
protected:	
				typedef	T	ValueType;	
				typedef	
								typename	std::aligned_storage<	
												sizeof(ValueType),	
												std::alignment_of<ValueType>::value	
								>::type	StorageType;	
				typedef	StorageType*	StorageTypePtr;	

				StaticQueueBase(StorageTypePtr	data,	std::size_t	capacity)	
								:	data_(data),	
										capacity_(capacity),	
										startIdx_(0),	
										count_(0)	
				{	
				}	

				template	<typename	U>	
				void	pushBack(U&&	value)	{...}	

				...	//	All	other	API	functions	

private:	
				StorageTypePtr	data_;	//	Pointer	to	storage	area	
				std::size_t	capacity_;	//	Capacity	of	the	storage	area	
				std::size_t	startIdx_;	//	Index	of	the	beginning	of	the	queue	
				std::size_t	count_;	//	Number	of	elements	in	the	queue	
};

}	//	namespace	details

template	<typename	T,	std::size_t	TSize>	
class	StaticQueue	:	public	details::StaticQueueBase<T>	
{	
				typedef	details::StaticQueueBaseOptimised<T>	Base;	
				typedef	typename	Base::StorageType	StorageType;	

Static	(Fixed	Size)	Queue

73

public:	
			StaticQueue()	
								:	Base(&array_[0],	TSize)	
				{	
				}	

				template	<typename	U>	
				void	pushBack(U&&	value)	
				{	
								Base::pushBack(std::forward<U>(value));	
				}	

				...	//	Wrap	all	other	API	functions	

private:	
				typedef	std::array<StorageType,	TSize>	ArrayType;	
				ArrayType	array_;	
};

There	are	ways	to	optimise	even	more.	Let's	take	queues	of		int		and		unsigned		values	for
example.	They	have	the	same	size	and	from	the	queue	implementation	perspective	there	is
no	difference	in	handling	them,	so	it	would	be	a	waste	of	code	space	to	allow	the
instantiation	of	the	same	binary	code	for	the	queue	to	handle	both	of	these	types.	Using
template	specialisation	tricks	we	may	implement	queues	of	signed	integral	types	to	be	a
mere	wrappers	around	queues	that	contain	unsigned	integral	types.	Additional	example
would	be	storage	of	the	pointers	to	any	types.	It	would	be	wise	to	specialise		StaticQueue		of
pointers	to	be	a	wrapper	around	queue	of		void*		pointers	or	even	integral	unsigned	values
of	the	same	size	as	pointers	(such	as		std::uint32_t		on	32	bit	architecture	or
	std::uint64_t		on	64	bit	architecture).

Thanks	to	the	template	specialisation	there	are	virtually	no	limits	to	optimisations	we	may
apply.	However	I	would	like	to	remind	you	the	well	known	saying	“Premature	optimisations
are	the	root	of	all	evil”.	Please	avoid	optimising	your		StaticQueue		implementation	until	the
need	arises.

Static	(Fixed	Size)	Queue

74

Basic	Concepts
As	already	mentioned	in	Introduction,	this	book	explains	and	shows	examples	of	how	to
implement	soft	real	time	systems.	This	chapter	will	explain	basic	concepts	of	asynchronous
event	handling	as	well	as	how	to	implement	required	functionality	without	complex	state
machines,	and/or	task	scheduing.

Basic	Concepts

75

Event	Loop
Most	bare-metal	embedded	products	require	only	two	modes	of	operation:

Interrupt	(or	service)	mode
Non-interrupt	(or	user)	mode.

The	job	of	the	code,	that	is	executed	in	interrupt	mode,	is	to	respond	to	hardware	events
(interrupts)	by	performing	minimal	job	of	updating	various	status	registers	and	schedule
proper	handling	of	event	(if	applicable)	to	be	executed	in	non-interrupt	mode.	In	most
projects	the	interrupt	handlers	are	not	prioritised,	and	the	next	hardware	event	(interrupt)
won't	be	handled	until	the	previously	called	interrupt	handler	returns,	i.e.	CPU	is	ready	to
return	to	non-interrupt	mode.	Therefore,	it	is	important	for	the	interrupt	handler	to	do	its	job
as	quickly	as	possible.

There	are	multiple	ways	to	schedule	the	execution	of	event	handling	code	in	non-interrupt
mode	from	code	being	executed	in	interrupt	mode.	One	of	the	easiest	and	straightforward
ones	is	to	have	some	kind	of	global	flag	that	indicates	that	event	has	occurred	and	the
processing	is	required:

Event	Loop

76

bool	g_buttonPressed	=	false;	

void	gpioInterruptHandler()	
{	
				...	
				if	(/*button_gpio_recognised*/)	{	
								g_buttonPressed	=	true;	
				}	
}	

int	main(int	argc,	const	char*	argv[])	
{	
				...	
				while	(true)	{	//	infinite	event	processing	loop	
								enableInterrupts();	
								...	
								if	(g_buttonPressed)	{	
												disableInterrupt();	//	avoid	races	
												g_buttonPressed	=	false;	
												enableInterrupts();	
												...	//	Handle	button	press	
								}	
								...	
								disableInterrupts();	
								if	(/*	no_more_events	*/)	{
												WFI();	//	“Wait	for	interrupt”	assembler	instruction,	
																			//	instruction	will	exit	when	there	is	pending	
																			//	interrupt.	
								}
				}	
}

It	is	quite	clear	that	this	approach	is	not	scalable,	i.e.	will	quickly	become	a	mess	when
number	of	hardware	events	the	code	needs	to	handle	grows.	The	events	may	also	be
handled	not	in	the	same	order	they	occurred,	which	may	create	undesired	races	and	side
effects	on	some	systems.

Another	widely	used	approach	is	to	create	a	queue-like	container	(linked	list	or	circular
buffer)	of	event	IDs	which	are	handled	in	the	similar	event	loop:

Event	Loop

77

enum	EventId	
{	
				EventId_ClockTick,	
				EventId_ButtonPress,	
				
}	

Queue<EventId>	events;	

void	gpioInterruptHandler()	
{	
				...	
				if	(/*button_gpio_recognised*/)	{	
								events.push_back(EventId_ButtonPress);	
				}	
}	

int	main(int	argc,	const	char*	argv[])	
{	
				...	
				while	(true)	{	//	infinite	event	processing	loop	
								enableInterrupts();	
								...	
								switch	(events.front())	{	
								case	EventId_ClockTick:	
												...	//	handle	clock	tick	
												break;	

								case	EventId_ButtonPress:	
												...	//	handle	button	press	
												break;	
												...	
								}	
								...	
								disableInterrupts();	
								events.pop_front();	//	Remove	processed	event	from	queue	
							if	(events.empty())	{
												WFI();	//	“Wait	for	interrupt”	assembler	instruction,	
																			//	instruction	will	exit	when	there	is	pending	interrupt.	
								}
				}	
}

The	approach	above	is	a	bit	better,	it	processes	events	in	the	same	order	they	occur,	but	still
has	its	own	disadvantages.	Sometimes	there	is	a	need	to	attach	some	extra	information	for
the	processing	of	the	event.	Usually	it	is	done	using	global	variables,	which	introduces	some
extra	complexity	to	the	code	and	possibility	for	races.	The	handling	of	some	events	may
have	several	internal	stages	and	require	busy	wait(s)	during	the	processing.	These	busy

Event	Loop

78

waits	may	significantly	delay	the	processing	of	other	pending	events.	The	usual	way	to
resolve	this	kind	of	problem	is	to	create	several	state	machines,	that	process	this	kind	of
events	in	stages.	Most	of	Real-Time	OSes	provide	an	ability	to	create	independent	tasks
(threads),	that	can	be	used	to	perform	independent	complex	multiple	staged	workflows	while
the	OS	performs	context	switching	between	them.	Still,	the	code	can	very	quickly	become
too	complex	and	difficult	to	maintain.

The	approaches	above	are	widely	used	in	bare	metal	projects	developed	using	C
programming	language.	Using	C++	language	built-in	features	as	well	as	ready	to	use
classes	from	STL	it	is	possible	to	simplify	the	complexity	of	the	code	and	implement	proper
asynchronous	handling	of	events,	which	is	easier	to	debug	and	maintain.

I	would	recommend	using	a	queue	of	callable	objects	created	by	std::bind()	expressions	or
lambda	functions.	The	conventional	C++	way	would	be	using	std::list	of	std::function	objects.
However,	these	classes	use	dynamic	memory	allocation	and	throw	exceptions,	which	may
be	not	suitable	for	every	bare	metal	project.	Anyway,	let's	just	demonstrate	the	idea	using
these	two	classes:

typedef	std::list<std::function<void	()>	>	Queue;	
Queue	handlers;	

template	<typename	TFunc>	
void	addHandlerFromInterrupt(TFunc&&	func)	
{	
				//	No	need	to	disable	interrupts.
				handlers.push_back(std::forward<TFunc>(func));	
}	

template	<typename	TFunc>	
void	addHandler(TFunc&&	func)	
{	
			//	Protect	against	races	with	interrupt	handlers	
				disableInterrupts();	
				handlers.push_back(std::forward<TFunc>(func));	
				enableInterrupts();	
}	

void	handleButtonPressStart()	
{	
				...//	Start	handling	of	button	press	event	
				handleButtonPressBusyWait();	
}	

void	handleButtonPressBusyWait()	
{	
				if	(/*	some_condition	*/)	{	
								handleButtonPressFinish();	
								return;	

Event	Loop

79

http://en.cppreference.com/w/cpp/utility/functional/bind
http://en.cppreference.com/w/cpp/language/lambda
http://en.cppreference.com/w/cpp/container/list
http://en.cppreference.com/w/cpp/utility/functional/function

				}	

				//	The	condition	is	not	true,	need	to	wait,	
				//	reschedule	the	execution	of	the	same	function.
				addHandler(
								[]()	
								{	
													handleButtonPressBusyWait();	
								});	
}	

void	handleButtonPressFinish()	
{	
				...//	Finalise	handling	of	button	press	event.	
}	

void	gpioInterruptHandler()	
{	
				...	
				if	(/*button_gpio_recognised*/)	{	
								addHandlerFromInterrupt(
												[]()	
												{	
									//	Will	be	executed	in	non-interrupt	event	loop.
																	handleButtonPressStart();	
												});	
				}	
}	

int	main(int	argc,	const	char*	argv[])	
{	
				...	
				while	(true)	{	//	infinite	event	processing	loop	
								enableInterrupts();	
								...	
								auto&	firstHandler	=	handlers.front();	
								firstHandler();	//	Execute	scheduled	callable	object	
								...	
								disableInterrupts();	
								handlers.pop_front();	//	Remove	executed	callable	object	
																														//	(function)	from	queue	of	handlers.	

								if	(handlers.empty())	{
												WFI();	//	“Wait	for	interrupt”	assembler	instruction,	
																			//	instruction	will	exit	when	there	is	pending	
																			//	interrupt.	
								}
				}	
}

Event	Loop

80

This	approach	allows	having	complex	processing	of	some	events	with	many	sub-stages	and
busy	waits	while	still	allowing	other	independent	events	being	processed.	All	the	handlers
are	executed	in	the	same	order	they	were	pushed	to	the	queue.	There	is	an	ability	to	bind
multiples	additional	parameters	together	with	the	function	call,	which	reduces	a	necessity	to
have	global	variables	to	pass	values	around.	There	is	no	need	to	maintain	a	list	of	various
event	IDs,	explicitly	define	stages	of	state	machine(s)	or	implement	complex	task	switching
between	independent	threads	(tasks).

Now,	let's	try	to	get	rid	of	dynamic	memory	allocation	and	possible	exceptions.	The	only	way
to	achieve	this	is	to	have	a	compile	time	constant	that	specifies	the	maximal	size	of	the
queue.	The	naive	implementation	would	be	using	StaticQueue	of	StaticFunction	objects
described	in	Basic	Needs	chapter.	However,	the	StaticFunction	class	definition	requires
compile	time	constant	to	specify	the	size	of	the	area	to	store	all	the	data	of	the	callable
object.	It	must	be	big	enough	to	contain	any	possible	callable	object	that	will	be	pushed	to
the	queue.	For	example:

typedef	embxx::util::StaticFunction<void	(),	sizeof(void*)	*	10>		Func;	
typedef	embxx::container::StaticQueue<Func,	1024>	Queue;

Queue	handlers;
…
handlers.push_back(std::bind(&func1,	param1,	param2));	//	Will	require	size	of	only	3	
values
...
handlers.push_back(
				std::bind(
								&func2,	
								param1,	
								param2,
								param3,
								param4));	//	Will	require	size	of	only	5	values

handlers.push_back(
				std::bind(
								&func3,	
								param1,	
								param2,
								param3,
								param4,
								param5,
								param6,
								param7,
								param8,
								param9));	//	Will	consume	the	whole	available	space.

The	queue	will	look	like	this:

Event	Loop

81

https://github.com/arobenko/embxx/blob/master/embxx/container/StaticQueue.h
https://github.com/arobenko/embxx/blob/master/embxx/util/StaticFunction.h
https://github.com/arobenko/embxx/blob/master/embxx/util/StaticFunction.h

It	is	quite	clear	that	lots	of	space	may	be	wasted	and	this	approach	must	be	optimised.	What
if	we	could	push	the	callable	object	to	the	queue	one	after	another	regardless	of	their	actual
size	with	a	bit	of	extra	space	overhead	(such	as	pointer	to	v-table),	that	will	help	us	to
retrieve	size	of	the	object	at	runtime	and	remove	appropriate	number	of	bytes	from	such
queue	after	the	callable	object	did	its	job?

It	looks	much	better.	The	space	consumption	is	much	more	efficient.

To	properly	support	this	type	of	queue	we	must:

1.	 implement	polymorphic	behaviour	when	calling	every	handler	with	same	interface.
2.	 implement	polymorphic	behaviour	to	retrieve	the	size	of	single	handler	in	order	to	know

how	many	bytes	are	to	be	removed	from	the	queue	after	the	handler	has	been	called.
3.	 properly	handle	wrap-around	cases	when	the	pushed	handler	cannot	fit	into	the	area

between	the	end	of	the	queue	and	end	of	the	allocated	space.

The	code	of	required	classes	will	be	like	this:

Event	Loop

82

class	Task	
{	
public:	
				virtual	~Task()	{}	

				virtual	std::size_t	getSize()	const	
				{	
								return	1U;	
				}	

				virtual	void	exec()	{}	
};	

template	<typename	TTask>	
class	TaskBound	:	public	Task	
{	
public:	

				//	Size	is	minimal	number	of	elements	of	size	equal	to	sizeof(Task)	
				//	that	will	be	able	to	store	this	TaskBound	object	
				static	const	std::size_t	Size	=	
								((sizeof(TaskBound<typename	std::decay<TTask>::type>)	-	1)	/	
																																																					sizeof(Task))	+	1;	

				explicit	TaskBound(const	TTask&	task)	
						:	task_(task)	
				{	
				}	

				explicit	TaskBound(TTask&&	task)	
						:	task_(std::move(task))	
				{	
				}	

				virtual	~TaskBound()	{}	

				virtual	std::size_t	getSize()	const	
				{	
								return	Size;	
				}	

				virtual	void	exec()	
				{	
								task_();	
				}	

private:	
				TTask	task_;	
};

The	definition	of	the	Queue	type	will	be:

Event	Loop

83

typedef	typename	
				std::aligned_storage<	
								sizeof(Task),	
								std::alignment_of<Task>::value	
			>::type	ArrayElemType;	

static	const	std::size_t	ArraySize	=	TSize	/	sizeof(Task);	
typedef	embxx::container::StaticQueue<ArrayElemType,	ArraySize>	Queue;

	TSize		is	a	template	parameter	that	specifies	maximum	size	(in	bytes)	of	the	queue	storage
area.

The	code	of	pushing	new	handler	to	the	queue	will	look	like	this:

template	<typename	TTask>	
bool	addHandler(TTask&&	task)	
{	
				typedef	TaskBound<typename	std::decay<TTask>::type>	TaskBoundType;	
				static_assert(
								std::alignment_of<Task>::value	==	std::alignment_of<TaskBoundType>::value,	
								"Alignment	of	TaskBound	must	be	same	as	alignment	of	Task");	

				static	const	std::size_t	requiredQueueSize	=	TaskBoundType::Size;	

				auto	placePtr	=	getAllocPlace(requiredQueueSize);	
				if	(placePtr	==	nullptr)	{	
								return	false;	
				}	

				new	(placePtr)	TaskBoundType(std::forward<TTask>(task));	
				return	true;	
}

Note,	that	job	of		getAllocPlace()		function	is	to	make	sure	that	continuous	storage	area	that
is	able	to	store	the	required	callable	object	is	created	(by	resizing	the	queue)	and	return
pointer	to	this	area.

Event	Loop

84

ArrayElemType*	getAllocPlace(std::size_t	requiredQueueSize)	
{	
				auto	invalidIter	=	queue_.invalidIter();	
				while	(true)	
				{	
								if	((queue_.capacity()	-	queue_.size())	<	requiredQueueSize)	{	
												return	nullptr;	
								}	

								auto	curSize	=	queue_.size();	
								if	(queue_.isLinearised())	{	
												auto	dist	=	
																static_cast<std::size_t>(
																				std::distance(queue_.arrayTwo().second,	invalidIter));	
												if	((0	<	dist)	&&	(dist	<	requiredQueueSize))	{	
																queue_.resize(curSize	+	1);	
																auto	placePtr	=	static_cast<void*>(&queue_.back());	
																new	(placePtr)	Task();	
																continue;	
												}	
								}	

								queue_.resize(curSize	+	requiredQueueSize);	
								return	&queue_[curSize];	
				}	
}

In	case	of	wrap-around,	when	there	is	not	enough	space	between	the	end	of	the	queue	and
end	of	its	storage	area,	number	of	simple		Task		objects	which	do	nothing	(the	body	of
exec()	function	is	empty)	are	pushed	to	fill	the	space	till	the	end	of	storage	area	to	make	the
queue	non-linearised,	which	in	turn	will	allow	creation	of	continuous	area	of	required	size	in
the	second	half	of	the	circular	queue.

The	event	handling	loop	will	be	something	like	this:

Event	Loop

85

while	(true)	{	
				...	
				//	Get	an	access	pointer	to	next	handler	
				auto	taskPtr	=	reinterpret_cast<Task*>(&queue_.front());	
				auto	sizeToRemove	=	taskPtr->getSize();	

				//	Execute	the	handler	while	allowing	interrutps	
				enableInterrupts();	
				taskPtr->exec();	

				//	Remove	the	handler	information	from	the	queue	
				taskPtr->~Task();	
				disableInterrupts();	
				queue_.popFront(sizeToRemove);	

				...	
}

The	only	remaining	thing	is	to	create	a	convenient	and	generic	interface	to	be	able	to	add
new	handlers	for	execution	from	both	interrupt	and	non-interrupt	contexts.

Analogy	with	Threads

Before	diving	into	implementation	of	such	interface,	I'd	like	to	make	an	analogy	between
interrupt/non-interrupt	execution	modes	and	two	threads.	The	inter-threads	communication
is	managed	using	locks	(such	as	std::mutex)	and	condition	variables	(such	as
std::condition_variable_any).	Using	this	analogy	the	handlers	execution	loop	(executed	in
non-interrupt	thread)	can	be	implemented	like	this:

Event	Loop

86

http://en.cppreference.com/w/cpp/thread/mutex
http://en.cppreference.com/w/cpp/thread/condition_variable_any

std::mutex	lock_;	
std::condition_variable_any	cond_;	
...	

while	(true)	{	
				lock_.lock();	

				while	(!queue_.isEmpty())	{	
								auto	taskPtr	=	reinterpret_cast<Task*>(&queue_.front());	
								auto	sizeToRemove	=	taskPtr->getSize();	
								lock_.unlock();	

								//	Executed	with	interrupts	enabled	
								taskPtr->exec();	
								taskPtr->~Task();	

								lock_.lock();	
								queue_.popFront(sizeToRemove);	
				}	

				//	Still	locked	prior	to	wait	
				cond_.wait(lock_);	
				lock_.unlock();	
}

And	adding	new	execution	handler	from	any	thread	can	be:

template	<typename	TTask>	
bool	addHandler(TTask&&	task)	
{	
			std::lock_guard<decltype(lock_)>	guard(lock_);	
			...	//	adding	handler	functionality	
			cond_.notify_all();	//	notify	the	condition	variable	
}

If	we	think	about	interrupt	and	non-interrupt	execution	modes	as	two	threads,	the	locking	in
non-interrupt	thread	is	equivalent	to	disabling	interrupts;	and	waiting	for	condition	variable	to
be	notified	is	equivalent	for	waiting	for	interrupts	(using		WFI		or		WFE		instructions	in	ARM
architecture)	while	notification	can	be	automatic	due	to	pending	interrupts	or	implemented
using		SEV		instruction.	However,	our	interrupt	and	non-interrupt	mode	threads	differ	slightly
from	conventional	threads.	The	non-interrupt	mode	one	can	be	interrupted	at	any	time	by
interrupt	mode,	while	the	interrupt	mode	“thread”	won't	be	interrupted	and	doesn't	actually
need	to	protect	itself	from	other	thread's	intervention.

The	whole	logic	of	event	handling	loop	in	non-interrupt	context	described	above	is	generic
except	locking	(disabling	interrupts)	and	waiting	for	new	handlers	to	be	added	(waiting	for
interrupts)	which	are	platform	and	architecture	specific.	As	I've	mentioned	before,	the	whole

Event	Loop

87

idea	of	using	C++	instead	of	C	in	bare	metal	development	is	to	be	able	to	write	and	reuse
generic	code	while	providing	minimal	platform	specific	hardware	control	functionality.	The
embxx	library	provides	EventLoop	class	that	receives	the	locking	and	condition	variable
classes	as	template	parameters	and	manages	safe	addition	of	new	handlers	and	in-order
execution	of	the	latter	in	non-interrupt	context.

The	class	definition	looks	like	this:
template	<std::size_t	TSize,	typename	Tlock,	typename	TCond>	
class	EventLoop	
{	
				...	
};

The		TLock		class	must	expose	the	following	public	interface:

class	PlatformLock	
{	
public:	
				//	Locks	out	interrupt	"thread".	The	function	is	called	
				//	in	non-interrupt	context	
				void	lock()	{...}	

				//	Restore	previous	state	changed	by	"lock()"	function,	i.e.	
				//	allow	interrupts	if	they	were	disabled	by	lock().	
				void	unlock()	{...}	

				//	Same	as	lock(),	but	will	be	called	when	new	handler	is	about	to	
				//	be	added	from	interrupt	handler.	In	normal	case	it	should	be	an	
				//	empty	function,	unless	the	interrupts	are	prioritised	and	there	
				//	is	a	need	to	disable	other	interrupts	from	an	interrupt	handler	
				void	lockInterruptCtx()	{...}	

				//	Same	as	unlock,	but	will	be	called	in	interrupt	context.	Should	
				//	also	be	empty	function	when	interrupts	are	not	prioritised.	
				void	unlockInterruptCtx()	{...}	
};

The		TCond		class	must	expose	the	following	public	interface:

Event	Loop

88

https://github.com/arobenko/embxx
https://github.com/arobenko/embxx/blob/master/embxx/util/EventLoop.h

class	PlatformCond	
{	
public:	
				//	Receives	the	reference	to	lockable	object	that	is	locked	
				//	(has	lock()	and	unlock()	member	functions)	and	
				//	responsible	to	release	the	lock	if	needed	and	wait	for	
				//	notifications	from	other	thread(s).	After	the	notification	
				//	occurs	it	must	re-acquire	the	lock	prior	to	returning.	
				template	<typename	TLock>	
				void	wait(TLock&	lock)	{...}	

				//	This	function	is	used	to	notify	condition	that	wait	should	
				//	be	terminated.	
				void	notify()	{...}	
};

The	example	of	such	classes	for	Raspberry	Pi	platform	may	be	found	here.

class	InterruptLock	
{	
public:	
				InterruptLock()	
								:	flags_(0)	{}	

				void	lock()	
				{	
								__asm	volatile("mrs	%0,	cpsr"	:	"=r"	(flags_));	//	store	flags	
								__asm	volatile("cpsid	i");	//	disable	interrupts	
				}	

				void	unlock()	
				{	
								if	((flags_	&	IntMask)	==	0)	{	
												//	Was	previously	enabled	
												__asm	volatile("cpsie	i");	//	enable	interrupts	
								}	
				}	

				void	lockInterruptCtx()	
				{	
								//	Nothing	to	do	
				}	

				void	unlockInterruptCtx()	
				{	
								//	Nothing	to	do	
				}	

private:	
				volatile	std::uint32_t	flags_;	
				static	const	std::uint32_t	IntMask	=	1U	<<	7;	

Event	Loop

89

https://github.com/arobenko/embxx_on_rpi/blob/master/src/device/EventLoopDevices.h

};	

class	WaitCond	
{	
public:	
				template	<typename	TLock>	
				void	wait(TLock&	lock)	
				{	
								//	no	need	to	unlock	(re-enable	interrupts)	
								static_cast<void>(lock);	
								__asm	volatile("wfi");	
				}	

				void	notify()	
				{	
								//	Nothing	to	do,	pending	interrupt	will	cause	wfi
								//	to	exit	even	with	interrupts	disabled	
				}	
};

The	EventLoop	class	exposes	the	following	public	interface:

template	<std::size_t	TSize,	typename	Tlock,	typename	TCond>	
class	EventLoop	
{	
public:	
				...	
				///	@brief	Post	new	handler	for	execution.	
				///	@details	Acquires	regular	context	lock.	The	task	is	added	to	
				///										the	execution	queue.	If	the	execution	queue	is	empty	
				///										before	the	new	handler	is	added,	the	condition	
				///										variable	is	signalled	by	calling	its	notify()	member	
				///										function.	
				///	@param[in]	task	R-value	reference	to	new	handler	functor.	
				///	@return	true	in	case	the	handler	was	successfully	posted,	
				///									false	if	there	is	not	enough	space	in	the	execution	
				///									queue.	
				template	<typename	TTask>	
				bool	post(TTask&&	task);	

				///	@brief	Post	new	handler	for	execution	from	interrupt	context.	
				///	@details	Acquires	interrupt	context	lock.	The	task	is	added	to	
				///										the	execution	queue.	If	the	execution	queue	is	empty	
				///										before	the	new	handler	is	added,	the	condition	variable
				///										is	signalled	by	calling	its	notify()	member	function.	
				///	@param[in]	task	R-value	reference	to	new	handler	functor.	
				///	@return	true	in	case	the	handler	was	successfully	posted,	false	
				///									if	there	is	not	enough	space	in	the	execution	queue.	
				template	<typename	TTask>	
				bool	postInterruptCtx(TTask&&	task);	

Event	Loop

90

https://github.com/arobenko/embxx/blob/master/embxx/util/EventLoop.h

				///	@brief	Event	loop	execution	function.	
				///	@details	The	function	keeps	executing	posted	handlers	until	
				///										none	are	left.	When	execution	queue	becomes	empty	the	
				///										wait(...)	member	function	of	the	condition	variable	
				///										gets	called	to	execute	blocking	wait	for	new	handlers.	
				///										When	new	handler	is	added,	the	condition	variable	will	
				///										be	signalled	and	blocking	wait	is	expected	to	be	
				///										terminated	to	continue	execution	of	the	event	loop.	
				///										This	function	never	exits	unless	stop()	was	called	to
				///										terminate	the	execution.	After	stopping	the	main
				///										loop,	use	reset()	member	function	to	enable	the	loop	
				///										to	be	executed	again.
				void	run();	

				///	@brief	Stop	execution	of	the	event	loop.	
				///	@details	The	execution	may	not	be	stopped	immediately.	If	there
				///										is	an	event	handler	being	executed,	the	loop	will	be	
				///										stopped	after	the	execution	of	the	handler	is	finished.	
				void	stop();	

				///	@brief	Reset	the	state	of	the	event	loop.	
				///	@details	Clear	the	queue	of	registered	event	handlers	and	
				///										resets	the	"stopped"	flag	to	allow	new	event	loop	
				///										execution.	
				void	reset();	
}:

I'll	leave	the	implementation	of	the	functions	above	as	an	exercise	to	the	reader.	Don't	forget
to	call		notify()		member	function	of	condition	variable	when	adding	new	handler	to	the
empty	queue.

If	needed,	the	reference	implementation	can	be	found	here.

Busy	Loops

The	event	loop	described	above	is	an	easy	and	convenient	way	to	implement	soft	real-time
systems.	However,	the	main	rule	with	such	architecture	is:	DON'T	DO	BUSY	LOOPS!	It
means,	if	there	is	a	real	need	to	perform	a	busy	wait	before	proceeding	to	the	next	stage,	do
it	by	letting	other	events	being	handled	as	well.	The		EventLoop		class	also	provides
	busyWait()		member	function	that	does	exactly	that.

Event	Loop

91

https://github.com/arobenko/embxx/blob/master/embxx/util/EventLoop.h

template	<std::size_t	TSize,	typename	Tlock,	typename	TCond>	
class	EventLoop	
{	
public:	
				...	
				///	@brief	Perform	busy	wait.	
				///	@details	Executes	busy	wait	while	allowing	other	event	handlers	
				///										posted	by	interrupt	handlers	being	processed.	
				///	@tparam	TPred	Predicate	class	type,	must	define	
				///									@code	bool	operator()();	@endcode	
				///									that	return	true	in	case	busy	wait	must	be	terminated.	
				///	@tparam	TFunc	Functor	class	that	will	be	executed	when	wait	is	
				///									complete.	It	must	define	
				///									@code	void	operator()();	@endcode	
				///	@param	pred	Any	type	of	reference	to	predicate	object	
				///	@param	func	Any	type	of	reference	to	"wait	complete"	function.	
				///	@pre	The	event	loop	must	have	enough	space	to	repost	the	call	
				///						to	busyWait().	Note	that	there	is	no	wait	to	notify	the	
				///						caller	if	post	operation	fails.	In	debug	compilation	mode
				///						there	will	be	an	assertion	failure	in	case	call	to	post()
				///						returned	false,	in	release	compilation	mode	the	failure	
				///						will	be	silent.	
				template	<typename	TPred,	typename	TFunc>	
				void	busyWait(TPred&&	pred,	TFunc&&	func)	
				{	
								if	(pred())	{	
												bool	result	=	post(std::forward<TFunc>(func));	
												GASSERT(result);	
												static_cast<void>(result);	
												return;	
								}	

								bool	result	=	post(
												[this,	pred,	func]()	
												{	
																busyWait(std::move(pred),	std::move(func));	
												});	
								GASSERT(result);	
								static_cast<void>(result);	
				}	
};

Event	Loop

92

Device-Driver-Component
Now,	after	understanding	what	the	event	loop	is	and	how	to	implement	it	in	C++,	I'd	like	to
describe	Device-Driver-Component	stack	concept	before	proceeding	to	practical
examples.

The	Device	is	a	platform	specific	peripheral(s)	control	layer.	Sometimes	it	is	called	HAL	-
Hardware	Abstraction	Layer.	It	has	an	access	to	platform	specific	peripheral	control
registers.	Its	job	is	to	implement	predefined	interface	required	by	upper	Driver	layer,	handle
the	relevant	interrupts	and	report	them	to	the	Driver	via	callbacks.

The	Driver	is	a	generic	platform	independent	layer.	Its	job	is	to	receive	requests	for
asynchronous	operation	from	the	Component	layer	and	forward	the	request	to	the	Device.
It	is	also	responsible	for	receiving	notifications	about	the	interrupts	from	the	Device	via
callbacks,	perform	minimal	processing	of	the	hardware	event	if	necessary	and	schedule	the
execution	of	proper	event	handling	callback	from	the	Component	in	non	interrupt	context
using	Event	Loop.

The	Component	is	a	generic	or	product	specific	layer	that	works	fully	in	event	loop	(non-
interrupt)	context.	It	initiates	asynchronous	operations	using	Driver	while	providing	a
callback	object	to	be	called	in	event	loop	context	when	the	asynchronous	operation	is
complete.

There	are	several	main	operations	required	for	any	asynchronous	event	handling:

1.	 Start	the	operation.
2.	 Complete	the	operation.
3.	 Cancel	the	operation.
4.	 Suspend	the	operation.
5.	 Resume	suspended	operation.

All	the	peripherals	described	in	Peripherals	chapter	will	follow	the	same	scheme	for	these
operations	with	minor	changes,	such	as	having	extra	parameters	or	intermediate	stages.

Device-Driver-Component

93

Starting	Asynchronous	Operation

Any	non-interrupt	context	operation	is	initiated	from	some	event	handler	executed	by	the
Event	Loop	or	from	the		main()		function	before	the	event	loop	started	its	execution.	The
handler	being	executed	invokes	some	function	in	some	Component,	which	requests	the
Driver	to	perform	some	asynchronous	operation	while	providing	a	callback	object	to	be
executed	when	such	operation	is	complete.	The	Driver	stores	the	provided	callback	object
and	other	parameters	in	its	internal	data	structures,	then	forwards	the	request	to	the	Device,
which	configures	the	hardware	accordingly	and	enables	all	the	required	interrupts.

Completing	Asynchronous	Operation

The	first	entity,	that	is	aware	of	asynchronous	operation	completion,	is	Device	when
appropriate	interrupt	occurs.	It	must	report	the	completion	to	the	Driver	somehow.	As	was
described	earlier,	the	Device	is	a	platform	specific	layer	that	resides	at	the	bottom	of	the
Device-Driver-Component	stack	and	is	not	aware	of	the	generic	Driver	layer	that	uses	it.
The	Device	must	provide	a	way	to	set	an	operation	completion	report	object.	The	Driver	will
usually	assign	such	object	during	construction/initialisation	stage:

When	the	expected	interrupt	occurs,	the	Device	reports	operation	completion	to	the	Driver,
which	in	turn	schedules	execution	of	the	callback	object	from	the	Component	in	non-
interrupt	context	using	Event	Loop

Device-Driver-Component

94

Note	that	the	operation	may	fail,	due	to	some	hardware	faults,	This	is	the	reason	to	have
	status		parameter	reporting	success	and/or	error	condition	in	both	callback	invocations.

Canceling	Asynchronous	Operation

There	must	be	an	ability	to	cancel	asynchronous	operations	in	progress.	For	example	some
Component	activates	asynchronous	operation	request	on	some	hardware	peripheral
together	with	asynchronous	wait	request	to	the	timer	to	measure	the	operation	timeout.	If
timeout	callback	is	invoked	first,	then	there	is	a	need	to	cancel	the	outstanding
asynchronous	operation.	Or	the	opposite,	once	the	read	is	successful,	the	timeout	measure
should	be	canceled.	However,	the	cancellation	may	be	a	bit	tricky.	One	of	the	main
requirements	for	asynchronous	events	handling	is	that	the	Component's	callback	MUST	be
called	and	called	only	ONCE.	It	creates	a	situation	when	cancellation	may	become
unsuccessful.	For	instance,	the	callback	of	the	asynchronous	operation	was	posted	for
execution	in	Event	Loop,	but	hasn't	been	executed	by	the	latter	yet.	It	brings	us	to	the
necessity	to	provide	an	indication	whether	the	cancellation	request	was	successful.	Simple
boolean	return	value	is	enough.

When	the	cancellation	is	successful	the	Component's	callback	object	is	invoked	with
	status		specifying	that	operation	was		Aborted	.

Device-Driver-Component

95

One	possible	case	of	unsuccessful	cancellation	is	when	callback	was	posted	for	execution	in
event	loop,	but	hasn't	been	executed	yet	when	cancellation	is	attempted.	In	this	case	Driver
is	aware	that	there	is	no	pending	asynchronous	operation	and	can	return		false	
immediately.

Another	possible	case	of	unsuccessful	cancellation	is	when	completion	interrupt	occurs	in
the	middle	of	cancellation	request:

In	this	case	the	Device	must	be	able	to	handle	such	race	condition	appropriately,	by
temporarily	disabling	interrupts	before	checking	whether	the	completion	callback	was
executed.	The	Driver	must	also	be	able	to	handle	interrupt	context	execution	in	the	middle
on	non-interrupt	one.

Suspend	/	Resume	Asynchronous	Operation

Device-Driver-Component

96

There	may	be	a	Driver,	that	is	required	to	support	multiple	asynchronous	operations	at	the
same	time,	while	managing	internal	queue	of	such	requests	and	issuing	them	one	by	one	to
the	Device.	In	this	case	there	is	a	need	to	prevent	"operation	complete"	callback	being
invoked	in	interrupt	mode	context,	while	trying	to	access	the	internal	data	structures	in	the
event	loop	(non-interrupt)	context.	The	Device	must	provide	both		suspendOp()		and
	resumeOp()		to	suppress	invocation	of	the	callback	and	allow	it	back	again	respectively.
Usually	suspension	means	disabling	the	interrupts	without	stopping	current	operation,	while
resume	means	re-enabling	them	again.

Note	that	the		suspendOp()		request	must	also	indicate	whether	the	suspension	was
successful	or	the	completion	callback	has	been	already	invoked	in	interrupt	mode,	just	like
with	the	cancellation.	After	the	operation	being	successfully	suspended,	it	must	be	either
resumed	or	canceled.

Device	Function	Invocation	Context

Let's	think	about	the	case	when	Driver	supports	multiple	asynchronous	operations	at	the
same	time	and	queuing	them	internally	while	issueing	start	requests	to	the	Device	one	by
one.

Device-Driver-Component

97

The	reader	may	notice	that	the		startOp()		member	function	of	the	Device	was	invoked	in
event	loop	(non-interrupt)	context	while	the	second	time	it	was	in	interrupt	context	right	after
the	completion	of	the	first	operation	was	reported.	There	may	be	a	need	for	the	Device's
implementation	to	differentiate	between	these	calls.

One	of	the	ways	to	do	so	is	to	have	different	names	and	make	the	Driver	use	them
depending	on	the	current	execution	context:

class	MyDevice
{
public:
				void	startOp();
				void	startOpInterruptCtx();
}

Another	way	is	to	use	a	tag	dispatching	idiom,	which	I	decided	to	use	in	embxx	library.

It	defines	two	extra	tag	structs	in	embxx/device/context.h:

Device-Driver-Component

98

http://www.generic-programming.org/languages/cpp/techniques.php#tag_dispatching
https://github.com/arobenko/embxx
https://github.com/arobenko/embxx/blob/master/embxx/device/context.h

namespace	embxx
{

namespace	device
{

namespace	context
{

//	Event	loop	context	tag	class.
struct	EventLoop	{};

//	Interrupt	context	tag	class.
struct	Interrupt	{};

}	//	namespace	context

}	//	namespace	device

}	//	namespace	embxx

Then,	almost	every	member	function	defined	by	Device	class	has	to	specify	extra	tag
parameter	indicating	context:

class	MyDevice
{
public:
				typedef	embxx::device::context::EventLoop	EventLoopCtx;
				typedef	embxx::device::context::Interrupt	InterruptCtx;

				void	startOp(EventLoopCtx	context)
				{
								static_cast<void>(context);	//	unused	parameter
								...	//	Perform	operation	when	called	in	event	loop	context
				}

				void	startOp(InterruptCtx	context)
				{
								static_cast<void>(context);	//	unused	parameter
								...	//	Perform	operation	when	called	in	interrupt	context
				}
};

The	Driver	class	will	invoke	the	Device	functions	using	relevant	temporary	context	object
passed	as	the	last	parameter:

Device-Driver-Component

99

class	MyDriver
{
public:
				typedef	embxx::device::context::EventLoop	EventLoopCtx;
				typedef	embxx::device::context::Interrupt	InterruptCtx;

				//	Invoked	by	some	Component	object	in	Event	Loop	Context
				void	asyncOp(...)
				{
								...
								device_.startOp(EventLoopCtx());
								...
				}

private:

			//	Some	registered	event	callback	handler,	
			//	invoked	in	interrupt	context
			void	interruptCallbackHandler()
			{
							...
							device_.startOp(InterruptCtx());
			}
};

If	some	function	needs	to	be	called	only	in,	say		EventLoop		context,	and	not	supported	in
	Interrupt		context,	then	it	is	enough	to	implement	only	supported	variant.	If	Driver	layer
tries	to	invoke	the	function	with	unsupported	context	tag	parameter,	the	compilation	will	fail:

class	MyDevice
{
public:
				typedef	embxx::device::context::EventLoop	EventLoopCtx;

				void	cancelOp(EventLoopCtx	context)
				{
								static_cast<void>(context);	//	unused	parameter
								...	//	Cancel	recent	operation
				}
};

If	there	is	no	need	to	differentiate	between	the	contexts	the	function	is	invoked	in,	then	it	is
quite	easy	to	unify	them:

Device-Driver-Component

100

class	SomeDevice
{
public:

				template	<typename	TContext>
				void	startOp(TContext	context)
				{
								static_cast<void>(context);	//	unused	parameter
								startOpInternal();
				}

private:
				void	startOpInternal()
				{
								...
				}
};

Reporting	Errors
When	issuing	asynchronous	operation	request	to	the	Driver	and/or	Component,	there	must
be	a	way	to	report	success	/	failure	status	of	the	operation,	and	if	it	failed	provide	some	extra
information	about	the	reason	of	the	failure.	Providing	such	information	as	first	parameter	to
the	callback	functor	object	is	a	widely	used	convention	among	the	developers.

In	most	cases,	the	numeric	value	of	error	code	is	good	enough.

The	embxx	library	provides	a	short	list	of	such	values	in	enumeration	class	defined	in
embxx/error/ErrorCode.h:

Device-Driver-Component

101

https://github.com/arobenko/embxx
https://github.com/arobenko/embxx/blob/master/embxx/error/ErrorCode.h

namespace	embxx
{

namespace	error
{

enum	class	ErrorCode
{
				Success,	///<	Successful	completion	of	operation.
				Aborted,	///<	The	operation	was	cancelled/aborted.
				BufferOverflow,	///	The	buffer	is	full	with	read	termination	condition	being	false
				HwProtocolError,	///<	Hardware	peripheral	reported	protocol	error.
				Timeout,	///<	The	operation	takes	too	much	time.
				NumOfStatuses	///<	Number	of	available	statuses.	Must	be	last
};

}		//	namespace	error

}		//	namespace	embxx

There	is	also	a	wrapper	class	around	the		embxx::error::ErrorCode	,	called
	embxx::error::ErrorStatus		(defined	in	embxx/error/ErrorStatus.h):

namespace	embxx
{

namespace	error
{

template	<typename	TErrorCode	=	ErrorCode>
class	ErrorStatusT
{
public:
				///	@brief	Error	code	enum	type
				typedef	TErrorCode	ErrorCodeType;

				///	@brief	Default	constructor.
				///	@details	The	code	value	is	0,	which	is	"success".
				ErrorStatusT();

				///	@brief	Constructor
				///	@details	This	constructor	may	be	used	for	implicit	
				///										construction	of	error	status	object	out	
				///										of	error	code	value.
				///	@param	code	Numeric	error	code	value.
				ErrorStatusT(ErrorCodeType	code);

				///	@brief	Copy	constructor	is	default
				ErrorStatusT(const	ErrorStatusT&)	=	default;

Device-Driver-Component

102

https://github.com/arobenko/embxx/blob/master/embxx/error/ErrorStatus.h

				///	@brief	Destructor	is	default
				~ErrorStatusT()	=	default;

				///	@brief	Copy	assignment	is	default
				ErrorStatusT&	operator=(const	ErrorStatusT&)	=	default;

				///	@brief	Retrieve	error	code	value.
				const	ErrorCodeType	code()	const;

				///	@brief	boolean	conversion	operator.
				///	@details	Returns	true	if	error	code	is	not	equal	0,	
				///										i.e.	any	error	will	return	true,	success	
				///										value	will	return	false.
				operator	bool()	const;

				///	@brief	Same	as	!(static_cast<bool>(*this)).
				bool	operator!()	const;

private:
				ErrorCodeType	code_;
};

typedef	ErrorStatusT<ErrorCode>	ErrorStatus;

}		//	namespace	error

}		//	namespace	embxx

It	allows	implicit	conversion	from		embxx::error::ErrorCode		to		embxx::error::ErrorStatus	
and	convenient	evaluation	whether	error	has	occurred	in		if		sentences:

embxx::error::ErrorStatus	es;
GASSERT(!es);	//	No	error
...
if	(/*	some	condition	*/)	{
				es	=	embxx::error::ErrorCode::BufferOverflow;
}
...
if	(es)	{
				...	//	Error	occurred,	access	the	arror	code	by	calling	es.code()
}

By	convention	every	callback	function	provided	with	any	asynchronous	request	to	any
Driver	and/or	Component	implemented	in	embxx	library	will	receive		const
embxx::error::ErrorStatus&		as	its	first	argument:

Device-Driver-Component

103

https://github.com/arobenko/embxx

void	callback(const	embxx::error::ErrorStatus&	es,	...	/*	some	other	parameters	*/)
{
				if	(es	==	embxx::error::ErrorCode::Aborted)	{
								return;	//	Nothing	to	do
				}

				if	(es)	{
								...	//	Error	occurred
								return;
				}
				...	//	Success
}

Cooperation

As	it	is	seen	in	the	charts	above,	the	Driver	must	have	an	access	to	the	Device	as	well	as
Event	Loop	objects.	However,	the	former	is	not	aware	of	the	exact	type	of	the	latter.	In	order
to	write	fully	generic	code,	the	Device	and	Event	Loop	types	must	be	provided	as	template
arguments:

template	<typename	TDevice,	typename	TEventLoop>
class	MyDriver
{
public:
				//	During	the	construction	store	references	to	Device
				//	and	Event	Loop	objects.
				MyDriver(TDevice&	device,	TEventLoop&	el)
						:	device_(device),
								el_(el)
				{
				}

				...

private:

				TDevice&	device_;
				TEventLoop&	el_;
};

The	Component	needs	an	access	only	to	the	Device	and	maybe	Event	Loop.	The
reference	to	the	latter	may	be	retrieved	from	the	Device	object	itself:

Device-Driver-Component

104

template	<typename	TDevice,	typename	TEventLoop>
class	MyDriver
{
public:
				TEventLoop&	getEventLoop()
				{
								return	el_;
				}

private:
				TEventLoop&	el_;
};

template	<typename	TDriver>
class	MyComponent
{
public:
				MyComponent(TDriver&	driver)
						:	driver_(driver)
				{
				}

				void	someFunc()
				{
								auto&	el	=	driver_.getEventLoop();
								el.post(...);
				}

private:
				TDriver&	driver_;
};

Storing	Callback	Object

The	Driver	needs	to	provide	a	callback	object	to	the	Device	to	be	called	when	appropriate
interrupt	occurs.	The	Component	also	provides	a	callback	object	to	be	invoked	in	non-
interrupt	context	when	the	asynchronous	operation	is	complete,	aborted	or	terminated	due	to
some	error	condition.	These	callback	objects	need	to	be	stored	somewhere.	The	best	way	to
do	so	in	conventional	C++	is	using	std::function.

Device-Driver-Component

105

http://en.cppreference.com/w/cpp/utility/functional/function

template	<typename	TDevice,	typename	TEventLoop>
class	MyDriver
{
public:
				template	<typename	TFunc>
				void	asyncOp(TFunc&&	callbackObj)
				{
								callback_	=	std::forward<TFunc>(callbackObj);
								...	//	Start	the	operation
				}

private:
				typedef	std::function<void	embxx::error::ErrorStatus&>	CallbackType;

				void	opCompleteInterruptCallback(void	embxx::error::ErrorStatus&	es)
				{
								...	//	Complete	the	operation
								el_.postInterruptCtx(std::bind(std::move(callback_),	es));
				}

				EventLoop&	el_;
				CallbackType	callback_;
};

There	are	two	problems	with	using	std::function:	exceptions	and	dynamic	memory	allocation.
It	is	possible	to	suppress	the	usage	of	exceptions	by	making	sure	that	function	object	is
never	invoked	without	proper	object	being	assigned	to	it,	and	by	overriding	appropriate
	__throw_*		function(s)	to	remove	exception	handling	code	from	binary	image	(described	in
Exceptions	chapter).	However,	it	is	impossible	to	get	rid	of	dynamic	memory	allocation	in	this
case,	which	reduces	number	of	bare	metal	products	the	Driver	code	can	be	reused	in,	i.e.	it
makes	the	Driver	class	not	fully	generic.

The	problem	is	resolved	by	defining	the	callback	storage	type	as	a	template	parameter	to
the	Driver:

template	<typename	TDevice,	
										typename	TEventLoop,	
										typename	TCallbackType>
class	MyDriver
{
private:
				...
				TCallbackType	callback_;
};

For	projects	that	allow	dynamic	memory	allocation		std::function<...>		can	be	passed,	for
others		embxx::util::StaticFunction<...>		or	similar	must	be	used.

Device-Driver-Component

106

http://en.cppreference.com/w/cpp/utility/functional/function

Device-Driver-Component

107

Peripherals
It	this	chapter	I	will	describe	and	give	multiple	examples	of	how	to	drive	and	control	multiple
hardware	peripherals	while	using	Device-Driver-Component	model	in	conjunction	with	Event
Loop.

All	the	generic,	platform	independent	code	provided	here	is	implemented	as	part	of	embxx
library	while	platform	(Raspberry	Pi)	specific	code	is	taken	from	embxx_on_rpi	project.

All	the	platform	specific	peripheral	control	classes	reside	in	src/device	directory.

The	src/app	directory	contains	several	simple	applications,	such	as	flashing	the	led	or
responding	to	button	presses.

There	are	also	common	Component	classes	shared	between	the	applications.	They	reside
in	src/component	directory.

In	order	to	compile	all	the	applications	please	follow	the	instructions	described	in	Contents	of
This	Document.

Function	Configuration
In	ARM	platform	every	pin	needs	to	be	configured	as	either	gpio	input,	gpio	output	or	having
one	of	several	alternative	functions	the	microcontroller	supports.	The		device::Function	
class	defined	in	src/device/Function.h	and	src/device/Function.cpp	implements	simple
interface	which	allows	every	Device	class	configure	the	pins	it	uses.

Peripherals

108

https://github.com/arobenko/embxx
https://github.com/arobenko/embxx_on_rpi
https://github.com/arobenko/embxx_on_rpi/tree/master/src/device
https://github.com/arobenko/embxx_on_rpi/tree/master/src/app
https://github.com/arobenko/embxx_on_rpi/tree/master/src/component
https://github.com/arobenko/embxx_on_rpi/blob/master/src/device/Function.h
https://github.com/arobenko/embxx_on_rpi/blob/master/src/device/Function.cpp

class	Function
{
public:
				enum	class	FuncSel	{
								Input,		//	b000
								Output,	//	b001
								Alt5,			//	b010
								Alt4,			//	b011
								Alt0,			//	b100
								Alt1,			//	b101
								Alt2,			//	b110
								Alt3				//	b111
				};

				typedef	unsigned	PinIdxType;

				static	const	std::size_t	NumOfLines	=	54;

				void	configure(PinIdxType	idx,	FuncSel	sel);
};

Every	implemented	Device	class	will	receive	reference	to		Function		object	in	its	constructor
and	will	have	to	use	it	to	configure	the	pins	as	required.

Interrupts	Management
There	is	one	more	componenet	that	every	Device	will	use.	It's		device::InterruptMgr	
defined	in	src/device/InterruptMgr.h.	The	main	responsibility	of	the	object	of	this	class	is	to
control	global	level	interrupts,	register	interrupt	handlers	from	various	Devices	and	invoke
the	appropriate	handler	when	interrupt	occurs.

The	interface	of	the		device::InterruptMgr		is	defined	as	following:

Peripherals

109

https://github.com/arobenko/embxx_on_rpi/blob/master/src/device/InterruptMgr.h

template	<typename	THandler	=	embxx::util::StaticFunction<void	()>	>
class	InterruptMgr
{
public:
				typedef	THandler	HandlerFunc;
				enum	IrqId	{
								IrqId_Timer,
								IrqId_AuxInt,
								IrqId_Gpio1,
								IrqId_Gpio2,
								IrqId_Gpio3,
								IrqId_Gpio4,
								IrqId_I2C,
								IrqId_SPI,
								IrqId_NumOfIds	//	Must	be	last
				};

				InterruptMgr();

				template	<typename	TFunc>
				void	registerHandler(IrqId	id,	TFunc&&	handler);

				void	enableInterrupt(IrqId	id);

				void	disableInterrupt(IrqId	id);

				void	handleInterrupt();

private:
				typedef	std::uint32_t	EntryType;

				struct	IrqInfo	{
								...	//	Contains	interrupt	related	information	
												//	per	single	IrqId
				};

				typedef	std::array<IrqInfo,	IrqId_NumOfIds>	IrqsArray;

				IrqsArray	irqs_;
};

Every	Driver	will	use		registerHandler()		member	function	to	register	its	member	function	as
the	handler	for	its		IrqId	.	The		enableInterrupt()		and		disableInterrupt()		are	also	used
by	the	Device	objects	to	control	their	interrupts	on	global	level.

In	order	to	use	the	Interrupt	Manager	described	above	every	application	has	to	implement
proper	interrupt	handler	that	will	retrieve	the	reference	to		device::InterruptMgr		object	(via
global/static	variables)	and	invoke	its		handleInterrupt()		function,	which	in	turn	check	the

Peripherals

110

appropriate	status	register(s)	and	invoke	registered	handler(s).	Please	note,	that	the	handler
will	be	executed	in	interrupt	context.

The	code	will	look	something	like	this:

extern	"C"
void	interruptHandler()
{
				System::instance().interruptMgr().handleInterrupt();
}

There	may	also	be	a	need	to	enable/disable	all	the	interrupts	by	toggling		i		flag	in		CPS	
register.	The	same	src/device/InterruptMgr.h	file	provides	two	function	for	this	purpose:

namespace	device
{

namespace	interrupt
{

inline
void	enable()
{
				__asm	volatile("cpsie	i");
}

inline
void	disable()
{
				__asm	volatile("cpsid	i");
}

}		//	namespace	interrupt

}		//	namespace	device

Peripherals

111

https://github.com/arobenko/embxx_on_rpi/blob/master/src/device/InterruptMgr.h

Timer
It	is	customary	in	bare	metal	development	to	flash	leds	in	the	first	application	(instead	of
writing	"Hello	world").	However	most	tutorials	show	how	to	do	it	synchronously	using	loops
to	wait	some	time	before	changing	state	of	the	led.	I'm	going	to	describe	how	to	do	it
asynchronously	using	timer	interrupt	in	conjunction	with	Event	Loop.

Almost	every	embedded	platform	has	usually	one	or	two	timer	peripherals.	One	such
peripheral	can	be	programmed	to	provide	an	interrupt	after	some	period	of	time.	However,
there	may	be	a	need	to	have	multiple	timers	that	can	be	activated	independently	at	the	same
time.	It	is	quite	clear	that	there	should	be	an	entity	that	receives	all	the	wait	requests	from
various	Components	in	non-interrupt	context,	then	queues	the	wait	requests	internally,
programs	the	timer	peripheral	to	provide	an	interrupt	after	some	time,	and	finally	reports	the
completion	to	appropriate	Component	via	callback	also	in	non-interrupt	(event	loop)
context.

Such	entity	can	be	a	generic	(platform	independent)	Driver,	if	it	is	provided	with	platform
specific	Device	object,	that	exposes	some	predefined	public	interface	and	controls	the
actual	platform	specific	hardware.

The	asynchronous	timer	event	handling	follows	the	same	pattern	described	in	Device-Driver-
Component	chapter.

Assigning	Wait	Complete	Callback

Timer

112

Just	like	described	in	Device-Driver-Component	chapter	the	Driver	needs	to	provide	the
"Wait	Complete"	callback	object	to	be	called	when	timer	interrupt	occurs.	The	assignment	is
usually	performed	during	initialisation/construction	stage	of	the	Driver:

Starting	Asynchronous	Wait

The	Driver	must	be	able	to	support	multiple	wait	requests	from	various	Components	and
manage	the	internal	queue	accordingly.	In	the	chart	above	the	timer	peripheral	activated	on
the	first		asyncWait()		request.	When	the	second	request	is	issued	(assuming		timeout1	<
timeout2		and	existing	wait	mustn't	be	stopped),	the	Driver	must	prevent	the	completion	of
the	currently	scheduled	timer	countdown	being	reported	in	interrupt	context	while	interfering
with	an	update	to	internal	data	structures.	The	interrupts	are	disabled	by	calling
	suspendWait()		member	function	of	the	Device.	The	call	to	the		suspendWait()		returns
	true	,	which	means	the	interrupts	are	successfully	disabled	and	it	is	safe	to	update	internal
data	structures.	If	the	call	to		suspendWait()		returns		false	,	it	means	that	the	interrupt	has
already	occurred	and	there	is	no	existing	wait	in	progress,	i.e.	the	second		asyncWait()	
actually	becomes	a	first	one	in	the	new	sequence.

There	also	may	be	a	case	when		timeout2	<	timeout1		which	means	the	order	of	the	timeout
requests	must	be	re-evaluated,	and	new	wait	re-programmed.

Timer

113

The	Driver	must	be	able	to	cancel	the	existing	timer	countdown,	evaluate	how	much	time
has	passed	since	the	first	request,	evaluate	the	new	values	to	reprogram	the	timer	Device
countdown	again.

Completing	Asynchronous	Wait

Due	to	the	fact	that	Driver	may	receive	multiple	independent	wait	requests,	it	must
reprogram	the	next	wait	(if	such	exists)	while	running	in	interrupt	mode.	Please	pay	attention
to		InterruptCtx()		tag	parameter	passed	to	the		startWait()		member	function	of	the
Device.	It	indicates	that	the	request	is	executed	in	interrupt	context,	while	the	same	request
used		EventLoopCtx()		as	the	tag	parameter	to	specify	that	the	call	was	performed	in	event
loop	(non-interrupt)	context.

Canceling	Asynchronous	Wait

If	there	is	a	request	to	cancel	the	currently	executed	wait,	the	Driver	must	receive	the
information	about	the	elapsed	time	and	reprogram	the	next	wait	if	such	exists.

Timer

114

If	the	cancellation	request	to	some	other	wait,	that	hasn't	been	forwarded	to	the	Device,	the
Driver	just	needs	to	update	its	internal	data	structures	without	canceling	currently	performed
timer	countdown.

The	unsuccessful	attempts	to	cancel	wait	is	performed	in	exactly	the	same	way	as	described
in	Device-Driver-Component	chapter.

Timer

115

Identifying	Wait	Requests

There	is	obviously	a	need	to	have	some	kind	of	identification	of	the	wait	requests	in	order	to
be	able	to	cancel	some	specific	request	while	keeping	the	rest	in	waiting	queue.	One
approach	would	be	to	have	some	kind	of	a	handle	which	can	be	used	during	the	cancellation
request:

class	MyTimerDriver
{
public:
				typedef	...	Handle;

				Handle	asyncWait(...);

				void	cancelWait(Handle	handle);
};

Another	one	is	to	hide	the	handle	in	some	wrapper	class,	which	makes	it	a	bit	safer	to	use:

Timer

116

class	MyTimerDriver
{
public:

				typedef	...	Handle;

				class	Timer
				{
				public:
								Timer(MyTimerDriver&	mgr,	Handle	handle)
										:	mgr_(mgr),
												handle_(handle)
								{
								}

								~Timer()
								{
												...	//	Invalidate	the	allocated	handle
								}

								void	asyncWait(...)
								{
												mgr_.asyncWait(handle_,	...)
								}

								void	cancelWait()
								{
												mgr_.cancelWait(handle_);
								}

				private:
				MyTimerDriver&	mgr_;
								Handle	handle_;
				};

				Timer	allocTimer()
				{
								auto	someHandle	=	...;
								return	Timer(*this,	someHandle)
				}

private:

				friend	class	TimerMgr::Timer;

				void	asyncWait(Handle	handle,	...);

				void	cancelWait(Handle	handle);
};

Timer

117

The	Driver	itself	has	only	one	public	function		allocTimer()	.	It	is	used	to	allocate	the		Timer	
object.	All	the	wait	and/or	cancel	requests	are	issued	to	this	timer	object	directly,	which	is
declared	to	be	a		friend		of	the	Driver	class,	i.e.	it	is	able	to	call	private	functions	of	the
latter	using	the	handle	it	has.	The	destructor	of	the		Timer		makes	sure	that	the	handle	is
properly	invalidated.

MyTimerDriver	driver(...);	
auto	timer	=	driver.allocTimer();
timer.asyncWait(...);
...
timer.cancelWait();
...

The	second	approach	is	a	bit	safer	than	the	first	one	and	it	is	used	in	the	implementation	of
such	generic	"Timer	Management	Driver"	in	embxx	library.

Specifying	the	Wait	Duration

The	timer	Device	is	platform	specific.	Some	platforms	may	support	wait	duration	granularity
of	a	microsecond,	others	can	achieve	only	a	millisecond.	It	usually	depends	on	the	system
clock	speed.	However,	when	using	generic	Driver	and/or	Component	there	is	a	need	to	be
able	to	write	platform	independent	code	that	performs	wait	of	the	specified	duration
regardless	of	the	Device	in	use.	The	Standard	Template	Library	(STL)	of	C++11	standard
provides	convenient	Date	and	Time	Utilities	that	make	such	usage	possible.

In	case	the	Device	declares	a	minimal	wait	duration	unit	using	std::chrono::duration	type,
the	Driver	may	use	std::chrono::duration_cast	to	convert	the	requested	wait	duration	to
supported	duration	units.

class	MyTimerDevice
{
public:
				typedef	std::chrono::duration<unsigned,	std::milli>	
																																																WaitTimeUnitDuration;

				typedef	embxx::device::context::EventLoop	EventLoopCtx;

				void	startWait(WaitTimeUnitDuration::rep	count,	EventLoopCtx)	{...}
				...
};

In	the	example	above	the	minimal	supported	duration	unit	(WaitTimeUnitDuration)	is
declared	to	be	1	millisecond.	Please	note	that		startWait()		member	function	expects	to
receive	number	of	wait	units,	i.e.	milliseconds	as	its	first	parameter.

Timer

118

https://github.com/arobenko/embxx
http://en.cppreference.com/w/cpp/chrono
http://en.cppreference.com/w/cpp/chrono/duration
http://en.cppreference.com/w/cpp/chrono/duration/duration_cast

Then	the	definition	of	the		asyncWait()		member	function	of	the	Driver	may	be	defined	like
this:

template	<typename	TDevice,	...>
class	MyTimerDriver
{
public:
				typedef	typename	TDevice::WaitTimeUnitDuration	WaitTimeUnitDuration
				class	Timer
				{
				public:
								template	<typename	TRep,	typename	TPeriod,	typename	TFunc>
								void	asyncWait(
												const	std::chrono::duration<TRep,	TPeriod>&	waitTime,
												TFunc&&	func)
								{
												auto	castedWaitDuration	=
																std::chrono::duration_cast<WaitTimeUnitDuration>(waitTime);
												auto	waitUnits	=	castedWaitDuration.count();
												...	//	Call	the	asyncWait()	of	the	driver	with	waitUnits	as
																//	first	parameter.
								}

				};
};

In	the	example	above	the	call	below	will	perform	correct	adjustment	of	the	duration	and	will
measure	the	same	timeout	with	any	Device	whether	the	latter	expects	milliseconds	or
microseconds	in	its		startWait()		member	function.

timer.asyncWait(std::chrono::seconds(5),	...);

In	case	the	developer	tries	to	execute	a	wait	of	several	microseconds	when	Driver	supports
only	milliseconds	granularity,	the	compilation	will	fail.

timer.asyncWait(std::chrono::microseconds(5),	...);

Driver	Implementation

The	timer	management	Driver	is	a	generic	layer.	It	must	work	on	any	platform	with	any	timer
Device	object	that	exposes	the	right	interface.

Such	Driver	is	already	implemented	in	embxx	library	as		embxx::driver::TimerMgr		and
resides	in	embxx/driver/TimerMgr.h	while	platform	specific	(Raspberry	Pi)	peripheral	control
object	is	implemented	in	embxx_on_rpi	project	as		device::Timer		and	resides	in

Timer

119

https://github.com/arobenko/embxx
https://github.com/arobenko/embxx/blob/master/embxx/driver/TimerMgr.h
https://github.com/arobenko/embxx_on_rpi

src/device/Timer.h.

The	detailed	documentation	for		embxx::driver::TimerMgr		can	be	found	here.

The		embxx::driver::TimerMgr		is	defined	like	this:

template	<typename	TDevice,
										typename	TEventLoop,
										std::size_t	TMaxTimers,
										typename	TTimeoutHandler	=	embxx::util::StaticFunction<void	(const	embxx::er
ror::ErrorStatus&)>	>
class	TimerMgr
{
public:
				TimerMgr(TDevice&	device,	TEventLoop&	el);
						:	device_(device),
								el_(el)
				{
								...
				}

				...

private:
				struct	TimerInfo	{
								TTimeoutHandler	handler_;	//
								...;																						//	Some	other	internal	data
				}

				//	Internal	data	structures	to	track	all	the	scheduled
				//	wait	requests.
				std::array<TimerInfo,	TMaxTimers>	infos_;

				TDevice&	device_;
				TEventLoop&	el_;
				...
};

The		TDevice		template	parameter	is	Platform	specific	control	class	for	timer	peripheral.

The		TEventLoop		template	parameter	is	the	class	of	the	Event	Loop.

The		TMaxTimers		template	parameters	specifies	the	maximal	number	of	timer	objects	the
	TimerMgr		will	be	able	to	allocate.	This	parameter	is	required	because
	embxx::driver::TimerMgr		was	designed	to	be	used	in	the	systems	without	dynamic	memory
allocation.	If	dynamic	memory	allocation	is	allowed,	then	it	is	quite	easy	to	implement	similar
functionality	without	this	limitation.

Timer

120

https://github.com/arobenko/embxx_on_rpi/blob/master/src/device/Timer.h
https://dl.dropboxusercontent.com/u/46999418/embxx/driver_timer_mgr_page.html

The		TTimeoutHandler		template	parameter	specifies	type	of	the	timeout	callback	object.	This
object	must	have		void	(const	embxx::error::ErrorStatus&)		signature	and	expose	similar
interface	to	std::function	or	embxx::util::StaticFunction.

The		embxx::driver::TimerMgr		exposes	the	following	public	interface:

template	<...>
class	TimerMgr
{
public:
				class	Timer	
				{
				public:
								//	Destructor,	removes	Timer	record	from	internal
								//	data	structures	of	TimerMgr
								~Timer()	{...}

								//	Activates	asyncrhonous	wait
								void	asyncWait(...)	{...}

								//	Cancels	scheduled	asynchronous	wait
								void	cancel()	{...}
				};

				//	Allocate	timer	object
				Timer	allocTimer()	{...}

private:
				//	Allows	usage	of	non-exposed	private	functions	of
				//	TimerMgr
				friend	class	TimerMgr::Timer;
				...
};

The	reader	may	notice	that		embxx::driver::TimerMgr		exposes	only	one	public	function:
	Timer	allocTimer();	.	This	function	returns	simple		TimerMgr::Timer		object	which	can	be
used	to	schedule	new	wait	as	well	as	cancel	the	previous	wait	request.	Also	note	that
	TimerMgr::Timer		class	is	declared	to	be	a		friend		of		TimerMgr	.	This	is	required	to	allow
seamless	delegation	of	the	wait/cancel	request	from		TimerMgr::Timer		to		TimerMgr		which	is
responsible	for	managing	multiple	simultaneous	wait	requests	and	delegating	them	one	by
one	to	the	the	actual	hardware	control	object.

Then	the	led	flashing	application	(implemented	in	src/app/app_led_flash)	can	be	as	simple
as	the	code	below:

namespace
{

Timer

121

http://en.cppreference.com/w/cpp/utility/functional/function
https://dl.dropboxusercontent.com/u/46999418/embxx/classembxx_1_1util_1_1StaticFunction_3_01TRet_07TArgs_8_8_8_08_00_01TSize_01_4.html
https://github.com/arobenko/embxx_on_rpi/tree/master/src/app/app_led_flash

const	auto	LedChangeStateTimeout	=	std::chrono::milliseconds(500);

template	<typename	TTimer>
void	ledOff(
				TTimer&	timer,
				System::Led&	led);

template	<typename	TTimer>
void	ledOn(
				TTimer&	timer,
				System::Led&	led)
{
				led.on();

				timer.asyncWait(
								LedChangeStateTimeout,
								[&timer,	&led](const	embxx::error::ErrorStatus&	status)
								{
												static_cast<void>(status);
												ledOff(timer,	led);
								});
}

template	<typename	TTimer>
void	ledOff(
				TTimer&	timer,
				System::Led&	led)
{
				led.off();

				timer.asyncWait(
								std::chrono::milliseconds(LedChangeStateTimeout),
								[&timer,	&led](const	embxx::error::ErrorStatus&	status)
								{
												static_cast<void>(status);
												ledOn(timer,	led);
								});
}

}		//	namespace

int	main()	{
				//	Get	reference	to	TimerMgr	object
				auto&	system	=	System::instance();
				auto&	timerMgr	=	system.timerMgr();

				//	Allocate	timer
				auto	timer	=	timerMgr.allocTimer();

				//	Start	flashing	with	initial	state	to	be	OFF
				device::interrupt::enable();
				ledOff(timer,	led);

Timer

122

				//	Run	the	event	loop
				auto&	el	=	system.eventLoop();
				el.run();

				GASSERT(0);	//	Mustn't	exit
				return	0;
}

Platform	Specific	Timer	Device
As	it	was	already	mentioned	earlier,	the		embxx::driver::TimerMgr		is	a	generic	Driver	class
that	does	most	of	the	work	of	managing	and	scheduling	independent	wait	requests.	It
requires	support	from	low	level	timer	Device	object	to	program	the	actual	hardware	of	the
platform	the	code	runs	on.	The		embxx::driver::TimerMgr		is	defined	to	receive	the	Device
class	as	template	parameter	as	well	as	reference	to	the	Device	timer	object	in	the
constructor.	The	Driver	doesn't	know	the	exact	Device	type,	but	expects	it	to	expose	certain
public	interface:

template	<typename	TDevice,	typename	TEventLoop,	...>
class	TimerMgr
{
public:
				TimerMgr(TDevice&	device,	TEventLoop&	el);
				...
};

The	timer	control	Device	class	must	expose	the	following	public	interface:

1.	 Define		WaitTimeUnitDuration		type	as	variation	of	std::chrono::duration	that	specifies
duration	of	single	wait	unit	supported	by	the	Device.

	typedef	std::chrono::duration<...>	WaitTimeUnitDuration;

2.	 Function	to	set	the	callback	object	to	be	invoked	from	timer	interrupt:

	template	<typename	TFunc>
	void	setWaitCompleteCallback(TFunc&&	func);

3.	 Functions	to	start	timer	countdown	in	both	event	loop	(non-interrupt)	and	interrupt
contexts:

Timer

123

http://en.cppreference.com/w/cpp/chrono/duration/duration_cast

	void	startWait(
					WaitTimeUnitDuration::rep	waitTime,	//	num	of	wait	units
					embxx::device::context::EventLoop	context);
	void	startWait(
					WaitTimeUnitDuration::rep	waitTime,	//	num	of	wait	units
					embxx::device::context::Interrupt	context);

4.	 Function	to	cancel	timer	countdown	in	event	loop	(non-interrupt)	context.	The	function
must	return	true	in	case	the	wait	was	actually	canceled	and	false	when	there	is	no	wait
in	progress.

	bool	cancelWait(embxx::device::context::EventLoop	context);

5.	 Function	to	suspend	countdown	(disable	interrupts	while	the	actual	wait	countdown	is
not	stopped)	in	event	loop	(non-interrupt)	context.	The	function	must	return	true	in	case
the	wait	was	actually	suspended	and	false	when	there	is	no	wait	in	progress.	The	call	to
this	function	will	be	followed	either	by		resumeWait()		or	by		cancelWait()	.

	bool	suspendWait(embxx::device::context::EventLoop	context);

6.	 Function	to	resume	countdown	in	event	loop	(non-interrupt)	context.

	void	resumeWait(embxx::device::context::EventLoop	context);

7.	 Function	to	retrieve	elapsed	time	of	the	last	executed	wait.	It	will	be	called	right	after	the
	cancelWait()	.

	WaitTimeUnitDuration::rep	getElapsed(embxx::device::context::EventLoop	context)	c
onst;

The	definition	and	implementation	of	such	timer	device	for	Raspberry	Pi	platform	can	be
found	in	src/device/Timer.h	file	of	embxx_on_rpi	project.

Timer

124

https://github.com/arobenko/embxx_on_rpi/blob/master/src/device/Timer.h
https://github.com/arobenko/embxx_on_rpi

UART
Our	next	stage	will	be	to	support	debug	logging	via	UART	interface.	In	conventional	C++
logging	is	performed	using	either	printf	function	or	output	streams	(such	as	std::cout	or
std::cerr).

If		printf		is	used	the	compilation	may	fail	at	the	linking	stage	with	following	errors:

/usr/bin/../lib/gcc/arm-none-eabi/4.8.3/../../../../arm-none-eabi/lib/libc.a(lib_a-sbr
kr.o):	In	function	`_sbrk_r':
sbrkr.c:(.text._sbrk_r+0x18):	undefined	reference	to	`_sbrk'
/usr/bin/../lib/gcc/arm-none-eabi/4.8.3/../../../../arm-none-eabi/lib/libc.a(lib_a-wri
ter.o):	In	function	`_write_r':
writer.c:(.text._write_r+0x20):	undefined	reference	to	`_write'
/usr/bin/../lib/gcc/arm-none-eabi/4.8.3/../../../../arm-none-eabi/lib/libc.a(lib_a-clo
ser.o):	In	function	`_close_r':
closer.c:(.text._close_r+0x18):	undefined	reference	to	`_close'
/usr/bin/../lib/gcc/arm-none-eabi/4.8.3/../../../../arm-none-eabi/lib/libc.a(lib_a-fst
atr.o):	In	function	`_fstat_r':
fstatr.c:(.text._fstat_r+0x1c):	undefined	reference	to	`_fstat'
/usr/bin/../lib/gcc/arm-none-eabi/4.8.3/../../../../arm-none-eabi/lib/libc.a(lib_a-isa
ttyr.o):	In	function	`_isatty_r':
isattyr.c:(.text._isatty_r+0x18):	undefined	reference	to	`_isatty'
/usr/bin/../lib/gcc/arm-none-eabi/4.8.3/../../../../arm-none-eabi/lib/libc.a(lib_a-lse
ekr.o):	In	function	`_lseek_r':
lseekr.c:(.text._lseek_r+0x20):	undefined	reference	to	`_lseek'
/usr/bin/../lib/gcc/arm-none-eabi/4.8.3/../../../../arm-none-eabi/lib/libc.a(lib_a-rea
dr.o):	In	function	`_read_r':
readr.c:(.text._read_r+0x20):	undefined	reference	to	`_read'
collect2:	error:	ld	returned	1	exit	status

Once	these	functions	are	stubbed	with	empty	bodies,	the	compilation	will	succeed,	but	the
image	size	will	be	quite	big	(around	45KB).

The		_sbrk		function	is	required	to	support	dynamic	memory	allocation.	The		printf		function
probably	uses		malloc()		to	allocate	some	temporary	buffers.	If	we	open	the	assembly	listing
file	we	will	see	calls	to		<malloc>		and		<free>	.

The		_write		function	is	used	to	write	characters	into	the	standard	output	consol,	which
doesn't	exist	in	embedded	product.	The	developer	must	use	this	function	implementation	to
write	all	the	provided	characters	to	UART	serial	interface.	Many	developers	implement	this
function	in	a	straightforward	synchronous	way	with	busy	loop:

UART

125

http://en.cppreference.com/w/cpp/io/c/fprintf
http://en.cppreference.com/w/cpp/io/basic_ostream
http://en.cppreference.com/w/cpp/io/cout
http://en.cppreference.com/w/cpp/io/cerr

extern	"C"	int	_write(int	file,	char	*ptr,	int	len)
{
				int	count	=	len;
				if	(file	==	1)	{	//	stdout
								while	(count	>	0)	{
												while	(...	/*	poll	the	status	bit	*/)	{}	//	just	wait
												TX_REG	=	*ptr;
												++ptr;
												--count;
								}
				}
				return	len;
}

In	this	case	the	call	to		printf		function	will	be	blocking	and	won't	return	until	all	the
characters	are	written	one	by	one	to	UART,	which	takes	a	lot	of	execution	time.	This
approach	is	suitable	for	quick	and	dirty	debugging,	but	will	quickly	become	impractical	when
the	project	grows.

In	order	to	make	the	execution	of		printf		quick,	there	must	be	some	kind	of	interrupt	driven
component	that	is	responsible	to	buffer	all	the	provided	characters	and	forward	it	to	UART
asynchronously	one	by	one	using	"TX	buffer	register	is	free"	kind	of	interrupts.

One	of	disadvantages	in	using		printf		for	logging	is	a	necessity	to	specify	an	output	format
of	the	printed	variables:

std::int32_t	i	=	...;	//	some	value
printf("Value	=	%d\n");

In	case	the	type	of	the	printed	variable	changes,	the	developer	must	remember	to	update
type	in	the	format	string	too.	This	is	the	reason	why	many	C++	developers	prefer	using
streams	instead	of		printf	:

std::int32_t	i	=	...;	//	some	value
std::cout	<<	"Value	=	"	<<	i	<<	std::endl;

Even	if	type	of	printed	variable	changes	the	compiler	will	generate	a	call	to	appropriate
overloaded		operator<<		of	std::ostream	and	the	value	will	be	printed	correctly.	The
developer	will	also	have	to	implement	the	missing		_write		function	to	write	provided
characters	somewhere	(UART	interface	in	our	case).

However	using	C++	streams	in	bare	metal	development	is	often	not	an	option.	They	use
exceptions	to	handle	error	cases	as	well	as	locales	for	formatting.	The	compilation	of	simple
output	statement	with	streams	above	created	image	of	more	than	500KB	using	GNU	Tools

UART

126

http://en.cppreference.com/w/cpp/io/basic_ostream
http://en.cppreference.com/w/cpp/locale/locale
https://launchpad.net/gcc-arm-embedded

for	ARM	Embedded	Processors	compiler.

To	summarise	all	the	stated	above,	there	may	be	a	problem	to	use	standard	printf	function	or
output	streams	for	debug	logging,	especially	in	systems	with	small	memory	and	where
dynamic	memory	allocations	and	exceptions	mustn't	be	used.	Our	ultimate	goal	will	be
creation	of	standard	output	stream	like	interface	for	debug	logging	while	using	asynchronous
event	handling	with	Device-Driver-Component	model	and	Event	Loop	where	most	of	the
code	is	generic	and	only	smal	part	of	managing	write	of	a	single	character	to	the	UART
interface	is	platform	specific.

Asyncrhonous	read	and	write	operations	on	the	UART	interface	are	very	similar	to	the
generic	way	of	programming	and	handling	asynchronous	events	described	earlier	in	Device-
Driver-Component	chapter.

Writing	to	UART

Stage1	-	Sending	asynchronous	buffer	write	request	from	the	Component	layer	to	Driver	in
event	loop	(non-interrupt)	context.

The	Component	calls		asyncWrite()		member	function	of	the	Driver	and	provides	pointer	to
the	buffer,	size	of	the	buffer	and	the	callback	object	to	invoke	when	the	write	is	complete.
The		asyncWrite()		function	needs	to	be	able	to	receive	any	type	of	callable	object,	such	as
std::bind	expression	or	lambda	function.	To	achieve	this	the	function	must	be	templated:

class	CharacterDriver
{
public:
				typedef	...	CharType;

				template	<typename	TCallbackFunc>
				void	asyncWrite(
								const	CharType*	buf,	
								std::size_t	bufSize,	
								TCallbackFunc&&	func);
};

According	to	the	convention	mentioned	earlier,	the	callback	must	receive	an	error	status	of
whether	the	operation	is	successful	as	its	first	parameter.	When	performing	asynchronous
operation	on	the	buffer,	it	can	be	required	to	know	how	many	characters	have	been	read	/

UART

127

http://en.cppreference.com/w/cpp/io/c/fprintf
http://en.cppreference.com/w/cpp/io/basic_ostream
http://en.cppreference.com/w/cpp/utility/functional/bind
http://en.cppreference.com/w/cpp/language/lambda

written	before	the	error	occurred,	in	case	the	operation	wasn't	successful.	For	this	purpose
such	callback	object	must	receive	number	of	bytes	written	as	the	second	parameter,	i.e.
expose	the		void	(const	embxx::error::ErrorStatus&	err,	std::size_t	bytesTransferred)	
signature.

When	the	Driver	receives	the	asynchronous	operation	request,	it	forwards	it	to	the	Device,
letting	the	latter	know	how	many	bytes	will	be	written	during	the	whole	process.	Please	note
that	Driver	uses	embxx::device::context::EventLoop	tag	parameter	to	specify	that
	startWrite()		member	function	of	Device	is	invoked	in	event	loop	(non-interrut)	context.
The	job	of	the	Device	object	is	to	enable	appropriate	interrupts	and	return	immediately.
Once	the	interrupt	occurs,	the	stage	of	writing	the	data	begins.

Stage2	-	Writing	provided	data.

Once	the	interrupt	of	"TX	available"	occurs,	the	Device	must	let	the	Driver	know.	There
must	obviously	be	some	kind	of	callback	involved,	which	Driver	must	provide	during	its
construction	/	initialisation	stage.	Let's	assume	at	this	moment	that	such	assignment	was
successfully	done,	and	Device	is	capable	of	successfully	notifying	the	Driver,	that	there	is
an	ability	to	write	character	to	TX	FIFO	of	the	peripheral.

UART

128

https://dl.dropboxusercontent.com/u/46999418/embxx/structembxx_1_1device_1_1context_1_1EventLoop.html

When	the	Driver	receives	such	notification,	it	attempts	to	write	as	many	characters	as
possible:

typedef	embxx::device::context::Interrupt	InterruptContext;

void	canWriteCallback()
{
				//	Executed	in	interrupt	context,	must	be	quick
				while(device_.canWrite(InterruptContext()))	{
								if	((writeBufStart_	+	writeBufSize_)	<=	currentWriteBufPtr_)	{
												break;
								}

								device_.write(*currentWriteBufPtr_,	InterruptContext());
								++currentWriteBufPtr_;
				}
}

This	is	because	when	"TX	available"	interrupt	occurs,	there	may	be	a	place	for	multiple
characters	to	be	sent,	not	just	one.	Doing	checks	and	writes	in	a	loop	may	save	many	CPU
cycles.

Please	note,	that	all	these	calls	are	performed	in	interrupt	context.	They	are	marked	in	red	in
the	picture	above.

Once	the	Tx	FIFO	of	the	underlying	Device	is	full	or	there	are	no	more	characters	to	write,
the	callback	returns.	The	whole	cycle	described	above	is	repeated	on	every	"TX	available"
interrupt	until	the	whole	provided	buffer	is	sent	to	the	Device	for	writing.

Stage3	-	Notifying	caller	about	completion:

Once	the	whole	buffer	is	sent	to	the	Device	for	writing,	the	Driver	is	aware	that	there	will	be
no	more	writes	performed.	However	it	doesn't	report	completion	until	the	Device	itself	calls
appropriate	callback	indicating	that	the	operation	has	been	indeed	completed.	Shifting	the
responsibility	of	identifying	when	the	operation	is	complete	to	Device	will	be	needed	later
when	we	will	want	to	reuse	the	same	Driver	for	I2C	and	SPI	peripherals.	It	will	be	important
to	know	when	internal	Tx	FIFO	of	the	peripheral	becomes	empty	after	all	the	characters	from
previous	operation	have	been	written.

UART

129

Once	the	Driver	receives	notification	from	the	Device	(still	in	interrupt	context),	that	the	write
operation	is	complete,	it	bundles	the	callback	object,	provided	with	initial		asyncWrite()	
request,	together	with	error	status	and	number	of	actual	bytes	transferred	using	std::bind
expression	and	sends	the	callable	object	to	Event	Loop	for	execution	in	event	loop	(non-
interrupt)	context.

Reading	from	UART

The	reading	from	UART	is	done	in	a	very	similar	manner.

Stage1	-	Sending	asynchronous	buffer	read	request	from	the	Component	layer	to	Driver	in
event	loop	(non-interrupt)	context.

The		asyncRead()		member	function	of	the	Driver	should	allow	callback	to	be	callable	object
of	any	type	(but	one	that	exposes	predefined	signature	of	course).

class	CharacterDriver
{
public:
				typedef	...	CharType;

				template	<typename	TCallbackFunc>
				void	asyncRead(
								CharType*	buf,	
								std::size_t	bufSize,	
								TCallbackFunc&&	func);
};

UART

130

http://en.cppreference.com/w/cpp/utility/functional/bind

Stage2	-	Reading	data	into	the	buffer.

The	callback's	implementation	will	be	something	like:

				void	canReadCallback()
				{
								while(device_.canRead(InterruptContext()))	{
												if	((readBufStart_	+	readBufSize_)	<=	currentReadBufPtr_)	{
																break;
												}

												auto	ch	=	device_.read(InterruptContext());
												*currentReadBufPtr_	=	ch;
												++currentReadBufPtr_;
								}
				}

Stage3	-	Notifying	caller	about	completion:

UART

131

Cancelling	Asynchronous	Operations

The	cancellation	flow	is	very	similar	to	the	one	described	in	Device-Driver-Component
chapter:

If	the	cancellation	is	successful,	the	callback	must	be	invoked	with	error	code	indicating	that
the	operation	was	aborted	(embxx::error::ErrorCode::Aborted).

One	possible	case	of	unsuccessful	cancellation	is	when	callback	was	posted	for	execution	in
event	loop,	but	hasn't	been	executed	yet	when	cancellation	is	attempted.	In	this	case	Driver
is	aware	that	there	is	no	pending	asynchronous	operation	and	can	return		false	
immediately.

UART

132

Another	possible	case	of	unsuccessful	cancellation	is	when	completion	interrupt	occurs	in
the	middle	of	cancellation	request:

Reading	"Until"

There	may	be	a	case,	when	partial	read	needs	to	be	performed,	for	example	until	specific
character	is	encountered.	In	this	case	the	Driver	is	responsible	to	monitor	incoming
characters	and	cancel	the	read	into	the	buffer	operation	before	its	completion:

UART

133

Note,	that	previously	Driver	called		cancelRead()		member	function	of	the	Device	in	event
loop	(non-interrupt)	context,	while	in	"read	until"	situation	the	cancellation	happens	in
interrupt	mode.	That	requires	Device	to	implement	these	functions	for	both	modes:

class	MyDevice
{
public:
				bool	cancelRead(embxx::device::context::EventLoop)	{...}
				bool	cancelRead(embxx::device::context::Interrupt)	{...}
};

The		asyncReadUntil()		member	function	of	the	Driver	should	be	able	to	receive	any
stateless	predicate	object	that	defines		bool	operator()(CharType	ch)	const	.	The	predicate
invocation	should	return	true	when	expected	character	is	received	and	reading	operation
must	be	stopped.

UART

134

class	MyDriver
{
public:
				template	<typename	TPred,	typename	TFunc>
				void	asyncReadUntil(
								CharType*	buf,
								std::size_t	size,
								TPred&&	pred,
								TFunc&&	func)
				{	
								...
				}
};

It	allows	using	complex	conditions	in	evaluating	the	character.	For	example,	stopping	when
either	'\r'	or	'\n'	is	encountered:

typedef	embxx::error::ErrorStatus	EmbxxErrorStatus;

driver_.asyncReadUntil(
				buf,	
				bufSize,	
				[](CharType	ch)	->	bool	
								{
												return	(ch	==	'\r')	||	(ch	==	'\n');
								},	
				[](const	EmbxxErrorStatus&	es,	std::size_t	bytesTransferred)
								{
												...
								});

Device	Implementation

In	this	section	I	will	try	to	describe	in	more	details	what	Device	class	needs	to	provide	for	the
Driver	to	work	correctly.	First	of	all	it	needs	to	define	the	type	of	characters	used:

class	MyDevice
{
public:
				typedef	std::uint8_t	CharType;
};

The	Driver	layer	will	reuse	the	definition	of	the	character	in	its	internal	functions:

UART

135

template<typename	TDevice,	...>
class	MyDriver
{
public:
				typedef	typename	TDevice::CharType	CharType;

				void	asyncRead(CharType*	buf,	std::size_t	bufSize,	...)	{}
};

There	is	a	need	for	Device	to	be	able	to	record	callback	objects	from	the	Driver	in	order	to
notify	the	latter	about	an	ability	to	read/write	next	character	and	about	operation	completion.

UART

136

class	MyDevice
{
public:
				template	<typename	TFunc>
				void	setCanReadHandler(TFunc&&	func)
				{
								canReadHandler_	=	std::forward<TFunc>(func);
				}

				template	<typename	TFunc>
				void	setCanWriteHandler(TFunc&&	func)
				{
								canWriteHandler_	=	std::forward<TFunc>(func);
				}

				template	<typename	TFunc>
				void	setReadCompleteHandler(TFunc&&	func)
				{
								readCompleteHandler_	=	std::forward<TFunc>(func);
				}

				template	<typename	TFunc>
				void	setWriteCompleteHandler(TFunc&&	func)
				{
								writeCompleteHandler_	=	std::forward<TFunc>(func);
				}

private:
				typedef	...	OpAvailableHandler;
				typedef	...	OpCompleteHandler;

				OpAvailableHandler	canReadHandler_;
				OpCompleteHandler	readCompleteHandler_;

				OpAvailableHandler	canWriteHandler_;
				OpCompleteHandler	writeCompleteHandler_;

};

The		OpAvailableHandler		and		OpCompleteHandler		type	may	be	either	hard	coded	to	be
	std::function<void	()>		and		std::function<void	(const	embxx::error::ErrorStatus&)>	
respectively	or	passed	as	template	parameters:

UART

137

template	<typename	TCanReadHandler,
										typename	TCanWriteHandler,
										typename	TReadCompleteHandler,
										typename	TWriteCompleteHandler>
class	MyDevice
{
public:
				...	//	setters	are	as	above

private:

				TCanReadHandler	canReadHandler_;
				TReadCompleteHandler	readCompleteHandler_;

				TCanWriteHandler	canWriteHandler_;
				TWriteCompleteHandler	writeCompleteHandler_;
};

Choosing	the	"template	parameters	option"	is	useful	when	the	same	Device	class	is	reused
between	multiple	applications	for	the	same	product	line.

The	next	stage	would	be	implementing	all	the	required	functions:

UART

138

class	MyDevice
{
public:

				typedef	embxx::device::context::EventLoop	EventLoopContext;
				typedef	embxx::device::context::Interrupt	InterruptContext;

				//	Start	read	operation	-	enables	interrupts
				void	startRead(std::size_t	length,	EventLoopContext	context);

				//	Cancel	read	in	event	loop	context
				bool	cancelRead(EventLoopContext	context);

				//	Cancel	read	in	interrupt	context	-	used	only	if	
				//	asyncReadUntil()	function	was	used	in	Device
				bool	cancelRead(InterruptContext	context);

				//	Start	write	operation	-	enables	interrupts
				void	startWrite(std::size_t	length,	EventLoopContext	context);

				//	Cancell	write	operation
				bool	cancelWrite(EventLoopContext	context);

				//	Check	whether	there	is	a	character	available	to	be	read.
				bool	canRead(InterruptContext	context);

				//	Check	whether	there	is	space	for	one	character	to	be	written.
				bool	canWrite(InterruptContext	context);

				//	Read	the	available	character	from	Rx	FIFO	of	the	peripheral
				CharType	read(InterruptContext	context);

				//	Write	one	more	character	to	Tx	FIFO	of	the	peripheral
				void	write(CharType	value,	InterruptContext	context);
};

Note,	that	there	may	be	extra	configuration	functions	specific	for	the	peripheral	being
controlled.	For	example	baud	rate,	parity,	flow	control	for	UART.	Such	configuration	is	almost
always	platform	and/or	product	specific	and	usually	performed	at	application	startup.	It	is
irrelevant	to	the	Device-Driver-Component	model	introduced	in	this	book.

class	MyDevice
{
public:
				void	configBaud(unsigned	value)	{	...	}
				...
};

UART

139

The	embxx_on_rpi	project	has	multiple	applications	that	use	UART1	interface	for	logging.
The	peripheral	control	code	is	the	same	for	all	of	them	and	is	implemented	in
src/device/Uart1.h.

Driver	Implementation

Driver	must	be	a	generic	piece	of	code,	that	can	be	reused	with	any	Device	control	object
(as	long	as	it	exposed	right	public	interface)	and	in	any	application,	including	ones	without
dynamic	memory	allocation.

First	of	all,	we	will	need	references	to	Device	as	well	as	Event	Loop	objects:

UART

140

https://github.com/arobenko/embxx_on_rpi
https://github.com/arobenko/embxx_on_rpi/blob/master/src/device/Uart1.h

template	<typename	TDevice,	typename	TEventLoop>
class	MyDriver
{
public:
				//	Reuse	definition	of	character	type	from	the	Device
				typedef	TDevice::CharType	CharType;

				//	During	the	construction	store	references	to	Device
				//	and	Event	Loop	objects.
				MyDriver(TDevice&	device,	TEventLoop&	el)
						:	device_(device),
								el_(el)
				{
								//	Register	appropriate	callbacks	with	device
								device_.setCanReadHandler(
												std::bind(
																&MyDriver::canReadInterruptHandler,	this));
								device_.setReadCompleteHandler(
												std::bind(
																&MyDriver::readCompleteInterruptHandler,
																this,
																std::placeholders::_1));

								device_.setCanWriteHandler(
												std::bind(
																&MyDriver::canWriteInterruptHandler,	this));
								device_.setWriteCompleteHandler(
												std::bind(
																&MyDriver::writeCompleteInterruptHandler,
																this,
																std::placeholders::_1));

				}

				...

private:

				void	canReadInterruptHandler()	{...}
				void	readCompleteInterruptHandler(
								const	embxx::error::ErrorStatus&	es)	{...}

				void	canWriteInterruptHandler()	{...}
				void	writeCompleteInterruptHandler(
								const	embxx::error::ErrorStatus&	es)	{...}

				TDevice&	device_;
				TEventLoop&	el_;
};

UART

141

We	will	also	need	to	store	callbacks	provided	with	any	asynchronous	operation.	Note	that
the	"read"	and	"write"	are	independent	operations	and	it	should	be	possible	to	perform
	asyncRead()		and		asyncWrite()		calls	at	the	same	time.

The	only	way	to	make	Driver	generic	is	to	move	responsibility	of	specifying	callback	storage
type	up	one	level,	i.e.	we	must	put	them	as	template	parameters:

template	<typename	TDevice,	
										typename	TEventLoop,
										typename	TReadCompleteCallback,
										typename	TWriteCompleteCallback>
class	MyDriver
{
public:
				...

				typedef	embxx::device::context::EventLoop	EventLoopContext;

				template	<typename	TFunc>
				void	asyncRead(
								CharType*	buf,
								std::size_t	bufSize,
								TFunc&&	func)
				{
								readBufStart_	=	buf;
								currentReadBufPtr	=	buf;
								readBufSize_	=	bufSize;
								readCompleteCallback_	=	std::forward<TFunc>(func);
								driver_.startRead(bufSize,	EventLoopContext());
				}

				template	<typename	TFunc>
				void	asyncWrite(
								const	CharType*	buf,
								std::size_t	bufSize,
								TFunc&&	func)
				{
								writeBufStart_	=	buf;
								currentWriteBufPtr	=	buf;
								writeBufSize_	=	bufSize;
								writeCompleteCallback_	=	std::forward<TFunc>(func);
								driver_.startWrite(bufSize,	EventLoopContext());
				}

private:
				...

				//	Read	info
				CharType*	readBufStart_;
				CharType*	currentReadBufPtr_;
				std::size_t	readBufSize_;

UART

142

				TReadCompleteCallback	readCompleteCallback_;

				//	Write	info
				const	CharType*	writeBufStart_;
				const	CharType*	currentWriteBufPtr_;
				std::size_t	writeBufSize_;
				TWriteCompleteCallback	writeCompleteCallback_;
};

As	it	was	mentioned	earlier	in	Reading	"Until"	section,	there	is	quite	often	a	need	to	stop
reading	characters	into	the	provided	buffer	when	some	condition	evaluates	to	true.	It	means
there	is	also	a	need	to	provide	storage	for	the	character	evaluation	predicate:

UART

143

template	<typename	TDevice,	
										typename	TEventLoop,
										typename	TReadCompleteCallback,
										typename	TWriteCompleteCallback,
										typename	TReadUntilPred>
class	MyDriver
{
public:
				...

				typedef	embxx::device::context::EventLoop	EventLoopContext;

				template	<typename	TPred,	typename	TFunc>
				void	asyncReadUntil(
								CharType*	buf,
								std::size_t	bufSize,
								TPred&&	pred,
								TFunc&&	func)
				{
								readBufStart_	=	buf;
								currentReadBufPtr	=	buf;
								readBufSize_	=	bufSize;
								readCompleteCallback_	=	std::forward<TFunc>(func);
								readUntilPred_	=	std::forward<TPred>(pred)
								driver_.startRead(bufSize,	EventLoopContext());
				}

private:
				...

				//	Read	info
				CharType*	readBufStart_;
				CharType*	currentReadBufPtr_;
				std::size_t	readBufSize_;
				TReadCompleteCallback	readCompleteCallback_;
				TReadUntilPred	readUntilPred_;

				...
};

The	example	code	above	may	work,	but	it	contradicts	to	one	of	the	basic	principles	of	C++:
"You	should	pay	only	for	what	you	use".	In	case	of	using	UART	for	logging,	there	is	no	input
from	the	peripheral	and	it	is	a	waist	to	keep	data	members	for	"read"	required	to	manage
"read"	operations.	Let's	try	to	improve	the	situation	a	little	bit	by	using	template	specialisation
as	well	as	reduce	number	of	template	parameters	by	using	"Traits"	aggregation	struct.

UART

144

struct	MyOutputTraits
{
				//	The	"read"	handler	storage	type.
				typedef	std::nullptr_t	ReadHandler;

				//	The	"write"	handler	storage	type.
				//	The	valid	handler	must	have	the	following	signature:
				//		"void	handler(const	embxx::error::ErrorStatus&,	std::size_t);"
				typedef	embxx::util::StaticFunction<
								void(const	embxx::error::ErrorStatus&,	std::size_t)>	WriteHandler;

				//	The	"read	until"	predicate	storage	type
				typedef	std::nullptr_t	ReadUntilPred;

				//	Read	queue	size
				static	const	std::size_t	ReadQueueSize	=	0;

				//	Write	queue	size
				static	const	std::size_t	WriteQueueSize	=	1;
};

Please	note,	that	allowed	number	of	pending	"read"	requests	is	specified	as	0	in	the	traits
struct	above,	i.e.	the	read	operations	are	not	allowed.	The	"read	complete"	and	"read	until
predicate"	types	are	irrelevant	and	specified	as	std::nullptr_t.	The	instantiation	of	the	Driver
object	must	take	it	into	account	and	not	include	any	"read"	related	functionality.	In	order	to
achieve	this	the	Driver	class	needs	to	have	two	independent	sub-functionalities	of	"read"
and	"write".	It	may	be	achieved	by	inheriting	from	two	base	classes.

UART

145

http://en.cppreference.com/w/cpp/types/nullptr_t

template	<typename	TDevice,
										typename	TEventLoop,
										typename	TTraits	=	MyOutputTraits>
class	MyDriver	:
				public	ReadSupportBase<
																TDevice,	
																TEventLoop,	
																typename	TTraits::ReadHandler,	
																typename	TTraits::ReadUntilPred,	
																TTraits::ReadQueueSize>,
				public	WriteSupportBase<
																TDevice,	
																TEventLoop,	
																typename	TTraits::WriteHandler,	
																TTraits::WriteQueueSize>
{
				typedef	ReadSupportBase<...>	ReadBase;
				typedef	WriteSupportBase<...>	WriteBase;
public:
				template	<typename	TPred,	typename	TFunc>
				void	asyncRead(
								CharType*	buf,
								std::size_t	bufSize,
								TFunc&&	func)
				{
								ReadBase::asyncRead(buf,	bufSize,	std::forward<TFunc>(func);
				}

				template	<typename	TPred,	typename	TFunc>
				void	asyncWrite(
								const	CharType*	buf,
								std::size_t	bufSize,
								TFunc&&	func)
				{
								WriteBase::asyncWrite(buf,	bufSize,	std::forward<TFunc>(func);
				}
};

Now,	the	template	specialisation	based	on	queue	size	should	do	the	job:

template	<typename	TDevice,
										typename	TEventLoop,
										typename	TReadHandler,
										typename	TReadUntilPred,
										std::size_t	ReadQueueSize>;
class	ReadSupportBase;

template	<typename	TDevice,
										typename	TEventLoop,
										typename	TReadHandler,

UART

146

										typename	TReadUntilPred>;
class	ReadSupportBase<TDevice,	TEventLoop,	TReadHandler,	TReadUntilPred,	1>
{
public:
				ReadSupportBase(TDevice&	device,	TEventLoop&	el)	{...}
				...	//	Implements	the	"read"	related	API
private:
				...	//	Read	related	data	members
};

template	<typename	TDevice,
										typename	TEventLoop,
										typename	TReadHandler,
										typename	TReadUntilPred>;
class	ReadSupportBase<TDevice,	TEventLoop,	TReadHandler,	TReadUntilPred,	0>
{
public:
				ReadSupportBase(TDevice&	device,	TEventLoop&	el)	{}
				//	No	need	for	any	"read"	related	API	and	data	members
};

template	<typename	TDevice,
										typename	TEventLoop,
										typename	TWriteHandler,
										std::size_t	WriteQueueSize>;
class	WriteSupportBase;

template	<typename	TDevice,
										typename	TEventLoop,
										typename	TReadHandler>;
class	WriteSupportBase<TDevice,	TEventLoop,	TWriteHandler,	1>
{
public:
				WriteSupportBase(TDevice&	device,	TEventLoop&	el)	{...}
				...	//	Implements	the	"write"	related	API
private:
				...	//	Write	related	data	members
};

template	<typename	TDevice,
										typename	TEventLoop,
										typename	TWriteHandler>;
class	WriteSupportBase<TDevice,	TEventLoop,	TWriteHandler,	0>
{
public:
				WriteSupportBase(TDevice&	device,	TEventLoop&	el)	{}
				//	No	need	for	any	"write"	related	API	and	data	members
};

UART

147

Note,	that	it	is	possible	to	implement	general	case	when	read/write	queue	size	is	greater
than	1.	It	will	require	some	kind	of	request	queuing	(using	Static	(Fixed	Size)	Queue	for
example)	and	will	allow	issuing	multiple	asynchronous	read/write	requests	at	the	same	time.

In	order	to	support	this	extension,	the	Device	class	must	implement	some	extra	functionality
too:

1.	 The	new	read/write	request	can	be	issued	by	the	Driver	in	interrupt	context,	after
previous	operation	reported	completion.

class	MyDevice
{
public:
	void	startRead(std::size_t	length,	InterruptContext	context);
	void	startWrite(std::size_t	length,	InterruptContext	context);
};

2.	 When	new	asynchronous	read/write	request	is	issued	to	the	Driver	it	must	be	able	to
prevent	interrupt	context	callbacks	from	being	invoked	to	avoid	races	on	the	internal
data	structure:

class	MyDevice
{
public:
	bool	suspendRead(EventLoopContext	context);
	void	resumeRead(EventLoopContext	context)
	bool	suspendWrite(EventLoopContext	context);
	void	resumeWrite(EventLoopContext	context);
};

Please	pay	attention	to	the	boolean	return	value	of		suspend*()		functions.	They	are	like
	cancel*()		ones,	there	is	an	indication	whether	the	invocation	of	the	callbacks	is
suspended	or	there	is	no	operation	currently	in	progress.

Such	generic	Driver	is	already	implemented	in	embxx/driver/Character.h	file	of	embxx
library.	The	Driver	is	called	"Character",	because	it	reads/writes	the	provided	buffer	one
character	at	a	time.	The	documentation	can	be	found	here.

Character	Echo	Application

Now,	it	is	time	to	do	something	practical.	The	app_uart1_echo	application	in	embxx_on_rpi
project	implements	simple	single	character	echo.

The		System		class	in	System.h	file	defines	the	Device	and	Driver	layers:

UART

148

https://github.com/arobenko/embxx/blob/master/embxx/driver/Character.h
https://github.com/arobenko/embxx
https://dl.dropboxusercontent.com/u/46999418/embxx/driver_character_page.html
https://github.com/arobenko/embxx_on_rpi/tree/master/src/app/app_uart1_echo
https://github.com/arobenko/embxx_on_rpi
https://github.com/arobenko/embxx_on_rpi/blob/master/src/app/app_uart1_echo/System.h

class	System
{
public:
				static	const	std::size_t	EventLoopSpaceSize	=	1024;
				typedef	embxx::util::EventLoop<
								EventLoopSpaceSize,
								device::InterruptLock,
								device::WaitCond>	EventLoop;

				typedef	device::InterruptMgr<>	InterruptMgr;

				typedef	device::Uart1<InterruptMgr>	Uart;

				typedef	embxx::driver::Character<Uart,	EventLoop>	UartSocket;

				...

private:

				...
				EventLoop	el_;
				Uart	uart_;
				UartSocket	uartSocket_;
};

Note	that		UartSocket		uses	default	"TTraits"	template	parameter	of
	embxx::driver::Character	,	which	is	defined	to	be:

struct	DefaultCharacterTraits
{
				typedef	embxx::util::StaticFunction<
								void(const	embxx::error::ErrorStatus&,	std::size_t)>	ReadHandler;
				typedef	embxx::util::StaticFunction<
								void(const	embxx::error::ErrorStatus&,	std::size_t)>	WriteHandler;
				typedef	std::nullptr_t	ReadUntilPred;
				static	const	std::size_t	ReadQueueSize	=	1;
				static	const	std::size_t	WriteQueueSize	=	1;
};

It	allows	usage	of	both	"read"	and	"write"	operations	at	the	same	time.	Having	the	definitions
in	place	it	is	quite	easy	to	implement	the	"echo"	functionality:

UART

149

//	Forward	declaration
void	writeChar(System::UartSocket&	uartSocket,	System::Uart::CharType&	ch);

void	readChar(System::UartSocket&	uartSocket,	System::Uart::CharType&	ch)
{
				uartSocket.asyncRead(&ch,	1,
								[&uartSocket,	&ch](const	embxx::error::ErrorStatus&	es,	std::size_t	bytesRead)
								{
												GASSERT(!es);
												GASSERT(bytesRead	==	1);
												static_cast<void>(es);
												static_cast<void>(bytesRead);
												writeChar(uartSocket,	ch);
								});
}

void	writeChar(System::UartSocket&	uartSocket,	System::Uart::CharType&	ch)
{
				uartSocket.asyncWrite(&ch,	1,
								[&uartSocket,	&ch](const	embxx::error::ErrorStatus&	es,	std::size_t	bytesWritt
en)
								{
												GASSERT(!es);
												GASSERT(bytesWritten	==	1);
												static_cast<void>(es);
												static_cast<void>(bytesWritten);
												readChar(uartSocket,	ch);
								});
}

int	main()	{
				auto&	system	=	System::instance();
				auto&	uart	=	system.uart();

				//	Configure	serial	interface
				uart.configBaud(115200);
				uart.setReadEnabled(true);
				uart.setWriteEnabled(true);

				//	Start	with	asynchronous	read
				auto&	uartSocket	=	system.uartSocket();
				System::Uart::CharType	ch	=	0;
				readChar(uartSocket,	ch);

				//	Run	the	event	loop
				device::interrupt::enable();
				auto&	el	=	system.eventLoop();
				el.run();

				GASSERT(0);	//	Mustn't	exit
				return	0;

UART

150

Stream-like	Printing	Interface

As	was	mentioned	earlier,	our	ultimate	goal	would	be	having	standard	output	stream	like
interface	for	debug	output,	which	works	asynchronously	without	any	blocking	busy	waits.
Such	interface	must	be	a	generic	Component,	which	works	in	non-interrupt	context,	while
using	recently	covered	generic	"Character"	Driver	in	conjunction	with	platform	specific	"Uart"
Device.

Such	Component	should	be	implemented	as	two	sub-Components.	One	is	"Stream	Buffer"
which	is	responsible	to	maintain	circular	buffer	of	written	characters	and	flush	them	to	the
peripheral	using	"Character"	Driver	when	needed.	The	characters,	that	have	been
successfully	written,	are	removed	from	the	internal	buffer.	The	second	one	is	"Stream"	itself,
which	is	responsible	to	convert	various	values	into	characters	and	write	them	to	the	end	of
the	"Stream	Buffer".

Let's	start	with	"Output	Stream	Buffer"	first.	It	needs	to	receive	reference	to	the	Driver	it's
going	to	use:

template	<typename	TDriver>
class	OutStreamBuf
{
public:
				OutStreamBuf(TDriver&	driver)
						:	driver_(driver)
				{
				}

private:
			TDriver&	driver_;
			...
};

There	is	also	a	need	to	have	a	buffer,	where	characters	are	stored	before	they	are	written	to
the	device.	Remember	that	we	are	trying	to	create	a	Component,	which	can	be	reused	in
multiple	independent	projects,	including	ones	that	do	not	support	dynamic	memory
allocation.	Hence,	Static	(Fixed	Size)	Queue	may	be	a	good	choice	for	it.	It	means,	there	is	a
need	to	provide	size	of	the	buffer	as	one	of	the	template	arguments:

UART

151

template	<typename	TDriver,
										std::size_t	TBufSize>
class	OutStreamBuf
{
public:
			typedef	typename	TDriver::CharType	CharType;
			typedef	embxx::container::StaticQueue<CharType,	BufSize>	Buffer;

private:
			...
			Buffer	buf_;
};

The	"Output	Stream	Buffer"	needs	to	support	two	main	operations:

1.	 Pushing	new	single	character	at	the	end	of	the	buffer.
2.	 Flushing	all	(or	part	of)	written	characters,	i.e.	activate	asynchronous	write	with	Driver.

When	pushing	a	new	character,	there	may	be	a	case	when	the	internal	buffer	is	full.	In	this
case,	the	pushed	character	needs	to	be	discarded	and	there	must	be	an	indication	whether
"push"	operation	was	successful.	The	function	may	return	either		bool		to	indicate	success
of	the	operation	or		std::size_t		to	inform	the	caller	how	may	characters	where	written.	If		0	
is	returned,	the	character	wasn't	written.

template	<...>
class	OutStreamBuf
{
public:
			//	Add	new	character	at	the	end	of	the	buffer
			std::size_t	pushBack(CharType	ch);

			//	Get	number	of	written,	not-flushed	characters
			std::size_t	size();

			//	Flush	number	of	characters
			void	flush(std::size_t	count	=	size());
			...
};

This	limited	number	of	operations	is	enough	to	implement	"Output	Stream"	-	like	interface.
However,	"Output	Stream	Buffer"	can	be	useful	in	writing	any	serialised	data	into	the
peripheral,	not	only	the	debug	output.	For	example	using	standard	algorithms:

UART

152

OutStreamBuf<...>	outStreamBuf(...);
std::array<std::uint8_t,	128>	data	=	{{.../*	some	data*/}};

std::copy(data.begin(),	data.end(),	std::back_inserter(outStreamBuf));
outStreamBuf.flush();

In	the	example	above,	std::back_inserter	requires	a	container	to	define		push_back()	
member	function:

template	<...>
class	OutStreamBuf
{
public:
			//	Wrap	pushBack()
			void	push_back(CharType	ch)
			{
							pushBack(ch);
			}
			...
};

There	also	may	be	a	need	to	iterate	over	written,	but	still	not	flushed,	characters	and	update
some	of	them	before	the	call	to		flush()	.	In	other	words	the	"Output	Stream	Buffer"	must	be
treated	as	random	access	container:

UART

153

http://en.cppreference.com/w/cpp/iterator/back_inserter

template	<...>
class	OutStreamBuf
{
public:
				typedef	embxx::container::StaticQueue<CharType,	BufSize>	Buffer;
				typedef	typename	Buffer::Iterator	Iterator;
				typedef	typename	Buffer::ConstIterator	ConstIterator;
				typedef	typename	Buffer::ValueType	ValueType;
				typedef	typename	Buffer::Reference	Reference;
				typedef	typename	Buffer::ConstReference	ConstReference;

				bool	empty()	const;
				void	clear();
				void	resize(std::size_t	newSize);

				Iterator	begin();
				Iterator	end();

				ConstIterator	begin()	const;
				ConstIterator	end()	const;

				ConstIterator	cbegin()	const;
				ConstIterator	cend()	const;

				Reference	operator[](std::size_t	idx);
				ConstReference	operator[](std::size_t	idx)	const;
			...
};

As	was	mentioned	earlier,	the		OutStreamBuf		uses	Static	(Fixed	Size)	Queue	as	its	internal
buffer	and	any	characters	pushed	beyond	the	capacity	gets	discarded.	There	must	be	a	way
to	identify	available	capacity	as	well	as	request	asynchronous	notification	via	callback	when
requested	capacity	becomes	available:

UART

154

template	<typename	TDriver,
										std::size_t	TBufSize,
										typename	TWaitHandler	=	
														embxx::util::StaticFunction<void	(const	embxx::error::ErrorStatus&)>	>
class	OutStreamBuf
{
public:
				std::size_t	availableCapacity()	const;

				template	<typename	TFunc>
				void	asyncWaitAvailableCapacity(
								std::size_t	capacity,
								TFunc&&	func)
				{
								if	(capacity	<=	availableCapacity())	{
												...	//	invoke	callback	via	post()	member	function	of	Event	Loop
								}
								waitAvailableCapacity_	=	capacity;
								waitHandler_	=	std::forward<TFunc>(func);

								//	The	Driver	is	writing	some	portion	of	flushed	characters,
								//	evaluate	the	capacity	again	when	Driver	reports	completion.
				}

private:
				...
				std::size_t	waitAvailableCapacity_;
				WaitHandler	waitHandler_;
};

Such	"Output	Stream	Buffer"	is	already	implemented	in	embxx/io/OutStreamBuf.h	file	of
embxx	library	and	documentation	can	be	found	here.

The	next	stage	would	be	defining	the	"Output	Stream"	class,	which	will	allow	printing	of	null
terminated	strings	as	well	as	various	integral	values.

template	<typename	TStreamBuf>
class	OutStream
{
public:
				typedef	typename	TStreamBuf::CharType	CharType;

				explicit	OutStream(TStreamBuf&	buf)
				:	buf_(buf)
				{
				}

				OutStream(OutStream&)	=	delete;
				~OutStream()	=	default;

UART

155

https://github.com/arobenko/embxx/blob/master/embxx/io/OutStreamBuf.h
https://github.com/arobenko/embxx
https://dl.dropboxusercontent.com/u/46999418/embxx/io_out_stream_buf_page.html

				void	flush()
				{
								buf_.flush();
				}

				OutStream&	operator<<(const	CharType*	str)
				{
								while	(*str	!=	'\0')	{
												buf_.pushBack(*str);
												++str;
								}
								return	*this;
				}

				OutStream&	operator<<(char	ch)
				{
								buf_.pushBack(ch);
								return	*this;
				}

				OutStream&	operator<<(std::uint8_t	value)
				{
								//	Cast	std::uint8_t	to	unsigned	and	print.
								return	(*this	<<	static_cast<unsigned>(value));
				}

				OutStream&	operator<<(std::int16_t	value)
				{
								...	//	Cast	std::int16_t	to	int	type	and	print.
								return	*this;
				}

				OutStream&	operator<<(std::uint16_t	value)
				{
								//	Cast	std::uint16_t	to	unsigned	and	print
								return	(*this	<<	static_cast<std::uint32_t>(value));
				}

				OutStream&	operator<<(std::int32_t	value)
				{
								...	//	Print	signed	value
								return	*this;
				}

				OutStream&	operator<<(std::uint32_t	value)
				{
								...	//	Print	unsigned	value
								return	*this;
				}

				OutStream&	operator<<(std::int64_t	value)
				{
								...	//	Print	64	bit	signed	value

UART

156

								return	*this
				}

				OutStream&	operator<<(std::uint64_t	value)
				{
								...	//	Print	64	bit	signed	value
								return	*this
				}

private:
				TStreamBuf&	buf_;
};

We	will	also	require	the	numeric	base	representation	and	manipulator.	Unfortunately,	usage
of		std::oct	,		std::dec	or		std::hex		manipulators	will	require	inclusion	of	standard	library
header	,	which	in	turn	includes	other	standard	stream	related	headers,	which	define	some
static	objects,	which	in	turn	are	defined	and	instantiated	in	standard	library.	It	contradicts	our
main	goal	of	writing	generic	code	that	doesn't	require	standard	library	to	be	used.	It	is	better
to	define	such	manipulators	ourselves:

enum	Base
{
				bin,	///<	Binary	numeric	base	stream	manipulator
				oct,	///<	Octal	numeric	base	stream	manipulator
				dec,	///<	Decimal	numeric	base	stream	manipulator
				hex,	///<	Hexadecimal	numeric	base	stream	manipulator
				Base_NumOfBases	///<	Must	be	last
};

template	<typename	TStreamBuf>
class	OutStream
{
public:
				explicit	OutStream(TStreamBuf&	buf)
				:	buf_(buf)
						base_(dec)
				{
				}

				OutStream&	operator<<(Base	value)
				{
								base_	=	value;
								return	*this
				}

private:
				TStreamBuf&	buf_;
				Base	base_;
};

UART

157

http://en.cppreference.com/w/cpp/header/ios

The	value	of	the	numeric	base	representation	must	be	taken	into	account	when	creating
string	representation	of	numeric	values.	The	usage	is	very	similar	to	standard:

OutStream<...>	stream;

stream	<<	"var1="	<<	dec	<<	var1	<<	";	var2="	<<	hex	<<	var2	<<	'\n';
stream.flush();

It	may	be	convenient	to	support	a	little	bit	of	formatting,	such	as	specifying	minimal	width	of
the	output	as	well	as	fill	character:

class	WidthManip	:	public	ValueManipBase<std::size_t>
{
public:
				WidthManip(std::size_t	value)	:	value_(value)	{}
				std::size_t	value()	const	{	return	value_;}
private:
				std::size_t	value_;
};

inline
WidthManip	setw(std::size_t	value)
{
				return	WidthManip(value);
}

template	<typename	T>
class	FillManip
{
public:
				FillManip(T	value)	:	value_(value)	{}
				T	value()	const	{	return	value_;}
private:
				T	value_;
};

template	<typename	T>
inline
FillManip<T>	setfill(T	value)
{
				return	FillManip<T>(value);
}

template	<typename	TStreamBuf>
class	OutStream
{
public:
				explicit	OutStream(TStreamBuf&	buf)
				:	buf_(buf)
						base_(dec),

UART

158

						width_(0),
						fill_(static_cast<CharType>('	');
				{
				}

				OutStream&	operator<<(WidthManip	manip)
				{
								width_	=	manip.value();
								return	*this;
				}

				template	<typename	T>
				OutStream&	operator<<(details::FillManip<T>	manip)
				{
								fill_	=	static_cast<CharType>(manip.value());
								return	*this;
				}

private:
				TStreamBuf&	buf_;
				Base	base_;
				std::size_t	width_;
				CharType	fill_;
};

The	usage	is	very	similar	to	the	base	manipulator:

OutStream<...>	stream;

stream	<<	"var1="	<<	dec	<<	setw(4)	<<	var1	<<	";	var2="	<<	hex	
							<<	setfill('0')	<<	var2	<<	'\n';
stream.flush();

Another	useful	manipulator	is	adding	'\n'	at	the	end	as	well	as	calling		flush()	,	just	like
	std::endl		does	when	using	standard	output	streams:

UART

159

enum	Endl
{
				endl	///<	End	of	line	stream	manipulator
};

template	<typename	TStreamBuf>
class	OutStream
{
public:

				OutStream&	operator<<(Endl	manip)
				{
								static_cast<void>(manip);
								buf_.pushBack(static_cast<CharType>('\n');
								flush();
								return	*this;
				}

private:
				...
};

Then	usage	example	may	be	changed	to:

OutStream<...>	stream;

stream	<<	"var1="	<<	dec	<<	setw(4)	<<	var1	<<	";	var2="	<<	hex	
							<<	setfill('0')	<<	var2	<<	endl;

To	summarise:	The	"Output	Stream"	object	converts	given	integer	value	into	the	printable
characters	and	uses		pushBack()		member	function	of	"Output	Stream	Buffer"	to	pass	these
characters	further.	The	request	to		flush()		is	also	passed	on.	When	"Output	Stream	Buffer"
receives	a	request	to	flush	internal	buffer	it	activates	the	"Character"	Driver,	which	it	turn
uses	"UART"	Device	to	write	characters	to	serial	interface	one	by	one.	As	the	result	of	such
cooperation,	the	"printing"	statement	is	very	quick,	there	is	no	wait	for	all	the	characters	to
be	written	before	the	function	returns,	like	it	is	usually	done	with		printf()	.	All	the
characters	are	written	at	the	background	using	interrupts,	while	the	main	thread	of	the
application	continues	its	execution	without	stalling.

Such	"Output	Stream"	is	already	implemented	in	embxx/io/OutStream.h	file	of	embxx	library
and	documentation	can	be	found	here.

Logging

UART

160

https://github.com/arobenko/embxx/blob/master/embxx/io/OutStream.h
https://github.com/arobenko/embxx
https://dl.dropboxusercontent.com/u/46999418/embxx/io_out_stream_page.html

In	general,	debug	logging	should	be	under	conditional	compilation,	for	example	only	in
DEBUG	mode,	while	the	printing	code	is	excluded	when	compiling	in	RELEASE	mode.

#ifndef	NDEBUG
				stream	<<	"Some	info	massage"	<<	endl;
#endif

Sometimes	there	is	a	need	to	easily	change	the	amount	of	debug	messages	being	printed.
For	that	purpose,	the	concept	of	logging	levels	is	widely	used:

namespace	log
{

enum	Level
{
				Trace,	///<	Use	for	tracing	enter	to	and	exit	from	functions.
				Debug,	///<	Use	for	debugging	information.
				Info,	///<	Use	for	general	informative	output.
				Warning,	///<	Use	for	warning	about	potential	dangers.
				Error,	///<	Use	to	report	execution	errors.
				NumOfLogLevels	///<	Number	of	log	levels,	must	be	last
};

}		//	namespace	log

The	logging	statement	becomes	a	macro:

const	auto	MinLogLevel	=	log::Info;

#define	LOG(stream__,	level__,	output__)	\
				do	{	\
								if	(MinLevel	<=	(level__))	{	\
												(stream__).stream()	<<	output__;	\
								}	\
				}	while	(false)

In	this	case	all	the	logging	attempts	for	level	below		log::Info		get	optimised	away	by	the
compiler,	because	the		if		statement	known	to	evaluate	to		false		at	compile	time:

LOG(stream,	log::Debug,	"This	message	is	not	printed."	<<	endl);
LOG(stream,	log::Info,	"This	message	IS	printed."	<<	endl);
LOG(stream,	log::Warning,	"This	message	IS	printed	also."	<<	endl);

UART

161

It	would	be	nice	to	be	able	to	add	some	automatic	formatting	to	the	logged	statements,	such
as	printing	the	log	level	and/or	adding	'\n'	and	flushing	at	the	end.	For	example,	the	code
below

LOG(stream,	log::Debug,	"This	is	DEBUG	message.");
LOG(stream,	log::Info,	"This	is	INFO	message.");
LOG(stream,	log::Warning,	"This	is	WARNING	message.");

to	produce	the	following	output

[DEBUG]:	This	is	DEBUG	message.
[INFO]:	This	is	INFO	message.
[WARNING]:	This	is	WARNING	message.

with	'\n'	character	and	call	to		flush()		at	the	end.

It	is	easy	to	achieve	when	using	some	kind	of	wrapper	logging	class	around	the	output
stream	as	well	as	relevant	formatters.	For	example:

UART

162

template	<log::Level	TLevel,	typename	TStream>
class	StreamLogger
{
public:

				typedef	TStream	Stream;

				static	const	log::Level	MinLevel	=	TLevel;

				explicit	StreamLogger(Stream&	outStream)
						:	outStream_(outStream)
				{
				}

				Stream&	stream()
				{
								return	outStream_;
				}

				//	Begin	output.	This	function	is	called	before	requested	
				//	output	is	redirected	to	stream.	It	does	nothing.
				void	begin(log::Level	level)
				{
								static_cast<void>(level);
				}

				//	End	output.	This	function	is	called	after	requested	
				//	output	is	redirected	to	stream.	It	does	nothing.
				void	end(log::Level	level)
				{
								static_cast<void>(level);
				}

private:
				Stream&	outStream_;
};

The	logging	macro	will	look	like	this:

#define	SLOG(log__,	level__,	output__)	\
				do	{	\
								if	((log__).MinLevel	<=	(level__))	{	\
												(log__).begin(level__);	\
												(log__).stream()	<<	output__;	\
												(log__).end(level__);	\
								}	\
				}	while	(false)

UART

163

A	formatter	can	be	defined	by	exposing	the	same	interface,	but	wraps	the	original
	StreamLogger		or	another	formatter.	For	example	let's	define	formatter	that	calls		flush()	
member	function	of	the	stream	when	output	is	complete:

template	<typename	TNextLayer>
class	StreamFlushSuffixer
{
public:

				//	Constructor,	forwards	all	the	other	parameters	to	the	constructor
				//	of	the	next	layer.
				template<typename...	TParams>
				StreamFlushSuffixer(TParams&&...	params)
						:	nextLavel_(std::forward<TParams>(params)...)
				{
				}

				Stream&	stream()
				{
								return	nextLavel_.stream();
				}

				void	begin(log::Level	level)
				{
								nextLavel_.begin(level);
				}

				void	end(log::Level	level)
				{
								nextLavel_.end(level);
								stream().flush();
				}

private:
				TNextLavel	nextLavel_;
};

The	definition	of	such	logger	would	be:

typedef	...	OutStream;	//	type	of	the	output	stream
typedef	
				StreamFlushSuffixer<
								StreamLogger<
												log::Debug,
												OutStream
								>
				>	Log;

The	same		SLOG()		macro	will	work	for	this	logger	with	extra	formatting:

UART

164

OutStream	stream(...	/*	construction	params	*/);
Log	log(stream);
SLOG(log,	log::Debug,	"This	is	DEBUG	message.\n");

Let's	also	add	a	formatter	that	capable	of	printing	any	value	(and	'\n'	in	particular)	at	the	end
of	the	output.

template	<typename	T,	typename	TNextLayer>
class	StreamableValueSuffixer
{
public:

				template<typename...	TParams>
				explicit	StreamableValueSuffixer(T&&	value,	TParams&&...	params)
						:	value_(std::forward<T>(value)),
								nextLevel_(std::forward<TParams>(params)...)
				{
				}

				Stream&	stream()
				{
								return	nextLavel_.stream();
				}

				void	begin(log::Level	level)
				{
								nextLavel_.begin(level);
				}

				void	end(log::Level	level)
				{
								nextLavel_.end(level);
								stream()	<<	value_;
				}

private:
				T	value_;
				TNextLavel	nextLavel_;
};

The	definition	of	the	logger	that	adds	'\n'	character	and	then	calls		flush()		member	function
of	the	underlying	stream	would	be:

UART

165

typedef	embxx::io::OutStream<...>	OutStream;
typedef	
				StreamFlushSuffixer<
								StreamableValueSuffixer<
												char,
												StreamLogger<
																log::Debug,
																OutStream
												>
								>
				>	Log;

While	the	construction	will	require	to	specify	the	character	which	is	going	to	be	printed	at	the
end,	but	before	call	to		flush()	.

OutStream	stream(...);
Log	log('\n',	stream);
SLOG(log,	log::Debug,	"This	is	DEBUG	message.");

As	the	last	formatter,	let's	do	the	one	that	prefixes	the	output	with	log	level	information:

UART

166

template	<typename	TNextLayer>
class	LevelStringPrefixer
{
public:
				template<typename...	TParams>
				LevelStringPrefixer(TParams&&...	params);
						:	next_value(std::forward<TParams>(params)...)
				{
				}

				Stream&	stream()
				{
								return	nextLavel_.stream();
				}

				void	begin(Level	level)
				{
								static	const	char*	const	Strings[NumOfLogLevels]	=	{
												"[TRACE]	",
												"[DEBUG]	",
												"[INFO]	",
												"[WARNING]	",
												"[ERROR]	"
								};

								if	((level	<	NumOfLogLevels)	&&	(Strings[level]	!=	nullptr))	{
												stream()	<<	Strings[level];
								}

								nextLavel_.begin(level);
				}

				void	end(log::Level	level)
				{
								nextLavel_.end(level);
				}

private:
				TNextLavel	nextLavel_;
};

The	definition	of	the	logger	that	prints	such	a	prefix	at	the	beginning	and	'\n'	at	the	end
together	with	call	to		flush()		would	be:

UART

167

typedef	
				StreamFlushSuffixer<
								StreamableValueSuffixer<
												char,
												LevelStringPrefixer<
																StreamLogger<
																				log::Debug,
																				OutStream
																>
												>
								>
				>	Log;

Such		StreamLogger		together	with	multiple	formatters	is	already	implemented	in
embxx/util/StreamLogger.h	file	of	embxx	library	and	documented	here.

Logging	Application

The	app_uart1_logging	application	in	embxx_on_rpi	project	implements	logging	of	simple
counter	that	gets	incremented	once	a	second:

UART

168

https://github.com/arobenko/embxx/blob/master/embxx/util/StreamLogger.h
https://github.com/arobenko/embxx
https://dl.dropboxusercontent.com/u/46999418/embxx/util_stream_logger_page.html
https://github.com/arobenko/embxx_on_rpi/tree/master/src/app/app_uart1_logging
https://github.com/arobenko/embxx_on_rpi

namespace	log	=	embxx::util::log;
template	<typename	TLog,	typename	TTimer>
void	performLog(TLog&	log,	TTimer&	timer,	std::size_t&	counter)
{
				++counter;

				SLOG(log,	log::Info,
								"Logging	output:	counter	=	"	<<
								embxx::io::dec	<<	counter	<<
								"	(0x"	<<	embxx::io::hex	<<	counter	<<	")");

				//	Perform	next	logging	after	a	timeout
				static	const	auto	LoggingWaitPeriod	=	std::chrono::seconds(1);
				timer.asyncWait(
								LoggingWaitPeriod,
								[&](const	embxx::error::ErrorStatus&	es)
								{
												GASSERT(!es);
												static_cast<void>(es);
												performLog(log,	timer,	counter);
								});
}

int	main()	{
				auto&	system	=	System::instance();
				auto&	log	=	system.log();

				//	Configure	UART
				auto&	uart	=	system.uart();
				uart.configBaud(115200);
				uart.setWriteEnabled(true);

				//	Timer	allocation
				auto	timer	=	system.timerMgr().allocTimer();
				GASSERT(timer.isValid());

				//	Start	logging
				std::size_t	counter	=	0;
				performLog(log,	timer,	counter);

				//	Run	event	loop
				device::interrupt::enable();
				auto&	el	=	system.eventLoop();
				el.run();

				GASSERT(0);	//	Mustn't	exit
				return	0;
}

The	System.h	file	defines	the	whole	output	stack:

UART

169

https://github.com/arobenko/embxx_on_rpi/blob/master/src/app/app_uart1_logging/System.h

class	System
{
public:
				static	const	std::size_t	EventLoopSpaceSize	=	1024;
				typedef	embxx::util::EventLoop<
								EventLoopSpaceSize,
								device::InterruptLock,
								device::WaitCond>	EventLoop;

				//	Devices
				typedef	device::Uart1<InterruptMgr>	Uart;
				...

				//	Drivers
				struct	CharacterTraits
				{
								typedef	std::nullptr_t	ReadHandler;
								typedef	embxx::util::StaticFunction<
												void(const	embxx::error::ErrorStatus&,	std::size_t)>	WriteHandler;
								typedef	std::nullptr_t	ReadUntilPred;
								static	const	std::size_t	ReadQueueSize	=	0;
								static	const	std::size_t	WriteQueueSize	=	1;
				};
				typedef	embxx::driver::Character<
								Uart,	EventLoop,	CharacterTraits>	UartDriver;
				...

				//	Components
				static	const	std::size_t	OutStreamBufSize	=	1024;
				typedef	embxx::io::OutStreamBuf<
								UartDriver,	OutStreamBufSize>	OutStreamBuf;

				typedef	embxx::io::OutStream<OutStreamBuf>	OutStream;
				typedef	embxx::util::log::StreamFlushSuffixer<
												embxx::util::log::StreamableValueSuffixer<
																const	OutStream::CharType*,
																embxx::util::log::LevelStringPrefixer<
																				embxx::util::StreamLogger<
																								embxx::util::log::Debug,
																								OutStream
																				>
																>
												>
								>	Log;

				...
private:

				EventLoop	el_;

				//	Devices
				Uart	uart_;

UART

170

				...

				//	Drivers
				UartDriver	uartDriver_;
				...

				//	Components
				OutStreamBuf	buf_;
				OutStream	stream_;
				Log	log_;
				...
};

This	application	will	produce	the	following	output	to	the	UART	interface	with	new	line
appearing	every	second:

[INFO]	Logging	output:	counter	=	1	(0x1)
[INFO]	Logging	output:	counter	=	2	(0x2)
[INFO]	Logging	output:	counter	=	3	(0x3)
...

Buffered	Input

In	many	systems	the	UART	interfaces	are	also	used	to	communicate	between	various
microcontrollers	on	the	same	board	or	with	external	devices.	When	there	are	incoming
messages,	the	characters	must	be	stored	in	some	buffer	before	they	can	be	processed	by
some	Component.	Just	like	we	had	"Output	Stream	Buffer"	for	buffering	outgoing
characters,	we	must	have	"Input	Stream	Buffer"	for	buffering	incoming	ones.

It	must	obviously	have	an	access	to	the	Character	Driver	and	will	probably	have	a	circular
buffer	to	store	incoming	characters.

UART

171

template	<typename	TDriver,	std::size_t	TBufSize>
class	InStreamBuf
{
public:
				typedef	typename	TDriver::CharType	CharType;
				typedef	embxx::container::StaticQueue<CharType,	TBufSize>	Buffer;

				explicit	
				InStreamBuf(TDriver&	driver)
						:	driver_(driver)
				{
				}

private:
				TDriver&	driver_;
				Buffer	buf_;
};

The	Driver	won't	perform	any	read	operations	unless	it	is	explicitly	requested	to	do	so	with
its		asyncRead()		member	function.	Sometimes,	there	is	a	need	to	keep	characters	flowing	in
and	being	stored	in	the	buffer,	even	when	the	Component	responsible	for	processing	them
is	not	ready.	In	order	to	make	this	happen,	the	"Input	Stream	Buffer"	must	be	responsible	for
constantly	requesting	the	Driver	to	perform	asynchronous	read	while	providing	space	where
these	characters	are	going	to	be	stored.

template	<typename	TDriver,	std::size_t	TBufSize>
class	InStreamBuf
{
public:
				//	Start	data	accumulation	in	the	internal	buffer.
				void	start();

				//	Stop	data	accumulation	in	the	internal	buffer.
				void	stop();

				//	Inquire	whether	characters	are	being	accumulated.
				bool	isRunning()	const;
};

Most	of	the	times	the	responsible	Component	will	require	some	number	of	characters	to	be
accumulated	before	their	processing	can	be	started.	There	is	a	need	to	provide
asynchronous	notification	callback	request	when	appropriate	number	of	characters	becomes
available.	The	callback	must	be	stored	in	the	internal	data	structures	of	the	"Input	Stream
Buffer"	and	invoked	when	needed.	Due	to	the	latter	being	developed	as	a	generic	class,
there	is	a	need	to	provide	callback	storage	type	as	a	template	parameter.

UART

172

template	<typename	TDriver,	std::size_t	TBufSize,	typename	TWaitHandler>
class	InStreamBuf
{
public:

				template	<typename	TFunc>
				void	asyncWaitDataAvailable(std::size_t	reqSize,	TFunc&&	func)
				{
								callback_	=	std::forward<TFunc>(func)
								...
				}

private:
				TWaitHandler	callback_;
};

Once	the	required	number	of	characters	is	accumulated,	the	Component	must	be	able	to
access	and	process	them.	It	means	that	"Input	Stream	Buffer"	must	also	be	a	container	with
random	access	iterators.

template	<typename	TDriver,	std::size_t	TBufSize,	typename	TWaitHandler>
class	InStreamBuf
{
public:
				typedef	typename	Buffer::ConstIterator	ConstIterator;
				typedef	ConstIterator	const_iterator;
				typedef	typename	Buffer::ValueType	ValueType;
				typedef	ValueType	value_type;
				typedef	typename	Buffer::ConstReference	ConstReference;
				typedef	ConstReference	const_reference;

				//	Get	size	of	available	for	read	data.
				std::size_t	size()	const;

				//	Check	whether	number	of	available	characters	is	0.
				bool	empty()	const;

				//Get	full	capacity	of	the	buffer.
				constexpr	std::size_t	fullCapacity()	const;

				ConstIterator	begin()	const;
				ConstIterator	end()	const;
				ConstIterator	cbegin()	const;
				ConstIterator	cend()	const;
				ConstReference	operator[](std::size_t	idx)	const;
};

Please	note,	that	all	the	access	to	the	characters	are	done	using	const	iterator.	It	means	we
do	not	allow	external	and	uncontrolled	update	of	the	characters	inside	of	the	buffer.

UART

173

When	the	characters	inside	the	buffer	got	processed	and	aren't	needed	any	more,	they	need
to	be	discarded	to	free	the	space	inside	the	buffer	for	new	ones	to	come.

template	<typename	TDriver,	std::size_t	TBufSize,	typename	TWaitHandler>
class	InStreamBuf
{
public:
				//	Consume	part	or	the	whole	buffer	of	the	available	data	for	read.
				void	consume(std::size_t	consumeSize	=	size());
};

Morse	Code	Application

The	app_uart1_morse	application	in	embxx_on_rpi	project	implements	buffering	of	incoming
characters	in	the	"Input	Stream	Buffer"	and	uses	the	Morse	Code	method	to	display	them	by
flashing	the	on-board	led.

First	of	all	there	is	a	need	to	have	an	access	to	the	led	to	flash,	input	buffer	to	store	the
incoming	characters	and	timer	manager	to	allocate	a	timer	to	measure	timeouts.

template	<typename	TLed,	typename	TInBuf,	typename	TTimerMgr>
class	Morse
{
public:
				typedef	TLed	Led;
				typedef	TInBuf	InBuf;
				typedef	TTimerMgr	TimerMgr;
				typedef	typename	TimerMgr::Timer	Timer;

				Morse(Led&	led,	InBuf&	buf,	TimerMgr&	timerMgr)
						:	led_(led),
								buf_(buf),
								timer_(timerMgr.allocTimer())
				{
								GASSERT(timer_.isValid());
				}

				~Morse()	=	default;

private:
				Led&	led_;
				InBuf&	buf_;
				Timer	timer_;
};

Second,	there	is	a	need	to	define	a	Morse	code	sequences	in	terms	of	dots	and	dashes
duration	as	well	as	mapping	an	incoming	character	to	the	respective	sequence.

UART

174

https://github.com/arobenko/embxx_on_rpi/tree/master/src/app/app_uart1_morse
https://github.com/arobenko/embxx_on_rpi
http://en.wikipedia.org/wiki/Morse_code

template	<...>
class	Morse
{
public:
				typedef	typename	InBuf::CharType	CharType;
				...
private:
				typedef	unsigned	Duration;
				static	const	Duration	Dot	=	200;
				static	const	Duration	Dash	=	Dot	*	3;
				static	const	Duration	End	=	0;
				static	const	Duration	Spacing	=	Dot;
				static	const	Duration	InterSpacing	=	Spacing	*	2;

				const	Duration*	getLettersSeq(CharType	ch)	const
				{
								static	const	Duration	Seq_A[]	=	{Dot,	Dash,	End};
								static	const	Duration	Seq_B[]	=	{Dash,	Dot,	Dot,	Dot,	End};
								...
								static	const	Duration	Seq_Z[]	=	{Dash,	Dash,	Dot,	Dot,	End};

								static	const	Duration	Seq_0[]	=	{
												Dash,	Dash,	Dash,	Dash,	Dash,	End};
								static	const	Duration	Seq_1[]	=	{
												Dot,	Dash,	Dash,	Dash,	Dash,	End};
								...
								static	const	Duration	Seq_9[]	=	{
												Dash,	Dash,	Dash,	Dash,	Dot,	End};

								static	const	Duration*	Letters[]	=	{
												Seq_A,
												Seq_B,
												...
												Seq_Z
								};

								static	const	Duration*	Numbers[]	=	{
												Seq_0,
												...
												Seq_9
								};

								if	((static_cast<CharType>('A')	<=	ch)	&&
												(ch	<=	static_cast<CharType>('Z')))	{
												return	Letters[ch	-	'A'];
								}

								if	((static_cast<CharType>('a')	<=	ch)	&&
												(ch	<=	static_cast<CharType>('z')))	{
												return	Letters[ch	-	'a'];
								}

UART

175

								if	((static_cast<CharType>('0')	<=	ch)	&&
												(ch	<=	static_cast<CharType>('9')))	{
												return	Numbers[ch	-	'0'];
								}

								return	nullptr;
				}
};

Now,	the	code	that	is	responsible	to	flash	a	led	is	quite	simple:

template	<...>
class	Morse
{
public:

				void	start()
				{
								buf_.start();
								nextLetter();
				}

private:
				void	nextLetter()
				{
								buf_.asyncWaitDataAvailable(
												1U,
												[this](const	embxx::error::ErrorStatus&	es)
												{
																if	(es)	{
																				GASSERT(buf_.empty());
																				nextLetter();
																				return;
																}

																GASSERT(!buf_.empty());
																auto	ch	=	buf_[0];
																buf_.consume(1U);

																auto*	seq	=	getLettersSeq(ch);
																if	(seq	==	nullptr)	{
																				nextLetter();
																				return;
																}

																nextSyllable(seq);
												});
				}

				void	nextSyllable(const	Duration*	seq)

UART

176

				{
								GASSERT(seq	!=	nullptr);
								GASSERT(*seq	!=	End);

								auto	duration	=	*seq;
								++seq;

								led_.on();
								timer_.asyncWait(
												std::chrono::milliseconds(duration),
												[this,	seq](const	embxx::error::ErrorStatus&	es)
												{
																static_cast<void>(es);
																GASSERT(!es);

																led_.off();

																if	(*seq	!=	End)	{
																				timer_.asyncWait(
																								std::chrono::milliseconds(Duration(Spacing)),
																								[this,	seq](const	embxx::error::ErrorStatus&	es)
																								{
																												static_cast<void>(es);
																												GASSERT(!es);
																												nextSyllable(seq);
																								});
																				return;
																}

																timer_.asyncWait(
																				std::chrono::milliseconds(Duration(InterSpacing)),
																				[this](const	embxx::error::ErrorStatus&	es)
																				{
																								static_cast<void>(es);
																								GASSERT(!es);
																								nextLetter();
																				});
												});
				}

};

The		nextLetter()		member	function	waits	until	one	character	becomes	available	in	the
buffer,	then	maps	it	to	the	sequence	and	removes	it	from	the	buffer.	If	the	mapping	exists	it
calls	the		nextSyllable()		member	function	to	start	the	flashing	sequence.	The	function
activates	the	led	and	waits	the	relevant	amount	of	time,	based	on	the	provided	dot	or	dash
duration.	After	the	timeout,	the	led	goes	off	and	new	wait	is	activated.	However	if	the	end	of
sequence	is	reached,	the	wait	will	be	of		InterSpacing		duration	and		nextLetter()		member

UART

177

function	will	be	called	again,	otherwise	the	wait	will	be	of		Spacing		duration	and
	nextSyllable()		will	be	called	again	to	activate	the	led	and	wait	for	the	next	period	in	the
sequence.

Summary

After	this	quite	a	significant	effort	we've	created	a	full	generic	stack	to	perform	asynchronous
input/output	operations	over	serial	interface,	such	as	UART.	It	may	be	reused	in	multiple
independent	projects	while	providing	platform	specific	low	level	device	control	object	at	the
bottom	of	this	stack.

UART

178

GPIO
In	many	cases,	the	GPIO	input	doesn't	need	to	be	processed	at	the	same	time	the	interrupt
has	occured.	It	can	easilily	be	scheduled	for	execution	in	event	loop	(non-interrupt)	context
using	Device-Driver-Component	model.

According	to	what	was	written	in	Device-Driver-Component	chapter	and	to	what	we've	seen
so	far,	the	Component	provides	a	callback	object	together	with	the	asynchronous	operation
request.	The	callback	is	executed	only	once	when	the	operation	is	compete,	canceled	or
terminated	due	to	some	error.	If	the	operation	needs	to	be	repeated,	another	asynchronous
operation	needs	to	be	issued	to	the	Driver	while	providing	another	callback	object	to	be
called	on	operation	completion.

The	need	for	GPIO	input	handling	is	a	bit	different	though.	The	line	may	change	its	value
multiple	times	between	the	reporting	of	the	event	to	the	Component	and	the	latter	re-
requesting	asynchronous	wait	on	value	change.	The	Driver	must	preserve	the	callback
object,	provided	by	the	Component,	and	invoke	it	every	time	the	GPIO	input	value	changes
until	the	Component	cancels	the	operation.

Let's	go	through	all	the	stages	in	more	detail.

Configuration

The	Device	must	provide	a	callback	object	to	handle	GPIO	interrupts	on	all	the	requested
input	lines.

The	hardware	must	also	be	configured	properly:	input/output	lines,	the	interrupts	on	the
rising/falling	edges,	etc.	Such	configuration	is	platform/product	specific	and	is	not	part	of	the
generic	Device-Driver-Component	model	presented	in	this	book.	Hence,	the	product	specific
Component	must	get	an	access	to	the	device	object	and	configure	it	as	needed.

GPIO

179

Start	Continuous	Asynchronous	Read	Operation

The	Driver	must	be	able	to	support	multiple	asynchronous	read	operations	on	different
inputs.	It	means	that	it	must	protect	an	access	to	the	internal	data	structures	by	requesting
the	Device	to	suspend	the	callback	invocation	(i.e.	disable	interrupts).	Also	to	follow	the
pattern	we	used	so	far,	there	must	be	a	request	to	start	or	enable	the	Device's	operation	on
the	first	read	request	and	cancel	or	disable	it	on	the	last.

The	reader	may	notice	that	on	the	first		asyncReadCont()		request,	the	Driver	issued
	suspend()		request	to	the	Device	and	got		false		in	return.	It	means	that	the	Device's
monitoring	of	the	GPIO	inputs	hasn't	been	started	yet.	That's	the	reason	for	the	following	call
to		enable()	.	On	the	second		asyncReadCont()		request	the	call	to		suspend()		returned	true
which	was	followed	by	the		resume()		later.

Reporting	GPIO	Input	Event

Now,	every	time	the	relevant	GPIO	interrupt	occurs,	the	Driver's	handler	is	invoked	in
interrupt	mode	context.	It	is	responsible	to	schedule	the	execution	of	Component's	handler
in	event	loop	(non-interrupt)	context.

GPIO

180

Cancel	Continuous	Read	Operation.

When	the	there	is	no	need	to	monitor	some	input	any	more,	the	Component	may	request
the	Driver	to	cancel	the	continuous	asynchronous	read	operation.	In	case	of	last	recorded
asynchronous	read	operation	being	canceled,	the	Driver	is	responsible	to	let	the	Device
know	that	no	more	GPIO	interrupts	are	needed:

GPIO	Device

Based	on	the	information	above,	the	platform	specific	GPIO	control	Device	object	must
provide	the	following	public	interface:

1.	 Define	pin	identification	type.

typedef	unsigned	PinIdType;

GPIO

181

2.	 Function	to	provide	a	callback	object	to	be	called	when	interrupt	occurs.	The	callback
parameters	must	provide	an	information	of	pin	as	well	as	final	input	value	that	caused
the	interrupt.	The	callback	object	must	implement	the	following	signature:	"void
(PinIdType,	bool)"	where	the	first	parameter	is	pin	and	second	parameter	is	input	value.

template	<typename	TFunc>
void	setHandler(TFunc&&	func);

3.	 Function	to	start	/	enable	the	GPIO	input	monitoring.

void	start(embxx::device::context::EventLoop	context);

4.	 Function	to	cancel	/	disable	the	GPIO	input	monitoring.

bool	cancel(embxx::device::context::EventLoop	context);

5.	 Function	to	enable/disable	gpio	interrupts	for	single	pin.

void	setEnabled(
	PinIdType	pin,	
	bool	enabled,	
	embxx::device::context::EventLoop	context);

6.	 Function	to	suspend	invocation	of	callback	in	interrupt	mode,	i.e.	disable	gpio	interrupts.

bool	suspend(embxx::device::context::EventLoop	context);

7.	 Function	to	resume	suspended	invocation	of	callback	in	interrupt	mode,	i.e.	enable	gpio
interrupts.

void	resume(embxx::device::context::EventLoop	context);

Such	GPIO	control	Device	class	for	RaspberryPi	platform	is	implemented	in
src/device/Gpio.h	file	of	embxx_on_rpi	project.

GPIO	Driver

First	of	all,	we	will	need	references	to	Device	as	well	as	Event	Loop	objects:

GPIO

182

https://github.com/arobenko/embxx_on_rpi/blob/master/src/device/Gpio.h
https://github.com/arobenko/embxx_on_rpi

template	<typename	TDevice,	typename	TEventLoop>
class	MyGpioDriver
{
public:
				//	During	the	construction	store	references	to	Device
				//	and	Event	Loop	objects.
				MyGpioDriver(TDevice&	device,	TEventLoop&	el)
						:	device_(device),
								el_(el)
				{
								//	Register	appropriate	interrupt	callbacks	with	device
								device_.setHandler(...);
				}

				...

private:

				TDevice&	device_;
				TEventLoop&	el_;
};

The	Driver	must	also	provide	an	ability	to	perform	and	cancel	continuous	asynchronous
read	operations	for	multiple	pins:

template	<typename	TDevice,	typename	TEventLoop>
class	MyGpioDriver
{
public:
				typedef	typename	TDevice::PinIdType	PinIdType;

				template	<typename	TFunc>
				void	asyncReadCont(PinIdType	id,	TFunc&&	func)	{	...	}

				bool	cancelReadCont(PinIdType	id)	{	...	}
};

Like	with	any	asynchronous	operation	so	far	the	callback	must	receive	status	information	as
its	first	parameter	and	probably	the	value	of	the	input	as	the	second	one.	When	the
operation	canceled	with		cancelReadCont()	,	the	callback	must	be	invoked	one	last	time	with
status	specifying	that	operation	was		Aborted	.

The	Driver	is	supposed	to	be	a	generic	piece	of	code	that	can	be	reused	in	multiple
independent	products,	including	ones	without	dynamic	memory	allocation	and/or	exceptions.
It	means	that	the	Driver	class	must	receive	maximum	number	of	the	pins	it	is	going	to
support	and	type	of	the	callback	storage.

GPIO

183

template	<typename	TDevice,	
										typename	TEventLoop,
										std::size_t	TNumOfLines,
										typename	THandler	=
														embxx::util::StaticFunction<void	(const	embxx::error::ErrorStatus&,	bool
)>	>
class	MyGpioDriver
{
public:
				template	<typename	TFunc>
				void	asyncReadCont(PinIdType	id,	TFunc&&	func)	
				{
								...
								auto*	node	=	...;	//	Locate	or	allocate	appropriate	node
								node->id_	=	id;
								node->handler_	=	std::forward<TFunc>(func);
								...
				}								

private:
				struct	Node
				{
								Node()	:	id_(PinIdType())	{}

								PinIdType	id_;
								THandler	handler_;
				};

				typedef	std::array<Node,	TNumOfLines>	Infos;

				Infos	infos_;
				...
};

The	Driver	doesn't	do	anything	special,	it	just	receives	the	notification	from	the	Device	that
gpio	interrupt	has	occurred,	locates	the	appropriate	registered	Component's	callback	object
(based	on	the	pin	information	provided	by	the	Device),	and	uses	Event	Loop	to	schedule
an	execution	of	the	Component's	callback	together	with	information	about	input's	value	in
event	loop	(non-interrupt)	context.

Such	generic	GPIO	Driver	is	already	implemented	in	embxx/driver/Gpio.h	file	of	embxx
library.	The	documentation	can	be	found	here.

Button	Component

The	embxx_on_rpi	project	has	a	simple	button	Component,	implemented	in
src/component/Button.h.	It	configures	provided	GPIO	line	to	be	an	input	and	to	have	both
rising	and	falling	edges	interrupts.	It	also	exposes	simple	interface	to	be	able	to	monitor

GPIO

184

https://github.com/arobenko/embxx/blob/master/embxx/driver/Gpio.h
https://github.com/arobenko/embxx
https://dl.dropboxusercontent.com/u/46999418/embxx/driver_gpio_page.html
https://github.com/arobenko/embxx_on_rpi
https://github.com/arobenko/embxx_on_rpi/blob/master/src/component/Button.h

button	presses	and	releases.

template	<typename	TDriver,
										bool	TActiveState,
										typename	THandler	=	embxx::util::StaticFunction<void	()>	>
class	Button
{
public:
				typedef	TDriver	Driver;
				typedef	typename	Driver::PinIdType	PinIdType;

				Button(Driver&	driver,	PinIdType	pin);
				~Button();

				bool	isPressed()	const;

				template	<typename	TFunc>
				void	setPressedHandler(TFunc&&	func);

				template	<typename	TFunc>
				void	setReleasedHandler(TFunc&&	func);
};

Button	Press	Monitoring	Application

The	embxx_on_rpi	project	also	contains	a	simple	application	called	app_button.	It	monitors
presses	and	releases	of	a	single	button	connected	to	one	of	the	GPIO	lines.	When	the
button	is	pressed,	the	led	is	turned	on	for	1	second	and	"Button	Pressed"	string	is	logged	to
UART.	When	the	button	is	released,	just	"Button	Released"	string	is	logged	to	UART	without
influencing	the	led	state.	If	new	button	press	is	recognised	prior	to	1	second	timeout	for	the
led	being	on,	the	led	stays	on	and	a	new	1	second	timer	countdown	is	started.

Thanks	to	the	Device-Driver-Component	model	and	all	levels	of	abstractions,	the	application
code	is	quite	simple.

GPIO

185

https://github.com/arobenko/embxx_on_rpi
https://github.com/arobenko/embxx_on_rpi/tree/master/src/app/app_button

int	main()	{
				auto&	system	=	System::instance();

				//	Configure	uart
				auto&	uart	=	system.uart();
				uart.configBaud(9600);
				uart.setWriteEnabled(true);

				//	Allocate	timer
				auto&	timerMgr	=	system.timerMgr();
				auto	timer	=	timerMgr.allocTimer();
				GASSERT(timer.isValid());

				//	Set	handlers	for	button	press	/	release
				auto&	button	=	system.button();
				button.setPressedHandler(
								std::bind(
												&buttonPressed,
												std::ref(timer)));

				button.setReleasedHandler(&buttonReleased);

				//	Run	event	loop	with	enabled	interrupts
				device::interrupt::enable();
				auto&	el	=	system.eventLoop();
				el.run();

				GASSERT(0);	//	Mustn't	exit
				return	0;
}

The	code	for	"button	pressed"	is	as	following:

GPIO

186

void	buttonPressed(System::TimerMgr::Timer&	timer)
{
				static_cast<void>(timer);
				auto&	system	=	System::instance();
				auto&	el	=	system.eventLoop();
				auto&	led	=	system.led();
				auto&	log	=	system.log();

				SLOG(log,	embxx::util::log::Info,	"Button	Pressed");

				timer.cancel();
				auto	result	=	el.post(
								[&led]()
								{
												led.on();
								});
				GASSERT(result);
				static_cast<void>(result);

				static	const	auto	WaitTime	=	std::chrono::seconds(1);
				timer.asyncWait(
								WaitTime,
								[&led](const	embxx::error::ErrorStatus&	es)
								{
												if	(es	==	embxx::error::ErrorCode::Aborted)	{
																return;
												}
												led.off();
								});
}

The	code	for	"button	release"	is	very	simple:

void	buttonReleased()
{
				auto&	system	=	System::instance();
				auto&	log	=	system.log();

				SLOG(log,	embxx::util::log::Info,	"Button	Released");
}

GPIO

187

I2C
I2C	is	serial	communication	bus.	It	is	very	popular	in	embedded	development	and	mostly
used	to	communicate	to	various	low	speed	peripherals,	such	as	eeproms	and	various
sensors.

The	control	and	use	of	I2C	fits	nicely	into	the	Device-Driver-Component	model	described	in
this	book.	It	is	a	serial	interface	and	the	controlling	Device	object	will	have	to	read/write
characters	one	by	one,	just	like	it	was	with	UART.	It	would	be	nice	if	we	coud	reuse	the
Character	Driver	we	implemented	before.	However,	the	I2C	is	multi-master	/	multi-slave	bus
and	there	is	a	need	to	specify	the	slave	ID	(or	address)	when	initiating	read	and/or	write
operation.

ID	Adaptor

It	is	quite	clear	that	some	kind	of	ID	Device	Adaptor	is	needed.	It	will	be	constructed	with
additional	ID	parameter	and	will	be	responsible	to	forward	all	the	API	calls	from	the
Character	Driver	to	I2C	Device	while	adding	one	extra	parameter	of	ID.

The	implementation	of	such	adaptor	is	very	simple	and	straightforward:

template	<typename	TDevice>
class	IdAdaptor
{
public:
				//	Type	of	the	underlaying	device.
				typedef	TDevice	Device;

				//	Character	type	defined	in	the	wrapped	device
				typedef	typename	TDevice::CharType	CharType;

				//	Device	identification	type	defined	in	the	wrapped	device	class.
				typedef	typename	TDevice::DeviceIdType	DeviceIdType;

				IdAdaptor(Device&	device,	DeviceIdType	id)
						:	device_(device),
								id_(id)
				{

I2C

188

http://en.wikipedia.org/wiki/I%C2%B2C

				}

				template	<typename	TFunc>
				void	setCanReadHandler(TFunc&&	func)
				{
								device_.setCanReadHandler(id_,	std::forward<TFunc>(func));
				}

				template	<typename	TFunc>
				void	setCanWriteHandler(TFunc&&	func)
				{
								device_.setCanWriteHandler(id_,	std::forward<TFunc>(func));
				}

				template	<typename	TFunc>
				void	setReadCompleteHandler(TFunc&&	func)
				{
								device_.setReadCompleteHandler(id_,	std::forward<TFunc>(func));
				}

				template	<typename	TFunc>
				void	setWriteCompleteHandler(TFunc&&	func)
				{
								device_.setWriteCompleteHandler(id_,	std::forward<TFunc>(func));
				}

				template	<typename...	TArgs>
				void	startRead(TArgs&&...	args)
				{
								device_.startRead(id_,	std::forward<TArgs>(args)...);
				}

				template	<typename...	TArgs>
				bool	cancelRead(TArgs&&...	args)
				{
								return	device_.cancelRead(id_,	std::forward<TArgs>(args)...);
				}

				template	<typename...	TArgs>
				void	startWrite(TArgs&&...	args)
				{
								device_.startWrite(id_,	std::forward<TArgs>(args)...);
				}

				template	<typename...	TArgs>
				bool	cancelWrite(TArgs&&...	args)
				{
								return	device_.cancelWrite(id_,	std::forward<TArgs>(args)...);
				}

				template	<typename...	TArgs>
				bool	suspend(TArgs&&...	args)
				{

I2C

189

								return	device_.suspend(id_,	std::forward<TArgs>(args)...);
				}

				template	<typename...	TArgs>
				void	resume(TArgs&&...	args)
				{
								device_.resume(id_,	std::forward<TArgs>(args)...);
				}

				template	<typename...	TArgs>
				bool	canRead(TArgs&&...	args)
				{
								return	device_.canRead(id_,	std::forward<TArgs>(args)...);
				}

				template	<typename...	TArgs>
				bool	canWrite(TArgs&&...	args)
				{
								return	device_.canWrite(id_,	std::forward<TArgs>(args)...);
				}

				template	<typename...	TArgs>
				CharType	read(TArgs&&...	args)
				{
								return	device_.read(id_,	std::forward<TArgs>(args)...);
				}

				template	<typename...	TArgs>
				void	write(TArgs&&...	args)
				{
								device_.write(id_,	std::forward<TArgs>(args)...);
				}

private:
				Device&	device_;
				DeviceIdType	id_;
};

The	same	adaptor	class	is	implemented	in	embxx/device/IdDeviceCharAdapter.h	file	of
embxx	library.

Operations	Queue

The	I2C	protocol	allows	existence	of	multiple	independent	slaves	on	the	same	bus.	It	means
there	may	be	several	independent	Components	that	communicate	to	different	I2C	devices
(for	example	EEPROM	and	temperature	sensor),	but	must	share	the	same	Device	control
object	and	may	issue	read/write	requests	to	it	in	parallel.	To	resolve	this	problem,	there	must
be	some	kind	of	operation	queuing	facility	that	is	responsible	to	queue	all	the	read/write
requests	to	the	Device	and	issue	them	one	by	one.

I2C

190

https://github.com/arobenko/embxx/blob/master/embxx/device/IdDeviceCharAdapter.h
https://github.com/arobenko/embxx

The	objects'	usage	map	looks	like	this:

Such	queue	is	a	platform/product	independent	piece	of	code	and	it	should	be	implemented
without	using	dynamic	memory	allocation	and/or	exceptions.	It	means	that	it	should	receive
number	of	various	Driver	objects,	that	may	issue	independent	read/write	requests	to	it	(i.e.
size	of	the	internal	queue),	as	a	template	parameter	and	probably	use	Static	(Fixed	Size)
Queue	to	queue	all	the	requests	that	are	coming	in.	It	should	also	receive	callback	storage
types	to	report	when	a	new	character	can	be	read/written,	as	well	as	when	read/write
operation	is	complete.

template	<typename	TDevice,
										std::size_t	TSize,
										typename	TCanDoOpHandler	=	embxx::util::StaticFunction<void()>,
										typename	TOpCompleteHandler	=	
														embxx::util::StaticFunction<void	(const	embxx::error::ErrorStatus&)>	>
class	DeviceOpQueue
{
public:
				DeviceOpQueue(TDevice&	device);
				...
private:
				typedef	embxx::container::StaticQueue<...,	TSize>	Queue;
				Queue	queue_;
};

When	the		TSize		template	parameter	is	set	to		1	,	there	is	no	need	for	all	the	queuing
facility	and	the	DeviceOpQueue	class	may	become	a	simple	pass-through	inline	class	using
template	specialisation:

I2C

191

template	<typename	TDevice>
class	DeviceOpQueue<TDevice,	1>
{
public:

				typedef	typename	TDevice::PinIdType	PinIdType;

				template	<typename...	TArgs>
				void	startRead(TArgs&&...	args)
				{
								device_.startRead(std::forward<TArgs>(args)...)
				}

				template	<typename...	TArgs>
				bool	cancelRead(PinIdType	id,	TArgs&&...	args)
				{
								static_cast<void>(id);	//	No	use	for	id	in	the	Device	itself
								return	device_.cancelRead(std::forward<TArgs>(args)...)
				}

				template	<typename...	TArgs>
				bool	suspend(PinIdType	id,	TArgs&&...	args)
				{
								static_cast<void>(id);	//	No	use	for	id	in	the	Device	itself
								return	device_.suspend(std::forward<TArgs>(args)...)
				}

				...
};

Such	queue	is	also	implemented	in	embxx	library.	It	resides	in	the
embxx/device/DeviceOpQueue.h	file.

Please	note	that	ID	Adaptor	and	Operations	Queue	are	both	Device	layer	classes.	The
serve	as	wrappers	to	actual	peripheral	control	Device	in	order	to	expose	the	right	interface
to	the	upper	layer	Driver.

I2C	Device

The	only	thing	that	remains	is	to	properly	implement	I2C	control	device,	which	can	be	used
by	the		DeviceOpQueue	,	which	in	turn	is	used	by	the		IdAdaptor	.	The		IdAdaptor		object	can
be	used	with	the	existing		Character		Driver	implemented	to	be	used	with	the	UART
peripheral.

Based	on	the	information	above,	the	platform	specific	I2C	control	Device	object	must
provide	the	following	public	interface:

I2C

192

https://github.com/arobenko/embxx
https://github.com/arobenko/embxx/blob/master/embxx/device/DeviceOpQueue.h

class	I2CDevice
{
public:
				//	Single	character	type
				typedef	std::uint8_t	CharType;

				//	ID	type
				typedef	std::uint8_t	DeviceIdType;	

				//	Context	types
				typedef	embxx::device::context::EventLoop	EventLoopContext;
				typedef	embxx::device::context::Interrupt	InterruptContext;

				//	Set	various	interrupt	handlers
				template	<typename	TFunc>
				void	setCanReadHandler(TFunc&&	func);

				template	<typename	TFunc>
				void	setCanWriteHandler(TFunc&&	func);

				template	<typename	TFunc>
				void	setReadCompleteHandler(TFunc&&	func);

				template	<typename	TFunc>
				void	setWriteCompleteHandler(TFunc&&	func);

				//	Start	read	for	both	contexts.
				void	startRead(DeviceIdType	address,	std::size_t	length,	EventLoopContext);
				void	startRead(DeviceIdType	address,	std::size_t	length,	InterruptContext);

				//	Cancel	read	for	both	contexts.
				bool	cancelRead(EventLoopContext);
				bool	cancelRead(InterruptContext);

				//	Start	write	for	both	contexts.
				void	startWrite(DeviceIdType	address,	std::size_t	length,	EventLoopContext);
				void	startWrite(DeviceIdType	address,	std::size_t	length,	InterruptContext);
								TContext	context);

				//	Cancel	write	for	both	contexts.
				bool	cancelWrite(EventLoopContext);
				bool	cancelWrite(InterruptContext);

				//	Suspend/Resume
				bool	suspend(EventLoopContext);
				void	resume(EventLoopContext);

				//	Helper	functions	to	manage	read/write	during	the	interrupt
				bool	canRead(InterruptContext);
				bool	canWrite(InterruptContext);
				CharType	read(InterruptContext);
				void	write(CharType	value,	InterruptContext);

I2C

193

};

Such	device	to	control	I2C0	interface	on	RaspberryPi	platform	is	implemented	in
src/device/I2C0.h	file	of	embxx_on_rpi	project.

EEPROM	Access	Application

The	embxx_on_rpi	project	contains	an	application	called	app_i2c0_eeprom.	It	implements	a
parallel	access	to	2	EEPROMs	connected	to	the	same	I2C0	bus,	but	having	different
addresses.	The	EEPROMs	are	accessed	independently	at	the	same	time	with	read/write
operations.	These	operations	are	queued	and	managed	by	the		DeviceOpQueue		object	that
wraps	actual	I2C	control	Device	and	forwards	the	requests	one	by	one.

I2C

194

https://github.com/arobenko/embxx_on_rpi/blob/master/src/device/I2C0.h
https://github.com/arobenko/embxx_on_rpi
https://github.com/arobenko/embxx_on_rpi
https://github.com/arobenko/embxx_on_rpi/tree/master/src/app/app_i2c0_eeprom

SPI
SPI	is	also	quite	popular	serial	communication	interface.	It	is	very	similar	to	I2C	in	terms	of
using	it	the	Device-Driver-Component	model	described	in	this	book.	The	main	differences
are:

1.	 SPI	uses	"chip	select"	identification	method	instead	of	"address"	of	the	peripheral.
2.	 SPI	is	a	double	direction	link	-	there	are	always	read	and	write	operations	that	are

executed	in	parallel	(instead	of	only	read	or	only	write).

The	"chip	select"	slave	identefication	will	require	the	same	"ID	Adaptor"	that	was	used	for
I2C	integration.

Just	like	with	I2C,	the	SPI	is	a	multi-slave	bus.	It	allows	connection	of	multiple	independent
devices	to	the	same	MISO/MOSI/CLK	lines	of	the	SPI	interface.	It	means	there	is	a	need	for
the	same	"Operations	Queue"	that	was	used	for	I2C	integration.	Due	to	the	fact	that	SPI	is
a	double	direction	link,	the	"Operations	Queue"	must	be	able	to	forward,	say,	read
operation	request	to	the	actual	Device	even	if	"write"	operation	to	the	same	slave	device	is
already	in	progress.

It	means	that	the	objects'	usage	map	is	exactly	the	same	as	with	I2C.

All	the	intermediate	layers	(Character	Driver,	ID	Adaptor,	Operations	Queue)	in	the	map
above	must	allow	issuing	read	and	write	operations	at	the	same	time.	It	becomes	a
responsibility	of	the	product	specific	Component	to	be	aware	what	kind	of	the	Device	is
used	and	not	to	issue	these	requests	in	parallel	if	the	actual	Device	(such	as	I2C)	doesn't
support	it.

SPI	Device

Based	on	the	information	above,	the	platform	specific	SPI	control	Device	object	must
provide	and	implement	exactly	the	same	interface	as	I2C	Device:

class	SpiDevice

SPI

195

http://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus
http://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus

{
public:
				//	Single	character	type
				typedef	std::uint8_t	CharType;

				//	ID	type	-	chip	select	index
				typedef	unsigned	DeviceIdType;	

				//	Context	types
				typedef	embxx::device::context::EventLoop	EventLoopContext;
				typedef	embxx::device::context::Interrupt	InterruptContext;

				//	Set	various	interrupt	handlers
				template	<typename	TFunc>
				void	setCanReadHandler(TFunc&&	func);

				template	<typename	TFunc>
				void	setCanWriteHandler(TFunc&&	func);

				template	<typename	TFunc>
				void	setReadCompleteHandler(TFunc&&	func);

				template	<typename	TFunc>
				void	setWriteCompleteHandler(TFunc&&	func);

				//	Start	read	for	both	contexts.
				void	startRead(DeviceIdType	chipSelect,	std::size_t	length,	EventLoopContext);
				void	startRead(DeviceIdType	chipSelect,	std::size_t	length,	InterruptContext);

				//	Cancel	read	for	both	contexts.
				bool	cancelRead(EventLoopContext);
				bool	cancelRead(InterruptContext);

				//	Start	write	for	both	contexts.
				void	startWrite(DeviceIdType	chipSelect,	std::size_t	length,	EventLoopContext);
				void	startWrite(DeviceIdType	chipSelect,	std::size_t	length,	InterruptContext);
								TContext	context);

				//	Cancel	write	for	both	contexts.
				bool	cancelWrite(EventLoopContext);
				bool	cancelWrite(InterruptContext);

				//	Suspend/Resume
				bool	suspend(EventLoopContext);
				void	resume(EventLoopContext);

				//	Helper	functions	to	manage	read/write	during	the	interrupt
				bool	canRead(InterruptContext);
				bool	canWrite(InterruptContext);
				CharType	read(InterruptContext);
				void	write(CharType	value,	InterruptContext);
};

SPI

196

Such	device	to	control	SPI0	interface	on	RaspberryPi	platform	is	implemented	in
src/device/Spi0.h	file	of	embxx_on_rpi	project.

Other	Nuances

SPI	is	quite	often	used	with	external	persistent	storage,	such	as	SD	card.	Such	devices	may
have	some	significant	delays	between	the	block	write	operation	on	the		MOSI		line	and	the
time	they	send	an	acknowledgement	about	operation	completion	on	the		MISO		line.	The	SPI
Device	must	constantly	read	the	incoming	bytes	until	the	expected		ACK	/	NACK		byte	is
received	without	de-asserting	the		CS		(chip	select).	If	the	Component,	responsible	for
managing	SPI	flash	memory,	issues	only	single	"read"	operation	to	wait	for	such	an
acknowledgement,	the	provided	buffer	may	get	full	before	the	required	byte	is	received.	In
this	case	the	SPI	control	Device	object	is	not	aware	that	the	new	"read"	request	may	follow
and	has	to	de-assert	the		CS	,	which	is	undesireble.

In	order	to	solve	this	problem,	the	Character	Driver	described	in	UART	chapter	must	be
extended	to	support	issuing	multiple	read/write	operations	at	the	same	time.	Such	extension
is	based	on	the	values	of		ReadQueueSize	/	WriteQueueSize		in	the	provided		Traits		class.
These	values	indicate	maximal	number	of	simultaneous	read/write	operations	that	may	be
issued	to	the	Driver.	The	responsible	Component,	in	turn,	must	perform	2	or	3	"read	until"
operations	at	the	same	time	to	wait	for	the	expected	response.	Once	the	first	buffer	is	full,
the	Driver	will	post	the	Component's	callback	object	for	execution	in	the	event	loop	context,
while	calling		startRead()		member	function	of	the	Device	for	the	next	pending	"read	until"
operation	still	in	interrupt	context	to	fill	the	second	buffer.	The	Device	is	responsible	to
continue	its	read	operation	without	de-asserting	the		CS		line.	While	the	second	buffer	being
filled,	the	Component	has	enough	time	to	identify	that	there	is	no	response	in	the	filled
buffer	and	re-issue	the	"read	until"	request	to	the	Driver	while	reusing	the	same	buffer.	This
circle	of	"read	until"	requests	must	continue	until	expected	response	is	encountered	or	until
operation	timeout,	which	is	measured	independently	by	the	asynchronous	wait	request	to
the	Timer.	It	is	up	to	the	responsible	Component	object	to	manage	the	operations	to	the
Character	Driver	as	well	as	the	Timer	in	event	loop	context	and	cancel	one	upon	execution
of	callback	from	another.

External	Storage

As	was	mentioned	in	previous	section,	SPI	is	often	used	with	external	persistent	storage,
such	as	SD	card.	In	order	to	properly	support	it,	there	must	be	some	kind	of		SpiFlash	
management	Component,	that	is	responsible	to	implement	proper	communication	protocol
while	providing	necessary	public	interface.	The	minimal	required	interface	will	have	to	be
able	to:

SPI

197

https://github.com/arobenko/embxx_on_rpi/blob/master/src/device/Spi0.h
https://github.com/arobenko/embxx_on_rpi
https://www.sdcard.org/downloads/pls/simplified_specs/part1_410.pdf

1.	 Asynchronously	initialise	the	device.
2.	 Asynchronously	read	block	of	data.
3.	 Asynchronously	write	block	of	data.

Once	such	Component	is	implemented	and	tested,	the	next	stage	would	be	implementing
proper	file	system	(FAT32)	management	Component,	using	the	asynchronous	functions	of
the	former.	It	will	allow	processing	time	consuming	file	system	reads	and	writes	while	still
allowing	processing	of	all	other	events	without	creating	any	performance	bottlenecks	and
without	requiring	any	complex	independent	task	scheduling.

SPI

198

Other
There	are	many	other	peripherals	and/or	protocols	(such	as	I2S,	USB,	one	wire).	The
implementation	and	the	main	concepts	should	be	pretty	similar	to	the	peripherals	covered	so
far.	At	this	stage	I	do	not	plan	to	do	it	in	this	book.	At	least	not	in	the	near	future.

Various	micro-controllers	may	also	support	DMA	access	to	some	peripherals.	In	this	case
the		Character		Driver	that	was	covered	in	UART	chapter	must	be	replaced	with	some	kind
of		Block		Driver,	that	will	allow	issuing	of	multiple	read/write	requests	at	the	same	time	and
will	receive	only	"operation	complete"	notifications	from	the	Device.	I	leave	implementation
of	it	as	an	excercise	for	the	reader.	At	least	for	now.

Other

199

http://en.wikipedia.org/wiki/Direct_memory_access

	Introduction
	Audience
	C++ Popularity
	Benefits of C++
	Contents of This Book
	Contribution

	Know Your Compiler Output
	Test Applications
	Get Simple Application Compiled
	Dynamic Memory Allocation
	Exceptions
	RTTI
	Removing Standard Library and C++ Runtime
	Static Objects
	Abstract Classes
	Templates
	Tag Dispatching

	Basic Needs
	Assertion
	Callback
	Data Serialisation
	Static (Fixed Size) Queue

	Basic Concepts
	Event Loop
	Device-Driver-Component

	Peripherals
	Timer
	UART
	GPIO
	I2C
	SPI
	Other

