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• To discuss stream ciphers and to review RC4 stream cipher algorithm
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Computer and Network Security by Avi Kak Lecture 9

9.1: MULTIPLE ENCRYPTIONS WITH
DES FOR A MORE SECURE CIPHER

• As you already know, the DES cryptographic system is now

known to not be secure.

• We can obviously use AES cryptography that is designed to be

extremely secure, but the world of commerce and finance does

not want to give up on DES that quickly (because of all the

investment that has already been in DES-related software and

hardware).

• So that raises questions like: How about a cryptographic system

that carries out repeated encryptions with DES? Would that be

more secure?

• We will now show that whereas double DES may not be that

much more secure than regular DES, we can expect triple DES

to be very secure.
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9.2: DOUBLE DES

• The simplest form of multiple encryptions with DES is

the double DES that has two DES-based encryption stages

using two different keys.

• Let’s say that P represents a 64-bit block of plaintext. Let E

represent the process of encryption that transforms a plaintext

block into a ciphertext block. Let’s use two 56-bit encryption

keysK1 and K2 for a double application of DES to the plaintext.

Let C represent the resulting block of ciphertext. We have

C = E(K2, E(K1, P ))

P = D(K1, D(K2, C))

where D represents the process of decryption.

• With two keys, each of length 56 bits, double DES in effect uses

a 112 bit key. One would think that this would result in a dra-

matic increase in the cryptographic strength of the cipher — at
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least against the brute-force attacks to which the regular DES

is so vulnerable. Recall that in a brute force attack, you try

every possible key to break the code. We will argue in Section

9.2.2 that this belief is not well founded. But first, in the next

subsection, let’s talk about whether double DES can be thought

of as a variation on the regular DES.
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9.2.1: Can a Double-DES (2DES)

Plaintext-to-Ciphertext Mapping be Equivalent to a

Single-DES Mapping?

• Since the plaintext-to-ciphertext mapping must be one-one, the

mapping created by a single application of DES encryption can

be thought of as a specific permutation of the 264 different pos-

sible integer values for a plaintext block. Since a permutation of

a permutation is still a permutation, the following relationship

between the two keys K1 and K2 of 2DES and some single key

K3 is obviously a theoretical possibility.

E(K2, E(K1, P )) = E(K3, P )

With such a relationship, the whole point of using 2DES to get

around the weakness of DES would be lost, since in that case

2DES would be no stronger than regular DES. [Not only that, one could

extend this argument to state that any number of multiple encryptions of plaintext would amount to a single

encryption of regular DES. Therefore, a cipher consisting of three applications of DES encryption, as in 3DES,

would be no stronger than regular DES.]

• If we said that 2DES with the two keys (K1, K2) is equivalent

to a single application of DES with some key K3, that would

be tantamount to claiming that the set of permutations achieved

with different possible 56-bit DES encryptions is closed. In other
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words, we would be saying that the set of permutations corre-

sponding to DES ecryption forms a group.

• However, as it turns out, the set of permutations corresponding

to DES encryptions/decryptions does not constitute a group. [For

proof, see the paper entitled “DES is not a group,” by Keith Campbell and Michael Wiener, that appeared

in Advances in Cryptology, 1993. The following argument is important to that proof: The set of all possible

permutations over 64-bit words is of size 264! as explained later in this section. This set obviously forms a

group in which the group operator is that of composition-of-two-permutations (as explained in Section 4.2.2

of Lecture 4) and the group identity element is the identity permutation (meaning when each 64-bit pattern

of plaintext maps to itself in the ciphertext). Now let’s consider the subgroup of this group that is generated

by all encryption/decryption permutations of 64-bit words that correspond to DES with 56-bit keys. The

word “generated” is important here, since it implies that the subgroup will contain all permutations that are

returned by applying the composition operator to any two permutations. (That’s because, being a subgroup,

it must be closed under the group operator.) It has been shown by Don Coppersmith that the lower bound

on the size of this subgroup exceeds 257, which is the set all possible permutations that can be generated by

the 56 bits of DES through encryption and decryption. This implies that the permutation produced by 2DES

(or by, say, 3DES) is not guaranteed to belong to the set of size 257 that corresponds to a single application

of DES. Campbell and Weiner have estimated that the size of this subgroup is lower-bounded by 102499 . The

very large size of the subgroup has the following implications: Even though the subgroup being larger than 257

in size does not preclude that for some choice of K1 and K2, 2DES would be equivalent to single DES for some

K3, the probability of finding such a triple (K1,K2,K3) by searching only through the permutations created

by the 56-bit DES keys is negligibly small.]

• Let’s now establish why for 64-bit block encryption the total num-

ber of all possible plaintext-to-ciphertext mappings is the very

large number 264!.
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• Consider 4-bit blocks. Every key gives us a unique mapping

between the 16 possible words at the input and the 16 possible

words at the output.

• Every mapping between the input words and the output words

must amount to a permutation of the input words. This is

necessitated by the fact that any mapping between the plain-

text words and the ciphertext words must be 1-1, since otherwise

decryption would not be possible.

• To understand what I mean by a mapping between the input

words and the output words being a permutation, let’s con-

tinue with our block size of 4 bits. Figure 1 shows one possible

mapping between the 16 different input words that you can have

with 4 bits and the output words. The 16 output words consti-

tute one permutation of the 16 input words. The total number of

permutations of 16 input words is 16!. [When you are looking at N different

objects in a sequence, a permutation corresponds to the N objects appearing in a specific order. There

are N ! ways of ordering such a sequence. Consider the case when N = 3 and when the objects are a,

b, and c. The six different ways of arranging these objects in a sequence are abc, acb, bac, bca, cab, and

cba.]

• So with a block size of 4 bits, we have a maximum of 16! mappings

between the input words and the output words. In other words,

we have 24! mappings when block size is 4 bits. When we select

a key for encryption, we use one of these 24! mappings.
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Input words
represented as
integers:

0    1    2     3     4     5     6     7     8     9     10     11     12     13     14     15

Output words:

The 16 output words constitute one permutation of the 16 input words.  

Since there are 16! permutations of the 16 input words, there exist 16!

different possible mappings between the input and the output.

12    8    3    11    0     1     4     2    14    13    5        7      10     6      15      9

Blocksize =  4 bits

The input−output mapping obtained with one encryption key is only one

of 16! different possible mappings.

This is one possible mapping between the 16 input words and the 16  output words

Figure 1: One possible mapping between the 16 different

possible input words and the 16 different possible output

words for a 4-bit block cipher. (This figure is from Lecture 9 of “Computer and

Network Security” by Avi Kak)

9



Computer and Network Security by Avi Kak Lecture 9

• Let’s now extend the above argument to the case when the block

size is 64 bits.

• As before, each encryption key gives us one mapping between

the input 64-bit words and the output 64-bit words. Since there

are 264 possible words, each mapping is a relationship between

the 264 different possible words at the input and equal number of

such words at the output.

• Since each mapping can be thought of as a permutation of the 264

possible words at the input, we have a maximum of 264! possible

mappings between the input words and the output words.
(

264
)

! = 10347380000000000000000

>
(

1010
20
)

• Now with a key size of 56 bits, we have a total of 256 different

keys. Each key corresponds to one of the 264! different possible

mappings. The number 256 is upperbounded by 1017.
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9.2.2: Vulnerability of Double DES to the

Meet-in-the-Middle Attack

• Any double block cipher, that is a cipher that carries out double

encryption of the plaintext using two different keys in order to

increase the cryptographic strength of the cipher, is open to what

is known as the meet-in-the-middle attack.

• To explain the meet-in-the-middle attack, let’s revisit the rela-

tionship between the plaintext P and the ciphertext C for double

DES:

C = E(K2, E(K1, P ))

P = D(K1, D(K2, C))

where K1 and K2 are the two 56-bit keys used in the two stages

of encryption.

• Let’s say that an attacker has available to him/her a plaintext-

ciphertext pair (P,C). From the perspective of the attacker,

there exists an X such that

X = E(K1, P ) = D(K2, C)
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• In order to mount the attack, the attacker creates a sorted table

of all possible value for X for a given P by trying all possible 256

keys. This table will have 256 entries. We will refer to this table

as TE . [The sorting can be according to the integer values of the keys.]

• The attacker also creates another sorted table of all possible X

by decrypting C using every one of the 256 keys. This table also

has 256 entries. Let’s call this table TD.

• The tables TE and TD are shown in Figure 2.

• Now the question is: How many of the X entries in TE are likely

to be the same as the X entries in TD? It would obviously suit

the attacker if there was a single matching entry in the TE and

TD tables. That is, the attacker’s job would be done if only one

X entry in TE were to be the same as anX entry in TD, the entry

corresponding to the actual keys K1 and K2 used for generating

C from P . But, as we will see, in general the number of matches

will be very large. So we will refer to this count as the number

of false alarms.

• As Figure 2 shows, we need to make a total of 2112 comparisons

in order to figure out which entries in the tables are the same.

But these comparisons involve only 264 different possible values

for X . (Recall that X is a 64-bit word.) Then it must be case

that that
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X for K1  = 2     −  1
56

X for K1  = 3

X for K1  = 2

X for K1  = 1

X for K1  = 0

X for K1  = 2     −  1
56

X for K2  = 3

X for K2  = 2

X for K2  = 1

X for K2  = 0

T
D

T
E

2      different values for X
64

C
P

values for X.  But there are at most

Comparing each X on the left with every X on the

right involves  2        comparisons of 64−bit 
112

Figure 2: In a meet-in-the-middle attack on the 2DES ci-

pher, an adversary uses a given plaintext-ciphertext pair

(P,C) to narrow down the possible values for the two keys

K1 and K2. (This figure is from Lecture 9 of “Computer and Network Security” by Avi Kak)
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2112

264
= 248

of the comparisons must involve identical values in the two tables.

[Let’s say you want to make a 1000 comparisons of the values of a variable under the assumption the variable

can take only two values. On the average, 500 of the comparisons will involve identical values. Now consider

the case when the variable can take only three values. Now a third of the comparisons must involve identical

values. And so on.] So we can expect 248 entries in the TE table to be

the same as the entries in the TD entries in the TD table.

• Therefore, when we compare the 256 entries of X in TE with the

256 entries of X ′ in TD, on the average we are likely to run into

248 false alarms.

• Now suppose the attacker has another (P ′, C ′) pair of 64-bit

words available to us. This time, we will only try the 248 key

pairs (K1, K2) on which we obtained equalities when comparing

theX entries in TE with the X ′ entries in TD. Let the new tables

be called T ′E and T ′D.

• Now the attacker should see no redundancy at all with regard

to the X values produced by the different keys for the given P ′

and C ′. On the other hand, now the attacker will see “negative

redundancy” to the tune of 248/264 = 2−16. Taken practically,

that implies that there will only be a single key pair (K1, K2)

with the same X value in the tables T ′E and T ′D.
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• Therefore, the matching entry in comparing T ′E with T ′D is prac-

tically guaranteed to yield the encryption keys K1 and K2.

• The effort required to make such a comparison is proportional to

the size of the tables TE and TD, which is 2
56, which is comparable

to the effort required to break the regular DES.

15



Computer and Network Security by Avi Kak Lecture 9

9.3: TRIPLE DES WITH TWO KEYS

• An obvious defense against the meet-in-the-middle attack is

to use triple DES.

• The most straightforward way to use triple DES is to employ

three stages of encryption, each with its own key:

C = E(K3, E(K2, E(K1, P )))

But this calls for 168-bit keys, which is considered to be unwieldy

for many applications.

• One way to use triple DES is with just two keys as follows

C = E(K1, D(K2, E(K1, P )))

Note that one stage of encryption is followed by one stage of

decryption, followed by another stage of encryption. This

is also referred to as EDE encryption, where EDE stands for

Encrypt-Decrypt-Encrypt.
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• There is an important reason for juxtaposing a stage of decryption

between two stages of encryption: it makes the triple DES system

easily usable by those who are only equipped to use regular DES.

This backward compatibility with regular DES can be achieved

by setting K1 = K2 in triple DES.

• It is important to realize that juxtaposing a decryption stage be-

tween two encryption stages does not weaken the resulting cryp-

tographic system in any way. Recall, decryption in DES works in

exactly the same manner as encryption. So if you encrypt data

with one key and try to decrypt with a different key, the final

output will be still be an encrypted version of the original input.

The nature of this encrypted output will not be different, from

the standpoint of cryptographic strength, from the case if you use

two stages of encryption.

• Triple DES with two keys is a popular alternative to regular DES.
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9.3.1: Possible Ways to Attack 3DES Based on Two

Keys

• It is theoretically possible to extend the meet-in-the-middle

attack to the case of 3DES based on two keys.

• Let’s go back to the encryption equation for two-key 3DES:

C = E(K1, D(K2, E(K1, P )))

We can rewrite this equation in the following form

A = E(K1, P )

B = D(K2, A)

C = E(K1, B)

• If the attacker had some way of knowing the intermediate value

A for a given plaintext P , breaking the 3DES cipher becomes the

same as breaking 2DES with the meet-in-the-middle attack.

• In the absence of knowledge of A, the attacker can assume some

arbitrary value for A and can then try to find a known (P, C)

that results in that A by using the following procedure:
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Step 1: The attacker procures n pairs of (P, C). These are

arranged in a two-column table, with all the P ’s in one column

and their corresponding C’s in the other column. This table

has n rows. We refer to this table as Table I.

Step 2: The attacker now chooses an arbitrary A. Using this A,

the attacker figures out the plaintext that will result in that

A for every possible key K1:

P = D(K1, A)

(Recall that, in encryption, A is related to P byA = E(K1, P ).)

If a P calculated in this manner is found to match one of the

rows in Table I, for the key K1 that yielded this match we

now find B from

B = D(K1, C)

for the C value that corresponds to the P value in Table I.

This B value and its corresponding keyK1 is entered as a row

in Table II. (Recall that, in encryption, C is related to B by

C = E(K1, B).)

Step 3: Given all the available (P, C) pairs, we now fill Table II

with (B, K1) pairs where the set of K1’s constitutes our

candidate pool for the K1 key.

Step 4: We now sort Table II on the B values.
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Step 5: In Table II constructed as above, the left column en-

tries, meaning B’s, were obtained from the available samples

of ciphertext C. Recall, the other way to obtain B is by

B = D(K2, A)

We now try, one at a time, all possible values for theK2 key in

this equation for the assumed value for A. (Obviously, there

are 256 possible values for K2.) When we get a B that is in

one of the rows of Table II, we have found a candidate pair

(K1, K2).

Step 6: The candidate pair of keys (K1, K2) is tested on the

remaining (P, C) pairs. If the test fails, we try a different

value for A in Step 2 and the process is repeated.

• Let’s now talk about the effort involved in arriving at a correct

guess for the (K1, K2) pair of keys.

• For a given pair (P,C), the probability of guessing the correct

intermediate A is 1/264.

• Therefore, given the n pairs of (P, C) values in Table I, the

probability that a particular chosen value for A will be

correct is n/264.
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• Now we will use the following result in probability theory: the

expected number of draws required to draw one red ball

from a bin containing n red balls and N − n green balls is (N +

1)/(n + 1) if the balls are NOT replaced.

• Therefore, given the n pairs for (P, C), the number of different

possible values for A that we may have to try is given by

264 + 1

n + 1
≈

264

n

which is roughly in agreement with the probability n/264 of choos-

ing the correct value for A if we are given n pairs for (P, C).

• Because the size of the effort involved in Step 5 is of the order

of 256, the above expression implies that the running time of the

attack would be of the order of

256 ·
264

n
= 2120−log n
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9.4: TRIPLE DES WITH THREE KEYS

• If you don’t mind 168-bit keys, here is a 3-key version of a more

secure cipher that is based on multiple encryptions with DES:

C = E(K3, D(K2, E(K1, P )))

where the decryption step in the middle is purely for the sake of

backward compatibility with the regular DES, with 2DES, and

with 3DES using two keys.

• When all three keys are the same, that is whenK1 = K2 = K3,

3DES with three keys become identical to regular DES.

• When K1 = K3, we have 3DES with two keys.

• Note that as with 3DES using two keys, the decryption stage in

the middle does NOT reduce the cryptographic strength of 3DES

with three keys. Especially since the encryption and decryption

algorithms are the same in DES, decrypting with a key that is dif-

ferent from the key used in encryption does not bring the output

any closer to the input.
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• A number of internet-based applications have adopted 3DES with

three keys. These include PGP and S/MIME. [PGP is used

for email and file storage security; we will talk about it in Lecture 20. S/MIME stands for Secure-MIME and

MIME stands for Multipurpose Internet Mail Extensions. When you attach PDF files, photos, videos,

etc., with your email, they are sent as MIME objects.]
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9.5: FIVE MODES OF OPERATION FOR
BLOCK CIPHERS

• The discussion in this section applies to all block ciphers, includ-

ing the AES cipher presented in Lecture 8.

• Just because a block cipher has been demonstrated to be strong

(in the sense that it is not vulnerable to brute-force, meet-in-

the-middle, typical statistical, and other such attacks), does not

imply that it will be sufficiently secure if you are using it to

transmit long messages. [By “long”, we mean many times longer than the block

length.] The interaction between the block-size based periodicity

of such ciphers and any repetitive structures in the plaintext may

still leave too many clues in the ciphertext that compromise its

security.

• The goal of this section (which includes the five subsections that

follow) is to present the five different modes in which any block

cipher can be used. The first of these, ECB, is for using a block

cipher as it is, meaning by scanning a long document one block at

a time and enciphering it independently of the blocks seen before

or the blocks to be seen next. As will be pointed out, this is not
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suitable for long messages. It is the next four modes, variations

on the first, that are actually used in real-world applications for

the encryption of long messages.

Electronic Code Book (ECB): This method is referred to as

the Electronic Code Book method because the encryption process

can be represented by a fixed mapping between the input blocks

of plaintext and the output blocks of cipher text. So it is very

similar to the code book approach of the distant past. The code

book would list the ciphertext mapping for each plaintext word.

For this mode to work correctly, either the message length must

be an integral multiple of the block size or you must use padding

so that the condition on the length is satisfied.

Cipher Block Chaining Mode (CBC): The input to the en-

cryption algorithm is the XOR of the next block of plaintext and

the previous block of ciphertext. This is obviously more secure

for long segments of plaintext. However, this mode also requires

that length of the plaintext message be an integral multiple of

the block size. When that condition is not satisfied, the message

must be suitably padded.

Cipher Feedback Mode (CFB): Whereas the CBC mode uses

all of the previous ciphertext block to compute the next ciphertext

block, the CFB mode uses only a fraction thereof. Also, whereas

in the CBC mode the encryption system digests b bits of plaintext

at a time (where b is the blocksize used by the block cipher), now
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the encryption system digests only s < b number of plaintext

bits at a time even though the encryption algorithm itself carries

out a b-bits to b-bits transformation. Since s can be any number,

including one byte, that makes CFB suitable as a stream cipher.

Output Feedback Mode (OFB): The basic logic here is the

same as in CFB, only the nature of what gets fed from stage to

stage is different. In CFB, you feed s < b number of ciphertext

bits from the current stage into the b-bits to b-bits transformation

carried out by the next-stage encryption. But in OFB, you feed

s bits from the output of the transformation itself. This mode of

operation is also suitable if you want to use a block cipher as a

stream cipher.

Counter Mode (CTR): Whereas the previous four modes for us-

ing a block cipher are intuitively plausible, this new mode at first

seems strange and seemingly not secure. But it has been theo-

retically established that this mode is at least as secure as the

other modes. As for CFB and OFB, an interesting property of

this mode is that only the encryption algorithm is used at both

the encryption end and at the decryption end. The basic idea

consists of applying the encryption algorithm not to the plain-

text directly, but to a b-bit number (and its increments modulo

2b for successive blocks) that is chosen beforehand. The cipher-

text consists of what is obtained by XORing the encryption of

the number with a b-bit block of plaintext.
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In Sections 9.5.1 through 9.5.5 that follow, we will examine in greater

detail these five different modes for using a block cipher.
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9.5.1: The Electronic Code Book Mode (ECB)

• When a block cipher is used in ECB mode, each block of plaintext

is coded independently. This makes it not very secure for long

segments of plaintext, especially plaintext containing repetitive

information (particularly if the nature of what is repet-

itive in the plaintext is known to the attacker). Used

primarily for secure transmission of short pieces of information,

such as an encryption key.

• I will now demonstrate visually that when each block of a plain-

text file is encrypted independently of the other blocks, the “struc-

ture” of the information in the ciphertext file can hold important

clues to what is in the plaintext file.

• Shown in Figure 3(a) is a graylevel image of a rose. Figure 3(b)

shows the edge-detected version of the rose in (a). [For the images that

are shown, I started with a colored jpeg image of a rose that I converted to the black-and-white ppm format with

the ImageMagick package using the ‘convert -colorspace Gray -equalize americanpride.jpg myimage.ppm’

command, where americanpride.jpg is the name of the original color image and myimage.jpg the name

of the output file for the black-and-white image. The ‘-equalize’ option carries out histogram equaliztion of

the gray levels in the output for a superior black-and-white image. Note that you need to carry out the

jpeg to ppm conversion because the bytes in the jpeg format do NOT directly represent the pixel brightness

values. On the other hand, after the file header, each byte in a ppm file is a grayscale value at a pixel. In

other words, after the file header, the bytes in a ppm file are the raw image data. (The file header contains
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information regarding the size of the image, etc.) The edge-detected version of the rose was produced by the

command: convert -blur 5x2 -edge 0 myimage.ppm my edge image.ppm which gives us the result shown in

(b). The option ‘-edge 0’ means that we want edges to be one pixel wide and the option ‘-blur 5x2’ means

that, prior to edge detection, we want the image to be smoothed by an 5× 5 Gaussian operator whose variance

equals 2 pixels.] When we apply DES block encryption to the data in

Figure 3(b) and simply display the ciphertext bytes as image gray

levels, we get what is shown in Figure 3(c). The ciphertext bytes

that are displayed in Figure 3(c) were generated by the following

Perl script [This script takes two command-line arguments, the name of the ppm file containing the

edge image and the name of the output ppm file into which the ciphertext data will be deposited]:

#!/usr/bin/env perl

## ImageDESEcrypt.pl

## Avi Kak

## February 12, 2015

## This script uses the DES algorithm in the ECB mode to encrypt an image

## to demonstrate shortcomings of the ECB. It is best to call this script

## on an edge-enhanced image.

## Call syntax:

##

## ImageDESEncrypt.pl input_image.ppm output.ppm

use strict; #(A)

use warnings;

use Crypt::ECB; #(B)

use constant BLOCKSIZE => 64; #(C)

die "Needs two command-line arguments for in-file and out-file" #(D)

unless @ARGV == 2; #(E)

my $crypt = Crypt::ECB->new; #(F)

# It is important to supply the PADDING_NONE option here. With the other

# option, PADDING_AUTO, it will padd extra 8 bytes to each block of 8 bytes

# I read and feed into the encryption function. This padding, presumably

# all zeros, probably makes sense when you supply the entire file to the

# encrypt function all at once.

$crypt->padding(PADDING_NONE); #(G)

$crypt->cipher(’DES’) || die $crypt->errstring; #(H)

29



Computer and Network Security by Avi Kak Lecture 9

$crypt->key(’hello123’); #(I)

open FROM, shift @ARGV or die "unable to open filename: $!"; #(J)

open TO, ">" . shift @ARGV or die "unable to open filename: $!"; #(K)

binmode( FROM ); #(L)

binmode( TO ); #(M)

my $encrypted = ""; #(N)

my $total_bytes_read = 0; #(O)

$|++; #(P)

while (1) { #(Q)

my $num_of_bytes_read = sysread( FROM, my $buff, BLOCKSIZE/8 ); #(R)

$total_bytes_read += $num_of_bytes_read; #(S)

if ($total_bytes_read < 2048) { #(T)

$encrypted .= $buff; #(U)

next; #(V)

}

$buff .= ’0’ x (BLOCKSIZE/8 - $num_of_bytes_read)

if ($num_of_bytes_read < BLOCKSIZE/8); #(W)

$encrypted .= $crypt->encrypt( $buff ); #(X)

print ". " if $total_bytes_read % 2048 == 0; #(Y)

last if $num_of_bytes_read < BLOCKSIZE/8; #(Z)

}

syswrite( TO, $encrypted ); #(a)

Starting in line (Q), note in the “while” loop how we do not

encrypt the first 2048 bytes in the image file that is subject to

encryption. These initial bytes are transfered directly to the out-

put ciphertext file. This is done to preserve the file header so

that the display program would recognize the ciphertext data as

a ppm image. Also note that in the script shown above, the

Crypt::ECB module is asked to use no padding and to use the

DES algorithm for block encryption. It is important to turn off

automatic padding, as I have done in line (G), for this demon-

stration to work.

• Lest you think that our being able to see the outline of the flower

in the ciphertext data in Figure 3(c) may have something to do
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(a) rose.ppm (b) rose edgemap.ppm

(c) cipher rose.ppm (d) cipher rose2.ppm

Figure 3: Shown here are the security risks associated with

using a block cipher without chaining. What you see in

(b) is an edge image for the rose in (a). The DES-ECB

encrypted version of (b) is shown in (c), whereas (d) shows

the encrypted output obtained with another block cipher.

(This figure is from Lecture 9 of “Computer and Network Security” by Avi Kak)
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with the DES algorithm, shown in Figure 3(d) is the ciphertext

data obtained with a completely different approach to block en-

cryption. Here we carry out block encryption by randomly per-

muting the 64 bits in each block according to a pseudorandom

order specified by the encryption key. This encryption key itself

is generated by randomly permuting a list consisting of the first

64 integers. In Perl, you can conveniently do that with the help

of the Fisher-Yates shuffle. See the script that follows.

#!/usr/bin/env perl

## ImageBlockEcrypt.pl

## Avi Kak (February 13, 2015)

## Each block of bits read from the image file is represented as an instance

## of the following class:

##

## Algorithm::BitVector

##

## that you can download from the CPAN archive at

##

## http://search.cpan.org/~avikak/Algorithm-BitVector-1.21/lib/Algorithm/BitVector.pm

## The block encryption used here is based on a random permutation of the

## bits in the source file. For a receiving party to decrypt the

## information, you will have to send them the key file that is created in

## line (K).

## Call syntax:

##

## ImageBlockEncrypt.pl input_image.ppm output.ppm

use strict;

use warnings;

use Algorithm::BitVector; #(A)

use constant BLOCKSIZE => 64; #(B)

die "Needs two command-line arguments for in file and out file" #(C)

unless @ARGV == 2; #(D)

$|++; #(E)

my $inputfile = shift; #(F)

open my $TO, ">" . shift @ARGV or die "unable to open filename: $!"; #(G)
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# Open ‘keyfile.txt’ so that you can write the permutaiton order into the

# file (this serves as our "encryption key"):

open KEYFILE, "> keyfile.txt"; #(H)

my @permute_indices = 0..BLOCKSIZE-1; #(I)

# Now create a random permutation of the bit positions. We will use this

# method for encryption in this script. If you had to represent the

# permutations as an encryption key, that would be a very long key indeed.

fisher_yates_shuffle( \@permute_indices ); #(J)

print KEYFILE "@permute_indices"; #(K)

close KEYFILE; #(L)

# Let’s now start scanning the input file and encrypting it by permuting

# the bits in each block:

my $j = 0;

my $bv = Algorithm::BitVector->new( filename => $inputfile ); #(M)

while ($bv->{more_to_read}) { #(N)

print "." if $j % 1000 == 0; #(O)

my $bv_read = $bv->read_bits_from_file( BLOCKSIZE ); #(P)

if ($j++ < 2048) { #(Q)

$bv_read->write_to_file( $TO ); #(R)

next;

}

if ($bv_read->length() < BLOCKSIZE) { #(S)

$bv_read->pad_from_right(BLOCKSIZE - $bv_read->length()); #(T)

}

my $permuted_bitvec = $bv_read->permute(\@permute_indices ); #(U)

$permuted_bitvec->write_to_file( $TO ); #(V)

} #(W)

$bv->close_file_handle(); #(X)

sub fisher_yates_shuffle { #(Y)

my $arr = shift; #(Z)

my $i = @$arr; #(a)

while (--$i) { #(b)

my $j = int rand( $i + 1 ); #(c)

@$arr[$i, $j] = @$arr[$j, $i]; #(d)

}

}

• As you can see from the results shown, straightforward block

encryption can leave too many clues in the ciphertext for an

attacker. For this reason, a straightforward approach to block

encryption (meaning using it in the ECB mode) is good only for

short messages or messages without too much repetitive struc-

ture. In the image data that we used in our demonstration here,

there was too much repetitiveness in the the background — since
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most of those pixels were zero — and this repetitiveness was only

occasionally broken by sudden appearances of gray values at the

edges.

• Another shortcoming of ECB is that the length of the plaintext

message must be integral multiple of the block size. When that

condition is not met, the plaintext message must be padded ap-

propriately.

• The next three modes presented in Sections 9.5.2 through 9.5.4

provide enhanced security by making the ciphertext for any block

a function of all the blocks seen previously. These modes also do

not require that the size of the plaintext be an integral multiple

of the block size.

• It is highly recommended that you apply the DES script you

wrote for one of your homeworks to an image taken with your

digital camera to see for yourself the results presented here.

• Shown in the rest of this section are the Python versions of the

Perl scripts presented earlier. I first present the Python script

that carries out DES encryption in the ECB mode.

#!/usr/bin/env python

## ImageDESEcrypt.py
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## Avi Kak

## February 11, 2016

## This script uses the DES algorithm in the ECB mode to encrypt an image

## to demonstrate shortcomings of the ECB. It is best to call this script

## on an edge-enhanced image.

## Call syntax:

##

## ImageDESEncrypt.py input_image.ppm output.ppm

import sys

from Crypto.Cipher import DES #(A)

if len(sys.argv) is not 3: #(B)

sys.exit(’’’Needs two command-line arguments, one for ’’’

’’’the source image file and the other for the ’’’

’’’encrypted output file’’’)

BLOCKSIZE = 64 #(C)

cipher = DES.new(b’hello123’, DES.MODE_ECB) #(D)

FROM = open(sys.argv[1], ’rb’) #(E)

TO = open(sys.argv[2], ’wb’) #(F)

end_of_file = None #(G)

total_bytes_read = 0 #(H)

while True: #(I)

bytestring = ’’ #(J)

for i in range(BLOCKSIZE // 8): #(K)

byte = FROM.read(1) #(L)

if byte == ’’: #(M)

end_of_file = True #(N)

break #(O)

else:

total_bytes_read += 1 #(P)

bytestring += byte #(Q)

if end_of_file: #(R)

bytestring += ’0’ * (8 - total_bytes_read % 8) #(S)

cipherout = cipher.encrypt(bytestring) if total_bytes_read >= 2048 else bytestring #(T)

TO.write(cipherout) #(U)

if end_of_file: break #(V)

if total_bytes_read %2048 == 0: #(W)

print ".", #(Y)

sys.stdout.flush() #(Z)

TO.close()

• You would call the script shown above in exactly the same way
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as you did for the Perl script ImageDESEncrypt.pl presented

earlier. In other words, your call will look like

ImageDESEncrypt.py your_edge_enhanced_image.ppm output_image.ppm

• Finally, here is ImageBlockEncrypt.py as the Python version

of the Perl script ImageBlockEncrypt.pl presented earlier:

#!/usr/bin/env python

## ImageBlockEcrypt.py

## Avi Kak (February 11, 2016)

## Each block of bits read from the image file is represented as an instance of the

## Python BitVector class.

## The block encryption used here is based on a random permutation of the bits in

## the source file. For a receiving party to decrypt the information, you will have

## to send them the key file that is created in line (K).

## Call syntax:

##

## ImageBlockEncrypt.py input_image.ppm output.ppm

import sys

import random

from BitVector import * #(A)

if len(sys.argv) is not 3: #(B)

sys.exit(’’’Needs two command-line arguments, one for ’’’

’’’the source image file and the other for the ’’’

’’’encrypted output file’’’)

BLOCKSIZE = 64 #(C)

inputfile = sys.argv[1] #(D)

TO = open(sys.argv[2], ’w’) #(E)

# Open ‘keyfile.txt’ so that you can write the permutaiton order into the

# file (this serves as our "encryption key"):

KEYFILE = open("keyfile.txt", ’w’) #(F)

permuted_indices = range(BLOCKSIZE) #(G)

# Now create a random permutation of the bit positions. We will use this

# method for encryption in this script. If you had to represent the

# permutations as an encryption key, that would be a very long key indeed.

random.shuffle(permuted_indices) #(H)
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KEYFILE.write(str(permuted_indices)) #(I)

KEYFILE.close() #(J)

# Let’s now start scanning the input file and encrypting it by permuting

# the bits in each block:

j = 0 #(K)

bv = BitVector( filename = inputfile ) #(L)

while bv.more_to_read: #(M)

if j %1000 == 0: #(N)

print ".", #(O)

sys.stdout.flush() #(P)

bv_read = bv.read_bits_from_file( BLOCKSIZE ) #(Q)

j += 1 #(R)

if j < 2048: #(S)

bv_read.write_to_file( TO ) #(T)

continue #(U)

if bv_read.length() < BLOCKSIZE: #(V)

bv_read.pad_from_right(BLOCKSIZE - bv_read.length()) #(W)

permuted_bitvec = bv_read.permute( permuted_indices ) #(X)

permuted_bitvec.write_to_file( TO ) #(Y)

bv.close_file_object(); #(Z)

TO.close()

• The call syntax for the script shown above is the same as what
you saw earlier:

ImageBlockEncrypt.py your_edge_enhanced_image.ppm output_image.ppm
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9.5.2: The Cipher Block Chaining Mode (CBC)

• To overcome the security deficiency of the ECB mode, the input

to the encryption algorithm consists of the XOR of the plaintext

block and the ciphertext produced from the previous plaintext

block. See Figure 4.

• This makes it more difficult for a cryptanalyst to break the code

using strategies that look for patterns in the ciphertext, patterns

that may correspond to the known structure of the plaintext.

• To get started, the chaining scheme shown in Figure 4 obviously

needs what is known as the initialization vector for the first

invocation of the encryption algorithm.

• The initialization vector, denoted IV, is sent separately as a short

message using the ECB mode.

• With this chaining scheme, the ciphertext block for any given

plaintext block becomes a function of all the previous ciphertext

blocks.
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Figure 4: The Cipher Block Chaining Mode for using a

block cipher. (This figure is from Lecture 9 of “Computer and Network Security” by Avi

Kak)
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9.5.3: The Cipher Feedback Mode (CFB)

• This approach. illustrated in Figure 5, allows a block cipher to

be used as a stream cipher. [With a block cipher, if the length of the message is not

an integral number of blocks, you must pad the message. It is not necessary to do so with a stream cipher.]

• This mode works as follows:

– Start with an initialization vector, IV, of the same size as

the blocksize expected by the block cipher. The IV is stored

in shift register for reasons that will shortly be clear.

– Encrypt the IV with the block cipher encryption algorithm.

– Retain only one byte from the output of the encryption algo-

rithm. Let this be the most significant byte. Discard the rest

of the output.

– XOR the byte retained with the byte of the plaintext that

needs to be transmitted. Transmit the output byte produced.

– Shift the IV one byte to the left (discarding the leftmost byte)

and insert the ciphertext byte produced by the previous step
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as the rightmost byte. So the new IV is still of the same length

as the block size expected by the encryption algorithm.

– Go back to the step “Encrypt the IV with the block cipher

encryption algorithm”.

• Figure 5 shows these steps on a recurring basis for both encryption

and decryption. The figure is slightly more general than the

description above because it assumes that you want the unit of

transmission to be s bits, as opposed to 1 byte. But it is typically

the case that s = 8.

• A most important thing to note about the scheme in Figure 5

is that only the encryption algorithm is used in both encryption

and decryption. This can be an important implementation-level

detail for those block ciphers for which the encryption and the

decryption algorithms are significantly different. AES is a case in

point.

• Note that the ciphertext byte produced for any plaintext byte

depends on all the previous plaintext bytes in the CFB mode.

41



Computer and Network Security by Avi Kak Lecture 9

Shift Register

S BitsLeft shift by S bits

Shift Register

S BitsLeft shift by S bits

Ciphertext
S bits

Select
Discard B−S bits

S bits

Block

Encrypt

S bits

B bits

Key

B bits

Plaintext

Shift Register

S bits

Ciphertext
S bits

Ciphertext
S bits

Select
Discard B−S bits

S bits

Block

Encrypt

S bits

B bits

Key

B bits

Shift Register
B bits

Plaintext

Select
Discard B−S bits

S bits

Block

Encrypt

Plaintext

S bits

S bits

B bits

Key

Ciphertext 

B bits

Select
Discard B−S bits

S bits

Block

Encrypt

Plaintext

S bits

S bits

B bits

B bits

Key

Ciphertext 

Select
Discard B−S bits

S bits

Block

Encrypt

S bits

B bits

Key

B bits

Plaintext

Shift Register

S bits
Left shift by S bitsLeft shift by S bits

Select
Discard B−S bits

S bits

Block

Encrypt

Plaintext

S bits

S bits

B bits

Key

Ciphertext 

B bits

Shift Register
B bits

Initialization
Vector (IV)

Initialization
Vector (IV)

Time 1 Time 2 Time 3

CFB Encryption

CFB Decryption

Figure 5: The Cipher Feedback Mode for using a block

cipher. (This figure is from Lecture 9 of “Computer and Network Security” by Avi Kak)
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9.5.4: The Output Feedback Mode (OFB)

• Very similar to the CFB mode. Therefore, this scheme can also

be used as a stream cipher.

• The only difference between CFB and OFB is that, as shown in

Figure 6, now we feed back one byte (the most significant byte)

from the output of the block cipher encryption algorithm, as op-

posed to feeding back the actual ciphertext byte. This, as further

explained below, makes OFB more resistant to transmission bit

errors.

• Considering CFB, let’s say that you have encrypted and transmit-

ted the first byte of plaintext. Now suppose this byte is received

with a one or more bit errors. In addition to producing an erro-

neous decryption for the first byte, that error will also propagate

to downstream decryptions because the received ciphertext byte

is also fed back into the decryption of the next byte.

• On the other hand, what is fed back in OFB is completely locally

generated at the receiver. That is, the information that is fed

back is not exposed to the possibility of transmission errors in

OFB.
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Figure 6: The Output Feedback Mode for using a block

cipher. (This figure is from Lecture 9 of “Computer and Network Security” by Avi Kak)
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9.5.5: The Counter Mode (CTR)

• Whereas the previous two modes, CFB and OFB, are intended to

use a block cipher as a stream cipher, the counter mode (CTR) re-

tains the pure block structure relationship between the plaintext

and ciphertext.

• In other words, for each b-bit input plaintext block, the scheme

produces an b-bit ciphertext block. Furthermore, the block cipher

encryption algorithm that is used carries out a b-bits to b-bits

transformation.

• In CFB and OFB, on the other hand, whereas the block-cipher

encryption algorithm did carry out a b-bits to b-bits transforma-

tion, only s bits of plaintext, with s < b, were converted into s

bits of ciphertext at one time. Moreover, s is typically 8 for the

8 bits of a byte in CFB and OFB.

• As shown in Figure 7 (and as is also true for the OFB mode,

but not for the CFB mode), no part of the plaintext is directly

exposed to the block encryption algorithm in the CTRmode. The

encryption algorithm encrypts only a b-bit integer produced by

the counter. What is transmitted is the XOR of the encryption

of the integer and the b bits of the plaintext.
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• For the counter value, we start with some number for the first

plaintext block and then increment this value modulo 2b from

block to block, as shown in Figure 7.

• Note that, as shown in Figure 7, only the forward encryp-

tion algorithm is used for both encryption and decryption.

(This is of significance for block ciphers for which the encryption

algorithm differs substantially from the decryption algorithm.

AES is a case in point.) (This property of CTR is also true

for CFB and OFB modes.)

• Here are some advantages of the CTR mode for using a block

cipher:

– Fast encryption and decryption. If memory is not a constraint,

we can precompute the encryptions for as many counter values

as needed. Then, at the transmit time, we only have to XOR

the plaintext blocks with the pre-computed b-bit blocks. The

same applies to fast decryption.

– It has been shown that the CTR is at least as secure as the

other four modes for using block ciphers.

– Because there is no block-to-block feedback, the algorithm is

highly amenable to implementation on parallel machines. For

the same reason, any block can be decrypted with random

access.
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Figure 7: The Counter Mode for using a block cipher. (This

figure is from Lecture 9 of “Computer and Network Security” by Avi Kak)

47



Computer and Network Security by Avi Kak Lecture 9

9.6: STREAM CIPHERS

• Previously we showed how a block cipher, when used in the CFB

and OFB modes, can be deployed as a stream cipher. We will now

focus on ciphers that are designed explicitly to work as stream

ciphers. As you already know, a typical stream cipher encrypts

plaintext one byte at a time.

• The main processing step in a true stream cipher is the generation

of a stream of pseudorandom bytes that depend on the

encryption key.

• As a new byte of plaintext shows up for encryption, a new byte

of the pseudorandom stream also becomes available at the same

time and this happens on a continuous basis.

• Obviously, each different encryption key will result in a different

stream of pseudorandom bytes. But for a given encryption key,

the stream of pseudorandom bytes will be the same at the both

the encryption end and the decryption end of a data link.
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• Encryption itself is as simple as it can be. You just XOR the

byte from the pseudorandom stream with the plaintext byte to

get the encrypted byte.

• You generate the same pseudorandom byte stream for decryption.

The decryption itself consists of XORing the received byte with

the pseudorandom byte.

• The encryption is shown in the left half and the decryption in the

right half of Figure 8.

• For a stream cipher to be secure, the pseudorandom sequence of

bytes should have as long a period as possible. Note that every

pseudorandom number generator produces a seemingly random

sequence that eventually repeats. The longer the period, the

more difficult it is to break the cipher.

• Within the periodicity limitations of a pseudorandom byte se-

quence generator, the sequence should be as random as possible.

From a statistical point, that means that all of the 256 8-bit pat-

terns should appear in the sequence equally often. Additionally,

the byte sequence should be as uncorrelated as possible. This

means, for example, that for any two given bytes, the probability

of their appearing together should be no greater than what is

dictated by their appearance as individual bytes.
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• The pseudorandom byte sequence is a function of the encryption

key. To foil brute-force attacks, the encryption key should be

as long as possible, subject to, of course, all the other practical

constraints. A desirable key length these days is 128 bits.

• With a properly designed pseudorandom byte generator, a stream

cipher for a given key length can be as secure as a block cipher

using keys of the same length.

• The next section presents pseudorandom byte generation for the

RC4 stream cipher. (Lecture 10 will go into the subject of pseu-

dorandom number generation for general cryptographic applica-

tions.)

• As you would expect, a stream cipher is particularly appropriate

for audio and video streaming. A stream cipher is also frequently

used for browser – web-server links. A block cipher, on the other

hand, is more appropriate for file transfer, etc.
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Figure 8: Operation of a stream cipher. (This figure is from Lecture 9

of “Computer and Network Security” by Avi Kak)
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9.7: THE RC4 STREAM CIPHER
ALGORITHM

• As mentioned earlier in Section 9.6, a key component of a stream

cipher is the pseudorandom byte sequence generator.

• We will now go through the pseudorandom byte sequence gener-

ator in the RC4 algorithm.

• RC4 is a variable key length stream cipher with byte-oriented

operations.

• Fundamental to the RC4 algorithm is a 256 element array of 8-bit

integers. It is called the state vector and denoted S.

• The state vector is initialized with the encryption key. The exact

initialization steps are as follows:

– The state vector S is initialized with entries from 0 to 255 in
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the ascending order. That is

S[0] = 0x00 = 0

S[1] = 0x01 = 1

S[2] = 0x02 = 2

S[3] = 0x03 = 3

.....

.....

S[255] = 0xFF = 255

– The state vector S is further initialized with the help of an-

other temporary 256-element vector denoted T . This vector

also holds 256 integers. The vector T is initialized as follows

∗ Let’s denote the encryption key by the vectorK of 8-bit in-

tegers. Suppose we have a 128-bit key. ThenK will consist

of 16 non-negative integers whose values will be between 0

and 255.

∗ We now initialize the 256-element vector T by placing in it

as many repetitions of the key as necessary until T is full.

Formally,

T [i] = K[i mod keylen] for 0 ≤ i ≤ 255

where keylen is the number of bytes in the encryption key.
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In other words, keylen is the size of the key vectorK when

viewed as a sequence of non-negative 8-bit integers.

– Now we use the 256-element vector T to produce the initial

permutation of S. This permutation is according to the

following formula that first calculates an index denoted j and

then swaps the values S[i] and S[j]:

j = 0

for i = 0 to 255

j = ( j + S[i] + T[i] ) mod 256

SWAP S[i], S[j]

This algorithm is generally known as the Key Scheduling

Algorithm (KSA).

– There is no further use for the temporary vector T after the

state vector S is initialized as described above.

– Note that the encryption key is used only for the initialization

of the state vector S. It has no further use in the operation

of the stream cipher.

– Note also that initialization procedure for the state S is just a

permutation of the integers from 0 through 255. Each integer

in this range will be in one of the elements of S after initial-

ization. This happens because all that the initialization does
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is to swap the elements of S according to the secret key.

• Now that the state vector S is initialized, we are ready to describe

how the pseudorandom byte stream is generated from the

state vector. Recall that when you are using a stream cipher, as

each byte of the plaintext becomes available, you XOR it with a

byte of the pseudorandom byte stream. The output byte is what

is transmitted to the destination.

• The following procedure generates the pseudorandom byte stream

from the state vector

i, j = 0

while ( true )

i = ( i + 1 ) mod 256

j = ( j + S[i] ) mod 256

SWAP S[i], S[j]

k = ( S[i] + S[j] ) mod 256

output S[k]

Note how the state vector S changes continuously by the swap-

ping action at each pass through the while loop. In other words,

the state of the pseudorandom number generator changes dynam-

ically as the the numbers are being generated.

• The above procedure spits out S[k] for the pseudorandom byte

stream. The plaintext byte is XORed with this byte to produce

an encrypted byte.
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• The pseudorandom sequence of bytes generated by the above

algorithm is also known as the keystream.

• Theoretical analysis shows that for a 128 bit key length, the pe-

riod of the pseudorandom sequence of bytes is likely to be greater

than 10100.

• Because all operations are at the byte level, the cipher possesses

fast software implementation. For that reason, RC4 was the soft-

ware stream cipher of choice for several years. More recently

though, RC4 was shown to be vulnerable to attacks especially if

the beginning portion of the output pseudorandom byte stream

is not discarded. For that reason, the use of RC4 in the

SSL/TLS protocol is now prohibited.

• As you will see in the next section, WiFi security started with

RC4 in the WEP protocol. After it was discovered that the

encryption key used in WEP could be acquired by an adversary

in almost no time, WiFi security has now moved on to

the WPA2 protocol that uses AES for encryption.

• We will next focus briefly on some specific weaknesses of RC4 as

it was used in the WEP protocol for securing WiFi networks. To

understand these weaknesses, you first need to understand how

RC4 used to be used in wireless network communications.
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9.8: WEP, WPA, and WPA2 FOR WiFi
Security

• WiFi is a popular name for WLAN (Wireless Local Area Net-

work). With WiFi, computers connect wirelessly to the internet

through an Access Point (AP). A single AP, also referred to as

a hotspot, typically has a range of around 30 meters indoors.

Wider coverage (such as campus wide coverage) can be achieved

by using multiple APs that are connected through a wired dis-

tribution system. All the APs working together in this manner

constitute a WLAN that in internet parlance constitutes a sub-

net. It is a subnet because, logically speaking, it is bounded by a

single router. A network indentifier, called as SSID (Service Set

Identifer) is associated with each WLAN. SSID is also known as

a network name. At Purdue, you now have two networks, PAL2

and PAL3, operating simultaneously. The acronym PAL stands

for Purdue Air Link. [Your home WiFi, likely to be driven by a LinkSys, NetGear, D-Link, etc.,

router, constitutes a LAN in which the router doles out Class-C addresses in the 192.168.0.0 – 192.168.255.255

range. The campus-wide WiFi at Purdue also constitutes a LAN that uses Class-A addresses in the 10.0.0.0 –

10.255.255.255 range. Note that Class-C networks typically use a 24-bit subnet mask — which is the number

of leading bits reserved for network addressing. That leaves only 8-bits for host addressing, which makes for a

maximum of 254 hosts (since one address must be reserved for the router itself and one is used as a broadcast

address by the router) that you can have in such a network. Finally, in the context of SOHO (Small Office

and Home) WiFi, “router” and “AP” are used interchangeably. For a campus-wide WiFi, on the other hand,
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you’ll obviously have multiple APs for a single logical router. Note that it is the router’s job to assign an IP

address to a connecting host and to serve as a gateway to the internet.]

• WiFi communications are based on a set of standards commonly

referred to as the IEEE 802.11 standards. WiFi uses a set of

bands, consisting of 20 MHz channels, at the 2.4 GHz and 5 GHz

frequencies.

• WiFi communications are encrypted withWEP,WPA, andWPA2

prototocols. [As previously mentioned, the acronym WEP stands for Wired Equivalent Privacy and the

acronym WPA for WiFi Protected Access] WEP was introduced in 1997 standard.

That was followed with WPA in 2003, and, shortly thereafter, by

WPA2 in 2004. All of these protocols are included in the IEEE

802.11 standard for wireless communications.

• RC4 is used for packed data encryption in both WEP and WPA.

WPA2, on the other hand, uses the AES block cipher presented

in the previous lecture.

• By any measure, WEP would be considered to be a highly unsafe

protocol for use today in practically any context. And WPA is

only marginally better. Nowadays, unless a WiFi access point

was set up a decade ago and has not been updated/upgraded

since then, you are unlikely to see either WEP or WPA in much

use.
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• In addition to data encryption, the WiFi protocols also provide

user authentication services. These services determine how a

client (which would normally be a laptop, smartphone, etc) would

be allowed to join the WLAN.

• All three WiFi security protocols allow for authentication to be

carried out with what is known as a Pre-Shared Key (PSK). A

PSK can be as simple as 10 manually specificed hex digits for the

case of WEP or, for the case of WPA and WPA2, derived with a

key derivation function from a shared secret passphrase. [When you

install a WiFi router at home, the first thing you do is to log into the AP an an admin through your browser

and set its security settings. One of the settings you will be prompted for would normally be for a passphrase

that the AP uses for deriving the encryption key. Subsequently, this passphrase would become the shared secret

amongst the allowed users of your WiFi router. Instead of a passphrase, it may also be called just a password.

Informally, most folks refer to whatever it is they have to supply to their mobile device before it can make a

connection with a new WiFi access point simply as the security code for the hotspot.] Informaally,

you may think of the shared secret in the form of a passphrase,

hex digits, etc., itself as the PSK. Strictly speaking, though, it is

the actually key that the AP derives from the textual string for

the shared secret that is the PSK.

• When a shared secret is used for client authentication, the WPA

and WPA2 protocols are are also referred to as WPA-PSK and

WPA2-PSK. As mention earlier, PSK refers to a Pre-Shared Key.

• WPA2-PSK is also referred to as WPA2-Personal, meaning that
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it is meant for be used for SOHO (small office and home) appli-

cations where one may assume that it is safe to have a shared

secret passphrase for the clients to connect with the WLAN.

• In addition to the WPA2-Personal mode, WPA2 can also be used

in a more secure enterprise mode, in which case it is referred to as

WPA2-Enterprise. [When you use PAL2 or PAL3 at Purdue for network connectivity, your mobile

device is using the the WPA2-Enterprise protocol for connecting with the WLAN.] Client authen-

tication in WPA2-Enterprise is carried out on a per user basis.

That is, each user in WPA2-Enterprise has a separate secret for

connecting with the WLAN. If needed, WPA2-Enterprise also

allows for 2-factor authentication and authentication with certifi-

cates.

• The authentication services in WPA2-Enterprise are based on

the IEEE 802.1x standard. This standard involves three agents:

a supplicant (which is the same thing as a client) that wishes to

join a WLAN, an authenticator (which in our context would be

an AP, and an authentation server that typically is based on

the EAP protocol for verifying the login credentials supplied by

the supplicant to the authenticator. EAP stands for Extensible

Authentication Protocol.
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9.8.1: RC4 Encryption in WEP and WPA and Why

You Must Switch to WPA2

• As previously mentioned, WEP is the old protocol for encrypting

the packets that are transmitted over a wireless communication

link according to the IEEE 802.11 standards. On account of its

security problems, it was first superseded by the WPA protocol

and, eventually, by the WPA2 protocol. Although WPA2 is now

the preferred protocol for securing wireless communications, it is

nonetheless educational to see how RC4 was used in WEP and

why that led to the demise of WEP.

• The WEP protocol requires each packet to be encrypted sepa-

rately with its own RC4 key. So if an 802.11 packet contains, say,

a payload of 1024 bytes, those bytes would be encrypted by RC4

using a key specific to that packet.

• As made clear by the next bullet, there is a very

important reason for why no two packets should be

encrypted with the same RC4 key.

• If the same keystream S is used for two different plaintext byte

streams P1 and P2, an XOR of the corresponding ciphertext

streams becomes independent of the keystream because
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C1 ⊕ C2 = (P1 ⊕ S)⊕ (P2 ⊕ S) = P1 ⊕ P2

This can create a backdoor to extracting the plaintext stream

from the ciphertext stream. All you have to do is to XOR the

ciphertext in each packet with the ciphertext stream in a packet

in which a reasonably large number of bytes are set to 0.

• The RC4 key for each packet is a simple concatenation of a 24-bit

Initialization Vector (IV) and the root key, which, at least in the

context of home wireless networks, is sometimes referred to as the

AP’s security code. [You’d either specify the root key directly through a certain number of hex

digits, or it would be derived from the passphrase you would be asked to enter when you set up your home

wireless router.] While the root key remains fixed over all the packets,

you increment the value of IV from one packet to the next. [The

most commonly used WEP encryption is based on 40-bit root keys, although many AP vendors also support

104-bit WEP encryption. The official WEP standard only calls for 40-bits for the root key. The root key for

my home wireless AP consists of 10 hex characters, meaning it is a 40-bit key. While we are on the subject

of root keys, note that there are AP vendors who advertise 128-bit WEP encryption. It is a misleading claim

that is meant to create the impression that their APs support superior encryption — their 128 bits are merely

a sum of a 24-bit IV that all APs must use for WEP and a 104-bit root key.]

• WEP then computes the CRC32 checksum of the data to be

encrypted in the packet. [CRC stands for Cyclic Redundancy Check. It is a generalization

of the commonly used parity check that is used to guard against data corruption during transmission. CRC32

gives us a 32-bit checksum. Think of it as a 32-bit digital signature. In WEP, this CRC32 signature is called

Integrity Check Value (ICV). Finding CRC32 of a binary data stream amounts to dividing the data bit
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pattern (which could be the bits in an entire file) by an irreducible (or sometimes reducible) polynomial of

degree 32. This would obviously leave a residue polynomial whose highest degree would only be 31. The bit

pattern corresponding to the residue would therefore only be 32 bits long. Note also CRC1, which is the same

thing as using a parity bit for error detection, amounts to using x + 1 as the divisor polynomial. While it is

possible (and fairly common) to use reducible polynomials, their error detection capabilities are less effective.]

• The RC4 key for a packet is then used to encrypt the data followed

by its ICV value mentioned in the small-font note above.

• The biggest problem with WEP in a typical usage scenario is

that the root key remains fixed for long periods of time (in home

use, people almost never change their root keys) and the IV has

only 24 bits in it. This implies that distinct keystreams

can be generated for only 224 (around 16 millions)

different packets. This implies that the same keystream will

be used for different packets in a long session. How frequently

that can happen depends on how the IVs are generated.

• As mentioned earlier, the 3-byte IV is prepended to the root key.

Since the IV is sent in plaintext, anyone with a packet sniffer can

directly see the first three bytes of the RC4 key used for a packet.

An 802.11 frame that is encrypted with WEP looks like:

-------------------------------------------------------- ---

| 802.11 Header | |

-------------------------------------------------------- | Plaintext

| BSSID | Initialization Vector (IV) | Dest. Address | |

-------------------------------------------------------- ---

| Logical Link Control | |
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-------------------------------------------------------- |

| Subnetwork Access Protocol Header | |

-------------------------------------------------------- | RC4

| Data | | Encrypted

-------------------------------------------------------- |

| Integrity Check Value | |

-------------------------------------------------------- |

---

• Note that WPA, the protocol that was advanced to address the

shortcomings of WEP, also uses RC4. WPA provides enhanced

security because it uses a 48-bit Initialization Vector.

• In addition to the 48-bit Initialization Vector, WPA also uses a

Message Integrity Check (MIC) for message authentication at the

receiving endpoint. The MIC feature was added to WPA in order

to protect the packets against tampering that could be caused by

an adversary who had successfully broken the WEP encryption

and who changed both the packet payload and its ICV value. [As

you would guess, in WEP, if an adversary changed both the packet payload and its ICV value, the receiver of

the packet would not suspect any foul play.] Also note that MIC is an integrity

check on both the packet header and the payload. Furthermore,

for additionally security, MIC adds a sequence number field to

the wireless frames. This allows the receiving endpoint to simply

discard a frame that is received out of sequence. MIC consists of

an 8-byte value that is placed between the data payload and the

4-byte ICV in an IEEE 802.11 frame. The MIC field is encrypted

together with the payload and the ICV.
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• All of these enhancements in WPA over WEP are a part of the

encryption protocol known as TKIP for Temporal Key Integrity

Protocol. Additional features of TKIP over the security services

in WEP include determination of the unique starting encryption

key for each user authentication (through, say, PSK); and syn-

chronized changing of the encryption keys from packet to packet

• While the TKIP acronym and what it stands for sound very im-

pressive, the fact remains that TKIP is merely a just

slightly-more-secure wrapper around WEP. With re-

gard to the security of its encryption, TKIP suffers from the

basic RC4-based weaknesses as WEP.

• The WiFi security protocol that you must use now is WPA2.

WPA2 does NOT use RC4. Instead, the encryption algorithm

used by WPA2 is AES in the Counter mode (CTR). That block

cipher mode was explained in Section 9.5.5 of this lecture. Addi-

tionally, for message integrity check by the receiver, WPA2 uses

CBC-MAC, in which the acronym CBC stands for the Cipher

Block Chaining mode for using a block cipher (see Section 9.5.2)

and MAC stands for the Message Authentication Code. Basi-

cally, the CBC-MAC algorithm generates a MAC value — think

of it as an encrypted checksum — that the receiver can use to ver-

ify the data integrity of a received packet. As to how WPA2 uses

AES for encrypting an 802.11 packet while at the same producing

a MAC value for the packet will be shown in Section 9.8.3.
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• The CTR mode of using AES for encryption and the CBC-

MAC based message integrity checking are together referred to

as CCMP for the “CCM Protocol”, in which CCM stands for

“Counter Mode Cipher Block Chaining” for encryption and cryp-

tographic message integrity checking using a single encryption

key.

• From the standpoint of scalability, one of the main features of

WPA2 is that it separates user authentication services from the

services needed for encryption and message integrity. This allows

WPA2 to be used for SOHO applications with a single shared

passphrase, and in large enterprises applications where it is nec-

essary to enforce per-user authentication with separate logon or

certificate based credentials for each user. When WPA2 is used

with a single shared passphrase for WiFi access, it is referred to as

WPA2-PSK where PSK stands for Pre-Shared Key. On the

other hand, when WPA2 is used with per-user authentication, it

is referred to as WPA2-Enterprise.

• For backward compatibility, WPA2 allows itself to be used with

the WPA’s RC4 based TKIP protocol. Let’s say that the wire-

less interface in a laptop can only communicate through WPA

using the TKIP protocol, an otherwise WPA2 equipped AP will

switch to the TKIP based encryption and message integrity check

with that laptop. This fact has created a great deal of confu-

sion amongst a vast majority of WiFi users, including those who

are otherwise technically inclined but know nothing at all about
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cryptography, who find all of the vendor-supplied literature that

comes with the WiFi routers full of impenetrable gobbledygook.

• Just consider yourself to be a man/woman on the street who just

wants to buy a new WiFi router for his/her home or business

but cannot make any sense of the WiFi router spec sheet that

talks about WPA-PSK (TKIP), WPA-PSK (AES), WPA2-PSK

(TKIP), WPA2-PSK (AES), WPA/WPA2-PSK (TKIP/AES).

• The important message you want to remember is that you should

always use WPA2 and do so with AES if at all possible. If the

AP makes no mention of TKIP, you can safely assume that a

WPA2 communication link with that AP will be based on AES.

However, if it mentions both TKIP and AES, you must choose

AES. [Note that WiFi interfaces manufactured since 2006 are required to support AES.] Another

important fact to keep in mind is that WPA or WPA2 with TKIP

is slower than WPA2 with AES.
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9.8.2: Some Highly Successful Attacks on WEP

• I will start with what is known as the Klein Attack for figuring

out the WEP root key. This attack is based on Andreas Klein’s

combinatorial analysis of the pseudorandom sequence produced

by the RC4 algorithm. A complete citation to the paper is: Andreas Klein,

“Attacks on the RC4 Stream Cipher,” Designs, Codes, and Cryptography, Vol. 48(3),

pp. 269-286 2008.

• Before we review the basic notions that go into the Klein attack,

we will first write more compactly the RC4 key scheduling algo-

rithm and the pseudorandom byte generation algorithm that were

explained in Section 9.7. The more compact versions of these two

algorithms are shown as Algorithm 1 below and Algorithm 2 on

the next page.

Algorithm 1 Algorithm 1: RC4 Key Scheduling

1: {initialization}
2: for i = 0 to n− 1 do

3: S[i]← i

4: end for

5: j ← 0
6: {generate a random permutation}
7: for i from 0 to n− 1 do

8: j ← (j + S[i] +K[i mod length(K)]) mod n

9: Swap S[i] and S[j]
10: end for
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Algorithm 2 Algorithm 1: RC4 Pseudorandom Generator

1: {initialization}
2: i← 0
3: j ← 0
4: {generate pseudorandom sequence}
5: loop

6: i← (i+ 1) mod n

7: j ← (j + S[i]) mod n

8: Swap S[i] and S[j]
9: k ← (S[i] + S[j]) mod n

10: output S[k]
11: end loop

• Klein has shown that strong correlations exist in the byte se-

quence produced by the pseudorandom byte generation algo-

rithm. These correlations are expressed in the form of proba-

bilities of the output pseudorandom sequence satisfying certain

constraints vis-a-vis the the values of the state vector S.

• The attack proposed by Klein is a plaintext-ciphertext attack.

For the case of WEP, an easy way to collect the needed plaintext-

ciphertext pairs is for the attacker’s wireless interface to send

repeated ARP requests to the wireless AP being attacked. Each

transmitted ARP request will elicit a reply whose 802.11 frames

will follow the format shown in the previous section. Even though

the attacker will only see the ciphertext for the encrypted portion

of these 802.11 frames, he/she can make good guesses for the fields

that come before the “Data” field. For example, the information

that is placed in the SNAP header field (shown as “Subnetwork

Access Protocol Header” in the figure in the previous section)

would be guessable by the attacker. For example, the first three
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bytes of SNAP are generally the same as the first three bytes of

the AP’s MAC address. [The Klein attack and its successor the PTW attack presented

in the next subsection use the ARP packets to collect plaintext-ciphertext pairs. (We will have more to say

about ARP in Section 23.3 of Lecture 23.) Suffice it to say here that ARP stands for Address Resolution

Protocol. It is used by the machines in a LAN to figure out the physical-layer MAC addresses for the other

machines in the LAN. For example, if your laptop hooked to a wireless LAN needs to figure out how to send a

packet to another laptop in the LAN whose IP address happens to be 192.168.1.105, your laptop will broadcast

on the LAN an ARP packet asking the 192.168.1.105 machine to respond with its MAC address. The first

15 bytes of an ARP packet are transmitted in plaintext form even when the data payload is encrypted. You

should also know that ordinarily there may not be a sufficient number of ARP packets available for mounting a

meaningful attack. So a part of the attack strategy is to have a large number of ARP requests going out from

an attacking machine so that a sufficiently large number of response packets can be harvested for the analysis

you are going to read about in what follows.] These plaintext bytes can be

XOR’ed with the ciphertext bytes to recover several

initial bytes of the pseudorandom sequence that was

generated by the RC4 algorithm. So, henceforth, we will

assume that our goal is to figure out the bytes of the root key

from the available bytes of the pseudorandom sequence.

• There are two main theoretical results derived by Klein that play

a critical role in the attack. The first of these is

Prob (S[j] + S[k] ≡ i mod n) =
2

n
(1)

where n is the modulus integer 256 used in RC4. In order to

understand what this formula is telling us, you have to pay close

attention to the notation whose meaning is derived from the de-
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scription in Algorithm 2. The variable i above is as set in Algo-

rithm 2. On account of line 6 of Algorithm 2, the value of i for

the first output byte will be 1, for the second output byte 2, and

so on. Obviously, we can refer to i as an observable variable since

we can infer its value for each output byte. The entity S[k] is the

byte that is output in line 10 of the algorithm. Assume that we

can see the pseudorandom byte stream produced by Algorithm

2. Obviously, then, S[k] would also be observable. On the other

hand, the entity S[j] is the value of the state vector at index j

that was used in the calculation of S[k] for a given value for i.

So, as far as someone observing the pseudorandom byte sequence

is concerned, S[j] is internal to the byte generator. The above

formula tells us that for an i for a given output byte, the prob-

ability of the output byte plus the state vector byte S[j] being

equal to i mod n is 2/n.

• Therefore, for the first output pseudorandom byte, we can say

that Prob(S[j] + S[k]) = 1 is 2/256 where S[k] is the value of

the byte that is output and S[j] state vector byte that goes into

the calculation of the output byte.

• That brings us to the second main theoretical result of Klein:

For a given i that indexes an output byte according to line 6 of

Algorithm 2, let’s now consider all c ∈ {0, . . . , n − 1} but with

c 6= i, we have
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Prob (S[j] + S[k] ≡ c mod n) =
n− 2

n(n− 1)
(2)

where the other symbols are to be interpreted as earlier.

• The basic form of the attack consists of assuming that you already

know K[0] [For WEP, you know the first three bytes of the key used for each

packet since those are the three bytes of the Initialization Vector that is transmitted

in plaintext. Klein’s discussion is based on the premise that initially you know nothing

about the key K and you start by assuming a value for the first byte of the key. That

is because Klein’s paper is about attacking RC4 in general. To apply the Klein attack

to WEP, you start with knowing the first three bytes of the key and then using Klein’s

recursive reasoning to figure out the bytes of the root key.] Klein then shows

you can guess a value for K[1] that will be the correct value with

a high probability. This is followed by recursively guessing the

values for the rest of the key bytes. [ The discussion that follows is for

what Klein refers to as the 1-round attack. A round for the RC4 algorithm refers to

the production of n output bytes with n = 256. That is, the attack will be based solely

on the first 256 bytes produced by the pseudorandom byte generator.]

• The reasoning for making a good guess for K[1] goes as follows

(these are reproduced from the paper by Klein that was cited

at the beginning of this section):

– We start by examining the first two bytes produced by the Key

Scheduling Algorithm (Algorithm 1). For the first iteration,
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i = 0 and the value of j takes the value K[0] line 8, which

is followed by swapping S[0] with S[K[0]]. In the second

iteration, i = 1, j is now increased by S[1] +K[1], and entry

of S[j] is moved to S[1].

– Since we start with S[j] = j for all j, we can show that, at

the end of the second iteration of the loop in lines 5 through

11 of Algorithm 2, the value of the output byte S[1] is t =

K[0] +K[1] + 1 in all except for those listed below:

1. If it should happen that K[0] = K[1], then the value of the

second output byte is t = 0.

2. If it should happen that K[0] = 1 andK[1] is neither equal

to 0, nor to n−1, then one can show that t = K[0]+K[1].

3. If it should happen that K[0] 6= 1 and K[1] = n − 1, in

this case t = 0.

4. If it should happen thatK[0] 6= 1 andK[0]+K[1] = n−1,

in this case t = K[1].

The important conclusion here is that the value t of the second

output byte S[1] is an easily computable function of K[0] and

K[1].
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• All of the reasoning presented above applies up to the moment the

second byte is output by Algorithm 2. In the remaining iterations

of the algorithm, what is stored in S[1] will only change when the

value j becomes 1. Klein has shown that when the key length

equals n and when the key bytes are independent, the probability

that S[1] will change during the production of the first 256 bytes

is (1− 1/n)n−2 ≈ 1/e.

• The reasoning presented so far has told us how the value t of the

second output byte from pseudorandom generator is related to the

key bytes K[0] and K[1]. Our next goal is to guesstimate t from

the first two bytes of the pseudorandom sequence. Obviously, if

we can make a correct guess for t, we can then find K[1] since

we know how t depends on K[0] and K[1].

• With regard to guessing the value of t, let’s assume that the

attacker has a large number of first rounds of different runs of

pseudorandom sequence available to him/her. In WEP, these

may corresponding to the different values for the 3-byte Initial-

ization Vector (IV) we talked about in Section 9.8. We know

from Equation (1) that in each of these sequences, the following

must be true for the first byte S[j] ≡ 1−S[k] with a probability

of 2/n. Klein used the correlations in the output pseudorandom

sequence, expressed by the equations (1) and (2) shown earlier,

to establish the following result:
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Prob (t ≡ (1− S[k]) mod n) ≈
1

e
·
2

n
+ (1−

1

e
) ·

n− 2

n(n− 1)

≈
1.36

n
(3)

Pay close attention to what the left hand side is saying: It is

asking for the probability of t as defined previously being K[0] +

K[1]+1 being equal to 1−S[k], something we can calculate from

the observables. The right hand side tells us that this probability

is 1.36/n.

• On the strength of the above probability, the attacker now does

the following (quoting Klein): “For a number of initialization

vectors, the attacker observes the first byte xi of the pseudo-

random byte generator and, for each value first-byte value, the

attacker calculates ti = 1 − xi. (The index i here is to the ith

pseudorandom sequence examined.) The fraction of the ti that

have the correct value of t (meaning the value K[0] +K[1] + 1)

is about 1.36/n. All other possible values for ti will have a rela-

tive frequency of 1/n. If the number of pseudorandom sequences

examined is large enough, we can be sure that the most frequent

value is the correct value.”

• We thus have a procedure for calculating the byteK[1] of the key

assuming that we have a good guess for the first byte K[0]. We

are able to guess the correct key byte for K[1] with a probability

of 1.36/256, which is higher than the probability of 1/256 for
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what a monkey would guess for K[1].

• Klein has shown how the same rationale can be extended to es-

timate K[2] and the rest of the key bytes. The only drawback

to the procedure being that the calculation of the key byte K[i]

depends on all the previous key bytes K[0], K[1], .... , K[i− 1].

• With the Klein Attack as the background, I’ll describe what be-

came known as the PTW Attack for figuring out the WEP root

key. Basically, this attack is founded on the same theoretical prin-

ciples as the Klein attack. Therefore, it is important to under-

stand the Klein attack in order to understand the PTW attack.

• The acronym PTW stands for the authors Erik Tews, Ralf-Philipp

Weinmann, and Andrei Pyshkin. The attack is described in their

publication “Breaking 104 Bit WEP in Less Than 60 Seconds,”

(in Lecture Notes in Computer Science, pp. 188-202, Springer,

2007). Most of the programs that are popular today for breaking

WEP are based on this work.

• The PTW attack removed an important shortcoming of the Klein

attack’s need to calculate the key bytes recursively. So if an error

was made in the calculation of one of the bytes, the rest of the

key bytes would be wrong also. In the PTW attack, the key bytes

are calculated independently.
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• PTW’s attack is based on their demonstration that if we know

the first i key bytes (which we always do in WEP with i = 3),

we can guess the sum of the key bytes indexed from i to i + k

with a probability of 1.24/256. The PTW algorithm constructs a

guess for this summation for every key byte from i = 3 to i = 16.

The actual key bytes are then calculated from the guesses for the

sums.

• Although it is incredibly fast and requires not much data, the

main limitation of PTW is that it can only crack 40 and 104 bit

keys.

• The last Homework problem at the end of this lecture is for you to

use the aircrack-ng package to try to break WEP in a wireless

network.

• Before ending our presentation of the security issues related to

WEP, we should mention another attack, known as the FMS at-

tack, that was the main form of cracking WEP before the Klein

attack and its successor, the PTW attack, came along. The FMS

attack, named after Scott Fluhrer, Itsik Mantin, and Adi Shamir,

is presented in their publication “Weaknesses in Key Scheduling

Algorithm of RC4,” Lecture Notes in Computer Science, pp.

1-24, 2001. With the FMS attack, it is possible to guess the

key bytes when the 3-byte Initialization Vector satisfies certain

properties. However, the attack require a large amount of data,
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of the order of 4 million packets. In 2004, this attack was made

stronger by someone using the pseudonym KoreK. With the Ko-

reK attack, the key bytes could be guessed with about 500,000

packets.

• A popular cross-platform software tool for recovering the WEP

encryption key in under a minute is known as Aircrack-ng. The

main creator of this tool is Thomas d’Otreppe de Bouvette at the

Darmstadt Institute of Technology, Germany. [Download the aircrack-ng

package with your Synaptic package manager into your Ubuntu laptop. You can use this package to mount the

super-fast PTW attack to crack the encryption key being used in a locked WiFi.]

• The software aircrack-ng gets your wireless interface to estab-

lish fake associations and fake authentications with the attacked

access point. Using these fake associations, your wireless inter-

face mounts a replay attack on the attacked access point for the

purpose of acquiring a large number of ARP packets with differ-

ent initialization vectors. [As stated earlier in this section, ARP stands for Address

Resolution Protocol. Further information regarding ARP can be found in Section 23.3 of Lecture 23.]

• Before you can attack a wireless Access Point for its WEP se-

curity, you’d need to identify it with its MAC address and the

channel it is using. This you can do by running a command like

‘iwlist wlan0 scan’ that shows all the APs that are within the

radio range of your laptop and then choosing the one you are

going to attack. Record the MAC address of the AP from the
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output of the iwlist command and also note the channel number.

We will denote this MAC address by xx:xx:xx:xx:xx:xx and the

channel number by yy.

• TheWEP exploit that you can carry out with aircrack-ng requires

that you create what is known as a Monitor Mode of your wireless

interface and you would want this mode to run with its own MAC

address. Normally, your wireless interface operates in what is

known as the Managed Mode. The idea is to have the two modes

operating concurrently on the same physical wireless device in a

computer. [In general, the hardware in your laptop for wireless communications (which is also referred

to as an 802.11 wireless card after the famous IEEE 802.11 protocol for the operation of wireless devices in

computer networks) can support wireless intefaces that can be operated in one or more of the following six

modes: (1) Master Mode – A wireless interface in the Master Mode is often referred to as an Access Point

(AP) or a Base Station. (2) Managed Mode — This is the normal mode of using your 802.11 card in your

laptop. In this case, your wireless interface associates with a single AP serving as a central hub for all traffic

emanating from your laptop or intended for it. A wireless interface in this mode will reject all incoming packets

coming off the AP but not intended for it. The wireless interface will also reject all packets coming off any

other 802.11 devices within the radio range. This mode is also known as the Infrastructure Mode. A wireless

interface operating in the Managed Mode is also referred to as a “802.11 station.” (3) Monitor Mode — This

allows the wireless interface to capture packets going to and coming off an AP without having to associate with

it. The Monitor Mode in the context of wireless is analogous to the promiscuous mode for an ethernet interface

for wired LANs. In the Monitor Mode, a wireless interface will also be able to capture the ARP packets that

the attacked AP may be broadcasting to the other 802.11 stations in the same channel. (4) Ad-Hoc Mode

— In this mode the different 802.11 wireless interfaces can talk to one another directly without having to go

through an AP. (5) Mesh Mode — In this mode, two 802.11 devices can communicate with each other if

they have at least one other such device in the intersection of their radio ranges. And, finally, (6) Repeater
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Mode — A wireless interface operating in this mode merely re-broadcasts the packets it receives. This mode

is used to extend the range of an AP.] [If you need to know what modes the 802.11 wireless card in your

laptop can operate in and what encryption algorithms it can call upon, you have to first find out what name

the Physical Layer of the OSI representation of the TCP/IP protocol is using for your wireless card. This you

can do by executing the command ‘airmon-ng’ without options. The information returned by this command

on my laptop tells me that the Physical Layer name of my wireless card in phy0. Subsequently, you can see

a large number of attributes of the phy0 object by running the command ‘iw phy phy0 info’. You can see

the modes supported by your wireless card by executing ‘iw phy phy0 info | grep -A8 modes’ where the

option -A8’ tells grep to show eight additional lines beyond each matching line. Running this command

tells me that the 802.11 card in my laptop can support just the Managed and the Monitor modes.]

• You create a wireless interface in Monitor Mode by executing a

command like

airmon-ng start wlan0

where wlan0 is the name of the wireless interface in its normal

mode — meaning the Managed Mode. The command shown

above will create new Monitor-Mode wireless interface named

mon0.

• A wireless interface created in the Monitor Mode needs a MAC

address that’s distinct and different from that of the Managed

Mode wireless interface. This you can do by executing the macchanger

command as follows: [For this, you would need to first install the macchanger module through

your Synaptic package manager or apt-get.]

macchanger -m 00:11:22:33:44:55 mon0
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which assigns the MAC address 00:11:22:33:44:55 to the Monitor-

Mode interface mon0. Since you are free to conjure up any rea-

sonable looking MAC address for this, you might as well choose

something that is relatively easy to type and remember. Since

the new interface created by ‘airmon-ng start wlan0’ will be on,

you’d first need to shut it down with a command like ‘ifconfig

mon0 down’ before assigning it a new MAC address.

• What you see next is a convenience script in which are packaged

the various steps listed above for setting up the Monitor-Mode

wireless interface and assigning it a MAC address. The script

makes it easier to mount the exploit multiple times. [Your initial

attempts may not succeed for several reasons. In particular, an attempt may fail if

the number of ARP packets you captured did not yield a sufficiently large haul of IVs

(Initialization Vector in the RC4 algorithm). How many IVs can be harvested from a

given collection of ARP packets depends on how busy the wireless LAN is.] The

script shown below first removes the dump file created in the

previous run of the exploit. It then tries to find out if you had

created the mon0 interface previously. This is accomplished by

examining the output produced by the ifconfig command for the

presence of the mon0 string. If a previously constructed instance

of mon0 is detected, the script invokes the command ‘airmon-ng

stop mon0’ to kill it. Finally, the airodump-ng command you see

in the script tells aircrack-ng that it should start collecting the

packets whose transmission you will soon initiate.

#!/bin/sh
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# StartMonitorModeInterface.sh

#

# by Avi Kak (kak@purdue.edu)

# Run this is a separate window and wait for the last command shown

# to kick in to start collecting the packets and dumping them in the file

# specified with the ’-w’ option.

# After you have collected sufficient packets, kill the script

# with ctrl-C.

# Note that yy is the channel number and xx:xx:xx:xx:xx:xx is the MAC

# address of the Access Point you want to attack.

rm -f mydumpfile* replay_arp*

sleep 5

ifconfigOut=‘ifconfig mon0 2>&1‘

cleanedup="$(echo $ifconfigOut | tr -d ’ ’)"

if [ ‘expr $cleanedup : ’.*errorfetching.*’‘ -eq 0 ]

then

echo killing old Monitor-Mode interface mon0

airmon-ng stop mon0

fi

sleep 5

echo starting new Monitor-Mode interface mon0

airmon-ng start wlan0

sleep 5

ifconfig mon0 down

sleep 5

macchanger --mac 00:11:22:33:44:55 mon0

sleep 5

ifconfig mon0 up

sleep 5

airodump-ng -c yy -w mydumpfile --bssid xx:xx:xx:xx:xx:xx mon0

• With the help of the script shown above, attacking the WEP

security of an AP consists of just the following three steps:
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Step 1: As root, execute the shell script StartMonitorModeInterface.sh.
However, before you execute the script, you must change xx:xx:xx:

xx:xx:xx in the script to the MAC address of the Access Point you
are attacking and yy to the channel number that your laptop is using

to communicate with the AP.

Step 2: In a separate window, execute the following command as root

in order to inject and replay the ARP packets from your laptop to
the AP:

aireplay-ng -2 -p 6000 -c FF:FF:FF:FF:FF:FF -b xx:xx:xx:xx:xx:xx -h 00:11:22:33:44:55 mon0

You’d obviously need to replace xx:xx:xx:xx:xx:xx by the MAC

address of the AP you are attacking. In the command line shown
above, the option ‘-2’ specifies the attack mode. In this mode, before

the attack is lauched, you are shown the ARP packet that will be used
for injected and replay. If you enter ‘no’ to the packet being shown
to you, you’ll be shown another packet, and so on, until you accept

one. [The manpage for aireplay-ng says that there are nine different attack modes. With the

older versions of Ubuntu, we used to use the option ‘-3’. In this option, aircrack-ng listens for an ARP

packet and then retransmits it back to the AP. That, in turn, causes the AP to broadcast the ARP packet

again with a different Initialization Vector (IV).] The ‘-b’ option stands for BSSID,

which is the MAC of the AP you are attacking. The option ‘-h’ is
the source MAC, that is, the address of the Monitor-Mode wireless

interface on your laptop. In case you are wonderfing about the ‘-p’
option, it sets the “frame control word” in hex — according to the
manpage for the aireplay-ng command. The ‘-c’ option specifies

what constraints would apply to the destination MAC in the packets
that will be captured by the mon0 interface. Since mon0 is meant to

be running in the promiscuous mode, by supplying the value shown,
we make it possible for mon0 to capture packets that may actually be

meant for other nodes in the local wireless LAN.

Step 3: Both the windows, the window in which you are running the
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StartMonitorModeInterface.sh script and the window in which
you are running the command in the previous step, will show a con-

tinuously changing readout, the first for the packets that are being
dumped in the designated dump file and the second for the ARP pack-

ets that are being captured. After you have captured a large enough
collection of packets (say, around 100,000 packets), it’s time to kill

both of those jobs. Now execute as root the following command line
to crack the WEP:

aircrack-ng -b xx:xx:xx:xx:xx:xx mydumpfile-01.cap

where, again, xx:xx:xx:xx:xx:xx is the MAC address of the access
point that you attacked. If your attack was successful, it will very

quickly display the WEP key being used by the access point. If your
exploit was successful, the above command will show you the WEP

key. If not, you will be asked to repeat the exploit.
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9.8.3: AES as Used in WPA2

• As previously stated toward the end of Section 9.8.1, the encryp-

tion service in WPA2 is based on the AES algorithm used in the

CTR mode.

• You are familiar with the CTR mode for block ciphers from Sec-

tion 9.5.4 of this lecture. Shown in Figure 9 is how AES could

be used in CTR mode for encrypting data.

• Before actually showing how exactly packet encryption is carried

out in WPA2, let’s focus a bit on the issue of data integrity checks

that area always an important part of such protocols. For WEP,

data integrity check was provided by the ICV value. For WPA,

the same was done by using a separate algorithm for calculating

the MIC (Message Integrity Check) value for the data in a packet.

Subsequently, both the data payload and its MIC were encrypted.

As mentioned earlier, this does not give us a foolproof way to

prevent packet tampering in WPA.

• In WPA2, the data integrity check is carried out by computing

the CBC-MAC message authentication code for the packet. The

“CBC” here refers to “Cipher Block Chaining Mode” for a block

cipher that I described earlier in Section 9.5.2 of this lecture. As
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shown in Figure 10, we can use that same idea for computing

an authentication code for an 802.11 frame. We XOR each 128-

bit block of the data with the AES encrypted value as obtained

from the previous 128-bit block. In this manner, we generate a

cryptographic signature for the data that the receiver can use for

checking the integrity of what is received.

• The WPA protocol combines the packet encryption calculations

and the calculation of the data authentication code CBC-MAC

into a single protocol called the CCMP protocol that is shown in

Figure 11. CCMP stands for “Counter Mode with Cipher Block

Chaining Message Authentication Code Protocol”.
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9.9: HOMEWORK PROBLEMS

1. A block cipher algorithm in its basic form is almost never used for

encrypting long messages. Why? How are block ciphers deployed

in practice if you want to encrypt long messages?

2. Even with the chaining modes described in this lecture, one of

the difficulties with using a block cipher — even the strongest

block cipher — is the problem of padding. Since it is unlikely

that the length of an arbitrary message or a file would be an ex-

act multiple of the block size used in the block cipher, the two

end points of a secure communication link must have in place

some sort of a protocol regarding how to pad the plaintext so

that its overall length is an exact multiple of the block size. With

a stream cipher, such as RC4, we do not have to face this prob-

lem. That, along with the fact that RC4 possesses a very efficient

software implementation, made RC4 the cipher of choice in the

SSL/TLS protocols used for secure transfer of documents be-

tween web servers and web browsers. [However, keep in mind the fact that,

out of security concerns, the use of RC4 in SSL/TLS is now prohibited, as I have stated previously in

Section 9.7 of this lecture.] However, it’s good to keep in mind the fact

that, despite (and especially because of) its popularity, RC4 does

possess important security vulnerabilities that are caused by the
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correlations between the first few bytes of the keystream and the

corresponding bytes of the state vector (as initialized by the en-

cryption key). Check out the Wikipedia page on RC4, along with

the references listed therein, and describe in greater detail these

security vulnerabilities.

3. What are the essential elements of the RC4 algorithm? What

networking applications use the RC4 stream cipher?

4. What might be the main reason for why the keystream generation

in RC4 has a very efficient software implementation?

5. What is the problem with WEP? What makes it an “unsafe”

protocol for wireless networking?

6. What makes WPA2 a more secure protocol?

7. Programming Assignment:

Write a Perl or Python script that implements RC4 for encryption

and decryption. Your script should read a sound file in the wave

format and produce an encrypted version of the same file. Try

listening to both the original and its encrypted version through

a sound player on your computer. Now use your decryption pro-

gram to recover the original from the encrypted version. Verify
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the correctness of decryption by listening to the sounds again.

Your key length should be 16 ASCII characters that you enter

from the keyboard. (These would translate into a 128 bit encryp-

tion key.) In addition to testing your scripts on your own sound

files, you may also wish to use the wave files available on the

course web site. If using Python, use the wave module to read

and write wave format files. If using Perl, use the Audio::Wav

module from www.cpan.org.
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