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Maths
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This book attempts to meet the criteria for the SA “Outcomes Based” syl-
labus of 2004. A few notes to authors:

All “real world examples” should be in the context of HIV/AIDS, labour
disputes, human rights, social, economical, cultural, political and environmental
issues. Unless otherwise stated in the syllabus. Where possible, every section
should have a practical problem.

The preferred method for disproving something is by counter example. Jus-
tification for any mathematical generalisations of applied examples is always
desired.
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Chapter 1

Numbers

(NOTE: more examples and motivation needed. perhaps drop the proofs for
exponents and surds?)

A number is a way to represent quantity. Numbers are not something that
we can touch or hold, because they are not physical. But you can touch three
apples, three pencils, three books. You can never just touch three, you can only
touch three of something. However, you don’t need to see three apples in front
of you to know that if you take one apple away, that there will be two apples
left. You can just think about it. That is your brain representing the apples in
numbers and then performing arithmetic on them.

A number represents quantity because we can look at the world around us
and quantify it using numbers. How many minutes? How many kilometers?
How many apples? How much money? How much medicine? These are all
questions which can only be answered using numbers to tell us “how much” of
something we want to measure.

A number can be written many different ways and it is always best to choose
the most appropriate way of writing the number. For example, the number “a
half” may be spoken aloud or written in words, but that makes mathematics
very difficult and also means that only people who speak the same language as
you can understand what you mean. A better way of writing “a half” is as a
fraction 1

2 or as a decimal number 0,5. It is still the same number, no matter
which way you write it.

In high school, all the numbers which you will see are called real num-
bers(NOTE: Advanced: The name “real numbers” is used because there are
different and more complicated numbers known as “imaginary numbers”, which
this book will not go into. Since we won’t be looking at numbers which aren’t
real, if you see a number you can be sure it is a real one.) and mathematicians
use the symbol R to stand for the set of all real numbers, which simply means all
of the real numbers. Some of these real numbers can be written in a particular
way, but others cannot.

This chapter will explain different ways of writing any number, and when
each way of writing the number is best.

(NOTE: This intro needs more motivation for different types of numbers,
some real world examples and more interesting facts. Lets avoid the whole
different numeral systems though... maybe when we do the history edit near
release.)
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1.1 Letters and Arithmetic

The syllabus requires:

• algebraic manipulation is governed by the algebra of the real

numbers

• manipulate equations (rearrange for y, expand a squared bracket)

(NOTE: “algebra of the Reals”. why letters are useful... very simple exam-
ple, like change from a shop. brackets, squared brackets, fractions, multiply top
and bottom. rearranging. doing something to one side and the other.)

When you add, subtract, multiply or divide two numbers, you are performing
arithmetic1. These four basic operations (+,−,×,÷) can be performed on any
two real numbers.

Since they work for any two real numbers, it would take forever to write out
every possible combination, since there are an infinite(NOTE: Advanced: we
really need to define what infinite means, nicely!) amount of real numbers! To
make things easier, it is convenient to use letters to stand in for any number2,
and then we can fill in a particular number when we need to. For example, the
following equation

x + y = z (1.1)

can find the change you are owed for buying an item. In this equation, x
represents the amount of change you should get, z is the amount you payed and
y is the price of the item. All you need to do is write the amount you payed
instead of z and the price instead of y, your change is then x. But to be able to
find your change you will need to rearrange the equation for x. We’ll find out
how to do that just after we learn some more details about the basic operators.

1.1.1 Adding and Subtracting

Adding, subtracting, multiplying and dividing are the most basic operations
between numbers but they are very closely related to each other. You can
think of subtracting as being the opposite of adding since adding a number and
then subtracting the same number will not change what you started with. For
example, if we start with a and add b, then subtract b, we will just get back to
a again

a + b − b = a (1.2)

5 + 2 − 2 = 5

(NOTE: rework these bits into the Negative Numbers section. it needs more
attention than we initially thought.) Subtraction is actually the same as adding
a negative number. A negative number is a number less than zero. Numbers
greater than zero are called positive numbers. In this example, a and b are
positive numbers, but −b is a negative number

a − b = a + (−b) (1.3)

5 − 3 = 5 + (−3)

1Arithmetic is the Greek word for “number”
2We will look at this in more detail in chapter 3.
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It doesn’t matter which order you write additions and subtractions(NOTE:
Advanced: This is a property known as associativity, which means a+b = b+a),
but it looks better to write subtractions to the right. You will agree that a − b
looks neater than −b + a, and it makes some sums easier, for example, most
people find 12 − 3 a lot easier to work out than −3 + 12, even though they are
the same thing.

1.1.2 Negative Numbers

Negative numbers can be very confusing to begin with, but there is nothing
to be afraid of. When you are adding a negative number, it is the same as
subtracting that number if it were positive. Likewise, if you subtract a negative
number, it is the same as adding the number if it were positive. Numbers are
either positive or negative, and we call this their sign. A positive number has
positive sign, and a negative number has a negative sign.

(NOTE: number line here. subtraction is moving to left, adding is moving
to the right. maybe something else about negative numbers?)

Table 1.1 shows how to calculate the sign of the answer when you multiply
two numbers together. The first column shows the sign of one of the numbers,
the second column gives the sign of the other number, and the third column
shows what sign the answer will be. So multiplying a negative number by

a b a × b
+ + +
+ - -
- + -
- - +

Table 1.1: Table of signs for multiplying two numbers.

a positive number always gives you a negative number, whereas multiplying
numbers which have the same sign always gives a positive number. For example,
2 × 3 = 6 and −2 ×−3 = 6, but −2 × 3 = −6 and 2 ×−3 = −6.

Adding numbers works slightly differently, have a look at Table 1.2. If you

a b a + b
+ + +
+ - ?
- + ?
- - -

Table 1.2: Table of signs for adding two numbers.

add two positive numbers you will always get a positive number, but if you add
two negative numbers you will always get a negative number. If the numbers
have different sign, then the sign of the answer depends on which one is bigger.
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1.1.3 Brackets

In equation (1.3) we used brackets3 around −b. Brackets are used to show the
order in which you must do things. This is important as you can get different
answers depending on the order in which you do things. For example

(5 × 10) + 20 = 70 (1.4)

whereas
5 × (10 + 20) = 150 (1.5)

If you don’t see any brackets, you should always do multiplications and divi-
sions first and then additions and subtractions4. You can always put your own
brackets into equations using this rule to make things easier for yourself, for
example:

a × b + c ÷ d = (a × b) + (c ÷ d) (1.6)

5 × 10 + 20 ÷ 4 = (5 × 10) + (20 ÷ 4)

1.1.4 Multiplying and Dividing

Just like addition and subtraction, multiplication and division are opposites of
each other. Multiplying by a number and then dividing by the same number
gets us back to the start again:

a × b ÷ b = a (1.7)

5 × 4 ÷ 4 = 5

Sometimes you will see a multiplication of letters without the × symbol,
don’t worry, its exactly the same thing. Mathematicians are lazy and like to
write things in the neatest way possible.

abc = a × b × c (1.8)

It is usually neater to write known numbers to the left, and letters to the
right. So although 4x and x4 are the same thing(NOTE: Advanced: This is
a property known as commutativity, which means ab = ba), it looks better to
write 4x.

If you see a multiplication outside a bracket like this

a(b + c) (1.9)

3(4 − 3)

then it means you have to multiply each part inside the bracket by the number
outside

a(b + c) = ab + ac (1.10)

3(4 − 3) = 3 × 4 − 3 × 3 = 12 − 9 = 3

3Sometimes people say “parenthesis” instead of “brackets”.
4Multiplying and dividing can be performed in any order as it doesn’t matter. Likewise it

doesn’t matter which order you do addition and subtraction. Just as long as you do any ×÷

before any +−.
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unless you can simplify everything inside the bracket into a single term. In fact,
in the above example, it would have been smarter to have done this

3(4 − 3) = 3 × (1) = 3 (1.11)

It can happen with letters too

3(4a − 3a) = 3 × (a) = 3a (1.12)

If there are two brackets multiplied by each other, then you can do it one
step at a time

(a + b)(c + d) = a(c + d) + b(c + d) (1.13)

= ac + ad + bc + bd

(a + 3)(4 + d) = a(4 + d) + 3(4 + d)

= 4a + ad + 12 + 3d

1.1.5 Rearranging Equations

Coming back to the example about change, which we wanted to solve earlier in
equation (1.1)

x + y = z

To recap your memory, z is the amount you (or a customer) payed for something,
y is the price and you want to find x, the change. What you need to do is
rearrange the equation so only x is on the left.

You can add, subtract, multiply or divide both sides of an equation by any
number you want, as long as you always do it to both sides. If you imagine an
equation is like a set of weighing scales. (NOTE: diagram here.) If you wish to
keep the scales balanced, then when you add something to one side, you must
also add something of the same weight to the other side.

So for our example we could subtract y from both sides

x + y = z (1.14)

= x + y − y = z − y

x = z − y

so now we can find the change is the amount payed take away the price. In
real life we can do this in our head, the human brain is very smart and can do
arithmetic without even knowing it.

When you subtract a number from both sides of an equation, it looks just
like you moved a positive number from one side and it became a negative on
the other, which is exactly what happened. Likewise if you move a multiplied
number from one side to the other, it looks like it changed to a divide. This
is because you really just divided both sides by that number, and a number
divided by itself is just 1

a(5 + c) = 3a (1.15)

a ÷ a(5 + c) = 3a ÷ a

1 × (5 + c) = 3 × 1

5 + c = 3

c = 3 − 5 = −2

7



However you must be careful when doing this, as it is easy to make mistakes.
The following is the wrong thing to do5.

5a + c = 3a (1.16)

5 + c 6= 3a ÷ a

Can you see why it is wrong? The reason why it is wrong is because we didn’t
divide the c part by a as well. The correct thing to do is

5a + c = 3a (1.17)

5 + c ÷ a = 3

c ÷ a = 3 − 5 = −2

1.1.6 Living Without the Number Line

The number line in (NOTE: ref when we do it) is a good way to visualise what
negative numbers are, but it can get wery inefficient to use it every time you
want to add or subtract negative numbers. To keep things simple, we will write
down three rules that you should memorise. These rules will let you work out
what the answer is when you add or subtract numbers which may be negative
and will also help you keep your work tidy and easier to understand.

Signs Rule 1

If you have an equation which has a negative number on the very far left, it can
be confusing. But it doesn’t matter where we put the negative number, as long
as it is on the left of the equals sign(NOTE: this is confusing). If we move it
more to the right, it makes more sense as it just looks like subtracting a positive
number.

−a + b = b − a (1.18)

−5 + 10 = 10 − 5 = 5

This makes equations easier to understand. For example, a question like “What
is −7+11?” looks a lot more complicated than “What is 11− 7?”, even though
they are exactly the same question.

Signs Rule 2

When you have two negative numbers like −3 − 7, you can calculate the an-
swer by simply adding together the numbers as if they were positive and then
remembering to put a negative sign in front.

−c − d = −(c + d) (1.19)

−7 − 2 = −(7 + 2) = −9

5The 6= symbol says that this is incorrect as it means “not equal to”.
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Signs Rule 3

In section 1.1.2 we seen that the sign of two numbers added together depends
on which one is bigger. This last rule tells us that all we need to do is take the
smaller number away from the larger one, and remember to put a negative sign
before the answer if the bigger number was subtracted to begin with. In this
equation, F is bigger than e.

e − F = −(F − e) (1.20)

2 − 11 = −(11 − 2) = −9

You can even combine these rules together, so for example you can use rule
1 on −10 + 3 to get 3 − 10, and then use rule 3 to get −(10 − 3) = −7.

Now you know everything there is to know about arithmetic. So try out your
skills on the exercises at the end of this chapter and ask your teacher for more
questions just like them. You can also try making up your own questions, solve
them and try them out on your classmates to see if you get the same answers.
Practice is the only way to get good at maths.

1.2 Types of Real Numbers

(NOTE: maybe more intro here, break up the chapter intro and put some here?)

1.2.1 Integers

The natural numbers are all the numbers which you can use for counting

0, 1, 2, 3, 4 . . . (1.21)

These are the first numbers learnt by children, and the easiest to understand.
Mathematicians use the symbol N to mean the set of all natural numbers. The
natural numbers are a subset of the real numbers since every natural number is
also a real number.

The integers are all of the natural numbers and their negatives

. . . − 4,−3,−2,−1, 0, 1, 2, 3, 4 . . . (1.22)

Mathematicians use the symbol Z to mean the set of all integers. The integers
are a subset of the real numbers, since every integer is a real number.

(NOTE: possible analogy... whole fruit on a tree, if you eat some, its not an
integer anymore.)

1.2.2 Fractions and Decimal numbers

A fraction is any kind of number divided by another number. There are several
ways to write a number divided by another one, such as a ÷ b, a/b and a

b . The
first way of writing a fraction is very hard to work with, so we will use only the
other two. We call the number on the top, the numerator and the number on
the bottom the denominator. e.g.

1

5

numerator = 1

denominator = 5
(1.23)
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The reciprocal of a fraction is the fraction turned upside down, in other
words the numerator becomes the denominator and the denominator becomes
the numerator. A fraction times its reciprocal always equals 1 and can be written

a

b
× b

a
= 1 (1.24)

This is because dividing by a number is the same as multiplying by its reciprocal.
A decimal number is a number which has an integer part and a fraction part.

The integer and the fraction parts are separated by a decimal point, which is
written as a comma in South Africa. Every real number can be written as a
decimal. For example the number 3+14/100 can be written much more cleanly
as 3,14.

All real numbers can be written as a decimal. However, some numbers
would take a huge amount of paper (and ink) to write out in full! Some decimal
numbers will have a number which will repeat itself, such as 0,33333 . . . where
there are an infinite number of 3’s. We can write this decimal value by using a
dot above the repeating number, so 0,3̇ = 0,33333 . . .. If there are two repeating
numbers such as 0,121212 . . . then you can place dots6 on each of the repeated
numbers 0,1̇2̇ = 0,121212 . . .. These kinds of repeating decimals are called
recurring decimals.

(NOTE: should we have a table of, say, the 10 most common fractions?)

1.2.3 Rational Numbers

The syllabus requires:

• identify rational numbers

• convert between terminating or recurring decimals and their fractional

form

A rational number is any number which can be written as a fraction with
an integer on the top and an integer on the bottom (as long as the integer
on the bottom is not zero) (NOTE: Advanced: This can be expressed in the
form a

b ; a, b ∈ Z; b 6= 0 which means “the set of numbers a
b when a and b are

integers”.).
Mathematicians use the symbol Q to mean the set of all rational numbers.

The set of rational numbers contains all numbers which can be written as ter-
minating or repeating decimals. (NOTE: Advanced: All integers are rational
numbers with denominator 1.)

An irrational number is any real number that is not a rational number.
When expressed as decimals these numbers can never be fully written out as
they have an infinite number of decimal places which never fall into a repeating
pattern, for example

√
2 = 1,41421356 . . ., π = 3,14159265 . . .. π is a Greek

letter and is pronounced just like “pie”. We’ll mention more about π in chapter
7.1.

You can add and multiply rational numbers and still get a rational number
at the end, which is very useful. If we have 4 integers, a, b, c and d(NOTE:
Advanced: This can be written formally as {a, b, c, d} ∈ Z because the ∈ symbol

6or a bar, like 0,12
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QZ R

Figure 1.1: Set diagram of all the real numbers R, the rational numbers Q and
the integers Z. The irrational numbers are the numbers not inside the set of
rational numbers. All of the integers are also rational numbers, but not all
rational numbers are integers. (NOTE: possible question; where is N in this
diagram?)

means in and we say that a, b, c and d are in the set of integers.), then the rules
for adding and multiplying rational numbers are

a

b
+

c

d
=

ad + bc

bd
(1.25)

a

b
× c

d
=

ac

bd
(1.26)

Two rational numbers (a
b and c

d ) represent the same number if ad = bc. It
is always best to simplify any rational number so that the denominator is as
small as possible. This can be achieved by dividing both the numerator and the
denominator by the same integer. For example, the rational number 1000/10000
can be divided by 1000 on the top and the bottom, which gives 1/10. 2

3 of a
pizza is the same as 8

12 . (NOTE: maybe a diagram.)
You can also add rational numbers together by finding a lowest common de-

nominator and then adding the numerators. Finding a lowest common denom-
inator means finding the lowest number that both denominators are a f actor7

of. A factor of a number is an integer which evenly divides that number without
leaving a remainder. The following numbers all have a factor of 3

3, 6, 9, 12, 15, 18, 21, 24 . . .

and the following all have factors of 4

4, 8, 12, 16, 20, 24, 28 . . .

The common denominators between 3 and 4 are all the numbers that appear in
both of these lists, like 12 and 24. The lowest common denominator of 3 and 4
is the number that has both 3 and 4 as factors, which is 12.

7Some people say divisor instead of factor.
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For example, if we wish to add 3
4 + 2

3 , we first need to write both fractions
so that their denominators are the same by finding the lowest common denom-
inator, which we know is 12. We can do this by multiplying 3

4 by 3
3
8 and 2

3 by
4
4

3

4
+

2

3
=

3

4
× 3

3
+

2

3
× 4

4
(1.27)

=
3 × 3

4 × 3
+

2 × 4

3 × 4

=
9

12
+

8

12

=
9 + 8

12

=
17

12

Dividing by a rational number is the same as multiplying by it’s reciprocal,
as long as neither the numerator nor the denominator is zero:

a

b
÷ c

d
=

a

b
.
d

c
=

ad

bc
(1.28)

A rational number may also be written as a proper fraction, which is the
sum of an integer and a rational fraction.

A
b

c
=

Ac + b

c
= A +

b

c
(1.29)

This notation has the advantage that you can readily tell the approximate size
of the fraction, but has the disadvantage that A b

c can be mistaken for A × b
c

instead of A + b
c . However, it can be used to help convert rational numbers

into decimals and vica-versa. A fraction is called an improper fraction if the
numerator is bigger than the denominator, meaning that it could be written as
a proper fraction.

Converting Decimals into Rational Numbers

If you recall from section 1.2.2 that a decimal number has an integer and a
fractional part, then you will notice how similar decimals are to proper fractions.
The integer part of a decimal is also the integer part of a proper fraction and
each digit after the decimal point is a fraction with denominator in increasing
powers of ten, in other words 1

10 is 0,1, 1
100 is 0,01 and so on. For example, 2,103

is 2 + 1
10 + 0

100 + 3
1000 which is 2 103

1000 (you could also have just written 2103
1000 ).

When the decimal is a recurring decimal, a certain amount of algebraic
manipulation is involved in finding the fractional part. Lets have a look at an
example to see how this is done. If we wish to write 0,3̇ in the form a

b (where a

8 3

3
is really just a complicated way of writing 1. Multiplying a number by 1 doesn’t change

the number.
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and b are integers) then we would proceed as follows

x = 0,33333 . . . (1.30)

10x = 3,33333 . . . multiply by 10 on both sides (1.31)

9x = 3 subtracting (1.30) from (1.31)

x =
3

9
=

1

3

And another example would be to write 5,432 as a rational fraction

x = 5,432432432 . . . (1.32)

1000x = 5432,432432432 . . . (1.33)

999x = 5427 subtracting (1.32) from (1.33)

x =
5427

999
=

201

37

But not all decimal numbers are rational numbers as can be seen in figure
1.1. When possible, you should always use fractions instead of decimals.

Converting Rationals into Decimal Numbers

If you use a calculator, you can simply divide the numerator by the denominator.
If there is no calculator at hand, long division will suffice. (NOTE: i did long
division in primary school... i don’t think it warrants its own intro, so i guess
we can assume they know it already. anyone disagree?) For example, we may
convert 1

4 to decimal form by doing the following long division

4

0,25
)
1,00

8
20
20

(1.34)

As another example, we can convert 67
153 to decimal form (with 4 significant

digits (NOTE: dependency problem... we mention SFs later than this. should
we place this after “accuracy” or reword/remove this?)).

153

0,4379
)
67,0000
61 2
58 0
45 9
1210
1071
1390
1377

13
...

(1.35)

(NOTE: note that this is much easier if the denominator is a multiple of 10)
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1.3 Exponents

The syllabus requires:

• simplify expressions using the laws of exponents for rational

indices

Exponential notation is a short way of writing the same number multiplied by
itself many times. For example, instead of 5 × 5 × 5, we write 53 to show that
the number 5 is multiplied by itself 3 times, we say it as “5 to the power of 3”.
Likewise 52 is 5 × 5 and 35 is 3 × 3 × 3 × 3 × 3.

We will now have a closer look at writing numbers as exponentials (an) when
n is an integer and a can be any real number9.

The nth power of a is

an = 1 × a × a × . . . × a (n times) (1.36)

with a appearing n times. a is called the base and n is called the exponent. 1 is
here so that it can be seen that any number to the power of zero, is 1. We can
also define what it means if −n is a negative integer

a−n = 1 ÷ a ÷ a ÷ . . . ÷ a (n times) (1.37)

If n is an even integer, then an will always be positive for any non-zero real
number a. For example, although −2 is negative, (−2)2 = 1 × −2 × −2 = 4
is positive and so is (−2)−2 = 1 ÷ −2 ÷ −2 = 1

4 . You should now notice
that a−n = 1/an, which is one of many rules we often use when working with
exponentials.

There are several rules we can use to manipulate exponential numbers, mak-
ing them much easier to work with. We will list all the rules here for easy
reference, but we will explain each rule in more detail (NOTE: maybe try to
reduce the number here. kids memorise rules and 7 is maybe too much.)

aman = am+n (1.38)

a−n =
1

an
(1.39)

am

an
= am−n (1.40)

(ab)n = anbn (1.41)

(am)n = amn (1.42)
(a

b

)n

=
an

bn
(1.43)

a
m

n = n
√

am (1.44)

Exponential Rule 1: aman = am+n

Our definition of exponential notation shows that

aman = 1 × a × . . . × a (m times) (1.45)

×1 × a × . . . × a (n times)

= 1 × a × . . . × a (m + n times)

= am+n

9we can write this as n ∈ Z, a ∈ R
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This simple rule is the reason why exponentials were originally invented. In
the days before calculators, all multiplication had to be done by hand with a
pencil and a pad of paper. Multiplication takes a very long time to do and
is very tedious. Adding numbers however, is very easy and quick to do. If
you look at what this rule is saying you will realise that it means that adding
the exponents of two exponential numbers (of the same base) is the same as
multiplying the two numbers together. This meant that for certain numbers,
there was no need to actually multiply the numbers together in order to find
out what their multiple was. This saved mathematicians a lot of time, which
they could use to do something more productive.

Exponential Rule 2: a−n = 1
an

Our definition of exponential notation for a negative exponent shows that

a−n = 1 ÷ a ÷ . . . ÷ a (n times) (1.46)

=
1

1 × a × · · · × a
(n times)

=
1

an

This means that a minus sign in the exponent is just another way of writing
that the whole exponential number is to be divided instead of multiplied.

Exponential Rule 3: am

an = am−n

We already realised with rule 2 that a minus sign is another way of saying that
the exponential number is to be divided instead of multiplied. Rule 3 is just
a more general way of saying the same thing. We can get this rule by just
multiplying rule 2 by am on both sides and using rule 1.

am

an
= ama−n (1.47)

= am−n

Exponential Rule 4: (ab)n = anbn

When real numbers are multiplied together, it doesn’t matter in what order the
multiplication occurs(NOTE: Advanced: This is a collection of two properties,
called commutativity (meaning ab = ba) and associativity (meaning a(bc) =
(ab)c).). Therefore

(ab)n = a × b × a × b × . . . × a × b (n times) (1.48)

= a × a × . . . × a (n times)

×b × b × . . . × b (n times)

= anbn
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Exponential Rule 5: (am)n = amn

We can find the exponential of an exponential just as well as we can for a
number. After all, an exponential number is a real number.

(am)n = am × am × . . . × am (n times) (1.49)

= a × a × . . . × a (m × n times)

= amn

Exponential Rule 6:
(

a
b

)n
= an

bn

Fractions can be multiplied together by separately multiplying their numerators
and denominators (remember equation (1.26)). This means

(a

b

)n

=
a

b
× a

b
× . . . × a

b
(n times) (1.50)

=
a × a × . . . × a

b × b × . . . × b
(n times)

=
an

bn

Exponential Rule 7: a
m

n = n
√

am

We say that x is an nth root of b if xn = b. For example, (−1)4 = 1, so −1 is a
4th root of 1. Using rule 5, we notice that

(a
m

n )n = a
m

n
n = am (1.51)

therefore a
m

n must be an nth root of am. We can therefore say

a
m

n = n
√

am (1.52)

where n
√

am is the nth root of am (if it exists).
A number may not always have a real nth root. For example, if n = 2 and

a = −1, then there is no real number such that x2 = −1 because x2 can never
be a negative number(NOTE: Advanced: There are numbers which can solve
problems like x2 = −1, but they are beyond the scope of this book. They are
called complex numbers.). It is also possible for more than one nth root of a
number to exist. For example, (−2)2 = 4 and 22 = 4, so both -2 and 2 are
2nd (square) roots of 4. Usually if there is more than one root, we choose the
positive real solution and move on.

1.4 Surds

The syllabus requires:

• identify between which 2 integers any simple surd lies

• add, subtract, multiply and divide simple surds

We have already discussed what is meant by the nth root of a number. If such
an nth root is irrational, we call it a surd. For example,

√
2 and 3

√
6 are surds,
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but
√

4 = 2 is not a surd, because 2 is a rational number. We will only look
at surds of the form n

√
a where a is a positive number. When n = 2 we do not

write it in and just leave the surd as
√

a, which is much easier to read.
There are several rules for manipulating surds. We will list them all and

then explain where each rule comes from in more detail.

n
√

a
n
√

b =
n
√

ab (1.53)

n

√
a

b
=

n
√

a
n
√

b
(1.54)

n
√

am = a
m

n (1.55)

Surd Rule 1: n
√

a n
√

b = n
√

ab

It is often enlightening to look at a surd in exponential notation as it allows
us to use the rules we learnt in section 1.3. If we write n

√
a n
√

b in exponential
notation we can see how rule 1 appears

n
√

a
n
√

b = a
1
n b

1
n (1.56)

= (ab)
1
n

=
n
√

ab

Surd Rule 2: n

√
a
b =

n
√

a
n
√

b

Rule 2 appears by looking at n

√
a
b in exponential notation and applying the

exponential rules

n

√
a

b
=

(a

b

) 1
n

(1.57)

=
a

1
n

b
1
n

=
n
√

a
n
√

b

Surd Rule 3: n
√

am = a
m

n

Rule 3 appears by looking at n
√

am in exponential notation and applying the
exponential rules

n
√

am = (am)
1
n (1.58)

= a
m

n

1.4.1 Like and Unlike Surds

Two surds m
√

a and n
√

b are called like surds if m = n, otherwise they are called
unlike surds. For example

√
2 and

√
3 are like surds, however

√
2 and 3

√
2 are

unlike surds. An important thing to realise about the rules we have just learnt
is that the surds in the rules are all like surds.
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If we wish to use the surd rules on unlike surds, then we must first convert
them into like surds. In order to do this we use the formula

n
√

am =
bn
√

abm (1.59)

to rewrite the unlike surds so that bn is the same for all the surds.

1.4.2 Rationalising Denominators

It is useful to work with fractions which have rational denominators instead of
surd denominators. It is possible to rewrite any fraction which has a surd in
the denominator as a fraction which has a rational denominator. We will now
see how this can be achieved.

Any expression of the form
√

a +
√

b (where a and b are rational) can be
changed into a rational number by multiplying by

√
a−

√
b (similarly

√
a−

√
b

can be rationalised by multiplying by
√

a +
√

b). This is because

(
√

a +
√

b)(
√

a −
√

b) = a − b (1.60)

which is rational (since a and b are rational).
If we have a fraction which has a denominator which looks like

√
a+

√
b, then

we can simply multiply both top and bottom by
√

a −
√

b achieving a rational
denominator.

c
√

a +
√

b
=

√
a −

√
b

√
a −

√
b
× c

√
a +

√
b

(1.61)

=
c
√

a − c
√

b

a − b

or similarly

c
√

a −
√

b
=

√
a +

√
b

√
a +

√
b
× c

√
a −

√
b

(1.62)

=
c
√

a + c
√

b

a − b

1.4.3 Estimating a Surd

(NOTE: has anyone got a better way to do this?) It is sometimes useful to
know the approximate value of a surd without having to use a calculator. This
involves knowing some roots which have integer solutions.

For a surd n
√

a, find an integer smaller than a with an integer as its nth root
and then find the next highest integer (which should also be larger than a) with
an integer nth root. The surd which you are trying to estimate will be between
those two integers. (NOTE: this paragraph sucks, rewrite it so that it can be
understood.)

For example, when given the surd 3
√

52 you should be able to tell that it lies
somewhere between 3 and 4, because 3

√
27 = 3 and 3

√
64 = 4 and 52 is between

27 and 64. In fact 3
√

52 = 3.73 . . . which is indeed between 3 and 4.
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The easiest arithmetic procedure10 to find the square root of any number
N is to choose a number x that is close to the square root, find N

x and then

use x′ =
x+ N

x

2 for the next choice of x. x converges rapidly towards the actual
value of the square root - the number of significant digits doubles each time.
(NOTE: arithmetic? procedure? converges? rapidly? this language is not basic
enough!)

We will now use this method to find
√

55. We know that 72 = 49, therefore
the square root of 55 must be close to 7.

Let x = 7 (1.63)

then,
55

7
= 7,8571 . . . (1.64)

∴ x′ =
7 + 7,8571 . . .

2
= 7,4285 . . . (1.65)

55

7.4285 . . .
= 7,4038 . . . (1.66)

∴ x′ =
7,4285 . . . + 7,4038 . . .

2
= 7,4162 . . . (1.67)

Using a calculator we find that
√

55 = 7,416198 . . ., which is very close to our
approximation.

1.5 Accuracy

The syllabus requires:

• write irrational (and rational) solutions rounded to a specified

degree of accuracy

• know when to approximate an irrational by a terminating rational,

and when not to

• express large and small numbers in scientific or engineering notation

We already mentioned in section 1.2.2 that certain numbers may take an infinite
amount of paper and ink to write out. Not only is that impossible, but writing
numbers out to a high accuracy (too many decimal places) is very inconvenient
and rarely gives better answers. For this reason we often estimate the number
to a certain number of decimal places or to a given number of significant figures,
which is even better.

(NOTE: the notes on rounding need to be better. this is not very good.)
Approximating a decimal number to a given number of decimal places is the
quickest way to approximate a number. Just count along the number of places
you have been asked to approximate the number to and then forget all the
numbers after that point. You round up the final digit if the number you cut
off was greater or equal to 5 and round down (leave the digit alone) otherwise.
For example, approximating 2,6525272 to 3 decimal places is 2,653 because the
final digit is rounded up.

10This procedure is known as Heron’s Method, which was used by the Babylonians over
4000 years ago.
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(NOTE: more on the difference between DP and SF needed) In a number,
each non-zero digit is a significant figure. Zeroes are only counted if they are
between two non-zero digits or are at the end of the decimal part. For example,
the number 2000 has 1 significant figure, but 2000,0 has 5 significant figures.
Estimating a number works by removing significant figures from your number
(starting from the right) until you have the desired number of significant figures,
rounding as you go. For example 6,827 has 4 significant figures, but if you wish
to write it to 3 significant figures it would mean removing the 7 and rounding
up, so it would be 6,83.

It is important to know when to estimate a number and when not to. It is
usually good practise to only estimate numbers when it is absolutely necessary,
and to instead use symbols to represent certain irrational numbers (such as π);
approximating them only at the very end of a calculation. If it is necessary
to approximate a number in the middle of a calculation, then it is often good
enough to approximate to a few decimal places.

1.5.1 Scientific Notation

In science one often needs to work with very large or very small numbers. These
can be written more easily in scientific notation, which has the general form

a × 10m (1.68)

where a is a decimal number between 1 and 10. The m is an integer and if
it is positive it represents how many zeros should appear to the right of a. If
m is negative then it represents how many times the decimal place in a should
be moved to the left. For example 3,2 × 103 represents 32000 and 3,2 × 10−3

represents 0,0032.
If a number must be converted into scientific notation, we need to work out

how many times the number must be multiplied or divided by 10 to make it
into a number between 1 and 10 (i.e. we need to work out the value of the
exponent m) and what this number is (the value of a). We do this by counting
the number of decimal places the decimal point must move. It is usually enough
to estimate a to only a few decimal places.

1.5.2 Worked Examples

Worked Example 1 : Manipulating Rational Numbers

Question:

Simplify the following expressions

a) 7
8 + 5

2 b) 11
27 × 20

3 c) 73
69 ÷ 73

69

Answer:

a)
Step 1 : Rule of addition
Write out the rule of addition for rational numbers (1.25)

a

b
+

c

d
=

ad + bc

bd
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Step 2 : Fill in the values
Fill in the values for a,b,c and d. Here you can read off that a = 7,
b = 8, c = 5 and d = 2

7

8
+

5

2
=

7 × 2 + 8 × 5

8 × 2
=

54

16

Step 3 : Minimise the denominator
54
16 is the correct answer, but it is not the simplest way to write it.
We can see that both 54 and 16 can be divided by 2, so we divide
both by 2 and get 27

8 , which cannot be simplified any further.

b)
Step 1 : Rule of multiplication
Write out the rule of multiplication for rational numbers (1.26)

a

b
× c

d
=

ac

bd

Step 2 : Fill in the values
Fill in the values for a,b,c and d. Here you can read off that a = 11,
b = 27, c = 20 and d = 3

11

27
× 20

3
=

11 × 20

27 × 3
=

220

81

There is no number which will divide into both 220 and 81, so 220
81

is the simplest form of the answer.

c)
Step 1 : Use the division rule
Calculate the reciprocal of 73

69 = 69
73 , and write out the division rule

(1.28)
a

b
÷ c

d
=

a

b
× d

c
=

ad

bc

Step 2 : Fill in the values
We can read off that a = c = 73 and b = d = 69 so

73 × 69

69 × 73
=

5037

5037
= 1

This question could also have been answered in one single line by
noticing that the two fractions are the same, and any number divided
by itself is one.

1.5.3 Exercises

TODO
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Chapter 2

Patterns in Numbers

(NOTE: SH notes:at the moment, this whole chapter needs a lot more inline
examples. i think it is too complicated for 16 year olds without examples. even
some of the equations might be over their heads. the use of indices is also
inconsistent... the use of letters like i, n, m should not be interchanged so much
as it is only leading to confusion.)

(NOTE: also, i think we are aiming too high. it is possible that when the
syllabus says “prove”, it really means “show explicitly the first few terms and
assume the rest of the sequence is the same”. so perhaps we should drop a few
of the proofs.)

2.1 Sequences

The syllabus requires:

• investigate number patterns, be able to conjecture a pattern and

prove those conjectures

• recognise a linear pattern when there is a constant difference

between consecutive terms

• recognise a quadratic pattern when there is a constant 2nd difference

• identify ‘‘not real’’ numbers and how they occur (NOTE: i think

this would be best taught in quadratic equations as that is the

only place they occur in this syllabus)

• (grade 12) arithmetic and geometric sequences

Can you spot any patterns in the following lists of numbers?

2,4,6,8, . . . (2.1)

1,2,4,7, . . . (2.2)

1,4,9,16, . . . (2.3)

5,10,20,40, . . . (2.4)

3,1,4,1,5,9,2, . . . (2.5)

22



The first is a list of the even numbers, the numbers in the second list first differ
by one, then by two, then by three. The third list contains the squares of all
the integers. In the fourth list, every term is equal to the previous term times
two and the last list contains the digits of the number π. These lists are all
examples of sequences. In this section we will be studying sequences and how
they can be described mathematically. (NOTE: a few real world examples here
wouldn’t go amiss.)

A sequence is a list of objects (in our case numbers) which have been ordered.
We could take as an example a sequence of books. If you put all your books in
alphabetical order by the author, that would be a sequence because it is a list
of things in order. Someone could look at the sequence and work out how you
ordered them if they knew the alphabet. You could rearrange the collection so
that it was ordered alphabetically by title. That would be a different sequence
because the order is different. Similarly the sequence of numbers 1,2,3 is different
to 3,2,1. You could even shuffle up all the books so that the order they were in
didn’t follow a pattern, but they would still make a sequence.

Notice that not all sequences have to continue forever - what characterises a
sequence is that it is a list which is ordered. In the alphabetised books example,
someone who didn’t know the alphabet would not be able to work out how you
had ordered the books. How would you be able to find your seats at the theatre
or at a stadium if the seats were not ordered ? Likewise if you are shown a
sequence of numbers, you may not be able to work out what pattern relates
them. That might be because there is no pattern, or it might just be that you
can’t see it straight away.

We will be thinking about sequences in this chapter and it is useful to be
able to talk in general about them. We will want to talk about the numbers
in the sequence, so rather than having to say something longwinded like “the
second term in the sequence is related to the first term by this rule....”, we give
each term in the sequence a name. The first term of a sequence is named a1,
the second term is named a2 and the nth term is named an. Now we can say
“a2 is related to a1 by this rule...”.

The small n or number like 1 or 2 beside the letter is called a subscript or
index but we will refer to it as the subscript It helps us keep everything tidy by
using the same letter (in this example, a) for all the terms in a sequence.

A sequence does not have to follow a pattern, but when it does we can often
write down a formula for the nth term, an. In the example above, 2.3 where the
sequence was of all square numbers, the formula for the nth term is an = n2.
You can check this by looking at a1 = 12 = 1, a2 = 22 = 4, a3 = 32 = 9, . . .

2.1.1 Arithmetic Sequences

Definition: A linear arithmetic sequence is a sequence in which each
successive term differs by the same amount.

Each term is equal to the previous term plus a constant number. Tn =
Tn−1 +k1 where k1 is some constant. We will see in the next example what this
constant is and how to determine it.

Say you and 3 friends decide to study for maths and you are seated at a
square table. A few minutes later, 2 other friends join you and would like to sit
at your table and help you study. Naturally you move another table and add it
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Figure 2.1: Tables moved together

to the existing one. Now six of you sit at the table. Another two of your friends
join your table and you take a third table and add it to the existing tables. Now
8 of you can sit comfortably. Let assume this pattern continues and we tabulate
what is happening.

(NOTE: Insert pictures here.)
No. Tables (n) No of people seated Formula

1 4 = 4 = 4 + 2(0)
2 4+2 = 6 = 4 + 2(1)
3 4+2+2 = 8 = 4 + 2(2)
4 4+2+2+2 = 10 = 4 + 2(3)
...

...
...

n 4+2+2+2+. . . +2 = 4 + 2(n - 1)
We can see for 3 tables we can seat 8 people, for 4 tables we can seat 10

people and so on. We started out with 4 people and added two the whole time.
Thus for each table added, the number of persons increase with two. Thus,
4,6,8,... is a sequence and each term (table added), differs by the same amount
(two).

More formally, the number we start out with is called a1 and the difference
between each successive term is d. Now our equation for the nth term will be:

an = a1 + d(n − 1) (2.6)

The general linear sequence looks like a1, a1 + d, a1 + 2d, a1 + 3d, . . ., using the
general formula ?? How many people can sit in this case around 12 tables ? By
simply using the derived equation we are looking for where n = 12 and thus a12

an = a1 + d(n − 1)

a12 = 4 + 2(12 − 1)

= 4 + 2(11)

= 4 + 22

= 26

OR
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How many tables would you need for 20 people ?

an = a1 + d(n − 1)

20 = 4 + 2(n − 1)

20 − 4 = 2(n − 1)

16 ÷ 2 = n − 1

8 + 1 = n

n = 9

A simple test for an arithmetic sequence is to check that a2−a1 = a3−a2 = d
This is quite an important equation and is a definitive test for an arithmetic

sequence. If this condition does not hold, the sequence is not an arithmetic se-
quence.
It is also important to note the difference between n and an. n can be compared
to a place holder while an is the value at the place ’held’ by n. Like our study
table above.Table 1 holds 4 people thus at place n=1 the value of a1 = 4.

n 1 2 3 4 . . .
an 4 6 8 10 . . .

2.1.2 Quadratic Sequences

(NOTE: maybe put in a note about the quadratic equations section, and 1st/2nd
differences in terms of differentiating wrt n.) A quadratic sequence is a se-
quence in which the differences between each consecutive term differ by the
same amount, called a constant second difference. In the example sequences
in the introduction, equation (2.2) is a quadratic sequence because the differ-
ence between each term differs by one each time. We can look at the difference
between each term and see that the differences form a linear sequence:

a2 − a1 = 2 − 1 = 1

a − 3 − a2 = 4 − 2 = 2

a4 − a3 = 7 − 4 = 3

Here you can see clearly that the difference between each difference is 1. We
call this the constant second difference and in this case is = 1. The general
form of this example of a quadratic sequence (a sequence with constant second
difference) is

an =
1

2
(n2 − 1) − 1

2
(n − 1) + 1 (2.7)

For a general quadratic sequence with constant second difference D the formula
for an is

an =
D

2
(n2 − 1) + d(n − 1) + a1 (2.8)

The difference between an and an−1 is Dn + d.
Check for yourself that an − an−1 = Dn + d. (Use the formula for an and

then again for an−1 (setting n = n − 1 in the formula) and then work out what
an − an−1 is.) Make up your own quadratic sequences with a constant second
difference not equal to 1.
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Figure 2.2: Tree diagram of series

2.1.3 Geometric Sequences

Definition: A geometric sequence is a sequence in which every num-
ber in the sequence is equal to the previous number in the sequence,
multiplied by another constant number.

This means that the ratio between consecutive numbers in the sequence is a
constant. We will explain what we mean by ratio after looking at this example.

What is influenza (flu)? Influenza, commonly called ’the flu’, is caused by the
influenza virus, which infects the respiratory tract (nose, throat, lungs). It can
cause mild to severe illness, that most of us get during winter time The main way
that influenza viruses are spread is from person to person in respiratory droplets
of coughs and sneezes. (This is called ’droplet spread.’) This can happen when
droplets from a cough or sneeze of an infected person are propelled (generally
up to 3 feet) through the air and deposited on the mouth or nose of people
nearby. It is good practise to cover your mouth when you cough or sneeze to
not infect others around you when you have the flu.

Lets assume you have the flu virus and you forgot to cover your mouth when
two friends came to visit while you were sick in bed. They leave and the next
day, they also have the flu. Lets assume that they in turn spread the virus to
two of their friends by the same droplet spread the following day. Lets assume
this pattern continues and each person infected, infects 2 other friends. We can
represent these events in the following manner:

(NOTE: Insert pictures here.)
Again we can tabulate the events and formulate an equation for the general

case:
# day (n) # Carrier # Recipients/Carrier Formula

1 You spread virus 2 2 = 2
2 2 4 4 = 2 x 2 = 2 x 21

3 4 8 8 = 2 x 4 = 2 x 2x2 = 2 x 22

4 8 16 16 = 2 x 8 = 2 x 2x2x2 = 2 x 23

5 16 32 32 = 2 x 16 = 2 x 2x2x2x2 = 2 x 24

...
...

...
...

n . . . . . . = 2 x 2x2x2x...x2 = 2 x 2n−1

You sneeze and the virus is carried over to 2 people who start the chain
(a1 = 2). The next day, each one then infects 2 of their friends. Now 4 people
are infected. Each of them infects 2 people the third day and 8 people are
infected etc. These events can be written as a geometric sequence: 2,4,8,16,32,...
Note the common factor between the events. Recall from the linear arithmetic
sequence how the common difference between terms were established. In the
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geometric sequence we can determine the common factor, r by

a2

a1
=

a3

a2
= r (2.9)

Or more general
an+1

an
=

an+2

an+1
= r (2.10)

a2

a1
is called the ratio and is used to describe the ’factor difference’ between

the elements of the series. i.e. The ratio between a1 and a2 is 2
From the question in the above example we know a1 = 2 and r = 2 and we

have seen from the table that the nth term is given by an = 2 × 2n−1. Thus in
general,

an = a1r
n−1 (2.11)

So if we want to know how many people has been infected after 10 days, we
need to work out a10

an = a1r
n−1

a10 = 2 × 210−1

= 2 × 29

= 2 × 512

= 1024

Or, how many days would pass before 16384 people are infected with the
flu virus ? (NOTE: I’m not sure if SURDs and exponents have been done at
this stage. check first. This chapter should be taught AFTER exponents and
SURDs because the techniques are used !!)

an = a1r
n−1

16384 = 2 × 2n−1

16384 ÷ 2 = 2n−1

8192 = 2n−1

213 = 2n−1

13 = n − 1

n = 14

2.1.4 Recursive Equations for sequences

When discussing linear and quadratic sequences we noticed that the difference
between two consecutive terms in the sequence could be written in a general way.
For linear sequences, where the constant difference between two consecutive
terms was d, we can write this information as an − an−1 = d for any term in
the sequence. We can rearrange this to an = an−1 + d. This is an expression
for an in terms of an−1, which is called a recursive equation. So the recursive
equation for a linear sequence of constant difference d is

an − an−1 = d (2.12)
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We can do the same thing for quadratic sequences. There we noticed that
an −an−1 = Dn+d. Then the recursive equation for a quadratic sequence with
constant second derivative D is

an − an−1 = Dn + d (2.13)

(NOTE: Here we haven’t said explicitly what d is or how to work it out. This
bothers me. I think to be honest that you need more information. like maybe
an − an−2 wouldn’t include d.)

It is not always possible to find a recursive equation for a sequence, even
when you know the general way to write down any term an. Can you find a
recursive equation for a geometric sequence? This is not supposed to be easy!
It’s just to get you to have a go at working things out.

Recursive equations are extremely powerful: you can work out every term in
the series just by knowing the previous one, and as you can see for the example
above, working out an from an−1 can be a much simpler computation than
working out an from scratch using a general formula. This means that using a
recursive formula when programming a computer to work out a sequence would
mean the computer would finish its calculations significantly quicker. (NOTE:
Real world example of this?)

2.1.5 Extra

(NOTE: Jacques had sections on arithmetic/geometric means. i want to add
that back in, but make it clear it is non-syllabus. No questions are usually asked
in the final exam as far as I can see, but it is part of the syllabus.)

2.2 Series (Grade 12)

The syllabus requires:

• (grade 12) prove and calculate the following sums

n∑

i=1

1 = n

n∑

i=1

i2 =
n(2n + 1)(n + 1)

6

n∑

i=1

a + (i − 1)d =
n

2
(2a + (n − 1))

n∑

i=1

a.ri−1 =
a(rn − 1)

r − 1

∞∑

i=1

a.ri−1 =
a

1 − r
− 1 < r < 1

(NOTE: equation 3 is not correct in the official syllabus. there

is a d missing.)
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When we sum terms in a sequence, we get what is called a series. If we only
sum a finite amount of terms, we get a finite series. We use the symbol Sn to
mean the sum of the first n terms of a sequence. For example, the sequence of
numbers 3,1,4,1,5,9,2, . . . has a finite series S4 which is simply the first 4 terms
added together, 3 + 1 + 4 + 1 = 9.

If we sum infinitely many terms of a sequence, we get an infinite series.
A sum may be written out using the summation symbol

∑
(Sigma). This

symbol is the capital “S” (for Sum) in the Greek alphabet. It indicates that
you must sum the expression to the right of it

n∑

i=m

ai = am + am+1 + . . . + an−1 + an (2.14)

ai are the terms in a sequence and here we sum from i = m (as indicated below
the summation symbol) up until i = n (as indicated above). We usually just
sum from n = 1, which is the first term in the sequence. In which case we can
use either Sn or

∑
notation since they mean the same thing

Sn =
n∑

i=1

ai = a1 + a2 + . . . + an (2.15)

For example, in the following sum

5∑

i=1

i (2.16)

we have to add together all the terms in the sequence ai = i from i = 1 up until
i = 5

5∑

i=1

i = 1 + 2 + 3 + 4 + 5 = 15 (2.17)

which gives us 15.

2.2.1 Finite Arithmetic Series

When we sum a finite number of terms in an arithmetic sequence, we get a finite
arithmetic series. The simplest arithmetic sequence is when a1 = 1 and d = 0
in the general form (??), in other words all the terms in the sequence are one.

ai = d(i − 1) + a1 (2.18)

= 0(i − 1) + 1

= 1

a = 1,1,1,1,1, . . .

If we wish to sum this sequence from i = 1 to any integer n, we would write

n∑

i=1

1 = 1 + 1 + 1 + . . . n times (2.19)
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Since all the terms are equal to one, it means that if we sum to an integer n we
will be adding n number of ones together, which is equal to n.

n∑

i=1

1 = n (2.20)

Another simple arithmetic sequence is when a1 = 1 and d = 1, which is the
sequence of positive integers

ai = d(i − 1) + a1 (2.21)

= (i − 1) + 1

= i

a = 1,2,3,4,5, . . .

If we wish to sum this sequence from i = 1 to any integer n, we would write

n∑

i=1

i = 1 + 2 + 3 + . . . + n (2.22)

This is an equation with a very important solution as it gives the answer to the
sum of positive integers1. We notice that the largest number may be added to
the smallest, then the second largest added to second smallest, giving the same
number. If we keep doing this we find that all the numbers may be paired up
together like this until we reach the middle and there are no more numbers left
to pair off

a1 + a2 + . . . + an = (a1 + an) + (a2 + an−1) + . . .
n

2
times (2.23)

If there are an odd number of numbers, then we must not forget to add the
unpaired number to the answer at the end. For example

1 + 2 + 3 + 4 + 5 = (1 + 5) + (2 + 4) + 3 (2.24)

= 6 + 6 + 3

= (3 + 3) + (3 + 3) + 3

= 15

We can write this down in general as

n∑

i=1

i =
n

2
(n + 1) (2.25)

If we wish to sum any arithmetic sequence, there is no need to work it out
term for term as we just have for these examples. We will now show what the
general form of a finite arithmetic series is by starting with the general form of
an arithmetic sequence and summing it from i = 1 to any integer n.

1A famous mathematician named Carl Friedrich Gauss discovered this proof when he was
only 8 years old. His teacher had decided to give his class a problem which would distract them
for the entire day by asking them to add all the numbers from 1 to 100. Young Carl realised
how to do this almost instantaneously and shocked the teacher with the correct answer, 5050.
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Writing out the sum of a sequence and then substituting in the general form
for an arithmetic sequence gives us

n∑

i=1

ai =

n∑

i=1

d(i − 1) + a1 (2.26)

If there is a sum inside a sum, we can break it into two separate sums and
calculate each part separately.

n∑

i=1

d(i − 1) + a1 =

n∑

i=1

di
︸︷︷︸

left

+(a1 − d)
︸ ︷︷ ︸

right

(2.27)

If a sum is multiplied by a constant, we can take the constant outside of the
∑

. The term on the right is a sum of a1 − d, which is a constant, so we may
rewrite that term as

n∑

i=1

a1 − d = (a1 − d)

n∑

i=1

1 (2.28)

= (a1 − d)n

Here we used equation (2.20) to arrive at the solution. The term on the left of
equation (2.27) is also quite simple. Firstly we can take the constant d out of
the sum

n∑

i=1

di = d
n∑

i=1

i (2.29)

and then we can use equation (2.25) to find

d

n∑

i=1

i =
dn

2
(n + 1) (2.30)

Adding together the solutions to the left and right terms (equations (2.28) and
(2.30)) we get the general form of a finite arithmetic series

n∑

i=1

d(i − 1) + a1 =
n

2
(2a1 + d(n − 1)) (2.31)

For example, if we wish to know the series S20 for the arithmetic sequence
ai = 7(i−1)+3, we could either calculate each term individually and sum them

20∑

i=1

7(i − 1) + 3 = 3 + 10 + 17 + 24 + 31 + 38 + 45 + 52

+59 + 66 + 73 + 80 + 87 + 94 + 101

+108 + 115 + 122 + 129 + 136

= 1390 (2.32)

or more sensibly, we could use equation (2.31) noting that d = 7, a1 = 3 and
n = 20 so that

20∑

i=1

7(i − 1) + 3 =
20

2
(2 × 3 + 7 × 19) (2.33)

= 1390

In this example, it is clear that using (2.31) is beneficial.
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2.2.2 Finite Squared Series

When we sum a finite number of terms in a quadratic sequence, we get a finite
quadratic series. The general form of a quadratic series is quite complicated, so
we will only look at the simple case when D = 1 and d = a0 = 0 in the general
form (??). This is the sequence of squares of the integers

ai = i2 (2.34)

= 12,22,32,42,52,62, . . .

= 1,4,9,16,25,36 . . .

If we wish to sum this sequence and create a series, then we write

Sn =
n∑

i=1

i2 = 1 + 4 + 9 + . . . + n2 (2.35)

which can be written in general as (NOTE: the syllabus requires that we prove
this result! any ideas, without confusing the hell out of a 16 year old? i thought
even the other ones were a bit too hard for this level, to be honest.)

n∑

i=1

i2 =
n(2n + 1)(n + 1)

6
(2.36)

2.2.3 Finite Geometric Series

When we sum a finite number of terms in a geometric sequence, we get a finite
geometric series. We know from (??) that we can write out each term of a
geometric sequence in a general form. By simply adding together the first n
terms in the general form we are actually writing out the series

Sn = a1 + a1r + a1r
2 + . . . + a1r

n−1 (2.37)

We may multiply this by r on both sides, giving us

rSn = a1r + a1r
2 + a1r

3 + . . . + a1r
n (2.38)

You may notice that all the terms are the same in (2.37) and (2.38), except the
first and last. If we subtract (2.37) from (2.38) we are left with just

rSn − Sn = a1 + a1r
n (2.39)

Sn(r − 1) = a1(1 + rn)

dividing by (r − 1) on both sides, we have the general form of a geometric
sequence since Sn =

∑n
i=1 a.ri−1

n∑

i=1

a.ri−1 =
a(rn − 1)

r − 1
(2.40)
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2.2.4 Infinite Series

Thus far we have been working only with finite sums, meaning that whenever
we determined the sum of a series, we only considered the sum of the first n
terms. It is the subject of this section to consider what happens when we add
infinitely many terms together. You might think that this is a silly question
- surely one will get to infinity when one sums infinitely many numbers, no
matter how small they are? The surprising answer is that in some cases one
will reach infinity (like when you try to add all the integers together), but in
some cases one will get a finite answer. If you don’t believe this, try doing the
following sum on your calculator or computer: 1

2 + 1
4 + 1

8 + 1
16 + 1

32 + ... . You
might think that if you keep adding more and more terms you will eventually
get larger and larger numbers, but in fact you won’t even get past 1 - try it and
see for yourself!

There is a special sigma notation for infinite series: we write
∑∞

i=1 i to
indicate the infinite sum 1 + 2 + 3 + 4 + ..... When we sum the terms of a
series, and the answer we get after each summation gets closer and closer to
some number, we say that the series converges. If a series does not converge,
we say that it diverges.

There is a rule for knowing instantly which geometric series converge and
which diverge. When r, the common ratio, is strictly between -1 and 1, i.e.
−1 < r < 1, the infinite series will converge, otherwise it will diverge. There
is also a formula for working out what the series converges to. The sum of an
infinite series, symbolised by S∞, is given by the formula

S∞ =

∞∑

i=1

a1.r
i−1 =

a1

1 − r
− 1 < r < 1 (2.41)

where a1 is the first term of the series, and r is the common ratio. (NOTE:
the syllabus requires us to PROVE this series! how can we do that without
a notion of a limit? again the syllabus talks nonsense.) We can see how this
comes about by looking at (2.40), as −1 < r < 1 and n = ∞. We can ignore the
rn term since a small number raised to the power of infinity is infinitely small.
Try this yourself by typing in a number between -1 and 1 into your calculator
and square it, continuing to square the answers thereafter; your calculator will
eventually decide that the answer is zero.

2.3 Worked Examples

(NOTE: I think maybe the worked examples should follow the relevant section.
Check if the general layout is set.)

1. Classify the following as arithmetic sequence or geometric sequence:
15,19,23, . . .

For arithmetic sequence, We have to check for a common difference or a
common ratio.

a2 − a1 = a3 − a2 = d
a2 − a1 = 19 − 15 = 4
a3 − a2 = 23 − 19 = 4
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Thus, a2−a1 = a3−a2 = 4 and we can say that 15,19,23, . . . is an arithmetic
sequence and d = 4

2. Classify the following as arithmetic sequence or geometric sequence:
5,10,20, . . .

For arithmetic sequence, We have to check for a common difference or a
common ratio.

a2 − a1 = a3 − a2 = d
a2 − a1 = 10 − 5 = 5
a3 − a2 = 20 − 10 = 10

Thus, a2 −a1 6= a3 −a2 and we can say that 5,10,20, . . . is not an arithmetic
sequence.

Test for geometric sequence:
a2

a1
= a3

a2
= r

a2

a1
= 10

5 = 2
a3

a2
= 20

10 = 2

Thus, a2

a1
= a3

a2
and r = 2 and we can say that 5,10,20, . . . is a geometric

sequence.

3. Determine d and a9 for the following arithmetic sequence:
17,14,11, . . .

It is given that 17,14,11, . . . is an arithmetic sequence, thus
a2 − a1 = a3 − a2 = d
14 − 17 = 11 − 14 = −3
d = −3

To determine a9 we use an = a1 + d(n − 1) with n = 9
Thus:

an = a1 + d(n − 1)

a9 = 17 + (−3)(9 − 1)

= 17 − 3(8)

= 17 − 24

= −7

4. Determine r and a7 for the following geometric sequence: 81,−27, 9, . . .

a2

a1
=

a3

a2
= r

a2

a1
=

−27

81
= −1

3
a3

a2
=

9

−27
= −1

3
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To determine a7 we use an = a1r
n−1 with n = 7

Thus:

an = a1r
n−1

a7 = (81)(−1

3
)7−1

= −(34)(3−1(6)

= −(34.3−6)

= −(34−6)

= −(3−2)

= −1

9

5. The third term of a geometric sequence is equal to 1 and the 5th term is
16. Find r and the seventh term

Given: a3 = 1 and a5 = 16
We also know
an = a1r

n−1

Thus:

a3 = a1r
3−1

1 = a1r
2

Also:

a5 = a1r
5−1

16 = a1r
4

Dividing (2) by (1):

16

1
=

a1r
4

a1r2

16 = r2

r = 4

To find a7 we use a7 = a1r
7−1 but first we need a1. From (1) we know:
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1 = a1r
2

1 = a1.(4)
2

a1 =
1

16

a7 = a1r
7−1

=
1

16
.46

=
4096

16
= 256

6. The fourth term of an arithmetic sequence is 1 1
2 and the the 8th term is

1
2 . Find the second term.

Given: a4 = 3
2 , a8 = 1

2 and this is an arithmetic sequence.
Thus we can use an = a1 + d(n − 1)

a4 = 3
2 = a1 + d(4 − 1) = a1 + 3d and

a8 = 1
2 = a1 + d(8 − 1) = a1 + 7d

Subtract the one equation from the other to get rid of a1 and solve for d:
3
2 − 1

2 = (a1 + 3d) − (a1 + 7d)
1 = −4d
d = − 1

4

1
2 = a1 + (− 1

4 )(7)
1
2 = a1 − 7

4 )
a1 = 9

4

a2 = 9
4 − ( 1

4 )(2 − 1)
a2 = 8

4 = 2

2.4 Exercises

1. Classify the following as arithmetic sequence or geometric sequence:

i)
1

3
,
1

6
,0, − 1

6
, − 1

3
, . . .

ii) 1, − 1,1, . . .

iii)
3

2
,
1

2
,
1

6
, . . .

iv) 22,2,1, . . .

v)
1

2
,
5

8
,
3

4
, . . .

2. Find a7 for each of the series above.
3. Determine which term in the series 14,8,2, . . . is equal to −34 ? 4. Which
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term in 2,6,18, . . . is equal to 486 ?
5. In a geometric series, a4 = 2

3 and a6 = 3
2 . Find a2.

6. In an arithmetic series, a3 = −2 and a8 = 23. Determine a1 and d.
7. The third term of a Geometric series is equal to minus three eights and the
seventh term is equal to 3

128 . Find a5.
8. Insert 4 numbers between 4 and 972 to form a geometric series.
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Chapter 3

Functions

3.1 Functions and Graphs

The syllabus requires:

• (grade 12) formal definition of the function concept

• able to switch between words, tables, graphs and formula to represent

the relation between variables

• generate graphs using point to point plotting to test conjectures

on relations between x and y for the situations (NOTE: this list

has changed in the latest syllabus... be warned. we do the trig

functions in the trig section. it makes more sense this way.)

y = ax + b

y = ax + b a > 0,a 6= 1

y =
a

x
+ b

y =
a

x + b
+ c

y = ax+b + c

(NOTE: page 25 of the syllabus lists some more situations, but

they are corrupted. we need to get an uncorrupted version of

the syllabus and add them to this list)

• identify the domain and range, axes intercepts, turning points

(max/min), asymptotes, shape and symmetry, periodicity and amplitude,

rates of change, increasing/decreasing ranges and continuity.

and can sketch graphs using these characteristics

• (grade 12) can generate graphs of function inverses. in particular

y = ax + b

y = ax a > 0, a 6= 1

y = ax2

y = sin(x)
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• (grade 12) decide which inverses are functions and if necessary

the restriction to make it a function

(NOTE: functions are neither conceptually simple nor very interesting - so
this intro needs to be very sexy (and i know mine probably isn’t, so rewriting
is good). try to reword so as to not use 1st and 3rd person.)

Most people don’t know it but they’ve come across functions all their lives.
In fact, our very existence is tied to certain, very special functions called the
laws of nature. Even ignoring those, though, it would be difficult to go through
a day without coming into contact with all sorts of functions. We can say
that the idea of a function is one of the most basic and powerful ideas in the
mathematics.

Functions everywhere? But who’s ever heard of such a thing? Where does
the word even come from? Well, they are everywhere, and, once you begin to
see them, functions will be the easiest concept in mathematics. Where are these
functions? Well, the menu in a restaurant is a function. So are the prices in a
supermarket. Today’s temperature. Your height, your age, your weight. These
are all functions.

A function is just a way of attaching or relating one thing to another. A
menu attaches prices to the food in a restaurant, and a supermarket attaches
prices to the things it sells. We need to notice one very important fact, which is
that these functions can give only one price to each item. We would certainly get
angry if a restaurant charged two different prices for the same dish. However, it’s
perfectly natural for a restaurant to charge the same price for different dishes.
Similarly, one person cannot have two different heights, but two people can have
the same height.

3.1.1 Variables, Constants and Relations

A variable is a label which we allow to change and become any element of some
set of numbers. For example, on a menu in a restaurant “price” is a variable on
the set of real numbers, since for any menu item the manager can choose any
price he or she feels like (with the aim of staying in business). Most often, a
variable will be a letter which can take on any value in some set of numbers.
In this textbook we will only use real variables, which may take on the value of
any real number. Though a variable is free to vary, if we wish we can specify
that the variable takes on a specific value, in which case we say that we assign
a value to the variable. In fact, we do this all the time when working with
variables. When we say “what if we set the price to R50”, we are just assigning
the value “R50” to the variable “price”. You have probably already done this
quite frequently in algebra, when you say “let x be 1”.

A constant is a variable which is fixed. We may not know the value of this
constant, but this is a number which does not change throughout any problem.
The “speed of light” is a variable which is always 300 000km per second, i.e.
it is a constant. Such constant variables occur most frequently in the laws of
physics.

Variables on their own are very abstract, so don’t worry if it is slightly
confusing. They become much more understandable when we start to relate
them to each other. “Price” on a menu may not be a constant, but it must be
tied to the items on that menu. For each item, we have a specified price. We can
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think of “item” as a variable in its own right, and then the menu does nothing
but tell us the relationship between the two variables “item” and “price”.

In general, a relation is an equation which relates two variables. For example,
y = 5x and y2 + x2 = 5 are relations. In both examples x and y are variables
and 5 is a constant, but for a given value of x the value of y will be very different
in each relation.

Our example of a restaurant menu shows that relations between variables
take on varied representations. Besides writing them as formulae, we most often
come across relations in words, tables and graphs. Instead of writing y = 5x,
we could also say “y is always five times as big as x”. We could also give the
following table:

(NOTE: Working on a Latex-less machine, so table will come later)
(I put in a table but not sure if it’s ok - Jothi)

x y = 5x
2 10
6 30
8 40
13 65
15 75

Some of you may object that this table isn’t very satisfactory, as the same
table could represent almost any relation between x and y. However, when using
tables we normally cheat and just assume that the obvious relationship in the
table is the relationship.

Finally, we look at graphs (NOTE: surely thisneeds to wait until later? sorry
- structuring major headache here)

3.1.2 Definition of a Function (grade 12)

A function is a relation for which there is only one value of y corresponding to
any value of x. We sometimes write y = f(x), which is notation meaning ’y is a
function of x’. This definition makes complete sense when compared to our real
world examples — each person has only one height, so height is a function of
people; on each day, in a specific town, there is only one average temperature.

However, some very common mathematical constructions are not functions.
For example, consider the relation x2 + y2 = 4. This relation describes a circle
of radius 2 centred at the origin, as in figure 3.1. If we let x = 0, we see that
y2 = 4 and thus either y = 2 or y = −2. Since there are two y values which are
possible for the same x value, the relation x2 + y2 = 4 is not a function.

There is a simple test to check if a relation is a function, by looking at its
graph. This test is called the vertical line test. If it is possible to draw any
vertical line (a line of constant x) which crosses the relation more than once,
then the relation is not a function. If more than one intersection point exists,
then the intersections correspond to multiple values of y for a single value of x.

We can see this with our previous example of the circle by looking at its
graph again in figure 3.1. We see that we can draw a vertical line, for example
the dotted line in the drawing, which cuts the circle more than once. Therefore
this is not a function.
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Figure 3.1: Graph of y2 + x2 = 4

In a function y = f(x), y is called the dependent variable, because the value
of y depends on what you choose as x. We say x is the independent variable,
since we can choose x to be any number.

3.1.3 Domain and Range of a Relation

The domain of a relation is the set of all the x values for which there exists at
least one y value according to that relation. The range is the set of all the y
values, which can be obtained using at least one x value. If the relation is of
height to people, then the domain is all living people, while the range would
be about 0.1 to 3 metres — no living person can have a height of 0m, and
while strictly it’s not impossible to be taller than 3 metres, no one alive is.
An important aspect of this range is that it does not contain all the numbers
between 0.1 and 3, but only six billion of them (as many as there are people).

As another example, suppose x and y are real valued variables, and we have
the relation y = 2x. Then for any value of x, there is a value of y, so the
domain of this relation is the whole set of real numbers. However, we know
that no matter what value of x we choose, 2x can never be less than or equal to
0. Hence the range of this function is all the real numbers strictly greater than
zero.

These are two ways of writing the domain and range of a function, set no-
tation and interval notation. (NOTE: the syllabus does not say which notation
method to use. we should find out, and only use the one if possible. there is no
need to add further confusion. then move the unused notation to Extra.)

Set Notation

First we introduce the symbols > , < , ≤ , ≥. > means ’is greater than’ and
≥ means ’is greater than or equal to’. So if we write x > 5, we say that x is
greater than 5 and if we write x ≥ y, we mean that x can be greater than or
equal to y. Similarly, < means ’is less than’ and ≤ means ’is less than or equal
to’. Instead of saying that x is between 6 and 10, we often write 6 < x < 10.
This directly means ’six is less than x which in turn is less than ten’.
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A set of certain x values has the following form:

{x : conditions, more conditions} (3.1)

We read this notation as “the set of all x values where all the conditions are
satisfied”. For example, the set of all positive real numbers can be written as
{x : x ∈ R, x > 0} which reads as “the set of all x values where x is a real number
and is greater than zero”. (NOTE: have we even explained what > , < , ≤ , ≥
mean yet? remember... this book must not assume that anyone has seen this
stuff before.)

We use the same notation (with the letter y instead of x) for the range of
the function.

Interval Notation

(NOTE: rewrite this subsubsection. first describe what the brackets mean, and
then introduce the concept of a union. all these concepts are new... so we must
describe everything in detail.)

Here we write an interval in the form ’lower bracket, lower number, comma,
upper number, upper bracket ’. We can use two types of brackets, square ones [, ]
or round ones (, ). A square bracket means including the number at the end of
the interval whereas a round bracket means excluding the number at the end of
the interval. It is important to note that this notation can only be used for all
real numbers in an interval. It cannot be used to describe integers in an interval
or rational numbers in an interval.

So if x is a real number greater than 2 and less than or equal to 8, then x is
any number in the interval

(2,8] (3.2)

It is obvious that 2 is the lower number and 8 the upper number. The round
bracket means ’excluding 2’, since x is greater than 2, and the square bracket
means ’including 8’ as x is less than or equal to 8.

Now we come to the idea of a union, which is used to combine things. The
symbol for union is ∪. Here we use it to combine two or more intervals. For
example, if x is a real number such that 1 < x ≤ 3 or 6 ≤ x < 10, then the set
of all the possible x values is

(1,3] ∪ [6,10) (3.3)

where the ∪ sign means the union(or combination) of the two intervals. We use
the set and interval notation and the symbols described because it is easier than
having to write everything out in words.

3.1.4 Example Functions

In this section we will look at several examples of functions. Here we will let go of
our real-world examples, and look exclusively at real valued functions, because
only in such cases do we see the full use and power of functional mathematics.
While it is instructive to see a menu or people’s height as a function, it is
not very interesting. On the other hand, all of advanced physics and statistics
depend on real valued functions. Very little is more important than gaining an
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intuitive grasp of real functions, and we will spend the remainder of this chapter
doing just that.

When considering real valued functions, our major tool is drawing graphs.
In the first place, if we have two real variables, x and y, then we can assign
values to them simultaneously. That is, we can say “let x be 5 and y be 3”.
Just as we write “let x = 5” for “let x be 5”, we have the shorthand notation
“let (x, y) = (5, 3)” for “let x be 5 and y be 3”. We usually think of the real
numbers as an infinitely long line, and picking a number as putting a dot on that
line. If we want to pick two numbers at the same time, we can do something
similar, but now we must use two dimensions. What we do is use two lines,
one for x and one for y, and rotate the one for y, as in diagram (NOTE: insert
diagram). We call this the Cartesian plane.

(NOTE: This whole y and f(x) thing needs to be cleared up — I would do
it here, but then it’s also discussed above in the definition of a function. I think
the problem comes with the varying uses of y, and I think a physicist would
be better than a mathematician to clear this up. Personally, rigorously, I don’t
really know what’s going on with this notation.)

The great beauty of doing this is that it allows us to “draw” functions, in a
very abstract way. Let’s say that we were investigating the function f(x) = 2x.
We could then consider all the points (x, y) such that y = f(x), i.e. y = 2x.
For example, (1, 2), (2.5, 5), and (3, 6) would all be such points, whereas (3, 5)
would not since 5 6= 2 × 3. If we put a dot at each of those points, and then at
every similar one for all possible values of x, we would obtain the graph shown
in (NOTE: put in).

The form of this graph is very pleasing — it is a simple straight line through
the middle of the plane. Now some of you may have guessed this graph long
before we plotted it, but the point is that the technique of “plotting”, which we
have followed here, is the key element in understanding functions. To show you
why, we will now consider whole classes of functions, and we will relate them
by the simple fact that their graphs are nearly identical.

Straight Line Functions

These functions have the general form

f(x) = ax + b (3.4)

where a and b are constants. The value of a is called the gradient or slope and
tells us how steep the line is (the larger the number, the steeper the line). If a is
greater than zero it means the line increases from left to right (slopes upwards),
if it is smaller than zero the line increases from right to left (slopes downwards).
b is called the y-intercept and tells us where the line goes through the y-axis.

For example the function f(x) = 2x+3 has a gradient of 2 and a y-intercept
of 3. This means that the line cuts through the y-axis at a value of 3 and slopes
upwards. We can calculate the values of y for certain values of x and then plot
them in a graph (see figure 3.2).

x : -5 -4 -3 -2 -1 0 1 2 3 4 5
y = 2x + 3 : -7 -5 -3 -1 1 3 5 7 9 11 13
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Figure 3.2: Graph of f(x) = 2x + 3

However we only need two points to plot a straight line graph. The easiest
points to use are the x-intercept (where the line cuts the x-axis) and the y-
intercept. The x-intercept occurs when y = 0, so it is always equal to − a

b . So if
asked to plot a straight line, there is no need to calculate lots of y values, you
just need to find the x and y intercepts and draw a line through them.

Parabolic Functions

A parabola looks like a hill, either upside down (for a “positive” parabola) or
right way up (for a “negative” one), which is the same on both sides, as in the
diagrams (NOTE: put in):

You may have noted that when we say the parabola is “the same on both
sides”, we are just stating that these functions are horizontally symmetric. This
means that if you flip them from left to right along a specific line, which is called
the line of symmetry, they look the same. This line of symmetry is sometimes
called the axis of symmetry.

Parabolic functions are functions of the form

f(x) = ax2 + bx + c (3.5)

where a, b and c are constants. The a involves the shape of the parabola and
says how steep the curves are. If a is positive, then the hill is upside-down. If a
is negative, then the hill is the right way up. c is the y-intercept, which is where
the parabola cuts the y axis. b has to do with the shift in the parabola to the
left or the right. Two important features of the parabola are its turning point
and line of symmetry(described above). The turning point says how high the
hill is. If the hill is the right way up, then the turning point is the maximum
value of the parabola, and if it is upside-down, then the turning point is the
minimum value.

Now the above form of the parabola is the standard form. It can also be
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written in the form
f(x) = a(x − p)2 + q (3.6)

where the two new constants p and q give the turning point (p,q) of the parabola.
This form of the parabola can be obtained from the standard form by completing
the square (See algebra). The value p of the turning point is actually the
line of symmetry. So if p = 3, then x = 3 is the line of symmetry(which is
always vertical for the parabola). q is the maximum or minimum value of the
function(that is the maximum or minimum value of y).

At first it might seem difficult to sketch the graph of a parabola but once a
simple procedure is followed, then it becomes easier. When sketching the graph,
we need to use some information about it. The only information we have are its
shape, x and y-intercepts and its turning point. We start off by seeing whether
the parabola is an hill that is the right way up or upside-down. Recall that
we can find this out from the sign of a. Next we calculate the x-intercepts by
setting y = 0 and solving the equation

0 = ax2 + bx + c (3.7)

which doesn’t always have a solution, meaning that not all parabolas cut the
x-axis. These would be hills which never quite make it to the x-axis, or upside-
down hills which are never low enough to touch the x-axis. However, if there
is one solution, and it is not zero, then because of the symmetry there must be
two solutions which can be both positive, or negative or a plus and a minus one.
(NOTE: max/min turning points.)

The y-intercept is just c. Last we find the turning point of the parabola.
One way is to write the equation of the parabola in the form 3.6 and we have
found p and q. Another way is to calculate x = −b

2a , the line of symmetry and
also the value of p. q is found by putting p in the equation of the parabola. So
now we are able to plot some points and join them up to form a parabola.

We can create a table of x and y values for the parabola f(x) = x2 − 9 and
then plot them (see figure 3.3). Note that you could spot the symmetry of the
graph by examining the table alone, where we see that x = 1 and x = −1 give
the same value for y. Note also that for this parabola b = 0, so the line of the
symmetry is the y-axis since the parabola looks the same on both sides of the
y-axis.

x : -4 -3 -2 -1 0 1 2 3 4
y = x2 − 9 : 7 0 -5 -8 -9 -8 -5 0 7

Hyperbolic Functions

Hyperbolas look like 2 parabolas on their side which are mirror reflections of
each other around the diagonal (NOTE: sketch). Hyperbolic functions look like

f(x) =
a

x
+ b (3.8)

where a and b are constants. Just like for parabolas, a tells us how steep the
curves are and b tells us how high the curves are.
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Figure 3.3: Graph of the parabola f(x) = x2 − 9

Since we cannot divide by zero1, it is not possible to have x = 0, so there is
no y-intercept. When you go far enough away from the y-axes, the curves start
to look like straight lines, and we call them asymptotes.

For example we can create a table of x and y values for the hyperbolic
function f(x) = 4

x and plot them (see figure 3.4)

x : -8 -4 -2 -1 - 1
2

1
2 1 2 4 8

f(x) = 4
x : - 1

2 -1 -2 -4 -8 8 4 2 1 1
2

Exponential Functions

y = abx + c b > 0 (3.9)

3.2 Exponentials and Logarithms

The syllabus requires:

• (grade 12) switch between log and exp form of an equation

• (grade 12) derive and use the laws of logs

(NOTE: need an intro. this should have lots of stuff about how people used
exp/logs to multiply numbers by adding them. with a few examples... to show
that you don’t need a calculator.)

1(NOTE: i’m sure there are interesting facts about dividing by zero (not that i know of —
luke))
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Figure 3.4: Graph of the hyperbola f(x) = 4
x

3.2.1 Exponential Functions

(NOTE: need an intro. we already covered exponentials in “numbers”, but
maybe we should move it here instead.)

3.2.2 Logarithmic Functions

(NOTE: these Laws need introduced properly with more detailed derivations
and examples of their use, highlight each ones importance. rewrite the intro to
not include so many new terms... and to read better for a 16 year old.)

Logarithms, commonly referred to as Logs, are the algebraic inverse of ex-
ponents. When we say “inverse function” we mean that the answer becomes the
question and the question becomes the answer. For example, in the expression
ab = x the “question” is “what is a raised to the b power.” The answer is “x.”
The inverse function would be logax = b or “by what power must we raise a to
obtain x.” The answer is “b.” Many students find logarithms difficult. For now
you can be successful if you learn the terminology and come to understand the
relationships of the terms.

(NOTE: this next graph needs more explanation)

Law 1

Since a0 = 1, loga1 = 0
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Figure 3.5: The Exponential Function f(x) = ex

Law 2

Since a1 = a, logaa = 1

Law 3

This one is a bit trickier to see. The law is that logaax = x. If we re-write it as
loga(ax) = x we can see that it is ax = (ax), which is, of course, true.

We can also then say that logaax = x · logaa = x(1) = x. The upshot
being that any exponent of the (operand?) can simply be moved to simple
multiplication by the log.

Law 4

The laws of exponents am · an = am+n and am

an = am−n translate to the laws of
logarithms loga(m·n) = logam+logan and loga(m

n ) = logam−logan respectively.

Base

In the previous examples a is the base. We generally use the “common” base,
10, or the natural base, e.

The number e is an irrational number between 2.71 and 2.72. It comes up
surprisingly often in Mathematics, but for now suffice it to say that it is one of
the two common bases.

While the notation log10(x) and loge(x) may be used, log10(x) is often styled
log(x) in Science and loge(x) is normally written as ln(x) in both Science and
Mathematics.
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Figure 3.6: The Logarithmic Function f(x) = ln(x)

It is often necessary or convenient to convert a log from one base to another.
An Engineer might need an approximate solution to a log in a base for which he
does not have a table or calculator function, or it may be algebraically convenient
to have two logs in the same base.

To affect a change of base, apply the change of base formula:

logax =
logbx

logba
(3.10)

where b is any base you find convenient. Normally a and b are known, therefore
logba is normally a known, if irrational, number.

3.3 Extra

(NOTE: this is non-syllabus content on absolute value functions, but perhaps
the absolute operator should be worked into the main text and this section
deleted, as it is quite important.)

3.3.1 Absolute Value Functions

(NOTE: i’m pretty sure this is not on the syllabus)
The absolute value of x has the following definition

|x| =

{
x if x ≥ 0
−x if x < 0

(3.11)
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Figure 3.7: The Functions f(x) = ln(x) and f(x) = ex are symmetrical about
the origin.

In other words, the absolute value sign makes the term inside this sign
positive. If it is already positive, then there is no change, and otherwise the
sign of this term changes.

Now an absolute value function has the following general form

f(x) = a|x − b| + c (3.12)

where a, b and c are constants.

Let us again consider an absolute value function with the general form y =
a|x − b| + c. We must consider two cases separately:

x ≥ b:
Now, since x ≥ b and thus x− b ≥ 0, the term inside the absolute value sign

is positive and therefore |x − b| = x − b. Thus

y = a(x − b) + c = ax + (c − ab) (3.13)

In other words, this is a straight line with slope a and y-intercept c − ab.
x < b:
In this case, the term in the absolute value sign is negative and thus |x−b| =

−(x − b) = −x + b. Therefore

y = a(−x + b) + c = −ax + (c + ab) (3.14)

which is a straight line with slope −a and y-intercept c + ab.
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Now at x = b the function value is y = a|0| + c = c. Therefore function
consists of half of two straight lines with slopes −a and a, which meet at the
turning point (b,c).

The function has the axis of symmetry x = b. In other words, the part of
the function on one side of the vertical line x = b is the same as the reflection
about this line of the part of the function on the other side. We can see this as
follows:

Consider the function values at the points x = b + z and x = b − z, where
z > 0 (these are two point the same distance from the line x = b). Now the
function values at these two points are

f(b + z) = a|(b + z) − b| + c (3.15)

= a|z| + c (3.16)

= az + c (3.17)

and

f(b − z) = a|(b − z) − b| + c (3.18)

= a| − z| + c (3.19)

= az + c (3.20)

These function values are the same. Therefore, whether we move to the left
or the right of the line x = b, the function values remain the same. Therefore
x = b is an axis of symmetry.

☎

(b,c)

x = b

b − z b + z

az + c
z z

Figure 3.8: Graph of f(b + z) and f(b− z) where f(x) = a|x|+ c; with the line
of symmetry x = b

Now let us consider two cases: a < 0 and a > 0.
If a is positive, then the line on the left of the turning point (with slope −a)

will have a negative slope and the line on the right (with slope a) will have a
positive slope. Thus the graph will be shaped like a V.
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Otherwise, if a is negative, then the line on the left has the positive slope
−a and the line on the right has the negative slope a. Therefore the graph is
an upsidedown V.

✆

(b,c)

a > 0

✝ (b,c)

a < 0

Figure 3.9: Graph of f(b + z) and f(b − z) where f(x) = a|x| + c. One case is
for a > 0 the other for a < 0.

Notice also that an absolute value function does not necessarily have x-
intercepts. It these do exist, then they will be the x-intercepts of the two
straight lines making up the absolute value function.

52



Chapter 4

Numerics

4.1 Optimisation

The syllabus requires:

• Linear Programming (Grade 11)

1. Solve linear programming problems by optimising a function

in two variables, subject to one or more linear constraints,

by numerical search along the boundary of the feasible region.

2. Solve a system of linear equations to find the co-ordinates

of the vertices of the feasible region.

In everyday life people are interested in knowing the most efficient way of
carrying out a task or achieving a goal. For example, a farmer might want
to know how many crops to plant during a season in order to maximise yield
(produce) or a stock broker might want to know how much to invest in stocks
in order to maximise profit. These are examples of optimisation problems,
where by optimising we mean finding the maxima or minima of a function.
This function we wish to optimise (i.e. maximise or minimise) is called the
objective function (we will only be looking at objective functions which are
functions of two variables). In the case of the farmer, the objective function
is the yield and it is dependent on the amount of crops planted. If the farmer
has two crops then we can express the yield as f(x,y) where the variable x
represents the amount of the first crop planted and y the amount of the second
crop planted. For the stock broker, assuming that there are two stocks to invest
in, f(x,y) is the amount of profit earned by investing x rand in the first stock
and y rand in the second.

In practice it is often that constraints, or restrictions, are placed on x and
y. The most common of these constraints is the non-negativity constraint. That
is, we might require that x ≥ 0 and y ≥ 0. For the farmer, it would make little
sense if we were to speak of planting a negative amount of crops and so when
optimising f(x,y) the constraints x ≥ 0 and y ≥ 0 must be considered. Other
constraints might be that the farmer cannot plant more of the second crop than
the first crop and that no more than 20 units of the first crop can be planted;
these constraints translate into the inequalities x ≥ y and x ≤ 20. Constraints
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mean that we can’t just take any x and y when looking for the x and y that
optimise our objective function. If we think of the variables x and y as a point
(x,y) in the xy plane then we call the set of all points in the xy plane that
satisfy our constraints the feasible region. Any point in the feasible region is
called a feasible point.

5 10 15 20

5

10

15

20

x

y

Figure 4.1: The feasible region corresponding to the constraints x ≥ 0, y ≥ 0,
x ≥ y and x ≤ 20.

For example, the non-negativity constraints x ≥ 0 and y ≥ 0 mean that
every (x,y) we can consider must lie in the first quadrant of the xy plane. The
constraint x ≥ y means that every (x,y) must lie on or below the line y = x
and x ≤ 20 means that x must lie on or to the left of the line x = 20. For these
constraints the feasibility region is illustrated as the shaded region in Figure
4.1.

Constraints that have the form ax + by ≤ c or ax + by = c are called linear

constraints. Examples of linear constraints are x+ y ≤ 0, −2x = 7 and y ≤
√

2;
a constraint being linear just means that it requires that any feasible point (x,y)
lies on one side of or on a line. Interpreting constraints as graphs in the xy plane
is very important since it allows us to construct the feasible region such as in
Figure 4.1. We have the following rule for any linear constraint:

ax + by = c If b 6= 0, feasible points must lie on the line y = −a

b
x +

c

b
.

If b = 0, feasible points must lie on the line x = c/a

ax + by ≤ c If b 6= 0, feasible points must lie on or below the line y = −a

b
x +

c

b
.

If b = 0, feasible points must lie on or to the left of the line x = c/a

Once we have determined the feasible region the solution of our problem
will be the feasible point where the objective function is a maximum/ minimum.
Sometimes there will be more than one feasible point where the objective func-
tion is a maximum/minimum — in this case we have more than one solution.
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4.1.1 Linear Programming

The objective function is called linear if it looks like f(x,y) = ax + by where
the coefficients a and b are real numbers. For example, f(x,y) = 10x − y is a
linear objective function. If the objective function and all of the constraints are
linear then we call the problem of optimising the objective function subject to
these constraints a linear program. All optimisation problems we will look at
will be linear programs.

The major consequence of the constraints being linear is that the feasible
region is always a polygon. This is evident since the constraints that define the
feasible region all contribute a line segment to its boundary (see Figure 4.1). It
is also always true that the feasible region is a convex polygon.

The objective function being linear means that the feasible point(s) that gives
the solution of a linear program always lies on one of the vertices of the feasible
region. This is very important since, as we will soon see, it gives us a way
of solving linear programs. (NOTE: Should I mention that a linear objective
function defines a plane? This is crucial to the fact that optimal solutions are
obtained at the vertices, though. Do Grade 11s know the equation of a plane?
I would like to use the idea that the level sets of planes are lines and in so doing
justify the “ruler” method.)

We will now see why the solutions of a linear program always lie on the
vertices of the feasible region. Firstly, note that if we think of f(x,y) as lying on
the z axis, then the function f(x,y) = ax+by (where a and b are real numbers) is
the definition of a plane. If we solve for y in the equation defining the objective
function then

f(x,y) = ax + by

∴ y =
−a

b
x +

f(x,y)

b
(4.1)

What this means is that if we find all the points where f(x,y) = c for any real
number c (i.e. f(x,y) is constant with a value of c), then we have the equation
of a line. This line we call a level line of the objective function (NOTE: Should
I use this terminology?). Consider again the feasible region described in Figure
4.1. Lets say that we have the objective function f(x,y) = x − 2y with this
feasible region. If we consider Equation 4.1 corresponding to f(x,y) = −20
then we we get the level line y = 1

2x + 10 which has been drawn in Figure 4.2.
Level lines corresponding to f(x,y) = −10 (y = x

2 + 5), f(x,y) = 0 (y = x
2 ),

f(x,y) = 10 (y = x
2 − 5) and f(x,y) = 20 (y = x

2 − 10) have also been drawn in.
It is very important to realise that these aren’t the only level lines; in fact, there
are infinitely many of them and they are all parallel to each other. Remember
that if we look at any one level line f(x,y) has the same value for every point
(x,y) that lies on that line. Also, f(x,y) will always have different values on
different level lines.

If a ruler is placed on the level line corresponding to f(x,y) = −20 in Figure
4.2 and moved down the page parallel to this line then it is clear that the ruler
will be moving over level lines which correspond to larger values of f(x,y). So
if we wanted to maximise f(x,y) then we simply move the ruler down the page
until we reach the “lowest” point in the feasible region—this point will then be
the feasible point that maximises f(x,y). Similarly, if we wanted to minimise
f(x,y) then the “highest” feasible point will give the minimum value of f(x,y).
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f(x,y) = −20

f(x,y) = −10

f(x,y) = 0
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y

Figure 4.2: The feasible region corresponding to the constraints x ≥ 0, y ≥ 0,
x ≥ y and x ≤ 20 with objective function f(x,y) = x − 2y. The dashed lines
represent various level lines of f(x,y).

Since our feasible region is a polygon, these points will always lie on vertices
in the feasible region. (NOTE: We could have infinitely many solutions if the
gradient of a constraint = the gradient of the level lines... should I mention
this?). The fact that the value of our objective function along the line of the
ruler increases as we move it down and decreases as we move it up depends
on this particular example. Some other examples might have that the function
increases as we move the ruler up and decreases as we move it down. It is a
general property, though, of linear objective functions that they will consistently
increase or decrease as we move the ruler up or down. Knowing which direction
to move the ruler in order to maximise/minimise f(x,y) = ax + by is as simple
as looking at the sign of b (i.e. “is b negative, positive or zero?”). If b is positive,
then f(x,y) increases as we move the ruler up and f(x,y) decreases as we move
the ruler down. The opposite happens for the case when b is negative: f(x,y)
decreases as we move the ruler up and f(x,y) increases as we move the ruler
down. If b = 0 then we need to look at the sign of a. If a is positive then f(x,y)
increases as we move the ruler to the right and decreases if we move the ruler to
the left. Once again, the opposite happens for a negative. If we look again at
the objective function mentioned earlier, f(x,y) = x − 2y (a = 1 and b = −2),
then we should find that f(x,y) increases as we move the ruler down the page
since b = −2 < 0. This is exactly what we found happening in Figure 4.2.

The main points about linear programming we have encountered so far are

• The feasible region is always a polygon.

• Solutions occur at vertices of the feasible region.

• Moving a ruler parallel to the level lines of the objective function up/down
to the top/bottom of the feasible region shows us which of the vertices is
the solution.

• The direction in which to move the ruler is determined by the sign of b
and also possibly by the sign of a.
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(NOTE: I would like to mention ∇f to determine ‘the direction in which to
move the ruler’. Even if I neglect the fact that students certainly know nothing
about partial differentiation, I’m still not sure whether I can mention and work
with vectors in the plane...)

These points are sufficient to determine a method for solving any linear
program. If we wish to maximise the objective function f(x,y) then:

1. Find the gradient of the level lines of f(x,y) (this is always going to be
−a

b as we saw in Equation 4.1)

2. Place your ruler on the xy plane, making a line with gradient − a
b (i.e. b

units on the x-axis and −a units on the y-axis)

3. The solution of the linear program is given by appropriately moving the
ruler. Firstly we need to check whether b is negative, positive or zero.

(a) If b > 0, move the ruler up the page, keeping the ruler parallel to
the level lines all the time, until it touches the “highest” point in the
feasible region. This point is then the solution.

(b) If b < 0, move the ruler in the opposite direction to get the solution
at the “lowest” point in the feasible region.

(c) If b = 0, check the sign of a

i. If a < 0 move the ruler to the “leftmost” feasible point. This
point is then the solution.

ii. If a > 0 move the ruler to the “rightmost” feasible point. This
point is then the solution.

(NOTE: Point 3 is essentially trying to work with ∇f without actually know-
ing what it is or that it exists!)

4.2 Gradient

The syllabus requires:

• Investigate numerically the average gradient between two points

on a curve and develop an intuitive understanding of the concept

of the gradient of a curve at a point (NOTE: this is undefined

if this should be numerical, or an intro to differentiation. perhaps

it is best to have it spread over both)

4.3 Old Content (please delete when finished)

4.3.1 Problems

We often have to solve problems in which there are several variables, which
we can change to suit us. We can now develop a method of dealing with such
problems.
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Worked Example 1:

Q: A farmer grows wheat and maize. He has 20 fields of available land on which
he can plant crops. He must grow at least 5 fields of maize. Also he cannot grow
more than twice as much maize as wheat. Draw a graph to show the feasible
region showing the possible number of fields of wheat and maize the farmer can
plant. What is the maximum number of fields of wheat the farmer can plant?

A: Step 1: Analyse the problem and assign the variables x and y.
Let x be the number of fields of wheat the farmer plants.

Let y be the number of fields of maize the farmer plants.
Step 2: Write down the inequalities which are the restrictions on x and y.

x + y ≤ 20 (the farmer only has 20 fields) (4.2)

y ≥ 5 (at least 5 fields of maize must be planted) (4.3)

x ≥ 0 (it is not possible to have a negative number of fields of wheat)(4.4)

y ≤ 2x (the farmer cannot plant more than twice as much maize as wheat)(4.5)

Remember that every piece of information you are given is important, so
check that you have not left out an inequality. Also note that often variables
cannot be negative, which give further inequalities as in the case of x ≥ 0.

Step 3: Solve for y in terms of x where possible.

y ≤ −x + 20 (4.6)

y ≥ 5 (4.7)

x ≥ 0 (4.8)

y ≤ 2x (4.9)

Step 4: Plot a graph and find the feasible region.
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✞

Figure 4.3: Graph of TODO

Step 5: Answer the original question.
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We need to find the maximum number of fields of wheat which can be
planted. This is the maximum x value which is in the feasible region. This
occurs at the point (15,5). Thus the maximum x value is 15. Remembering to
give the answer in terms of the original question:

The farmer can plant a maximum of 15 fields of wheat.

4.3.2 Maximising or Minimising the Objective Function

The objective function is a function of x and y. We are usually told to maximise
or minimise this function.

Worked Example 2:

Q: Consider the same situation as in worked example 1. The farmer can make a
profit of R100 on every field of wheat and R200 on every field of maize that he
grows. How many fields of wheat and maize must the farmer plant to maximise
his profit and what is this maximum profit?

Steps 1 - 4 are as in worked example 1.
A: Step 5: Define the objective function.
The objective function, in this case, is the profit in terms of the number of

fields of wheat and maize (the variables x and y). This is given by

P = 100x + 200y (4.10)

Step 6: Solve for y.

y = −1

2
x +

P

200
(4.11)

Step 7: Maximise/minimise the objective function.
In this case we need to maximise the objective function which is the profit

P. The greater P the larger the y intercept of the straight line of y as a function
of x. However, the slope of the line will always be − 1

2 (line A is an example of
such a line).

Now to maximise P we need the y-intercept to be as large as possible, but
the line must still pass through the feasible region. Thus take a ruler and move it
parallel to line A (keeping the slope the same). Move the ruler outwards until it
is at the edge of the feasible region. This is line B, which is the line of maximum
P . The point on the feasible region through which this line passes (in this case
( 20

3 ,403 )) is the point giving this profit (so x = 20
3 = 6 2

3 and y = 40
3 = 13 1

3 ). The
profit can be calculated from the objective function as P = R3333.

Step 8: Give the answer in terms of the question.
For a maximum profit of R3333, the farmer must plant 6 2

3 fields of wheat
and 13 1

3 fields of maize.
(NOTE: Further examples need to be included here, particularly add an

example which uses discreet variables.)

Worked Example 3:

Q: A delivery company delivers wood to client A and bricks to client B. The
company has a total of 5 trucks. A truck cannot travel more than 8 hours per
day and it takes 4 hours make the trip to and back from client A and 2 hours for
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Figure 4.4: Graph of TODO

client B. To honour an agreement with client B, at least 2 truck loads of bricks
must be delivered per day. Also client A needs no more than 9 truck loads of
wood per day.

The delivery company makes a profit of R100 per truck load of wood and
R150 per truck load of bricks delivered. How many truck loads of wood and
bricks should be delivered per day so as to maxmise the profit? What is this
maximum profit?

Note: Client A is in the opposite direction to client B, so each truck can
only deliver a full truck load to A or B (a truck cannot take half a load to A
and the other half to B).

A: Step 1:
Let x be the number of truck loads of wood the company delivers to client

A per day.
Let y be the number of truck loads of bricks the company delivers to client B
per day.

Step 2:
Firstly, the total number of hours of delivery time available is 5 × 8 hours

= 40 hours, since there are 5 trucks, which cannot be driven more than 8 hour
per day. Delivery to client A takes 2 hours and delivery to client B takes 4
hours. Therefore

2x + 4y ≤ 40 (4.12)

The other inequalities are

y ≥ 2 (the company must delivered at least 2 truck loads of bricks per day)(4.13)

x ≤ 9 (client A needs no more than 9 truck loads of wood per day) (4.14)

x,y ≥ 0 (we cannot have a negative number of truck loads) (4.15)

(4.16)
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Furthermore, we know that x and y must be integers (in other words we can-
not have a fractional truck load). These are therefore called discreet variables.

Step 3:

y = −x

2
+ 10 (4.17)

y ≥ 2 (4.18)

x ≤ 9 (4.19)

x,y ≥ 0 (4.20)

Step 4:
We now plot the constraints and the feasible region (see the graph at the

end). The region enclosed by the constraints is the shaded region, but since the
variables x and y can only take on positive integer values, the feasible region
actually consists of the collection of dots showing the integer values in the shaded
region.

Step 5:
The objective function is the profit (in Rands), which is

P = 100x + 150y (4.21)

Step 6:
Solving for y gives

y = −2

3
x +

P

150
(4.22)

Step 7:
We need to maximise the profit P and therefore we need to maximise the

y-intercept of the previously defined straight line. Line A shows an arbitrary
straight line with slope − 2

3 , which is drawn, for convenience, with intercepts
x = 9 and y = 6. If a ruler is moved outwards parallel to this line (i.e. keeping
the slope fixed) to the edge of the feasible region, we obtain line B, which passes
through the point (8,6).(NOTE: RULERS??? is this really the best way to do
this? can we please have some equations of lines!)

Therefore the maximum profit occurs when x = 8 and y = 6. This profit (in
Rands) is

P = 100x + 150y (4.23)

= 100(8) + 150(6) (4.24)

= 1700 (4.25)

Note: We cannot use the point (9, 5 1
2 ), which is actually the point at the

edge of the shaded region, because this is 5 1
2 is not an integer (we cannot have

a half a truck load).
Step 8:
The maximum profit is R1700 per day, which is obtained when the company

delivers 8 truck loads of wood to client A and 6 truck loads of bricks to client
B per day.
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Figure 4.5: Graph of TODO

Essay 1 : Differentiation in the Financial World

Author: Fernando Durrell

I lived in Cape Town (South Africa) all my life. I attended Thomas Wildschudtt
Junior and Senior Primary Schools. I then attended St. Owen’s Senior School in
Retreat up to half way through Grade 11 at which point I left for St. Joseph’s
Senior School in Rondebosch (since St. Owen’s closed permanently at the end of
my Grade 11 year). It was always one of my ambitions to attend the University of
Cape Town (UCT) because it is a prestigious university. I applied to study medicine
at UCT, but was not accepted, and so I enrolled for a science degree at UCT
and have never regretted it. (I can stand only so much visible blood.) I wasn’t
sure about what I wanted to do with my life so I enrolled for Mathematics, Applied
Mathematics, Chemistry and Physics in my first year at university. By the end of my
first year at UCT, I wanted to continue with the Mathematics stream. I completed
by Bachelor of Science (BSc) degree with majors (main subjects) Mathematics and
Applied Mathematics and then completed my BSc (Honours) degree in Applied
Mathematics. I completed by Master of Science degree in Financial Mathematics
and am currently registered for the degree of Doctor of Philosophy in Mathematics.

Differentiation in the Financial World

Most of us don’t really think about saving our money to buy something in
the future - we have to spend it now! Our parents unfortunately (and one day
when we’re older most probably we too) have to save for the future: for that
possible time when they don’t have a job; they may save to purchase furniture
for the house; or a present for your birthday. The most important thing adults
save for is retirement - this is when they decide that they want to stop working.
Their kids may not be able to care for them because they too may have families
or may not have jobs themselves. So, adults have to save money while they are
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working to support them when they retire. The amount of money they receive
after they retire is called their pension - so adults save so that they can receive
a pension when they retire.

Suppose James is paying R100 every month toward his pension. When James
retires, he wants every month to receive a bit more than the R100 he contributed
toward his pension (while he was working). If he doesn’t get a bit more than
R100 pension every month (when he retires), then he may as well save his money
under his bed until he retires. Now, there are many adults like James who are
saving for their pension. To whom do all these adults pay their monthly pension
savings? They pay their monthly pensions savings to a pension fund. Suppose
there are ten million adults paying R100 every month to a pension fund. That
means that each month the pension fund receives R100x10 000 000 = R1b (i.e.
one billion rand) in total each month.

Now, each adult, like James, will want to receive a monthly pension which
is greater than R100 when they retire. So, the pension fund must ensure that,
when a pension fund contributor retires, he/she receives more than R100 pension
every month. There are many pension funds in the world, so, if the pension fund
James is saving with is going to give him a R110 monthly pension and another
pension fund is going to give him a R120 monthly pension, then he is going to
save with the latter pension fund. So, pension funds can’t give pensioners too
little pension. In fact, they have to give pensioners as big a pension as possible.
Now, the pension fund can’t just put the monthly R1bn in the bank and let it
earn interest and divide this amongst all pensioners. The government takes a
lot of the interest earned by pension funds as tax. So, the pension funds have to
make more money, and so they turn to the stock market. But the thing about
the stock market is that one can lose a lot of money very quickly if one is not
careful. The advantage about putting one’s money in the bank is that, when
you come back the next day, your money will still be there. If you invest in the
stock market today and you come back tomorrow, then you could have lost a
substantial amount of money, but you could also have made a lot of money. So,
for the pension fund, depositing the monthly R1b with the bank is appealing,
but so is the stock market. The pension has to find the best combination of
the two (the bank and the stock market). That involves, finding out how much
money to deposit with the bank and how much to invest in the stock market so
that the pension fund makes as much money as possible. To solve this problem,
involves differentiation, which is the topic of the next chapter. This is just one
way in which differentiation is used in the financial world.
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Chapter 5

Differentiation

5.1 Limit and Derivative

Calculus is fundamentally different from the mathematics that you have studied
previously. Calculus is more dynamic and less static. It is concerned with change
and motion. It deals with quantities that approach other quantities. For that
reason it may be useful to have an overview of the subject before beginning its
intensive study. In this section we give a glimpse of some of the main ideas
of calculus by showing how limits arise when we attempt to solve a variety of
problems.

5.1.1 Gradients and limits

A traditional slingshot is essentially a rock on the end of a string, which you
rotate around in a circular motion and then release. When you release the
string, in which direction will the rock travel? Many people mistakenly believe
that the rock will follow a curved path. Newton’s First Law of Motion tells us
that the path is straight. In fact, the rock follows a path along the tangent
line to the circle, at the point of release. If we wanted to determine the path
followed by the rock, we could do so, as tangent lines to circles are relatively
easy to find. Recall, from elementary geometry that a tangent line to a circle is
a line that intersects the circle in exactly one point. In this chapter we will be
concerned with tangent lines to a variety of functions, as the tangent line gives
us the slope of a function at a point.

Now let us consider the problem of trying to find the equation of the tangent
line t to a curve with equation y = f(x) at a given point P .
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P f(x)

Since we know that the point P lies on the tangent line, we can find out the
equation of t if we know its slope m. The problem is that we need two points
to compute the slope and we only have one, namely P on t. To get around the
problem we first find an approximation to m by taking a nearby point Q on the
curve and computing the slope mPQ of the secant line PQ.

P f(x)
Q

ax
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From the figure we see that

mPQ =
f(x) − f(a)

x − a
(5.1)

Now imagine that Q moves along the curve toward P .The secant line approaches
the tangent line as its limiting position. This means that the slope mPQ of the
secant line becomes closer and closer to the slope m of the tangent line as Q
approaches P . We write

m = lim
Q→P

mPQ

and we say that m is the limit of mPQ as Q approaches P along the curve. Since
x approaches a as Q approaches P , we could also use Equation (5.1) to write

m = lim
x→a

f(x) − f(a)

x − a
(5.2)

The tangent problem has given rise to the branch of calculus called differential
calculus.

5.1.2 Differentiating f(x) = xn

The central concept of differential calculus is the derivative. After learning how
to calculate derivatives, we use them to solve problems involving rates of change.

Definition: The derivative of a function f at a number a, denoted by
f ′(a), is

f ′(a) = lim
h→0

f(a + h) − f(a)

h
(5.3)

if this limit exists.

Let us use this definition to calculate the derivative of f(x) = x2, where n
is a positive integer.

f ′(x) = lim
h→0

f(x + h) − f(x)

h

= lim
h→0

(x + h)2 − x2

h

= lim
h→0

x2 + 2xh + h2 − x2

h

= lim
h→0

2xh + h2

h
= lim

h→0
2x + h

= 2x

You should repeat this calculation for f(x) = x3 and (if you haven’t spotted
a pattern yet!) for f(x) = x4. Then see if you can generalise what you are
seeing to write down a formula for f ′(x) where f(x) = xn. (This isn’t a valid
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mathematical way of arriving at a formula, but if you want to prove the general
case you need to use the binomial theorem, which is outside the scope of your
syllabus.)

Hopefully you calculated the derivative of f(x) = x3 to be 3x2, and shortly
after that spotted the pattern for powers of x:

d
dx (xn) = nxn−1

5.1.3 Other notations

If we use the traditional notation y = f(x) to indicate that the dependent
variable is y and the independent variable is x, then some common alternative
notations for the derivative are as follows:

f ′(x) = y′ =
dy

dx
=

df

dx
=

d

dx
f(x) = Df(x) = Dxf(x)

The symbols D and d/dx are called differential operators because they
indicate the operation of differentiation, which is the process of calculating a
derivative. It is very important that you learn to identify these different ways
of denoting the derivative, and that you are consistent in your usage of them
when answering questions.

Note

Though we choose to use a fractional form of representation, dy
dx is a limit and

IS NOT a fraction, i.e. dy
dx does not mean dy ÷ dx. dy

dx means y differentiated

with respect to x. Thus, dp
dx means p differentiated with respect to x. The ‘ d

dx ’
is the “operator”, operating on some function of x.

The syllabus requires:

• (grade 12) understand the limit concept in the context of approximating

the rate of change or gradient of a function at a point

• (grade 12) establish derivatives of f(x) = xn from 1st principles

and then generalise to obtain the derivative of

f(x) = b

f(x) = x3

f(x) = x2

f(x) =
1

x

5.2 Rules of Differentiation

In order to avoid differentiating functions from first principles, we can establish
certain rules.

Rule 1

If f is a constant function, f(x) = c, then f ′(x) = 0
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Rule 1 may also be written as

d

dx
c = 0 (5.4)

This result is geometrically evident if one considers the graph of a constant
function. This is an horizontal line, which has slope 0.

Rule 2: The Power Rule

If f(x) = xn, where n is an integer, then

f ′(x) = nxn−1 (5.5)

The Power Rule may also be written as

d

dx
(xn) = nxn−1 (5.6)

This rule applies when n is a negative number. For example, the derivative
of f(x) = 1

x is f ′(x) = −x−2, remembering that 1
x = x−1.

Rule 3: Linearity of Differentiation

If c is a constant and both f and g are differentiable, then

d

dx
(cf) = c

df

dx
(5.7)

d

dx
(f + g) =

df

dx
+

dg

dx
(5.8)

5.2.1 Summary
d
dx c = 0 d

dx (xn) = nxn−1 d
dx (cf) = c df

dx
d
dx (f + g) = df

dx + dg
dx

5.3 Using Differentiation with Graphs

The syllabus requires:

• (grade 12) find equation of a tangent to a graph

• (grade 12) sketch graph of a cubic function using diff to determine

stationary points and their nature. use factor theorem to determine

x-axis intercept

5.3.1 Finding Tangent Lines

In section 5.1.1 we saw that finding the tangent to a function is the same as
finding its slope at a particular point. The slope of a function at a point is just
its derivative.

If we want to find a general formula for a tangent to a function, we differ-
entiate the function. To find the slope of the tangent at a particular point, we
substitute that point’s x value into the function’s derivative. This will give us
a single value, which is the slope of a straight line. We’ll look at one of these
problems in the Worked Examples (section 5.4).
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5.3.2 Curve Sketching

Suppose we are given that f(x) = ax3 + bx2 + cx+d and we are asked to sketch
the graph of this function. We will use our newfound knowledge of differentiation
to solve this problem. There are FIVE steps to be followed:

1. If a > 0, then the graph is increasing from left to right, and has a maximum
and then a minimum. As x increases, so does f(x).
If a < 0, then the graph decreasing is from left to right, and has first a
minimum and then a maximum. f(x) decreases as x increases.

2. Determine the value of the y-intercept by substituting x = 0 into f(x)

3. Determine the x-intercepts by factorising ax3 + bx2 + cx + d = 0 and
solving for x. First try to eliminate constant common factors, and to group
like terms together so that the expression is expressed as economically as
possible. Use the factor theorem if necessary.

4. Find the turning points of the function by working out the derivative df
dx

and setting it to zero, and solving for x.

5. Determine the y-coordinates of the turning points by substituting the x
values obtained in the previous step, into the expression for f(x).

6. Step 6 of 5, Draw a neat sketch.

The syllabus requires:

• (grade 12) use the differentiation rules

Dx[f(x) ± g(x)] = Dx[f(x)] ± Dx[g(x)]

Dx[k.f(x)] = k.Dx[f(x)]

5.4 Worked Examples

Worked Example 2 : Finding derivatives from first prin-

ciples

Question:

Find the derivative of the function f(x) = x2−8x+9 at the number
a.

Answer:

Step 1 : Write out the definition
From definition (5.3) we have

f ′(a) = lim
h→0

f(a + h) − f(a)

h
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Step 2 : Fill in the function f(x) and multiply out

f ′(a) = lim
h→0

[(a + h)2 − 8(a + h) + 9] − [a2 − 8a + 9]

h

= lim
h→0

a2 + 2ah + h2 − 8a − 8h + 9 − a2 + 8a − 9

h

Step 3 : Simplify

f ′(a) = lim
h→0

2ah + h2 − 8h

h

= lim
h→0

h(2a + h − 8)

h
= 2a − 8

And you’re done!

Worked Example 3 : Finding and using derivatives from

first principles

Question:

If f(x) = 4x + 2x2, find f ′(x) from first principles and hence
calculate f ′(2).

Answer:

Step 1 : Write out definition (5.3) and fill in f(x)

f ′(x) = lim
h→0

[
f(x + h) − f(x)

h

]

= lim
h→0

[
4(x + h) + 2(x + h)2 − (4x + 2x2)

h

]

Step 2 : Multiply out and simplify

f ′(x) = lim
h→0

[
4h + 4xh + 2h2

h

]

= lim
h→0

[4 + 4x + 2h]

= 4 + 4x

Step 3 : Substitute the value of x into f ′(x)
Since

f ′(x) = 4 + 4x

then
f ′(2) = 4 + 4(2) = 12
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Worked Example 4 : Using Notation and Rules of Dif-

ferentiation

Question:

Differentiate the following using the Rules of Differentiation listed
above:
a) y = t4 b)y = x1000 c) h(x) = x6+x4 d) d

dr (5r3)
e) Du(um)

Answer:

a)
Step 1 : Write out the Power Rule, equation (5.5)
d
dt (tn) = ntn−1

Step 2 : In this case n = 4 so...
y′ = 4t3−1

Step 3 : Simplify
dy
dt = 4t3

b)
Step 1 : Write out the Power Rule, equation (5.5)
d
dx (xn) = nxn−1

Step 2 : In this case n = 1000 so...
y′ = 1000x999−1

Step 3 : Simplify
y′ = 1000x999

c)
Step 1 : Write out the Second Linearity Rule, equation (5.8)
d
dx (f + g) = df

dx + dg
dx

Step 2 : Write out the Power Rule, equation (5.5)
d
dx (xn) = nxn−1

Step 3 : Identify f and g, and differentiate them separately using
the Power Rule
f(x) = x6 so f ′(x) = 6x6−1 = 6x5

g(x) = x4 so g′(x) = 4x4−1 = 4x3

Step 4 : Add the derivatives of f and g
h′(x) = 6x5 + 4x3

d)
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Step 1 : Write out the First Linearity Rule, equation (5.7)
d
dx (cf) = c df

dx

Step 2 : Write out the Power Rule, equation (5.5)
d
dr (rn) = nrn−1

Step 3 : In this case n = 3 and c = 5 so...
d
dr (5r3) = 5 × 3r3−1

Step 4 : Simplify
d
dr (5r3) = 15r2

e)
Step 1 : Write out the Power Rule, equation (5.5)
Du(un) = nun−1

Step 2 : In this case n = m so...
Du(um) = mum−1 which cannot be simplified further

Worked Example 5 : Finding tangent lines

Question:

Find the slope of the tangent to the graph of y(x) = 3x2 + 4x +1 at
x = 5.

Answer:

Step 1 : Differentiate y to get a general equation for the tangent to
the graph
y′(x) = 6x + 4

Step 2 : Substitute the value x = 5 into the tangent equation just
calculated
y′(5) = 6 × 5 + 4 = 34

So the slope of the tangent line to y(x) at x = 5 is 34.

Worked Example 6 : Drawing graphs

Question: Draw the graph of f(x) = x3 + 3x2.

Answer:

Step 1 : Basic shape of graph
a is positive so from left to right, the graph has first a maximum
and then a minimum
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Step 2 : y intercept
y = x3 + 3x2 therefore y(0) = 0.

Step 3 : x intercepts

x3 + 3x2 = 0

x2(x + 3) = 0

x = 0 or x = −3

Step 4 : Turning points

dy

dx
= 3x2 + 6x set this to zero

0 = 3x2 + 6x

0 = 3x(x + 2)

x = 0 or x = −2

Step 5 : y-coordinate of the turning points

y(0) = 0 and y(−2) = (−2)3 + 3(−2)2 = 4

Local max at (−2; 4) and local min at (0; 0)

Step 6 : Draw a neat sketch

(-2; 4)

(0; 0)
(-3; 0)
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5.5 Exercises

1. Draw the graph of y = x2 + x − 6 for −5 ≤ x ≤ 6. Draw the tangents
to this curve at x = 3, x = 1 and x = −2, and hence find a value for the
gradient of the curve at each of these points.

2. Draw the graph of

y =
x2 − 4x

4

for 0 ≤ x ≤ 6. Draw tangents to the curve at x = 4, x = 3 and x = 2 and
hence find a value for the gradient of the curve at each of these points.

3. Differentiate each of the following from first principles to find dy
dx

(a) y = 5x

(b) y = 9x + 5

(c) y = 3x2

(d) y = x3

(e) y = x2 + 3x

(f) y = 5x − x2 + 7

(g) y = 1
x

(h) y = 1
x2

4. If f(x) = 3x−2x2 find f ′(x) from first principles and hence evaluate f ′(4)
and f ′(−1)

5. If f(x) = 2x2 + 5x − 3 find f ′(x) from first principles and hence evaluate
f ′(−1) and f ′(−2)

6. If f(x) = x3 − 2x find f ′(x) from first principles and hence evaluate
f ′(1),f ′(0) and f ′(−1)

1. Differentiate the following functions with respect to x:

(a) x5

(b) x3

(c) 12x2

(d) 5x4

(e) 3x2

(f) 7

(g) x5/3

(h) x3/4

(i) x2/5

(j) 8x1/4

(k)
√

x

(l)
√

x3
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(m) 2/x

(n) 3/x2

2. Find the gradient function dy
dx for each of the following:

(a) y = x2 + 7x − 4

(b) y = x − 7x2

(c) y = x3 + 7x2 − 2

(d) y = 3x2 + 7x − 4 + 1
x

(e) y = (x + 3)(x − 1)

(f) y = (2x + 3)(x + 2)

3. Find the gradient of the following lines at the points indicated:

(a) y = x2 + 4x at (0,0)

(b) y = 5x − x2 at (1,4)

(c) y = 3x3 − 2x at (2,20)

(d) y = 5x + x3 at (−1, − 6)

(e) y = 3x + 1
x at (1,4)

(f) y = 2x2 − x + 4
x at (2,8)

4. Find the coordinates of the point(s) on the following lines where the gra-
dient is given:

(a) y = x2, gradient 8

(b) y = x2, gradient −8

(c) y = x2 − 4x + 5, gradient 2

(d) y = 5x − x2, gradient 3

(e) y = x4 + 2, gradient −4

(f) y = x3 + x2 − x + 1, gradient 0

5. If f(x) = x3 + 4x find

(a) f(1)

(b) f ′(x)

(c) f ′(1)

(d) f”(x)

(e) f”(1)
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Chapter 6

Geometry

(NOTE: we need motivation and history of geometry here. real world examples
(and obscure figures) and some interesting facts (this is rich... e.g. architecture,
computer graphics, manufacturing... like carpentry). What is a degree... why
is it out of 360... etc.)

6.1 Polygons

The syllabus requires:

• develop conjectures related to triangles, quadrilaterals and other

polygons. attempt to justify, explain or prove these conjectures

using any logical method

• define various polygons (isosceles, equilateral, right angled

triangles, trapezium, isosceles trapezium, kite, parallelogram,

rectangle, rhombus, square and the regular polygons)

• can tell when polygons are similar. equilateral triangles are

similar

• the line drawn parallel to one side of a triangle divides the

other 2 sides proportionally

A polygon is a shape or figure with many straight sides. A polygon has interior
angles. These are the angles that are inside the polygon. The number of sides
of a polygon equals the number of interior angles. If a polygon has equal length
sides and equal interior angles then the polygon is called a regular polygon.

(NOTE: the language used in this notation section sometimes aims too high;
words like “denote” and “line segment” may be daunting when simpler words
may be used. the audience is only 15 and all of this is new to them. everything
needs explained in detail, using simple language... and diagrams help too.)

We denote a line segment that extends between a point A and some point
B by line AB. The length of this line is just AB. So if we say, AB = CD we
mean that the length of the line segment from A to B is equal to the length of
the line segment from C to D.
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~AB is the line segment with length AB and direction from point A to point
B. Similarly, ~BA is the line segment with length AB = BA and direction from
point B to point A.

Suppose we have two line segments AB and BC that join at a point B. We
denote the angle B between the line segments by B̂.

A line of symmetry divides a shape in such a way that it appears the same
on both sides of the line. For example, if you divide a square along its one
diagonal then you divide it into two triangles that are exactly the same i.e.
they fit perfectly on each other when the square is folded along the diagonal. If
a line AB bisects a line CD then AB divides CD into half.

A stop sign is in the shape of an octagon, an eight-sided polygon. Some
coins are heptagonal and hexagonal. In the UK there are two heptagonal coins.
The honeycomb of a beehive consist of hexagonal cells. (NOTE: these are true
examples, but maybe best left till the list of names of polygons. examples here
should try to motivate the study of polygons... how can we actually use the
study of polygons to enrich our lives.)

6.1.1 Triangles

A triangle is a three-sided polygon. The sum of the angles of a triangle is 180◦.
The exterior angle of any corner of a triangle is equal to the sum of the two
opposite interior angles (NOTE: a diagram for these 2 rules). We have the
following triangles:

Equilateral

All 3 sides are equal and each angle is 60◦.
(NOTE: need an example diagram)

Isosceles

Two equal angles occur opposite two equal sides and vice versa.
(NOTE: need an example diagram)

Right-angled

This triangle has a right angle. The side opposite this angle is called the hy-
potenuse. Pythagoras’s Theorem is often applied to this type of triangle (NOTE:
the students have not been subjected to Pythagoras yet... so place in a reference
to the relevant chapter/section.)

(NOTE: need an example diagram)

Scalene

This is any other triangle where the sides have different lengths and angles are
different sizes. (NOTE: this is not on the syllabus but its small, and need an
example diagram)
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6.1.2 Quadrilaterals

Quadrilaterals are four-sided polygons. The basic quadrilaterals are the trapez-
ium, parallelogram, rectangle, rhombus, square and kite,.

Trapezium

This quadrilateral has one pair of parallel opposite sides. It may also be called a
trapezoid. If the other pair of opposite sides is also parallel then the trapezium
is a parallelogram. Another type of trapezium is the isosceles trapezium, where
one pair of opposite sides is parallel, the other pair of sides is equal and the
angles at the ends of each parallel side are equal. An isosceles trapezium has
one line of symmetry and its diagonals are equal in length. (NOTE: need an
example diagram)

Parallelogram

A parallelogram is a special type of trapezium. It is a quadrilateral with two
pairs of opposite sides equal. Squares, rectangles and rhombuses are paral-
lelograms. We have the following properties of parallelograms. Both pairs of
opposite sides are parallel. Both pairs of opposite sides are equal in length.
(NOTE: what does equal mean? is it in length, or direction, or both? we must
be more precise in our wording) Both pairs of opposite angles are equal. Both
diagonals bisect each other (i.e. they cut each other in half). There are not
always lines of symmetry. (NOTE: what is a line of symmetry? we haven’t
mentioned them before here. is this really a property?)

(NOTE: need an example diagram)

Rectangle

• This is a parallelogram with 90◦ angles.

Both pairs of opposite sides are parallel. Both pairs of opposite sides are
equal. All angles are equal to 90◦. Both diagonals bisect each other. Diagonals
are equal in length. There are two lines of symmetry.

(NOTE: need an example diagram)

Rhombus

• This is a parallelogram with adjacent sides equal.

Both pairs of opposite sides are parallel. All sides are equal in length. Both
pairs of opposite angles equal. Both diagonals bisect each other at 90◦. Diag-
onals of a rhombus bisect both pairs of opposite angles. There are two lines of
symmetry.

(NOTE: need an example diagram)

Square

• This is a rhombus with all four angles equal to 90◦ or a rectangle with
adjacent sides equal.
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In a square both pairs of opposite sides are parallel. All sides are equal in
length. All angles are equal to 90◦. Both diagonals bisect each other at right-
angles. Diagonals are equal in length and bisect both pairs of opposite angles.
There are four lines of symmetry.

(NOTE: need an example diagram)

Kite

• A kite is a parallelogram with two pairs of adjacent sides equal.

Other properties of a kite are that the two pairs of adjacent sides are equal.
One pair of opposite angles are equal where the angles must be between unequal
sides. One diagonal bisects the other diagonal and one diagonal bisects one pair
of opposite angles. Diagonals intersect at right-angles. There is one line of
symmetry.

(NOTE: need an example diagram)

6.1.3 Other polygons

There are many other polygons, some of which are given in the table below.
(NOTE: need an example diagram)

6.1.4 Similarity of Polygons

If two polygons are similar, one is an enlargement of the other. This means that
the two polygons will have the same angles and their sides will be in the same
proportion. (NOTE: expand this with quick examples.)

We can use the symbol ∼ to mean is similar to.
Two polygons are similar if and only if either or both of the following are

true:

• Corresponding (NOTE: define corresponding) angles are equal.

• Corresponding sides are all in proportion.

For example, △ABC ∼ △DEF if Â = D̂,̂ B = Ê,̂ C = F̂ and AB
DE = BC

EF =
CA
FD (NOTE: need diagram here)

(NOTE: we need a lot more examples here, specifically that all equilateral
triangles are similar.)

6.1.5 Midpoint Theorem

(NOTE: this section could really do with some interesting facts and examples.)
Line joining the midpoints of two sides of a triangle is parallel to the third side
and equal to half the length of the third side. Given △ABC with midpoints M
of AB and N of AC.

(NOTE: although proofs are nice... it is often more important to push the
result itself, and why it is useful. if a proof is confusing, the student will simply
skip the section because it is too hard... even though application may be easy.)
Prove that MN is parallel to BC and MN = 1

2BC. (NOTE: diagram ’join the
dots style’ is in comments in the source file.) Extend MN by its own length to a
point P. Join AP, CP and MC. MN = NP by construction. AN = NC given N
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midpoint of AC. So APCM is a parm diags bisect each other. So CP = MA opp
sides of parm equal. But BM = AM given M midpoint of AB. So CP = MB.
Now CP ‖ AB APCM is a parm So CP ‖ MB AB is a line segment. So BMPC
is a parm 1 pair of opp sides equal and parallel. So MN parallel to BC opp sides
of parm parallel. Now MN = NP by construction. So MN = 1

2 ∗ MP . But
MP = BC opp sides of parm equal. So MN = 1

2 ∗ BC

6.1.6 Extra

Angles of regular polygons

We have a formula to calculate the size of the interior angle of a regular polygon.

Â =
n − 2

n
× 180◦ (6.1)

where n is the number of sides and Â is any angle.

Areas of Polygons

Area of triangle: 1
2× base × perpendicular height

Area of trapezium: 1
2× (sum of ‖ sides) × perpendicular height

Area of parallelogram and rhombus: base × perpendicular height
Area of rectangle: length × breadth
Area of square: length of side × length of side
(NOTE: everything from here on in Extra is probably acceptable syllabus

material, but it is here for now so i can see what needs to be brought back in
to the main text. the theorems are not on the syllabus, but we should maybe
include them since they use basic geometry techniques... but do not call them
theorems, rather use them as in-line examples or worked examples.)

Parallelograms

To show that a quadrilateral is a parallelogram, show any one of the first four
properties or that one pair of opposite sides are equal and parallel. Theorem

1: Given a parallelogram ABCD (with both pairs of opposite sides parallel),
prove that the opposite sides and angles are equal. (figure 4 here) Proof: Join
AC. In △ABC and △ADC: 1. ∠DAC = ∠ACB alternate angles =, AD ‖
BC 2. ∠BAC = ∠ACD alternate angles =, AB ‖ CD 3. AC = AC
common sides So △ABC ≡ △CDA (AAS) So AB = CD and DA = BC
corresponding sides in congruent triangles B̂ = D̂, Â = Ĉ corresponding
angles in congruent triangles Hence opposite sides equal and opposite angles
equal. Theorem 2: Given parallelogram ABCD with AC and BD joined and
denote their intersection by O. Prove that AC and BD bisect each other. (figure
5 here) Proof: In △AOB and △COD: 1. ∠BAC = ∠ACD alternate
angles =, AB ‖ CD 2. ∠ABD = ∠BDC alternate angles =, AB ‖ CD 3.
AB = CD opposite sides of parm equal So △ABO ≡ △CDO (AAS) So
AO = OC,BO = OD corresp sides in congruent triangles Hence AC and BD
bisect each other.
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Rectangles

To prove that a quadrilateral is a rectangle you can first prove that it is a
parallelogram and then prove that it has a right-angle. Or you can directly
prove that it has four right-angles. Theorem : Given rectangle ABCD prove
that diagonals are equal in length. (figure 6 here) Proof: In △ACD and
△BCD: 1. AD = BC opposite sides equal 2. DC = DC common sides
are equal 3. ∠D = ∠C all angles equal So △ADC ≡ △BCD (RHS) So
AC = BD corresp sides in congruent triangles Hence diagonals are equal in
length.

Rhombuses

To prove that a quadrilateral is a rhombus you can first prove that it is a
parallelogram. Then you can prove: all four sides equal, diagonals intersect
at right-angles or diagonals bisect corner angles. Theorem : Given rhombus
ABCD with diagonals intersecting at point O. Prove that the diagonals intersect
at right-angles and that they bisect the corner angles. (figure 7 here) Proof: In
△AOB and △AOD: 1. AB = AD all sides of rhombus equal 2. AO = AO
common sides are equal 3. OB = OD diags bisect each other So △AOB ≡
△AOD (SSS) So ∠AOB = ∠AOD corresp angles in congruent triangles
But BD is a straight line So ∠AOB = ∠AOD = 90◦ sum of angles is 180◦

So AC and BD intersect therefore diagonals intersect Now ∠BAO = ∠DAO
corresp angles in congruent triangles Similarly, △AOB ≡ △COB ⇒ ∠ABO =
∠CBO △COD ≡ △AOD ⇒ ∠CDO = ∠ADO △BOC ≡ △DOC ⇒ ∠BCO =
∠DCO Hence diagonals also bisect the corner angles.

Squares

To prove that a quadrilateral is a square you can prove that it is a rhombus and
then prove that it has four right-angles or equal diagonals. You can also prove
that it is a rectangle and then prove all four sides equal, diagonals intersect at
right-angles or diagonals bisect corner angles.

6.2 Solids

The syllabus requires:

• analyse, describe and represent the properties and relationships

of geometric solids by calculating surface area, volume and the

effect on these by scaling one or more dimension by k.

• estimate volume of everyday objects

• solids to consider: sphere, hemisphere, combinations with cylinders

• (grade 12) solids to consider: right circular cone, tetrahedron,

pyramid

• classify geometric solids in various ways (including regular polyhedra)

• investigate the effect of a plane cutting the regular polyhedra

in various ways
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• (grade 12) plane cutting right circular cone

6.3 Coordinates

The syllabus requires:

• use coordinate systems to represent geometric figures and derive

for any 2 points a formula for distance between points (NOTE:

call it the metric), gradient of line between points and the coordinates

of the midpoint of the line joining points (NOTE: SH: i assume

they expect this to all be done in E2 or E3. the syllabus author

seems oblivious to the non-triviality of doing this on any old

surface)

6.4 Transformations

The syllabus requires:

• generalise the effect of the following rigid transformations to

a point: translations, reflections in x,y, and x = y

• recognise when an object is similar to another object under some

transformation. conjecture and prove such similarities

• rotation of a point through 1800

• vertices of a polygon after enlargement by factor k

• vertices of a polygon after shearing (base on x axis, opposite

side parallel)

• emphasise that rigid transformations (trans, ref, rot, glide ref)

preserve shape and size. enlargement preserves shape but not

size and shearing preserves area

• (grade 12) generalise the effect on the point of stretch by k
(NOTE: first i have ever heard of stretching a point) and rotation

about the origin by an angle α0

• (grade 12) identify and classify geometric border patterns and

tessellations in terms of line symmetry, glide reflection symmetry,

rotational symmetry and point symmetry

6.4.1 Shifting, Reflecting, Stretching and Shrinking Graphs:

Shifting Graphs

Let us assume that we know some function f(x). What would happen if we
defined the function y = f(x − a), where a is some positive constant? Well,
the value of y at x is really just the value of the function f at x − a moved to
the point x. In other words, this defines the graph we would get if we shifted
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the function f(x) by a to the right. (NOTE: Shifting is not really a good
mathematical term... can we call it translation instead?)

Similarly, the function y = f(x + a), is the result of shifting the function by
a to the left (the function value at x + a is moved to x).

f(x) f(x − a)

a

f(x)f(x + a)

a

Figure 6.1: Graph of a function with the translations x → x+ a and x → x− a.
Note that this is just a simple shift either left or right of the entire graph.

Now let us look at the function y − b = f(x), where b is some positive
constant, which is the result of replacing y by y − b in the function y = f(x).
This gives us that y = f(x) + b. The function is thus shifted upwards by the
constant b.

We can also replace y by y + b, which again just results in movement in
the opposite direction. We can see this because y + b = f(x) implies that
y = f(x) − b, which shows that f(x) has been shifted downwards by b.

f(x)

f(x) + b

b

f(x)

f(x) − b

b

Figure 6.2: Graph of sin(x) with the translations y → y + b and b → y− b. Note
that this is just a simple shift either up or down of the entire graph.

Now, what about relations in general? If we take a relation, which depends
on x and y, and replaced x by x− a and y by y − b (where a and b are positive
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constants), then what would happen? Well, the relation value at the point
(x − a,y − b) would be moved to the point (x,y). Therefore the graph of the
relation would be shifted right by a and upwards by b. Similarly, if we replaced
x by x + a and y by y + b, then the function would be moved left by a and
downwards by b.

Reflections

Now consider defining y = f(−x), where f(x) is a known function. This takes
the function value at the point −x to the point x. In other words, the function
values on one side of the y-axis are moved to the other side of the y-axis. Thus
the function is reflected about the y-axis.

Alternatively we can look at the function −y = f(x). This is the same as
saying y = −f(x), which reflects the function about the x-axis (every positive
function value is changed to the corresponding negative function value and vice
versa).

f(x) f(−x) f(x)

−f(x)

Figure 6.3: Graph of a function with the reflections x → −x and f(x) →
−f(x). Note that these are just reflections in the vertical and horizontal axes,
respectively.

As before, we can generalise these idea to deal with relations. In all cases,
if we change x to −x, then the relation will be reflected about the y-axis and if
we replace y by −y then there will be a reflection about the x-axis.

Note: We say that f(x) is symmetric about the y axis if f(x) = f(−x)
(in other words, the function and its reflection about the y-axis are the same).
Similarly, if f(x) = −f(x), then we say that f(x) is symmetric about the x-axis.

6.5 Stretching and Shrinking Graphs

(NOTE: The figures are correct, but i think the figures are negating the truth.)
We shall now look at what happens to f(x) if we consider the function y = f(ax),
where a is a positive constant and a > 1. The point ax on the x-axis is further
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from the y-axis than x (since |ax| > |x|). Now the function value at ax is moved
to x, so the function is moved towards the x-axis by a factor of a. Thus the
effect is to shrink f(x) horizontally by a factor of a.

The function y = f(x
a ) has the opposite effect. The point x

a on the x-axis is
closer to the y-axis than x (as |xa | < |x|). The function value at x

a is moved to
x so the function is stretched horizontally by a factor of a.

f(x) f(ax)

ax x

f(x)f(x
a )

x
ax

Figure 6.4: Graph of a function with the rescaling x → ax and x → x
a . Note

that these are just a shrinking and stretching in the horizontal axis.

(NOTE: this is correct. vertical and horizontal rescalings are different... i
think the author got confused and thought the same thing happened in each.
this needs fixed.) Replacing y by by, where b is a positive constant and b > 1,
gives by = f(x) and thus y = 1

b f(x). The function value at any point x is
reduced by a factor of b. Therefore the graph shrinks vertically by a factor of b.

Similarly, if we replace y with y
b to give y

b = f(x), we obtain the function
y = bf(x). At each x value the function value is increased by a factor of b so
the function is stretched vertically.

Again these result can be used to deal with relations as well. If x and y are
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f(x)

1
b f(x)

f(x)

bf(x)

Figure 6.5: Graph of a function with the rescaling f(x) → 1
b f(x) and f(x) →

bf(x). Note that these are just a shrinking and stretching in the vertical axis.

replaced by ax and by in any relation, the effect is to shrink the graph of this
relation by a factor of a horizontally and by a factor of b vertically. Similarly,
changing x to x

a and y to y
b causes the relation to be stretched horizontally and

vertically by factors of a and b respectively.

6.6 Mixed Problems

If we perform many of these transformations on a given function, then we must
combine the different effects. However, it is very important that we effect these
changes in the right order. Here are some examples of mixed problems.

6.7 Equation of a Line

The syllabus requires:

86



• derive formula for the equation of a line when given 2 points

• derive formula for the line parallel to a given line and passing

through a point

• derive formula for the inclination of a line

6.8 Circles

The syllabus requires:

• (grade 12) tangent is perpendicular to the radius

• (grade 12) the line from the centre of a circle perpendicular

to a chord bisects the chord

• (grade 12) angle subtended by an arc at the centre of a circle

is double the size of the angle subtended by the same arc at the

circle

• (grade 12) the opposite angle of a cyclic quadrilateral are supplementary

the tangent chord theorem (NOTE: really... thats what it says,

word for word)

6.8.1 Circles & Semi-circles

Circles:

A circle centered at the origin with radius r is described by the relation

x2 + y2 = r2 (6.2)

We can see that a circle is not a function, since both (0,r) and (0, − r)
satisfy the relation (in other words, the line x = 0 will always cut the circle at
two points).

Now, since x2 = r2 − y2 and y2 is never negative, it follows that x2 ≤ r2

and thus −r ≤ x ≤ r. Therefore the domain of the relation is [−r,r]. Similarly,
y2 = r2 −x2 and therefore −r ≤ y ≤ r. Thus the range of the relation is [−r,r].

Semi-Circles:

The equation for a circle x2 + y2 = r2 can also be written as

y = ±
√

r2 − x2 (6.3)

Now let us we consider the positive and negative square roots separately.
These describe semi-circles on either side of the x-axis. Thus the equations for
two types of semi-circles are as follows:

y =
√

r2 − x2 and y = −
√

r2 − x2 (6.4)

The domain of each of these semi-circles is [−r,r] and the range is [0,r] (for
the first semi-circle) and [−r,0] (for the second semi-circle).
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Note: These semi-circles are functions, since there is only one y value
corresponding to each x value.

6.9 Locus

The syllabus requires:

• (grade 12) derive the equation of the locus of all points; equidistant

from a given point, equidistant from 2 given points, equidistant

from a given point and a line parallel to the x or y axis

6.10 Other Geometries

The syllabus requires:

• basic knowledge of spherical geometry, taxicab geometry and fractals

6.11 Unsorted

6.11.1 Fundamental vocabulary terms

Measuring angles

The magnitude of an angle does not depend on the length of its sides; it only
depends on the relative direction of the two sides. E.g. the adjacent edges of
a postcard are at an angle of 90◦ with respect to each other. But so is the
Empire State Building in New York City with respect to Fifth Ave. and 34th

Street (NOTE: its SA... maybe this should be the baobab tree with respect
to the Limpopo river (i kid... i kid)). So we can’t use notions of length to
measure angles. How do we measure angles then? We begin by finding a way
to enumerate angles. What is the smallest angle you can draw? Two lines
subtending almost no angle. Two coincident line segments pointing in the same
direction subtend an angle of 0◦, e.g. , lines AB and AC in the figure below. Now
if we keep one line fixed and move the other while still pivoted at the common
vertex, we can obtain any other angle. Two line segments with a common vertex
and facing in opposite direction are said to form an angle of 180◦, e.g. , XY
and XZ in the figure below. ZXY is a straight line.

✡A B
C

0◦
☛

X
YZ

180◦

The choice of a measure of 180◦ for the angle subtended by the segments
of a straight line is a matter of historical convention. Once we have decided
what the measure of an angle formed by a straight line is, we have also fixed
the measure of all the other angles. This is because we would like the angles
to obey some desirable properties. E.g. if we have an angle a◦ between two
lines AB and AC, and another angle b◦ between AB and AD, we would like
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the angle between AC and AD to be (a + b)◦. This makes the measurement of
angles intuitive and conforms to our notion of measurement of length, weight,
etc. Similarly, a line segment that defines a direction exactly half way between
AB and AC should create an angle of (a/2)◦.

☞A C

B

a◦

D

b◦

✌A C

B

a◦
D

(a/2)◦

An angle of 90◦ is termed a right angle. A right angle is half the measure
of the angle subtended by a straight line (180◦). An angle twice the measure
of a straight line is 360◦. An angle measuring 360◦ looks identical to an angle
of 0◦, except for the labelling. All angles after 360◦ also look like we have seen
them before. Angles that measure more than 360◦ are largely for mathematical
convenience to maintain continuity in our enumeration of angles.

✍A B

C

90◦

Right Angle

✎A B
C

360◦

We define some other terms at this point. These are simply labels for angles
in particular ranges.

• Acute angle: An angle ≥ 0◦ and < 90◦.

• Obtuse angle: An angle > 90◦ and < 180◦.

• Straight angle: An angle measuring 180◦.

• Reflex angle: An angle > 180◦ and < 360◦.

✏A B

C

acute
✑A B

C

obtuse

✒

A
B

C

reflex

Once we can number or measure angles, we can also start comparing them.
E.g. all right angles are 90◦, hence equal. An obtuse angle is larger than an
acute angle, etc.

An alternative measure of angles is used on a compass. E.g. if North(N) is
0◦, North-East(NE) is 45◦, NNE is 22.5◦, etc.
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Special Angle Pairs

In the previous section, we classified angles based on measurement. In this
section we’ll examine some interesting properties of angles formed by a pair of
intersecting lines.

First we consider a single straight line, AB. There’s a point on the line AB
called X. The measure of angle AXB is 180◦ as defined in the previous section.
Now let us draw another straight line intersecting the first. Without loss of
generality, let the point of intersection be X. We call the four angles formed
with X as the vertex a, b, c and d. At this point, we introduce some definitions
for convenience.

✓

A

BC

D

X
a

b

c

d

Vertical angles

Definition: The angles formed by two intersecting straight lines that share a
vertex but do not share any sides are called vertical angles. E.g. , a and c in
the figure above are vertical angles. b and d are also vertical angles.

Adjacent Angles

Definition: Two angles that share a common vertex and a common side are
called adjacent angles. E.g. , (a,b) and (c,d) are adjacent angles.

Linear pairs

Definition: The adjacent angles formed by two intersecting straight lines are
said to form a linear pair. E.g. (a,b), (b,c), (c,d) and (d,a) all form linear pairs.
Since the non common sides of a linear pair are part of the same straight line,
the total angle formed by the linear pair is 180◦ by definition. E.g. a+b = 180◦,
etc.

What can we say about the vertical angles? Looking at figure above, it seems
like the vertical angles are equal to one another. We can prove the following
result.

Theorem: The vertical angles formed by intersection of two straight lines are
equal.
Proof: Since a and b form a linear pair, a + b = 180◦. Similiarly, b and c form
a linear pair, so, b+ c = 180◦. Thus, a+ b = b+ c. Since the angle b contributes
equally to both sides of the equation, it can be cancelled out leaving, a = c.
The proof for the pair (b,d) is identical.
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This proof confirms our intuition that vertical angles are equal in magnitude.
This result will later be used when proving properties for parallel lines.

We end this section with some more definitions.

Supplementary and Complementary pairs

Definition: Two angles are called supplementary if their sum equals 180◦.
E.g. angles that constitute a linear pair are supplementary.

Definition: Two angles are called complementary if their sum equals 90◦.

Note that in order to be labelled supplementary or complementary, the two
angles being considered need not be adjacent. E.g. x and y in the figure below
are supplementary, but they are not adjacent and thus do not form a linear pair.

✔A
B

C

x

✕

D

E
F

y

x + y = 180◦

6.11.2 Parallel lines intersected by transversal lines

Two lines are said to intersect if there is a point that lies on both lines. Infor-
mally, two lines intersect if they meet at some point when extended indefinitely
in either direction. E.g. at a traffic intersection, two or more streets intersect;
the middle of the intersection is the common point between the streets.

It is possible that two lines that lie on the same plane never intersect even
when extended to infinity in either direction. Such lines are termed parallel
lines. E.g. the tracks of a straight railway line are parallel lines. We wouldn’t
want the tracks to intersect as that would be catastrophic for the train! A
section of the Australian National Railways Trans-Australian line is perhaps
one of the longest pairs of man-made parallel lines.

Longest Railroad Straight (Source: www.guinnessworldrecords.com) The
Australian National Railways Trans-Australian line over the Nullarbor Plain,
is 478 km. (297 miles) dead straight, from Mile 496, between Nurina and Loon-
gana, Western Australia, to Mile 793, between Ooldea and Watson, South
Australia.

A transversal of two or more lines is a line that intersects these lines. E.g. in
the figure below, AB and CD are two lines and EF is a transversal. We are
interested in the properties of the angles formed by these intersecting lines, so
we’ll introduce some definitions for various angle pairs.
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A B

C D

E

F

7
8

1
2

3
4

5
6

Definitions:

• Interior angles: When two lines are intersected by a transversal, the angles
that lie between the two lines are called interior angles. E.g. in the figure
above, 1, 2, 3 and 4 are interior angles.

• Exterior angles: When two lines are intersected by a transversal, the angles
formed that lie outside the two lines are called exterior angles. E.g. 5, 6,
7 and 8 are exterior angles.

• Alternate interior angles: When two lines are intersected by a transversal,
the interior angles that lie on opposite sides of the transversal are termed
alternate interior angles. E.g. in the above example, 1 and 3 are are a pair
of alternate interior angles. 2 and 4 are also alternate interior angles.

• Interior angles on the same side: As the name suggests, these are interior
angles that lie on the same side of the transversal. E.g. (1,4) and (2,3).

• Corresponding angles: The angles on the same side of the transversal and
the same side of the two lines are called corresponding angles. E.g. (1,5),
(4,8) and (3,7), etc. , are pairs of corresponding angles.

In order to prove relationships between the angles defined above, we will
assume the following postulate regarding parallel lines.

Euclid’s Parallel Line Postulate:

Postulate: If a straight line falling on two straight lines makes the two
interior angles on the same side less than two right angles (180◦), the two
straight lines, if produced indefinitely, meet on that side on which the
angles are less than two right angles.

The above is one of the fundamental postulates of Euclidean geometry
and has no proof based on the other postulates. Now we’ll use the above
postulate to prove some other properties.

Theorem 1: If two parallel lines are intersected by a transversal, the sum
of interior angles on the same side of the transversal is two right angles
(180◦).
Proof: Consider parallel lines AB and CD intersected by the transversal
EF in the figure above. Suppose that the sum of the interior angles is less
than 180◦ on one side of the transveral, e.g. 1 + 4 < 180◦. Then Euclid’s
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Parallel Line Postulate implies that the AB and CD meet on that side of
the transversal and are not parallel. This contradicts the assumption that
the lines are parallel.
Now suppose that the sum of the interior angles 1 and 4 is greater than
180◦. Now, (2) = 180◦−(1) and (3) = 180◦−(4). So (2+3) = 360◦−(1+4).
Since (1 + 4) > 180◦, (2 + 3) < 180◦. Thus the parallel line postulate
implies that the lines will meet on that side of the transveral and are not
parallel. Thus both pairs of interior angles on the same side need to sum
up to 180◦ for the lines to be parallel.

Theorem 2: If two parallel lines are intersected by a transversal, the
alternate interior angles are equal.
Proof: In the figure above, using Theorem 1,
(1 + 4) = 180◦

Also, since AB is a straight line, 1 and 4 are supplementary.
(4 + 3) = 180◦

Thus, 1 = 3. Similarly, 2 = 4.

Theorem 3: If two parallel lines are intersected by a transversal, the
corresponding angles are equal.
Proof: Again using Theorem 1, in the figure above,
(1 + 4) = 180◦

Also, since EF is a straight line,
(4 + 5) = 180◦

So 1 = 5, etc.

Theorem 4: The sum of the three angles in a triangle is 180.
Proof: Consider triangle ABC shown in the figure below. The three
angles are denoted 1, 2 and 3. We have to show that 1 + 2 + 3 = 180◦.
Consider a straight line DE through point A that is parallel to BC. We
denote the angles between DE and the sides of the triangle as 4 and 5.

B C

A
D E

2
3

4
5

1

Since DE is a straight line, 1 + 4 + 5 = 180◦.
Now DE is parallel to BC, and 2 and 4 are alternate interior angles (AB
is the transversal). So 2 = 4. Similarly, 3 = 5.
So substituting these in the first equation, 1 + 2 + 3 = 180◦.

The following theorems help in determining when two lines are parallel
to each other.

Theorem 5: If two lines are intersected by a transversal such that any
pair of interior angles on the same side is supplementary, then the two
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lines are parallel.
Proof: We’ll prove that if two lines are not parallel, the interior angles on
the same side are not supplementary. We’ll prove this by contradiction.
Assume that two non-parallel distinct lines are intersected by a transversal
such that interior angles 1 and 4 are supplementary.
1 + 4 = 180◦ (Eq. (i))
Since the lines are not parallel, they have to intersect at some point Z.
Since the two lines are distinct, they have to form a non-zero angle at
their point of intersection.

Z 9

X

1

Y

4

XY Z is a triangle. So 1 + 4 + 9 = 180◦, using Theorem 4.
But using Eq. (i), 1 + 4 = 180◦, so 9 = 0◦. This contradicts the fact
that distinct intersecting lines create a non-zero angle at their point of
intersection. So our original assumption is not supportable and the interior
angles 1 and 4 cannot be supplementary.

Theorem 6: If two lines are intersected by a transversal such that a pair
of alternate interior angles are equal, the lines are parallel.
Proof: Left as an exercise.

Theorem 7: If two lines are intersected by a transversal such that a pair
of alternate corresponding angles are equal, the lines are parallel.
Proof: Left as an exercise.

Theorem 8: Prove that if a line AB is parallel to CD, and AB is parallel
to EF, then CD is parallel to EF.
Proof: Left as an exercise. (Hint: We can prove this in two steps:

1. Prove that if two lines are parallel, then a line that intersects one
also intersects the other.

2. Use the equivalence of corresponding angles to get the result.)
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Sides Name
5 pentagon
6 hexagon
7 heptagon
8 octagon
10 decagon
15 pentadecagon

Table 6.1: Table of some polygons and their number of sides.
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Chapter 7

Trigonometry

7.1 Syllabus

7.1.1 Triangles

The syllabus requires:

– similarity of triangles is the basis of trig functions (NOTE:

perhaps this is best left in geometry)

– solve problems in 2D by constructing and interpreting geometric

and trig models including scale drawings, maps and building

plans

7.1.2 Trigonometric Formulæ

The syllabus requires:

– some history from various cultures

– derive reduction formulæ for trig ratios

– recognise equivalence of trig expressions by reduction

– solve 2D problems by establishing sin/cos/area rules (NOTE:

perhaps just do the rules here, and do the problems in section

8.5)

– use trig for height and distances (NOTE: SH isn’t this already

done in 7.1.1?)

7.2 Radian and Degree Measure

You should be familiar with the idea of measuring angles from geometry
but have you ever stopped to think why there are 360 degrees in a circle?
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The reason is purely historical 1. There are, in fact, many different ways
of measuring angles. The two most commonly used are degrees (the one
you have been using up to now) and radians.

arc length
radiusA

The radian measure of an angle is defined as the ratio of the arc length
subtending the angle to the radius of the circle.

A =
arclength

radius
(7.1)

We know from geometry that the circumference of a circle is found using
the equation c = 2πr. If we divide through by the radius of the circle, r,
we find that the radian angle subtended by the complete circumference,
(or in other words the number of radians in a full circle) is 2πr

r = 2π. This
means that 2π radians is the same as 360◦.
With this in mind we can easily work out how to convert between degrees
and radians.

Definition: θ(rad) = θ(◦) × 2π
360 or θ(◦) = θ(rad) × 360

2π

Using these formulae we can express common angles in radians. It is worth
learning these as questions may be asked using either degrees, radians or
a mixture of both.

Degrees 30◦ 45◦ 60◦ 90◦ 180◦ 270◦ 360◦

Radians π
6

π
4

π
3

π
2 π 3π

2 2π

7.2.1 The unit of radians

You may be wondering what the unit of radians is. The answer is that
it doesn’t have one. This is because a radian is the ratio of two lengths:
the arc length divided by the radius. Now, both of these will have the

1There are 360 degrees in a circle because the ancient Babylonians had a number system
with base 60. A base is the number you count up to before you get an extra digit. The number
system that we use everyday is called the decimal system (the base is 10), but computers use
the binary system (the base is 2). 360 = 6× 60 so for them it make sense to have 360 degrees
in a circle.
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same unit, so when you divide them, the units simply disappear! This is
what is known as a dimensionless quantity. Sometimes we write radians
(or simply rad) after the number to emphasise that we are using radians,
but this is not necessary.
In general, if an angle is expressed in terms of π it is meant to be in ra-
dians. Be careful though. If the question does not explicitly say whether
the angle is measured in degrees or radians you need to use common sense
to decide which to use.

7.3 Definition of the Trigonometric Functions

7.3.1 Trigonometry of a Right Angled Triangle

Consider a right-angled triangle.

θ

c

ab

We define

sin θ =
a

b
(7.2)

cos θ =
c

b
(7.3)

tan θ =
a

c
(7.4)

These are abbreviations for sine, cosine and tangent. These functions,
known as trigonometric functions, relate the lengths of the sides of a tri-
angle to its interior angles.

How to remember the definitions

Different people have different ways of remembering these ratios. One way
involves defining opposite to be side of the triangle opposite to the angle,
hypotenuse to be the side opposite to the right-angle (just like we use the
term in geometry) and adjacent to be the side next to the angle, which is
not the hypotenuse. This is illustrated in the following picture, where we
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show the adjacent, opposite and hypotenuse for the angle θ.

θ

adjacent

op
p
os

it
e

hy
po

te
nu

se

So, using these definitions we have:

sin θ =
opposite

hypotenuse
(7.5)

cos θ =
adjacent

hypotenuse
(7.6)

tan θ =
opposite

adjacent
(7.7)

There is a mnemonic to remember these:

S Sine
O Opposite
H Hypotenuse
C Cos
A Adjacent
H Hypotenuse
T Tan
O Opposite
A Adjacent

Another mnemonic that is perhaps easier to remember goes as follows:

Silly Old Hens Sin = Opposite
Hypotenuse

Cackle And Howl Cos = Adjacent
Hypotenuse

Till Old Age Tan = Opposite
Adjacent

CAUTION! The definitions of opposite, adjacent and hypotenuse only
make sense when you are working with right-angled triangles! Always
check to make sure your triangle has a right angle before you use them,
otherwise you will get the wrong answer. We will find ways of working
with the trigonometry of non right-angled triangles later in the chapter.
By using the appropriate triangles it is possible to work out the following
values of the sine, cosine and tangent functions for a number of common
angles.
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0◦ 30◦ 45◦ 60◦ 90◦ 180◦

cos θ 1
√

3
2

1√
2

1
2 0 −1

sin θ 0 1
2

1√
2

√
3

2 1 0

tan θ 0 1√
3

1
√

3 − 0

These values are useful to remember as they often occur in questions.
They are also a good way of helping us to visualise the graphs of the sine,
cosine and tangent functions.

7.3.2 Trigonometric Graphs

Sine and Cosine Graphs

Let us look back at our values for sin θ –

0◦ 30◦ 45◦ 60◦ 90◦ 180◦

sin θ 0 1
2

1√
2

√
3

2 1 0

As you can see, the function sin θ has a value of 0 at θ = 0◦. Its value
then smoothly increases until θ = 90◦ when its value is 1. We then know
that it later decreases to 0 when θ = 180◦. Putting all this together we
can start to picture the full extent of the sine graph. The sine graph is
shown in figure 7.1.

180 360−180−360

1

−1

Figure 7.1: The sine graph.

Let us now look back at the values of cosine–

0◦ 30◦ 45◦ 60◦ 90◦ 180◦

cos θ 1
√

3
2

1√
2

1
2 0 −1

If you look carefully you will notice that the cosine of an angle θ is the
same as the sine of the angle 90◦ − θ. Take for example,

cos 60◦ =
1

2
= sin 30◦ = sin (90◦ − 60◦)
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This tells us that in order to create the cosine graph all we need to do
is to shift the sine graph 90◦ to the left2. The cosine graph is shown in
figure 7.2.

180 360−180−360

1

−1

90◦ shift

Figure 7.2: The cosine graph (in black) with the sine graph (in gray).

Tangent graph

Now that we have the sine and cosine graphs there is an easy way to
visualise the tangent graph. Let us look back at our definitions of sin θ
and cos θ in a right angled triangle.

sin θ

cos θ
=

opposite
hypotenuse

adjacent
hypotenuse

=
opposite

adjacent
= tan θ

This is the first of an important set of equations called trigonometric
identities. An identity is an equation which holds true for any value which
is put into it. In this case we have shown that

tan θ =
sin θ

cos θ

for any value of θ.
So we know that for values of θ for which sin θ = 0, we must also have
tan θ = 0. Also, if cos θ = 0 our value of tan θ = 0 is undefined as we
cannot divide by 0. The complete graph3 is shown in figure 7.3.

2You may have noticed that the transformation we are using is in fact a translation of
90◦ followed by a reflection in the y axis due to a negative sign in front of the θ. However,
because cosine is an even function (i.e. symmetric about the y axis) this reflection doesn’t
really matter!

3The dotted lines in the tangent graph are known as asymptotes and the graph is said to
display asymptotic behaviour. This means that as θ approaches 90◦, tan θ approaches infinity.
In other words, there is no defined value of the function at the asymptote values. Another
graph which displays asymptotic behaviour is y = 1

x
whose asymptotes are the x and y axes

themselves.
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180 360−180−360

2

4

−2

−4

Figure 7.3: The tangent graph.

7.3.3 Secant, Cosecant, Cotangent and their graphs

In the sections that follow it will often be useful to define the reciprocal
functions of sine, cosine and tangent. We shall define them as follows–

csc θ =
1

sin θ
=

hypotenuse

opposite
(7.8)

sec θ =
1

cos θ
=

hypotenuse

adjacent
(7.9)

cot θ =
1

tan θ
=

adjacent

opposite
(7.10)

The graphs of these functions are shown in figures 7.4–7.6. There are a
number of points worth noting about these graphs. Firstly, since | sin θ|
and | cos θ| are always less than or equal to 1 their reciprocal functions
| csc θ| and | sec θ| must always be greater than or equal to 1. Secondly
notice that the sectant graph can be obtained from the cosecant graph by
performing a 90◦ shift, just like we did with sine and cosine. Notice also
that these graphs have asymptotes whenever their reciprocal function is
0.
One important feature of all these trigonometric functions is that they are
periodic with a period of 360◦. This is most easily understood by looking
back at a circle.

102



180 360−180−360

1

2

3

4

5

−1

−2

−3

−4

−5

Figure 7.4: The cosecant graph.

180 360−180−360

1

2

3

4

5

−1

−2

−3

−4

−5

Figure 7.5: The sectant graph.
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180 360−180−360

2

4

−2

−4

Figure 7.6: The cotangent graph.

θ

Imagine that we are measuring the angle θ on this circle. Now let us add
360◦ to our angle so that our line sweeps all the way around the circle
and ends up back where it started as indicated in the diagram. There is
no way of knowing whether we have swept around the circle in this way
as everything ends up exactly where it started. In other words, if we add
360◦ to an angle we effectively have the same angle we started with. Since
our diagram is the same after the rotation the values of our trigonometric
functions also remain unchanged. This is the reason that all trigonometric
functions have a period of 360◦ – adding 360◦ degrees to an angle does
nothing more than sweep it all the way round a circle back to where it
began, so all of our functions must have the same value for θ and θ±360◦.

7.3.4 Inverse trigonometric functions

Like all functions the trigonometric functions have inverses. These func-
tions take in ratios (such as opposite

hypotenuse in the case of inverse sine) and give
out the angle it corresponds to. However, due to the periodicity of the
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trigonometric functions there are many possible angles for one ratio. For
example, both sin 30◦ and sin 150◦ give values of 1

2 so sin−1 1
2 can be either

30◦, 150◦ or any one of an infinite amount of other possibilities.
Two notations are commonly used for the inverse functions – sin−1 θ and
arcsin θ. Both the −1 and arc versions can be used for any of the six
trigonometric functions. However, you must be careful not to confuse the
reciprocal functions (csc, sec and cot) with the inverse functions (arcsin,
arccos and arctan). They are different functions with different meanings
and will give different answers4.

7.4 Trigonometric Rules and Identities

7.4.1 Translation and Reflection

We found earlier that all trigonometric functions are periodic, with a pe-
riod of 360◦. We can express this more formally by writing–

sin (θ ± 360◦) = sin θ

This identity states that the sine of an angle is unchanged if we add or
subtract 360◦. Another way to think of this is as a translation of the sine
graph by 360◦ to the right or left.

180 360−180−360

1

−1

360◦ shift

As you can see, if we shift the whole graph by 360◦ left or right it will
end up back on top of itself. The sine of an angle is therefore completely
unchanged. Identities of this form can be very useful. We shall consider a
few such identities here using the ideas of chapter (NOTE: Add in correct
\ref for transformations in geometry chapter).
First let us consider reflecting the sin graph in the x and y axes. We know
that if we reflect in the x axis we will get the graph of − sin θ. Figure 7.7
shows the original sine graph (gray) and its reflection in the x axis. Just
by looking at the graph we can see that reflecting sine in the y axis would
give the same result as reflecting in the x axis did5. Mathematically, a

4Remember – you can have inverse reciprocal functions such as arccsc and sec−1.
5If you have a mirror you can check this by putting it along the y axis.
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180 360−180−360

1

−1

Figure 7.7: The sine graph reflected in the x axis.

reflection in the y axis gives us the function sin (−θ). This gives us a
second identity–

sin (−θ) = − sin θ

We could also obtain the black function in figure 7.7 by translating the
gray sine graph 180◦ to the right or left. This tells us that–

sin (−θ) = − sin θ = sin(θ ± 180◦)

Let us now look at the cosine function. Again we can use the fact that
cosine is periodic with period 360◦ to give–

cos (θ ± 360◦) = cos θ

This time our reflections are a little more complicated. Firstly let’s reflect
the cosine function in the y axis to generate cos (−θ). Since the cosine
graph is symmetric about the y axis the reflection will not change our
graph. This tells us that –

cos (−θ) = cos θ

Reflecting in the x axis we obtain figure 7.8. The first point of interest

180 360−180−360

1

−1

Figure 7.8: The cosine graph reflected in the x axis.

is that unlike with sine we get different graphs by reflecting in the x and
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y axes. We can however still consider the black graph as a translation of
180◦ to the left or right. As before this gives us an identity–

− cos θ = cos(θ ± 180◦)

One final and very important class of translation identity are those that
convert sine into cosine and vice versa. We have already seen one of these
when we looked at the graphs of sine and cosine–

cos θ = sin (90◦ − θ)

This can be written in many ways by using the identities we have already
proven. One more sensible version is–

cos (θ − 90◦) = sin θ

It is now easier to see that the sine graph is just the cosine graph moved
90◦ to the right. We shall prove that these two identities are the same in
the worked example at the end of this section.
There are many more identities such as these for sine and cosine as well as
tangent and the reciprocal functions. One way to find such identities is to
uses the addition and subtraction formulae which we will derive in section
7.4.6. Always remember to check if your expressions can be simplified
using these identities.

7.4.2 Pythagorean Identities

Consider a right angled triangle–

θ
x

yr

(0,0)

Let us use our definitions of sine and cosine in a right–angled triangle on
the angle θ.

sin θ =
opposite

hypotenuse
=

y

r
and cos θ =

adjacent

hypotenuse
=

x

r
(7.11)

(7.12)

⇒ y = r sin θ and x = r cos θ (7.13)

Using Pythagorases theorem we can say that–

x2 + y2 = r2
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Substituting in our expressions for x and y–

(r cos θ)2 + (r sin θ)2 = r2

⇒ r2 cos2 θ + r2 sin2 θ = r2

If we divide both sides through by r2 we arrive at–

cos2 θ + sin2 θ = 1

This is known as a Pythagorean identity. We can express the identity in
terms of the other trigonometric functions by dividing through by either
sin2 θ or cos2 θ on both sides–

sin2 θ

sin2 θ
+

cos2 θ

sin2 θ
=

1

sin2 θ
⇒ 1 + cot2 θ = csc2 θ

sin2 θ

cos2 θ
+

cos2 θ

cos2 θ
=

1

cos2 θ
⇒ tan2 θ + 1 = sec2 θ

These 3 versions of the Pythagorean Identity can be used in any question.
They do not need to be used in a triangle they will work for any angle in
any situation.

Definition: Pythagorean Identities–

cos2 θ + sin2 θ = 1

1 + cot2 θ = csc2 θ

tan2 θ + 1 = sec2 θ

7.4.3 Sine Rule

So far we have only dealt with the trigonometry of right angled triangles
where we are able to use our definitions of sin θ, cos θ and tan θ. There
are some rules which we can derive that hold true for any triangle. One
of these is the sine rule.
Consider a scalene triangle (i.e. one with all sides different lengths and all
angles different)–

c

b ap

A B
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Note that the order in which the angles of the triangle are labelled is
important. The three sides are labelled a, b, and c in any order. Then we
define angle A as the angle opposite side a and so on.
We can split it into two right-angled triangles by choosing a perpendicular,
p, to one side (in this case side c) which passes through the opposite vertex,
as shown. You may want to draw a few triangles and convince yourself
that we can always do this regardless of the shape of the triangle.
Now, since we have right angled triangles we can use our old definition of
sin θ = opposite

hypotenuse to find–

sinA =
p

b
and sinB =

p

a

or, rearranging slightly–

p = b sinA and p = a sinB

If we now set these two equations for p equal to each other (to eliminate
the p) and rearrange again (by dividing through both sides by ab) we get
the following–

p = b sinA = a sinB

⇒ sinA

a
=

sinB

b
(7.14)

We could have chosen our perpendicular to go through any side of our
triangle so let us repeat the proof with the perpendicular through a.

c

b a
p′

B

C

Now we have–
p′ = b sinC = c sinB

⇒ sinB

b
=

sinC

c
(7.15)

Check this result for yourself to make sure you understand where it came
from!
Putting equations 7.14 and 7.15 together we obtain the sine rule–

Definition: Sine Rule –

sinA

a
=

sinB

b
=

sinC

c
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Many books now tell us that we have not proved the sine rule fully. Con-
sider the following triangle–

c

b ap

A B

This type of triangle which has all of its angles smaller than 90◦ is called
an acute triangle. We have already proved the sine rule for acute trian-
gles. If we ‘fold’ this acute triangle along the perpendicular we obtain the
following–

c

b ap

A A A′ B

This kind of triangle, which contains an angle greater than 90◦, is called an
obtuse triangle. Notice that we now have no way of finding a perpendicular
through side c which goes through a vertex of the new triangle. Instead,
the perpendicular must be drawn outside of the triangle. This is the reason
that some books say that our proof is incomplete – the perpendicular which
we used for acute triangles does not always exist in obtuse ones! We can
either repeat our proof from the start for obtuse triangles(which is messy!)
or we can use our knowledge of trigonometry to prove these other books
wrong.
Notice that the lengths of a, b and p have not changed, neither has the
value of angle B. The only change is that we have replaced the old angle,
A, with a new angle, A′. If we look at A and A′ we can see that they
lie on a straight line so from our knowledge of geometry we can say that
A + A′ = 180◦ or alternatively that A′ = 180◦ − A. We have already
shown that–

sin (180 − θ) = sin θ
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so we can say that–

sinA′ = sin (180 − A) = sinA

We now know that although angle A has changed, its sine has stayed the
same. Since we are only interested in the sine of the angle our equation
must still be valid! Any obtuse triangle can be formed by ‘folding’ an
acute triangle in this way so the sine rule must be true for any triangle we
choose.

7.4.4 Cosine Rule

Let us return to our scalene triangle–

c

x c − x

b ap

A

We have defined a perpendicular, p, just as we did before. This perpen-
dicular divides side c into two parts. One part lies between vertex A and
the perpendicular. We shall call its length x. The other part between
the perpendicular and vertex B must, therefore, have a length of c − x.
Using the usual definitions of sine and cosine on the left had section of the
triangle we find–

sinA =
p

b
and cos A =

x

b

⇒ p = b sinA and x = b cos A

Now we will use Pythagorases theorem on the right hand side of the tri-
angle.

a2 = p2 + (c − x)2 (7.16)

= p2 + c2 − 2cx + x2 (7.17)

Substituting in p = b sinA and x = b cos A

a2 = b2 sin2 A + c2 − 2cb cos A + b2 cos2 A (7.18)

= b2(sin2 A + cos2 A) + c2 − 2bc cos A (7.19)

Using the Pythagorean identity sin2 A+cos2 A = 1 we get the cosine rule.
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Definition: Cosine rule –

a2 = b2 + c2 − 2bc cos A

7.4.5 Area Rule

One last triangle rule is an extension of the area formula for a triangle.

base

height

From geometry–

area =
1

2
× base × height

where height is measured perpendicular to the base.

c

height

θ

b

From trigonometry–

sin θ =
opposite

adjacent
=

height

b

⇒ height = b sin θ

Calling the base c we can write–

area =
1

2
× base × height =

1

2
bc sin θ

where θ must be the angle between sides b and c.
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Definition: Area rule –

area =
1

2
bc sin θ

7.4.6 Addition and Subtraction Formulae

Let us return to our scalene triangle complete with a perpendicular as we
had before.

x y

1 hp

φθ

90◦ − φ

The perpendicular, p, divides the top angle into two pieces, θ and φ. We
can use the fact that the internal angles of a triangle sum to 180◦ to find
that the bottom right angle must be 90◦ − φ. If we define one side of the
triangle to be of legnth 1 for simplicity we can easily see from the left hand
triangle that–

sin θ =
x

1
= x ⇒ x = sin θ (7.20)

cos θ =
p

1
= p ⇒ p = cos θ (7.21)

From the right hand triangle we can see that–

cos φ =
p

h
⇒ h =

p

cos φ
(7.22)

sin θ =
y

h
⇒ y = h sinφ =

p sinφ

cos φ
(7.23)

Substituting in our expression for p we get–

y =
cos θ sinφ

cos φ

Putting these expressions togeher we find that the base of the triangle,
x + y, has a length–

x + y = sin θ +
cos θ sinφ

cos φ
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sin θ + cos θ sin φ
cos φ

1 h

θ + φ

90◦ − φ

We can now use the sine rule on the two angles that we know–

sin(θ + φ)

sin θ + cos θ sin φ
cos φ

=
sin(90◦ − φ)

1

As we learnt in section 7.4.1, sin (90◦ − θ) = cos θ. Using this identity and
cross multiplying we get–

sin(θ + φ)

sin θ + cos θ sin φ
cos φ

=
cos φ

1
(7.24)

⇒ sin (θ + φ) = sin θ cos φ + cos θ sinφ (7.25)

This is the sine addition formula. If we take this formula and replace θ
with (90◦−θ) (remember, we can only do this with identities as they must
be true for any value of their variables) we get–

sin (90◦ − θ + φ) = sin(90◦ − θ) cos φ + cos(90◦ − θ) sinφ

As before we can use the identities

sin (90◦ − φ) = cos φ (7.26)

cos (90◦ − φ) = sinφ (7.27)

Using these identities we can obtain the cosine subtraction formula–

sin (90◦ − (θ − φ)) = cos(θ − φ) = sin(90◦ − θ) cos φ + cos(90◦ − θ) sinφ(7.28)

= cos θ cos φ + sin θ sinφ (7.29)

We are missing two identities, the sine subtraction and cosine addition
formulae. To obtain the sine subtraction we replace φ with −φ in the sine
addition formula. Since we know that sin(−φ) = − sinφ and cos(−φ) =
cos φ from section 7.4.1 we find that

sin (θ − φ) = sin θ cos(−φ) + cos θ sin(−φ) (7.30)

= sin θ cos φ − cos θ sinφ (7.31)

Proof of the cosine addition formula can be done in the same way, starting
with the subtraction formula.

cos (θ + φ) = cos θ cos(−φ) + sin θ sin(−φ) (7.32)

= cos θ cos φ − sin θ sinφ (7.33)
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Similar equations can be found for the tangemt function. Proof of these
is left to the reader6.

Definition: Addition and Subtraction Formulae–

sin (θ + φ) = sin θ cos φ + cos θ sinφ (7.34)

sin (θ − φ) = sin θ cos φ − cos θ sinφ (7.35)

cos (θ + φ) = cos θ cos φ − sin θ sinφ (7.36)

cos (θ − φ) = cos θ cos φ + sin θ sinφ (7.37)

tan (θ + φ) =
tanφ + tan θ

1 − tan θ tan φ
(7.38)

tan (θ − φ) =
tanφ − tan θ

1 + tan θ tan φ
(7.39)

7.4.7 Double and Triple Angle Formulae

Let us remind ourselves of the addition formulae for sine and cosine–

cos (θ + φ) = cos θ cos φ − sin θ sinφ (7.40)

sin (θ + φ) = sin θ cos φ + cos θ sinφ (7.41)

If we set φ to be equal to θ we get the following equations–

cos (θ + θ) = cos (2θ) = cos θ cos θ − sinθ sin θ = cos2 θ − sin2 θ(7.42)

sin (θ + θ) = sin (2θ) = sin θ cos θ + cosθ sin θ = 2 cos θ sin θ (7.43)

These are known as the double angle formulae. By using the phythagorean
identity cos2 θ + sin2 θ = 1 we can substitute into the cosine double angle
formula for cos2 θ or sin2 θ to get different forms. We can do the same for
the tangent function.

Definition: Double angle formulae–

cos (2θ) = cos2 θ − sin2 θ (7.44)

= 2 cos2 θ − 1 (7.45)

= 1 − 2 sin2 θ (7.46)

sin (2θ) = 2 cos θ sin θ (7.47)

tan (2θ) =
2 tan θ

1 − tan2 θ
(7.48)

6HINT–Remember, tan θ = sin θ

cos θ
so you can use the sine and cosine addition formulae to

find the tangent one. To get it into the same form as in the definition you need to divide
everything through by a factor. The fact there is a 1 in the denominator should give you a
clue as to what the factor is! Once you have the addition forumula you need to remember
that tan(−θ) = − tan θ to find the subtraction formula.
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Now that we have the double angle formulae it is easy to find higher order
multiple angle formulae. We shall derive the cosine triple angle formulae
here. We start by taking the cosine addition faormula and setting φ = 2θ–

cos (θ + 2θ) = cos (3θ) = cos θ cos (2θ) − sin θ sin (2θ)

We now substitute in the double angle formulae for cos (2θ) and sin (2θ).
We have a choice of forms for the cos (2θ) formula. We shall choose
cos (2θ) = cos2 θ − sin2 θ.

cos (3θ) = cos θ cos (2θ) − sin θ sin (2θ) (7.49)

= cos θ(cos2 θ − sin2 θ) − sin θ(2 cos θ sin θ) (7.50)

= cos3 θ − 3 sin2 θ cos θ (7.51)

The corresponding sine triple angle formula is–

sin (3θ) = 3 cos2 θ sin θ − sin3 θ

7.4.8 Half Angle Formulae

We can rearrange the double angle formulae to find the half angle formulae.
We shall start by rearranging the cosine double angle formula of the form
cos (2θ) = 2 cos2 θ − 1.

2 cos2 θ − 1 = cos (2θ) (7.52)

⇒ 2 cos2 θ = 1 + cos (2θ) (7.53)

⇒ cos2 θ =
1 + cos (2θ)

2
(7.54)

⇒ cos θ = ±
√

1 + cos (2θ)

2
(7.55)

Another way to write this is to halve both of the angles (we can do this
because it is an identity, so must be valid for any angle) –

cos
θ

2
= ±

√

1 + cos θ

2

Using the same method to rearrange the identity cos (2θ) = 1−2 sin2 θ we
obtain–

sin
θ

2
= ±

√

1 − cos θ

2

We can now use the ratio identity to find the tangent half angle formula–

tan
θ

2
=

sin θ
2

cos θ
2

= ±

√
1−cos θ

2
√

1+cos θ
2

= ±
√

1 − cos θ

1 + cos θ

As with all identities the half angle formulae can be expressed in a number
of ways. Some of these will be proven in the worked example and more
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given in the summary of identities at the end of the chapter.

Definition: Half Angle Formulae

cos
θ

2
= ±

√

1 + cos θ

2
(7.56)

sin
θ

2
= ±

√

1 − cos θ

2
(7.57)

tan
θ

2
= ±

√

1 − cos θ

1 + cos θ
(7.58)

7.4.9 ‘Product to Sum’ and ‘Sum to Product’ Identi-
ties

For completeness we include a brief comment on the ‘product to sum’ and
‘sum to product’ identities. They can be derived from the addition and
subtraction formulae. We shall only derive one of each type here as their
derivations are broadly similar.
We start by proving a product to sum identity. This identity us an ex-
perssion linking the product of two cosine functions (cos θ cos φ) to a sum
of cosine functions. The derivation is as follows–

cos (θ + φ) + cos (θ − φ) = (cos θ cos φ − sin θ sinφ) + (cos θ cos φ + sin θ sinφ)(7.59)

= 2 cos θ cos φ (7.60)

(7.61)

⇒ cos θ cos φ =
1

2
[cos (θ + φ) + cos (θ − φ)] (7.62)

Sum to product identities are messier to prove. Here we prove the identity
linking the sum of two cosines by exchange of variables. We substitute
θ = θ′ + φ′ and φ = θ′ − φ′ into the product to sum identity above (the
primes just prevent us getting confused, we shall drop them later).

2 cos(θ′ + φ′) cos(θ′ − φ′) = cos ((θ′ + φ′) + (θ′ − φ′)) + cos ((θ′ + φ′) − (θ′ − φ′))(7.63)

= cos(2θ′) + cos(2φ′) (7.64)

As always with identities we can divide all our variables by 2 for conve-
nience (since it must be true for any angle) and drop out the primes to
give–

cos θ + cos φ = 2 cos

(
θ′ + φ′

2

)

cos

(
θ′ − φ′

2

)

7.4.10 Solving Trigonometric Identities

A standard type of question in an exam is of the form “show that sin(2θ)
tan θ =

2 cos2 θ”. As well as being important in examinations being able to prove

117



100m

38.7◦

Figure 7.9: Determining the height of a building using trigonometry.

identities is a key mathematical skill. Most identities can be proven by
using the standard identities we have already learnt earlier in this section.
There are three ways that the two sides of an identity can differ–

1. The functions are different
e.g. sin θ cot θ = cos θ

2. The operations are different
e.g. sin θ cos3 θ = sin θ cos θ(1 − sin2 θ)

3. The angles are different

e.g. sin θ = sin(2θ)
2 cos θ

Of course, real identities (and even the examples above) contain a mixture
of these three differences, but they can be solved by dealing with each of
the differences, one at a time.

7.5 Application of Trigonometry

Trigonometry is very important in many areas of every day life. In this
section we shall learn to use trigonometry to solve problems which would
otherwise require very complicated solutions.

7.5.1 Height and Depth

One simple task is to find the height of a building using trigonometry. We
could just use tape measure lowered from the roof but this is impractical
(and dangerous) for tall buildings. It is much more sensible to measure a
distance along the ground and use trigonometry to find the height of the
building.
Figure 7.9 shows a building whose height we do not know. We have walked
100m away from the building and measured the angle up to top. This angle
is found to be 38.7◦. We call this angle the angle of elevation. As you can
see from figure 7.9 we now have a right angled triangle, one side of which
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✖ ✗
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127◦ 255◦

C

A B

Figure 7.10: Two lighthouses, A and B, and a boat, C.

is the height of the building, which also includes our 100m distance and
the angle of elevation. Using the standard definition of tangent–

tan 38.7◦ =
opposite

adjacent
(7.65)

=
height

100
(7.66)

⇒ height = 100 × tan 38.7◦ (7.67)

= 80m (7.68)

7.5.2 Maps and Plans

Maps and plans are usually scale drawings. This means that they are an
enlagement (usually with a negative scale factor so that they are smaller
than the original) so all angles are unchanged. We can use this to make
use of maps and plans by adding information from the real world.
Let us imagine that there is a coastline with two lighthouses, one either
side of a beach. This is shown in figure 7.10. The two lighthouses are
0.67km apart and one is exactly due east of the other. Let us suppose
that no boat may get closer that 200m from the lighthouses in case it runs
aground. How can the lighthouses tell how close the boat is?
Both lighhouses take bearings to the boat (remember – a bearing is an
angle measured clockwise from north). These bearings are shown on the
map in figure 7.10. We can see that the two lighthouses and the boat form
a triangle. Since we know the distance between the lighthouses and we
have two angles we can use trigonometry to find the remaining two sides
of the triangle, the distance of the boat from the two lighthouses.
Figure 7.11 shows this triangle more clearly. We need to know the legnths

of the two sides AC and BC. We can choose to use either sine or cosine
rule to find our missing legnths. We shall use both here. Using the sine
rule–

sin (7.69)
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✙ ✚

✛
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A B

37◦ 15◦

128◦

0.67km

Figure 7.11: Two lighthouses, A and B, and a boat, C.

7.6 Trigonometric Equations

Trigonomeric equations often look very simple. Consider solving the equa-
tion sin θ = 0.7. We can take the inverse sine of both sides to find that
θ = sin−1(0.7). If we put this into a calculator we find that sin−1(0.7) =
44.42◦. This is true, however, it does not tell the whole story. As you

180 360−180−360

1

−1

Figure 7.12: The sine graph. The dotted line represents sin θ = 0.7.

can see from figure 7.12, there are four possible angles with a sine of 0.7
between −360◦ and 360◦. If we were to extend the range of the sine graph
to infinity we would in fact see that there are an infinite number of solu-
tions to this equation! This difficulty (which is caused by the periodicity
of the sine function) makes solving trigonometric equations much harder
than they may seem to be.
Any problem on trigonometric equations will require two pieces of infor-
mation to solve. The first is the equation itself and the second is the range
in which your answers must lie. The hard part is making sure you find all
of the possible answers within the range. Your calculator will always give
you the smallest answer (i.e. the one that lies between −90◦ and 90◦ for
tangent and sine and one between 0◦ and 180◦ for cosine). Bearing this in
mind we can already solve trigonometric equations within these ranges.
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Worked Example 7 :

Question: Find the values of x for which sin 3x = 0.5 if it is
given that 0 < x < 90◦.
Answer: Because we are told that x is an acute angle, we can
simply apply an inverse trigonometric function to both sides.

sinx = 0.5 (7.70)

⇒ x = arcsin 0.5 (7.71)

⇒ x = 30◦ (7.72)

(7.73)

We can, of course, solve trigonometric equations in any range by drawing
the graph.

Worked Example 8 :

Question: For what values of x does sinx = 0.5, when −360◦ <
x < 360◦?
Answer:

Step 1 : Draw the graph
We take look at the graph of sinx = 0.5 on the interval [-360,
360]. We want to know when the y value of the graph is 0.5, so
we draw in a line at y=0.5.

180 360−180−360

1

−1

Step 2 :
Notice that this line touches the graph four times. This means
that there are four solutions to the equation.
Step 3 :
Read off those x values from the graph as x = −330◦,−210◦,30◦

and 150◦.

121
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0
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0◦/360◦

90◦

180◦

270◦

2nd

+VE

-VE

3rd

-VE

4th

1st

+VE

Figure 7.13: The graph and unit circle showing the sign of the sine function.

90 180 270 360−90−180−270−360

1

−1

This method can be time consuming and inexact. We shall now look at
how to solve these problems algebraically.

7.6.1 Solution using CAST diagrams

The Sign of the Trigonometric Function

The first step to finding the trigonometry of any angle is to determine the
sign of the ratio for a given angle. We shall do this for the sine function
first.
In figure 7.13 we have split the sine graph unto four quadrants, each 90◦

wide. We call them quadrants because they correspond to the four quad-
rants of the unit circle. We notice from figure 7.13 that the sine graph is
positive in the 1st and 2nd quadrants and negative in the 3rd and 4th.
Figure 7.14 shows similar graphs for cosine and tangent. All of this can be
summed up in two ways. Table 7.1 shows which trrigonometric fuctions
are positive and which are negative in each quadrant. A more convenient
way of writing this is to note that all fuctions are positive in the 1st quad-
rant, only sine is positive in the 2nd, only tangent in the 3rd and only
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90 180 270 360
0

1

−1

90 180 270 360
0

2

4

6

8

−2

−4

−6

−8

1st 2nd 3rd 4th

+VE -VE -VE +VE

1st 2nd 3rd 4th

+VE -VE +VE -VE

Figure 7.14: Graphs showing the sign of the cosine and tangent functions.

1st 2nd 3rd 4th

sin +VE +VE -VE -VE
cos +VE -VE -VE +VE
tan +VE -VE +VE -VE

Table 7.1: The signs of the three basic trigonometric functions in each quadrant.
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cosine in the 4th. We express this using the CAST digram (figure 7.15).
This diagram is known as a CAST diagram as the letter, taken anticlock-

S A

T C

S A

T C

180◦

90◦

270◦

0◦/360◦

Figure 7.15: The two forms of the CAST diagram.

wise from the bottom right, read C-A-S-T. The letter in each quadrant
tells us which trigonometric functions are positive in that quadrant. The
‘A’ in the 1st quadrant stands for all (meaning sine, cosine and tangent
are all positive in this quadrant). ‘S’, ‘C’ and ‘T’ ,of course, stand for sine,
cosine and tangent.
The diagram is shown in two forms. The version on the left shows the
CAST diagram including the unit circle. This version is useful for equa-
tions which lie in large or negative ranges. The simpler version on the
right is useful for ranges between 0◦ and 360◦.

Magnitude of the trigonometric functions

Now that we know which quadrants our solutions lie in we need to know
which angles in these quadrants satisfy our equation.
Calculators give us the smallest possible answer (sometimes negative)
which satisfies the equation. For example, if we wish to solve sin θ = 0.3
we can apply the inverse sine function to both sides of the equation to
find–

θ = arcsin 0.3

= 17.46◦

However, we know that this is just one of infinitely many possible answers.
We get the rest of the answers by finding relationships between this small
angle, θ, and answers in other quadrants.
To do this we need to condider the modulus7 of the sine graph.
As you can see in figure 7.16 there is a solution to the equation | sin θ| =

0.3 in every quadrant. The 1st quadrant solution is of course 17.46◦ as our
calculator told us. The 2nd quadrant solution can be seen to be 180◦ − θ.
Another way to see this is to look at the identity

sin θ = sin(180◦ − θ)

7This means we plot only the magnitude of the function. This is the same as reflecting
negative sections in the x axis.
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0.3

Figure 7.16: The modulus of the sine graph.

proved in section 7.4. Using the same logic the 3rd quadrant solution can
be seen to be (180◦ + θ) and the 4th quadrant solution (360◦ − θ). It is
now left to the reader to show, using similar graphs for cosine and tan-
gent, that these relationships are true for all three of the trigonometric
functions.
These rules can be expressed in a simpler way. If we define the solution
lying between 0◦ and 90◦ as φ–

Definition:

– If we are in the 1st or 3rd quadrants our solution is the lower
boundary of the quadrant plus φ.

– If we are in the 2nd or 4th quadrants our solution is the upper
boundary of the quadrant minus φ.

7.6.2 Solution Using Periodicity

Up until now we have only solved trigonometric equations where the ar-
gument (the bit after the function, e.g. the θ in cos θ or the (2x − 7) in
tan(2x − 7)) has been θ. If there is anything more complicated than this
we need to be a little more careful.
Let us try to solve tan(2x) = 2.5 in the range 0◦ ≤ x ≤ 360◦. We want so-
lutions for positive tangent so using our CAST diagram we know to look in
the 1st and 3rd quadrants. Our calulator tells us that arctan(2.5) = 68.2◦.
This is our first quadrant solution for 2x. Our 3rd quadrant lies between
180◦ and 270◦ so our solution is 180◦ + 68.2◦. Putting this together–

2x = 68.2◦ or 248.2◦

⇒ x = 34.1◦ or 124.1◦
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Notice that we did not divide by the 2 until we had found our answers.
Now try to put x = 214.1 into the equation. This gives 2x = 428.2 and we
find that tan(428.2) = 2.5! This solution, x = 214.1, lies within the range
0◦ ≤ x ≤ 360◦ so we should have included it in our answer. Why did we
not find this solution before?
The answer is that when we halved our solutions for 2x to find x we also
halved our range. We looked for solutions for 0◦ ≤ 2x ≤ 360◦ so, after
halving, our final answer gave us solutions in the range 0◦ ≤ x ≤ 180◦.
There are two ways of dealing with this. We could redo the problem
looking the the range 0◦ ≤ 2x ≤ 720◦. This will work but there is a
simpler method.
We know that all the trigonometric functions are periodic with a period
of 360◦. This means we can add (or subtract) a factor of 360n◦ (where n
is an integer) our solution to find another equally valid solution. Let us
try this with tan(2x) = 2.5. If n = 0 we regain our original answers–

2x = 68.2◦ or 248.2◦

Adding 360◦ (n = 1) to our solutions for 2x we find the next two solutions–

2x = 68.2◦ + 360◦ or 248.2◦ + 360◦

⇒ = 428.2◦ or 608.2◦

⇒ x = 214.1◦ or 304.1◦

7.6.3 Linear Triginometric Equations

Just like with regular equation solving without trigonometric functions the
equations can become a lot more complicated. You should solve these just
like normal equations and once you have a signal trigonometric ratio iso-
lated, then you follow the strategy outlined in the previous section.(ADD
AN EXAMPLE HERE)

7.6.4 Quadratic and Higher Order Trigonometric Equa-
tions

The simplest quadratic trigonometric equation is of the form–

sin2 x − 2 = −1.5

This type of equation can be easily solved by rearranging to get a more
familiar linear equation–

sin2 x = 0.5 (7.74)

⇒ sinx = ±
√

0.5 (7.75)

This gives two linear trigonometric equations. The solutions to either of
these equations will satisfy the original quadratic. (ADD AN EXAMPLE
HERE)
The next level of complexity comes when you need to solve a trinomial
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which contains trig functions. Here you can make you life a lot easier if
you use temporary variables. Consider solving–

tan2 (2x + 1) + 3 tan (2x + 1) + 2 = 0

Here you should notice that tan(2x+1) occurs twice in the equation, hence
we let y = tan(2x + 1) and rewrite:

y2 + 3y + 2 = 0

That should look rather more familiar so that you can immediately write
down the factorised form and the solutions:

(y + 1)(y + 2) = 0

⇒ y = −1 OR y = −2

Next one just substitutes back for the temporary variable:

tan (2x + 1) = −1 or tan (2x + 1) = −2

And then we are left with two linear trigonometric equations. Be care-
ful: sometimes one of the two solutions will be outside the range of the
trigonometric function. In that case you need to discard that solution.
For example sonsicer the same equation with cosines instead of tangents–

cos2 (2x + 1) + 3 cos (2x + 1) + 2 = 0

Using the same method we find that–

cos (2x + 1) = −1 or cos (2x + 1) = −2

The second solution cannot be valid as cosine must lie between −1 and
1. We must, therefore, reject the second equation. Only solutions to the
first equation will be valid.

7.6.5 More Complex Trigonometric Equations

Here are two examples on the level of the hardest trig equations you are
likely to encounter. They require using everything that you have learnt in
this chapter. If you can solve these, you should be able to solve anything!
(ADD AN EXAMPLE HERE)
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7.7 Summary of the Trigonomertic Rules and
Identities

Pythagorean Identities Reciprocal Identities Ratio Identities

cos2 θ + sin2 θ = 1 csc θ = 1
sin θ tan θ = sin θ

cos θ
1 + cot2 θ = csc2 θ sec θ = 1

cos θ

tan2 θ + 1 = sec2 θ tan θ = 1
cot θ cot θ = cos θ

sin θ

Odd/Even Identities Periodicity Identities Cofunction Identities

sin(−θ) = − sin θ sin(θ ± 360◦) = sin θ sin(90◦ − θ) = cos θ
cos(−θ) = cos θ cos(θ ± 360◦) = cos θ cos(90◦ − θ) = sin θ

tan(−θ) = − tan θ tan(θ ± 180◦) = tan θ tan(90◦ − θ) = cot θ
cot(−θ) = − cot θ cot(θ ± 180◦) = cot θ cot(90◦ − θ) = tan θ
csc(−θ) = − csc θ csc(θ ± 360◦) = csc θ csc(90◦ − θ) = sec θ
sec(−θ) = sec θ sec(θ ± 360◦) = sec θ sec(90◦ − θ) = csc θ

Double Angle Identities Addition/Subtraction Identities Half Angle Identities

sin(2θ) = 2 sin θ cos θ sin (θ + φ) = sin θ cos φ + cos θ sinφ

sin (θ − φ) = sin θ cos φ − cos θ sinφ sin θ
2 = ±

√
1−cos θ

2

cos (2θ) = cos2 θ − sin2 θ cos (θ + φ) = cos θ cos φ − sin θ sinφ cos θ
2 = ±

√
1+cos θ

2

cos (2θ) = 2 cos2 θ − 1 cos (θ − φ) = cos θ cos φ + sin θ sinφ
cos (2θ) = 1 − 2 sin2 θ

tan (2θ) = 2 tan θ
1−tan2 θ tan (θ + φ) = tan φ+tan θ

1−tan θ tan φ tan θ
2 = ±

√
1−cos θ
1+cos θ

tan (θ − φ) = tan φ−tan θ
1+tan θ tan φ

Sine Rule Area Rule Cosine Rule

Area = 1
2bc cos A a2 = b2 + c2 − 2bc cos A

sin A
a = sin B

b = sin C
c Area = 1

2ac cos B b2 = a2 + c2 − 2ac cos B
Area = 1

2ab cos C c2 = a2 + b2 − 2ab cos C
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Product to Sum Identities Sum to Product Identities

cos θ cos φ = 1
2 [cos(θ + φ) + cos(θ − φ)] sin θ + sinφ = 2 sin

(
θ+φ

2

)

cos
(

θ−φ
2

)

sin θ sinφ = 1
2 [cos(θ − φ) − cos(θ + φ)] sin θ − sinφ = 2 cos

(
θ+φ

2

)

sin
(

θ−φ
2

)

sin θ cos φ = 1
2 [sin(θ + φ) + sin(θ − φ)] cos θ + cos φ = 2 cos

(
θ+φ

2

)

cos
(

θ−φ
2

)

cos θ − cos φ = −2 sin
(

θ+φ
2

)

sin
(

θ−φ
2

)
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Chapter 8

Solving Equations

8.1 Linear Equations

The syllabus requires:

– solve linear equations

8.1.1 Introduction

Let’s imagine you have a friend called Joseph. He picked up your test
results from the Biology class and now he refuses to tell what you scored,
or what he scored! Obviously you are trying everything to get him to tell
you, and he decides to tease you and makes you work it out for yourself.
He says the following:

“I have 2 marks more than you and the sum of both our marks is equal
to 14. How much did we get?”

Now if the numbers are simple like in the example, you might be able
to work it out in your head. Can you? But to make it easier, you can use
a linear equation!

This is how it works:

We use a placeholder for your amount and that placeholder is x. So:

Y ou = x

Then we need a placeholder for Joseph

Joseph = y

BUT the trick is that we have some information about Joseph’s mark,
which is that Joseph has 2 more than you. We need to use that, so how
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about:

Joseph = you + 2
Or
Joseph = (x + 2)
Or
y = (x + 2)

Now we need to use the last bit of information we have and that is:

Y ou + Joseph = 14

Or using placeholders
x + y = 14

Or substituting y
x + (x + 2) = 14

What we have here is the actual linear equation.

You already know what an equation is but what does linear mean? Linear
means the highest power of the unknown variable, usually called x, is one.

8.1.2 Solving Linear equations - the basics

To find out what your test result is we need to now simplify this equation
until we only have the x on the one side of the equal sign and a value on
the other side. There are a few rules on how to simplify these equations
to get a value for x. They can be organized into 3 groups. Once we have
worked through them and we are sure about them, then we can attempt
to find out what the answer to our problem is. So here they are:

Rule one - Addition or subtraction

You are allowed to subtract or add any amount as long as you do it on
both sides of the equal sign:

Example 1:

x + 5 = −6 (8.1)

⇒ x + 5 − 5 = −6 − 5 (8.2)

⇒ x = −11 (8.3)
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Example 2:

x − 1

2
= 7 (8.4)

⇒ x − 1

2
+

1

2
= 7 +

1

2
(8.5)

⇒ x =
15

2
(8.6)

Rule two - Multiply or divide

The same principle applies for multiplication and division:

Example 1:

2x = 9 (8.7)

⇒ 2x

2
=

9

2
(8.8)

⇒ x =
9

2
(8.9)

Example 2:

x

4
= 5 (8.10)

⇒ x

4
× 4 = 5 × 4 (8.11)

⇒ x = 20 (8.12)

Rule three - Fractions

If x is multiplied by a fraction we need to divide both sides of the equal
sign with that fraction to get x alone. We do that by flipping the fraction
around and then multiplying both sides with it

Example 1:

(
3

2
)x = 7 (8.13)

⇒ (
3

2
)x(

2

3
) = 7(

2

3
) (8.14)

⇒ x =
14

3
(8.15)

These are the basic rules to apply when simplifying a linear equation. But
most linear equations will require a few combinations of these before x is
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sitting alone on the one side of the equal sign. That means we might have
to make use of the rules above a number of times one after the other. Let’s
do a few examples where we will use multiple steps to solve the equation:

8.1.3 Solving linear equations - Combining the basics
in a few steps

TIP: Start with eliminating the terms without x, that way you avoid having to calculate too many fractions

Example 1:

7 + 5x = 62 (8.16)

⇒ 7 + 5x − 7 = 62 − 7 (8.17)

⇒ 5x = 55 (8.18)

⇒ 5x

5
=

55

5
(8.19)

⇒ x = 11 (8.20)

Example 2:

55 = 5x +
3

4
(8.21)

⇒ 55 − 3

4
= 5x +

3

4
− 3

4
(8.22)

⇒ 54(
1

4
) = 5x (8.23)

⇒ 217

4
= 5x (8.24)

⇒ 217

4
× 1

5
= 5x × 1

5
(8.25)

Doing that is the the same as dividing by 5

⇒ 217

20
= x (8.26)

TIP: Start by moving all the terms with x to the one side
and all the terms without x to the opposite side of the equal
sign. Remember we can do that by changing the sign of the
term
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Example 3:

5x = 3x + 45 (8.27)

⇒ 5x − 3x = 45 (8.28)

⇒ 2x = 45 (8.29)

⇒ 2x

2
=

45

2
(8.30)

⇒ x = 22
1

2
(8.31)

Example 4:

23x − 12 = 6 + 2x (8.32)

⇒ 23x − 2x − 12 = 6 (8.33)

⇒ 23x − 2x = 6 + 12 (8.34)

⇒ 21x = 18 (8.35)

⇒ x =
21

18
(8.36)

Example 5:

12 − 6x + 34x = 2x − 24 − 64 (8.37)

⇒ −6x + 34x = 2x − 24 − 64 − 12 (8.38)

⇒ −6x + 34x − 2x = −24 − 64 − 12 (8.39)

⇒ 26x = −100 (8.40)

⇒ x = −100

26
(8.41)

⇒ x = −50

13
(8.42)

We simplified the answer - but this is not necessarily a required step

TIP: If there are parentheses (brackets) in the equation, start by removing them - multiply with the co

Example 6:

−3(3x − 4) = 8 (8.43)

⇒ −9x + 12 = 8 (8.44)

⇒ −9x = 8 − 12 (8.45)

⇒ −9x = −4 (8.46)

⇒ x =
4

9
(8.47)

see the term is now positive - do you remember why?

134



Example 7:

6x + 3x = 4 − 5(2x − 3) (8.48)

lets start with the parentheses - don’t forget the minus!

⇒ 6x + 3x = 4 − 10x + 15 (8.49)

next we move the like terms to their own sides

⇒ 6x + 3x + 10x = 4 + 15 (8.50)

⇒ 19x = 19 (8.51)

⇒ x = 1 (8.52)

Example 8:

8(3x − 14) − 34 = 2(4x − 22) − 5(3 + 2x) (8.53)

Looks like a big one? Lets take it step by step

⇒ 24x − 112 − 34 = 8x − 44 − 15 − 10x (8.54)

that’s all the brackets gone

⇒ 24x − 112 − 34 − 8x + 10x = −44 − 15 (8.55)

⇒ 24x − 8x + 10x = −44 − 15 + 112 + 34 (8.56)

and now solve!

⇒ 26x = 87 (8.57)

⇒ x =
87

26
(8.58)

And that is it for our examples. This covers all the types of linear equations
you can be expected to solve. It’s the best to always keep your priority of
steps in mind and then just simply do them one by one. If you are unsure
about your answer you can just substitute it into your original equation
and see if you get the same value for both sides:

Example :

5(x − 3) = 5 (8.59)

⇒ 5x − 15 = 5 (8.60)

⇒ 5x = 5 + 15 (8.61)

⇒ 5x = 20 (8.62)

⇒ x = 4 (8.63)
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Test:

5(4 − 3) = 5 (8.64)

⇒ 5(1) = 5 (8.65)

⇒ 5 = 5 (8.66)

and there we see it works!

Now lets get back to our original problem of your test results! The linear
equation was:

x + (x + 2) = 14 (8.67)

⇒ x + x + 2 = 14 (8.68)

⇒ x + x = 14 − 2 (8.69)

⇒ 2x = 12 (8.70)

⇒ x = 6 (8.71)

You scored 6 for your Biology test and Joseph scored 6 +2 = 8!

8.2 Quadratic Equations

The syllabus requires:

– solve quadratic equations by factorisation, completing the

square and quadratic formula

– identify ‘‘not real’’ numbers and how they occur. (see 2.1)

8.2.1 The Quadratic Function

(NOTE: these notes have just been copied and pasted from the older
structure notes and have not been written to the syllabus. it needs a
serious edit and the worked example methodology needs redone (we now
do inline examples and analogies with worked examples and exercises at
the end of the chapter.)) A quadratic or parabolic function is a function
of the form f(x) = ax2 + bx + c.

(NOTE: very quick notes by sam for simple quadratics... this would be
best as a decision tree. make the student appreciate that its basically trial
and error to get the answer, but you can do some detective work first to
eliminate most possibilities

– write the problem in the form ax2 + bx + c = 0 (with a positive)

– write down two brackets, with an x in each, leaving room for a num-
ber on each side

( x )( x ) (8.72)
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– write out your options (in a table at the side) for multiplying two
numbers together to give a. these numbers should go in front of the
xs in your brackets.

– if c is positive, then the other two numbers you need are either both
positive or both negative. they are both negative if b is negative, and
both positive id b is positive. if c is negative, it means only one of
your numbers is negative, the other one beng positive.

– your two numbers should multiply to give c, so write out your options
(in a table off to the side). if each number is multiplied by the
number in front of the x in the other bracket, then added together it
gives you b. so try different combinations of the numbers you have
written). if it doesn’t work, go back to the 3rd step and try a different
combination of numbers to give you a.

– once you get an answer, multiply out your brackets again just to
make sure it works (sanity check).

damn thats long winded!)

Worked Example:

Q: Draw a graph of the quadratic function y = x2 − x − 6.

A: First let us set up a table of x and y values:

x : -5 -4 -3 -2 -1 0 1 2 3 4 5
y : 24 14 6 0 -4 -6 -6 -4 0 6 14

The graph of this function is shown in figure 8.1. Notice that the function
can also be written as y = (x+2)(x−3). This shows that the x-intercepts
(where y = 0) are x = −2 and x = 3, which agrees with the graph. The
y-intercept (where x = 0) is at y = −6.

8.2.2 Writing a quadratic function in the form f(x) =
a(x − p)2 + q.

Consider the general form of the quadratic function y = ax2 +bx+c. Now

adding and subtracting the same factor b2

4a from this expression does not
change anything. Therefore

y = ax2 + bx +
b2

4a
− b2

4a
+ c (8.73)

Taking out a factor of a then gives

y = a(x2 +
b

a
+ (

b

2a
)2) + c − b2

4a
(8.74)
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Figure 8.1: Graph of y = x2 − x − 6

The expression in brackets is then a perfect square so that

y = a(x + (
b

2a
))2 + c − b2

4a
(8.75)

= a(x − (− b

2a
))2 + (c − b2

4a
) (8.76)

which can be written in the form

y = a(x − p)2 + q (8.77)

where p = − b
2a and q = c − b2

4a .

Since (x− p)2 is a perfect square and therefore always positive, (x− p)2 is
at a minimum of 0 when x = p. This means that y is minimum (if a0) or
maximum (if a < 0) when x = p and y = q. This point (p,q) is therefore
called the turning point.

Now notice that the quadratic function is symmetric about x = p. In
other words f(p + v) = f(p − v) = av2 + q for any real number v. This
means that the part of the quadratic to the right of the vertical line x = p
looks like the part to the left of x = p flipped about this line. Therefore
we call the line x = p the axis of symmetry of the parabola.

Worked Example:

Q: Consider the quadratic function f(x) = −x2+6x−5. Put this function
into the form f(x) = a(x − p)2 + q and thus find the turning point and
axis of symmetry. Plot a graph of f(x) showing all the intercepts.
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x = p

✢ ✢

f(p − v) f(p + v)

v v

Figure 8.2: Graph of TODO (NOTE: original BMP (qf-gen1.bmp) missing, i
made this up on the fly)

A: First we shall write the quadratic in the form f(x) = a(x − p)2 + q.

f(x) = −x2 + 6x − 5 (8.78)

= −(x2 − 6x + 5) (8.79)

= −(x2 − 6x + 9 − 9 + 5) (8.80)

= −(x2 − 6x + 9) + 4 (8.81)

= −(x2 − 3)2 + 4 (8.82)

Therefore the turning point is (3,4) and the axis of symmetry is x = 3 (in
other words p = 3 and q = 4).

Now to plot the graph we need to know the intercepts. The y-intercept
is y = f(0) = −5. The x-intercepts can be found by solving the equation
f(x) = 0 as follows:

−x2 + 6x − 5 = 0 (8.83)

⇒ x2 − 6x + 5 = 0 (8.84)

⇒ (x − 1)(x − 5) = 0 (8.85)

⇒ x = 1 or x = 5 (8.86)

Note that the technique of writing x2 − 6x + 5 = (x − 1)(x − 5) is called
factorisation. We shall learn more about this in the following chapter. For
now just check that this is true by multiplying out the brackets.

Thus the graph of the quadratic function f(x) = −x2 + 6x − 5 is

8.2.3 What is a Quadratic Equation?

An equation of the form ax2 + bx + c = 0 is called a quadratic equation.
Solving this equation for x is the same as finding the roots (x-intercepts)
of the quadratic function f(x) = ax2 + bx + c.
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Figure 8.3: Graph of TODO (NOTE: original BMP (qf-eg2.bmp) missing, i
made this up on the fly)

8.2.4 Factorisation

We have already seen examples of solving for the roots of a quadratic
function by writing this function as the multiple of two brackets. For
example, x2 − x − 6 = (x + 2)(x − 3) = 0 means that either x = −2 or
x = 3. This is called factorising the quadratic function.

Knowing how to factorise a quadratic takes some practice, but here some
general ideas which are useful.

– First divide the entire equation by any common factor of the coeffi-
cients, so as to obtain an equation of the form ax2 +bx+c = 0 where
a, b and c have no common factors. For example, 2x2 + 4x + 2 = 0
can be written as x2 + 2x + 1 = 0 by dividing by 2.

– Now, if ax2 + bx + c = (rx + s)(ux + v), then sv = c and ru = a.
Therefore, by finding all the factors of a and c, one can try all the
combinations and see if there is one which gives the correct result for
b = su + rv.

– Once writing the equation in the form (rx + s)(ux + v) = 0, it then
follows that the two solutions are x = − s

r and x = −u
v .

Worked Examples:

Example 1: Q: Solve the equation x2 + 3x − 4.

A: Since a = 1, if this equation can be factorised, it must have the form

x2 + 3x − 4 = (x + s)(x + v) = x2 + (s + v)x + sv (8.87)

Now, as sv = −4, we know that s = −2, v = 2 or s = −1, v = 4 or s = 1,
v = −4 (excluding the options which just involve interchanging s and v,
which makes no difference to the final answer).
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Also s + v = 3, so s = −1 and v = 4 is the correct combination. Thus the
quadratic equation can be written as

x2 + 3x − 4 = (x − 1)(x + 4) = 0 (8.88)

Therefore the solutions are x = 1 and x = −4. Example 2: Q: Find
the roots of the quadratic function f(x) = −2x2 + 4x − 2.

A: We must find the solutions to the equation f(x) = −2x2 +4x−2 = 0.
First we divide both sides of the equation be a factor of −2. This gives
the equation

x2 − 2x + 1 = 0 (8.89)

Now, let us assume that

x2 − 2x + 1 = (x + s)(x + v) = x2 + (s + v)x + sv (8.90)

Then sv = 1 and therefore either s = v = 1 or s = v = −1. Since
s + v = −2, it follows that s = v = −1 and thus

x2 − 2x + 1 = (x − 1)(x − 1) = (x − 1)2 = 0 (8.91)

The only solution is therefore x = 1. Example 3: Q: Solve the equation
2x2 − 5x − 12 = 0.

A: This equation has no common factors, but still has a = 2. Therefore,
we must look for a factorisation in the form

2x2 − 5x − 12 = (2x + s)(x + v) = 2x2 + (s + 2v)x + sv (8.92)

We see that sv = −12 and s + 2v = −5. All the options for s and v are
considered below. Note: Since we now have the factor of 2x in the first

s v s + 2v
2 -6 -10
-2 6 10
3 -4 -5
-3 4 5
4 -3 -2
-4 3 2
6 -2 2
-6 2 -2

bracket, it does make a difference, in this case, whether we interchange
the s and v values. For example, s = 2, v = −6 and s = −6, v = 2 give
different solutions. We must therefore consider both options.

We can see that the combination s = 3 and v = −4 gives s + 2v = −5.
Therefore one can check that

2x2 − 5x + 12 = (2x + 3)(x − 4) = 0 (8.93)

Therefore the solutions are x = − 3
2 and x = 4.
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8.2.5 Completing the Square

It is not always possible to factorize a quadratic function. We shall now
derive a general formula, which gives the solutions to any quadratic equa-
tion.

Consider a general quadratic equation ax2 + bx + c = 0.

Adding and subtracting b2

4a from the left-hand side does not change the
equation. Thus

ax2 + bx +
b2

4a
− b2

4a
+ c = 0 (8.94)

Taking out a factor of a from the 1st 3 terms gives

a(x2 +
b

a
+

b2

4a2
) − b2

4a
+ c = 0 (8.95)

⇒ a(x2 +
b

a
+ (

b

2a
)2) =

b2

4a
− c (8.96)

We can now see that the term in brackets is the perfect square (x + b
2a )2

and therefore

a(x +
b

2a
)2 =

b2

4a
− c (8.97)

Now dividing by a and taking the square root of either side gives the
expression

x +
b

2a
= ±

√

b2

4a2
− c

a
(8.98)

Finally, solving for x implies that

x = − b

2a
±

√

b2

4a2
− c

a
= − b

2a
±

√

b2 − 4ac

4a2
(8.99)

and taking the square root of 4a2 to obtain 2a gives

x =
−b ±

√
b2 − 4ac

2a
(8.100)

These are the solutions to the quadratic equation. Notice that there are
two solutions in general, but these may not always exists (depending on
the sign of the expression b2 − 4ac under the square root).

Worked Examples:

Example 1:

Q: Solve for the roots of the function f(x) = 2x2 + 3x − 7.

A: One should first try to factorise this expression, but in this case it
turns out that this is not possible. Therefore we must make use of the
general formula as follows:

142



x =
−b ±

√
b2 − 4ac

2a
(8.101)

=
−(3) ±

√

(3)2 − 4(2)(−7)

2(2)
(8.102)

=
−3 ±

√
56

4
(8.103)

=
−3 ± 2

√
14

4
(8.104)

Therefore the two roots of the quadratic function are x = −3+2
√

14
4 and

−3−2
√

14
4 .

Example 2:

Q: Solve for the solutions to the quadratic equation x2 − 5x + 8.

A: Again it is not possible to factorise this equation. The general formula
shows that

x =
−b ±

√
b2 − 4ac

2a
(8.105)

=
−(−5) ±

√

(−5)2 − 4(1)(8)

2(1)
(8.106)

=
5 ±

√
−7

2
(8.107)

(8.108)

Since the expression under the square root is negative these are not real
solutions (

√
−7 is not a real number). Therefore there are no real solutions

to the quadratic equation x2 − 5x + 8. This means that the quadratic
function f(x) = x2 − 5x + 8 has no x-intercepts, but the entire function
lies above the x-axis.

Note to self: maybe add quadratic example about distance, velocity and
acceleration ... object falling under action of gravity (giving formula for
distance as a function of time)?.

8.2.6 Theory of Quadratic Equations

What is the Discriminant of a Quadratic Equation?

Consider a general quadratic function of the form f(x) = ax2 + bx + c.
The discriminant is defined as ∆ = b2 − 4ac. This is the expression under
the square root in the formula for the roots of this function. We have
already seen that whether the roots exist or not depends on whether this
factor ∆ is negative or positive.
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The Nature of the Roots

Real Roots:

Consider ∆ ≥ 0 for some quadratic function f(x) = ax2 + bx + c. In this
case there are solutions to the equation f(x) = 0 given by the formula

x =
−b ±

√
b2 − 4ac

2a
=

−b ±
√

∆

2a
(8.109)

since the square roots exists (the expression under the square root is non-
negative.) These are the roots of the function f(x).

There are various possibilities:

Equal Roots:

If ∆ = 0, then the roots are equal and, from the formula, these are given
by

x = − b

2a
(8.110)

Unequal Roots:

There will be 2 unequal roots if ∆ > 0. The roots of f(x) are rational if
∆ is a perfect square (a number which is the square of a rational number),
since, in this case,

√
∆ is rational. Otherwise, if ∆ is not a perfect square,

then the roots are irrational.

Imaginary Roots:

If ∆ < 0, then the solution to f(x) = ax2 + bx+ c = 0 contains the square
root of a negative number and therefore there are no real solutions. We
therefore say that the roots of f(x) are imaginary (the function f(x) does
not intersect the x-axis).

Summary of Cases:

– Real Roots (∆ ≥ 0)

∗ Equal Roots (∆ = 0)

∗ Unequal Roots (∆ > 0)

· Rational Roots (∆ a perfect square)

· Irrational Roots (∆ not a perfect square)

– Imaginary Roots (∆ < 0)

Note to self: maybe add pictures showing these cases graphically?
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Worked Examples:

Example 1:

Q: Consider the function f(x) = 2x2 + 5x − 11. Without solving the
equation f(x) = 0, discuss the nature of the roots of f(x).

A: We need to calculate and classify ∆ = b2 − 4ac according to the cases
for the roots.

∆ = (5)2 − 4(2)(−11) = 25 + 88 = 113 (8.111)

Now ∆ is positive, so the roots are real and unequal. Also, since 113 is
not a perfect square, the roots are irrational.

Example 2:

Q: Consider the quadratic function f(x) = x2 + bx + (2b− 5), where b is
some constant. Classify the roots of this function as far as possible.

A: Let us calculate the discriminant

∆ = b2 − 4(1)(2b − 5) = b2 − 8b + 20 (8.112)

We shall now use a useful trick, which is to write the above expression as
a perfect square plus a number.

∆ = b2 − 8b + 20 = (b2 − 8b + 16) + 4 = (b − 4)2 + 4 (8.113)

Now (b−4)2 ≥ 0 because this is a perfect square. Therefore we know that
∆ ≥ 4 > 0.

We can thus say that f(x) has real unequal roots. We do not know whether
∆ is a perfect square, since we do not know that value of the constant b,
and therefore we cannot say whether the roots are rational or irrational.

8.3 Cubic Equations

The syllabus requires:

– (grade 12) solve cubic equations using factor theorem ‘‘and

other techniques’’ (NOTE: SH: i want to hit whoever wrote

this syllabus)

8.4 Exponential Equations

The syllabus requires:

– solve exponential equations

– (grade 12) switch between log and exp form of an equation
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8.5 Trigonometric Equations

The syllabus requires:

– solve trig equations (NOTE: this implies that this section

comes after trig, which is also probably after geometry)

8.6 Simultaneous Equations

The syllabus requires:

– solve simultaneous equations algebraically and graphically

8.7 Inequalities

The syllabus requires:

– solve linear inequalities in 1 and 2 variables and illustrate

graphically

– solve quadratic inequalities in 1 variable and illustrate

graphically

8.7.1 Linear Inequalities

Let us say that we are given a general inequality as follows:

ax+ by+ c ≥ 0, ax+ by+ c > 0, ax+ by+ c ≤ 0 or ax+ by+ c < 0
(8.114)

Now there are many possible values of x and y, for which this may be true
(these will depend on the values of the constants a, b and c). The set of
all the (x,y) values which satisfy this inequality is called the solution set.

We shall now see how to draw the solution set on a graph. Let’s consider
the following example.

Worked Example 1:

Q: Find the solution set of the inequality 2x + y − 3 ≥ 0.

A: First we solve for y by writing the inequality as

y ≥ −2x + 3 (8.115)

Now the function y = −2x+3 is a straight line and the points (x,y), which
satisfy the inequality are therefore all the points above the line. These can
be drawn as

The shaded section on the graph, which shows the solution set, is called
the feasible region.

Now sometimes x and y must satisfy more than one inequality. In this
case, we consider each inequality separately and then the feasible region
is where the feasible regions of each inequality overlap.
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Figure 8.4: Graph of y = −2x + 3. Points satisfying y ≥ −2x + 3 are shaded

Worked Example 2:

Q: Graphically represent the solution set for the following inequalities:

y ≥ 1 (8.116)

−2x + y − 5 < 0 (8.117)

x + y − 10 ≤ 0 (8.118)

A: Solving for y gives

y ≥ 1 (8.119)

y < 2x + 5 (8.120)

y ≤ −x + 10 (8.121)

Now we draw the solution set to each of the inequalities separately and
find the region where these overlap as shown below. We draw the line
y = 2x + 5 as a dashed line because the inequality is < and not ≤ (the
line is not included in the feasible region).

8.7.2 What is a Quadratic Inequality

A quadratic inequality is an inequality of the form ax2 + bx + c > 0,
ax2 + bx + c ≥ 0, ax2 + bx + c < 0 or ax2 + bx + c ≤ 0.

8.7.3 Solving Quadratic Inequalities

Solving a quadratic inequality corresponds to working out in what region a
quadratic function lies above or below the x-axis. Here are some examples
showing how this is done.
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Figure 8.5: Graph of TODO

Worked Examples:

Example 1:

Q: Find all the solutions to the inequality x2 − 5x + 6 ≥ 0.

A: Consider the function f(x) = x2 − 5x + 6. We need to find out where
f(x) ≥ 0; in other words, where the function f(x) lies above/on the x-axis.

We shall first work out where f(x) intersects the x-axis by solving the
equation

x2 − 5x + 6 = 0 (8.122)

which can be factorised to give

(x − 3)(x − 2) = 0 (8.123)

The x-intercepts are therefore x1 = 2 and x2 = 3.

We can see from figure 8.6 that f(x) is above/on the x-axis when x ≥ 3
or x ≤ 2.

Therefore the solution to the quadratic inequality is {x : x ≥ 3 or x ≤ 2}
or in interval notation (−∞,2] ∪ [3,∞).

Note: The x-intercepts are included in this solution, since the f(x) ≤ 0
inequality includes the solution f(x) = 0.

Example 2:

Q: Solve the quadratic inequality −x2 − 3x + 5 > 0.

A: Let f(x) = −x2 − 3x + 5. The x-intercepts are solutions to the
quadratic equation
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Figure 8.6: Graph of f(x) = x2 − 5x + 6

−x2 − 3x + 5 = 0 (8.124)

⇒ x2 + 3x − 5 = 0 (8.125)

which has solutions (using the formula for the roots of a quadratic function
(NOTE: reference that equation)) given by

x =
−3 ±

√

(3)2 − 4(1)(−5)

2(1)
(8.126)

=
−3 ±

√
29

2
(8.127)

x1 =
−3 −

√
29

2
(8.128)

x2 =
−3 +

√
29

2
(8.129)

The graph of f(x) is shown in figure 8.7. The points x1 and x2 (where
the function f(x) cuts the x axis) are labelled.

Now f(x) > 0 (the function is above the x-axis) when −3−
√

29
2 < x <

−3+
√

29
2 .

Therefore the solution to the inequality is {x : −3−
√

29
2 < x < −3+

√
29

2 },
or in interval notation (−3−

√
29

2 ,−3+
√

29
2 ).

Note: The x-intercepts are not included in the solution because the >
sign has been used and therefore f(x) = 0 does not define a solution to
the inequality.

Example 3:

Q: Solve the inequality 4x2 − 4x + 1 ≤ 0.
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Figure 8.7: Graph of f(x) = −x2 − 3x + 5
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Figure 8.8: Graph of f(x) = 4x2 − 4x + 1

A: Let f(x) = 4x2 − 4x + 1. Factorising this quadratic function gives
f(x) = (2x − 1)2, which shows that f(x) = 0 only when x = 1

2 .

The function f(x) lies below/on the x-axis only at the x-intercept. There-
fore the only solution to the inequality is x = 1

2 .

8.8 Intersections

The syllabus requires:

– find solutions of 2 lines and interpret the common solution

as the intersection
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– find solutions of linear and quadratic, interpret the common

solution(s) as intersections
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Chapter 9

Working with Data

9.1 Statistics

The syllabus requires:

– organise univariate numerical data to determine measure of

central tendency; mean, median, mode and when each is appropriate.

measure of dispersion; ranger, percentiles, quantities, interquartile,

semi-interquartile range

– represent data effectively, choosing from; bar and compound

bar graphs, histograms, frequency polygons, pie charts, dot

plots, line and broken line graphs, stem and leaf plots, box

and whisker diagrams

– (grade 12) variance, standard deviation

– (grade 12) draw a suitable random sample from a populations,

and understand the importance of sample size in predicting

the mean and standard deviation

– (grade 12) identifies data which is normally distributed about

a mean by investigating appropriate histograms and frequency

polygons

9.2 Function Fitting

The syllabus requires:

– represent bivariate data as a scatter plot and suggest what

function (linear, quadratic, exp) would best describe it

– tell the difference between symmetric and skewed data and

make relevant deductions

– (grade 12) use appropriate technology to calculate linear

regression line which best fits a given set of bivariate data
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9.3 Probability

The syllabus requires:

– Venn diagrams to solve probability problems. must know

P (s) = 1qquadP (AorB) = P (A) + P (B) − P (AandB)

– identify dependent and independent events and calculate the

prob of 2 independent events occurring by applying the product

rule for independent events P (AandB) = P (A).P (B)

– identify mutually exclusive events. calculate prob of the

events occuring by applying additive rule for mutually exclusive

events P (AorB) = P (A) + P (B)

– identify complementary events P (notA) = 1 − P (A)

– use prob models for comparing experimental results with theory;

need many trials to get comparable results... flipping a

coin example

– comparing experimental results with each other

– potential sources of bias, error in measurement, potential

uses and misuses of stats and charts (NOTE: if SA people could

get some popular TV adverts as examples, that would be good)

– converts this theory into a project (NOTE: i don’t know how

much of this project stuff we should do in the book. possibly

just ignore its existence)

9.4 Permutations and Tree Diagrams

The syllabus requires:

– tree diagrams and other methods of listing all options to

generalise counting principle (successive choices)

– calculate the probability of compound events which are not

independent

– assess the odds in a variety of games of chance, lotteries,

raffles

– (grade 12) use investigate and solve problems involving the

number of arrangements (permutations) of a number of discrete

objects (when order matters) m! (m different items), m items

selected from n

– (grade 12) investigate and solve problems involving the number

of possible solutions when order is not important (combinations)

of m items from n where all are different or distinguishable

– (grade 12) uses permutations and combinations to correctly

calculate the probability of specified events occurring

– determines the odds of various games of chance and the probability

of events which depend on combinations and permutations
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9.5 Finance

The syllabus requires:

– use simple and compound interest for relevant problems (hire

purchase and inflation)

– effective and nominal interest

– understand fluctuating foreign exchange rates and their effect

on local prices, travelling prices, imports and exports

– solve straight line (simple) depreciation and depreciation

on a reducing budget (compound depreciation)

– (grade 12) apply geometric series to solve problems (future

values of annuities, bond repayments, sinking fund contributions

including the difference in time taken to pay when the monthly

payment is changed)

– (grade 12) critically analyse investment and loan options

and make informed decisions to the best options (pyramid and

micro lenders schemes)

9.6 Worked Examples

TODO

9.7 Exercises

TODO
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Part II

Old Maths
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Chapter 10

Worked Examples

10.1 Exponential Numbers

(NOTE: All of these worked examples need to be updated to use the
FHSST internal environments and also to use the new rules (i changed
the originals). They are for the Exponential Numbers section)

Worked Example 9 : Manipulating Exponential Num-

bers

Question:

Simplify the expression 42.33

63

A: Noting that 4 = 2 × 2 = 22 and 6 = 2.3 it follows that

42.33

63 =
(22)2.32

(2.3)
3 (10.1)

=
24.33

23.33
(10.2)

= 24−3 (10.3)

= 21 (10.4)

= 2 (10.5)

Example 2:

Q: Simplify ( 5
2 )2.20.

A: First note that 20 = 2 × 2 × 5 = 22.5. Therefore
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( 5
2 )2.20 =

52

22
.22.5 (10.6)

= 52+1 (10.7)

= 53 (10.8)

= 5 × 5 × 5 (10.9)

= 125 (10.10)

Example 3:

Q: Solve for the variable x in the equation 2x+1 = 2x + 8.
A:

2x+1 = 2x + 8 (10.11)

⇒ 2x.2 − 2x = 8 (10.12)

⇒ 2x(2 − 1) = 8 (10.13)

⇒ 2x = 8 = 2 × 2 × 2 = 23 (10.14)

⇒ x = 3 (10.15)

It is also possible to talk about zero, negative and even fractional
exponents. We shall assume that laws 1–5 are also true in these
cases. This gives us 3 more laws.

a0 = a1−1 =
a1

a1
=

a

a
= 1

Law 7

a−n =
1

an
(10.16)

Since −n = 0 − n, it follows from laws 2 and 6 that

a−n = a0−n =
a0

an
=

1

an
(10.17)

This defines what is meant by a negative exponent.

Note to self: add aside lay-out to following paragraph
Aside:

A fraction to the power of a negative exponent is the same as
the inverse fraction to the power of the corresponding positive
exponent. Therefore

(
a

b
)−n =

1
a
b

=
a
an

bn

= (
b

a
)n (10.18)
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Example 1:

Q: Simplify the expression ( 1
2 )−3.

A:

(
1

2
)−3 =

1

( 1
2 )3

=
1
1
23

= 23 = 8 (10.19)

Example 2:

Q: Simplify (27)
1
3 .

√
2
9 .

A: Now 27 = 3 × 3 × 3 = 33 and 9 = 3 × 3 = 32, so

(27)
1
3 .

√
2
9 = (33)

1
3 .

√

2

32
(10.20)

= 33. 1
3 .(

2

32
)

1
2 (10.21)

=
31.2

1
2

(32)
1
2

(10.22)

=
3.
√

2

3
(10.23)

=
√

2 (10.24)

Example 3:

Q: Simplify (an + an)
1
2

A:

(an + an)
1
2 = (2an)

1
2 (10.25)

= (2)
1
2 .(an)

1
2 (10.26)

=
√

2 an. 1
2 (10.27)

=
√

2 a
n

2 (10.28)

Example 4:

Q: Find a solution to the equation ax
m

n − b = 0, where a and
b are constants.
A:

ax
m

n − b = 0 (10.29)

⇒ ax
m

n = b (10.30)

⇒ x
m

n =
b

a
(10.31)

⇒ xm = (x
m

n )n = (
b

a
)n (10.32)

⇒ x = (xm)
1
m = ((

b

a
)n)

1
m (10.33)

⇒ x = (
b

a
)

n

m = m

√

(
b

a
)n (10.34)
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Therefore x = m
√

( b
a )n is a solution to the equation ax

m

n −b =

0.

(NOTE: surds)

Worked Example:

Q: Simplify the expression
√

32
2 .

A:

√
32
2 =

√
32√
4

(10.35)

=

√

32

4
(10.36)

=
√

8 (10.37)

=
√

4.2 (10.38)

=
√

4.
√

2 (10.39)

= 2
√

2 (10.40)

Worked Example:

Q: Which of the numbers 3
√

100 and
√

20 is bigger? (You may not use a
calculator to answer this question.)

A: The two numbers must first be converted into like surds. Since we
have a cube root and a square root, we must first find the lowest common
multiple of 2 and 3 which is 6. We then convert each of the surds into 6th

roots as follows:

3
√

100 = 3

√√
1002 = 3.2

√
1002 = 6

√
10000 (10.41)

√
20 = 2

√

3
√

203 = 2.3
√

203 = 6
√

8000 (10.42)

Now, since 100000 is bigger than 8000, it follows that 6
√

10000 is bigger
than 6

√
8000. Therefore 3

√
100 is bigger than

√
20.

Worked Examples:

Example 1:

Q: Rationalize the denominator of the fraction 1√
6
.

A: The denominator can be changed into the rational number 6 by mul-
tiplying the numerator and denominator by

√
6. Therefore

1√
6

=
1√
6
×

√
6√
6

=

√
6

6
(10.43)
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Example 2:

Q: Rationalize the denominator of
√

2
(
√

3+
√

8)
.

A: Multiplying the numerator and denominator by (
√

3 −
√

8) gives

√
2

(
√

3+
√

8)
=

√
2

(
√

3 +
√

8)
× (

√
3 −

√
8)

(
√

3 −
√

8)
(10.44)

=

√
2(
√

3 −
√

8)

3 − 8
(10.45)

=

√
2
√

3 −
√

2
√

8

−5
(10.46)

= −
√

6 −
√

16

5
(10.47)

=
4 −

√
6

5
(10.48)

1.1.4 d) Equations

Here we shall solve some equations involving surds.

Worked Examples:

Example 1:

Q: Find a solution to the following equation

x + 3 −
√

6x + 13 = 0 (10.49)

A: First the square root must be moved to the right-hand side of the
equation, and everything else to the left.

x + 3 =
√

6x + 13 (10.50)

Now we square both sides of the equation.

(x + 3)2 = 6x + 13 (10.51)

⇒ x2 + 6x + 9 = 6x + 13 (10.52)

⇒ x2 = 4 (10.53)

⇒ x = 2 or x = −2 (10.54)

When we square both sides of the equation, it is possible that we introduce
extra solutions, which may not actually satisfy the original equation. This
is the reason one should always check the answers by substituting these
into the original equation.

x = 2:
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x + 3 −
√

6x + 13 = 2 + 3 −
√

6(2) + 13 = 5 −
√

25 = 5 − 5 = 0 (10.55)

x = -2:

x+3−
√

6x + 13 = −2+3−
√

6(−2) + 13 = −1−
√

1 = 1−1 = 0 (10.56)

Therefore, in this case, both the solutions x = 2 and x = −2 are solutions
to the original equation

Note to self: Maybe the following example should only be included after
the chapter on quadratics? But need non-trivial example where not all
solutions valid.

Example 2:

Q: Solve the equation

x −
√

x + 7 = −1 (10.57)

As before, we first move the surd to the right-hand side and the other
terms to the left.

x + 1 =
√

x + 7 (10.58)

Squaring both sides of the equation gives

(x + 1)2 = x + 7 (10.59)

⇒ x2 + 2x + 1 = x + 7 (10.60)

⇒ x2 + x − 6 = 0 (10.61)

⇒ (x + 3)(x − 2) = 0 (10.62)

⇒ x = −3 or x = 2 (10.63)

Again we must check these answers:

x = -3:

x −
√

x + 7 = −3 −
√
−3 + 7 = −3 −

√
4 = −3 − 2 = −5 6= −1 (10.64)

x = 2:

x −
√

x + 7 = 2 −
√

2 + 7 = 2 −
√

9 = 2 − 3 = −1 (10.65)

Therefore x = −3 does not satisfy the original equation, so x = 2 is the
only solution.
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Scientific Notation

Example 1:

The speed of light in a vacuum c is

c = 2.9979 × 108 m

s
(10.66)

= 2.9979 × 100000000
m

s
(10.67)

= 299790000
m

s
(10.68)

Example 2:

The approximate radius of the hydrogen atom (called the Bohr radius a0)
is

a0 = 5.3 × 10−11 m (10.69)

= 5.3 × 1

1011
m (10.70)

= 5.3 × 1

10000000000
m (10.71)

= 5.3 × 0.00000000001 m (10.72)

= 0.000000000053 m (10.73)

Note to self: check the above number ... I think a0 = 0.53Å ? ...

Example 3:

Q: The universe is known to be 13.7 billion years old. Convert this number
into scientific notation.

A: The age of the universe is 13700000000 years (since 1 billion is a
thousand million or 1000000000). The decimal point must move 10 places
to the left to convert this number into 1.37. Since 13700000000 is much
bigger than 1.37, the power 10m must make the number 1.37 bigger and
therefore m must be positive (so that 10m is greater than 1). Therefore
m = 10 (the decimal point moves 10 places).

Therefore 13700000000 = 1.37 × 1010. The age of the universe is thus
1.37 × 1010 years.

Example 4:

Q: The charge on an electron is e = 0.0000000000000000001602 C. What
is this constant in scientific notation.

A: The decimal point must be moved 19 places to the right to change this
number into 1.602 (so a = 1.602). Now e is much smaller than 1 and thus
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the exponent m must be negative, so that 10m is less than 1. Therefore
m = −19.

Therefore e = 1.602 × 10−19 C.

Note: As a general rule, if the decimal point must move to the left then
the exponent m is positive and if the decimal point moves to the right
then m is negative. patterns

sequences

Worked Example 10 : Calculating the nth Term of

a Sequence

Question: Check that the formula for the nth term of the
sequence {2,6,10,14,18,...} is given by 2+4(n−1), and calculate
the thousandth term.
Answer: The sequence we are given starts at two, and each
term is equal to the previous term plus four. We can check
whether the formula is valid by going through the first few terms,
and seeing whether the terms in the sequence correspond to the
terms given by the formula. If we substitute n = 1 into the
formula, we should get the first term of the sequence, and this
is indeed the case: 2 = 2 + 4(1 − 1). If we substitute n = 2, we
get the second term, namely 6. We can continue in this way,
substituting n = 3, n = 4, and so on - each time we get the
expected value back. This means that the formula is indeed
valid. To calculate the thousandth term, we must substitute
1000 into the formula. When we do so we get 2 + 4(1000− 1) =
2 + 4(999) = 3998.

Worked Example 11 : Calculating the Sequence When

Given the Formula

Question:The formula for the nth term of a sequence is given
by 2(2n−1).Write down the first four terms of the sequence, and
describe the pattern that you observe.
Answer:This question is similar to the one in the previous ex-
ample. To get the first term of the sequence, we must substitute
1 into the formula. Doing so gives us 2(21−1) = 2(20) = 2(1) =
2. To find the second term we must substitute two into the
sequence: 2(22−1) = 2(2) = 4. For the third and fourth terms
we substitute three and four respectively, and so we find that
the first four terms of the sequence are 2,4,8,16,.... ¿From these
four terms we can see that every term in the sequence is equal
to the previous term multiplied by two.
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Worked Example 12 : Calculating the Sequence When

Given the Formula

Question:The first term of a sequence is 3, and the formula for
the (n + 1)th term is given by an+1 = an + 2n. Write down the
first four terms of the sequence.
Answer:We start by calculating the second term, since we al-
ready know the first. To do this we need to substitute n = 1 into
the formula, since the formula is for the (n + 1)th term, NOT
for the nth term, as was previously the case. So, substituting
n = 1, we get that a1+1 = a1 +2(1) = 3+2 = 5. To get the next
term, we must substitute n = 2: a2+1 = a2 + 2(2) = 5 + 4 = 9.
Lastly, we calculate that a4 = 9 + 2(3) = 15. So the first four
terms of the sequence are 3,5,9,15,....

Worked Example 13 : Checking That a Given Se-

quence is Arithmetic

Question:Check that the sequence given by the formula an =
3 + 4(n − 1) is an arithmetic sequence, and find d for this se-
quence.
Answer:We must check to see that the difference between suc-
cessive terms is a constant. There are two ways of doing this: we
could write out the first few terms of the sequence and check that
they are evenly spread - i.e. they differ by a constant amount,
or we could do the calculation in general, using the formula
directly. We will do the example using both these approaches
alternately.

– First approach: It is easy to calculate the first few terms
using the formula. They are given by 3,7,11,15,19,.... We
can see that the difference between successive terms is al-
ways 4, since 7 − 3 = 11 − 7 = 15 − 11 = 19 − 15 = 4, so
the sequence is indeed an arithmetic sequence, and d = 4

– Second approach: We know that the formula for the nth
term is given by an = 3 + 4(n − 1). From this it should be
clear that the (n + 1)th term is given by an+1 = 3 + 4((n +
1) − 1) = 3 + 4n. If we work out the difference between
successive terms, we get that an+1−an = 3+4n−3−4(n−
1) = 4n − 4n + 4 = 4 = d, which is the same answer that
we got using the previous method.

Worked Example 14 : Calculating the Formula for

the nth term of a Sequence

Question:Find a formula for the nth term of the sequence
6, 17, 28, 39,.... Which term in the sequence equals 688?
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Answer:First we must check that the given sequence is in fact
an arithmetical one, otherwise we can’t use the formula. This
is easily seen, since the difference between successive terms is
11. Now we must use (??). We know that a1 = 6 and that
d = 11. If we substitute these into the formula, we see that
an = 6 + 11(n − 1). Lastly, we must find which term equals
688. Notice that in the first worked example we were given
an n (namely 1000), and asked to calculate an. Now we are
given an an and asked to calculate n. We can do this easily by
rearranging the formula:

an = 688 = 6 + 11(n − 1)

688 − 6 = 11(n − 1)

688 − 6

11
= n − 1

n =
688 − 6

11
+ 1 = 63

We conclude that the 63rd term will equal 688.

geometric

Worked Example 15 : Checking That a Given Se-

quence is Geometric

Question:Check that the sequence given by the formula an =
2(3n−1) is a geometric sequence, and find r for this sequence.
Answer:We must check to see that the ratio between successive
terms is a constant. As in example four, there are two ways of
doing this: we could write out the first few terms of the sequence
and check that successive terms differ by a common factor, or we
could do the calculation in general, using the formula directly.
We will do the example using both these approaches alternately.

– First approach: It is easy to calculate the first few terms
using the formula. They are given by 2,6,18,54,162,.... We
can see that the ratio between successive terms is always 3,
since 6

2 = 18
6 = 54

18 = 162
54 = 3, so the sequence is indeed an

arithmetic sequence, and r = 3

– Second approach: We know that the formula for the nth
term is given by an = 2(3n−1). From this it should be clear
that the (n + 1)th term is given by an+1 = 2(3n). If we
work out the ratio between successive terms, we get that
an+1

an

= 2(3n)
2(3n−1) = 3n−n+1 = 3, which is the same answer

that we got using the previous method.

Worked Example 16 : Calculating the Formula for

the nth term of a Sequence
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Question:Find a formula for the nth term of the sequence
2,4,8,16,.... Which term in the sequence equals 8192?
Answer:First we must check that the given sequence is in fact
a geometric one, otherwise we can’t use the formula. This is
easily seen, since the ratio between successive terms is 2. Now
we must use (??). We know that a1 = 2 and that r = 2. If
we substitute these into the formula, we see that an = 2(2n−1).
Lastly, we must find which term equals 8192. We can do this
easily by rearranging the formula:

a n = 688 = 6 + 11(n − 1)
688 − 6 = 11(n − 1)

(688 − 6)/11 = n − 1
n = (688 − 6)/11 + 1 = 63

We conclude that the 13th term will equal 8192.

10.2 series

Worked Example 17 : Calculating Sn

Question:Calculate S4 for the series 2 + 4 + 8 + 16 + 32 + ....
Answer:Recall that S4 is the sum of the first four terms of the
series. This is given by 2 + 4 + 8 + 16 = 30.

Worked Example 18 : Calculating a Series

Question:Calculate first five terms of the series which corre-
sponds to the sequence an = 2 + 2(n − 1).
Answer:First we calculate the first five terms of the sequence.
They are 2,4,6,8,10. To get the corresponding series, we simply
need to put addition signs in between the terms: 2+4+6+8+10.

Worked Example 19 : Checking Sn for a given series

Question:For the series 2+4+6+8+..., check that the formula
for the sum of the first n terms is given by Sn = n

2 [4 + 2(n− 1)]
Answer:Let us start by writing out the first few terms of Sn.
S1 equals the first term of the series, so S1 = 2. S2 is the sum of
the first two terms, so S2 = 2 + 4 = 6. S3 is the sum of the first
three terms, namely 12. Continuing in this fashion, we can see
that the first few terms of Sn are 2,6,12,20,28,....What we need
to determine is whether these correspond to the given formula
for Sn, and indeed they do. We must simply note that when we
substitute 1 into n

2 [4 + 2(n − 1)], we get 2, when we substitute
2, we get 6, when we substitute 3, we get 12, then 20, then 28,
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and so on. This means that the formula does indeed give us the
sum up to n terms.

Worked Example 20 : Calculating the Sequence that

Corresponds to a Given Sn

Question:For a certain series, Sn is given by the formula Sn =
2n2 − 4n. Find the sequence which corresponds to this series.
Answer:Let us start by writing out the first few terms of Sn:
−2,0,6,16,30,.... Think carefully about what this means - S1 =
−2 means that the first term of the series is -2, S2 = 0 means
that the sum of the first two terms is 0. Therefore the second
term must be 2, since when we add 2 to -2 we get 0. S3 = 6
means that the sum of the first three terms of the series is 6,
so, by similar reasoning, the third term must be 6. S4 = 16
means that the fourth term must be 10. Now one should start
to see the pattern - the first few terms of the sequence which
corresponds to this series are −2,2,6,10,..., so we are dealing
with an arithmetical sequence that has a common difference of
4.

Worked Example 21 : Calculating Sn for a Given

Series

Question:Calculate the value of the series 1+4+7+10+13+
... + 46.
Answer:We wish to find S16 (since 46 is the 16th term of the
series). Of course we can do this with a calculator, but there is
a much quicker way.

S16 = 1 + 4 + ... + 43 + 46

S16 = 46 + 43 + ... + 4 + 1

2S16 = 47 + 47 + ... + 47 + 47

2S16 = 16 × 47 = 752

S16 = 752
2 = 376

Worked Example 22 : Using the Formula for Sn

Question:Find the sum of all the integers between 1 and 100,
i.e. find 1+2+3+...+99+100.
Answer:Since we are dealing with an arithmetic series,we can
use the formula for Sn that we have derived. In order to use
it we need to know which values to put in for a1, d, and n.
Since the series starts at 1, we know that a1 = 1. It should
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also be clear that d = 1 (since the common difference between
successive terms is 1), and that n = 100 (since we are summing
up to the hundredth term). Now it is just a question of plugging
these values into the formula.

S100 = n
2 [2a1 + (n − 1)d]

S100 = 100
2 [2 + (100 − 1)]

S100 = 50(101) = 5050

Worked Example 23 : Calculating Sn for a Geomet-

ric Series in General

Question:Calculate a formula for Sn for any geometric series,
given r and a1.
Answer:This example is slightly different from the case for
arithmetic series. Try writing out the calculation for yourself
to make sure that you understand all the steps.

Sn = a1 + a1r + a1r
2 + ... + a1r

n−2 + a1r
n−1

r × Sn = a1r + a1r
2 + ... + a1r

n−2 + a1r
n−1 + a1r

n

rSn − Sn = −a1 + 0 + 0... + 0 + a1r
n

Sn(r − 1) = a1r
n − a1

Sn =
a1(r

n − 1)

r − 1
(10.74)

This formula is only valid when r 6= 1, otherwise we would have
0 in the denominator. When r = 1, Sn = a1+a1+...+a1 = na1.

Worked Example 24 : Using the Formula for Sn

Question:What is 2 + 4 + 8 + 16 + ... + 32768?
Answer:We are dealing with a geometric series, so we have to
use equation (10.74). In order to use it we need to know which
values to put in for a1, r, and n. Since the series starts at 2, we
know that a1 = 2. It should also be clear that d = 2 (since the
common ratio between successive terms is 2). It is not so clear
what n should be, but we can work it out using the equation for
the nth term of a geometric series.

an = a1r
n−1

32768 = 2(2n−1) = 2n

log 32768 = n log 2

n =
log 32768

log 2
= 15
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Now that we have values for a1,n, and r, we can use the formula
to work out S15.

Sn = a1(r
n−1)

r−1

S15 = 2(215−1)
2−1

S15 = 2(215 − 1) = 65534

Worked Example 25 : Sigma Notation

Question:Calculate the values of the following expressions:

–
∑7

k=2 k + 1

–
∑4

t=2 t2

–
∑4

t=2 2t

–
∑4

k=1 3

Answer:

– We have to sum the expression k+1 from k = 2 until k = 7:
(1+1)+(2+1)+(3+1)+(4+1)+(5+1)+(6+1)+(7+1) = 35.

–
∑4

t=2 t2 = 22 + 32 + 42 = 4 + 9 + 16 = 29

–
∑4

t=2 2t = 22 + 23 + 24 = 4 + 8 + 16 = 28

–
∑4

k=1 3 = 3 + 3 + 3 + 3 = 12

Worked Example 26 : Converging or diverging

Question:Which of the following infinite series do you think
will converge, and which do you think will diverge:

–
∑∞

k=1 k

–
∑∞

k=1
1
k

–
∑∞

k=1
1
k2

–
∑∞

k=1(−1)(k + 1)

Answer:We don’t really have any systematic way of working
this out yet, but we can easily guess by using our calculators.

– Working out the first few terms of the sum, we get S1 = 1,
S2 = 1+2 = 3, S3 = 1+2+3 = 6, S4 = 1+2+3+4 = 10,
S5 = 1 + 2 + 3 + 4 + 5 = 15. Clearly this is getting larger
and larger, and it would be reasonable to guess that if we
kept on adding terms, we would not get a finite number. So
this series diverges.

– As before, we can work out the first few terms by hand:
S1 = 1, S2 = 1 + 1

2 = 1 1
2 , S3 = 1 + 1

2 + 1
3 = 1 5

6 , S4 = 2 1
12 ,

S5 = 2 17
60 , and, using a calculator, S20 = 3.6. This is still not

absolutely clear, so now we can write a computer program
to work out even higher values of Sn. It turns out that
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S100 = 5.19, S1000 = 7.49, and S1000000 = 14.4. This series
is in fact divergent. Even though it grows at a very slow
rate, it never stops getting larger when we add more terms.

– As we mentioned in the text above, this series never gets
larger than 1, no matter how many terms we care to add.
In fact, the more terms we add, the closer the series gets
to 1 (try it on your calculator), so we say that the series
converges to 1.

– This example seems a bit strange at first. Let us try to
write out a few terms of Sn to give us an idea of what is
happening: S1 = 1, S2 = 1−1 = 0, S3 = 1−1+1 = 1, S4 =
0, S5 = 1. It seems that the values we get are oscillating
between 0 and 1. Remember we said that a series converges
if we get closer and closer to some number when we add
more terms - and that is clearly not what is happening
here. That means that this series is divergent, even though
it never gets larger than 1.

Worked Example 27 : Using the formula for S∞

Question:Calculate the sum of the infinite series
∑∞

k=1(
1
2 )k−1

Answer:We are asked to determine the sum of the infinite series
1 + 1

2 + 1
4 + 1

8 + .... The common ratio is clearly 1
2 , which is

between −1 and 1, so we can use the formula. The formula
gives S∞ = a

1−r = 1
1− 1

2

= 2.

10.3 functions

Q: State the domain and range of the function y = x2 − 4 in set-builder
notation and interval notation.

A: There is nothing to stop x from taking on the value of any real number,
but, since x2 cannot be negative, we see that y ≥ −4. Thus the domain
of the function is

{x : x ǫ R} or (−∞,∞) (10.75)

and the range is given by

{y : y ≥ 4 and y ǫ R} or [−4,∞) (10.76)

Worked Example:

Q: Plot a graph of the function f(x) = −x + 1.

A: The x-intercept is
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−x + 1 = 0 (10.77)

⇒ x = 1 (10.78)

The y-intercept is

y = −(0) + 1 = 1 (10.79)

Therefore the graph is as follows:

1 2 3−1−2−3

1

2

3

−1

✩

✩

Figure 10.1: Graph of f(x) = 1 − x

Now we have seen that, in general, the constant b is the y-intercept, but
what is a? The bigger a the faster the y-values change when the x values
change. Therefore a is called the slope and shows how steep the straight
line is.

Worked Example:

Example 1:

Q: We are given a straight line graph f(x) = ax + b and two different
points (x1,y1) and (x2,y2), where x1 6= x2. What is the slope of the line?

A: Now we need to calculate the slope a and we know that y1 = ax1 + b
and y2 = ax2 + b, since (x1,y1) and (x2,y2) are points on the straight line.
This means that

y2 − y1 = (ax1 + b) − (ax2 + b) (10.80)

= ax2 − ax1 + b − b (10.81)

= a(x2 − x1) (10.82)

171



Therefore the slope describes the change in y (sometimes called ∆y =
y2 − y1) divided by the change in x (∆x = x2 − x1) between any two
different points on the line, i.e.

a =
y2 − y1

x2 − x1
=

∆y

∆x
(10.83)

We have used the fact that x1 6= x2 (i.e. x2 − x1 6= 0) because one cannot
divide by zero. (The case of x1 = x2 but y1 6= y2 gives an infinite slope
and this describes a vertical line at constant x.)(NOTE: This section needs
to work in the relevance of figure 10.2 more)

✪

✪

y1

y2

x1 x2

∆y

∆x

Figure 10.2: Graph showing ∆x and ∆y for a line of the form y = ax + b

Note: A straight line with a positive slope (a > 0) increases from left
to right and a straight line with a negative slope (a < 0) increases from
right to left.

a > 0 a < 0

Figure 10.3: A straight line with positive slope (a > 0) and a straight line with
negative slope (a < 0)

Example 2:

Q: Consider the straight line shown in the graph below:
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1 2 3 4 5 6 7−1−2

1

−1

−2 ✫

✫

Figure 10.4: Graph of straight line with y0 = −2 and x0 = 5

Find the equation of the straight line describing this graph.

A: We need to find f(x) = ax + b, so we need the a and b values for this
line.

We see that the y-intercept is y = −2 so b = −2. Since we have two
points (the y-intercept (0,-2) and the x-intercept (5,0)), we can find the
slope using the equation from the previous example. Therefore

a =
y2 − y1

x2 − x1
=

0 − (−2)

5 − 0
=

2

5
(10.84)

So the equation of the straight line is f(x) = 2
5x − 2.

Now, for a general parabola of the form f(x) = ax2 +c where a is positive,
the term ax2 is always positive so the function is at a minimum when
x = 0. Therefore the arms of the parabola point upwards. Otherwise, if a
is negative, then ax2 is always negative and thus the function is maximum
at x = 0. This means that the arms of the parabola must point downwards.

Worked Examples:

Example 1:

Q: Find the intercepts and thus plot a graph of the function f(x) =
−x2 + 4.

A: The y-intercept is

y = −(0)2 + 4 = 4 (10.85)

and the x-intercepts are
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a > 0 a < 0

Figure 10.5: A parabola of the form y = ax2 + c with positive curvature (a > 0)
and a parabola with negative curvature (a < 0)(NOTE: is curvature the right
word to use here?)

−x2 + 4 = 0 (10.86)

⇒ x2 = 4 (10.87)

⇒ x = ±2 (10.88)

Since a = −1 is negative, we know that the arms of the parabola must
point downwards. We can now use the three intercepts to draw the graph
of this function.

1 2−1−2

1

2

3

4

−1

✬ ✬

✬

Figure 10.6: Graph of f(x) = −x2 + 4
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Example 2:

Q: Plot a graph of the parabola f(x) = x2 + 1.

A: The y-intercept is

y = (0)2 + 1 = 1 (10.89)

and the x-intercepts are

x2 + 1 = 0 (10.90)

⇒ x2 = −1 (10.91)

(10.92)

This is not possible if x is a real number, so there are no x-intercepts. The
parabola must therefore be entirely above the x-axis. This agrees with the
fact that we know the arms of the parabola point upwards because a = 1
is positive. Thus the graph is as follows:

0 1−1

1

2

3

4

5

✭

Figure 10.7: Graph of the parabola f(x) = x2 + 1
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Example 2:

Q: Plot a graph of the hyperbola xy = −1.

A: A table of x and y values is as follows:

x : -4 -2 -1 1
2 - 1

4
1
4

1
2 1 2 4

y = 1
x : 1

4
1
2 1 2 4 -4 -2 -1 - 1

2 - 1
4

This gives the graph shown below.

1 2 3 4−1−2−3−4

1

2

3

4

−1

−2

−3

−4

✮

✮

✮

✮

✮

✮

✮

✮

✮

✮

Figure 10.8: Graph of the hyperbola xy = −1

We can see that a hyperbola has no x or y-intercepts. However, there are
two general forms for hyperbolae, depending on whether a is positive or
negative.

Both types of hyperbola are symmetric about the lines y = x and y = −x
(in other words, the part of the hyperbola on one side of the line is just
the reflection of the part on the other side).

In the first case (a > 0), the hyperbola intersects line y = x at two points.
At these intersections

xy = a and y = x (10.93)

which implies that
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a > 0 a < 0

Figure 10.9: A hyperbola of the form y = a
x with positive coefficient (a > 0) and

straight line y = x. A hyperbola with negative curvature (a < 0) and straight
line y = −x.

x(x) = x2 = a (10.94)

⇒ x = ±
√

a (10.95)

and, as y = x, it follows that the points of intersection are (−√
a, −√

a)
and (

√
a,
√

a).

In the second case (a < 0), the hyperbola intersects the line y = −x. The
two intersection points occur when

xy = a and y = −x (10.96)

and therefore

x(−x) = −x2 = a (10.97)

⇒ x2 = −a (10.98)

⇒ x = ±
√
−a (10.99)

and, since y = −x, the two intersection points are (−√
a,
√

a) and (
√

a, −√
a).

Worked Examples:

Example 1:

Q: Draw a graph of the hyperbola xy = 9.

A: First we note that, since a = 9 is positive, the hyperbola must be in
the top right and bottom left quadrants. The points at which it intersects
the line y = x are (-3,-3) and (3,3). It is also clear that the points (-1,-9),
(-9,-1), (1,9) and (9,1) are part of the hyperbola. Thus the graph is
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4 8−4−8

4

8

−4

−8

✯

✯

✯

✯

✯

✯

Figure 10.10: Graph of the hyperbola xy = 9

0.5 1.0 1.5−0.5−1.0−1.5

0.5

1.0

1.5

−0.5

−1.0

−1.5

✰

✰

Figure 10.11: Graph of a hyperbolic function turning at the points (− 1
2 , 12 ) and

( 1
2 , − 1

2 )

Example 2:

Q: The graph of a hyperbolic function is shown below.
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What is the function defining this hyperbola?

A: Since the hyperbola is in the top left and bottom right quadrants, we
known that a < 0. Now the point (− 1

2 , 1
2 ) lies on the hyperbola, so

a = xy = (−1

2
)(

1

2
) = −1

4
(10.100)

which is negative as we originally worked out.

Therefore the hyperbolic function is f(x) = − 1
4x .

Worked Example:

Q: Plot graph of the relation x2 + y2 = 4.

A: This is the equation of a circle centered at the origin with radius 2.
The graph is as follows:

2−2

2

−2

Figure 10.12: Graph of the circle x2 + y2 = 4

Worked Example:

Q: Draw the semi-circles described by the equations

y =
√

9 − x2 and y = −
√

9 − x2 (10.101)

Also give the domains and ranges of these semi-circles.

A: These equations describe semi-circles with radius 3. The first semi-
circle lies above the x-axis (since the positive square root is being con-
sidered, the y values are all positive) and the second semi-circle is below
the x-axis (the y values are all negative because the equation involves the
negative root). The graphs of these semi-circles are thus as follows:

From the above graphs we can see that, for the semi-circle y =
√

9 − x2,
the domain is [−3,3] and the range is [0,3] and, for the semi-circle y =
−
√

9 − x2, the domain is [−3,3] and the range is [-3,0].
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0 3−3

3
3−3

−3

Figure 10.13: Semi-circles of radius 3, centered at the origin. The equation for
the left semi-circle is y =

√
9 − x2 whereas the right semi-circle is governed by

y = −
√

9 − x2

The equation x2 + y2 = r2 can also be used to solve for x which gives

x = ±
√

r2 − y2 (10.102)

Again the positive and negative roots each describe a semi-circle, but in
this case, on either side of the y-axis. Therefore the equations for two
other types of semi-circles are

x =
√

r2 − y2 and x = −
√

r2 − y2 (10.103)

The domains of these semi-circles are [0,r] (in the first case) and [−r,0]
(in the second case). In both cases, the range is [−r,r].

Note: Again y = −r and y = r corresponds to the same x = 0 value.
Thus these semi-circles are not functions.
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Worked Example:

Q: Plot the graphs of the following relations

x =
√

1 − y2 and x = −
√

1 − y2 (10.104)

State the domains and ranges of these relations.

A: The above equations describe semi-circles of radius 1 on either side
of the y axis (in the first case x is always positive and in the second x is
always negative). The graphs of these relations are as follows:

1
0

1

−1

−1

1

−1

Figure 10.14: Semi-circles of radius 1 on either side of the y axis. In the first
case x is always positive as x =

√

1 − y2 and in the second case x is always

negative as x = −
√

1 − y2. (NOTE: This entire chapter needs a rethink on
how it references graphs... instead of non-descriptive sentences like “in the first
case”, we need to use \ref a lot more)

For the first semi-circle, the domain is [0,1] and the range is [−1,1] and in
the case of the second semi-circle, the domain is [−1,0] and the range is
[−1,1].

Worked Example:

Q: Plot a graph of the function f(x) = |x + 2| − 5.

A: Let us first work out a table of x and f(x) values as follows:

x: -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8
f(x) 1 0 -1 -2 -3 -4 -5 -4 -3 -2 -1 0 1 2 3 4 5

The graph of the function f(x) is thus shown below.
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2 4 6 8−2−4−6−8

2

4

−2

−4

✱

✱

✱

✱

✱

✱

✱

✱

✱

✱

✱

✱

✱

✱

✱

✱

✱

Figure 10.15: Graph of the function f(x) = |x + 2| − 5

Worked Examples:

Example 1:

Q: Consider the function y = 2|x − 1| − 4. Plot a graph of this absolute
value function, showing all the intercepts, the turning point and the axis
of symmetry.

A: We can see that, since b = 1 and c = −4, the turning point is (1,− 4)
and the axis of symmetry is x = 1. Also, because a = 2 is positive, the
absolute value function will be V-shaped.

Now let us find the y-intercept. At x = 0

y = 2|x − 1| − 4 = 2|(0) − 1| − 4 = 2| − 1| − 4 = 2(1) − 4 = −2 (10.105)

Since the turning point is below the x-axis and the graph points upwards,
we suspect that this function does have x-intercepts. Let us try to find
these intercepts, which are the x-intercepts of the two straight lines y =
2(x − 1) − 4 and y = 2(−x + 1) − 4.

y = 2(x − 1) − 4 = 0 (10.106)

⇒ 2x − 6 = 0 (10.107)

⇒ 2x = 6 (10.108)

⇒ x = 3 (10.109)

(10.110)

and
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y = 2(−x + 1) − 4 = 0 (10.111)

⇒ −2x − 2 = 0 (10.112)

⇒ −2x = 2 (10.113)

⇒ x = −1 (10.114)

(10.115)

Therefore the graph of the absolute values function is as follows:

1 2 3 4 5−1−2−3

2

4

6

−2

−4

✲ ✲

✲

✲

Figure 10.16: Graph of the absolute values function y = 2|x − 1| − 4

Example 2:

Q: Plot a graph of the function f(x) = −|x+3|−1 showing the intercepts,
turning point and axis of symmetry.

A: The turning point is of this function is (−3, − 1) and the axis of
symmetry is given by x = −3. As a = −1 is negative the graph is shaped
like an upside down V.

At x = 0, the y-intercept is

f(0) = −|(0) + 3| − 1 = −|3| − 1 = −3 − 1 = −4 (10.116)

Now this function points downwards and obtains its maximum at the
turning point (−3, − 1). This point is below the x-axis (since y = −1 is
negative). Since the function is never greater than -1, it cannot become
positive and therefore cannot cross the x-axis. Thus this absolute value
function has no x-intercepts.

The graph of the function is shown below.
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−1−2−3−4−5

−1

−2

−3

−4

✳

✳

Figure 10.17: Graph of the function f(x) = −|x + 3| − 1

Worked Example:

Q: What the does the relation x2 − 2x + y2 + 4y = −4 describe? Plot a
graph of this relation.

A: We can see that it is not going to be easy to solve to x and y, but let
us try another trick, which is to write the relation as the sum of perfect
squares. We know that

x2 − 2x = (x2 − 2x + 1) − 1 = (x − 1)2 − 1 (10.117)

and also that

y2 + 4y = (y2 + 4y + 4) − 4 = (y + 2)2 − 4 (10.118)

Therefore the relation can be written as follows:

(x − 1)2 − 1 + (y + 2)2 − 4 = −4 (10.119)

and thus
(x − 1)2 + (y + 2)2 = 1 (10.120)

But this is just the equation for a circle centered at the origin with radius
1 (x2 + y2 = 1), where x and y have been replaced by x − 1 and y + 2.
So we can see that this is a circle which has been moved 1 to the right
and 2 downwards. Therefore this relation describes a circle centered at
the point (1,-2) with radius 1 (as shown in the diagram below).

Note: In general, the equation for a circle of radius r centered at the
point (a,b) is

(x − a)2 + (y − b)2 = r2 (10.121)
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1 2

−1

−2

−3

✴(1, − 2)

Figure 10.18: Graph of the circle (x − 1)2 + (y + 2)2 = 1

Worked Example:

Q: Show that the equation for an ellipse centered at the origin can be
derived from that of a circle centered at the origin by performing suitable
transformations. Draw a graph of the resulting ellipse.

A: We shall start with the equation of a circle centered at the origin,
which is given by x2 + y2 = r2, and replace x by r

ax and y by r
by.

We can see that the equation for the circle becomes

(
r

a
x)2 + (

r

b
y)2 = r2 (10.122)

⇒ r2 x2

a2
+ r2 y2

b2
= r2 (10.123)

⇒ x2

a2
+

y2

b2
= 1 (10.124)

which is the equation for an ellipse centred at the origin with y-intercepts
(0, − b) and (0,b) and x-intercepts (−a,0) and (a,0).

The graph of this ellipse is as follows:

✵

✵

✵ ✵

b

b

aa

Figure 10.19: Graph of an ellipse centered at the origin with y-intercepts (0,−b)
and (0,b) and x-intercepts (−a,0) and (a,0)
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10.3.1 Worked Examples:

Example 1:

Q: Consider the parabolic function f(x) = x2. What is the equation
for the function which can be obtained by stretching f(x) vertically by a
factor of a, then shifting this function to the right by p and upwards by
q?

A: We start with the function y = x2 and must be very careful to apply
these changes in the right order. First we stretch f(x) vertically by a
factor of a. This means that we must change y to y

a , which gives

y

a
= x2 (10.125)

⇒ y = ax2 (10.126)

Now we shift y = ax2 to the right by p. In other words, we change x to
x − p, which gives

y = a(x − p)2 (10.127)

Finally we shift y = a(x− p)2 upwards by q. Therefore we must replace y
by y − q. This means that

y − q = a(x − p)2 (10.128)

⇒ y = a(x − p)2 + q (10.129)

which is one way of writing the general formula for a quadratic function
(see section 1.4).

Example 2:

Q: Let f(x) = x + 6. What is the function which is the result of
reflecting f(x) about the y-axis and then shrinking this function by a
factor of 2 horizontally and then vertically? Plot graphs of the initial and
final functions. There are other ways of getting this final function from
f(x) by performing only two changes. Give an example of such a method.

A: We start with the initial function y = x + 6. If we reflect this about
the x-axis, we must change x to −x and this gives

y = −x + 6 (10.130)

Now we must shrink this function by a factor of 2 horizontally. Thus
changing x to 2x result in the equation

y = −2x + 6 (10.131)

If we now shrink this by a factor of 2 vertically (changing y to 2y) we get

186



2y = −2x + 6 (10.132)

⇒ y = −x + 3 (10.133)

The graphs of the initial function y = x + 6 and the final function y =
−x + 3 are shown below.

−2−4−6

2

4

6 ✶

✶ 2−2

2

4
✷

✷

Figure 10.20: Graph of the initial function y = x+6 (left) and the final function
y = −x + 3 (right)

Finally we must look for two transformations which give this same result.
We suspect that there must be a reflection involved, because the final func-
tion involves −x and the initial function contains x (also the above graph
shows that the straight lines are perpendicular). Therefore, as before, we
start by reflecting the function f(x) about the y-axis. This gives

y = −x + 6 (10.134)

Now we see that to get the final equation y = −x + 3 we must also add
-3 to this equation. This is the same as replacing x by x + 3, so let us try
shifting the equation by 3 to the left. This gives the equation

y = −(x + 3) + 6 (10.135)

⇒ y = −x + 3 (10.136)

Therefore, two changes which give the same final function are a reflection
about the y-axis followed by a shift by 3 to left.
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Appendix A

GNU Free

Documentation License

Version 1.2, November 2002
Copyright c© 2000,2001,2002 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
Everyone is permitted to copy and distribute verbatim copies of this license
document, but changing it is not allowed.

PREAMBLE

The purpose of this License is to make a manual, textbook, or other func-
tional and useful document “free” in the sense of freedom: to assure ev-
eryone the effective freedom to copy and redistribute it, with or without
modifying it, either commercially or non-commercially. Secondarily, this
License preserves for the author and publisher a way to get credit for their
work, while not being considered responsible for modifications made by
others.

This License is a kind of “copyleft”, which means that derivative works of
the document must themselves be free in the same sense. It complements
the GNU General Public License, which is a copyleft license designed for
free software.

We have designed this License in order to use it for manuals for free
software, because free software needs free documentation: a free program
should come with manuals providing the same freedoms that the software
does. But this License is not limited to software manuals; it can be used for
any textual work, regardless of subject matter or whether it is published
as a printed book. We recommend this License principally for works whose
purpose is instruction or reference.
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APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that
contains a notice placed by the copyright holder saying it can be dis-
tributed under the terms of this License. Such a notice grants a world-
wide, royalty-free license, unlimited in duration, to use that work under
the conditions stated herein. The “Document”, below, refers to any such
manual or work. Any member of the public is a licensee, and is addressed
as “you”. You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the
Document or a portion of it, either copied verbatim, or with modifications
and/or translated into another language.

A “Secondary Section” is a named appendix or a front-matter section of
the Document that deals exclusively with the relationship of the publish-
ers or authors of the Document to the Document’s overall subject (or to
related matters) and contains nothing that could fall directly within that
overall subject. (Thus, if the Document is in part a textbook of math-
ematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject
or with related matters, or of legal, commercial, philosophical, ethical or
political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are
designated, as being those of Invariant Sections, in the notice that says
that the Document is released under this License. If a section does not fit
the above definition of Secondary then it is not allowed to be designated
as Invariant. The Document may contain zero Invariant Sections. If the
Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as
Front-Cover Texts or Back-Cover Texts, in the notice that says that the
Document is released under this License. A Front-Cover Text may be at
most 5 words, and a Back-Cover Text may be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy,
represented in a format whose specification is available to the general
public, that is suitable for revising the document straightforwardly with
generic text editors or (for images composed of pixels) generic paint pro-
grams or (for drawings) some widely available drawing editor, and that
is suitable for input to text formatters or for automatic translation to a
variety of formats suitable for input to text formatters. A copy made in an
otherwise Transparent file format whose markup, or absence of markup,
has been arranged to thwart or discourage subsequent modification by
readers is not Transparent. An image format is not Transparent if used
for any substantial amount of text. A copy that is not “Transparent” is
called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII
without markup, Texinfo input format, LATEX input format, SGML or
XML using a publicly available DTD and standard-conforming simple
HTML, PostScript or PDF designed for human modification. Examples
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of transparent image formats include PNG, XCF and JPG. Opaque for-
mats include proprietary formats that can be read and edited only by
proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the machine-generated
HTML, PostScript or PDF produced by some word processors for output
purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such
following pages as are needed to hold, legibly, the material this License
requires to appear in the title page. For works in formats which do not
have any title page as such, “Title Page” means the text near the most
prominent appearance of the work’s title, preceding the beginning of the
body of the text.

A section “Entitled XYZ” means a named subunit of the Document whose
title either is precisely XYZ or contains XYZ in parentheses following
text that translates XYZ in another language. (Here XYZ stands for
a specific section name mentioned below, such as “Acknowledgements”,
“Dedications”, “Endorsements”, or “History”.) To “Preserve the Title”
of such a section when you modify the Document means that it remains
a section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which
states that this License applies to the Document. These Warranty Dis-
claimers are considered to be included by reference in this License, but
only as regards disclaiming warranties: any other implication that these
Warranty Disclaimers may have is void and has no effect on the meaning
of this License.

VERBATIM COPYING

You may copy and distribute the Document in any medium, either com-
mercially or non-commercially, provided that this License, the copyright
notices, and the license notice saying this License applies to the Docu-
ment are reproduced in all copies, and that you add no other conditions
whatsoever to those of this License. You may not use technical measures
to obstruct or control the reading or further copying of the copies you
make or distribute. However, you may accept compensation in exchange
for copies. If you distribute a large enough number of copies you must
also follow the conditions in section A.

You may also lend copies, under the same conditions stated above, and
you may publicly display copies.

COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have
printed covers) of the Document, numbering more than 100, and the Doc-
ument’s license notice requires Cover Texts, you must enclose the copies in
covers that carry, clearly and legibly, all these Cover Texts: Front-Cover
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Texts on the front cover, and Back-Cover Texts on the back cover. Both
covers must also clearly and legibly identify you as the publisher of these
copies. The front cover must present the full title with all words of the
title equally prominent and visible. You may add other material on the
covers in addition. Copying with changes limited to the covers, as long as
they preserve the title of the Document and satisfy these conditions, can
be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you
should put the first ones listed (as many as fit reasonably) on the actual
cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering
more than 100, you must either include a machine-readable Transparent
copy along with each Opaque copy, or state in or with each Opaque copy
a computer-network location from which the general network-using public
has access to download using public-standard network protocols a com-
plete Transparent copy of the Document, free of added material. If you
use the latter option, you must take reasonably prudent steps, when you
begin distribution of Opaque copies in quantity, to ensure that this Trans-
parent copy will remain thus accessible at the stated location until at least
one year after the last time you distribute an Opaque copy (directly or
through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the
Document well before redistributing any large number of copies, to give
them a chance to provide you with an updated version of the Document.

MODIFICATIONS

You may copy and distribute a Modified Version of the Document under
the conditions of sections A and A above, provided that you release the
Modified Version under precisely this License, with the Modified Version
filling the role of the Document, thus licensing distribution and modifica-
tion of the Modified Version to whoever possesses a copy of it. In addition,
you must do these things in the Modified Version:

1. Use in the Title Page (and on the covers, if any) a title distinct from
that of the Document, and from those of previous versions (which
should, if there were any, be listed in the History section of the Doc-
ument). You may use the same title as a previous version if the
original publisher of that version gives permission.

2. List on the Title Page, as authors, one or more persons or entities re-
sponsible for authorship of the modifications in the Modified Version,
together with at least five of the principal authors of the Document
(all of its principal authors, if it has fewer than five), unless they
release you from this requirement.

3. State on the Title page the name of the publisher of the Modified
Version, as the publisher.

4. Preserve all the copyright notices of the Document.
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5. Add an appropriate copyright notice for your modifications adjacent
to the other copyright notices.

6. Include, immediately after the copyright notices, a license notice giv-
ing the public permission to use the Modified Version under the terms
of this License, in the form shown in the Addendum below.

7. Preserve in that license notice the full lists of Invariant Sections and
required Cover Texts given in the Document’s license notice.

8. Include an unaltered copy of this License.

9. Preserve the section Entitled “History”, Preserve its Title, and add to
it an item stating at least the title, year, new authors, and publisher
of the Modified Version as given on the Title Page. If there is no
section Entitled “History” in the Document, create one stating the
title, year, authors, and publisher of the Document as given on its
Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

10. Preserve the network location, if any, given in the Document for
public access to a Transparent copy of the Document, and likewise
the network locations given in the Document for previous versions it
was based on. These may be placed in the “History” section. You
may omit a network location for a work that was published at least
four years before the Document itself, or if the original publisher of
the version it refers to gives permission.

11. For any section Entitled “Acknowledgements” or “Dedications”, Pre-
serve the Title of the section, and preserve in the section all the sub-
stance and tone of each of the contributor acknowledgements and/or
dedications given therein.

12. Preserve all the Invariant Sections of the Document, unaltered in
their text and in their titles. Section numbers or the equivalent are
not considered part of the section titles.

13. Delete any section Entitled “Endorsements”. Such a section may not
be included in the Modified Version.

14. Do not re-title any existing section to be Entitled “Endorsements”
or to conflict in title with any Invariant Section.

15. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices
that qualify as Secondary Sections and contain no material copied from
the Document, you may at your option designate some or all of these
sections as invariant. To do this, add their titles to the list of Invariant
Sections in the Modified Version’s license notice. These titles must be
distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains
nothing but endorsements of your Modified Version by various parties–for
example, statements of peer review or that the text has been approved by
an organisation as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and
a passage of up to 25 words as a Back-Cover Text, to the end of the
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list of Cover Texts in the Modified Version. Only one passage of Front-
Cover Text and one of Back-Cover Text may be added by (or through
arrangements made by) any one entity. If the Document already includes
a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add
another; but you may replace the old one, on explicit permission from the
previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License
give permission to use their names for publicity for or to assert or imply
endorsement of any Modified Version.

COMBINING DOCUMENTS

You may combine the Document with other documents released under this
License, under the terms defined in section A above for modified versions,
provided that you include in the combination all of the Invariant Sections
of all of the original documents, unmodified, and list them all as Invariant
Sections of your combined work in its license notice, and that you preserve
all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and mul-
tiple identical Invariant Sections may be replaced with a single copy. If
there are multiple Invariant Sections with the same name but different
contents, make the title of each such section unique by adding at the end
of it, in parentheses, the name of the original author or publisher of that
section if known, or else a unique number. Make the same adjustment to
the section titles in the list of Invariant Sections in the license notice of
the combined work.

In the combination, you must combine any sections Entitled “History” in
the various original documents, forming one section Entitled “History”;
likewise combine any sections Entitled “Acknowledgements”, and any sec-
tions Entitled “Dedications”. You must delete all sections Entitled “En-
dorsements”.

COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other docu-
ments released under this License, and replace the individual copies of this
License in the various documents with a single copy that is included in the
collection, provided that you follow the rules of this License for verbatim
copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it
individually under this License, provided you insert a copy of this License
into the extracted document, and follow this License in all other respects
regarding verbatim copying of that document.
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AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and
independent documents or works, in or on a volume of a storage or dis-
tribution medium, is called an “aggregate” if the copyright resulting from
the compilation is not used to limit the legal rights of the compilation’s
users beyond what the individual works permit. When the Document is
included an aggregate, this License does not apply to the other works in
the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section A is applicable to these copies
of the Document, then if the Document is less than one half of the entire
aggregate, the Document’s Cover Texts may be placed on covers that
bracket the Document within the aggregate, or the electronic equivalent
of covers if the Document is in electronic form. Otherwise they must
appear on printed covers that bracket the whole aggregate.

TRANSLATION

Translation is considered a kind of modification, so you may distribute
translations of the Document under the terms of section A. Replacing
Invariant Sections with translations requires special permission from their
copyright holders, but you may include translations of some or all Invariant
Sections in addition to the original versions of these Invariant Sections.
You may include a translation of this License, and all the license notices
in the Document, and any Warranty Disclaimers, provided that you also
include the original English version of this License and the original versions
of those notices and disclaimers. In case of a disagreement between the
translation and the original version of this License or a notice or disclaimer,
the original version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedica-
tions”, or “History”, the requirement (section A) to Preserve its Title
(section A) will typically require changing the actual title.

TERMINATION

You may not copy, modify, sub-license, or distribute the Document except
as expressly provided for under this License. Any other attempt to copy,
modify, sub-license or distribute the Document is void, and will automati-
cally terminate your rights under this License. However, parties who have
received copies, or rights, from you under this License will not have their
licenses terminated so long as such parties remain in full compliance.

FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the
GNU Free Documentation License from time to time. Such new versions
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will be similar in spirit to the present version, but may differ in detail to
address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the
Document specifies that a particular numbered version of this License “or
any later version” applies to it, you have the option of following the terms
and conditions either of that specified version or of any later version that
has been published (not as a draft) by the Free Software Foundation. If
the Document does not specify a version number of this License, you may
choose any version ever published (not as a draft) by the Free Software
Foundation.

ADDENDUM: How to use this License for
your documents

To use this License in a document you have written, include a copy of
the License in the document and put the following copyright and license
notices just after the title page:

Copyright c© YEAR YOUR NAME. Permission is granted to
copy, distribute and/or modify this document under the terms
of the GNU Free Documentation License, Version 1.2 or any
later version published by the Free Software Foundation; with
no Invariant Sections, no Front-Cover Texts, and no Back-Cover
Texts. A copy of the license is included in the section entitled
“GNU Free Documentation License”.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts,
replace the “with...Texts.” line with this:

with the Invariant Sections being LIST THEIR TITLES, with the Front-
Cover Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combi-
nation of the three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we rec-
ommend releasing these examples in parallel under your choice of free
software license, such as the GNU General Public License, to permit their
use in free software.
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