

Table	of	Contents
1.	 Introduction	0
2.	 Getting	Set	Up	1
3.	 Making	a	Tweet	Generator	2
4.	 Using	the	Twitter	API	3
5.	 Writing	a	Node	Server	4
6.	 Deploying	Our	App	5
7.	 Summing	Up	6

Your	First	Node	App:	Make	A	Twitter	Bot

2

Introduction

Your	First	Node	App:
Build	A	Twitter	Bot
Introduction

Have	you	ever	wondered	what	the	big	deal	is	with	Node?

This	book	grew	out	of	a	tutorial	I	wrote	after	developing	some	of	my	own	Twitter	bots.

About	This	Book

This	book	was	written	by	Emily	Aviva	Kapor-Mater	(website,	github,	twitter).	It	was	last
substantively	updated	11	December	2015.

Your	First	Node	App:	Build	a	Twitter	Bot	by	Emily	Aviva	Kapor-Mater	is	licensed	under	a	Creative
Commons	Attribution	4.0	International	License.

All	of	the	code	herein	is	licensed	under	the	MIT	license	and	can	be	used	freely.

Your	First	Node	App:	Make	A	Twitter	Bot

3Introduction

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Getting	Set	Up

Chapter	1:	Getting	Set	Up
Tools	You	Will	Need

In	this	tutorial,	I	assume	you	know	how	to	use	a	text	editor	like	Atom,	and	are	at	least	somewhat
comfortable	with	the	terminal	command	line.

If	you	haven't	got	it	already,	you	should	install	Node.

You	should	have	an	account	(free	or	otherwise)	at	Heroku,	and	you	should	download	and	install	the
Heroku	toolbelt.

A	GitHub	account	is	a	very	good	idea	so	you	can	store	and	show	off	your	code,	but	is	not	required.
You	do,	however,	need	to	have	Git	installed	on	your	computer.	(It	comes	by	default	with	the	Mac	and
most	Linux	versions.)

Preliminary	setup

We	are	writing	our	bot	in	Node,	which	is	a	runtime	for	JavaScript.	We	will	be	doing	version	tracking
with	Git.	We	need	to	initialize	our	new	application	by	making	an	empty	directory,	making	an	empty
Git	repository,	and	then	using	npm	(the	Node	package	manager)	to	start	a	new	blank	app.

mkdir	my-first-node-app
cd	my-first-node-app
git	init
npm	init

For	the	moment,	it's	okay	to	just	hit	"enter"	if	you	don't	know	what	to	write	when	npm	init
prompts	you	for	input.	We'll	come	back	to	it	later.	For	now,	we'll	end	up	with	a	file	in	the	root	level	of
our	project	directory	called	package.json,	which	is	a	basic	configuration	file	for	our	new	Node
application,	and	a	new	directory	called	node_modules,	which	will	contain	dependencies:	third-
party	packages	that	we	will	use,	basically,	to	avoid	having	to	write	everything	ourselves.

We'll	also	want	to	create	a	file	called	.gitignore,	which	tells	Git	not	to	track	everything	listed	in
it.	The	only	thing	here	we	don't	want	to	track	is	the	node_modules	directory	that	will	store	our
app's	dependencies.	We	can	create	the	.gitignore	file	from	our	text	editor,	or	we	can	create	and
write	it	from	the	command	line:

echo	"node_modules"	>>	.gitignore

Your	First	Node	App:	Make	A	Twitter	Bot

4Getting	Set	Up

https://atom.io
https://heroku.com
https://toolbelt.heroku.com
https://git-scm.com
https://nodejs.org

Making	a	Tweet	Generator

Chapter	2:	Making	a	Tweet	Generator
Introducing	libraries

Before	we	can	actually	tweet	anything,	we	need	to	have	a	tweet	generator:	otherwise,	we'd	just	be
tweeting	lots	of	blank	tweets.	The	generator	itself	is	actually	not	going	to	be	part	of	the	bot	app	itself,
but	instead	it	will	constitute	a	separate	library:	a	script	with	reusable	code.

Let's	set	up	a	directory	called	lib	in	our	project	directory	and	make	a	file	for	our	generator	inside	it.
We'll	also	need	another	library	of	words	and	phrases	for	our	generator,	so	let's	make	that	too.

mkdir	lib
touch	lib/generate.js	lib/dictionary.js

The	most	important	thing	our	generator	program	will	do	is	return	a	string,	which	we	can	then	use	as
the	body	of	a	tweet.	While	we're	setting	it	up,	let's	also	have	it	pull	in	our	dictionary,	even	though
there's	nothing	in	it	yet.

//	generate.js
'use	strict';

var	dictionary	=	require('./dictionary');

function	generate()	{
		return	'Hello,	world!';
}

module.exports	=	generate;

The	last	line	tells	Node	that	when	this	file	is	imported	from	another	program	with	the	require()
command,	we	want	it	to	make	the	generate()	function	available.	(We	don't	put	()	after	the
function	name	here,	because	we	want	to	export	the	function	itself;	not	the	execution	of	that	function:	a
subtle	but	crucial	distinction.)	So,	as	you	might	be	guessing,	we	will	need	to	have	a	similar
module.exports	statement	in	our	dictionary	library	as	well:

//	dictionary.js
'use	strict';

var	dictionary	=	{};

module.exports	=	dictionary;

Generating	a	random	string

Right	now,	our	dictionary	is	simply	an	empty	object.	Let's	fill	it	with	some	words.	But	which	words?	I
know!	Let's	fill	it	with	some	words	that	will	help	us	build	up	a	bot	to	generate	pretentious	food	truck
names.

Your	First	Node	App:	Make	A	Twitter	Bot

5Making	a	Tweet	Generator

var	dictionary	=	{
		foods:	['sandwiches',	'wraps',	'pies',	'bowls',	'burgers'],
		ingredients:	['quinoa',	'chanterelle',	'oyster',	'leek',	'algae'],
		descriptions:	['burnt',	'toasted',	'sizzling',	'sprouted',	'gentrified'
		truckTypes:	['truck',	'cart',	'vehicle',	'conveyance',	'brougham',	
}

To	generate	a	food	truck	name,	we	need	a	function	that	will	pick	a	random	element	from	each	of	these
arrays	and	string	them	together	properly.	Basically,	we	want	to	be	able	to	say	something	like
dictionary.foods[n]	where	the	number	is	a	random	integer	between	0	and	the	length	of	the
foods	array.

Randomness	in	JavaScript	is	a	little	tricky:	there	isn't	a	built-in	function	that	will	let	us	pick	a	random
element	from	a	list.	We	could	build	up	a	function	to	do	this,	but	it's	already	been	done	for	us	in	a
wonderful	library	called	Lodash,	which	is	traditionally	abbreviated	to	_	in	JavaScript.

To	install	Lodash,	on	the	terminal	command	line,	we	do:

npm	install	--save	lodash

The	--save	tells	npm	that	we	want	to	install	Lodash	as	a	dependency	for	this	project:	in	other
words,	our	bot	won't	run	unless	Lodash	is	available.	If	we	open	up	the	package.json	file	now,
we'll	see	that	there's	a	section	at	the	bottom	called	"dependencies",	and	one	of	the	items	listed
will	be	"lodash",	followed	by	a	minimum	version	number.	Node	and	npm	will	track	our
dependencies	for	us,	so	we	don't	need	to	worry	about	installing	it	once	it's	listed	in	package.json.

Let's	go	back	to	our	generator.js	and	include	some	Lodash	to	capitalize	our	randomly	selected
words.	The	Lodash	function	_.sample()	takes	a	collection	and	returns	one	(or	more)	random
elements	from	it.	Let's	edit	our	generate()	function	to	one	item	from	each	array	in	the
dictionary	object,	capitalize	it,	and	concatenate	them	all	together.

var	_	=	require('lodash');

function	generate()	{
		var	food	=	_.capitalize(_.sample(dictionary.foods));
		var	ingredient	=	_.capitalize(_.sample(dictionary.ingredients));
		var	description	=	_.capitalize(_.sample(dictionary.descriptions));
		var	truckType	=	_.capitalize(_.sample(dictionary.truckTypes));
		return	description	+	'	'	+	ingredient	+	'	'	+	food	+	'	'	+	truckType;
}

If	we	wanted,	we	could	verify	our	function	by	adding	a	command	to	the	end	of	generate.js	to	log
our	output	to	the	console:

console.log(generate());

Then,	we	can	run	node	generate.js	from	the	terminal	command	line:

$	node	generate.js
Burnt	Oyster	Pies	Vehicle
$	node	generate.js
Burnt	Quinoa	Burgers	Brougham
$	node	generate.js
Toasted	Leek	Sandwiches	Chariot

Your	First	Node	App:	Make	A	Twitter	Bot

6Making	a	Tweet	Generator

https://lodash.com

Using	console.log()	as	a	debugging	tool	is	a	good	practice.	It	would,	however,	be	a	good	idea	to
remove	the	console.log()	from	the	final	production-ready	script,	because	otherwise	it'll	just
clutter	up	our	console.

Fine-tuning	the	generator

Our	output	is	looking	pretty	good	so	far,	but	it's	not	quite	tweet-able	yet.	We'd	like	a	couple	of
different	types	of	output,	so	we	don't	repeat	ourselves	too	often.	What	if	we	want	a	few	different	kinds
of	truck	names,	following	certain	patterns?	Let's	make	four	patterns:

The	Burger	Truck
Burnt	Oyster	Vehicle
The	Toasted	Leek	Sandwich
The	Sizzling	Chanterelle	Bowl	Conveyance

Given	these	patterns,	and	assuming	we	want	them	to	occur	with	equal	frequency,	three-quarters	of	the
time	we	want	"The"	to	be	prefixed	to	the	generated	string,	a	different	three-quarters	of	the	time	we
want	the	truck	type	to	be	at	the	end,	and	so	forth.	There	are	multiple	ways	to	write	something	like	this,
but	let's	do	it	this	way	for	now:	we'll	use	Lodash's	_.random()	function	to	generate	a	random
number	between	1	and	4	(which	will	look	like	_.random(1,	4)),	and	depending	on	the	result
have	our	generate()	function	follow	a	different	output	pattern.

Finally,	we'll	have	to	make	our	generate()	function	importable	from	another	JavaScript	file	in
Node.	To	do	this,	similar	to	how	we	did	with	the	dictionary.js	script,	we'll	add	the	line
module.exports	=	generate	to	the	end	of	the	generate.js	script.

Our	generate.js	file	now	should	look	something	like	this:

//	generate.js
'use	strict';

var	_	=	require('lodash');
var	dictionary	=	require('./dictionary');

function	generate()	{
		var	food	=	_.capitalize(_.sample(dictionary.foods));
		var	ingredient	=	_.capitalize(_.sample(dictionary.ingredients));
		var	description	=	_.capitalize(_.sample(dictionary.descriptions));
		var	truckType	=	_.capitalize(_.sample(dictionary.truckTypes));

		var	output	=	'';
		var	randomNumber	=	_.random(1,	4);

		if	(randomNumber	===	1)	{
				output	=	'The	'	+	food	+	'	'	+	truckType;
		}	else	if	(randomNumber	===	2)	{
				output	=	description	+	'	'	+	food	+	'	'	+	truckType;
		}	else	if	(randomNumber	===	3)	{
				output	=	'The	'	+	description	+	'	'	+	food;
		}	else	{
				output	=	'The	'	+	description	+	'	'	+	food	+	'	'	+	truckType;
		}

Your	First	Node	App:	Make	A	Twitter	Bot

7Making	a	Tweet	Generator

		return	output;
}

module.exports	=	generate;

Your	First	Node	App:	Make	A	Twitter	Bot

8Making	a	Tweet	Generator

Using	the	Twitter	API

Chapter	3:	Using	the	Twitter	API
Once	we've	created	a	new	Twitter	account	for	our	bot	to	tweet	to	(and	linked	it	to	a	phone	number—
Twitter	requires	this	for	new	apps),	we	have	to	register	the	app	that	will	be	sending	it	tweets	to	post
with	Twitter's	developer	service.	We	log	in	with	our	new	Twitter	account,	go	to	Twitter	Apps,	and
click	"Create	New	App".	We	give	our	app	a	name,	a	description,	and	a	placeholder	website	since	we
haven't	got	our	app	up	and	running	yet.	We	can	ignore	"callback	URL",	too.	We	agree	to	the
developer	terms	and	conditions,	and	presto,	we	have	a	new	Twitter	app.

We	will	need	to	make	note	of	our	app's	keys	and	access	tokens.	When	we're	looking	at	our	app's
description,	we	can	click	on	the	"Keys	and	Access	Tokens"	tab	to	get	our	app's	consumer	key	and
consumer	key	secret.

There	are	four	strings	of	gibberish	we	need	to	send	to	the	Twitter	API	when	we're	making	tweets.	Two
are	available	on	this	page:	"Consumer	Key	(API	Key)"	and	"Consumer	Secret	(API	Secret)".	The
other	two	will	be	generated	when	we	click	on	the	"Create	Access	Token"	button	at	the	bottom	of	the
screen:	we'll	get	our	"Access	Token"	and	our	"Access	Token	Secret".	Verify	that	the	access	level	is
"Read	and	write",	and	we're	good	to	go.

There's	no	need	to	write	down	these	gibberish	strings	now,	or,	in	fact,	ever.	In	fact,	writing	them	down
or	putting	them	into	a	file	can	be	extremely	unsecure,	since	that	puts	them	out	there	in	the	open	for
anyone	to	read.	Later	on,	we'll	put	them	into	our	app	as	environment	variables.

Your	First	Node	App:	Make	A	Twitter	Bot

9Using	the	Twitter	API

https://apps.twitter.com

Writing	a	Node	Server

Chapter	4:	Writing	a	Node	Server
Setup

While	we	could	write	the	application	that	controls	our	bot	in	vanilla	Node,	we're	going	to	use	the
Express	framework	for	building	the	guts	of	our	bot,	since	it	gives	us	easy	access	to	things	like	REST
routing,	which	could	come	in	handy	if	we	ever	want	to	extend	our	bot.

To	save	Express	and	Twitter	as	dependencies	in	our	bot,	we	run:

npm	install	--save	express	twitter

We	can	check	our	package.json	under	"dependencies"	and	sure	enough,	"express"	and
"twitter"	are	now	listed,	along	with	"lodash".	This	means	that	when	we	install	our	bot	on
Heroku,	we	will	only	need	to	copy	over	the	package.json	file	and	not	the	node_modules
directory	that	we	just	created.	In	fact,	let's	tell	Git	to	ignore	node_modules,	since	we	can	install
them	at	will	with	npm	and	we	don't	need	our	application	to	be	carrying	around	all	their	weight	all	the
time.

echo	"node_modules"	>>	.gitignore

This	creates	an	"invisible"	file	called	.gitignore	(or	adds	to	it	if	it	already	exists)	and	adds	a	line
telling	Git	to	ignore	the	node_modules	directory	when	we're	pushing	our	repository	to	GitHub.

A	simple	server

Let's	create	a	new	file	at	our	project	root	called	server.js.	This	file	will	be	the	"entry	point"	for
our	application.

//	server.js
'use	strict';

var	express	=	require('express');
var	app	=	express();
var	port	=	3000;

app.get('/',	function(req,	res)	{
		res.send('Congratulations,	you	sent	a	GET	request!');
		console.log('Received	a	GET	request	and	sent	a	response');
});

app.listen(port,	function()	{
		console.log('App	now	listening	on	port',	port);
});

Let's	go	through	this	server	piece	by	piece.	First,	we	import	the	Express	module,	and	then	instantiate	a
new	app	with	Express.	We	then	declare	the	port	that	our	app	will	be	listening	on,	which	we	will	be

Your	First	Node	App:	Make	A	Twitter	Bot

10Writing	a	Node	Server

https://expressjs.com

setting	dynamically	later	on,	but	for	now	we're	just	hard-coding	it	to	3000.

We	then	set	an	Express	route	so	that	anyone	who	goes	to	our	app's	URL	will	get	some	data	back.
Here,	we're	using	the	HTTP	GET	verb.	The	app.get()	function	takes	as	its	second	argument	a
callback	function	with	(at	least)	two	parameters	one	to	represent	the	request	object	that	was	sent	to	the
server,	and	the	other	to	represent	the	response	object	that	we	will	send	back.	In	this	case,	the	only
thing	we	are	sending	back	via	our	request	object	is	a	string	confirming	that	the	GET	request	was	sent,
received,	and	processed	correctly.	We	then	have	our	app	print	a	message	to	our	console	telling	us	that
the	GET	request	was	received	and	responded	to.

Finally,	we	tell	our	app	to	listen	for	connections	on	the	port	we	defined	earlier,	and	execute	a	callback
function	when	the	app	is	up	and	running.	Our	callback	function	simply	prints	a	message	to	our
console	confirming	that	the	app	is	up	and	running	and	listening	on	the	port	we	gave	it.

Let's	run	this	file	and	test	it	out.	In	our	terminal,	we	execute	this	file	with	the	node	command:

node	server.js

If	our	file	is	written	correctly	and	there	are	no	errors,	Node	will	respond	with	the	line

App	now	listening	on	port	3000

followed	by	a	blank	line,	since	our	app	is	still	running	and	listening	for	connections.	We	can	test	our
app	by	opening	up	a	web	browser	and	going	to	http://localhost:3000	(which	sends	a	GET
request	to	our	local	server	on	port	3000).	If	all	goes	well,	the	browser	should	display	the
"congratulations"	message,	and	our	app	should	print	a	new	line	stating	that	a	GET	request	was
received	and	responded	to.

We've	just	constructed	the	of	a	complete	Node	server.	It	could	be	extended	in	potentially	infinite
directions	from	here	with	more	routing	and	functionality.	But	let's	continue	in	a	different	direction,
and	extend	our	app	so	that	it	is	not	only	listening	for	connections,	but	sending	its	own.

Using	the	Twitter	API

In	order	to	make	our	app	talk	to	Twitter,	we	need	to	use	the	Twitter	package	we	installed	earlier.	Once
we've	added	it	to	our	server	program,	we	will	have	access	to	an	object	constructor	function	called
Twitter(),	which	has	a	whole	lot	of	built-in	goodies	to	make	our	job	of	posting	tweets	pretty
simple.

We	add	the	following	to	the	beginning	of	our	server.js:

var	Twitter	=	require('twitter');

Once	we've	done	that,	we	can	create	a	new	Twitter	object	from	an	object	literal.	It	needs	to	have
four	properties,	as	follows:

var	tweet	=	new	Twitter({
		consumer_key:	'',
		consumer_secret:	'',
		access_token_key:	'',
		access_token_secret:	''
});

Important	note:	At	the	moment,	it	is	okay	to	replace	these	four	properties	with	the	values	taken	from

Your	First	Node	App:	Make	A	Twitter	Bot

11Writing	a	Node	Server

our	Twitter	app,	but	this	is	something	that	we	absolutely	must	remove	before	we	put	our	app	on
GitHub	or	share	our	code	on	the	web	at	all.	There	are	bots	that	scrape	secret	keys	and	similar	data,	so
we	want	to	take	them	out.	We'll	go	over	what	to	replace	it	with	later	on.

The	tweet	object	inherits	a	method	from	the	Twitter()	constructor	called	post().	We'll	use	the
generate()	function	we	defined	earlier	to	provide	the	text	for	our	status.	First,	we	need	to	import
our	generate()	function	from	generate.js:

var	generate	=	require('./lib/generate');

Since	we	set	module.exports	equal	to	the	generate()	function	in	generate.js,	when	we
require	generate.js	we	get	back	that	exported	function.

Now	we	can	define	a	function	in	our	server	to	post	a	tweet.

function	makeTweet()	{
		var	content	=	generate();
		tweet.post('statuses/update',	{status:	content},	function(error,	tweet,	res
				if	(error)	throw	error;
				console.log('Posted	tweet:	\"'	+	content	+	'\"');
		});
}

The	post()	method	on	the	tweet	object	takes	three	arguments:

1.	 The	REST	endpoint	from	the	Twitter	API	(in	this	case,	statuses/update,	since	we	are
creating	a	new	tweet)

2.	 An	object	with	the	key	status	corresponding	to	the	content	of	the	tweet	that	we	generated
with	our	generate()	function

3.	 A	callback	function	that	handles	what	happens	when	our	POST	request	is	made.	If	there	is	an
error,	we	report	it;	otherwise,	we	write	out	a	console	message	telling	us	that	the	tweet	posted
successfully.	(We're	going	to	keep	the	tweet	and	res	(response)	parameters	in	our	callback
function	even	though	we're	not	explicitly	using	them	now,	because	it	will	make	it	easier	to	do
so	in	the	future	if	we	wish.)

In	order	to	actually	make	a	tweet,	we	need	to	call	our	makeTweet()	function.	But	we	don't	want	to
make	only	one	tweet;	we	want	to	make	multiple	tweets	at	certain	intervals.	We	could	hard-code	this
interval,	or,	even	better,	we	could	put	it	into	a	variable	so	we	can	change	it	if	we	wish.	JavaScript
keeps	time	in	milliseconds,	so	if	we	want	our	app	to	post	a	new	tweet,	say,	every	thirty	minutes,	we
would	write	that	value	as	1000	60	30	=	1,800,000	milliseconds.

We	first	call	makeTweet()	to	make	our	first	tweet,	and	then	use	the	setInterval()	function	to
tell	our	application	to	do	it	again	every	tweetInterval	milliseconds.

var	tweetInterval	=	1800000;

setInterval(makeTweet,	tweetInterval);

When	we	write	that	in	server.js,	the	file	now	should	look	something	like	this:

//	server.js
'use	strict';

var	Twitter	=	require('twitter');

Your	First	Node	App:	Make	A	Twitter	Bot

12Writing	a	Node	Server

var	express	=	require('express');
var	generate	=	require('./lib/generate');
var	app	=	express();
var	port	=	3000;
var	tweetInterval	=	1800000;

var	tweet	=	new	Twitter({
		consumer_key:	'',							//	replace	with
		consumer_secret:	'',				//	values	from
		access_token_key:	'',			//	our	Twitter
		access_token_secret:	''	//	app	data
});

function	makeTweet()	{
		var	content	=	generate();
		tweet.post('statuses/update',	{status:	content},	function(error,	tweet,	res
				if	(error)	throw	error;
				console.log('Posted	tweet:	\"'	+	content	+	'\"');
		});
}

app.get('/',	function(req,	res)	{
		res.send('Congratulations,	you	sent	a	GET	request!');
		console.log('Received	a	GET	request	and	sent	a	response');
});

app.listen(port,	function()	{
		console.log('App	now	listening	on	port',	port);
});

makeTweet();
setInterval(makeTweet,	tweetInterval);

Now,	let's	make	some	magic	happen.	Let's	run	our	app	and	watch	it	post	a	tweet.

node	server.js

If	everything's	been	written	correctly,	and	there	are	no	errors,	we	should	have	a	randomly	generated
tweet	appear	in	our	timeline!	If	we	leave	our	app	running	for	the	length	of	our	interval,	we'll	see
another	randomly	generated	tweet	appear.

Your	First	Node	App:	Make	A	Twitter	Bot

13Writing	a	Node	Server

Deploying	Our	App

Deploying	Our	App
So	far,	this	is	pretty	good.	But	in	order	to	run	it	constantly,	we'd	have	to	keep	our	own	computer
online	permanently	and	never	close	this	server.	Fortunately,	there	are	many	services	that	will	host	our
application	and	keep	it	running.	One	such	"platform-as-a-service"	is	Heroku.	As	of	this	writing,	they'll
even	host	some	low-impact	apps	for	free.

I	assume	you've	already	set	up	your	Heroku	account	and	installed	the	Heroku	toolbelt,	and	that	you've
used	heroku	login	to	log	in	to	your	Heroku	account	on	the	command	line.

Preparing	for	Heroku

Heroku	pulls	our	app	code	from	Git.	This	means	that	we	need	to	clean	our	code	of	private	secrets
before	we	commit	it	and	push	it	to	GitHub.

Let's	change	our	tweet	object	to	scrub	out	the	secrets:

var	tweet	=	new	Twitter({
		consumer_key:	process.env.TWITTER_CONSUMER_KEY,
		consumer_secret:	process.env.TWITTER_CONSUMER_SECRET,
		access_token_key:	process.env.TWITTER_ACCESS_TOKEN_KEY,
		access_token_secret:	process.env.TWITTER_ACCESS_TOKEN_SECRET
});

The	process	object	is	particular	to	Node:	it	refers	to	a	whole	slew	of	data,	such	as	how	the	app	was
invoked,	what	paths	it's	looking	for	modules	in,	and	so	forth.	Here,	we're	concerned	with	its	env
property,	which	stores	environment	variables.	An	environment	variable	is	a	piece	of	data	that's	set
on	the	host	computer,	and	is	available	to	programs	that	run	on	that	computer.	We'll	actually	create
these	environment	variables	later;	for	now,	we're	just	setting	it	up	so	that	our	code	knows	to	look	for
them.

Let's	also	change	our	other	"global"	variables	in	server.js.

var	port	=	process.env.PORT	||	3000;
var	tweetInterval	=	process.env.TWEET_INTERVAL	||	1800000;

Here,	we're	asking	our	computer	if	it	has	an	environment	variable	called	PORT,	and	another	one
called	TWEET_INTERVAL,	and	if	those	exist,	assign	their	values	to	our	application's	port	and
tweetInterval	variables.	If	those	don't	exist,	we	use	the	logical	NOT	operator	||	to	set	the
values	to	3000	and	1800000,	respectively.

If	you're	running	the	bash	shell	on	your	command	line,	you	can	set	environment	variables	with	the
export	command,	e.g.:

export	PORT=3333

In	the	fish	shell,	use:

Your	First	Node	App:	Make	A	Twitter	Bot

14Deploying	Our	App

https://heroku.com
https://toolbelt.heroku.com

set	-x	PORT	3333

We	can	use	the	fact	that	we're	setting	these	values	to	be	variables	pulled	from	the	process	environment
to	change	them	as	we	wish:	if	we	want	our	app	to	tweet	more	or	less	frequently,	all	we	have	to	do	is
change	the	value	of	an	environment	variable,	rather	than	change	a	line	that's	baked	into	our	code.	And
it's	far	more	secure	to	do	things	this	way	than	to	leave	your	secret	keys	hard-coded	into	a	document
that's	publicly	available	on	GitHub.	Don't	do	that.	I	mean	it.

Creating	a	Heroku	application

In	the	root	level	of	our	application,	we'll	run	a	command	to	initialize	our	bot	as	a	Heroku	application:

heroku	create	<name>

Replace	<name>	with	the	name	you	want	your	app	to	possess,	i.e.	the	part	that	comes	in	its	URL
before	.herokuapp.com.	If	you	don't	assign	a	name,	Heroku	will	automatically	assign	your	app	a
bad	name	like	"fathom-bunches-2187".	In	your	Heroku	web	panel,	you	can	reset	the	app's	name	to
something	better,	like	"my-first-twitter-bot".

The	Heroku	tools	will	work	by	looking	for	a	remote	on	our	Git	repository	called	heroku,	which	is
automatically	added	by	the	heroku	create	command.	You	can	verify	this	by	running	git
remote	-v	from	your	terminal;	you	should	now	called	heroku.	When	you	git	push	to	the
master	branch	on	the	heroku	repository,	you	are	telling	Heroku	"update	the	current	code	base	"

Keeping	our	server	alive

Heroku	turns	off	free	apps	if	they've	been	idle	for	a	certain	amount	of	time.	We	need	to	make	sure	that
our	app	receives	some	kind	of	HTTP	request	every	so	often,	so	that	Heroku	will	keep	its	process
alive.	Fortunately,	we	already	wrote	an	Express	route	to	handle	getting	a	request,	but	we	need	a	little
more	work	in	order	to	get	our	app	to	ping	itself	every	so	often.

To	send	an	HTTP	request	from	our	app,	we'll	need	to	use	the	http	package.	This	is	a	Node	built-in
package,	so	we	don't	need	to	explicitly	npm	install	it.	We'll	import	it	into	our	server.js	up
near	the	beginning,	where	we're	loading	our	other	packages.	Then,	we	can	tell	our	server	to	send	a
GET	request	to	the	route	at	/,	which	we	already	defined	with	Express,	every	ten	minutes:

var	http	=	require('http');

function	keepAlive()	{
		try	{
				http.get('http://[put	the	name	of	your	app	on	Heroku	here].herokuapp.com/'
				console.log('GET	request	sent;	kept	alive.');
		}	catch(e)	{
				console.log(e);
		}
}

setInterval(keepAlive,	600000);

What	this	means	is	that,	unless	there's	an	error	(which	we	log	to	the	console),	send	a	GET	request	to
our	server	at	the	/	(root)	route	every	600,000	milliseconds	=	10	minutes,	and	then	print	a	console
message	stating	that	it	happened.	(Strictly	speaking,	the	console.log()	statement	isn't	necessary
here,	since	we'll	get	a	log	that	a	GET	request	was	received,	but	let's	make	our	app	as	explicit	as

Your	First	Node	App:	Make	A	Twitter	Bot

15Deploying	Our	App

possible	about	what's	happening.)

Commit	these	changes	to	Git,	and	then	git	push	heroku	master	once	more.	Heroku	will
rebuild	the	app	with	its	new	dependency	and	code;	then	the	app	will	restart,	and	now	it	will	also
automatically	keep	itself	alive.

Setting	environment	variables

We're	expecting	our	app	to	get	quite	a	few	values	from	environment	variables.	Setting	environment
variables	on	a	Heroku	app	is	pretty	simple.	It	can	be	done	from	the	Heroku	web	dashboard,	or	from
the	command	line.	Let's	do	it	the	second	way.

The	Heroku	toolbelt	provides	the	command	heroku	config:set	for	setting	an	environment
variable.	Let's	say	we	want	our	app	to	tweet	once	per	hour:

heroku	config:set	TWEET_INTERVAL=3600000

Using	this	procedure,	we'll	set	every	environment	variable	we'll	need.	(We	won't	need	an	explicit
PORT	because	Heroku	automatically	assigns	that.)	We	can	get	the	values	of	the	four	Twitter	API	keys
and	tokens	from	the	Twitter	apps	page	under	the	"Keys	and	Access	Tokens"	tab.

heroku	config:set	TWITTER_CONSUMER_KEY=
heroku	config:set	TWITTER_CONSUMER_SECRET=
heroku	config:set	TWITTER_ACCESS_TOKEN_KEY=
heroku	config:set	TWITTER_ACCESS_TOKEN_SECRET=

Of	course,	put	the	appropriate	line	of	gibberish	after	the	equals	sign.	If	you	want	to	check	what	you've
written,	you	can	use	the	heroku	config	command	(without	:set)	to	get	the	current	value	of
your	variables,	or	heroku	config:get	to	get	an	individual	variable's	value.	If	you've	typed
something	wrong,	you	can	unset	a	variable	by	using	heroku	config:unset.

Starting	up	the	server

We	need	to	upload	our	app's	code	to	Heroku	and	then,	basically,	turn	it	on.	For	a	Node	app,	Heroku
builds	its	codebase	based	on	what's	inside	your	package.json	file.	The	most	important	value	in
package.json	as	far	as	Node	is	concerned	is	"main":	this	is	the	name	of	the	file	that	Node
should	start	your	application	running	with,	sometimes	referred	to	as	the	app's	entry	point.

from	whatever	is	in	the	master	branch	of	Git's	heroku	remote	repository.	So,	we	need	to	add	all
our	files	to	Git,	commit	them,	and	push	them	to	where	we	want	them	to	go.

git	add	.
git	commit	-m	"initial	push	to	Heroku"
git	push	heroku	master

Heroku	will	churn	away	for	a	while,	setting	up	our	app,	installing	all	the	dependencies	listed	in
package.json,	and	doing	lots	of	other	little	tasks.	Once	it's	complete,	all	we	have	to	do	is	turn	the
key	in	the	ignition.

A	Heroku	app	runs	in	something	called	a	"dyno",	which	is	basically	a	running	copy	of	your	app.	We
will	only	need	one	dyno	for	our	app.	Our	Heroku	app	won't	actually	start	until	we	allocate	a	dyno	to
it,	which	we	do	from	the	command	line	as	follows:

Your	First	Node	App:	Make	A	Twitter	Bot

16Deploying	Our	App

https://apps.twitter.com

heroku	ps:scale	web=1

Heroku	has	two	types	of	dynos:	for	"web"	processes	and	for	"worker"	processes.	Our	app	will	use	a
"web"	process,	since	it	has	an	HTTP	endpoint	at	which	it	will	be	pinging	itself	in	order	to	keep	itself
alive.	This	command	starts	up	one	dyno	to	run	our	app.

Once	the	server	is	running,	we	should	expect	our	bot	to	tweet	immediately,	and	then	again	every
TWEET_INTERVAL	milliseconds	(or	the	default	value).

Your	First	Node	App:	Make	A	Twitter	Bot

17Deploying	Our	App

Summing	Up

Summing	Up
Congratulations!	We've	successfully	built	an	app	with	Node,	got	it	talking	to	Twitter,	and	running	on
Heroku.	If	you	missed	some	of	the	code,	you	can	find	it	in	the	GitHub	repository,	under
src/tutorial/.

Our	bot	is	pretty	basic.	It	only	has	a	few	words	in	its	dictionary.	There	are	a	whole	bunch	of	places	we
could	make	improvements,	particularly	to	the	generate()	function.	The	good	news	is	that	because
our	app	is	modular,	in	order	to	make	changes	we	have	only	to	change	the	file	in	which	the	data	or
code	to	be	changed	is	located.	When	we	redeploy	our	app	to	Heroku	with	git	push	heroku
master,	the	app	will	automatically	rebuild	to	the	latest	committed	code	base.

What	next?

Some	ideas	on	how	to	extend	this	bot:

More	patterns	for	food	truck	names
Get	more	words	from	larger	word	databases	(e.g.	the	Wordnik	API)
Respond	to	replies
Favorite	mentions

The	code	located	in	src/production/,	which	is	used	to	power	the	example	bot	derived	from	this
tutorial,	has	a	couple	of	extra	bells	and	whistles	that	you	can	use	as	a	basis	to	imitate	and	extend.
Don't	be	afraid	to	experiment!

Your	First	Node	App:	Make	A	Twitter	Bot

18Summing	Up

https://wordnik.com
https://twitter.com/Food_Truck_Bot

	Introduction
	Getting Set Up
	Making a Tweet Generator
	Using the Twitter API
	Writing a Node Server
	Deploying Our App
	Summing Up

