
Auerbach Publications

© 2001 CRC Press LLC

12/01

ENTERPRISE OPERATIONS MANAGEMENT

THE SSH PROTOCOL

Duncan Napier

I N S I D E

A Brief History of the Secure Shell Protocol and Its Implementations; How SSH Works;

Installation; Configuration; Using SSH

INTRODUCTION

SSH (Secure Shell) is a protocol for running secure network services over
an insecure network. The protocol serves as the basis for many imple-
mentations of SSH that are now widely available as commercial or non-
commercial products. These products encompass a wide variety of
platforms, including virtually all flavors of UNIX, DOS/Windows, and
Macintosh operating systems as well as many other environments, in-
cluding OpenVMS, BeOS, OS/2, PalmOS, and Java to name a few. SSH
runs on top of TCP/IP and is generally invisible to the software applica-
tions layer. As a result, SSH can be made completely transparent to end
users and does not require any additional user training.

The term “Secure Shell” originates from the early days of SSH in 1995,
when Tatu Ylönen, a researcher at Helsinki University of Technology,
wrote an application to facilitate secure, encrypted login access for UNIX
hosts. SSH was originally designed as a secure drop-in replacement for
rsh, UNIX remote shell, as well as remote login and file transfer applica-
tions such as telnet and rcp. These traditional UNIX services either by-
pass or offer limited user authentication (i.e., logon and password). They
are vulnerable to IP spoofing or DNS table manipulation because they of-
fer neither the means to authenticate the identity of hosts being logged
on to, nor that of the login client. They also pass all data — including lo-
gin names and passwords — in plaintext over connections that can be si-
lently hijacked. Plaintext data can be easily modified or corrupted in
transit without the knowledge of end users.

Conceptually, the SSH protocol
runs as an application on top of the
TCP/IP layer. The SSH protocol is im-
plemented through separate client
and server applications that authenti-
cate and negotiate protocols before

P A Y O F F I D E A

SSH (Secure Shell) is a protocol for authenticat-

ing, encrypting, and checking the integrity of in-

formation traversing TCP/IP-based networks.

This article describes SSH, how to install it, and

how to use it.

46-40-70

Auerbach Publications

© 2001 CRC Press LLC

12/01

deciding whether to establish a secure connection. The protocol pro-
vides for cryptographic host and user authentication, strong encryption,
integrity protection, and the simultaneous tunneling of multiple data
channels. These features lend themselves to more than just secure re-
mote logins. The feature set of SSH includes:

• Secure remote login
• Secure remote command execution
• Secure remote file transfer
• TCP port forwarding
• Cryptographic key control
• Authentication agents (including single sign-on)
• Configurable access control
• Data compression

Before discussing the above features in detail, it is useful to summa-
rize the history of the SSH protocol to understand some of the rationale
behind its design and its numerous implementations.

A BRIEF HISTORY OF THE SECURE SHELL PROTOCOL AND ITS IMPLEMENTATIONS

The first incarnation of the SSH protocol (known henceforth as SSH1)
was developed by Tatu Ylönen in 1995. SSH1 was released on the Inter-
net as free software with source code in July 1995. Ylönen documented
the software as an Internet Engineering Task Force (IETF) Internet Draft
that became the specification for the SSH1 protocol.

By the end of 1995, there were an estimated 20,000 users and Ylönen
started SSH Communications Security (http://www.ssh.com) to commer-
cially sell, support, and develop SSH. The freeware versions of SSH con-
tinued to be available, but SSH Communications Security imposed
restrictions on the terms of their use. In 1996, SSH Communications Se-
curity introduced a new version of the protocol, SSH2. The IETF founded
a public working group for standardization of the secure shell, SECSH, in
1996. By February 1997, the first Internet Draft for the SSH2 protocol was
completed. In 1998, SSH Communications Security released an SSH2 im-
plementation based on the SSH2 protocol.

The SSH2 protocol fixed some problems and shortcomings in SSH1
but these fixes rendered SSH2 incompatible with SSH1. SSH Communica-
tions Security also placed more restrictions of the use of its SSH2 product.
These limitations may explain why after all this time, SSH1 is still proba-
bly the more widely used protocol at the time of writing. SSH Communi-
cations Security has since removed some of the restrictions on its SSH2
product and there has also been a steady proliferation of free and Open
Source implementations that support both SSH1 and SSH2 protocols. An
indication that SSH is entering the public mainstream is the SSH function-
ality offered with many of the staple terminal emulation packages, both

Auerbach Publications

© 2001 CRC Press LLC

12/01

free (e.g., TeraTerm) and commercial (e.g., Van Dyke Secure CRT and
April Systems Anita).

The many free, Open Source, and commercial implementations of the
SSH1 and SSH2 protocols make it difficult to talk about the practical prop-
erties and features of SSH in general without biasing the discussion in the
direction of a particular implementation. While virtually all implementa-
tions are faithful to the fundamental features of the protocol and can be
made to interoperate smoothly, different implementations may have en-
hancements or idiosyncrasies that are unique to a particular product. In
addition to the obvious incompatibility between SSH1 and SSH2 proto-
cols, the author has found subtle and not-so-subtle problems, often relat-
ing to the interoperability of current products with many older releases.

To alleviate the problem in describing a fictitious “generic” implemen-
tation of the SSH protocols, the focus here is on the OpenSSH implemen-
tation of SSH. Open SSH is based on Björn Grönvall’s fix of Ylönen’s last
free version of SSH1 (release 1.2.12), which Grönvall named OSSH. By
early 2000, the OpenBSD (http://www.openbsd.org/) team had taken
over OSSH and renamed the project OpenSSH using Grönvall’s work.
OpenSSH has reached its current form through the work of Markus Friedl
and others.

The decision to use OpenSSH in this discussion is based on a number
of reasons, namely that OpenSSH:

• Has been ported to a wide variety of platforms encompassing all the
major UNIX flavors, Windows/DOS, MAC OS X, and others

• Is free and has no patented algorithms in its source tree
• Supports both SSH1 and SSH2 in a single, seamless package
• Derives its code base from the OpenBSD project, which has an al-

most unparalleled track record in the development of secure, stable,
and reliable software

• Releases tightly controlled upgrades on a regular and timely basis

OpenSSH is a work in progress and its feature list continues to grow with
each successive release.

HOW SSH WORKS

Exhibit 1 shows a conceptual schema of how SSH authentication and en-
cryption works. The actual details of the implementation may vary, de-
pending on the version of the protocol (SSH1 or SSH2), the specific
implementation involved, and the user’s choice of authentication proto-
cols. Essentially, the steps are as shown in Exhibit 1 and describe below.

Step 1

The client host (left) connects to the server host (right), conventionally
on TCP port 22. The server and client exchange the protocol versions

Auerbach Publications

© 2001 CRC Press LLC

12/01

they support and, if compatible, continue the connection. Otherwise, the
connection is terminated. The connection may be terminated if SSH1-
only and SSH2-only implementations are involved because the two pro-
tocols are incompatible. The connection at this stage is unencrypted but
uses check-bytes for integrity checking and plaintext-attack prevention
on top of the TCP connection to ensure that the connection is not at-
tacked or hijacked at this stage.

Step 2

The server sends its authentication information and session parameters to
the client. This includes the server host’s public key component of its
own public/private key pair, as well as a list of the encryption, compres-
sion, and authentication modes that the server supports. In SSH1, an ad-

EXHIBIT 1 — Steps through which SSH Initiates, Authenticates, and

Encrypts Communications

Server

Client

Server Public Key

Server Private Key

Client Host Public Key Library

Client connects to server on TCP Port 22.
1

Sender sends its public key(s) for proof of
identity and for client to encrypt session
information.

2

Client compares server public key to
corresponding public key for that server in
its public key library. Client then initiates
transmission of secret session key either by
1. Encrypting session key with server public

keys
2. Initiation of multi-party key-exchange

procedure (e.g., Diffie-Hellman)

3

Server turns on encryption and is ready to
receive client user and host authentication.

4

Client turns on encryption with session key
and further authentication (e.g., user
authentication through login password or
cryptographic key).

5

Full authentication of client is established
and access to server is enabled.

6

With server verified, client
now authenticates itself with

key or user password

Server sends public key

Secret session key transmitted

Encryption enabled

Auerbach Publications

© 2001 CRC Press LLC

12/01

ditional server key is sent. Public key algorithms supported by most SSH
implementations include RSA (Rivest-Shamir-Aldeman) and DSA (Digital
Signature Algorithm).

Step 3

The client host checks the server host’s public key against the client host’s
library of public keys. If this is the first time that this particular client and
this particular server host have connected over SSH, the user is asked to
verify the addition of new a server host public key to the client’s public
key library. Any future connections to that particular server host will now
be verified against that public key reported from their first contact. Once
the identity of the server is verified, a secret session key is generated.

In SSH1, the session key is encrypted with the server host public key
and the server host’s server public keys and sent back to the server host.
Because the encrypted session key can only be decrypted by the server
host’s private key, the secret session key can be safely transmitted over
the insecure link.

In SSH2, a multi-party key-exchange algorithm is used. Key-exchange
algorithms allow for a shared secret to be agreed to and then securely
transmitted between parties. The original and perhaps best-known key-
exchange algorithm is the Diffie-Hellman algorithm.

One might wonder why a secret session key is required when pub-
lic/private key pairs are available. The reason is that while many encryp-
tion methods use public key (or asymmetric) encryption, public key
encryption is much slower than symmetric encryption methods in which
all parties share a single, shared secret key. As a result, the secret key is
transmitted and kept secret using public key encryption, but the actual
scrambling of the data is done more speedily with the shared secret key
called the session key. Public keys also just happen to be ideal for au-
thentication and identification purposes. Secret key algorithms that SSH
supports include 3DES (triple Data Encryption Standard), IDEA (Interna-
tional Data Encryption Algorithm), and Blowfish.

Note that at this point, the communication is still unencrypted.

Step 4

Once the secret session key is in the possession of both parties, encryp-
tion and integrity checking are turned on.

SSH1 uses a single session key for each session. For improved securi-
ty, SSH2 can periodically change session keys, a process known as “re-
keying.” Session keys are typically stored only in memory and are not
written to storage for security purposes. SSH1 uses the weak CRC-32
(Cyclic Redundancy Check) method for checking data integrity. SSH2
uses cryptographically stronger MAC (Method Authentication Code) in-
tegrity checkers.

Auerbach Publications

© 2001 CRC Press LLC

12/01

Step 5

The client host and the client host user (“the user”) can now be authen-
ticated to the server host without fear of the authentication and access
transmission being intercepted or corrupted in transit. Methods by which
the users authenticate themselves to the server include plaintext user log-
in passwords, a user public key certificate (e.g., RSA, PGP), host public
keys, Kerberos, Gauntlet’s TIS, Sun Microsystem’s PAM — the list goes on
and on. Once the user is authenticated, appropriate access to the server
and its services are granted to the user. The two machines are now con-
nected through a secure, encrypted connection which can be used as a
secure tunnel for all manner of services such as shell login sessions,
UNIX XWindows sessions, POP3 or SMTP connection to a secure mailer,
or a PPP-based VPN connection through an Internet gateway.

The above description highlights some of the many differences be-
tween the SSH1 and SSH2 protocols, and may give the reader some idea
as to why they are incompatible. SSH2 also has a much more modular
design, and features such as the authentication and encryption methods
supported are not hardcoded into the protocol as was the case with
SSH1. SSH2 has much more of an extensible “plug-in” philosophy, in
which new protocols and methods can be used as drop-in replacements
to the existing ones.

INSTALLATION

The SSH suite of programs is available as freeware, commercial, and open
source software for a wide range of platforms (refer to list below). The au-
thor cannot vouch for all products and distributions, and one’s mileage
with each of them may vary. There are good reasons to purchase vendor-
supported products, but the focus here is on OpenSSH, which is generally
compliant with the IETF standards for SSH (both SSH1 and SSH2).

OpenSSH has been ported to all major operating systems and plat-
forms, and is available with source code free of charge to download and
test. Releases of OpenSSH are written for the OpenBSD operating sys-
tem. A second portablility team at the OpenSSH project then typically fol-
lows up with a portable distribution that is identified with a “p”-
designation in the version number. For example, OpenSSH 2.9 is the re-
lease of OpenSSH for OpenBSD and OpenSSH 2.9p1 is the first (as des-
ignated by the p1) portable version for all other operating systems.
OpenSSH can be downloaded from the official OpenSSH Web site at
http://www.openssh.com. A compatibility list is available at the official
SSH Web site.

OpenSSH is also bundled into several OS distributions, including
RedHat Linux, Debian Linux, Suse Linux, and Open and FreeBSD. Offi-
cial and unofficial binary-package distributions of OpenSSH exist for
such platforms as Linux (as rpms; http://www.redhat.com), Solaris

Auerbach Publications

© 2001 CRC Press LLC

12/01

(http://www.sunfreeware.com/), AIX (http://www.rge.com/pub/sys-
tems/aix/bull/), and HP-UX (http://eigen.ee.ualberta.ca/). OpenSSH can
be installed on WIntel (Windows 95/98/NT/2000) platforms as part of the
Cygwin package (http://www.cygwin.com/).

Source code can be downloaded for compilation from the links on the
official OpenSSH Web site. For the UNIX source distribution, OpenSSH
requires that the zlib data compression library be installed, along with
the OpenSSL library, from which OpenSSH draws its cryptographic com-
ponents. GNUMake and a recent GCC compiler are also highly recom-
mended. At the present time, all major UNIX flavors are supported,
including Linux, Solaris, AIX, HP-UX, Digital UNIX/Tru64, SCO, IRIX,
Open and FreeBSD, NeXT, and more. OpenSSH releases are initially
OpenBSD. The package can be downloaded as a tarball (.tar.gz pr .tar.Z),
un-archived, and then run with the “configure,” “make,” and “make in-
stall” sequence. If one requires any (typically nonstandard) tweaks to the
default compilation (e.g., if one’s system uses MD5 passwords or has the
shadow password file disabled), one may need to manually change the
compilation flags in the application Makefile. Note also that OpenSSH
uses PAM (pluggable authentication modules) by default for login/pass-
word authentication. If the OS is configured to use PAM, one will need
to make PAM aware of the SSH applications. This is commonly done by
copying the appropriate PAM config file for SSH into the PAM configura-
tion tree (usually requires copying a sample sshd.pam file from the /con-
trib directory of the distribution into /etc/pam.d/sshd). One’s distribution
documentation is the ultimate source of information on the full installa-
tion procedure.

The default installation directories for OpenSSH in UNIX are typically
/usr/local/bin for the binary executables and /usr/local/etc for host con-
figuration and host cryptographic key storage. User keys and other spe-
cific user authentication information are usually stored in a subdirectory
of that user’s home directory, ~/.ssh. For the Cygwin MS Windows distri-
bution, the applications and config files reside in analogous locations in
the Cygwin directory hierarchy.

The OpenSSH is built around two fundamental applications:

•

ssh:

a basic rlogin/rsh-like client program
•

sshd:

the server end that handles the client connections

The applications that control and regulate the cryptographic keys are:

•

ssh-keygen:

the cryptographic key generation tool
•

ssh-agent:

the authentication agent that stores private keys
•

ssh-add:

the tool that adds keys into the above agent

A suite of secure file transfer utilities is also included. These are:

Auerbach Publications

© 2001 CRC Press LLC

12/01

•

scp:

file copy program that acts like rcp
•

sftp:

FTP-like program that works over the SSH1 and SSH2 protocols
•

sftp-server:

SFTP server subsystem

The server applications are usually set up to run as daemons in UNIX
(and services in Windows) at start-up. If the SSH default TCP port 22 is
used in a UNIX environment, then the server must be run as root because
all applications that listen on ports 1023 and below require root privileg-
es. One is free, however, to run SSH on any port of one’s choosing, and
this can be accomplished by changing the SSH configuration parameters.

CONFIGURATION

All server configurations are set using the sshd_config file. Global client
configurations are set from the ssh_config file. Per-account server and cli-
ent settings can also be implemented. SSH can be run as a stand-alone
daemon (the most common) or, for the case of UNIX, through inetd, or
as a service in WindowsNT/2000.

Typically, the first part of the server confiuration file sshd_config is
concerned with TCP/IP settings such as port number (Port 22), enable
port forwarding (AllowTCPForwarding), timeouts (IdleTimeout), treat-
ment of failed logins (LoginGraceTime), Reverse IP mappings (Require
ReverseMapping), and numerous other settings. Access control settings
(i.e., restricting/denying access to specific users) and authentication
methods are also set here. The remaining configuration parameters are
largely concerned with defining key generation, encryption algorithms,
and protocols.

The ssh_config file controls the client connection, authentication, en-
cryption methods, etc. An example of an ssh_config file is shown in Ex-
hibit 2. Many of these options and other options can be specified from
the command line. For a list of command-line options, type

$ssh -h

 at the
command prompt.

To enable access to an SSH server running sshd behind a firewall, the
access to and forwarding from port 22 on the firewall needs to be en-
abled. SSH clients initiate outbound connections from ports in the range
513 to 1023. This often causes problems when SSH is installed on firewalls
that only allow outbound packets on ports numbered greater than 1023.
The solution is to either run SSH with the -P option to use an unprivileged
port on outbound client connections, or configure the firewall to allow
ports 513 to 1023 for outbound connections to port 22 destinations.

USING SSH

Now consider some example applications of SSH.

Auerbach Publications

© 2001 CRC Press LLC

12/01

Remote Login with Password Authentication

To start the client in order to log in to a remote system, at the shell
prompt (or for Windows, in the DOS console), type

$ ssh duncan@server1.mycompany.com

where it is assumed that ssh is in the default path. This command opens
a login session to the host server1.mycompany.com as user “duncan.”
The login name is followed by an “@” optional, and if left out, the login
name will default to the user name the client is currently running under.
The host server then prompts for user duncan’s password. If crypto-
graphic user identification is used instead of password authentication,
the user types in the passphrase for their cryptographic key. This gener-
ates an authenticator that is encrypted with the user’s private key and
verified with a copy of their public key that has previously been stored
on the server. This greatly enhances security. First, passphrases are usu-
ally more difficult to attack with dictionary attacks and just an authenti-
cator — not the passphrase — is sent over-the-wire. Authentication
requires two components: the public/private user key pair that is re-
trieved from disk as well as the user’s manually entered passphrase.

EXHIBIT 2 —

Example of an ssh_config Configuraiton File for an SSH Client

“

Host *

” indicates that SSH is allowed to connect to all hosts. The remaining parameters
deal with forwarding, authentication modes, fallback to the rsh utility, the ability to
run batch jobs by suppressing standard output, and host and key checking.

Site-wide defaults for various options

Host *

ForwardAgent yes

ForwardX11 yes

RhostsAuthentication yes

RhostsRSAAuthentication yes

RSAAuthentication yes

PasswordAuthentication yes

FallBackToRsh no

UseRsh no

BatchMode no

CheckHostIP yes

StrictHostKeyChecking no

IdentityFile ~/.ssh/identity

Port 22

Protocol 2,1

Cipher blowfish

EscapeChar ~

Auerbach Publications

© 2001 CRC Press LLC

12/01

Remote Copy

At the shell prompt, type

$scp /home/bob/movethis.txt \

duncan@server1.mycompany.com:/home/duncan/tohere.txt

where the file /home/bob/movethis.txt on the local host is copied to the
host server1.mycompany.com using user duncan as the login authentica-
tor. Once again, the user will be prompted for a password. The reverse
copy procedure would be

$scp duncan@server1.mycompany.com:/home/duncan/fromhere.txt

\/home/bob/tohere.txt

To avoid retyping passwords, or to carry out operations between pairs of
remote hosts that have mutual trusts established, one can resort to using
SSH agents.

Remote Execution

To run a directory listing (ls) of the /etc directory on server1.mycompa-
ny.com using login duncan, type

ssh duncan@server1.mycompany.com ls /etc

Port Forwarding

The author has saved the best for last. One of the more intriguing fea-
tures of SSH is port forwarding. Local port forwarding maps selected TCP
ports or sockets from the present host to a remote host through an SSH
encrypted tunnel. Because this is done at the TCP level, it is done trans-
parently to the overlying applications. Remote port forwarding allows a
host machine to forward connections to a given TCP port to another re-
mote machine, effectively acting as a proxy, all through an encrypted
tunnel. SSH has a very extensive XWindows/X11 forwarding system built
into it. The primary security concern of XWindows users is that while
X11 has nominally secure authentication, all traffic to remote XWindows
is transmitted in plaintext and user keystrokes are vulnerable to capture.
When set up with Xforwarding options enabled, SSH fully encrypts all
XWindows traffic and enhances X client/server authentication. SSH also
has a very flexible, general port forwarding mechanism which is dis-
cussed below.

To create an encrypted tunnel from port 2001 on your local host to
port 23 (the telnet port) on a remote host, server1.mycompany.com, us-
ing user duncan’s account, simply type

Auerbach Publications

© 2001 CRC Press LLC

12/01

$ssh -L 2001:localhost:23 duncan@server1.mycompany.com

and authenticate onto the server. A shell session will begin by default
(running ssh with the -N option will initiate the connection but leave no
shell). One has now opened a tunnel to server1.mycompany.com. Now
one can telnet onto server1.mycompany.com by typing

$telnet localhost 2001

This connects one to TCP port 2001 on one’s local host, which then for-
wards one to the telnet port (TCP 23) of the remote host server1.mycom-
pany.com. I f the te lnet daemon is l i s tening on por t 23 of
server1.mycompany.com, one will connect through an encrypted tunnel.
One now has a fully encrypted telnet session.

To make server1.mycompany.com a general encrypting and port for-
warding proxy for myserver2.mycompany.com, one can connect to
myserver1.mycompany.com and run the following:

$ssh -R 2001:localhost:23 duncan@server2.mycompany.com

where the “-R” flag for remote port forwarding is used, instead of the “-L”
for local port forwarding used in the previous example. Authenticate and
log onto the server, establishing an SSH connection. Now anyone telnet-
ting onto myserver1.mycompany.com will be forwarded over an encrypt-
ed link to myserver2.mycompany.com.

These examples seem a little contrived, but here are a couple of real-
life situations that one might encounter.

Problem:

 You get your mail from a POP3 server that is on an untrusted
network through a mail agent (e.g., Eudora or MS Outlook). You are con-
cerned about your password being sniffed each time you log onto the
server. You can create an encrypted tunnel to the POP3 server assuming
you have access to a shell account on the POP3 server and the server has
SSH installated on it. On your mail client, you type:

$ssh -L 110:localhost:110 accountname@pop3.mycompany.com

and authenticate. Port 110 is the conventional POP3 port. You now have
an encrypted tunnel to the POP3 server. Note that to access a low-num-
bered port (i.e., a port number lower than 1023), you will require root
access on the client. You now have to set your POP3 server to “localhost”
and you should have encrypted access to your remote POP3 server. Ex-
hibit 3 shows schematically how port forwarding works in this case. Note
that the TCP port 110 is redirected internally through SSH to the existing
SSH tunnel.

Auerbach Publications

© 2001 CRC Press LLC

12/01

Problem:

 You are at a remote site from your SMTP server and are unable
to send outgoing e-mail because your SMTP e-mail gateway has anti-re-
laying rules and restricts access to hosts connecting from designated on-
site IP/domains. Referring to Exhibit 4, your laptop has been configured
with a foreign IP/domain name (offsite.theircompany.com). You config-
ure your workstation (onsite.mycompany.com) that is on site to relay
SMTP traffic from your off-site machine to the on-site SMTP gateway
server. On your workstation (onsite.mycompany.com), you type

$ssh -R 25:localhost:25 accountname@smtp.mycompany.com

creating a tunnel from your workstation to the SMTP server. Your work-
station now listens for and forwards SMTP traffic to the SMTP server
smtp.mycompany.com. Because the workstation is on-site, it is permitted
to use the SMTP server as an e-mail gateway. Set your SMTP server on
your mailer to your workstation and you have a forwarded SMTP con-
nection.

Note:

 You may want to disable the port forwarding as soon as
you no longer require an SMTP gateway because of the risk of turning
your workstation into an SMTP open relay for mail spammers. Exhibit 4
illustrates the layout of this remote port forwarding.

Port forwarding can be used to encrypt all manner of TCP/IP connec-
tions, and is used extensively with application such as AT&T Labs VNC,
a free multiplatform terminal (http://www.uk.research.att.com/vnc/).
Port forwarding is a useful tool to for creating secure connections from
and between proxying firewalls. A functional VPN that uses PPP (the
point-to-point protocol) over SSH can also be implemented.

CONCLUSION

This article has only scratched the surface of the capabilities and features
of SSH. The author’s hope was to introduce, those of you who were un-

EXHIBIT 3 —

Constructing an Encrypted POP3 Connection with SSH

Local Port Forwarding (shown with lock symbol)

POP3

SSH

SSH

POP3

SSH

pop3.theircompany.com

Auerbach Publications

© 2001 CRC Press LLC

12/01

familiar or only marginally familiar with SSH, to the potential of its capa-
bilities. The applications of SSH in the real world are only limited by the
imagination and ingenuity of those who choose to implement it. With
SSH, it would appear that one of the “holy grails” of Internet privacy ad-
vocates, that of universal encrypted and authenticated communications,
is well at hand.

Recommended Reading

1.

SSH. The Secure Shell. The Definitive Reference,

 D. J. Barrett and Richard Silverman, Sebastopol CA:
O’Reilly & Associates, 2001. For anyone who is interested in SSH, this book is a must-have.

2.

Securing Windows NT/2000 Server for the Internet,

 Stefan Norberg, Sebastopol CA: O’Reilly & Associ-
ates, 2001. Contains useful information about bare-bones Cygwin ssh install on an NT server and use
of VNC.

3.

Applied Cryptography,

 2nd edition, Bruce Schneier, New York: John Wiley & Sons, 1995. A comprehen-
sive guide to cryptography algorithms and protocols. A floppy disk of source code is available from the
author.

Duncan Napier is the owner/operator of Napier Systems Research, an Information Technology and Systems con-

sultancy based in Vancouver, British Columbia. Duncan’s educational background is in computer science and

computational chemistry, and his company specializes in the design, configuration, and management of networks

and network solutions. He can be reached by e-mail at napier@computer.org.

EXHIBIT 4 —

Creating a Remote SMTP Forwarder for an SMTP Server

POP3

SSH

SSH

POP3

SSH

SMTP

pop3.theircompany.com

offsite.theircompany.com

	ENTERPRISE OPERATIONS MANAGEMENT
	CONTENTS
	The SSH Protocol
	INTRODUCTION
	A BRIEF HISTORY OF THE SECURE SHELL PROTOCOL AND ITS IMPLEMENTATIONS
	HOW SSH WORKS
	Step 1
	Step 2
	Step 3
	Step 4
	Step 5

	INSTALLATION
	CONFIGURATION
	USING SSH
	Remote Login with Password Authentication
	Remote Copy
	Remote Execution
	Port Forwarding

	CONCLUSION

