
Lecture 3: Block Ciphers and the Data Encryption

Standard

Lecture Notes on “Computer and Network Security”

by Avi Kak (kak@purdue.edu)

January 21, 2017
6:49pm

c©2017 Avinash Kak, Purdue University

Goals:

• To introduce the notion of a block cipher in the modern context.

• To talk about the infeasibility of ideal block ciphers

• To introduce the notion of the Feistel Cipher Structure

• To go over DES, the Data Encryption Standard

• To illustrate some of the DES steps with Python code

CONTENTS

Section Title Page

3.1 Ideal Block Cipher 3

3.1.1 Size of the Encryption Key for the Ideal Block Cipher 6

3.2 The Feistel Structure for Block Ciphers 7

3.2.1 Mathematical Description of Each Round in the 10

Feistel Structure

3.2.2 Decryption in Ciphers Based on the Feistel Structure 12

3.3 DES: The Data Encryption Standard 16

3.3.1 One Round of Processing in DES 18

3.3.2 The S-Box for the Substitution Step in Each Round 22

3.3.3 The Substitution Tables 26

3.3.4 The P-Box Permutation in the Feistel Function 30

3.3.5 The DES Key Schedule: Generating the Round Keys 32

3.3.6 Initial Permutation of the Encryption Key 35

3.3.7 Contraction-Permutation that Generates the 48-Bit 38

Round Key from the 56-Bit Key

3.4 What Makes DES a Strong Cipher (to the 41

Extent It is a Strong Cipher)

3.5 Homework Problems 43

2

Computer and Network Security by Avi Kak Lecture 3

3.1: IDEAL BLOCK CIPHER

• In a modern block cipher (but still using a classical encryption

method), we replace a block of N bits from the plaintext with a

block of N bits from the ciphertext. This general idea is illustrated

in Figure 1 for the case of N = 4. (In general, though, N is set

to 64 or multiples thereof.)

• To understand Figure 1, note that there are 16 different possible

4-bit patterns. We can represent each pattern by an integer be-

tween 0 and 15. So the bit pattern 0000 could be represented by

the integer 0, the bit pattern 0001 by integer 1, and so on. The

bit pattern 1111 would be represented by the integer 15.

• In an ideal block cipher, the relationship between the input blocks

and the output block is completely random. But it must be

invertible for decryption to work. Therefore, it has to be one-to-

one, meaning that each input block is mapped to a unique output

block.

• The mapping from the input bit blocks to the output bit blocks

can also be construed as a mapping from the integers correspond-

3

Computer and Network Security by Avi Kak Lecture 3

ing to the input bit blocks to the integers corresponding to the

output bit blocks.

• The encryption key for the ideal block cipher is the codebook

itself, meaning the table that shows the relationship between the

input blocks and the output blocks.

• Figure 1 depicts an ideal block cipher that uses blocks of size 4.

Each block of 4 bits in the plaintext is transformed into a block

of 4 ciphertext bits.

4

Computer and Network Security by Avi Kak Lecture 3

to 16 output integers

Random 1−1 mapping of 16 input integers

Plaintext bit block:
b b b b

0 1 2 3

Ciphertext bit block: c c c c
0 1 2 3

Convert 4 incoming bits to one of 16 integers

Convert integer to a 4−bit pattern

Figure 1: The ideal block cipher when the block size equals

4 bits. (This figure is from Lecture 3 of “Lecture Notes on Computer and Network Security” by

Avi Kak)

5

Computer and Network Security by Avi Kak Lecture 3

3.1.1: The Size of the Encryption Key for the Ideal

Block Cipher

• Consider the case of 64-bit block encryption.

• With a 64-bit block, we can think of each possible input block

as one of 264 integers and for each such integer we can spec-

ify an output 64-bit block. We can construct the codebook by

displaying just the output blocks in the order of the integers cor-

responding to the input blocks. Such a code book will be of size

64× 264 ≈ 1021.

• That implies that the encryption key for the ideal block cipher

using 64-bit blocks will be of size 1021.

• The size of the encryption key would make the ideal block cipher

an impractical idea. Think of the logistical issues related to the

transmission, storage, and processing of such large keys.

6

Computer and Network Security by Avi Kak Lecture 3

3.2: The Feistel Structure for Block Ciphers

The DES algorithm for encryption and decryption, which is the

main theme of this lecture, is based on what is known as the Feistel

Structure. This section and the next two subsections introduce this

structure:

• Named after the IBM cryptographer Horst Feistel and first im-

plemented in the Lucifer cipher by Horst Feistel and Don Cop-

persmith.

• A cryptographic system based on Feistel structure uses the same

basic algorithm for both encryption and decryption.

• As shown in Figure 2, the Feistel structure consists of multiple

rounds of processing of the plaintext, with each round consisting

of a “substitution” step followed by a permutation step.

• The input block to each round is divided into two halves that we

can denote L and R for the left half and the right half.

7

Computer and Network Security by Avi Kak Lecture 3

• In each round, the right half of the block, R, goes through un-

changed. But the left half, L, goes through an operation that

depends on R and the encryption key. The operation carried out

on the left half L is referred to as the Feistel Function.

• The permutation step at the end of each round consists of swap-

ping the modified L andR. Therefore, the L for the next round

would be R of the current round. And R for the next round

be the output L of the current round.

• The next two subsection present important properties of the Feis-

tel structure. As you will see, these properties are invariant to

our choice for the Feistel Function.

• Besides DES, there exist several block ciphers today — the most

popular of these being Blowfish, CAST-128, and KASUMI —

that are also based on the Feistel structure.

8

Computer and Network Security by Avi Kak Lecture 3

F(K,R)

L R
K

1

F(K,R)

L R
K

2

K
n

F(K,R)

L R

Ciphertext block

Round

RoundRound

Round

n

2

1

Round Keys

Plaintext block
(Divide into two halves, L and R)

Figure 2: The Feistel Structure for symmetric key cryp-

tography (This figure is from Lecture 3 of “Lecture Notes on Computer and Network Security”

by Avi Kak)

9

Computer and Network Security by Avi Kak Lecture 3

3.2.1: Mathematical Description of Each Round in the

Feistel Structure

• Let LEi and REi denote the output half-blocks at the end of the

ith round of processing. The letter ’E’ denotes encryption.

• In the Feistel structure, the relationship between the output of

the ith round and the output of the previous round, that is, the

(i− 1)th round, is given by

LEi = REi−1

REi = LEi−1 ⊕ F (REi−1, Ki)

where ⊕ denotes the bitwise EXCLUSIVE OR operation. The

symbol F denotes the operation that “scrambles” REi−1 of the

previous round with what is shown as the round key Ki in

Figure 2. The round key Ki is derived from the main encryption

key as we will explain later.

• F is referred to as the Feistel function, after Horst Feistel natu-

rally.

• Assuming 16 rounds of processing (which is typical), the output

of the last round of processing is given by

10

Computer and Network Security by Avi Kak Lecture 3

LE16 = RE15

RE16 = LE15 ⊕ F (RE15, K16)

11

Computer and Network Security by Avi Kak Lecture 3

3.2.2: Decryption in Ciphers Based on the Feistel

Structure

• As shown in Figure 3, the decryption algorithm is exactly the

same as the encryption algorithm with the only difference that

the round keys are used in the reverse order.

• The output of each round during decryption is the

input to the corresponding round during encryption

— except for the left-right switch between the two

halves. This property holds true regardless of the

choice of the Feistel function F .

• To prove the above claim, let LDi and RDi denote the left half

and the right half of the output of the ith round.

• That means that the output of the first decryption round con-

sists of LD1 and RD1. So we can denote the input to the first

decryption round by LD0 and RD0. The relationship between

the two halves that are input to the first decryption round and

what is output by the encryption algorithm is:

12

Computer and Network Security by Avi Kak Lecture 3

LD0 = RE16

RD0 = LE16

• We can write the following equations for the output of the first

decryption round

LD1 = RD0

= LE16

= RE15

RD1 = LD0 ⊕ F (RD0, K16)

= RE16 ⊕ F (LE16, K16)

= [LE15 ⊕ F (RE15, K16)] ⊕ F (RE15, K16)

= LE15

This shows that, except for the left-right switch, the output of

the first round of decryption is the same as the input to the last

stage of the encryption round since we have LD1 = RE15 and

RD1 = LE15

• The following equalities are used in the above derivation. Assume

that A, B, and C are bit arrays.

[A ⊕ B] ⊕ C = A ⊕ [B ⊕ C]

13

Computer and Network Security by Avi Kak Lecture 3

A ⊕ A = 0

A ⊕ 0 = A

• The above result is independent of the precise nature

of the Feistel function F . That is, the output of each round

during decryption is the input to the corresponding round during

encryption for every choice of the Feistel function F .

14

Computer and Network Security by Avi Kak Lecture 3

Ciphertext block

Plaintext block
(Divide into two halves, L and R)

Plaintext block
(Divide into two halves, L and R)

K
2

K
16

1
K

Round 16

Round
2

Round1

Encryption Decryption

F(K,R)

L R

Ciphertext block

F(K,R)

F(K,R)

F(K,R)

F(K,R)

F(K,R)

Round Keys

LE

16

RE
16

LE
15

RE
15

LE

1
RE

1

LE
0

RE

0

15

16

RD = LE
1

RD = LE

RD = LE

1 15

15

16 0

RD = LE
0

0

1

15

16

1
LD = RE

LD = RE

LD = RE

LD = RE
160

Figure 3: When a Feistel structure is used, decryption

works the same as encryption. (This figure is from Lecture 3 of “Lecture

Notes on Computer and Network Security” by Avi Kak)

15

Computer and Network Security by Avi Kak Lecture 3

3.3: DES: THE DATA ENCRYPTION
STANDARD

• Adopted by NIST in 1977.

• Based on a cipher (Lucifer) developed earlier by IBM for Lloyd’s

of London for cash transfer.

• DES uses the Feistel cipher structure with 16 rounds of process-

ing.

• DES uses a 56-bit encryption key. (The key size was apparently

dictated by the memory and processing constraints imposed by

a single-chip implementation of the algorithm for DES.) The key

itself is specified with 8 bytes, but one bit of each byte is used as

a parity check.

• DES encryption was broken in 1999 by Electronics

Frontiers Foundation (EFF, www.eff.org). This resulted

in NIST issuing a new directive that year that required organiza-

tions to use Triple DES, that is, three consecutive applications

16

Computer and Network Security by Avi Kak Lecture 3

of DES. (That DES was found to be not as strong as originally

believed also prompted NIST to initiate the development of new

standards for data encryption. The result is AES that we will

discuss later.)

• Triple DES continues to enjoy wide usage in commercial ap-

plications even today. To understand Triple DES, you must first

understand the basic DES encryption.

• As mentioned, DES uses the Feistel structure with 16 rounds.

• What is specific to DES is the implementation of the F function

in the algorithm and how the round keys are derived from the

main encryption key.

• As will be explained in Section 3.3.5, the round keys are generated

from the main key by a sequence of permutations. Each round

key is 48 bits in length.

17

Computer and Network Security by Avi Kak Lecture 3

3.3.1: One Round of Processing in DEA

• The algorithmic implementation of DES is known as DEA for

Data Encryption Algorithm.

• Figure 4 shows a single round of processing in DEA. The dotted

rectangle constitutes the F function.

• The 32-bit right half of the 64-bit input data block is expanded

by into a 48-bit block. This is referred to as the expansion

permutation step, or the E-step.

• The above-mentioned E-step entails the following:

– first divide the 32-bit block into eight 4-bit words

– attach an additional bit on the left to each 4-bit word that is

the last bit of the previous 4-bit word

– attach an additional bit to the right of each 4-bit word that is

the beginning bit of the next 4-bit word.

Note that what gets prefixed to the first 4-bit block is the last bit

of the last 4-bit block. By the same token, what gets appended

to the last 4-bit block is the first bit of the first 4-bit block. The

18

Computer and Network Security by Avi Kak Lecture 3

reason for why we expand each 4-bit block into a 6-bit block in

the manner explained will become clear shortly.

• The 56-bit key is divided into two halves, each half shifted sep-

arately, and the combined 56-bit key permuted/contracted

to yield a 48-bit round key. How this is done will be explained

later.

• The 48 bits of the expanded output produced by the E-step are

XORed with the round key. This is referred to as key mixing.

• The output produced by the previous step is broken into eight

six-bit words. Each six-bit word goes through a substitution step;

its replacement is a 4-bit word. The substitution is carried out

with an S-box, as explained in greater detail in Section 3.3.2.

[The name “S-Box” stands for “Substitution Box”.]

• So after all the substitutions, we again end up with a 32-bit word.

• The 32-bits of the previous step then go through a P-box based

permutation, as shown in Figure 4.

• What comes out of the P-box is then XORed with the left half

of the 64-bit block that we started out with. The output of this

19

Computer and Network Security by Avi Kak Lecture 3

XORing operation gives us the right half block for the next round.

• Note that the goal of the substitution step implemented by the

S-box is to introduce diffusion in the generation of the output

from the input. Diffusion means that each plaintext bit must

affect as many ciphertext bits as possible.

• The strategy used for creating the different round keys from the

main key is meant to introduce confusion into the encryption

process. Confusion in this context means that the relation-

ship between the encryption key and the ciphertext must be

as complex as possible. Another way of describing confusion

would be that each bit of the key must affect as many bits as

possible of the output ciphertext block.

• Diffusion and confusion are the two cornerstones of block cipher

design.

20

Computer and Network Security by Avi Kak Lecture 3

Round Key K
 i

 i−1 RELE
i−1

Expansion Permutation

32 bits 32 bits

48 bits

Substitution with 8 S−boxes

48 bits

32 bits

RE
i

LE
i

The Feistel Function

F(RE , K)
i−1 i

Permutation with P−Box

Figure 4: One round of processing in DES. (This figure is from

Lecture 3 of “Lecture Notes on Computer and Network Security” by Avi Kak)

21

Computer and Network Security by Avi Kak Lecture 3

3.3.2: The S-Box for the Substitution Step in Each

Round

• As shown in Figure 5, the 48-bit input word is divided into eight

6-bit words and each 6-bit word fed into a separate S-box. Each

S-box produces a 4-bit output. Therefore, the 8 S-boxes together

generate a 32-bit output. As you can see, the overall substitution

step takes the 48-bit input back to a 32-bit output.

• Each of the eight S-boxes consists of a 4× 16 table lookup for an

output 4-bit word. The first and the last bit of the 6-bit input

word are decoded into one of 4 rows and the middle 4 bits decoded

into one of 16 columns for the table lookup.

• The goal of the substitution carried out by an S-box is to enhance

diffusion, as mentioned previously. As you will recall from the

E-step described in Section 3.3.1, the expansion-permutation step

(the E-step) expands a 32-bit block into a 48-bit block by attach-

ing a bit at the beginning and a bit at the end of each 4-bit

sub-block, the two bits needed for these attachments belonging

to the adjacent blocks.

• Thus, the row lookup for each of the eight S-boxes becomes a

function of the input bits for the previous S-box and the next

22

Computer and Network Security by Avi Kak Lecture 3

Permutation and the Round Key

48 bits produced by XORing the output of the Expansion

48 bits

S1 S2 S4S3 S5 S6 S7 S8

32 bits

Figure 5: The 48 bits coming out of the expansion permu-

tation are first XORed with the round key and then, as

shown, fed into the 8 S-boxes of DES. (This figure is from Lecture 3 of

“Lecture Notes on Computer and Network Security” by Avi Kak)

23

Computer and Network Security by Avi Kak Lecture 3

S-box.

• In the design of the DES, the S-boxes were tuned to enhance the

resistance of DES to what is known as the differential crypt-

analysis attack, or, sometimes more briefly as differential at-

tack. [As will be explained in much greater detail (and also demonstrated) in Section 8.9 of Lecture

8, differential cryptanalysis of block ciphers consists of presenting to the encryption algorithm pairs of

plaintext bit patterns with known differences between them and examining the differences between the

corresponding cyphertext outputs. The outputs are usually recorded at the input to the last round of

the cipher. Let’s represent one plaintext bit block by X = [X1, X2,, Xn] where Xi denotes the i
th bit

in the block, and let’s represent the corresponding output bit block by Y = [Y1, Y2, ..., Yn]. By the dif-

ference between two plaintext bit blocks X ′ and X ′′ we mean ∆X = X ′⊕X ′′. The difference between

the corresponding outputs Y ′ and Y ′′ is given by ∆Y = Y ′ ⊕ Y ′′. The pair (∆X,∆Y) is known as a

differential. In an ideally randomizing block cipher, the probability of ∆Y being a particular value for

a given ∆X is 1/2n for an n-bit block cipher. What is interesting is that the probabilities of ∆Y taking

on different values for a given ∆X can be shown to be independent of the encryption key because of the

properties of the XOR operator, but these probabilities are strongly dependent on the S-box tables. By

feeding into a cipher several pairs of plaintext blocks with known ∆X and observing the corresponding

∆Y , it is possible to establish constraints on the round key bits encountered along the different paths

in the encryption processing chain. (By constraints I mean the following: Speaking hypothetically for

the purpose of illustrating a point and focusing on just one round of DES, suppose we can show that

the following condition can be expected to be obeyed with high probability: ∆Xi ⊕∆Yi ⊕ Ki = 0

for some bit Ki of the encryption key, then it must be the case that Ki = ∆X ⊕ ∆Y .) Note that

differential cryptanalysis is a chosen plaintext attack, meaning that the attacker will feed known

plaintext bit patterns into the cipher and analyze the corresponding outputs in order to figure out the

encryption key. In a theoretical analysis of an attack based on differential cryptanalysis, it was shown

by Eli Biham and Adi Shamir in 1990 that the DES’s encryption key could be figured out provided one

24

Computer and Network Security by Avi Kak Lecture 3

could feed known 247 plaintext blocks into the cipher. For a tutorial by Howard Heys on differential

cryptanalysis, see http://www.engr.mun.ca/~howard/PAPERS/ldc_tutorial.pdf. The title of the

tutorial is “A Tutorial on Linear and Differential Cryptanalysis.”]

25

Computer and Network Security by Avi Kak Lecture 3

3.3.3: The Substitution Tables

• Shown on the next page are the eight S-boxes, S1 through S8,

each S-box being a 4×16 substitution table that is used to convert

6 incoming bits into 4 outgoing bits.

• As mentioned earlier, each row of a substitution table is indexed

by the two outermost bits of a six-bit block and each column by

the remaining inner 4 bit.

26

Computer and Network Security by Avi Kak Lecture 3

The 4× 16 substitution table for S-box S1

14 4 13 1 2 15 11 8 3 10 6 12 5 9 0 7

0 15 7 4 14 2 13 1 10 6 12 11 9 5 3 8

4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 0

15 12 8 2 4 9 1 7 5 11 3 14 10 0 6 13

S-box S2

15 1 8 14 6 11 3 4 9 7 2 13 12 0 5 10

3 13 4 7 15 2 8 14 12 0 1 10 6 9 11 5

0 14 7 11 10 4 13 1 5 8 12 6 9 3 2 15

13 8 10 1 3 15 4 2 11 6 7 12 0 5 14 9

S-box S3

10 0 9 14 6 3 15 5 1 13 12 7 11 4 2 8

13 7 0 9 3 4 6 10 2 8 5 14 12 11 15 1

13 6 4 9 8 15 3 0 11 1 2 12 5 10 14 7

1 10 13 0 6 9 8 7 4 15 14 3 11 5 2 12

S-box S4

7 13 14 3 0 6 9 10 1 2 8 5 11 12 4 15

13 8 11 5 6 15 0 3 4 7 2 12 1 10 14 9

10 6 9 0 12 11 7 13 15 1 3 14 5 2 8 4

3 15 0 6 10 1 13 8 9 4 5 11 12 7 2 14

S-box S5

2 12 4 1 7 10 11 6 8 5 3 15 13 0 14 9

14 11 2 12 4 7 13 1 5 0 15 10 3 9 8 6

4 2 1 11 10 13 7 8 15 9 12 5 6 3 0 14

11 8 12 7 1 14 2 13 6 15 0 9 10 4 5 3

S-box S6

12 1 10 15 9 2 6 8 0 13 3 4 14 7 5 11

10 15 4 2 7 12 9 5 6 1 13 14 0 11 3 8

9 14 15 5 2 8 12 3 7 0 4 10 1 13 11 6

4 3 2 12 9 5 15 10 11 14 1 7 6 0 8 13

S-box S7

4 11 2 14 15 0 8 13 3 12 9 7 5 10 6 1

13 0 11 7 4 9 1 10 14 3 5 12 2 15 8 6

1 4 11 13 12 3 7 14 10 15 6 8 0 5 9 2

6 11 13 8 1 4 10 7 9 5 0 15 14 2 3 12

S-box S8

13 2 8 4 6 15 11 1 10 9 3 14 5 0 12 7

1 15 13 8 10 3 7 4 12 5 6 11 0 14 9 2

7 11 4 1 9 12 14 2 0 6 10 13 15 3 5 8

2 1 14 7 4 10 8 13 15 12 9 0 3 5 6 11

27

Computer and Network Security by Avi Kak Lecture 3

• The Python code shown below illustrates how you can use the

eight S-boxes for the substitutions you need for the right half of

the input in each round:

#!/usr/bin/env python

illustrate_des_substitution.py

Avi Kak

January 21, 2017

This is a demonstration of how you can carry out S-boxes based substitution

in DES. The code shown implements the "Substitution with 8 S-boxes" step

that you see inside the dotted Feistel function in Figure 4 of Lecture 3 notes.

IMPORTANT: This demonstration code does NOT include XORing with the round

key that must be carried out on the expanded right-half block

before it is subject to the S-boxes based substitution step

shown here.

from BitVector import *

expansion_permutation = [31, 0, 1, 2, 3, 4,

3, 4, 5, 6, 7, 8,

7, 8, 9, 10, 11, 12,

11, 12, 13, 14, 15, 16,

15, 16, 17, 18, 19, 20,

19, 20, 21, 22, 23, 24,

23, 24, 25, 26, 27, 28,

27, 28, 29, 30, 31, 0]

s_boxes = {i:None for i in range(8)}

s_boxes[0] = [[14,4,13,1,2,15,11,8,3,10,6,12,5,9,0,7],

[0,15,7,4,14,2,13,1,10,6,12,11,9,5,3,8],

[4,1,14,8,13,6,2,11,15,12,9,7,3,10,5,0],

[15,12,8,2,4,9,1,7,5,11,3,14,10,0,6,13]]

s_boxes[1] = [[15,1,8,14,6,11,3,4,9,7,2,13,12,0,5,10],

[3,13,4,7,15,2,8,14,12,0,1,10,6,9,11,5],

[0,14,7,11,10,4,13,1,5,8,12,6,9,3,2,15],

[13,8,10,1,3,15,4,2,11,6,7,12,0,5,14,9]]

s_boxes[2] = [[10,0,9,14,6,3,15,5,1,13,12,7,11,4,2,8],

[13,7,0,9,3,4,6,10,2,8,5,14,12,11,15,1],

[13,6,4,9,8,15,3,0,11,1,2,12,5,10,14,7],

[1,10,13,0,6,9,8,7,4,15,14,3,11,5,2,12]]

s_boxes[3] = [[7,13,14,3,0,6,9,10,1,2,8,5,11,12,4,15],

[13,8,11,5,6,15,0,3,4,7,2,12,1,10,14,9],

[10,6,9,0,12,11,7,13,15,1,3,14,5,2,8,4],

28

Computer and Network Security by Avi Kak Lecture 3

[3,15,0,6,10,1,13,8,9,4,5,11,12,7,2,14]]

s_boxes[4] = [[2,12,4,1,7,10,11,6,8,5,3,15,13,0,14,9],

[14,11,2,12,4,7,13,1,5,0,15,10,3,9,8,6],

[4,2,1,11,10,13,7,8,15,9,12,5,6,3,0,14],

[11,8,12,7,1,14,2,13,6,15,0,9,10,4,5,3]]

s_boxes[5] = [[12,1,10,15,9,2,6,8,0,13,3,4,14,7,5,11],

[10,15,4,2,7,12,9,5,6,1,13,14,0,11,3,8],

[9,14,15,5,2,8,12,3,7,0,4,10,1,13,11,6],

[4,3,2,12,9,5,15,10,11,14,1,7,6,0,8,13]]

s_boxes[6] = [[4,11,2,14,15,0,8,13,3,12,9,7,5,10,6,1],

[13,0,11,7,4,9,1,10,14,3,5,12,2,15,8,6],

[1,4,11,13,12,3,7,14,10,15,6,8,0,5,9,2],

[6,11,13,8,1,4,10,7,9,5,0,15,14,2,3,12]]

s_boxes[7] = [[13,2,8,4,6,15,11,1,10,9,3,14,5,0,12,7],

[1,15,13,8,10,3,7,4,12,5,6,11,0,14,9,2],

[7,11,4,1,9,12,14,2,0,6,10,13,15,3,5,8],

[2,1,14,7,4,10,8,13,15,12,9,0,3,5,6,11]]

def substitute(expanded_half_block):

’’’

This method implements the step "Substitution with 8 S-boxes" step you see inside

Feistel Function dotted box in Figure 4 of Lecture 3 notes.

’’’

output = BitVector (size = 32)

segments = [expanded_half_block[x*6:x*6+6] for x in range(8)]

for sindex in range(len(segments)):

row = 2*segments[sindex][0] + segments[sindex][-1]

column = int(segments[sindex][1:-1])

output[sindex*4:sindex*4+4] = BitVector(intVal = s_boxes[sindex][row][column], size = 4)

return output

For the purpose of this illustration, let’s just make up the right-half of a

64-bit DES bit block:

right_half_32bits = BitVector(intVal = 800000700, size = 32)

Now we need to expand the 32-bit block into 48 bits:

right_half_with_expansion_permutation = right_half_32bits.permute(expansion_permutation)

print "expanded right_half_32bits: ", right_half_with_expansion_permutation

The following statement takes the 48 bits back down to 32 bits after carrying

out S-box based substitutions:

output = substitute(right_half_with_expansion_permutation)

print output

29

Computer and Network Security by Avi Kak Lecture 3

3.3.4: The P-Box Permutation in the Feistel Function

The last step in the Feistel function shown in Figure 4 is labeled

“Permutation with P-Box”. The permutation sequence is shown

below. [It looks like a table, but it is not — as explained below]

P-Box Permutation

15 6 19 20 28 11 27 16

0 14 22 25 4 17 30 9

1 7 23 13 31 26 2 8

18 12 29 5 21 10 3 24

• This permutation ‘table’ says that the 0th output bit will be the

15th bit of the input, the 1st output bit the 6th bit of the input,

and so on, for all of the 32 bits of the output that are obtained

from the 32 bits of the input.

• Do NOT associate any meaning with the row-organization of the

table — except for the following: Each row of the table tells us

how to select the input bits for the output byte corresponding to

the row. For example, for the second output byte, the first entry

in the second row means that the 0th bit of the second output

byte — meaning the 8th bit of the output — will be the 0th bit

30

Computer and Network Security by Avi Kak Lecture 3

of the 32-bit input. Note that bit indexing is 0-based — as it

would be in your Perl or Python script

• Keep in mind the fact that, when using the BitVector module

in Python or the Algorithm::BitVector module in Perl, a permu-

tation such as the one shown above can be carried out with a

one-line command. For example, in Python, the code fragment

would look like:

sboxes_output = BitVector representation of the

output of the S-Boxes

right_half = sboxes_output.permute(pbox_permutation)

where permute() is a method defined for the BitVector class.

The argument pbox permutation you see above is the sequence

of all the entries in the ‘table’ on the previous page expressed as

a one-dimensional array.

31

Computer and Network Security by Avi Kak Lecture 3

3.3.5: The DES Key Schedule: Generating the Round

Keys

• The initial 56-bit key may be represented as 8 bytes, with the last

bit (the least significant bit) of each byte used as a parity bit.

• The relevant 56 bits are subject to a permutation at the begin-

ning before any round keys are generated. This is referred to as

Permutation Choice 1 that is shown in Section 3.3.6.

• At the beginning of each round, we divide the 56 relevant key bits

into two 28 bit halves and circularly shift to the left each half by

one or two bits, depending on the round, as shown in the table

on the next page.

• For generating the round key, we join together the two halves and

apply a 56 bit to 48 bit contracting permutation (this is referred

to as Permutation Choice 2, as shown in Section 3.3.7) to the

joined bit pattern. The resulting 48 bits constitute our round

key.

• The contraction permutation shown in Permutation Choice 2,

along with the one-bit or two-bit rotation of the two key halves

32

Computer and Network Security by Avi Kak Lecture 3

prior to each round, is meant to ensure that each bit of the original

encryption key is used in roughly 14 of the 16 rounds.

• The two halves of the encryption key generated in each round are

fed as the two halves going into the next round.

• The table shown below tells us how many positions to use for

the left circular shift that is applied to the two key halves at the

beginning of each round:

Round Number Number of left shifts

1 1
2 1
3 2
4 2
5 2
6 2
7 2
8 2
9 1
10 2
11 2
12 2
13 2
14 2
15 2
16 1

• When using the BitVector module for programming in Python,

or the Algorithm::BitVector module for programming in Perl,

the steps described above for splitting the 56-bit key, circular-

shifting each half separately, and then rejoining the two halves

33

Computer and Network Security by Avi Kak Lecture 3

can be carried simply by a command sequence that in Python

looks like

[left,right] = key_bv.divide_into_two()

left << shifts[i]

right << shifts[i]

rejoined_key_bv = left + right

where key bv is the BitVector representation of the 56-bit key

entering the round and shifts is the array that consists of the

second column entries in the table shown on the previous page.

The method divide into two() is defined for the BitVector

class.

• The Python code shown in Section 3.3.7 is an illustration of how

you can implement the steps described above.

34

Computer and Network Security by Avi Kak Lecture 3

3.3.6: Initial Permutation of the Encryption Key

Permutation Choice 1

56 48 40 32 24 16 8

0 57 49 41 33 25 17

9 1 58 50 42 34 26

18 10 2 59 51 43 35

62 54 46 38 30 22 14

6 61 53 45 37 29 21

13 5 60 52 44 36 28

20 12 4 27 19 11 3

• The bit indexing is based on using the range 0-63 for addressing

the bit positions in an 8-byte bit pattern in which the last bit of

each byte is used as a parity bit. [Note that each row shown above has has

only 7 positions — the positions corresponding to the parity bit are NOT included above.

That is, you will NOT see the positions 7, 15, etc., listed in the permutations shown.

Nevertheless, the bit addressing spans the full 0-63 range.] The permutations

shown above do not constitute a table, in the sense that the

rows and the columns do NOT carry any special and separate

meanings. The permutation order for the bits is given by reading

the entries shown from the upper left corner to the lower right

corner.

• This permutation tells us that the 0th bit of the output will be

35

Computer and Network Security by Avi Kak Lecture 3

the 56th bit of the input (in a 64 bit representation of the 56-bit

encryption key), the 1st bit of the output the 48th bit of the input,

and so on, until finally we have for the 55th bit of the output the

3rd bit of the input.

• When programming in Python using the BitVector module, or in

Perl using the Algorithm::BitVector module, the permutations

shown on the previous page can be carried out trivially by call-

ing the permute() method of the modules. Using Python to

illustrate, you could call

user_key_bv = BitVector(textstring = user-supplied_key)

key_bv = user_key_bv.permute(initial_permutation)

where, as mentioned earlier, permute() is a method defined for

the BitVector class and initial permutation is the permu-

tation shown on the previous slide expressed as a 1-dimensional

array of integers.

• The code snippet shown below illustrates how you can create the

56-bit key from the eight characters supplied by the user.

#!/usr/bin/env python

get_encryption_key.py

import sys

from BitVector import *

key_permutation_1 = [56,48,40,32,24,16,8,0,57,49,41,33,25,17,

9,1,58,50,42,34,26,18,10,2,59,51,43,35,

62,54,46,38,30,22,14,6,61,53,45,37,29,21,

36

Computer and Network Security by Avi Kak Lecture 3

13,5,60,52,44,36,28,20,12,4,27,19,11,3]

def get_encryption_key():

key = ""

while True:

if sys.version_info[0] == 3:

key = input("Enter a string of 8 characters for the key: ")

else:

key = raw_input("Enter a string of 8 characters for the key: ")

if len(key) != 8:

print("\nKey generation needs 8 characters exactly. Try again.\n")

continue

else:

break

key = BitVector(textstring = key)

key = key.permute(key_permutation_1)

return key

key = get_encryption_key()

print("Here is the 56-bit encryption key generated from your input:\n")

print(key)

37

Computer and Network Security by Avi Kak Lecture 3

3.3.7: Contraction-Permutation that Generates the

48-Bit Round Key from the 56-Bit Key

Permutation Choice 2

13 16 10 23 0 4 2 27

14 5 20 9 22 18 11 3

25 7 15 6 26 19 12 1

40 51 30 36 46 54 29 39

50 44 32 47 43 48 38 55

33 52 45 41 49 35 28 31

• As on the previous page, bit addressing shown above uses the full

0-63 range in an 8-byte pattern. Since the last bit of each byte is

used as a parity bit, you will not see the bit positions 7, 15, 23,

etc., in the permutation shown above.

• As with permutation shown on the previous page, what is shown

above is NOT a table, in the sense that the rows and the columns

do not carry any special and separate meanings. The permutation

order for the bits is given by reading the entries shown from the

upper left corner to the lower right corner.

• Since there are only six rows and there are 8 positions in each

38

Computer and Network Security by Avi Kak Lecture 3

row, the output will consist of 48 bits.

• When programming in Python using the BitVector class, the

permutations shown on the previous page can be carried out triv-

ially by calling the permute() method of the class, as mentioned

earlier.

• The Python code shown below illustrates how you can generate

all 16 round keys using the BitVector module:

#!/usr/bin/env python

generate_round_keys.py

import sys

from BitVector import *

key_permutation_1 = [56,48,40,32,24,16,8,0,57,49,41,33,25,17,

9,1,58,50,42,34,26,18,10,2,59,51,43,35,

62,54,46,38,30,22,14,6,61,53,45,37,29,21,

13,5,60,52,44,36,28,20,12,4,27,19,11,3]

key_permutation_2 = [13,16,10,23,0,4,2,27,14,5,20,9,22,18,11,

3,25,7,15,6,26,19,12,1,40,51,30,36,46,

54,29,39,50,44,32,47,43,48,38,55,33,52,

45,41,49,35,28,31]

shifts_for_round_key_gen = [1,1,2,2,2,2,2,2,1,2,2,2,2,2,2,1]

def generate_round_keys(encryption_key):

round_keys = []

key = encryption_key.deep_copy()

for round_count in range(16):

[LKey, RKey] = key.divide_into_two()

shift = shifts_for_round_key_gen[round_count]

LKey << shift

RKey << shift

key = LKey + RKey

round_key = key.permute(key_permutation_2)

round_keys.append(round_key)

return round_keys

39

Computer and Network Security by Avi Kak Lecture 3

def get_encryption_key():

key = ""

while True:

if sys.version_info[0] == 3:

key = input("\nEnter a string of 8 characters for the key: ")

else:

key = raw_input("\nEnter a string of 8 characters for the key: ")

if len(key) != 8:

print("\nKey generation needs 8 characters exactly. Try again.\n")

continue

else:

break

key = BitVector(textstring = key)

key = key.permute(key_permutation_1)

return key

encryption_key = get_encryption_key()

round_keys = generate_round_keys(encryption_key)

print("\nHere are the 16 round keys:\n")

for round_key in round_keys:

print(round_key)

40

Computer and Network Security by Avi Kak Lecture 3

3.4: WHAT MAKES DES A STRONG
CIPHER (TO THE EXTENT IT IS A

STRONG CIPHER)

• The substitution step is very effective as far as diffusion is con-

cerned. It has been shown that if you change just one bit of the

64-bit input data block, on the average that alters 34 bits of the

ciphertext block.

• The manner in which the round keys are generated from the

encryption key is also very effective as far as confusion is con-

cerned. It has been shown that if you change just one bit of

the encryption key, on the average that changes 35 bits of the

ciphertext.

• Both effects mentioned above are referred to as the avalanche

effect.

• And, of course, the 56-bit encryption key means a key space of

size 256 ≈ 7.2× 1016.

41

Computer and Network Security by Avi Kak Lecture 3

• Assuming that, on the average, you’d need to try half the keys

in a brute-force attack, a machine able to process 1000 keys per

microsecond would need roughly 13 months to break the code.

However, a parallel-processing machine trying 1 million keys si-

multaneously would need only about 10 hours. (EFF took

three days on a specially architectured machine to

break the code.)

• The official document that presents the DES standard can be

found at:

http://www.itl.nist.gov/fipspubs/fip46-2.htm

42

Computer and Network Security by Avi Kak Lecture 3

3.5: HOMEWORK PROBLEMS

1. A text file named myfile.txt that you created with a run-of-

the-mill editor contains just the following word:

hello

If you examine this file with a command like

hexdump -C myfile.txt

you are likely to see the following bytes (in hex) in the file:

68 65 6C 6C 6F 0A

Let’s now try to encrypt the contents of this text file with a 4-bit

block cipher whose codebook contains the following entries:

6, 0, 13, 4, 3, 1, 14, 8, 7, 12, 9, 15, 5, 2, 11, 10

Let’s say that I write the encrypted output into a different file and

then examine this new file with the ‘hexdump -C’ command.

What will I see in the encrypted file?

2. In general, in a block cipher, we replace N bits from the plaintext

with N bits of ciphertext. What defines an ideal block cipher?

43

Computer and Network Security by Avi Kak Lecture 3

3. Whereas it is true that the relationship between the input and

the output is completely random for an ideal block cipher, it must

nevertheless be invertible for decryption to work. That implies

that the mapping between the input blocks and the output blocks

must be one-to-one. If we had to express this mapping in the form

of a table lookup, what will be the size of the table?

4. What would be the encryption key for an ideal block cipher?

5. What makes ideal block ciphers impractical?

6. What do we mean by a “Feistel Structure for Block Ciphers”?

7. Are there any constraints on the Feistel function F in a Feistel

structure?

8. Explain the concepts of diffusion and confusion as used in DES.

9. If we have all the freedom in the world for choosing the Feistel

function F, how should we specify it?

10. How does the permutation/expansion step in DES enhance dif-

fusion? This is the step in which we expand by permutation and

repetition the 32-bit half-block into a 48-bit half-block

44

Computer and Network Security by Avi Kak Lecture 3

11. DES encryption was broken in 1999. Why do you think that

happened?

12. Since DES was cracked, does that make this an unimportant

cipher?

13. Programming Assignment 1:

Write a Perl or Python script that implements the full DES. Use

the S-boxes that are specified for the DES standard (See Section

3.3.3). Make sure you implement all of the key generation steps

outlined in Section 3.3.5. For the encryption key, your script

should prompt the user for a keyboard entry that consists of at

least 8 printable ASCII characters. (You may choose to either

use the first seven or the last seven bits of each character byte for

the 56-bit key you need for DES.)

What makes this homework not as difficult as you think is that

once you write the code that carries out one round of processing,

you basically use the same code in a loop for the whole encryp-

tion chain and the decryption chain. Obviously, you will have

to reverse the order in which the round keys are used for the

decryption chain.

Although you are free to write your own code from scratch, here

are some recommendations: If using Python, you might want to

start with the myBitVector class. To help you get started with

the Python implementation, please see the hw2_starter.py

45

Computer and Network Security by Avi Kak Lecture 3

file. If using Perl, use my Algorithm::BitVector module from

www.cpan.org. It is a popular Perl module for manipulating

bit arrays. It is also well documented. To help you get started

with the Perl implementation, please see the hw2_starter.pl

file. You can download both these starter files through the code

archive for Lecture 3.

14. Programming Assignment 2:

Now modify the implementation you created for the previous

homework by filling the 4 × 16 tables for the S-boxes with ran-

domly generated integers. Obviously, each randomly generated

entry will have to be between 0 and 15, both ends inclusive. Cal-

culate the avalanche effect for this implementation of DES and

compare it with the same effect for your previous implementation.

(See Section 3.3.1 for the avalanche effect.)

46

