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Goals:

• To answer the question: Why study finite fields?

• To review the concepts of groups, rings, integral domains, and

fields
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4.1: WHY STUDY FINITE FIELDS?

• It is almost impossible to fully understand practically any facet

of modern cryptography and several important aspects of general

computer security if you do not know what is meant by a finite

field.

• For example, without understanding the notion of a finite field,

you will not be able to understand AES (Advanced Encryption

Standard) that we will take up in Lecture 8. As you will recall

from Lecture 3, AES is supposed to be a modern replacement for

DES. The substitution step in AES is based on the concept of a

multiplicative inverse in a finite field.

• For another example, without understanding finite fields, you will

NOT be able to understand the derivation of the RSA algorithm

for public-key cryptography that we will take up in Lecture 12.

• And if you do not understand the basics of public-key cryptogra-

phy, you will not be able to understand the workings of several

modern protocols (like the SSH protocol you use everyday for
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logging into other computers) for secure communications over

networks. You will also not be able to understand what has be-

come so important in computer security — user and document

authentication with certificates.

• Another modern concept that will befuddle you if you do not un-

derstand public key cryptography is that of digital rights man-

agement. And, as I mentioned earlier, you cannot understand

public key cryptography without coming to terms with finite

fields.

• For yet another example, without understanding finite fields, you

will never understand the up and coming ECC algorithm (ECC

stands for Elliptic Curve Cryptography) that is already in much

use and that many consider to be a replacement for RSA for

public key cryptography. We will take up ECC in Lecture 14.

• As you yourself can see, if you do not understand the concepts

in this and the next three lectures, you might as well give up on

learning computer and network security.

• To put it very simply, a finite field is a finite set of numbers in

which you can carry out the operations of addition, subtraction,

multiplication, and division without error. In ordinary com-

puting, division particularly is error prone and what you see is
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a high-precision approximation to the true result. Such high-

precision approximations do not suffice for cryptography work.

All arithmetic operations must work without error for cryptogra-

phy.

• The stepping stones to understanding the concept of a finite field

are:

1. set

2. group

3. abelian group

4. ring

5. commutative ring

6. integral domain

7. field

• In the next section, we start with the notions of set and group.
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4.2: WHAT DOES IT TAKE FOR A SET
OF OBJECTS TO FORM A GROUP?

A set of objects, along with a binary operation (meaning an operation that is applied

to two objects at a time) on the elements of the set, must satisfy the following

four properties if the set wants to be called a group:

• Closure with respect to the operation. Closure means that if a

and b are in the set, then the element a◦ b = c is also in the set.

The symbol ◦ denotes the operator for the desired operation.

• Associativitywith respect to the operation. Associativity means

that (a ◦ b) ◦ c = a ◦ (b ◦ c).

• Guaranteed existence of a unique identity element with re-

gard to the operation. An element i would be called an identity

element if for every a in the set, we have a ◦ i = a.

• The existence of an inverse element for each element with

regard to the operation. That is, for every a in the set, the set
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must also contain an element b such that a ◦ b = i assuming

that i is the identity element.

• In general, a group is denoted by {G, ◦} where G is the set of

objects and ◦ the operator.

• For reasons that will become clear later, even more frequently, we

use the notation {G,+} for a group. That is, instead of denoting

the group operator as ‘◦’, we may denote it by ‘+’ even when the

operator has nothing whatsoever to do with arithmetic addition.
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4.2.1: Infinite Groups vs. Finite Groups (Permutation

Groups)

• Infinite groups, meaning groups based on sets of infinite size, are

rather easy to imagine. For example:

– The set of all integers — positive, negative, and zero — along

with the operation of arithmetic addition constitutes a group.

– For a given value of N , the set of all N×N matrices over real

numbers under the operation of matrix addition constitutes a

group.

– The set of all even integers — positive, negative, and zero —

under the operation of arithmetic addition is a group. [Interesting,

isn’t it, that zero belongs to the set of even integers. How would you justify it to yourself?]

– The set of all 3×3 nonsingular matrices, along with the matrix

multiplication as the operator, forms a group. [This group, denoted

GL(3), plays a very important role in computer graphics and computer vision. GL stands

for ‘General Linear’.]

• But what about finite groups?
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• As you will see, it takes a bit of mental effort to conjure up

finite groups. The goal of this and the next two subsections is to

illustrate a finite group — just to point out that such things do

exist. [As you’ll see in the lectures that follow, the concept of a “finite group” is particularly importat

to us since finte fields are based on finte groups.]

• Let sn = <1, 2, ...., n> denote a sequence of integers 1 through

n. [Note that the order in which the items appear in a sequence is important. A

sequence is typically shown delimited by angle brackets, as in the definition of s
n
.]

• Let’s now consider the set of all permutations of the sequence

sn. Denote this set by Pn. Each element of the set Pn stands

for a permutation <p1, p2, p3, ....., pn> of the sequence sn. [What

is the size of the set Pn? Answer: n! In general, given a set of n distinct labels, the total number of

permutations of the n labels is n!. Can you justify this answer?]

• Consider, for example, the case when s3 = <1, 2, 3>. In

this case, the set of permutations of the sequence s3 is given

by P3 = {<1, 2, 3>,<1, 3, 2>,<2, 1, 3>,<2, 3, 1>,<3, 1, 2>

,<3, 2, 1>}. The set P3 is of size 6. A highbrow way of

saying the same thing is that the cardinality of P3 is 6.

• Now let the binary operation on the elements of Pn be that of

composition of permutations. We will denote a composition

of two permutations by the symbol ◦. For any two elements ρ

and π of the set Pn, the composition π ◦ ρ means that we
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want to re-permute the elements of ρ according to

the elements of π. The next page explains this operation

with the help of an example.
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4.2.2: An Example That Illustrates the Binary

Operation of Composition of Two Permutations

• Let’s go back to the example in which the starting sequence is

given by s3 = <1, 2, 3>.

• As already shown, each element of P3 is a distinct permutation

of the three integers in s3. That is,

P3 = { <p1, p2, p3> | p1, p2, p3∈s3 with p1 6=p2 6=p3 }

• Consider the following two elements π and ρ in the set P3 of

permutations:

π = < 3, 2, 1 >

ρ = < 1, 3, 2 >

• Let’s now consider the following composition of the two permu-

tations π and ρ:

π ◦ ρ = <3, 2, 1> ◦ <1, 3, 2>

What that means is to permute ρ according to the elements of

π. For our example, that is accomplished by first choosing the
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third element of ρ, followed by the second element of ρ, followed

finally by the first element of ρ. The result is the permutation

<2, 3, 1>. So we say

π ◦ ρ = <3, 2, 1> ◦ <1, 3, 2> = <2, 3, 1>

Therefore, the composition of the two permutations <3, 2, 1>

and <1, 3, 2> is the permutation <2, 3, 1>.

• Clearly, π ◦ ρ ∈ P3.

• This shows that P3 closed with respect to the operation of com-

position of two permutations.
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4.2.3: What About the Other Three Conditions that

P3 Must Satisfy If It is a Group?

• Since it is a small enough set, we can also easily demonstrate

that P3 obeys the associativity property with respect to the

composition-of-permutations operator. This we can do by show-

ing that for any three elements ρ1, ρ2, and ρ3 of the set P3, the

following will always be true

ρ1 ◦ (ρ2 ◦ ρ3) = (ρ1 ◦ ρ2) ◦ ρ3

• The set P3 obviously contains a special element <1, 2, 3> that

can serve as the identity element with respect to the composition-

of-permutations operator. It is definitely the case that for any

ρ ∈ P3 we have

<1, 2, 3> ◦ ρ = ρ ◦ <1, 2, 3> = ρ

• Again, because P3 is a small sized set, we can easily demonstrate

that for every ρ ∈ P3 there exists another unique element π ∈ P3

such that

ρ ◦ π = π ◦ ρ = the identity element
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For each ρ, we may refer to such a π as ρ’s inverse. For the sake

of convenience, we may use the notation −ρ for such a π.

• Obviously, then, P3 along with the composition-of-permutations

operator is a group.

• Note that the set Pn of all permutations of the starting sequence

sn can only be finite. As a result, Pn along with the operation of

composition as denoted by ’◦’ forms a finite group.

• The set Pn of permutations along with the composition-of-permutations

operator is referred to as a permutation group.
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4.3: ABELIAN GROUPS AND THE
GROUP NOTATION

• If the operation on the set elements is commutative, the group

is called an abelian group. An operation ◦ is commutative if

a ◦ b = b ◦ a.

• Is {Sn, ◦} as defined in Section 4.2.2 an abelian group? If not for

n in general, is {Sn, ◦} an abelian group for any particular value

of n? [Sn is abelian for only n = 2.]

• Is the set of all integers, positive, negative, and zero, along with

the operation of arithmetic addition an abelian group? [The answer is

yes.]

• Earlier I mentioned that a group is generally denoted by {G, ◦},

where G denotes the set and ◦ the group operator. I also men-

tioned earlier that, frequently, a group is also denoted by {G,+},

where ’+’ represents the group operator. [As to why we may want to de-

note the group operator by the symbol ’+’ will become clear when we introduce the

notion of rings.]
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• In keeping with the notation {G,+} for a group, the group op-

erator is commonly referred to as addition, even when the actual

operation carried out on the set elements bears no resemblance

to arithmetic addition as you know it.

• IMPORTANT: When a group is denoted {G,+}, it is com-

mon to use the symbol ‘0’ for denoting the group identity element.
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4.3.1: If the Group Operation is Referred to as

Addition, then the Group Also Allows for Subtraction

• As you are well aware by now, a group is guaranteed to have

a special element called the identity element. As mentioned

in the previous subsection, the identity element of a

group is frequently denoted by the symbol 0.

• As you now know, for every element ρ1, the group must contain

its inverse element ρ2 such that

ρ1 + ρ2 = 0

where the operator ’+’ is the group operator.

• So if we maintain the illusion that we want to refer to the group

operation as addition, we can think of ρ2 in the above equation

as the additive inverse of ρ1 and even denote it by −ρ1. We

can therefore write

ρ1 + (−ρ1) = 0

or more compactly as ρ1 − ρ1 = 0.

• In general
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ρ1 − ρ2 = ρ1 + (−ρ2)

where −ρ2 is the additive inverse of ρ2 with respect to the group

operator +. We may now refer to an expression of the

sort ρ1 − ρ2 as representing subtraction.
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4.4: RINGS

• If we can define one more operation on an abelian group,

we have a ring, provided the elements of the set satisfy some

properties with respect to this new operation also.

• Just to set it apart from the operation defined for the abelian

group, we will refer to the new operation asmultiplication. Note

that the use of the name ‘multiplication’ for the new

operation is merely a notational convenience.

• A ring is typically denoted {R,+,×} where R denotes the set of

objects, ’+’ the operator with respect to which R is an abelian

group, the ’×’ the additional operator needed for R to form a

ring.
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4.4.1: Rings: Properties of the Elements with Respect

to the Ring Operator

• R must be closed with respect to the additional operator ’×’.

• R must exhibit associativity with respect to the additional

operator ‘×’.

• The additional operator (that is, the “multiplication operator”)

must distribute over the group addition operator. That is

a × (b + c) = a × b + a × c

(a + b) × c = a × c + b × c

• The “multiplication” operation is frequently shown by just con-

catenation in such equations:

a(b + c) = ab + ac

(a + b)c = ac + bc
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4.4.2: Examples of Rings

• For a given value of N , the set of all N ×N square matrices over

the real numbers under the operations of matrix addition and

matrix multiplication constitutes a ring.

• The set of all even integers, positive, negative, and zero, under

the operations arithmetic addition and multiplication is a ring.

• The set of all integers under the operations of arithmetic ad-

dition and multiplication is a ring.

• The set of all real numbers under the operations of arithmetic

addition and multiplication is a ring.
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4.4.3: Commutative Rings

• A ring is commutative if the multiplication operation is

commutative for all elements in the ring. That is, if all a and b

in R satisfy the property

ab = ba

• Examples of a commutative ring:

– The set of all even integers, positive, negative, and zero,

under the operations arithmetic addition and multiplication.

– The set of all integers under the operations of arithmetic

addition and multiplication.

– The set of all real numbers under the operations of arith-

metic addition and multiplication.
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4.5: INTEGRAL DOMAIN

An integral domain {R,+,×} is a commutative ring that

obeys the following two additional properties:

• ADDITIONAL PROPERTY 1: The setRmust include an

identity element for the multiplicative operation. That

is, it should be possible to symbolically designate an element of

the set R as ’1’ so that for every element a of the set we can say

a1 = 1a = a

• ADDITIONAL PROPERTY 2: Let 0 denote the identity

element for the addition operation. If a multiplication of any

two elements a and b of R results in 0, that is if

ab = 0

then either a or b must be 0.

• Examples of an integral domain:

– The set of all integers under the operations of arithmetic

addition and multiplication.
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– The set of all real numbers under the operations of arith-

metic addition and multiplication.
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4.6: FIELDS

A field, denoted {F,+,×}, is an integral domain whose elements

satisfy the following additional property:

• For every element a in F , except the element designated 0

(which is the identity element for the ’+’ operator), there must

also exist in F its multiplicative inverse. That is, if a ∈ F

and a 6= 0, then there must exist an element b ∈ F such that

ab = ba = 1

where ‘1’ symbolically denotes the element which serves as the

identity element for the multiplication operation. For a given a,

such a b is often designated a−1.

• Note again that a field has a multiplicative inverse for every ele-

ment except the element that serves as the identity element for

the group operator.

25



Computer and Network Security by Avi Kak Lecture 4

4.6.1: Positive and Negative Examples of Fields

• The set of all real numbers under the operations of arithmetic

addition and multiplication is a field.

• The set of all rational numbers under the operations of arith-

metic addition and multiplication is a field.

• The set of all complex numbers under the operations of com-

plex arithmetic addition and multiplication is a field.

• The set of all even integers, positive, negative, and zero, under

the operations arithmetic addition and multiplication is NOT a

field.

• The set of all integers under the operations of arithmetic ad-

dition and multiplication is NOT a field.
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4.7: HOMEWORK PROBLEMS

1. When does a set become a group?

2. What is the 0 element for the permutation group defined over N

objects? Note that the 0 element is the identity element for the

group operator, usually denoted ‘+’.

3. What is an example of an infinite group?

4. If the group operator is referred to as “addition”, then the group

also allows for “subtraction.” What do we mean by that?

5. When does a group become a ring?

6. What is the most elementary reason for the fact that the set of all

possible permutations overN objects along with the permutation

operator is not a ring?

7. For a given N , the set of all square N × N matrices of real

numbers is a ring, the group operator being matrix addition and

the additional ring operator being matrix multiplication. Why

can this ring not be an integral domain?
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8. What does a field have that an integral domain does not?

9. What is a good notation for a field? Explain your notation.

10. Does a field contain a multiplicative inverse for every element of

the field?

28


