June 26, 2007

SSH The Secure Shell

UniForum

Chicago

Hemant Shah shahhe@gmail.com

Platform: Linux and Unix

What is SSH?

What is SSH?

- The Secure Shell
- It is a protocol not a product
- Software based approach to network security
- Encrypts the data sent between the computers
- Client/Server architecture
- Comes with all Linux distribution, Mac OS X, AIX, Sun Solaris, OpenBSD and other Unix variants
- Ported to other operating systems, such as Windows, Palm OS, Amiga, etc.
- Other clients, such as, scp, sftp, etc. are also available
- Replacement for telnet, rlogin, rsh, rcp, ftp, etc.

What is SSH Not

What SSH is NOT

- It is not a true shell like csh, ksh, sh, etc.
- It is not a command interpreter
- It creates secure channel for running commands on remote computer
- It is not a complete security solution
- It will not protect against trojans, viruses, etc.

History

History

- In 1995, Tatu Ylönen, a researcher at Helsinki University designed the first version of the protocol (now called SSH-1)
- In July of 1995, he released SSH1 as free software
- In December of 1995 he formed SSH Communication Security to market and develop SSH
- In 1996 SSH-2 was developed, it was incompatible with SSH-1
- SCS released SSH-2 in 1998 and had more restrictive license
- IETF formed group called SECSH to standardize the protocol
- OpenSSH, free implementation of SSH-2 protocol was released from OpenBSD project.
- In 2006 IETF SECSH group released SSH-2 as internet standard (RFC 4251)

Terminology

Terminology

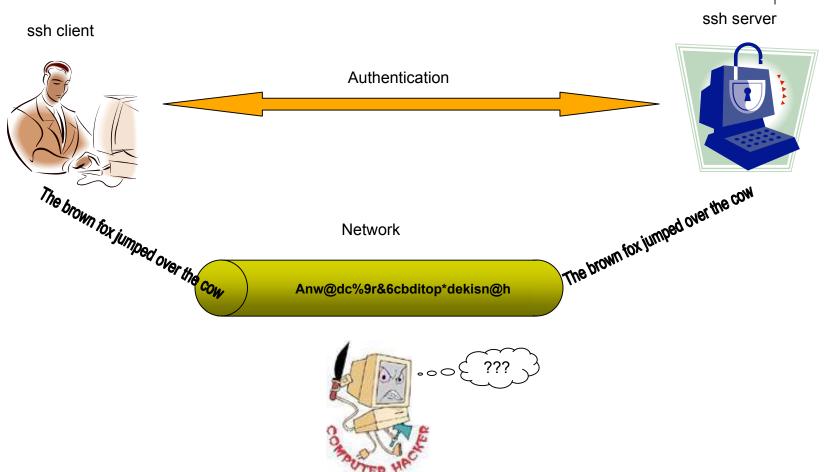
SSH - Generic term used for SSH protocols

ssh - Client command for running remote command

sshd - Server program

SSH-1 - Version 1 of the protocol

SSH-2 - Version 2 of the protocol


OpenSSH - Product from open BSD project

SSH Architecture

SSH Architecture

SSH Layers

Application Layer	ssh-connection Session multiplexing, X11 and port forwarding, remote command execution, SOCKS proxy, etc.
	ssh-userauth User authentication using public key, password, host based, etc.
	ssh-transport
	Initial key exchange and server authentication, setup encryption
Transport Layer	TCP
Internet Layer	IP
Network Access Layer	Ethernet

SSH Connection Sequence

- A cryptographic handshake is made with the server
- The connection between client and remote server is encrypted using symmetric cipher
- Client authenticates itself
- Client can now interact safely with remote server over encrypted connection

SSH Features

- Strong encryption
- Strong authentication
- Authorization
- Integrity of communication
- Forwarding or tunneling

SSH will protect against

- Eavesdropping of data transmitted over the network
- Manipulation of data at intermediate elements in the network (e.g. routers)
- IP address spoofing where an attack hosts pretends to be a trusted host by sending packets with the source address of the trusted host
- DNS spoofing of trusted host names/IP addresses
- IP source routing

SSH will not protect against

- Incorrect configuration or usage
- A compromised root account
 - If you login from a host to a server and an attacker has control of root on either side, he/she can listen to your session by reading from the pseudo-terminal device, even though SSH is encrypted on the network, SSH must communicate in clear text with the terminal device
- Insecure home directories: if an attacker can modify files in your home directory (e.g. via NFS) he may be able to fool SSH

Installing SSH

Downloading Source Code

You may download the source from

http://www.openssh.com/

Read installation instructions to check if you have pre-requisite packages and libraries.

Building and installing OpenSSH


```
gtar -xzf openssh-4.5p1.tar.gz
cd openssh-4.5p1
./configure
make
make install
```


Configuration files

SSH Configuration Files

- SSH has two different sets of configuration files
 - System wide configuration files
 - User specific configuration files

System wide configuration files

• The system wide configuration are stored in /etc/ssh directory ssh_config - Client configuration file. It is overridden by configuration file in user's home directory

sshd_config - Configuration file for sshd server daemon ssh_host_dsa_key - The DSA private key used by the sshd daemon

ssh_host_dsa_key.pub - The DSA public key used by the sshd daemon

ssh_host_rsa_key - The RSA private key used by the sshd daemon for version 2 of the SSH protocol ssh_host_rsa_key.pub - The RSA public key used by the sshd for version 2 of the SSH protocol

June 26, 2007 Copyright Hemant Shah

System wide configuration files

sshd.pid - Server's PID is stored in this file

User specific configuration files

within this file

• The user specific configuration files are stored in ~UserName/.ssh directory authorized_keys2 - This file holds a list of authorized public keys for users. When the client connects to a server, the server authenticates the client by checking its signed public key stored

id_dsa - Contains the DSA private key of the user id_dsa.pub - The DSA public key of the user id_rsa - The RSA private key of the user id_rsa.pub - The RSA public key of the user known_hosts - This file contains DSA host keys of SSH servers accessed by the user. This file is very important for ensuring that the SSH client is connecting the correct SSH server

User specific configuration files

config - Client configuration file

Configuration files

- Specify authentication methods supported
- Specify SSH protocols supported
- Need to make trade-offs between security and easy-of use
- Behavior of the server can be controlled in following order:
 - Compiling time configuration
 - Configuration file
 - Command line options

Configuration file syntax

- Server configuration is stored in /etc/ssh/sshd_config file
- Client configuration is stored in /etc/ssh/ssh_config and
 /.ssh/config files.
- The file contains two types of entries
 - Comment or blank line
 - Key/Value pair

Example:

```
# This is a comment line
Port 22
```


Protocol

Possible values are 1 or 2

Protocol 2

Protocol 1 has been deprecated because of vulnerabilities, it is recommended that you do not support protocol 1.

Port

Possible values are any integer less than 65535

Port 22

ListenAddress

IP address of the system and optionally port number

```
ListenAddress 10.90.10.101
ListenAddress 10.90.10.102:12345
```

By default sshd will listen to all network interfaces, if you want to limit sshd to service only certain interface then use this option.



TCPKeepAlive

Send TCP keepalive messages

TCPKeepAlive yes

If keepalive messages are not sent then server may not realize that the client has crashed. It will keep running and use resources. However, this means that connections will die if the route is down temporarily.

Compression CompressionLevel

Compression yes
CompressionLevel 6

Not needed on intranet.

IgnoreRhosts

IgnoreRhosts yes

UsePrivilegeSeparation

UsePrivilegeSeparation yes

Separates privileges by creating an unprivileged child process to deal with incoming network traffic.

PermitRootLogin

PermitRootLogin no

Specifies whether root can login using ssh. The argument must be `yes", `without-password", `forced-commands-only" or `no". The default is `yes".

Server recommendations

Subsystem

Subsystem sftp /usr/local/libexec/sftp-server

Configures external subsystem (e.g. sftp server).

Host

Host hostname or wildcard pattern.

Restricts the following configuration, up to the next Host keyword, to the matching host(s).

BatchMode

BatchMode no

If set to yes, passphrase/password querying is disabled. This option is useful in scripts and other batch jobs.

ForwardX11

ForwardX11 yes

ForwardX11Trusted

ForwardX11Trusted yes

If the this option is set to ``yes" then remote X11 clients will have full access to the original X11 display. If this option is set to ``no" then remote X11 clients will be considered untrusted and prevented from stealing or tampering with data belonging to trusted X11 clients.

IdentityFile

IdentityFile /path/to/private/key/file

HostName

HostName real hostname or IP address

Specifies the real host name to log into. This can be used to specify nicknames or abbreviations for hosts.

LocalForward

LocalForward port host:port

Specifies that a TCP/IP port on the local machine be forwarded over the secure channel to the specified host and port from the remote machine.

Port

Port port number

Specifies the port number to connect on the remote host.

Checking configuration

• To check the configuration run following command:

Key Management

Key pairs

- ssh authenticates users using key pairs
 - private key
 - public key

Key management commands

- ssh-keygen Create key pairs
- ssh-agent Holds private key in memory
- ssh-add Adds key to the key agent

Generating key pairs


```
shahhe@kubuntu1:~$ ssh-keygen -t dsa
Generating public/private dsa key pair.
Enter file in which to save the key
(/home/shahhe/.ssh/id_dsa):
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in
/home/shahhe/.ssh/id_dsa.
Your public key has been saved in
/home/shahhe/.ssh/id_dsa.pub.
The key fingerprint is:
99:51:ac:02:10:0c:d4:55:09:cc:86:36:cf:59:d0:33
```

Generating key pairs

shahhe@kubuntu1:~\$ cat ~/.ssh/id_dsa
----BEGIN DSA PRIVATE KEY----

MIIBuwIBAAKBgQDPmC7jSBnJMoQ8o6/cF4GUDP/gsCqonA0UGs2g/92N8qVTxxZgU3MgZAQ96FAsaGKFDfsxoqbp1eXX7IXUS+erPOMQnDtbooLgZN3VpvStvV/hulnnHoFJoDmoE5MnrY0Su93jZe2mPp4hOrYYQu0/8r3YRFtAzz6TCauHFxO4DQIVAJYoapGVvbg8J1rAefSBReOef/iXAoGBAJUXbyDtR0wpyz5UKT11FmVS/a34ST9LfzldOjR38c9sRCf8klRZ6IuqoLUZZ3jSo56+SRsraFQReCB5GLWPx5qKzHz9xi9XFseTaCb3Qh70EbiP3uAFqnTvk2K8voKC4dNIEXZ7SZXZUsWBImLaYXf/scvL7fMlMy9dfCMf8By2AoGAGEdK17lrlD7zfWUVyJm+26ZaQ/QU4Yhff6Cfoe1lnq/1UmT6SEVfSZWsj9n8fj7Ez8103gU/g+otZXDcsS6OmNMooWkADIbkHfQ6oeoK1h/3z0hV8TY4HnOtMZuHJMf1LPFNvINbenLS+qldGvi19aTxZUkcQJiHdpr6GR3jn9cCFE9xHd8qY8klJEyIPYK+KQ4UrbhZ

----END DSA PRIVATE KEY----

Generating key pairs

shahhe@kubuntu1:~\$ cat ~/.ssh/id_dsa.pub
ssh-dss AAAAB3NzaC1kc3MAAACBAM+YLuNIGckyhDyjr9wXgZQM/+CwKqicDRQazaD/3Y3
ypVPHFmBTcyBkBD3oUCxoYoUN+zGipunV5dfshdRL56s84xCcO1uiguBk3dWm9K29X+G6We
cegUmgOagTkyetjRK73eNl7aY+niE6thhC7T/yvdhEW0DPPpMJq4cXE7gNAAAAFQCWKGqRl
b24PCdawHn0gUXjnn/4lwAAAIEAlRdvIO1HTCnLPlQpPXUWZVL9rfhJPOt/OV06NHfxz2xE
J/ySVFnoi6qgtRlneNKjnr5JGytoVBF4IHkYtY/HmorMfP3GL1cWx5NoJvdCHvQRuI/e4AW
qdO+TYry+goLh00gRdntJldlSxYEiYtphd/+xy8vt8yUzL118Ix/wHLYAAACAGEdK17lrlD
7zfWUVyJm+26ZaQ/QU4Yhff6Cfoe1lnq/1UmT6SEVfSZWsj9n8fj7Ez8103gU/g+otZXDcs
S6OmNMooWkADIbkHfQ6oeoK1h/3z0hV8TY4HnOtMZuHJMf1LPFNvINbenLS+qldGvi19aTx
ZUkcQJiHdpr6GR3jn9c= shahhe@kubuntu1

Executing commands

Logging into remote system


```
shahhe@kubuntu1:~$ ssh    shah@xnet.com
Last login: Mon Jun 18 21:26:33 2007 from d47-69-253-190.

* Problems? Questions? Email: help@xnet.com
* Type "whatsup" to see information posted to our "What's Up?"
page.

You have mail.
You have 17 read messages.
You have no new mail.

/home/customer/shah
{shah@typhoon} 1>
```

Copying file to remote system


```
shahhe@kubuntu1:~$ scp .profile shah@xnet.com:tmp/profile.kubuntu
.profile 100% 566 0.6KB/s 00:00
```

```
shahhe@kubuntu1:~$ scp shah@xnet.com:tmp/profile.kubuntu tmp/. profile.kubuntu 100% 566 0.6KB/s 00:00
```

Executing commands on remote system


```
shahhe@kubuntu1:~$ ssh shah@xnet.com ls
Mail
News
bin
mail
public_html
tmp
```

Executing commands on remote system

shahhe@kubuntu1:~\$ ssh -Y shah@xnet.com /opt/sfw/bin/xterm

Force execution of command

Force execution of command

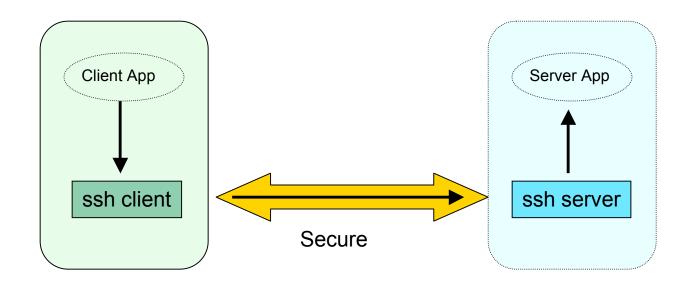
 To force an execution of a command use command keyword in authorized_key2 file.

command="~/bin/DumpEmpNames", no-port-forwarding ssh-dss
AAAAB3NzaC1kc3MAAACBAIB8B1MvYlWnVeyPE6bMwrTr1OM8O2HXiQQKq9801q
fmOf9x3QYZzXVFegdNYDtN4o1sr6T7bmCNvOTC7sZoglaFIbfQoHfmIexabVyz
xin/2d2Juof7YU53Zrx1BjHKzqQpCj6jx7FxjPqlLD0BvL9R3qoPIpJ6Jt0YvY
Ae4Zj9AAAAFQDoejxCMgfZ0O/Zxwxn3mFidTpogQAAAIBDQvrhRsDFhA1UUkBO
203pVujfnNYF7X58mD/WPGZ+Z4aR8dGuD21X7hC6M8ko9a9wLLYigELSkUiWps
VZ/NJyBxhrCCD3YCNXeltJ7L0KaWGP96H2KkDtYsP7RMhAmztVpmlOrPzXbIpU
3jpq8dRJqUksG8mq2dbXPBWgh9xHyQAAAIBG9iwGfjPLDTH1niXk5tbZQUuEGk
GZzCaBw8jJlKPXMWeE7rVmBXV5sC/zhcX3OAXUNj8OUpafxFZxbxtmnzIgnehW
duWTWmiQPOi2f8oV9fCulpFnYWGNn4V4hmqDlScWNoIe3ObV05WTerdyJAY8bv
2Zfh9EJGEJvFFerdur/q== Key for Dumping active user names.

Force execution of command

Execute command as follows:

ssh -i ~/keys/DumpEmpNames.dsa user@remotehost


Options for authorized_keys2 file

Option	Meaning
command="command name"	Specify a force command
environment="variable=value"	Set environment variable
from="host or ip address"	Limit incoming hosts
no-agent-forwarding	Disable forwarding agent
no-port-forwarding	Disable port forwarding
no-pty	Do not allocate TTY
no-x11-forwarding	Disable X11 forwarding

Create SSH tunnel

```
ssh -f -N -L10112:localhost:80 www.example.com
```

Add to ~/.ssh/config file and run ssh command

```
Host webtunnel
User shahhe
Hostname www.example.com
LocalForward 10112 www.example.com:80
```

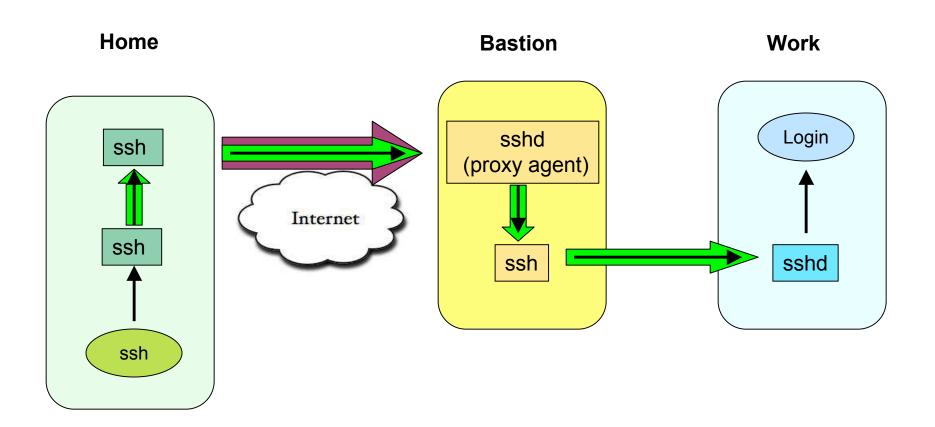
ssh -f -N webtunnel

Start application using port on localhost

firefox http://localhost:10112

Agent forwarding

Agent forwarding


You want to login to the computer at work from your home computer or from from hotel while traveling. The computer at work is behind the firewall so you cannot connect to it directly.

You are allowed to connect to a bastion host, but are not allowed to store private keys on it.

What can you do?

Agent Forwarding

sshd configuration on bastion host

Port 46464
Protocol 2
PasswordAuthentication no
X11Forwarding yes
Compression no
Subsystem sftp /usr/libexec/sftp-server

ssh tunnel configuration on home system

The configuration is stored in ~/.ssh/tunnel.cfg file.

```
Host *
    ForwardX11 yes
    ForwardAgent yes
    NoHostAuthenticationForLocalhost yes

Host bastionhost
    User RemoteUser
    IdentityFile /home/LocalUser/.ssh/work_dsa
    HostName 69.2.50.60
    Port 46464
```

ssh client configuration on home system


```
Host *
        ForwardX11 yes
        ForwardAgent yes
        NoHostAuthenticationForLocalhost yes
Host portmap
        HostName localhost
        LocalForward 10001 10.60.80.101:22
        LocalForward 10002 10.60.80.102:22
Host host1
        User RemoteUser
        IdentityFile /home/LocalUser/.ssh/work dsa
        HostName localhost
        Port 10001
Host host2
        User RemoteUser
        IdentityFile /home/LocalUser/.ssh/work dsa
        HostName localhost
        Port 10002
```

June 26, 2007 Copyright Hemant Shah 72

Setting Key Pair

- Generate key with password
- Store private key on Home system
- Store public key on **Bastion** host
- Store public key on Work system

Login into work systems

Do the following on the HOME system:

Start ssh-agent and add the key

```
ssh-agent $SHELL
ssh-add ~/.ssh/work_dsa
```

Create tunnel to bastion host

```
ssh -f -N -F ~/.ssh/tunnel.cfg bastionhost
ssh -f -N UserName@portmap
```

Login in to work systems

```
ssh host1 ssh host2
```


Environment variables

Environment variables

Variable	Meaning	Example
SSH_CONNECTION	Client and server socket information	10.90.10.107 45756 10.90.10.182 22
SSH_AUTH_SOCK	Path to socket	/tmp/ssh-FcRCI22249/agent.22249
SSH_CLIENT	Client socket information	10.90.10.107 45756 22
SSH_TTY	Name of TTY	/dev/pts/48

Other ssh based applications

Other ssh based applications

sshfs - ssh based file system client

```
http://fuse.sourceforge.net/sshfs.html
```

sftp - secure file transfer. Part of OpenSSH

```
http://www.openssh.com/
```

OpenSSH alternatives for windows

PuTTY

TTSSH

Cygwin

MSSH

WinSCP

FileZilla

Advantages of using ssh

Advantages

- Proven technology
- Strong encryption
- Both free and commercial versions exist
- Runs on many platforms
- Tunneling of ports works well and can be used for simple VPNs
- Many authentication methods supported
- Can be SOCKS5 proxy aware
- Use it instead of VPN

Disadvantages of using ssh

Disadvantages

- Port ranges & dynamic ports can't be forwarded
- SSH server daemon:
 - Cannot restrict what ports may or may not be forwarded, per user
 - When a user is authenticated by password, the client's RSA identity is not verified (against ssh_known_hosts). The verification only takes place when .[sr]hosts trust is used
- Port forwarding can also introduce security problems. The SSH server doesn't allow detailed configuration of what forwarding is allowed from what client to what server etc.
- A client on the Internet that uses SSH to access the Intranet, can expose the Intranet by port forwarding

Resources

http://www.openssh.com/

http://fuse.sourceforge.net/sshfs.html

Barrett, D., Silverman, R., & Byrnes, R. (2005). SSH The Definitive Guide, Second Edition. O'Reilly Media, Inc.

SSH FAQ

http://www.employees.org/~satch/ssh/faq/ssh-faq.html