
1.1

1.2

1.3

1.4

1.4.1

1.4.2

1.4.3

1.4.4

1.4.5

1.4.6

1.4.7

1.4.8

1.5

1.6

1.7

1.8

1.9

1.10

1.11

1.12

1.12.1

1.12.2

1.13

1.14

1.14.1

Table	of	Contents
Introduction

About	the	author

Setting	up	Node

Core	API	Basics

Buffers

Event	Emitters

HTTP

Streams

Timers

Cryptography

Networking

ASYNC	IO

Logging

Async	IO

Event	loop

Template	Engines

Promises

NPM

Linting

Testing

Tools	for	unit	testing

E2E	testing

Performance

ECMAScript	2015

Maps	and	Sets

1

Professional	Node.JS	development

Introduction:
Node.js	might	be	the	most	overwhelming	single	piece	of	software	in	the	current	JavaScript
universe.

Node.JS	is	an	open	source	project.

Node.JS	is	based	on	the	JavaScript	language	and	Node.JS	applications	are	written	with
JavaScript	language.

It	is	a	cross	platform	environment	and	has	runtime	for	windows,	mac	OS	X,	and	Linux.
Node.JS	philosophy	is	that	is	core	should	be	kept	as	small	as	possible.

The	original	author	of	Node	JS	is	Ryan	Dahl	who	originally	wrote	Node	JS	in	2009.
He	demonstrated	his	projects	at	the	inaugural	European	JSConf	on	November	8,	2009.	Dahl
was	inspired	to	create	Node.js	from	Flicker	progress	bar	widget.
He	wanted	to	prevent	first	frame	from	flickering	when	animation	starts	and	that	point	was	his
inspiration	moment…

His	demonstration	at	the	JSConf	combined	with	the	new	speed	race	Google's	V8(
JavaScript	engine,	an	event	loop	and	a	low-level	I/O	API)	were	the	trigger	for	the	emerging
technology.

The	official	documentation	of	Node.JS	describes	is	it	as:
*“Node.js	is	a	platform	built	on	Chrome's	JavaScript	run	time	for	easily	building	fast	and
scalable	network	applications.
Node.js	uses	an	event-driven,	non-blocking	I/O	model	that	makes	it	lightweight	and	efficient,
perfect	for	data-intensive	real-time	applications	that	run	across	distributed	devices.”

Node.js	provides	an	event-driven	architecture	and	a	non-blocking	I/O	API	designed	to
optimize	an	application's	throughput	and	it	scales	well	for	real-time	Web	applications.	(More
on	that	later)

Why	Node.js?

Node.js	goal	is	to	provide	an	easy	way	to	build	scalable	network	programs	with
asynchronous	processing	model.

The	main	benefits	are:

1.	 Single	thread	Asynchronous	I/O	framework

Introduction

2

http://jsconf.com/

2.	 Core	in	c++	on	top	of	V8.Implemented	on	top	of	the	v8	js	engine	(chromium	and	chrome
engine)

3.	 Rest	of	it	is	written	in	javascript
4.	 Files	io	and	db	are	non	blocking
5.	 Very	good	for	all	the	network	related	stuff
6.	 It	can	handle	thousands	of	concurrent	connections	with	minimal

overhead(CPU/Memory)	on	a	single	process
7.	 Has	a	very	small	surface	area	backed	by	an	enormous	modules	and	extensions

available	from	the	large	community	supporting	it.
8.	 Amazing	performance	even	handling	a	big	number	of	users

What	makes	Node.JS	so	fast?

Node.JS	contains	the	new	V8	engine.
The	JS	VM	v8	engine	of	chrome	is	a	super-fast	with	smart	performance	optimizations	VM
that	was	designed	&	created	by	the	Danish	Lars	Bak	(a	virtual	machine	master/	genius).

The	V8	engine	reference	the	libuv	library	that	is	based	on	asynchronous	I/O.	It	was	mainly
developed	for	use	by	Node.js

The	initial	release	supported	only	Linux.
Later	on	the	NPM	package	manager	was	integrated	with	the	release	of	NODE.JS.

It	helped	the	community	to	publish	and	share	open	source	Node.JS	libraries	that	brought
more	functionality	into	the	ecosystem.

Image	of	Ryan	Dahl	-	NODE.JS	creator

Introduction

3

https://channel9.msdn.com/Shows/Going+Deep/Expert-to-Expert-Erik-Meijer-and-Lars-Bak-Inside-V8-A-Javascript-Virtual-Machine
http://docs.libuv.org/en/v1.x/

Ryan	Dahl	video	talk	demonstration	at	JSConf	Nov	2009.

For	What	exactly	Node.JS	is	used	these	days?
Developers	mainly	use	Node.js	on	the	back-end,	but	it	is	popular	as	a	full-stack	and	front-
end	solution	as	well.

Introduction

4

http://www.jsconf.eu/2009/video_nodejs_by_ryan_dahl.html

This	is	no	surprise	since	node.js	strengths	are	that	it	is	a	full	stack	language	which	enable
tou	to	write	projects	both	for	the	frontend	and	for	the	backend.

Introduction

5

Which	kind	of	applications	are	built	today	with
node.js?
according	to	the	node	js	foundation	survey:

Introduction

6

Introduction

7

Introduction

8

About	the	author
Tal	Avissar	is	a	writer,	speaker,	open-web	evangelist	whose	passionate	about	all	things	like
JavaScript	fraemeworks,	Node.JS	Expert	&	React.JS,	Micro-services	architecture,	Kafka,
Scala	enthusiast,	and	open	sorcerer.

You	can	contact	me	at	talaviss	at	gmail	without	the	space	between	names.

Currently	working	in	the	Tel	Aviv	silicon	roundabout	area	doing	mostly	backend
development.

To	my	wife	and	children:	Carmella	Eliya	and	Ori	Avissar.

To	my	wonderful	and	devoted	wife,	Carmella,	for	her	unending	support	and	encouragement;
without	you	this	would	not	have	been	possible;	and	to	my	loving	parents	for	always	believing
in	me.

About	the	author

9

https://stackoverflow.com/users/2663692/tal-avissar

Node.js	is	an	open	source	JavaScript	runtime	environment	for	easily	building	server-side
and	networking	applications.

The	platform	runs	on

Linux,	OS	X,
FreeBSD,
MacOS
and	Windows.

Install	with	Setup	file

In	order	to	install	node	you	need	,	you	can	download	a	setup	executable	from	the	official	site

Now	it's	the	time	to	test	Node.

To	see	if	Node	is	installed,	open	the	Windows	Command	Prompt,	Powershell	or	a	similar
command	line	tool,	and	type	node	-v	.

Install	with	NVM

You	can	also	install	the	node	version	by	using	nvm.

nvm	is	the	node	version	manager	that	can	install	multiple	version	of	the	node	runtime.

To	install	or	update	nvm,	you	can	use	the	install	script	using	cURL:

curl	-o-	https://raw.githubusercontent.com/creationix
vm/v0.33.2/install.sh	|bash

or	you	can	use	Wget

wget	-qO-	https://raw.githubusercontent.com/creationix
vm/v0.33.2/install.sh		|bash

Test	it!

Make	sure	you	have	Node	and	NPM	installed	by	running	simple	commands	to	see	what
version	of	each	is	installed	and	to	run	a	simple	test	program:

Test	Node.	To	see	if	Node	is	installed,	open	the	Windows	Command	Prompt,
Powershell	or	a	similar	command	line	tool,	and	type		node	-v		.	This	should	print	a
version	number,	so	you’ll	see	something	like	this		v0.10.35		.
Test	NPM.	To	see	if	NPM	is	installed,	type		npm	-v		in	Terminal.	This	should	print	NPM’s
version	number	so	you’ll	see	something	like	this		1.4.28	
Create	a	test	file	and	run	it.	A	simple	way	to	test	that	node.js	works	is	to	create	a

Setting	up	Node

10

https://nodejs.org/en/download/
https://github.com/creationix/nvm/blob/v0.33.2/install.sh

JavaScript	file:	name	it		hello.js		,	and	just	add	the	code		console.log('Node	is
installed!');		.	To	run	the	code	simply	open	your	command	line	program,	navigate	to
the	folder	where	you	save	the	file	and	type		node	hello.js		.	This	will	start	Node	and	run
the	code	in	the		hello.js		file.	You	should	see	the	output	Node	is	installed!	

as	explained	also	in	order	to	verify	the	installation	that	nvm	installed	correctly	issue	the
following	command:

command	-v	nvm

which	should	output	'nvm'	if	the	installation	was	successful.	Please	note	that	which	nvm	will
not	work,	since	nvm	is	a	sourced	shell	function,	not	an	executable	binary.

Node.js	applications	can	be	run	at	the	command	line,	but	you	can	also	on	run	them	as	a
service,

so	that	they	will	automatically	restart	on	reboot	or	failure,	and	can	safely	be	used	in	a
production	environment.

Setting	up	Node

11

Core	API	Basics

Core	API	Basics

12

Buffers
In	the	past	the	JavaScript	language	had	no	mechanism	for	reading	or	manipulating	streams
of	binary	data.	The	Buffer	class	was	introduced	as	part	of	the	Node.JS	language	API,
because	JavaScript	does	not	handle	straight	binary	data	very	well.

Since	Node.JS	is	a	server	technology	and	has	to	deal	with	streams	(TCP/UDP)	and	reading
and	writing	to	files	and	network.

So	the	buffer	was	the	solution	to	the	old	way	of	working	with	encoded	strings.

The	buffer	in	Node.JS	is	a	way	of	handling	raw	binary	data.	It	is	done	with	Raw	memory
allocation	outside	the	V8	heap	inside	the	Global	namespace	object.	The	buffer	object	is
global.

An	example	of	how	to	allocate	simple	buffer:

	var	buff	=	new	Buffer('some	arbitrary	string');	

The	buffer	can	be	created	with	different	string	encodings:	'ascii',	'utf8',	'ucs2',	'base64',
'binary',	'hex'.	(later	on	explanation	on	each	one	of	these).

You	can	also	init	buffer	from	an	array:

	var	buffer	=	new	Buffer([2,3,4]);	

Once	allocated	the	buffer	cannot	be	resized.

A	buffer	can	be	initialized	to	certain	size	like:

	var	buffer	=	new	Buffer(4096);	

A	buffer	can	be	sliced	to	smaller	buffer	as	follows:

	var	buffer	=	new	Buffer("this	is	my	first	buffer");	

	var	partSliced	=	buffer.slice(12,5);	

Buffers

13

Event	Emitters
In	node.js	an	event	can	be	described	simply	as	a	string	with	a	corresponding	callback.	An
event	can	be	"emitted"	(or	in	other	words,	the	corresponding	callback	be	called)	multiple
times	or	you	can	choose	to	only	listen	for	the	first	time	it	is	emitted.

Event	emitter	as	it	sounds	is	just	something	that	triggers	an	event	to	which	anyone	can
listen.

Different	libraries	offer	different	implementations	and	for	different	purposes,	but	the	basic
idea	is	to	provide	a	framework	for	issuing	events	and	subscribing	to	them.

Here	is	an	Example	from	jQuery:

//	Subscribe	to	event.

$('#foo').bind('click',function()
{
				alert("Click!");
});
//	Emit	event.

$('#foo').trigger('click');

Here	is	an	example	od	code	snippet	that	explains	how	events	are	emitted	in	node:

	var	example_emitter	=	new	(require('events').EventEmitter);	

	example_emitter.on("test",	function	()	{	console.log("test");	});	

	example_emitter.on("print",	function	(message)	{	console.log(message);	});	

	example_emitter.emit("test");	

	example_emitter.emit("print",	"message");	

	example_emitter.emit("unhandled");	

And	here	an	example	of	doing	it	from	the	REPL:

	>	var	example_emitter	=	new	(require('events').EventEmitter);	

	{}	

	>	example_emitter.on("test",	function	()	{	console.log("test");	});	

	{	_events:	{	test:	[Function]	}	}	

	>	example_emitter.on("print",	function	(message)	{	console.log(message);	});	

	{	_events:	{	test:	[Function],	print:	[Function]	}	}	

Event	Emitters

14

	>	example_emitter.emit("test");	

	test	//console.log'd	

	true	//return	value	

	>	example_emitter.emit("print",	"message");	

	message	//console.log'd	

	true	//return	value	

	>	example_emitter.emit("unhandled");	

	false	//return	value	

Event	Emitters

15

HTTP
The	purpose	of	this	guide	is	to	give	you	understanding	of	how	the	core	http	API	with	Node
works.

Express	and	hapi	frameworks	use	underneath	the	builtin	http	module.

With	this	module	you	can	create	an	http	server	and	much	more.

This	is	the	way	you	create	the	basic	http	server	code:

var	http	=	require('http');

var	server	=	http.createServer(function(request,	response)	{
		//	http	server	implementation
});```

The	callback	function	that	that	is	passed	to	the	httpserver	is	called	ebery	time	there
	is	a	request	from	the	client.			

Http	headers	can	be	manipulates	and	retrieved	from	headers	object:

var	headers	=	request.headers;
var	userAgent	=	headers['user-agent'];```

The	http	properties	can	be	also	retrievd	as	follows:

var	url	=	request.url;
var	httpmethod	=	request.method;```

1.	In	order	to	perform	a	**simple	get**	with	the	http	module	:

var	http	=	require('http');
var	options	=	{
host:	'www.stackoverflow.com',
path:	'/index.html'
};

var	req	=	http.get(options,	function(res)	{
console.log('STATUS:	'	+	res.statusCode);
console.log('HEADERS:	'	+	JSON.stringify(res.headers));

HTTP

16

//	Buffer	the	body	entirely	for	processing	as	a	whole.
var	bodyChunks	=	[];
res.on('data',	function(chunk)	{
//	You	can	process	streamed	parts	here...
bodyChunks.push(chunk);
}).on('end',	function()	{
var	body	=	Buffer.concat(bodyChunks);
console.log('BODY:	'	+	body);
//	...and/or	process	the	entire	body	here.
})
});
//because	it	implements	event	emitter	itf	on	error	is	defined
req.on('error',	function(e)	{
console.log('ERROR:	'	+	e.message);
});```

This	get	method	calls	the	req.end()	automatically

Another	way	is	to	use	the	general	http.request(options,	callback)	function	which	allows	you
to	specify	the	request	method	and	other	request	details.

You	need	to	specify	the	different	attributes	for	the	options	object.
options	can	be	an	object	or	a	string.

```
var	postData	=	querystring.stringify({
'msg'	:	'some	arbitrary	token'
});

var	options	=	{
hostname:	'www.facebook.com',
port:	80,
path:	'/token',
method:	'POST',
headers:	{
'Content-Type':	'application/x-www-form-urlencoded',
'Content-Length':	postData.length
}
};

var	req	=	http.request(options,	(res)	=>	{
console.log(	STATUS:	${res.statusCode}	);
console.log(	HEADERS:	${JSON.stringify(res.headers)}	);

HTTP

17



res.setEncoding('utf8');
res.on('data',	(chunk)	=>	{
console.log(	BODY:	${chunk}	);
});
res.on('end',	()	=>	{
console.log('No	more	data	in	response.')
})
});

req.on('error',	(e)	=>	{
console.log(	problem	with	request:	${e.message}	);
});

//	write	data	to	request	body
req.write(postData);
req.end();```

NodeJS	supports	http.request	as	a	standard	module:

var	http	=	require('http');

var	options	=	{

		host:	'example.com',

		port:	80,

		path:	'/foo.html'

};

http.get\(options,	function\(resp\){

		resp.on\('data',	function\(chunk\){

				//do	something	with	chunk

		}\);

}\).on\("error",	function\(e\){

		console.log\("Got	error:	"	+	e.message\);

}\);

HTTP

18



Of	course	we	can	also	combine	node-http-proxy	and	express.	node-http-proxy	will	support	a
proxy	inside	node.js	web	server	via	RoutingProxy	(see	the	example	called	Proxy	requests
within	another	http	server).

HTTP

19



Streams
Node.js	is	asynchronous	and	event	driven	in	nature.	As	a	result,	it’s	very	good	at	handling
I/O	bound	tasks.	If	you	are	working	on	an	app	that	performs	I/O	operations,	you	can	take
advantage	of	the	streams	available	in	Node.js.	So,	let’s	explore	Streams	in	detail	and
understand	how	they	can	simplify	I/O.

What	are	exacty	streams?

Streams	are	collections	of	data — just	like	arrays	or	strings.	The	difference	is	that	streams
might	not	be	available	all	at	once,	and	they	don’t	have	to	fit	in	memory.	This	makes	streams
powerful	when	working	with	large	amounts	of	data,	or	data	that’s	coming	from	an	external
source	one	chunk	at	a	time.

There	are	couple	of	operations	that	can	be	performed	with	streams:

There	are	couple	of	types	of	streams:	Readable,	writable,	duplex.

Readable	Streams
1.	 Reading	from	streams

2.	 Setting	Encoding

3.	 Piping

4.	 Chaining

Assume	that	you	have	an	archive	and	want	to	decompress	it.	There	are	a	many	ways	to
achieve	this.	But	the	easiest	and	cleanest	way	is	to	use	piping	and	chaining.	Have	a	look	at
the	following	snippet:

	var	fs	=	require('fs');	

	var	zlib	=	require('zlib');	

	fs.createReadStream('input.txt.gz')	

	.pipe(zlib.createGunzip())	

	.pipe(fs.createWriteStream('output.txt'));	

Writable	Streams

Streams

20



Streams

21



Timers
1.	 setInterval(callback,	delay,	[arg],	[...])

setInterval(function(){
			console.log('test');
},	60	*	60	*	1000);

2.	 To	schedule	the	repeated	execution	of	callback	every	delay	milliseconds.	Returns
a	intervalId	

for	possible	use	with	clearInterval()	

Optionally	you	can	also	pass	arguments	to	the	callback.setTimeout(callback,	delay,
[arg],	[...])

	To	schedule	execution	of	a	one-time`callback`after`delay`milliseconds.

	This	function	Returns	a`timeoutId`for	possible	use	with`clearTimeout()	`callback.
	It	is	important	to	note	that	your	callback	will	probably	not	be	called	in	exactly
`delay`milliseconds	-	Node.js	makes	no	guarantees	about	the	exact	timing	of	when	t
he	callback	will	fire,	nor	of	the	ordering	things	will	fire	in.	The	callback	will	
be	called	as	close	as	possible	to	the	time	specified.

3.	 clearImmediate(immediateObject)

this	method	Prevents	a	timeout	from	triggering.	it	basically	clear	the	immediateObjext
reference	passed	to	it.

Using	The	timer	module:
The	timer	module	exposes	a	global	API	for	scheduling	functions	to	be	called	at	some	future
period	of	time.	Because	the	timer	functions	are	globals,	there	is	no	need	to	call

	require('timers')	

to	use	the	API.

A	timer	in	Node.js	is	an	internal	construct	that	calls	a	given	function	after	a	certain	period	of
time.	When	a	timer's	function	is	called	varies	depending	on	which	method	was	used	to
create	the	timer	and	what	other	work	the	Node.js	event	loop	is	doing.

Timers

22



Timers

23



Cryptography
The	crypto	module	is	mostly	useful	as	a	tool	for	implementing	cryptographic	protocols	such
as	TLS	and	https.

Nodejs	offers	great	support	for	cryptography.

The	crypto	module	is	a	wrapper	above	the	OpenSSL	cryptographic	functions.	(HMAC,
Cyphers,	...)

require("crypto")
		.createHash("md5")
		.update("This	is	some	crypt	string	in	node!")
		.digest("hex");

The	crypto	module	provides	cryptographic	functionality	that	includes	a	set	of	wrappers	for
OpenSSL's	hash,	HMAC,	cipher,	decipher,	sign	and	verify	functions.

How	to	determine	if	crypto	support	is	unavailable

	let	crypto;	

	try	{	

	crypto	=	require('crypto');	

	}	catch	(err)	{	

	console.log('crypto	support	is	disabled!');	

	}	

The	crypto	module	provides	the	Certificate	class	for	working	with	SPKAC	data.

Instances	of	the	Certificate	class	can	be	created	using	the	new	keyword	or	by
calling	crypto.Certificate()	as	a	function:

Example	on	hot	to	decrypt/encrypt	text	using	the	crypto	module

Cryptography

24



var	crypto	=	require('crypto'),
				algorithm	=	'aes-256-ctr',
				password	=	'd6F3Efeq';

function	encrypt(text){
		var	cipher	=	crypto.createCipher(algorithm,password)
		var	crypted	=	cipher.update(text,'utf8','hex')
		crypted	+=	cipher.final('hex');
		return	crypted;
}

function	decrypt(text){
		var	decipher	=	crypto.createDecipher(algorithm,password)
		var	dec	=	decipher.update(text,'hex','utf8')
		dec	+=	decipher.final('utf8');
		return	dec;
}

var	hw	=	encrypt("hello	world")

console.log(decrypt(hw));

An	example	on	how	to	decrypt/encrypt	buffers:

var	crypto	=	require('crypto'),
				algorithm	=	'aes-256-ctr',
				password	=	'd6F3Efeq';

function	encrypt(buffer){
		var	cipher	=	crypto.createCipher(algorithm,password)
		var	crypted	=	Buffer.concat([cipher.update(buffer),cipher.final()]);
		return	crypted;
}

function	decrypt(buffer){
		var	decipher	=	crypto.createDecipher(algorithm,password)
		var	dec	=	Buffer.concat([decipher.update(buffer)	,	decipher.final()]);
		return	dec;
}

var	hw	=	encrypt(new	Buffer("hello	world",	"utf8"))
//	outputs	hello	world
console.log(decrypt(hw).toString('utf8'));

Cryptography

25



Networking	examples	with	node.js
A	simple	Telnet	Chat

var	sockets	=	[];
var	nicks	=	1;

var	s	=	net.Server(function(socket)	{
				sockets.push(socket);
				socket.nickname	=	nicks++;
				socket.write('Welcome	to	telnet-chat!\n');

				socket.on('data',	function(d)	{
								for	(var	i=0;	i
<
sockets.length;	i++)	{
												sockets[i].write(socket.nickname+":\t	"+d);
								}				
				});
				socket.on('end',	function()	{
								var	i	=	sockets.indexOf(socket);
								sockets.splice(i,	1);
				});
}).listen(8000);

Working	with	TCP

A	simple	tcp	based	chat	server

//	Load	the	TCP	Library

Networking

26



net	=	require('net');

//	Keep	track	of	the	chat	clients
var	clients	=	[];

//	Start	a	TCP	Server
net.createServer(function	(socket)	{

		//	Identify	this	client
		socket.name	=	socket.remoteAddress	+	":"	+	socket.remotePort	

		//	Put	this	new	client	in	the	list
		clients.push(socket);

		//	Send	a	nice	welcome	message	and	announce
		socket.write("Welcome	"	+	socket.name	+	"\n");
		broadcast(socket.name	+	"	joined	the	chat\n",	socket);

		//	Handle	incoming	messages	from	clients.
		socket.on('data',	function	(data)	{
				broadcast(socket.name	+	"
>
	"	+	data,	socket);
		});

		//	Remove	the	client	from	the	list	when	it	leaves
		socket.on('end',	function	()	{
				clients.splice(clients.indexOf(socket),	1);
				broadcast(socket.name	+	"	left	the	chat.\n");
		});

		//	Send	a	message	to	all	clients
		function	broadcast(message,	sender)	{
				clients.forEach(function	(client)	{
						//	Don't	want	to	send	it	to	sender
						if	(client	===	sender)	return;
						client.write(message);
				});
				//	Log	it	to	the	server	output	too
				process.stdout.write(message)
		}

}).listen(5000);

//	Put	a	friendly	message	on	the	terminal	of	the	server.
console.log("Chat	server	running	at	port	5000\n");

Networking

27



Asynchronous	I/O
Asynchronous	I/O,	or	non-blocking	I/O,	is	a	form	of	input/output	processing	that	permits
other	processing	to	continue	before	the	transmission	has	finished.

What	this	means	is,	if	a	process	wants	to	do	a	read()	or	write()	,	in	a	synchronous	call,	the
process	would	have	to	wait	until	the	hardware	finishes	the	physical	I/O	so	that	it	can	be
informed	of	the	success/failure	of	the	I/O	operation.

On	asynchronous	mode,	once	the	process	issues	a	read/write	I/O	asynchronously,	the
system	calls	is	returned	immediately	once	the	I/O	has	been	passed	down	to	the	hardware	or
queued	in	the	OS/VM.	Thus	the	execution	of	the	process	isn't	blocked	(hence	why	it's	called
non-blocking	I/O)	since	it	doesn't	need	to	wait	for	the	result	from	the	system	call,	it	will
receive	the	result	later.

Asynchronous	I/O	(from	Wikipedia)

Overview	of	Blocking	vs	Non-Blocking
This	overview	covers	the	difference	between	blocking	and	non-blockingcalls	in	Node.js.

This	overview	will	refer	to	the	event	loop	and	libuv

libuv	is	a	multi-platform	support	library	with	a	focus	on	asynchronous	I/O.	It	was	primarily
developed	for	use	by	Node.js,	but	it's	also	used	by	Luvit,	Julia,	pyuv,	and	others.	In	case	you
find	errors	in	this	documentation	you	can	help	by	sending	pull	requests!

Readers	are	assumed	to	have	a	basic	understanding	of	the	JavaScript	language	and
Node.js	callback	pattern.

"I/O"	refers	primarily	to	interaction	with	the	system's	disk	and	network	supported	by	libuv.

Blocking
Blocking	is	when	the	execution	of	additional	JavaScript	in	the	Node.js	process	must	wait
until	a	non-JavaScript	operation	completes.	This	happens	because	the	event	loop	is	unable
to	continue	running	JavaScript	while	a	blocking	operation	is	occurring.

In	Node.js,	JavaScript	that	exhibits	poor	performance	due	to	being	CPU	intensive	rather
than	waiting	on	a	non-JavaScript	operation,	such	as	I/O,	isn't	typically	referred	to	as
blocking.	Synchronous	methods	in	the	Node.js	standard	library	that	use	libuv	are	the	most

ASYNC	IO

28

http://en.wikipedia.org/wiki/Asynchronous_I/O
http://docs.libuv.org/en/v1.x/
http://libuv.org/


commonly	used	blocking	operations.	Native	modules	may	also	have	blocking	methods.

All	of	the	I/O	methods	in	the	Node.js	standard	library	provide	asynchronous	versions,	which
are	non-blocking,	and	accept	callback	functions.	Some	methods	also	have	blocking
counterparts,	which	have	names	that	end	with	Sync	.

ASYNC	IO

29



Logging	with	node
There	are	many	libraries	available	for	logging	in	the	node	ecosystem.	The	main	ones	in	use
are	log4js	and	the	winston	libraries

Using	Log4JS	library

The	npm	module	for	this	library	appears	here

	//requiring	the	log4js	library	

	var	log4js	=	require('log4js');	

	//console	log	is	loaded	by	default,	so	you	won't	normally	need	to	do	this	

	//log4js.loadAppender('console');	

	log4js.loadAppender('file');	

	//log4js.addAppender(log4js.appenders.console());	

	log4js.addAppender(log4js.appenders.file('logs/cheese.log'),	'cheese');	

	var	logger	=	log4js.getLogger('cheese');	//get	a	refernce	to	a	named	instance	

	//setting	the	level	of	information	trace,	debug,	info,	warn,	error	or	fatal	

	logger.setLevel('ERROR');	

The	library	is	used	heavily	in	the	industry.

It	is	needed	to	configure	the	log4js	with	the	correct	appenders	and	other	metadata	for	the
logging	framework:

	configure('./src/config/log4js-config.json');	

	const	logger	=	getLogger("app");	

Here	is	an	example	for	log	configuration

Logging

30

https://github.com/nomiddlename/log4js-node


There	are	builtin	appenders	that	can	be	configured	for	the	log4js	which	can	be	found	here.

Out	of	the	box	it	supports	the	following	features:

1.	 colored	console	logging
2.	 replacement	of	node's	console.log	functions	(optional)
3.	 file	appender,	with	log	rolling	based	on	file	size
4.	 SMTP	appender
5.	 GELF	appender
6.	 hook.io	appender
7.	 Loggly	appender
8.	 Logstash	UDP	appender
9.	 multiprocess	appender	(useful	when	you've	got	worker	processes)
10.	 logger	for	connect/express	servers

Logging

31



11.	 configurable	log	message	layout/patterns
12.	 different	log	levels	for	different	log	categories	(make	some	parts	of	your	app	log	as

DEBUG,	others	only	ERRORS,	etc.)

Using	Winston	library

A	multi-transport	async	logging	library	for	node.js.
Winston	is	one	of	the	most	popular	Node.js	logging	frameworks
First	you	need	to	require	the	module:

		var	winston	=	require('winston');

The	default	logger	is	accessible	through	the	winston	module	directly.

Usage	example:

```
var	winston	=	require('winston');

winston.log('info',	'Node.	JS	logging');
winston.info('this	is	some	important	info');

winston.level	=	'debug';
winston.log('debug',	'debug	messages	are	logged	now');```

Logging

32

Event	loop
Event	loop	is	a	construction	that	is	responsible	for	dispatching	events	in	a	program	that
almost	always	operates	asynchronously	with	the	message	originator.	When	you	call	an	I/O
operation,	NodeJS	stores	the	callback	assigned	with	that	operation	and	continue	processing
other	events.	Callback	will	be	triggered	when	all	needed	data	is	collected.

Here	is	more	advanced	definition	of	the	event	loop:

The	event	loop,	message	dispatcher,	message	loop,	message	pump,	or	run	loop	is	a
programming	construct	that	waits	for	and	dispatches	events	or	messages	in	a	program.
It	works	by	making	a	request	to	some	internal	or	external	“event	provider”	(which
generally	blocks	the	request	until	an	event	has	arrived),	and	then	it	calls	the	relevant
event	handler(“dispatches	the	event”).	The	event-loop	may	be	used	in	conjunction	with
a	reactor,	if	the	event	provider	follows	the	file	interface,	which	can	be	selected	or	‘polled’
(the	Unix	system	call,	not	actual	polling).	The	event	loop	almost	always	operates
asynchronously	with	the	message	originator.

Here	is	a	simple	illustration	that	explains	how	event	loop	works	in	NodeJS.

NodeJS	Event	Loop

When	a	request	is	received	by	web-server	it	goes	to	the	event	loop.	Event	loop	registers
operation	in	a	thread	pool	with	assigned	callback.	Callback	will	be	triggered	when
processing	request	is	done.	Your	callback	also	can	do	other	intensive	operations	like

Event	loop

33

querying	the	database,	but	it	does	so	the	same	way — registers	operation	in	a	thread	pool
with	assigned	callback	and	so	on…

But	what	about	code	execution	and	its	speed?	Next,	we	are	going	to	talk	about	virtual
machine	that	executes	JavaScript	code — V8.

If	you	want	to	know	more	about	how	the	v8	does	with	that	loop	you	can	read	much	more
details	about	it	in	the	follwoing	article

The	V8	and	Lars	Bak,	the	lead	developer	of	V8:

Event	loop

34

https://wingolog.org/archives/2011/06/08/what-does-v8-do-with-that-loop

Template	engines:
A	template	engine	enables	you	to	use	static	template	files	in	your	application.	At	runtime,	the
template	engine	replaces	variables	in	a	template	file	with	actual	values,	and	transforms	the
template	into	an	HTML	file	sent	to	the	client.	This	approach	makes	it	easier	to	design	an
HTML	page.

Some	popular	template	engines	that	work	with	Express	are	Pug,	Mustache,	and	EJS.	The

Express	application	generator	uses	Jade	as	its	default,	but	it	also	supports	several	others.

To	render	template	files,	set	the	followingapplication	setting	properties,	set	in	app.js	in	the
default	app	created	by	the	generator:

	views		,	the	directory	where	the	template	files	are	located.	Eg:		app.set('views',
'./views')		.	This	defaults	to	the		views		directory	in	the	application	root	directory.
	view	engine		,	the	template	engine	to	use.	For	example,	to	use	the	Pug	template
engine:		app.set('view	engine',	'pug')		.

Then	install	the	corresponding	template	engine	npm	package;	for	example	to	install	Pug:

$	npm	install	pug	--save

After	the	view	engine	is	set,	you	don’t	have	to	specify	the	engine	or	load	the	template	engine
module	in	your	app;	Express	loads	the	module	internally,	as	shown	below	(for	the	above
example).

app.set('view	engine','pug')

Create	a	Pug	template	file	named	index.pug	in	the	views	directory,	with	the	following
content:

html
		head
				title=	title
		body
				h1=	message

Then	create	a	route	to	render	the	index.pug	file.	If	the	view	engine	property	is	not	set,	you
must	specify	the	extension	of	the	view	file.	Otherwise,	you	can	omit	it.

Template	Engines

35

https://pugjs.org/api/getting-started.html
https://www.npmjs.com/package/mustache
https://www.npmjs.com/package/ejs
https://expressjs.com/en/starter/generator.html
https://www.npmjs.com/package/jade
https://expressjs.com/en/4x/api.html#app.set

app.get('/',function(req,res){
res.render('index',{title:'Hey',message:'Hello	there!'})}
)

When	you	make	a	request	to	the	home	page,	the	index.pug	file	will	be	rendered	as	HTML.

Note:	The	view	engine	cache	does	not	cache	the	contents	of	the	template’s	output,	only	the
underlying	template	itself.	The	view	is	still	re-rendered	with	every	request	even	with	the
cache	is	on.

To	learn	more	about	how	template	engines	work	in	Express,	see:“Developing	template
engines	for	Express”.

Dust
Dust.js	comes	from	LinkedIn	—	a	fully	asynchronous	Javascript	templating	system/engine
for	the	browser	and	server.	Dust,	while	not	completely	logic-less,	does	involve	a	lot	less	logic
than	your	average	templating	system.	With	Dust	you’re	moving	all	your	logical	parts	of	the
code	towards	a	simple	data	model,	at	which	point	you’re	able	to	execute	functions	within	that
model	and	call	it	forth	by	using	the	template	system	itself,	which	then	grants	you	full	control
over	how	your	templates	react	in	different	situations.

doT
doT.js	is	small,	efficient,	fast	and	lightweight	templating	engine	that	supports	itself	(no
dependancies),	and	works	great	with	Node.js	and	native	Browser	integration.

Handlebars
Handlebars	is	a	close	successor	to	Mustache,	and	both	can	actually	be	used	at	the	same
time,	with	the	ability	to	swap	out	tags	where	necessary.	The	only	difference	is	that
Handlebars	is	more	focused	on	helping	developers	to	create	semantic	templates,	without
having	to	involve	all	the	confusion	and	time	consumption.	You	can	easilytry	out	Handlebars
yourself(there’s	also	an	option	to	try	Mustache	on	the	same	page)	and	see	for	yourself
whether	this	is	the	type	of	templating	engine	you’re	looking	for.

EJS

Template	Engines

36

https://expressjs.com/en/advanced/developing-template-engines.html
http://www.dustjs.com/
https://olado.github.io/doT/
http://handlebarsjs.com/
http://tryhandlebarsjs.com/
http://ejs.co/

The	last	of	the	most	popular	JavaScript	template	engines	on	our	list	is	going	to	be
Embedded	JavaScript	Templates	(EJS)	—	a	lightweight	solution	towards	creating	HTML
markup	with	simple	JavaScript	code.	Worry	not	about	organizing	your	stuff	in	the	right
manner,	it’s	just	straight	JavaScript	all	the	way.	Fast	code	execution,	ease	of	debugging
makes	this	the	perfect	templating	engine	for	those	who	want	to	do	HTML	work	with	their
favorite	language,	presumably	JavaScript.

Underscore
Underscore,	another	highly	reputable	templating	engine,	is	an	external	JavaScript	library
that	enables	developers	to	take	advantage	of	functional	helpers	that	keep	the	code	base
intact.	Underscore	solves	the	problem	of	having	to	open	your	code	editor	and	not	knowing
where	to	start.	Underscore	provides	over	100	functions	that	support	both	your	favorite
workaday	functional	helpers:	map,	filter,	invoke	—	as	well	as	more	specialized	goodies:
function	binding,	javascript	templating,	creating	quick	indexes,	deep	equality	testing,	and	so
on.

Pug
When	people	say	Python	is	like	writing	in	English,	they	underestimate	the	magnitude	of	that
statement	when	it	comes	to	Pug	syntax	programming.	The	Pug	template	engine	(for
Node.js)	is	literally	enabling	developers	to	write	code	that	looks	like	paragraphs	straight	out
of	a	book.	Not	only	does	this	improve	the	overall	code	productivity,	it	can	help	to	streamline
the	work	on	a	project	that	consists	of	multiple	team	members.

Choosing	the	Best	Templating	Engine	for
JavaScript
When	choosing	the	right	templating	engine	for	our	projects,	we	should	take	into
consideration	the	exact	type	of	work	we	are	looking	to	do,	and	how	much	of	the	project	is
actually	going	to	have	to	be	templated,	and	what	kind	of	solution	would	work	out	for	you
individually	in	both	long-term	and	short-term.

Template	Engines

37

http://underscorejs.org/
https://pugjs.org/

Promises
The	first	thing	to	know	about	promises	is	that	they	are	an	abstraction	for	asynchronous
programming.

Promises	are	a	very	important	pattern	when	developing	in	node.JS	and	have	vast	usage.

Promises	provide	a	alternative	way	for	writing	asynchronous	code	with	raw	callbacks.

Promise	are	an	abstraction	and	a	pattern	to	solve	calling	asynchronous	code	in	a	more
controllable	manner.

Promises	provide	us	with	a	cleaner	and	more	robust	way	of	handling	async	code.
It	also	reverts	the	IOC	pattern	and	returns	the	control	to	the	caller	itself.
So	this	pattern	behavior	of	promises	help	us	to	manage	the	async	code	as	if	it	was	sync
code.

This	chapter	is	an	introduction	to	ECMAScript	6	Promise	API	in	particular.

The	default	pattern	of	promise	is:

```function	readFileAsync()	{

return	new	Promise(
				function	(resolve,	reject)	{

								//...implemention	goes	here
								resolve(value);	//	resolving	the	promise			
								reject(error);	//	rejecting	the	promise
				});

The	above	function	can	be	used	as	follows:

readFileAsync()
.then(value	=>	{	/	success	/	})
.catch(error	=>	{	/	failure	/	});

Promises	have	different	states:

1.	 Pending	-	The	initial	state	of	a	promise.
2.	 Fulfilled	-	The	state	of	a	promise	representing	a	successful	operation.
3.	 Rejected	-	The	state	of	a	promise	representing	a	failed	operation.

Promises	have	a	then	method,	which	you	can	use	to	get	the	eventual	return	value
(fulfillment)	or	thrown	exception	(rejection).

Promises

38

https://en.wikipedia.org/wiki/Inversion_of_control


There	are	couble	of	3rd	party	libaraies	module	that	are	vastly	used	in	the	community:

Bluebird:
Bluebird	provides	promisification	on	steroids.
Installation	goes	like:
	npm	install	bluebird	

When	creating	a	promise:

	new	Promise(function	(ok,	err)	{	doSomething(function	()	{	if	(success)	{	ok();	}	else	{
err();	}	});	})	

From	consumer	prespective

promise
		.then(okFn,	errFn)
		.catch(errFn)```

When	dealing	with	an	array	of	promises:

var	promises	=	[
promiseDoSomething(),	promiseDoOther(),	...
]

//	succeeds	when	all	the	above	promises	succeed
Promise.all(promises)
.then(function	(results)	{
});

//	succeeds	when	one	of	the	promises	finishes	first
Promise.race(promises)
.then(function	(result)	{
});```

You	can	create	from	an	object	api	a	promisification	of	all	its	exposed	library	methods.	For
example:
So	Now	you	can	use	the	fs	module	as	if	it	was	designed	to	use	by	bluebird	promises	from
the	beginning	=>

Promises

39

http://bluebirdjs.com/docs/getting-started.html


var	fs	=	require("fs");
Promise.promisifyAll(fs);

fs.readFileAsync("file.js",	"utf8").then(...)```

Once	you've	done	the	above	code	you	just	need	to	add	the		"Async"-suffix	to	method	cal
ls	and	start	using	the	usual	promise	interface	(instead	of	the	callback	interface).	

Usually	this	should	be	doneon	the	.prototype	(calling	the	promisifyAll)	when	requiring
	the	library's	classes.	
For	example:	

Promise.promisifyAll(require("mysql/lib/Connection").prototype);```

Bluebird	promise	monitoring:

This	is	a	very	nice	feature	in	bluebird	which	enables	us	to	hook	on	the	lifecycle	events	of
promises	in	the	blubird	library:

"promiseCreated"	-	when	created	through	the	constructor.
"promiseChained"	-	when	created	through	chaining	(e.g.	.then).
"promiseFulfilled"	-	when	a	promise	is	fulfilled.
"promiseRejected"	-	when	a	promise	is	rejected.
"promiseResolved"	-	when	a	promise	adopts	another's	state.
"promiseCancelled"	-	when	a	promise	is	cancelled.

In	order	to	enable	this	promise	you	need	to	manually	call	Promise.config	with	monitoring:
true.

canceling	a	promise:

With	the	bluebird	library	it	is	also	possible	to	cancel	a	library:

Promises

40



var	Promise	=	require('bluebird');

var	parentPromise	=	Promise.resolve(42)
				.then((val1)	=>	{
								console.log(val1);
								return	val1	+	1;
				})
				.then((val2)	=>	{
								console.log(val2);
								return	val2	+	1;
				})
				.cancellable()//from	here		=>now	you	can	cancel	the	promise
				.then((val3)	=>	{
								const	randomValue	=	parseInt(Math.random()	*	10)
								console.log('random	value:'	+	randomValue);
								return	randomValue;
				})
				.then((randomValue)	=>	{
								console.log(randomValue);
								if	(randomValue	<=	5)	{
												console.log('cancelling	the	promise');
												return	parentPromise.cancel('value	cannot	be	lower	then	five');
								}
								console.log('continuing	the	promise');
								return	someRndValue	+	1;
				})
				.then((val4)	=>	{
								//this	code	will	not	be	reached	if	someRndValue<5
								console.log(val4);
								return	val4;
				})
				.catch(Promise.CancellationError,	function	(err)	{
								//this	code	will	be	reached	only	if	someone	calls	without	reason	:	parentPromi
se.cancel();
								console.log('CancellationError:'	+	err);
				})
				.catch((err)	=>	{

								console.log(err.message);
				});

Node.js	8: 	util.promisify()	
Node.js	8	has	a	new	utility	function:	util.promisify()	.

It	converts	a	callback-based	function	to	a	Promise-based	one.	This	contribution	is	mainly	by
Benjamin

Promises

41

https://nodejs.org/en/blog/release/v8.0.0/
https://nodejs.org/api/util.html#util_util_promisify_original
https://stackoverflow.com/users/1348195/benjamin-gruenbaum


For	example	the	following	code	:

If	you	hand	the	path	of	a	file	to	the	following	script,	it	prints	its	contents.

	const	{promisify}	=	require('util');	

	const	fs	=	require('fs');	

	const	readFileAsync	=	promisify(fs.readFile);	//	(A)	

	const	filePath	=	process.argv[2];	

	readFileAsync(filePath,	{encoding:	'utf8'})	

	.then((text)	=>	{	

	console.log('CONTENT:',	text);	

	})	

	.catch((err)	=>	{	

	console.log('ERROR:',	err);	

	});	

The	Q	library
A	tool	for	creating	and	composing	asynchronous	promises	in	JavaScript
The	Q	library	created	by	kris	kowal	and	is	one	of	the	main	libraries.

To	promisify	a	callback	with	the	Q	library:

	Q.fcall(promisedStep1)	.then(promisedStep2)	.then(promisedStep3)	.then(promisedStep4)
.then(function	(value4)	{	//	Do	something	with	value4	})	.catch(function	(error)	{	//
Handle	any	error	from	all	above	steps	})	.done();	

An	imprtant	article	on	how	we	are	miising	the	point	about	promises	can	be	found	here.

Promises

42

https://gist.github.com/domenic/3889970


NPM
NPM	is	the	largest	ecosystem	of	open	source	libraries	in	the	world.

NPM	stands	for	Node.js'	package	manager.

Make	sure	you	have	Node	and	NPM	installed	by	running	simple	commands

to	see	what	version	of	each	is	installed	and	to	run	a	simple	test	program.

install	NPM	on	windows
1.	 Download	the	Windows	installer	from	the	[Nodes.js®	web	site.](https://nodejs.org/en/\)

2.	 Run	the	installer	(the	.msi	file	you	downloaded	in	the	previous	step.)

3.	 Follow	the	prompts	in	the	installer	(Accept	the	license	agreement,	click	the	NEXT	button
a	bunch	of	times	and	accept	the	default	installation	settings).

installer

1.	 Restart	your	computer.	You	won’t	be	able	to	run	Node.js®	until	you	restart	your
computer.

Command	line	interface	(aka	CLI)

The	npm	command-line	tool	is	bundled	with	Node.js.

npm	also	has	a	command	line	client	that	allows	developers	to	install	and	publish	your
packages.

npm	--version

	2.14.12

The	second	important	command	is	npm	init:

NPM

43

https://nodejs.org/en/\


$	npm	init
package	name:	(project)
version:	(1.0.0)
description:	Demo	of	package.json
entry	point:	(index.js)
test	command:
git	repository:
keywords:
author:
license:	(ISC)

Press	Enter	to	accept	the	defaults,	then	type	yes	to	confirm.	This	will	create	a	package.json
file	at	the	root	of	the	project.

{
		"name":	"project",
		"version":	"1.0.0",
		"description":	"",
		"main":	"index.js",
		"scripts":	{
				"test":	"echo	\"Error:	no	test	specified\"	&&	exit	1"
		},
		"author":	"",
		"license":	"ISC"
}

Tip:	You	can	also	issue	the	command	for	default	initialization	of	all	the	defaults	with

This	way	to	generate	a	package.json	file	use	npm	init	--y

NPM	contains	different	APIs	which	will	shown	here:

You	can	use	the	following	command	in	order	to	list	down	all	the	locally	installed	modules

npm	ls

Search	for	packages	in	the	repositry

npm	search	mocha

You	can	install	modules	with	NPM	locally	or	globally.

When	you	install	modules	globally	they	are	installed	in	a	system	directory.

Where	can	you	find	all	the	packages?

NPM

44



https://npmjs.org

installing	packages	with	npm
NPM	comes	along	with	Node.js

to	install	a	packages	simply	run:

npm	install	package-name
npm	install	tarball	file
npm	install	tarball	url

If	you	want	to	install	a	package	globally	you	can	issue:

npm	install	-g	package-name

Note:	global	installation	is	against	best	practices.	because	when	you	will	deploy	your	app
with	CI	to	different	servers	these	globally	tools	will	not	be	there	and	will	cause	dependencies
issues	that	are	ahrd	to	overcome.	the	preferred	way	is	to	install	this	dependencies	as	local
or	if	they	are	tools	then	you	can	put	them	in	the	bin	folder.

Global	installation	makes	the	package	available	globally	irrespective	to	the	directory	you
installed	it	from.

Is	you	want	to	install	as	development	dependency	issue	(shortcuts)

npm	i	-D

Is	you	want	to	install	as	a	normal	dependency	issue	(shortcuts)

npm	i	-S

package.json	file
Undersatnding	the	pacage.json:

It	is	a	valid	JSON	object

name	and	version	fields	are	required,	the	combination	makes	a	unique	identifier	for	the
package

There	are	Some	used	fields	in	package.json
description
keywords
homepage

NPM

45

https://npmjs.org


bugs
license
author	&	contributers
main

the	dependencies	section	is	where	you	know	which	packages	are	inside	this	project
build
The	script	section	is	where	you	define	your	script	commands	(start.	preinstall)
The	bin	field	is	the	folder	where	your	binaries	of	this	project	exist

1.	 this	file	also	serves	as	documentation	for	what	packages	your	project	depends	on

2.	 It	allows	you	to	specify	the	versions	of	a	packagefor	your	prohject	according	to	semantic
versioning	rules](https://docs.npmjs.com/getting-started/semantic-versioning\).	take	a
look	in	this	video:

Video	link

NPM

46

https://docs.npmjs.com/getting-started/semantic-versioning\
http://youtube.com/watch?v=kK4Meix58R4


Linting

Why	linting?

Linting	is	the	process	of	running	a	program	that	will	analyse	code	for	potential	errors.

Linting	will	run	through	your	source	code	to	find

formatting	discrepancy

non-adherence	to	coding	standards	and	conventions

pinpointing	possible	logical	errors	in	your	program

Linting	will	help	you	to	catch	bugs	and	to	enforce	your	styling	code	guidelines	in	the	project.

Linting	is	the	process	of	checking	the	source	code	for	Programmatic	as	well	as	Stylistic
errors.	This	is	most	helpful	in	identifying	some	common	and	uncommon	mistakes	that	are
made	during	coding.

A	Lint	or	a	Linter	is	a	program	that	supports	linting	(verifying	code	quality).	They	are
available	for	most	languages	like	JavaScript,	CSS,	HTML,	Python,	etc..

Some	of	the	useful	linters	are	JSLint,CSSLint,JSHint,Pylint

There	are	couple	of	available/useful	linters	that	can	be	used	to	perform	linting	with	node,js

Eslint:

While	ESLint	is	designed	to	be	run	on	the	command	line,	it’s	possible	to	use	ESLint
programmatically	through	the	Node.js	API.	The	purpose	of	the	Node.js	API	is	to	allow	plugin
and	tool	authors	to	use	the	ESLint	functionality	directly,	without	going	through	the	command
line	interface.

Installing	ESLint

You	can	install	ESLint	globally	by	running	the	command

	npm	install	-g	eslint	

Next	you	need	to	configure	your	eslint	with	running	a	setup	that	creates	eslint	configuration
file	running	the	following	command:

eslint	--init

Linting

47

http://www.jslint.com/
http://csslint.net/
http://jshint.com/
http://www.pylint.org/
http://eslint.org/docs/developer-guide/nodejs-api


To	be	continued	...

Linting

48



Unit	Testing
In	computer	programming,	unit	testing	is	a	software	testing	method	by	which	individual
units	of	source	code,	sets	of	one	or	more	computer	program	modules	together	with
associated	control	data,	usage	procedures,	and	operating	procedures,	are	tested	to
determine	whether	they	are	fit	for	use.

Unit	testing	is,	roughly	speaking,	testing	bits	of	your	code	in	isolation	with	test	code.

The	immediate	advantages	that	come	to	mind	are:

Running	the	tests	becomes	automate-able	and	repeatable
You	get	a	safety	net	for	your	existing	code
You	can	easily	refactor	your	code	and	cover	the	different	unit	functinality
You	can	test	at	a	much	more	granular	level	than	point-and-click	testing	via	a	GUI

Note	that	if	your	test	code	writes	to	a	file,	opens	a	database	connection	or	does	something
over	the	network,	it's	more	appropriately	categorized	as	an	integration	test.	Integration	tests
are	a	good	thing,	but	should	not	be	confused	with	unit	tests.	Unit	test	code	should	be	short,
sweet	and	quick	to	execute.

Another	way	to	look	at	unit	testing	is	that	you	write	the	tests	first.	This	is	known	as	Test-
Driven	Development	(TDD	for	short).	TDD	brings	additional	advantages:

You	don't	write	speculative	"I	might	need	this	in	the	future"	code	--	just	enough	to	make
the	tests	pass
The	code	you've	written	is	always	covered	by	tests
By	writing	the	test	first,	you're	forced	into	thinking	about	how	you	want	to	call	the	code,
which	usually	improves	the	design	of	the	code	in	the	long	run.

Testing

49

https://en.wikipedia.org/wiki/Computer_programming
https://en.wikipedia.org/wiki/Software_testing
https://en.wikipedia.org/wiki/Source_code


Tools	for	TDD

Mocha
Using	Mocha	for	use	as	a	framework	for	test	driven	development	of	your	Node.JS	apps.

Mocha	is	a	feature-rich	JavaScript	test	framework	running	on	Node.js	and	the	browser,
making	asynchronous	testing	simple	and	fun.

Agile	methods	today	are	very	common	among	software	projects.	TDD	is	one	of	the	main
agile	development	techniques.

Installing	Mocha:

$	npm	install	–g	mocha

TDD

Test-driven	development	(TDD)	is	a	software	development	process	that	based	upon
repetition	of	a	very	short	development	cycle.

The	main	idea	behind	TDD	is	to:

1.	 Add	and	define	the	test.
2.	 Implement	the	internal	test	logic.
3.	 Check	and	validate	that	the	test	either	passes	or	fails
4.	 Write	some	code
5.	 Run	tests
6.	 Refactor	the	code
7.	 Repeat

Assersion	libraries

1.	 Assert	built	in	module	in	Node
2.	 Expect.JS
3.	 Chai	Assert

	expect({	foo:	'baz'	}).to.have.property('foo')	.and.not.equal('bar');	

Tools	for	unit	testing

50

https://nodejs.org/api/assert.html
https://github.com/Automattic/expect.js?utm_source=webapplog.com%3A+programming+weblog&utm_campaign=cf57f715f7-RSS_EMAIL_CAMPAIGN&utm_medium=email&utm_term=0_bfdc9efc42-cf57f715f7-107514585
http://chaijs.com/api/assert/


Tools	for	unit	testing

51



End	2	End	testing
End	to	end	testing	is	a	methodology	used	to	test	whether	the	flow	of	an	application	is
performing	as	designed	from	start	to	finish.	The	purpose	of	carrying	out	end	to	end	tests	is
to	identify	system	dependencies	and	to	ensure	that	the	right	information	is	passed	between
various	system	components	and	systems.

End-to-end	testing	is	a	technique	used	to	test	whether	the	flow	of	an	application	right	from
start	to	finish	is	behaving	as	expected.

End	to	End	Testing	is	usually	executed	after	functional	and	system	testing.

There	are	many	frameworks	that	can	help	the	developer	to	perform	e2	testing.

When	it	comes	to	data	testing	we	can	use	production	like	data	for	the	e2e	tests	by	copying
real	data	(from	real	environment)	in	order	to	perform	as	close	as	possible	tests	to	real	life
scenarios

Why	do	we	need	End	to	End	Testing	?

E2E	testing

52



Since	modern	application	are	complex	and	tend	to	depend	on	many	external	integrations
and	dependencies	we	want	to	perform	full	scenario	tests	as	the	user	interacts	with	the
system.	Sometimes	we	are	also	interacting	with	sub	system	or	legacy	external	systems.

The	well	known	solutions	for	e2e	tests	are:

These	tools	helps	you	perform	Browser	automated	testing	done	easy.

Nightwatch.js — 	5975	stars	SiteGitHub

Nightwatch.js	is	an	easy	to	use	Node.js	_based	End-to-End	(E2E)	testing	solution	for
browser	based	apps	and	websites.	It	uses	the	powerful	[_W3C	WebDriver	API]
(https://www.w3.org/TR/webdriver/)	to	perform	commands	and	assertions	on	DOM	elements.

CasperJS — 	6399	stars	Site	GitHub

Protractor — 	6351	stars	Site	GitHub

TestCafe — 	2106	stars	Site	GitHub

CodeceptJS — 	1040	stars	Site	GitHub

E2E	testing

53

http://nightwatchjs.org/
https://github.com/nightwatchjs/nightwatch
https://www.w3.org/TR/webdriver/
http://casperjs.org/
https://github.com/casperjs/casperjs
http://www.protractortest.org/
https://github.com/angular/protractor
https://devexpress.github.io/testcafe/
https://github.com/DevExpress/testcafe
http://codecept.io/
https://github.com/Codeception/CodeceptJS


Node.JS	and	Performance
Under	high	load	(high	concurrency),	Node.js	maintains	high	throughput	and	low	latency
Three	factors	underpin	Node’s	high	performance:

1.	 The	V8	JavaScript	engine,	upon	which	Node.js	is	based,	is	highly	optimized	for
performance	by	Google,	who	continues	to	invest	heavily	in	advancing	V8’s	performance

2.	 JavaScript/Node.js	events	are	lightweight,	while	threads	are	heavyweight.
Consequently,	Node.js	is	inherently	more	performant	under	load	than	monolithic
designs	(this	article	offers	a	nice	recap)

3.	 Node.js	is	container-ready,	which	simplifies	the	move	to	cloud	and	microservices
architectures	(Richard	Rodger,	author	of	The	Tao	of	Microservices,	explains)

Some	Customers	giants	using	node	js	Performance	facts:

1.	 Groupon	Node.js	implementation	reduced	page	load	times	by	50%

2.	
3.	 PayPal	Node.js	App	doubled	the	number	of	requests	per	second	and	reduced	response

time	by	35%	versus	previous	Java	version

1.	 GoDaddy	rolled	out	global	site	rebrand	in	1	hour

Performance

54

https://www.youtube.com/watch?v=dvMq4gqBleo&feature=youtu.be&t=56s


4.

1.	 Netflix	has	moved	monolithic	Java	architecture	to	node.JS	Netflix	improved
performance	and	reduced	infrastructure	costs:

2.	 Reduced	startup	time	from	40	mins	to	sub	1	minute

3.	 Reduced	the	number	of	EC2	instances	on	Node	compared	with	the	legacy	Java	stack
by	75%,	while	serving	the	same	number	of	subscribers	at	lower	latencies

There	are	sometimes	problems	that	you	can't	diagnose	expediently,	or	issues	such	as
memory	leaks.

So	what	can	we	do	when	we	encounter	these	issues?

Do	Post-Mortem	analysis:

1.	 Capture	a	core	dump	of	running	process	at	any	time	in	production	to	capture	all	of	the
state	the	process	and	then	reboot	it.

2.	 there	ar	tools	that	can	be	used	like:	mdb_v8,	linode	and	IBM's	IDDE
3.	 this	offers	to	Node	js	engineers	several	advantages	including:

Performance

55



		\*	Allows	service	to	stay	up	while	developers	investigate	the	problem	\(high	ava
ilability\)

		\*	Allows	several	developers	to	investigate	the	same	problem	not	at	the	same	tim
e	\(collaboration\)

		\*	Allows	developers	to	investigate	issues	at	any	time	that	is	convenient	for	th
em

For	further	details	you	can	see	the	Node.JS	Core	Post-Mortem	Working	Group	and	best
practices	from	Netflix	maintaining	high	performance	in	large	scale	production	Node.js
applications

Note:	there	are	some	problems	when	trying	to	do	post	mortem	with	promises

Performance

56

https://github.com/nodejs/post-mortem
https://yunong.io/2015/07/13/building-with-node-js-at-netflix/
https://github.com/nodejs/post-mortem/issues/16


ECMAScript	2015/ES6	and	node	js
Ecmascript	(or	ES)	is	a	trademarked	scripting-language	specification	standardized	by	Ecma
International	in	ECMA-262	and	ISO/IEC	16262.	It	was	created	to	standardize	JavaScript,	so
as	to	foster	multiple	independent	implementations.

The	other	name	for	ecmascript	2015	is	ES6

Node.js	is	built	against	modern	versions	of	V8.

By	keeping	up-to-date	with	the	latest	releases	of	this	engine,	we	ensure	new	features	from
the	JavaScript	ECMA-262	specification	are	brought	to	Node.js	developers	in	a	timely
manner,	as	well	as	continued	performance	and	stability	improvements.

All	ECMAScript	2015	(ES6)	features	are	split	into	three	groups	forshipping,staged,	andin
progressfeatures:

1.	 All	shipping	features,	which	V8	considers	stable,	are	turned	on	by	default	on	Node.js
and	do	NOT	require	any	kind	of	runtime	flag.

2.	 Staged	features,	which	are	almost-completed	features	that	are	not	considered	stable	by
the	V8	team,	require	a	runtime	flag:	--harmony	

3.	 In	progress	features	can	be	activated	individually	by	their	respective	harmony	flag,
although	this	is	highly	discouraged	unless	for	testing	purposes.	Note:	these	flags	are
exposed	by	V8	and	will	potentially	change	without	any	deprecation	notice.

ES6	includes	the	following	new	features:
Arrows

Arrows	are	a	function	shorthand	using	the	=>	syntax.

They	are	syntactically	similar	to	the	related	feature	in	C#,	Java	8	and	CoffeeScript.	They
support	both	statement	block	bodies	as	well	as	expression	bodies	which	return	the	value	of
the	expression.	Unlike	functions,	arrows	share	the	same	lexical	this	as	their	surrounding
code.

	//	Here	is	an	example	for	an	Expression	bodies	

	var	odds	=	evens.map(v	=>	v	+	1);	

	var	nums	=	evens.map((v,	i)	=>	v	+	i);	

ECMAScript	2015

57

https://developers.google.com/v8/
http://www.ecma-international.org/publications/standards/Ecma-262.htm


	var	pairs	=	evens.map(v	=>	({even:	v,	odd:	v	+	1}));	

	//	Here	is	an	example	for	a	Statement	bodies	

	nums.forEach(v	=>	{	

	if	(v	%	5	===	0)	

	fives.push(v);	

	});	

	//	Here	is	an	example	for	aLexical	this	

	var	bob	=	{	

`_name:	"Bob",`

`_friends:	[],`

`printFriends()	{`

					`this._friends.forEach(f	=>`

					`console.log(this._name	+	"	knows	"	+	f));`

	`}`

	}	

More	info:	MDN	Arrow	Functions

classes

ES6	classes	are	a	just	syntactic	sugar	over	the	prototype-based	OO	pattern.

Having	a	single	convenient	declarative	form	makes	class	patterns	easier	to	use,	and
encourages	interoperability.	Classes	support	prototype-based	inheritance,	super	calls,
instance	and	static	methods	and	constructors.

	class	Person	{	

	constructor(height,	age)	{	

	this.height	=	height;	

	this.age	=	age;	

	}	

	get	chestsize()	{	

	return	this.calcChestSize();	

	}	

ECMAScript	2015

58

https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Functions/Arrow_functions


	calcChestSize()	{	

	return	this.height	*	0.23;	

	}	

	}	

const	men	=	new	Person(170,	28);

console.log(men.chestsize);

enhanced	object	literals
template	strings
destructuring
default	+	rest	+	spread
let	+	const
iterators	+	for..of
generators
unicode
modules
module	loaders
map	+	set	+	weakmap	+	weakset
proxies
symbols
subclassable	built-ins
promises
math	+	number	+	string	+	array	+	object	APIs
binary	and	octal	literals
reflect	api

tail	calls

Calls	in	tail-position	are	guaranteed	to	not	grow	the	stack	unboundedly.

The	stack	will	not	explode	and	thus	Makes	recursive	algorithms	safe	in	the	face	of
unbounded	inputs.

To	read	more	about	what	is	a	tail	recursion	and	what	we	are	achiving	here

ECMAScript	2015

59

http://www.programmerinterview.com/index.php/recursion/tail-recursion/


Maps	and	Sets
This	feature	helps	us	to	map	one	to	one	objects	in	JavaScript.

This	has	been	long	missing	from	JavaScript	and	enables	to	create	simple	object	to	object
maps	with	O(1)	access	time.

The	Map	object	is	a	simple	key/value	map.

It	is	possible	to	use	it	as	follows:

var	someMap	=	new	Map();
var	keyString	=	"mykey",
				keyObj	=	{},	
				keyFunc	=	function	()	{};

//performing	setters
someMap.set(keyString,	"some	string");
someMap.set(keyObj,	"another	string");
someMap.set(keyFunc,	"yet	another");

So	everything	that	is	typeof	object	can	be	a	key	in	the	map	(string,	object,	function).

The	map	also	supports	the	Symbol.iterator	which	helps	to	iterate	on	the	map	with	for..of	as
follows:

for	(var	v	of	someMap)	
{
		console.log(v);

}

Maps	and	Sets

60


	Introduction
	About the author
	Setting up Node
	Core API Basics
	Buffers
	Event Emitters
	HTTP
	Streams
	Timers
	Cryptography
	Networking
	ASYNC IO

	Logging
	Event loop
	Template Engines
	Promises
	NPM
	Linting
	Testing
	Tools for unit testing
	E2E testing

	Performance
	ECMAScript 2015
	Maps and Sets


