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Goals:

• To review modular arithmetic

• To present Euclid’s GCD algorithms
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• To show how Euclid’s GCD algorithm can be extended to find multiplica-
tive inverses

• Perl and Python implementations for calculating GCD and mul-

tiplicative inverses
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5.1: MODULAR ARITHMETIC
NOTATION

• Given any integer a and a positive integer n, and given a di-

vision of a by n that leaves the remainder between 0 and n− 1,

both inclusive, we define

a mod n

to be the remainder. Note that the remainder must be

between 0 and n−1, both ends inclusive, even if that means that

we must use a negative quotient when dividing a by n.

• We will call two integers a and b to be congruent modulo n

if

a mod n = b mod n

• Symbolically, we will express such a congruence by

a ≡ b (mod n)
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• Informally, a congruence may also be displayed as:

a = b (mod n)

and even

a = b mod n

as long as it is understood that we are talking about a and b

being equal only in the sense that their remainders obtained by

subjecting them to modulo n division are exactly the same.

• We say a non-zero integer a is a divisor of another integer b

provided the remainder is zero when we divide b by a. That is,

when b = ma for some integer m.

• When a is a divisor of b, we express this fact by a | b.
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5.1.1: Examples of Congruences

• Here are some congruences modulo 3:

7 ≡ 1 (mod 3)

−8 ≡ 1 (mod 3)

−2 ≡ 1 (mod 3)

7 ≡ − 8 (mod 3)

−2 ≡ 7 (mod 3)

• One way of seeing the above congruences (for mod 3 arithmetic):

... 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 ...

...- 9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 ...

where the top line is the output of modulo 3 arithmetic and

the bottom line the set of all integers. [The top entry in each column is the

modulo 3 value of the bottom entry in the same column. Pause for a moment and think about the fact that

whereas (7 mod 3) = 1 on the positive side of the integers, on the negative side we have (−7 mod 3) = 2.]

• As you can see, the modulo n arithmetic maps all integers into

the set {0, 1, 2, 3, ...., n− 1}.
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5.2: MODULAR ARITHMETIC
OPERATIONS

• As mentioned on the previous page, modulo n arithmetic maps

all integers into the set {0, 1, 2, 3, ...., n− 1}.

• With regard to the modulo n arithmetic operations, the following

equalities are easily shown to be true:

[(a mod n) + (b mod n)] mod n = (a + b) mod n

[(a mod n) − (b mod n)] mod n = (a − b) mod n

[(a mod n) × (b mod n)] mod n = (a × b) mod n

with ordinary meanings ascribed to the arithmetic operators.

• To prove any of the above equalities, you write a as mn + ra
and b as pn + rb, where ra and rb are the residues (the same

thing as remainders) for a and b, respectively. You substitute

for a and b on the right hand side and show you can now derive

the left hand side. Note that ra is a mod n and rb is b mod n.
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• For arithmetic modulo n, let Zn denote the set

Zn = {0, 1, 2, 3, ....., n− 1}

Zn is the set of remainders in arithmetic modulo n. It is

officially called the set of residues.

• Finally, here is a useful memaid (short for “memory aid”): In

mod n arithmetic, any time you see n or any of its multiples,

think 0. That is, the numbers n, 2n, 3n, −n, −2n, etc., are

exactly the same number as 0.

• Here is another memaid that you are going to need when we

talk about public-key crypto in Lecture 12: Anytime you see

the number −1 in mod n arithmetic, you should think n− 1.

That is, the number n−1 is exactly the same thing as the number

−1 in mod n arithmetic.

• A personal note: I consider memaids as convenient mechanisms

for what psychologists refer to as memory offloading. Normally,

as you encounter an engineering or a math detail, in order for you

to accept that detail as credible, your brain needs to bring up all

the supporting arguments justifying the detail. While initially

this happens consciously, ultimately it becomes a subconscious

process. Regardless of whether you do it consciously or subcon-
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sciously, you can speed up the process by identifying certain facts

asmemaids and letting your brain use those as jumping off points

for more elaborate justifications.
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5.3: THE SET Zn AND ITS PROPERTIES

• Reall the definition of Zn as the set of remainders in modulo n

arithmetic.

• Let’s now consider the set Zn along with the following two binary

operators defined for the set: (1) modulo n addition; and (2)

modulo n multiplication. The elements of Zn obey the following

properties vis-a-vis these operators:

Commutativity:

(w + x) mod n = (x + w) mod n

(w × x) mod n = (x × w) mod n

Associativity:

[(w + x) + y] mod n = [w + (x + y)] mod n

[(w × x) × y] mod n = [w × (x × y)] mod n

Distributivity of Multiplication over Addition:

[w × ( x + y)] mod n = [(w × x) + (w × y)] mod n

9
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Existence of Identity Elements:

(0 + w) mod n = (w + 0) mod n

(1 × w) mod n = (w × 1) mod n

Existence of Additive Inverses:

For each w ∈ Zn, there exists a z ∈ Zn such that

w + z = 0 mod n

10
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5.3.1: So What is Zn?

• Is Zn a group? If so, what is the group operator? [The group operator is

the modulo n addition.]

• Is Zn an abelian group?

• Is Zn a ring?

• Actually, Zn is a commutative ring. Why? [See the previous lecture for why.]

• You could say that Zn is more than a commutative ring, but not

quite an integral domain. What do I mean by that? [Because Zn contains

a multiplicative identity element. Commutative rings are not required to possess multiplicative identities.]

• Why is Zn not an integral domain? [Even though Zn possesses a multiplicative

identity, it does NOT satisfy the other condition of integral domains which says that if a× b = 0 then either a

or b must be zero. Consider modulo 8 arithmetic. We have 2× 4 = 0, which is a clear violation of the second

rule for integral domains.]

• Why is Zn not a field?

11
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5.3.2: Asymmetries Between Modulo Addition and

Modulo Multiplication Over Zn

• For every element of Zn, there exists an additive inverse in

Zn. But there does not exist a multiplicative inverse for

every non-zero element of Zn.

• Shown below are the additive and the multiplicative inverses for

modulo 8 arithmetic:

Z8 : 0 1 2 3 4 5 6 7

additive : 0 7 6 5 4 3 2 1

inverse

multiplicative : - 1 - 3 - 5 - 7

inverse

• Note that the multiplicative inverses exist for only those

elements of Zn that are relatively prime to n. Two integers

are relatively prime to each other if the integer 1 is their only

common positive divisor. More formally, two integers a and b

are relatively prime to each other if gcd(a, b) = 1 where gcd

denotes the Greatest Common Divisor.

12
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• The following property of modulo n addition is the same as
for ordinary addition:

(a + b) ≡ (a + c) (mod n) implies b ≡ c (mod n)

But a similar property is NOT obeyed by modulo n multi-
plication. That is

(a × b) ≡ (a × c) (mod n) does not imply b ≡ c (mod n)

unless a and n are relatively prime to each other.

• That the modulo n addition property stated above should

hold true for all elements of Zn follows from the fact that the

additive inverse −a exists for every a ∈ Zn. So we can add

−a to both sides of the equation to prove the result.

• To prove the same result for modulo n multiplication, we

will need to multiply both sides of the second equation above by

the multiplicative inverse a−1. But, as you already know, not all

elements of Zn possess multiplicative inverses.

• Since the existence of the multiplicative inverse for an element a of

Zn is predicated on a being relatively prime to n and since the

answer to the question whether two integers are relatively prime

to each other depends on their greatest common divisor

(GCD), let’s explore next the world’s most famous algorithm for

finding the GCD of two integers.

13
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• The gcd algorithm that we present in the next section is by Euclid

who is considered to be the father of geometry. He was born

around 325 BC.

14
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5.4: EUCLID’S METHOD FOR FINDING
THE GREATEST COMMON DIVISOR OF

TWO INTEGERS

• We will now address the question of how to efficiently find the

GCD of any two integers. [When there is a need to find the GCD of two integers in

actual computer security algorithms, the two integers are always extremely large — much too large for human

comprehension, as you will see in the lectures that follow.]

• Euclid’s algorithm for GCD calculation is based on the following

observations [Recall from Section 5.1 that the notation b|a means that “b is a divisor of a.” That

is, when we divide a by b, we are left with zero remainder.]:

– gcd( a, a) = a

– if b|a then gcd( a, b) = b

– gcd( a, 0) = a since it is always true that a|0

– Assuming without loss of generality that a is larger than b, it

can be shown that (See Section 5.4.3 for proof)

gcd( a, b) = gcd( b, a mod b )

15
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The critical thing to note in the above recursion is that the

right hand side of the equation is an easier problem to solve

than the left hand side. While the largest number on the left

is a, the largest number on the right is b, which is smaller than

a.

• The above recursion is at the heart of Euclid’s algorithm (now

over 2000 years old) for finding the GCD of two integers. As

already noted, the call to gcd() on the right in Euclid’s recursion

is an easier problem to solve than the call to gcd() on the left.

• As a fun aside, some people are visually bothered by the bound-

ary condition gcd(a, 0) = a on the recursion since, at first

reflection, it appears to violate your expectation that gcd(a, b)

will not exceed the smaller of the two integers involved. (For ex-

ample, you fully expect that gcd(123541, 23) will not exceed the

smaller number 23.) But then 0 is no ordinary integer.

16
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5.4.1: Steps in a Recursive Invocation of Euclid’s

GCD Algorithm

• To elaborate on the recursive calculation of GCD in Euclid’s al-

gorithm:

gcd(b1, b2) assume b1 > b2

= gcd(b2, b1 mod b2) = gcd(b2, b3) simpler since b2 > b3

= gcd(b3, b2 mod b3) = gcd(b3, b4) simpler still

= gcd(b4, b3 mod b4) = gcd(b4, b5) simpler still

.... ....

.... ....

until bm−1 mod bm == 0 then gcd(b1, b2) = bm

• Although we assumed b1 > b2 in the recursion illustrated above,

note that the algorithm works for any two non-negative integers

b1 and b2 regardless of which is larger. If the first integer is

smaller than the second integer, the first iteration will swap the

two.

17
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5.4.2: An Example of Euclid’s GCD Algorithm in

Action

gcd( 70, 38 )

= gcd( 38, 32 )

= gcd( 32, 6 )

= gcd( 6, 2 )

= gcd( 2, 0 )

Therefore, gcd( 70, 38 ) = 2

Another Example (for relatively prime pair of integers):

gcd( 8, 17 ):

= gcd( 17, 8 )

= gcd( 8, 1 )

= gcd( 1, 0 )

Therefore, gcd( 8, 17 ) = 1

When the smaller of the two arguments in a call to gcd() is 1 (which

happens when the two starting numbers are relatively prime), there

is no need to go to the last step in which the smaller of the two

arguments is 0.

18
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Here is an example of Euclid’s GCD algoirthm for two moderately

large numbers:

gcd( 40902, 24140 )

= gcd( 24140, 16762 )

= gcd( 16762, 7378 )

= gcd( 7378, 2006 )

= gcd( 2006, 1360 )

= gcd( 1360, 646 )

= gcd( 646, 68 )

= gcd( 68, 34 )

= gcd( 34, 0 )

Therefore, gcd( 40902, 24140 ) = 34
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5.4.3: Proof of Euclid’s GCD Algorithm

The proof of Euclid’s algorithm is based on the following observation:

• Given any two non-negative integers a and b, with a > b, we can

write a = qb + r for some non-negative quotient integer q

and some non-negative remainder integer r.

• Every common divisor of a and b must therefore be a common

divisor of qb+ r and b. Since the product qb is trivially divisible

by b, it is surely the case that every common divisor of a and b

is a common divisor of r and b.

• That is, all common divisors for a and b are the same as those

for b and r.

• Since gcd(a, b) is one of those common divisors, then it must be

the case that gcd(a, b) = gcd(b, r).

20
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5.4.4: Implementing the GCD Algorithm in Perl and

Python

• The Python implementation of Euclid’s algorithm shown below

couldn’t be simpler. The cool thing about this script is that

the two-line while loop takes care of all of the boundary con-

ditions that terminate the recursion, these being gcd(a, a) = a,

gcd(a, 0) = gcd(0, a) = a, and gcd(a, b) = b if b divides a with-

out leaving a non-zero remainder:

#!/usr/bin/env python

## GCD.py

import sys

if len(sys.argv) != 3:

sys.exit("\nUsage: %s <integer> <integer>\n" % sys.argv[0])

a,b = int(sys.argv[1]),int(sys.argv[2])

while b:

a,b = b, a%b

print("\nGCD: %d\n" % a)

• The calls shown on the left return the answer shown on the right:

GCD.py 15 18 => GCD: 3

GCD.py 123456789 987654321 => GCD: 9

21
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• And shown below is an equally simple Perl implementation. All

the good things I said about the Python implementation apply

just the same to the Perl implementation:

#!/usr/bin/env perl

## GCD.pl

## Avi Kak

use strict;

use warnings;

die "\nUsage: $0 <integer> <integer>\n" unless @ARGV == 2;

die "At least one of your numbers is too large! Use GCDWithBigInt.pl instead\n"

if ($ARGV[0] > 0x7f_ff_ff_ff) or ($ARGV[1] > 0x7f_ff_ff_ff);

my ($a,$b) = @ARGV;

while ($b) {

($a,$b) = ($b, $a % $b);

}

print "\nGCD: $a\n\n";

This script behaves in exactly the same fashion as the Python

script — as long as the integers involved are small enough to fit

Perl’s 4-byte representation for unsigned ints. That is the reason

for the exception that is thrown in the second statement. For

large integers, use the following script instead:

#!/usr/bin/perl -w

## GCDWithBigInt.pl

## Avi Kak

use strict;

use Math::BigInt;

die "\nUsage: $0 <integer> <integer>\n" unless @ARGV == 2;
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my ($a,$b) = @ARGV;

$a = Math::BigInt->new("$a");

$b = Math::BigInt->new("$b");

while ($b->is_pos()) {

($a,$b) = ($b, $a->copy()->bmod($b));

}

print "\nGCD: $a\n\n";

• So if you call

GCDWithBigInt.pl 839753984753987498374999 2948576793949587674444

you will get the answer “GCD: 23”. As you know, with Python,

you do not have to do anything special for calculating with large

numbers since it natively knows how to deal with numbers of

arbitrary size.

• There is an alternative approach to calculating the GCD of two

integers that in some cases may prove faster. This method, ex-

plained in the rest of this subsection, is referred to as theBinary

GCD algorithm. It is also known as the Stein’s algorithm

after Josef Stein who first published it in 1967.

• Just as the boundary conditions and the recursion in Euclid’s

GCD algorithm are best for a computer with direct hardware

support for divisions and multiplications, the same in the binary

GCD algorithm are meant for a computer (which is likely to be
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an embedded device) that prefers to implement multiplications

and division by appropriately shifting the binary code word rep-

resentations of the integers. [As you know, shifting a binary code word

to the left by one bit position means multiplication by 2. Similarly, shifting

by one bit position to the right means division by 2. Before you do the lat-

ter, you would want to make sure that you are dealing with an even integer,

that is, with an integer whose LSB (least significant bit) is not set.]

• The previously stated boundary conditions gcd(a, a) = a, and

gcd(a, 0) = gcd(0, a) = a also applies to the binary GCD algo-

rithm. However, for a recursive implementation of the algorithm,

we must now consider the following five cases:

1. If both the integers a and b are even, meaning if the LSB for both
integers is not set, then 2 is a common factor of the two integers. So

gcd(a, b) = 2 × gcd(a/2, b/2). The new arguments a/2 and b/2 are
obtained by shifting the binary word representations for each integer

to the right by one bit position. The multiplication by 2 in the recur-
sion is achieved by shifting to the left the gcd result returned by the
recursive call.

2. If a is even and b is odd, then gcd(a, b) = gcd(a/2, b). So we shift a

to the right by one bit position and call gcd again.

3. If a is odd and b is even, then gcd(a, b) = gcd(a, b/2). So we shift b

to the right by one bit position and call gcd again.
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4. If both a and b are odd and, at the same time, a > b, then we can show
that the gcd recursion takes the following form gcd(a, b) = gcd(a −

b, b) = gcd((a− b)/2, b), where the first step is basically a rewrite of
Euclid’s original recursion and the second step a consequence of the

fact that when both a and b are odd, their difference is even. As we
mentioned above, when gcd is called with the first argument even and

the second argument odd, we make a recursive call in which we divide
the first argument by 2 and leave the second unchanged.

5. If both a and b are odd and, at the same time, a < b, then, reasoning
in the same manner as in the previous step, we can show that the

gcd recursion takes the following form gcd(a, b) = gcd(b − a, a) =
gcd((b− a)/2, a).

• Shown below is a Python implementation of the binary GCD

algorithm:

#!/usr/bin/env python

## BGCD.py

import sys

if len(sys.argv) != 3:

sys.exit("\nUsage: %s <integer> <integer>\n" % sys.argv[0])

a,b = int(sys.argv[1]),int(sys.argv[2])

def bgcd(a,b):

if a == b: return a #(A)

if a == 0: return b #(B)

if b == 0: return a #(C)

if (~a & 1): #(D)

if (b &1): #(E)

return bgcd(a >> 1, b) #(F)

else: #(G)

return bgcd(a >> 1, b >> 1) << 1 #(H)

if (~b & 1): #(I)

return bgcd(a, b >> 1) #(J)

if (a > b): #(K)
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return bgcd( (a-b) >> 1, b) #(L)

return bgcd( (b-a) >> 1, a ) #(M)

gcdval = bgcd(a, b)

print("\nBGCD: %d\n" % gcdval)

The implementation shown uses Python’s bitwise operators for

the integer types. [The unary operator ‘~’ inverts the bits in its argument

integer, the binary operator ‘&’ carries out a bitwise and of the two arguments, the

operator ‘<<’ does a non-circular left shift of the left-argument integer by the number of

positions that correspond to the right argument, and, finally, the operator ‘>>’ does the

same for the right shifts.] The test in line (D) checks whether a is even

and that in line (E) checks whether b is odd. The recursion in

line (H) will only be invoked when both a and b are even. Note

how we multiply the answer returned by the recursive call by 2

by shifting it to the left by one position.

• As to how the five enumerated steps shown prior to the imple-

mentation on the previous page map to the various code lines,

the recursion called by Step 1 is in line (H), by Step 2 in line F,

by Step 3 in line (J), by Step 4 in line (L), and, finally, by Step

5 in line (M).

• Try making calls like

BGCD.py 321451443876 1255547372888

GCD.py 321451443876 1255547372888
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to make sure that the two different implementation for calculating

the GCD return the same answer.

• Shown next is a Perl implementation for the BGCD algorithm.

Its logic mirrors that of the Python script shown above.

#!/usr/bin/perl -w

## BGCD.pl

use strict;

die "\nUsage: $0 <integer> <integer>\n" unless @ARGV == 2;

my ($a,$b) = @ARGV;

my $gcdval = bgcd($a,$b );

print "\nBGCD: $gcdval\n\n";

sub bgcd {

my ($a,$b) = @_;

return $a if $a == $b; #(A)

return $b if $a == 0; #(B)

return $a if $b == 0; #(C)

if (~$a & 1) { #(D)

if ($b & 1) { #(E)

return bgcd($a >> 1, $b); #(F)

} else { #(G)

return bgcd($a >> 1, $b >> 1) << 1; #(H)

}

}

return bgcd($a,$ b >> 1) if (~$b & 1); #(I)

return bgcd( ($a - $b) >> 1, $b) if ($a > $b); #(J)

return bgcd( ($b - $a) >> 1, $a ); #(K)

}
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5.5: PRIME FINITE FIELDS

• Earlier we showed that the set of remainders, Zn is, in general, a

commutative ring.

• The main reason for why, in general, Zn is only a commutative

ring and not a finite field is because not every element in Zn is

guaranteed to have a multiplicative inverse.

• In particular, as shown before, an element a of Zn does not

have a multiplicative inverse if a is not relatively prime to the

modulus n.

• What if we choose the modulus n to be a prime number? (A

prime number has only two divisors, one and itself.)

• For prime n, every non-zero element a ∈ Zn will be relatively

prime to n. That implies that there will exist amultiplicative

inverse for every non-zero a ∈ Zn for prime n.

28
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• Therefore, Zp is a finite field if we assume p denotes a prime

number. Zp is sometimes referred to as a prime finite field.

Such a field is also denoted GF (p), where GF stands for “Galois

Field”.

• Proving that, for prime p, every non-zero element of Zp possess

a unique MI (multiplicative inverse) is pretty straightforward. In

a proof by contradiction, assume that a non-zero element a ∈ Zp

possesses two different MIs b and c. That would imply a ×

b = 1 (mod p) and a × c = 1 (mod p). That would mean

that a × (b − c) ≡ 0 (mod p) ≡ p (mod p). But that

is impossible since the prime number p cannot be so factorized.

The integer p only possesses only trivial factors, 1 and itself.

29
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5.5.1: What Happened to the Main Reason for Why

Zn Could Not be an Integral Domain?

• Earlier, when we were looking at how to characterize Zn, we said

that, although it possessed a multiplicative identity element, it

could not be an integral domain because Zn allowed for the

equality a× b = 0 even for non-zero a and b. (Recall, 0 means

the additive identity element.)

• If we have now decided that Zp is a finite field for prime p because

every element in Zp has a unique multiplicative inverse, are we

sure that we can now also guarantee that if a × b = 0 then

either a or b must be 0?

• Yes, we have that guarantee because a × b = 0 for general Zn

occurs only when non-zero a and b are factors of the modulus

n. When n is a prime, its only factors are 1 and n. So with the

elements of Zn being in the range 0 through n− 1, the only time

we will see a× b = 0 is when either a is 0 or b is 0.
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5.6: FINDING MULTIPLICATIVE
INVERSES FOR THE ELEMENTS OF Zp

• In general, to find the multiplicative inverse of a ∈ Zn, we need

to find an element b ∈ Zn such that

a × b ≡ 1 (mod n)

• Based on the discussion so far, we can say that the multiplicative

inverses exist for all a ∈ Zn for which we have

gcd(a, n) = 1

When n equals a prime p, this condition will always be satisfied

by all non-zero elements of Zp.

• With regard to finding the value of the multiplicative inverse of

a given integer a in modulo n arithmetic, we can do so with

the help of Bezout’s Identity that is presented below. The next

section presents a proof of this identity. Subsequently, in Section

5.6.2, we will show how to actually use the identity for finding

multiplicative inverses.
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• In general, it can be shown that when a and n are any pair of

positive integers, the following must always hold for some integers

x and y (that may be positive or negative or zero):

gcd(a, n) = x × a + y × n (1)

This is known as the Bezout’s Identity. For example, when

a = 16 and n = 6, we have gcd(16, 6) = 2 . We can

certainly write: 2 = (−1)× 16 + 3× 6 = 2× 16 + (−5)× 6.

This shows that x and y do not have to be unique in Bezout’s

identity for given a and n.
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5.6.1: Proof of Bezout’s Identity

We will now prove that for a given pair of positive integers a and b,

we have

gcd(a, b) = ax + by (2)

for some positive or negative integers x and y.

• First define a set S as follows

S = {am + bn | am + bn > 0, m, n ∈ N} (3)

where N is the set of all integers. That is,

N = {....,−3,−2,−1, 0, 1, 2, 3, ...} (4)

• Note that, by its definition, S can only contain positive integers.

When a = 8 and b = 6, we have

S = {2, 4, 6, 8....} (5)

It is interesting to note that several pairs of (m,n) will usually

result in the same element of S. For example, with a = 8 and
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b = 6, the element 2 of S is given rise to by the following pairs

of (m,n) = (1,−1), (−2, 3), (4,−5), ....

• Now let d denote the smallest element of S.

• Let’s now express a in the following form

a = qd + r, 0 ≤ r < d (6)

Obviously then,

r = a mod d

= a − qd

= a − q(am + bn)

= a(1 − qm) + b(−n)

We have just expressed the residue r as a linear sum of a and b.

But that is only possible if r equals 0. If r is not 0 but actually a

non-zero integer less than d that it must be, that would violate

the fact that d is the smallest positive linear sum of a and b.

• Since r is zero, it must be the case that a = qd for some integer

q. Similarly, we can prove that b is sd for some integer s. This

proves that d is a common divisor of a and b.

• But how do we know that d is the GCD of a and b?
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• Let’s assume that some other integer c is also a divisor of a and

b. Then it must be the case that c is a divisor of all linear

combinations of the form ma + nb. Since d is of the form

ma + nb, then c must be a divisor of d. This fact applies to any

arbitrary common divisor c of a and b. That is, every common

divisor c of a and b must also be a divisor of d.

• Hence it must be the case that d is the GCD of a and b.
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5.6.2: Finding Multiplicative Inverses Using Bezout’s

Identity

• Given an a that is relatively prime to n, we must obviously have

gcd(a, n) = 1. Such a and n must satisfy the following constraint

for some x and y:

x × a + y × n = 1 (7)

Let’s now consider this equation modulo n. Since y is an in-

teger, y × n mod n equals 0. Thus, it must be the case that,

considered modulo n, x equals a−1, the multiplicative inverse

of a modulo n.

• Eq. (7) shown above gives us a strategy for finding the multi-

plicative inverse of an element a:

– We use the same Euclid algorithm as before to find the gcd(a, n),

– but now at each step we write the expression in the form

a× x + n× y for the remainder
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– eventually, before we get to the remainder becoming 0, when

the remainder becomes 1 (which will happen only when a and

n are relatively prime), x will automatically be the multiplica-

tive inverse we are looking for.

• The next four subsections will explain the above algorithm in

greater detail.
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5.6.3: Revisiting Euclid’s Algorithm for the

Calculation of GCD

• Earlier in Section 5.4.1 we showed the following steps for a straight-

forward application of Euclid’s algorithm for finding gcd(b1, b2):

gcd(b1, b2)
= gcd(b2, b1 mod b2) = gcd(b2, b3)

= gcd(b3, b2 mod b3) = gcd(b3, b4)

= gcd(b4, b3 mod b4) = gcd(b4, b5)

.... ....

.... ....

until bm−1 mod bm == 0 then gcd(b1, b2) = bm

• Next, let’s make explicit the arithmetic operations required for

carrying out the recursion at each step. This is shown on the

next page.
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• In the display shown below, what you see on the right of the

vertical line makes explicit the arithmetic operations required for

the computation of the remainders on the previous page:

gcd(b1, b2) assume b1 > b2

= gcd(b2, b1 mod b2) = gcd(b2, b3) b3 = b1 − q1 × b2

= gcd(b3, b2 mod b3) = gcd(b3, b4) b4 = b2 − q2 × b3

= gcd(b4, b3 mod b4) = gcd(b4, b5) b5 = b3 − q3 × b4

.... ....

.... ....

gcd(bm−1, bm) bm = bm−2 − qm−2 × bm−1

until bm is either 0 or 1.

• If bm = 0 and bm−1 exceeds 1, then there does NOT exist a mul-

tiplicative inverse for b1 in arithmetic modulo b2. For example,

gcd(4, 2) = gcd(2, 0), therefore 4 has no multiplicative inverse

modulo 2.

• If bm = 1, then there exists a multiplicative inverse for b1 in arith-

metic modulo b2. For examples, gcd(3, 7) = gcd(7, 3) = gcd(3, 1)

therefore there exists a multiplicative inverse for 3 modulo 7.
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5.6.4: What Conclusions Can We Draw From the

Remainders?

• The final remainder is always 0. By remainder we mean the

second argument in the recursive call to gcd() at each step.

• If the next to the last remainder is greater than 1, this remain-

der is the GCD of b1 and b2. Additionally, b1 and b2 are NOT

relatively prime. In this case, neither can have a multi-

plicative inverse modulo the other.

• If the next to the last remainder is 1, the two input integers, b1

and b2, are relatively prime. In this case, b1 possesses a multi-

plicative inverse modulo b2.
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5.6.5: Rewriting GCD Recursion in the Form of

Derivations for the Remainders

• We will now focus solely on the remainders in the recusive steps

shown on page 33.

• We will rewrite the calculation of the remainders shown to the

right of the vertical line on page 33 in such a way that each

remainder is a linear sum of the original integers b1 and b2.

• Note that before we get to the final remainder of 0, we are sup-

posed to make sure that the remainder that comes just before the

last is 1 (that is presumably the GCD of the two numbers if they

are relatively prime):

gcd(b1, b2):

b3 = b1 - q1.b2

b4 = b2 - q2.b3

= b2 - q2.(b1 - q1.b2)

= b2 - q2.b1 + q1.q2.b2

= -q2.b1 + (1 + q1.q2).b2

b5 = b3 - q3.b4

= (b1 - q1.b2) - q3.( -q2.b1 + (1 + q1.q2).b2 )
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= b1 + q2.q3.b1 - q1.b2 - q3.(1 + q1.q2).b2

= (1 + q2.q3).b1 - (q1 - q1.q2 - q3).b2

.

.

bm = (......).b1 ~~~ + ~~~ (......). b2

• Stop when bm is 1 (that will happen when b1 and b2 are co-

prime). Otherwise, stop when bm is 0, in which case there is no

multiplicative inverse for b1 modulo b2.

• If you stopped because bm is 1, then the multiplier of b1 in the

expansion for bm is the multiplicative inverse of b1 modulo b2.

• When the above steps are implemented in the form of an algo-

rithm, we have the Extended Euclid’s Algorithm
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5.6.6: Two Examples That Illustrate the Extended

Euclid’s Algorithm

Let’s find the multiplicative inverse of 32 modulo 17:

gcd( 32, 17 )

= gcd( 17, 15 ) | residue 15 = 1x32 - 1x17

= gcd( 15, 2 ) | residue 2 = 1x17 - 1x15

| = 1x17 - 1x(1x32 - 1x17)

| = (-1)x32 + 2x17

= gcd( 2, 1 ) | residue 1 = 1x15 - 7x2

| = 1x(1x32 - 1x17)

| - 7x( (-1)x32 + 2x17 )

| = 8x32 - 15x17

Therefore the multiplicative inverse of 32 modulo 17 is 8.

Let’s now find the multiplicative inverse of 17 modulo 32:

gcd( 17, 32 )

= gcd( 32, 17 ) | residue 17 = 1x17 + 0x32

= gcd( 17, 15 ) | residue 15 = -1x17 + 1x32

= gcd( 15, 2 ) | residue 2 = 1x17 - 1x15

| = 1x17 - 1x( 1x32 - 1x17 )

| = 2x17 - 1x32

= gcd( 2, 1 ) | residue 1 = 15 - 7x2

| = (1x32 - 1x17)

| - 7x(2x17 - 1x32)

| = (-15)x17 + 8x32

| = 17x17 + 8x32

| (since the additive

| inverse of 15 is 17 mod 32)

Therefore the multiplicative inverse of 17 modulo 32 is 17.
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5.7: THE EXTENDED EUCLID’S
ALGORITHM IN PERL AND PYTHON

• So our quest for finding the multiplicative inverse (MI) of a num-

ber num modulo mod boils down to expressing the residues at

each step of Euclid’s recursion as a linear sum of num and mod,

and, when the recursion terminates, taking for MI the coefficient

of num in the final linear summation.

• As we step through the recursion called for by Euclid’s algorithm,

the originally supplied values for num andmod become modified

as shown earlier. So let’s use NUM to refer to the originally sup-

plied value for num and MOD to refer to the originally supplied

value for mod.

• Let x represent the coefficient of NUM and y the coefficient of

MOD in our linear summation expressions for the residue at

each step in the recursion. So our goal is to express the residue

at each step in the form

residue = x ∗NUM + y ∗MOD (8)

44



Computer and Network Security by Avi Kak Lecture 5

And then, when the residue is 1, to take the value of x as the mul-

tiplicative inverse of NUM modulo MOD, assuming, of course,

the MI exists.

• What is interesting is that if you stare at the two examples shown
in the previous section long enough (and, play with more exam-
ples like that), you will make the discovery that, as the Euclid’s
recursion proceeds, the new values of x and y can be computed
directly from their current values and their previous values (which
we will denote xold and yold) by the formulas:

x <= xold − q ∗ x

y <= yold − q ∗ y

where q is the integer quotient obtained by dividing num bymod.

To establish this fact, the following table illustrates again the

second of the two examples shown in the previous section. This

is the example for calculating gcd(17, 32) where we are interested

in finding the MI of 17 modulo 32:

Row | q = num//mod | num | mod | x | y |

--------------------------------------------------------------------

| | | | | |

A. | | | | 1 | 0 |

Initialization | | | | | |

B. | | 17 | 32 | 0 | 1 |

| | | | | |

-------------------------- -----------------------------------------

| | | | | |

C. gcd(17, 32) | | | | | |

| | | | | |

D. residue = 17 | 17//32 = 0 | 32 | 17 | 1 | 0 |

| | | | | |

E. gcd(32, 17) | | | | | |

| | | | | |

F. residue = 15 | 32//17 = 1 | 17 | 15 | -1 | 1 |

| | | | | |

G. gcd(17, 15) | | | | | |
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| | | | | |

H. residue = 2 | 17//15 = 1 | 15 | 2 | 2 | -1 |

| | | | | |

I. gcd(15, 2) | | | | | |

| | | | | |

J. residue = 1 | 15//2 = 7 | 2 | 1 | -15 | 8 |

| | | | | |

-------------------------------------------------------------------

• Note the following rules for constructing the above table:

– Rows A and B of the table are for initialization. We set xold
and yold to 1 and 0, respectively, and their current values to 0

and 1. At this point, num is 17 and mod 32.

– Note that the first thing we do in each new row is to calculate

the quotient obtained by dividing the current num by the

current mod. Only after that we update the values of num

and mod in that row according to Euclid’s recursion. For

example, when we calculate q in row F, the current num is 32

and the current mod 17. Since the integer quotient obtained

when you divide 32 by 17 is 1, the value of q in this row is 1.

Having obtained the residue, we now invoke Euclid’s recursion,

which causes num to become 17 and mod to become 15 in

row F.

– We update the values of x on the basis of its current value

and its previous value and the current value of the quotient

q. For example, when we calculate the value of x in row J,

the current value for x at that point is the one shown in row

H, which is 2, and the previous value for x is shown in row F,
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which is -1. Since the current value for the quotient q is 7, we

obtain the new value of x in row J by −1−7∗2 = −15. This

is according to the update formula for the x coefficients: x =

xold − q × x.

– The same goes for the variable y. It is updated in the same

manner through the formula y = yold − q × y.

• Shown below is a Python implementation of the table construc-

tion presented above. The script shown is called with two command-

line integer arguments. The first argument is the number whose

MI you want to calculate and the second argument the modulus.

As you’d expect, the MI exists only when gcd(first, second) =

1. When the MI does not exist, it prints out a “NO MI” message,

followed by printing out the value of the gcd.

#!/usr/bin/env python

## FindMI.py

import sys

if len(sys.argv) != 3:

sys.stderr.write("Usage: %s <integer> <modulus>\n" % sys.argv[0])

sys.exit(1)

NUM, MOD = int(sys.argv[1]), int(sys.argv[2])

def MI(num, mod):

’’’

This function uses ordinary integer arithmetic implementation of the

Extended Euclid’s Algorithm to find the MI of the first-arg integer

vis-a-vis the second-arg integer.

’’’

NUM = num; MOD = mod

x, x_old = 0L, 1L

y, y_old = 1L, 0L
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while mod:

q = num // mod

num, mod = mod, num % mod

x, x_old = x_old - q * x, x

y, y_old = y_old - q * y, y

if num != 1:

print("\nNO MI. However, the GCD of %d and %d is %u\n" % (NUM, MOD, num))

else:

MI = (x_old + MOD) % MOD

print("\nMI of %d modulo %d is: %d\n" % (NUM, MOD, MI))

MI(NUM, MOD)

• When you invoke the above script by

FindMI.py 892347579824379987 89234759842347599

it comes with the answer

MI of 892347579824379987 modulo 89234759842347599 is: 12596412217821807

• On the other hand, if you were to call

FindMI.py 16 32

you will get the answer “NO MI. However, the GCD of 16 and

32 is 16.”

• Shown on the next page is a Perl implementation of the same

logic that was shown in the Python script above:
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#!/usr/bin/env perl

## FindMI.pl

## Avi Kak

use strict;

use warnings;

die "\nUsage: $0 <integer> <integer>\n\n" unless @ARGV == 2;

die "At least one of your numbers is too large! Use FindMIWithBigInt.pl instead\n"

if ($ARGV[0] > 0x7f_ff_ff_ff) or ($ARGV[1] > 0x7f_ff_ff_ff);

my ($NUM,$MOD) = @ARGV;

MI($NUM, $MOD);

## This function uses ordinary integer arithmetic implementation of the

## Extended Euclid’s Algorithm to find the MI of the first-arg integer

## vis-a-vis the second-arg integer.

sub MI {

my ($num, $mod) = @_;

my ($x, $x_old) = (0, 1);

my ($y, $y_old) = (1, 0);

while ($mod) {

my $q = int($num / $mod);

($num, $mod) = ($mod, $num % $mod);

($x, $x_old) = ($x_old - $q * $x, $x);

($y, $y_old) = ($y_old - $q * $y, $y);

}

if ($num != 1) {

print "\nNO MI. However, the GCD of $NUM and $MOD is $num\n\n"

} else {

my $MI = ($x_old + $MOD) % $MOD;

print "\nMI of $NUM modulo $MOD is: $MI\n\n";

}

}

• As was the case with our Perl implementation for the GCD al-

gorithm, without the help of the Math::BigInt library, the script

shown above will give correct results only when the numbers in-

volved do not require more than 4 bytes for their representation.

Shown below is a Perl implementation that uses Math::BigInt:
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#!/usr/bin/env perl

## FindMIWithBigInt.pl

## Avi Kak

use strict;

use warnings;

use Math::BigInt;

die "\nUsage: $0 <integer> <integer>\n\n" unless @ARGV == 2;

my ($NUM,$MOD) = @ARGV;

$NUM = Math::BigInt->new("$NUM");

$MOD = Math::BigInt->new("$MOD");

MI($NUM, $MOD);

## This function uses ordinary integer arithmetic implementation of the

## Extended Euclid’s Algorithm to find the MI of the first-arg integer

## vis-a-vis the second-arg integer.

sub MI {

my ($num, $mod) = @_;

my ($x, $x_old) = (Math::BigInt->bzero(), Math::BigInt->bone());

my ($y, $y_old) = (Math::BigInt->bone(), Math::BigInt->bzero());

while ($mod->is_pos()) {

my $q = $num->copy()->bdiv($mod);

($num, $mod) = ($mod, $num->copy()->bmod($mod));

($x, $x_old) = ($x_old->bsub( $q->bmul($x) ), $x);

($y, $y_old) = ($y_old->bsub( $q->bmul($y)), $y);

}

if ( ! $num->is_one() ) {

print "\nNO MI. However, the GCD of $NUM and $MOD is $num\n\n"

} else {

my $MI = $x_old->badd( $MOD )->bmod( $MOD );

print "\nMI of $NUM modulo $MOD is: $MI\n\n";

}

}

• When you invoke the above script by

FindMIWithBigInt.pl 892347579824379987 89234759842347599

it comes back with the answer

MI of 892347579824379987 modulo 89234759842347599 is: 12596412217821807
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5.8: HOMEWORK PROBLEMS

1. What do we get from the following mod operations:

2 mod 7 = ?

8 mod 7 = ?

−1 mod 8 = ?

−19 mod 17 = ?

Don’t forget that, when the modulus is n, the result of a mod

operation must be an integer between 0 and n − 1, both ends

inclusive, regardless of what quotient you have to use for the

division. [When the dividend, such as the number -19 above, is negative, you’ll have no choice but to

use a negative quotient in order for the remainder to be between 0 and n− 1, both ends inclusive.]

2. What is the difference between the notation

a mod n

and the notation

a ≡ b (mod n)
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3. What is the notation for expressing that a is a divisor of b, that

is when b = m× a for some integer m?

4. Consider the following equality:

(p + q) mod n = [ (p mod n) + (q mod n) ] mod n

Choose numbers for p, q, and n that show that the following

version of the above is NOT correct:

(p + q) mod n = (p mod n) + (q mod n)

5. The notation Zn stands for the set of residues. What does that

mean?

6. How would you explain that Zn is a commutative ring?

7. If I say that a number b in Zn is the additive inverse of a number

a in the same set, what does that say about (a + b) mod n?

8. If I say that a number b in Zn is the multiplicative inverse of

a number a in the same set, what does that say about (a ×

b) mod n?

9. Is it possible for a number in Zn to be its own additive inverse?

Give an example.
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10. Is it possible for a number in Zn to be its own multiplicative

inverse? Give an example.

11. Why is Zn not an integral domain?

12. Why is Zn not a finite field?

13. What are the asymmmetries between the modulo n addition and

modulo n multiplication over Zn?

14. Is it true that there exists an additive inverse for every number

in Zn regardless of the value of n?

15. Is it true that there exists a multiplicative inverse for every num-

ber in Zn regardless of the value of n?

16. For any given n, what special property is satisfied by those num-

bers in Zn that possess multiplicative inverses?

17. What is Euclid’s algorithm for finding the GCD of two numbers?

18. How do you prove the correctness of Euclid’s algorithm?

19. What is Bezout’s identity for the GCD of two numbers?
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20. How do we use Bezout’s identity to find the multiplicative inverse

of an integer in Zp?

21. Find the multiplicative inverse of each nonzero element in Z11.

22. Programming Assignment: Rewrite and extend the Python

implementation of the binary GCD algorithm presented in Sec-

tion 5.4.4 so that it incorporates the Bezout’s Identity to yield

multiplicative inverses. In other words, create a binary version

of the multiplicative-inverse script of Section 5.7 that finds the

answers by implementing the multiplications and division as bit

shift operations.

23. Programming Assignment:

All of the Python scripts shown in this lecture will work for ar-

bitrary sized integers — simply because Python has the ability

to create appropriate internal representations for arbitrary sized

integers. On the other hand, when the size of an integer in Perl

exceeds what can be stored as an unsigned int in 4 bytes, it

creates an 8-byte floating point representation for the number.

What that means is that while you can expect Python to keep

on returning correct answers as the numbers get bigger, at some

point the answers returned by Perl will start to be wrong. Your

first task in this programming assignment is to see this effect for

yourself by calling the Python and the Perl scripts with larger

and larger integers.

And your second task is to use Perl’s Math::BigInt library to
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modify the Perl scripts shown so that the answers returned are

always correct for integers of any size.

24. Programming Assignment:

As you will see later, prime numbers play a critical role in many

different types of algorithms important to computer security. A

highly inefficient way to figure out whether an integer n is prime

is to construct its set of remainders Zn and to find out whether

every element in this set, except of course the element 0, has a

multiplicative inverse. Write a Python script that calls the MI

script of Section 5.7 to find out whether all of the elements in the

set Zn for your choice of n possess multiplicative inverses. Your

script should prompt the user for a value for n. Try your script

for increasingly larger values of n — especially values with more

than six decimal digits. For each n whose value you enter when

prompted, your script should print out whether it is a prime or

not.
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