
The RSA Algorithm

Evgeny Milanov

3 June 2009

In 1978, Ron Rivest, Adi Shamir, and Leonard Adleman introduced a cryptographic algorithm, which
was essentially to replace the less secure National Bureau of Standards (NBS) algorithm. Most impor-
tantly, RSA implements a public-key cryptosystem, as well as digital signatures. RSA is motivated by
the published works of Diffie and Hellman from several years before, who described the idea of such an
algorithm, but never truly developed it.

Introduced at the time when the era of electronic email was expected to soon arise, RSA implemented
two important ideas:

1. Public-key encryption. This idea omits the need for a “courier” to deliver keys to recipients over
another secure channel before transmitting the originally-intended message. In RSA, encryption keys are
public, while the decryption keys are not, so only the person with the correct decryption key can decipher
an encrypted message. Everyone has their own encryption and decryption keys. The keys must be made
in such a way that the decryption key may not be easily deduced from the public encryption key.

2. Digital signatures. The receiver may need to verify that a transmitted message actually origi-
nated from the sender (signature), and didn’t just come from there (authentication). This is done using
the sender’s decryption key, and the signature can later be verified by anyone, using the corresponding
public encryption key. Signatures therefore cannot be forged. Also, no signer can later deny having signed
the message.

This is not only useful for electronic mail, but for other electronic transactions and transmissions, such
as fund transfers. The security of the RSA algorithm has so far been validated, since no known attempts
to break it have yet been successful, mostly due to the difficulty of factoring large numbers n = pq, where
p and q are large prime numbers.

1 Public-key cryptosystems.

Each user has their own encryption and decryption procedures, E and D, with the former in the public
file and the latter kept secret. These procedures are related to the keys, which, in RSA specifically, are
sets of two special numbers. We of course start out with the message itself, symbolized by M , which is to
be “encrypted”. There are four procedures that are specific and essential to a public-key cryptosystem:

a) Deciphering an enciphered message gives you the original message, specifically

D(E(M)) = M . (1)



b) Reversing the procedures still returns M:

E(D(M)) = M . (2)

c) E and D are easy to compute.

d) The publicity of E does not compromise the secrecy of D, meaning you cannot easily figure out
D from E.

With a given E, we are still not given an efficient way of computing D. If C = E(M) is the ciphertext,
then trying to figure out D by trying to satisfy an M in E(M) = C is unreasonably difficult: the number
of messages to test would be impractically large.

An E that satisfies (a), (c), and (d) is called a “trap-door one-way function” and is also a “trap-door
one-way permutation”. It is a trap door because since it’s inverse D is easy to compute if certain “trap-
door” information is available, but otherwise hard. It is one-way because it is easy to compute in one
direction, but hard in the other. It is a permutation because it satisfies (b), meaning every ciphertext is
a potential message, and every message is a ciphertext of some other message. Statement (b) is in fact
just needed to provide “signatures”.

Now we turn to specific keys, and imagine users A and B (Alice and Bob) on a two-user public-key
cryptosystem, with their keys: EA, EB, DA, DB.

2 Privacy.

Encryption, which is now a ubiquitous way of assuring a message is delivered privately, makes it so no
intruder can bypass the ciphertext, which is essentially white noise. Without property (d), however,
an encryption process is still not public-key, such as the NBS standard. It requires keys to be deliv-
ered privately through another secure “courier”, which is an extra process that would deem NBS, for
example, as slow, inefficient, and possibly expensive. Thus, RSA is a great answer to this problem.
The NBS standard could provide useful only if it was a faster algorithm than RSA, where RSA would
only be used to securely transmit the keys only. Thus, an efficient computing method of D must be
found, so as to make RSA completely stand-alone and reliable. For it to be reliable, it would have to
use simple arithmetic, which is easier to compute (a requirement of property (c)) on a general-purpose
computer than are bit manipulations, where better hardware is used, where perhaps NBS would be better.

Now, Bob wants to send a private message to Alice. He will retrieve EA from the public file, encode M,
getting C = EA(M), whereafter Alice decodes it with her own DA, which only she can do, due to property
(d). She could also reply to Bob, using EB. So all that’s needed is both user’s agreement to be part
of the cryptosystem by placing their encryption data into a public file. No beforehand communication
is needed, private or not. Also, due to property (d), no eavesdropper can deduce D from listening in on E.

2



3 Signatures.

For complete assurance that the message originated form a sender, and was not just sent through him
by a third party who may have used the same encryption key (that of the receiver), we need a digital
signature to come with the message. This has obvious implications of importance in real-life applications.

Bob wants to send a private message to Alice. To sign the document, we pull a clever little trick, all
assuming that the RSA algorithm is quick and reliable, mostly due to property (c). We decrypt a message
with Bob’s key, allowed by properties (a) and (b), which assert that every message is the ciphertext of
another message, and that every ciphertext can be interpreted as a message. Formally,

DB(M) = S . (3)

Then we encrypt S with Alice’s encryption key.

EA(S) = EA(DB(M)) (4)

This way, we can assure only she can decrypt the document. When she does, she gets the signature
by DA(EA(DB(M)) = S. She now knows the message came from Bob, since only his decryption key
could compute the signature. The message need not be sent separately, since Alice can deduce it from the
signature itself by using Bob’s publicly available encryption key, formally EB(S) = EB(DB(M)) = M .
Since S depends on M , and the encrypted transmission Bob sent depends on S, we have a transmission
that depends on both the message and the signature, so both can be deduced from the transmitted doc-
ument.

This brilliantly assures the message could not be modified (if needed to be presented to, say, a “judge”),
since a modified M in the form of M ′ would have to generate a signature S′ = DB(M ′) as well, which is
impossible, since she does not known DB by property (d).

So not only does Alice possess proof that Bob signed the message and indeed sent it, but she also
cannot modify M nor forge a signature for any other message.

Now, say an “intruder” attempted to lie and tell you he was from the public file? This is not a problem
in RSA, since “signatures’ are used. A signature just needs to assure it came form the public file (PF)
itself. Every time a user joins a network, everybody gets a securely sent copy of the most recently updated
PF, which is stored on their system, and they never have to look it up. Anyone trying to send a message
pretending to be in the public file would not have the appropriate signature, and would be singled out as
an “intruder”. He would also never receive the PF, since he never joined it.

4 Applications, predictions, hardware implementation.

This has applications to electronic fund transmissions as well. Financial information needs to be secure,
and checks can be electronically signed with RSA. Further measures would have to be taken, such as
implementing unique check numbers that allow a check with this certain number transmittable/cashable

3



only once.

In fact, such a system can be applied to any electronic system that needs to have a cryptosystem
implemented. In their 1978 RSA paper, the authors of RSA predicted a secure email world to evolve and
for RSA to be used to encrypt a live telephone conversation. Now, these things are indeed a part of more
than just daily life because of RSA.

The encryption device must not be the direct buffer between a terminal and the communications
channel. Instead, it should be a hardware subroutine that can be executed as needed, since it may need
to be encrypted/decrypted with several different sequences of keys, so as to assure more privacy and/or
more signatures.

5 The math of the method.

So far, we expect to make E and D easy to compute through simple arithmetic. We must now represent
the message numerically, so that we can perform these arithmetic algorithms on it. Now lets represent M
by an integer between 0 and n − 1. If the message is too long, sparse it up and encrypt separately. Let
e, d, n be positive integers, with (e, n) as the encryption key, (d, n) the decryption key, n = pq.

Now, we encrypt the message by raising it to the eth power modulo n to obtain C, the ciphertext. We
then decrypt C by raising it to the dth power modulo n to obtain M again. Formally, we obtain these
encryption and decryption algorithms for E and D:

C ≡ E(M) ≡ M e (mod n) (5)

M ≡ D(C) ≡ Cd (mod n) .

Note that we are preserving the same information size, since M and C are integers between 0 and
n − 1, and because of the modular congruence. Also note the simplicity of the fact that the encryp-
tion/decryption keys are both just pairs of integers, (e, n) and (d, n). These are different for every user,
and should generally be subscripted, but we’ll consider just the general case here.

Now comes the question of creating the encryption key itself. First, choosing two “random” large
primes p and q, we multiply and produce n = pq. Although n is public, it will not reveal p and q since it
is essentially impossible to factor them form n, and therefore will assure that d is practically impossible
to derive from e.

Now we want to obtain the appropriate e and d. We pick d to be a random large integer, which must
be coprime to (p − 1) · (q − 1), meaning the following equation has to be satisfied:

gcd(d, (p − 1) · (q − 1)) = 1 . (6)

“gcd” means greatest common divisor.

The reason we want d to be coprime to (p − 1) · (q − 1) is peculiar. I will not show the “direct
motivation” behind it; rather, it will become clear why that statement is important when l show towards

4



the end of this section that it guarantees (1) and (2).

We will want to compute e from d, p, and q, where e is the multiplicative inverse of d. That means
we need to satisfy

e · d = 1 (mod φ(n)) . (7)

Here, we introduce the Euler totient function φ(n), whose output is the number of positive integers
less than n which are coprime to n. For primes p, this clearly becomes φ(p) = p − 1 . For n, we obtain,
by elementary properties of the totient function, that

φ(n) = φ(p) · φ(q)

= (p − 1) · (q − 1) (8)

= n − (p + q) + 1 .

From this equation, we can substitute φ(n) into equation (7) and obtain

e · d ≡ 1 (mod φ(n))

which is equivalent to
e · d = k · φ(n) + 1

for some integer k.

By the laws of modular arithmetic, the multiplicative inverse of a modulo m exists if and only if a
and m are coprime. Indeed, since d and φ(n) are coprime, d has a multiplicative inverse e in the ring of
integers modulo φ(n).

So far, we can safely assured the following:

D(E(M)) ≡ (E(M))d ≡ (M e)d (mod n) = M e·d (mod n)

E(D(M)) ≡ (D(M))e ≡ (Md)e (mod n) = M e·d (mod n)

Also, since e · d = k · φ(n) + 1, we can substitute into the above equations and obtain

M e·d ≡ Mk·φ(n)+1 (mod n) .

Clearly, we want that to equal M . To prove this, will need an important identity due to Euler and
Fermat: for any integer M coprime to n, we have

Mφ(n) ≡ 1 (mod n) . (9)

Since we previously specified that 0 ≤ M < n, we know that M would not be coprime to n if and only
if M was either p or q, of the integers in that interval. Therefore, the chances of M happening to be p or

5



q are on the same order of magnitude as 2/n. This means that M is almost definitely relatively prime to
n, therefore equation (9) holds and, using it, we evaluate:

M e·d ≡ Mk·φ(n)+1 ≡ (Mφ(n))kM ≡ 1kM (mod n) = M .

It turns out this works for all M , and in fact we see that (1) and (2) hold for all M, 0 ≤ M < n.
Therefore E and D are inverse permutations.

6 Algorithms.

6.1 Efficient encryption and decryption operations.

The authors of RSA claim that “computing M e (mod n) requires at most 2 · log2(e) multiplications and
2 · log2(e) divisions” if we use their procedure below. It is important for us to know the amount of steps
it would take a computer to encrypt the message so we can see if a method is fast and efficient, or not.
We now “exponentiate by repeated squaring and multiplication”:

Step 1. Let ekek−1...e1e0 be the binary representation of e.
Step 2. Set the variable C to 1.
Step 3. Repeat steps 3a and 3b for i = k, k − 1, ..., 0:

Step 3a. Set C to the remainder of C2 when divided by n.
Step 3b. If ei = 1 then set C to the remainder of C · M when divided by n.

Step 4. Halt. Now C is the encrypted form of M .

There are more efficient procedures out there, but this one is good too. Also, since decryption follows
the same identical procedure as encryption, we can implement the whole operation on a few integrated
chips.

According to the authors of RSA, “the encryption time per block increases no faster than the cube of
the number of digits in n.

6.2 Finding large prime numbers.

Finding n is the first step to the entire process. The number n will be revealed in the encryption and
decryption keys, but the numbers p and q, whose product make up n, will not be explicitly shown.
They are essentially impossible to derive from n, in fact, especially if we pick, say, 100-digit primes p
and q, which would make a 200-digit n. These figures were at least sufficient in 1978. However, today
we must use far larger numbers. The scale of these numbers is mentioned in the last section of this article.

Each user needs to privately choose his own two large prime numbers p and q. To do this, we need to
generate, say, random odd 100-digit numbers until a prime is found. We will have to test each number,
and according to the prime number theorem, there will be about (ln 10100)/2 = 115 number to test.

To test a large b for primality, we can use an algorithm due to Solovay and Strassen. First, we pick a
random number a from a uniform distribution on 1, ..., b − 1 and test whether

gcd(a, b) = 1 and J(a, b) = a(b−1)÷2 (mod b) , (10)

6



where J(a, b) is the Jacobi symbol, which can also be represented as

(

a

b

)

=

(

a

p1

)α1
(

a

p2

)α1

. . .

(

a

pk

)αk

,

where b = pα1

1 pα2

2 · · ·pαk

k is the primal factorization of b, and the Legendre symbol is defined for all integers
a and all odd primes p by

(

a

p

)

=











0 if a ≡ 0 (mod p)

+1 if a 6≡ 0 (mod p) and for some integer x, a ≡ x2 (mod p)

−1 if there is no such a ≡ 0 (mod p)
(

a

1

)

≡ 1 .

The Jacobi symbol is only defined when a is an integer and b is a positive odd integer. Also, J(a, b) is
0 if gcd(a, b) 6= 1 and ±1 if gcd(a, b) = 1. Equation (10) is always true if b is prime, otherwise (if b is
composite), (10) will have a chance of being false of over 50%. If (10) is true 100 times for randomly
chosen a’s, then b is almost certainly prime, with a chance of being composite of 1 in 2100. If accidentally
a composite were used for p or q in the process, the recipient would see “junk” and realize the decryption
wasn’t done correctly. I now present an efficient program for computing J(a, b) that the authors of RSA
recommended in their original article:

J(a, b) = if a = 1 then 1 else

if is even then J(a ÷ 2, b) · (−1)(b
2−1)÷8

else J(b (mod a), a) · (−1)(a−1)·(b−1)÷4

̂̂

To protect against sophisticated factoring algorithms, p and q should differ in length by a few digits,
gcd(p − 1, q − 1) should be small, and both (p − 1) and (q − 1) should contain large prime factors. To
assure the latter, we generate a large random prime number u and take the first prime in the sequence
i · u + 1, i = 2, 4, 6, ... . This process would be very fast on a computer. When the authors of RSA
published their article, on a high-speed computer, testing a 100-digit number for primality would take
several seconds, while finding the next prime would take around a minute and a half. Imagine how quickly
an average PC can do this today! Perhaps this is why the RSA algorithm has survived so long.

̂̂

We could also find large primes by taking a number whose factorization we know, add 1 to it, and test
for primality. If we get a number we think is prime, we could potentially prove that it is prime by using
the factorization of (p − 1).

6.3 Finding d.

This is very easy. We want to find a number d coprime to φ(n); any prime number greater than max(p, q)
is fine. Since the set of primes P is large, it assures that a cryptanalyst cannot find d by a direct search.
In fact, any method of finding d that picks d out of a big set would do.

7



6.4 Finding e form d and φ(n).

Here, we use a variation of Euclid’s algorithm for computing the greatest common divisor of φ(n) and
d. First, we compute a series x0, x1, x2, ..., where x0 ≡ φ(n), x1 = d, ..., xi+1 ≡ xi−1 (mod xi), until an
xk = 0 is found. Then gcd(x0, x1) = xk−1. Now we find numbers ai and bi such that xi = ai ·x0 +bi ·x1. If
xk−1 = 1 then bk−1 is the multiplicative inverse of x1 (mod n), and is precisely e. Since k < 2 log2(n), this
can be computed quickly. Since the difficulty in computing complicated modular arithmetic in part con-
tributes to the difficulty in cracking RSA, we need to use this to our advantage. Therefore, if e < log2(n),
we find another e that’s not too small so that the encrypted message undergoes reduction in modulo n
(“wrap-around”).

7 An example.

Let p = 37, q = 43, n = p · q = 1591, d = 71. It follows that φ(1591) = 36 · 42 = 1512 and now we compute
e:

x0 = 1512, a0 = 1, b0 = 0,
x1 = 71, a1 = 0, b1 = 1,
x2 = 21, a2 = 1, b2 = −21,
x3 = 8, a3 = −3, b3 = 64,
x4 = 5, a4 = 7, b4 = −149,
x5 = 3, a5 = −10, b5 = 213,
x6 = 2, a6 = 17, b6 = −362,
x7 = 1, a7 = −27, b7 = 575 .

Thus e = 575 is the multiplicative inverse in modulo 1512 of d = 71. Using this and the rest of our values,
we now begin to encrypt. We use a fairly standard numerical representation of the English alphabet:
blank = 00, A = 01, B = 02, ... , Z = 26. Each block of the message has to be less than n = 1591. In
this case, we will break the message into two-letter blocks, because luckily no block will exceed 159. The
bigger p and q are, the more information we can encrypt per block. We choose a short message for ease:

NO ODD

is encoded:

1415 0015 0404

575 is 1000111111 in binary. We now use the algorithm in section 6.1. We simplify it using modular
arithmetic. We replace steps 3a and 3b by the following conditions: if ek = 1 then we square C and
multiply by M , otherwise we just square C. After step 4, we put C into modulo n.

Taking, for example, the first block and setting M = 1415 and encrypting we get:

M575 = (((((((((12 · M)2)2)2)2 · M)2 · M)2 · M)2 · M)2 · M)2 · M = 824 (mod 1591) .

The whole message becomes:
0824 1253 0267

Similarly, we can decrypt the message to check it deciphers properly: 82471 ≡ 1415 (mod 1591), etc.

8



8 How secure is RSA?

The RSA algorithm is indeed among the strongest, but can it withstand anything? Certainly nothing can
withstand the test of time. In fact, no encryption technique is even perfectly secure from an attack by
a realistic cryptanalyst. Methods such as brute-force are simple but lengthy and may crack a message,
but not likely an entire encryption scheme. We must also consider a probabilistic approach, meaning
there’s always a chance some one may get the “one key out of a million”. So far, we don’t know how to
prove whether an encryption scheme is unbreakable. If we cannot prove it, we will at least see if someone
can break the code. This is how the NBS standard and RSA were essentially certified. Despite years
of attempts, no one has been known to crack either algorithm. Such a resistance to attack makes RSA
secure in practice.

In section 8, we will see why breaking RSA is at least as hard as factoring n. Factoring large numbers
is not provably hard, but no algorithms exists today to factor a 200-digit number in a reasonable amount
of time. Fermat and Legendre have both contributed to this field by developing factoring algorithms,
though factoring is still an age-old math problem. This is precisely what has partially “certified” RSA as
secure.

To show that RSA is secure, we will consider how a cryptanalyst may try to obtain the decryption
key from the public encryption key, and not how an intruder may attempt to “steal” the decryption key.
This should be taken care of as one would protect their money, through physical security methods. The
authors of RSA provide an example: the encryption device (which could be, say, a set of integrated chips
within a computer), would be separate from the rest of the system. It would generate encryption and
decryption keys, but would not print out the decryption key, even for its owner. It would, in fact, erase
the decryption key if it sensed an attempted intrusion.

8.1 Factoring n.

Since knowing the factors of n would give away φ(n) and therefore d, a cryptanalyst would break the code
if he factored n. However, factoring numbers has practically proven to be far harder than determining
primality or compositeness. Nonetheless, many factoring algorithms are around. The authors of RSA
referenced Knuth and Pollard as good sources for such algorithms. They also present an unpublished
algorithm due to Richard Schroeppel, which factors n in approximately

exp
√

lnn · ln lnn = n
√

ln ln n÷ln n = (lnn)
√

ln n÷ln ln n

steps. The following table is the one the authors of RSA presented in 1978. They assume an operation
in the Schroeppel factoring algorithm takes one microsecond to compute, and present the following data
for various lengths of n:

Digits Number of operations Time

50 1.4 × 1010 3.9 hours
75 9.0 × 1012 104 days
100 2.3 × 1015 74 years
200 1.2 × 1023 3.8 × 109 years
300 1.5 × 1029 4.9 × 1015 years
500 1.3 × 1039 4.2 × 1025 years

The authors of RSA recommend that n be about 200 digits long. However, the length of n may be
varied, based on the importance of speed of encryption versus security. RSA, in effect, allows the user

9



(administrator, etc.) to choose a key-length, and thus a level of security, a flexibility not found in many
encryption schemes before 1978 (such as the NBS method).

8.2 Computing φ(n) without factoring n.

This method would break the system because if one could compute φ(n), then he could compute d as
the multiplicative inverse of the publicly revealed e modulo φ(n), using the method developed in sec-
tion 6.4. This method is at least as difficult as factoring the publicly-revealed n since it would allow a
cryptanalyst to easily factor n from φ(n). Since this approach to factoring n has not turned out prac-
tical, this method of computing φ(n) is also impractical, since it is more difficult, by the previous sentence.

Indeed, factoring n as such is difficult because performing certain operations involving p, q, n, and
even φ(n), all of immense sizes, would take too long. To factor n using φ(n), we first obtain (p + q) from
n and φ(n) = n − (p + q) + 1, then compute (p − q) from this easily verifiable equation:

(p − q)2 = (p + q)2 − 4n .

Finally, we obtain q from half the difference of (p− q) and (p + q), and we get p from either p = n÷ q or
from half the sum of (p − q) and (p + q).

If n was prime, φ(n) = n−1 would be easy to compute, thus n must be composite, as originally stated.

8.3 Determining d without factoring n or computing φ(n).

We use the same logic in the previous section. We have an approach to factoring n from a for-some-reason
known d, described in the next paragraph, which has not proven practical. We argue that computing d
is no easier than factoring n, since knowing d allows n to be factored easily.

Knowing d allows us to calculate e · d − 1, which is a multiple of φ(n). Miller [6] shows that n can be
factored using any such multiple, thus a cryptanalyst cannot determine d easier than he can factor n.

Should one try to find a d′ which is equivalent to the secret d, and if such values d′ were common,
then a brute-force attack could crack the code. However, all such values d′ differ by the least common
multiple (lcm) of (p− 1) and (q− 1), and here is why. Since, by arithmetic modulo φ(n) we have e · d = 1
(mod φ(n)) , then indeed e · kd′ = 1 (mod k · φ(n)) for an integer k, and setting k = 1, we obtain the
original equation. Seeing that since φ(n) = (p− 1) · (q − 1) and k · (p− 1) · (q − 1) = lcm((p− 1), (q − 1))
when k = 1, then indeed φ(n) = lcm((p − 1), (q − 1)). Thus, finding such a d′ is as hard as factoring n.

8.4 Other ways of computing d.

The authors of RSA argued that computing e-th roots modulo n without factoring n is practically im-
possible computationally. Thus, since the only other realistic option is to discover a way to break the
code without factoring n, such a discovery would yield an efficient factoring algorithm. However, such
a discovery, combined with ways of breaking the code by factoring n, would have to all be as hard as
factoring n. The authors of RSA do not provide a proof for this conjecture. However, it seems that that
were in fact correct, since there has been no known record of anyone breaking RSA in the 31 years since
it has been published.

10



9 Avoiding “reblocking” for encryption of a signed message.

Reblocking means having to break a signed message up into smaller blocks, since the signature n may
be greater than the encryption n (both are different, since they are from different keys from two or more
distinct users). The authors of RSA, however, have provided a way to avoid reblocking a message: choose
a threshold value h (say h = 10202 − 33) for the public-key cryptosystem, and assure that “every user
maintains two public (e, n) pairs, one for enciphering and one for signature verification, where every sig-
nature n is less than h, and every enciphering n is greater than h”. Thus, message blocking only depends
on the transmitter’s signature n.

10 Conclusions.

RSA is a strong encryption algorithm that has stood a partial test of time. RSA implements a public-key
cryptosystem that allows secure communications and “digital signatures”, and its security rests in part
on the difficulty of factoring large numbers. The authors urged anyone to attempt to break their code,
whether by factorization techniques or otherwise, and nobody to date seems to have succeeded. This has
in effect certified RSA, and will continue to assure its security for as long as it stands the test of time
against such break-ins.

At the time, the RSA encryption function seemed to be the only known candidate for a trap-door
one-way permutation, but now, others certainly exist, such as those described in [3] and [7].

The average size of n must increase with time as more efficient factoring algorithms are made and
as computers are getting faster. In 1978, the authors of RSA suggested 200-digit long values for n. “As
of 2008, the largest (known) number factored by a general-purpose factoring algorithm was [200 digits
(663 bits)] long” [10]. Currently, RSA keys are typically between 1024 and 2048 bits long, which experts
predict may be breakable in the near future. So far, no one sees 4096-bit keys to be broken anytime soon.
Today, an n no longer than 300 bits can be factored on a PC in several hours, thus keys are typically 4-7
times longer today.

RSA is slower than certain other symmetric cryptosystems. RSA is, in fact, commonly used to se-
curely transmit the keys for another less secure, but faster algorithm. Several issues in fact exist that
could potentially damage RSA’s security, such as timing attacks and problems with key distribution. I
will not go into detail about these issues here. They are described succinctly in [10]. In fact, these issues
have solutions; the only downside is that any device implementing RSA would have to have much more
hardware and software to counter certain types of attacks or attempts at eavesdropping.

A very major threat to RSA would be a solution to the Riemann hypothesis. Thus a solution has nei-
ther been proven to exist nor to not exist. Development on the Riemann hypothesis is currently relatively
stagnant. However, if a solution were found, prime numbers would be too easy to find, and RSA would
fall apart. Undoubtedly, much more sophisticated algorithms than RSA will continue to be developed as
mathematicians discover more in the fields of number theory and cryptanalysis.

11


