
Lecture 7: Finite Fields (PART 4)

PART 4: Finite Fields of the Form GF (2n)

Theoretical Underpinnings of Modern Cryptography

Lecture Notes on “Computer and Network Security”

by Avi Kak (kak@purdue.edu)

January 28, 2017
4:08pm

c©2017 Avinash Kak, Purdue University

Goals:

• To review finite fields of the form GF (2n)

• To show how arithmetic operations can be carried out by directly

operating on the bit patterns for the elements of GF (2n)

• Perl and Python implementations for arithmetic in a

Galois Field using my BitVector modules

CONTENTS

Section Title Page

7.1 Consider Again the Polynomials over GF (2) 3

7.2 Modular Polynomial Arithmetic 5

7.3 How Large is the Set of Polynomials When 8
Multiplications are Carried Out Modulo x2 + x+ 1

7.4 How Do We Know that GF (23) is a Finite Field? 10

7.5 GF (2n) a Finite Field for Every n 14

7.6 Representing the Individual Polynomials 15
in GF (2n) by Binary Code Words

7.7 Some Observations on Bit-Pattern Additions 18
in GF (2n)

7.8 Some Observations on Arithmetic Multiplication 20
in GF (2n)

7.9 Direct Bitwise Operations for Multiplication 22
in GF (28)

7.10 Summary of How a Multiplication is Carried 25
Out in GF (28)

7.11 Finding Multiplicative Inverses in GF (2n) 27
with Implementations in Perl and Python

7.12 Using a Generator to Represent the Elements 35
of GF (2n)

7.13 Homework Problems 39

2

Computer and Network Security by Avi Kak Lecture 7

7.1: CONSIDER AGAIN THE
POLYNOMIALS OVER GF (2)

• Recall from Lecture 6 that GF (2) is a finite field consisting of

the set {0, 1}, with modulo 2 addition as the group operator and

modulo 2 multiplication as the ring operator. In Section 6.7 of

Lecture 6, we also talked about polynomials over GF (2). Along

the lines of the examples shown there, here are some more:

x + 1

x2 + x + 1

x2 + 1

x3 + 1

x

1

x5

x10000

...

...

The examples shown only use 0 and 1 for the coefficients in the

polynomials. Obviously, we could also have shown polynomials

with negative coefficients. However, as you’d recall from Lecture

6, -1 is the same as +1 in GF (2). [Does 23 ∗ x5 + 1 belong to the set of polynomials

3

Computer and Network Security by Avi Kak Lecture 7

defined over GF (2)? How about − 3 ∗ x7 + 1? The answer to both questions is yes. Can you justify the

answer?]

• Obviously, the number of such polynomials is infinite.

• The polynomials can be subject to the algebraic operations of

addition and multiplication in which the coefficients are added

and multiplied according to the rules that apply to GF (2).

• As stated in the previous lecture, the set of such polynomials

forms a ring, called the polynomial ring.

4

Computer and Network Security by Avi Kak Lecture 7

7.2: MODULAR POLYNOMIAL
ARITHMETIC

Let’s now add one more twist to the algebraic operations we carry

out on all the polynomials over GF (2):

• In Section 6.11 of Lecture 6, I defined an irreducible polyno-

mial as a polynomial that cannot be factorized into lower-degree

polynomials. From the set of all polynomials that can be defined

over GF (2), let’s now consider the following irreducible polyno-

mial:

x3 + x + 1

By the way there exist only two irreducible polynomials of de-

gree 3 over GF (2). The other is x3 + x2 + 1.

• For the set of all polynomials over GF (2), let’s now consider

polynomial arithmetic modulo the irreducible polynomial x3 + x+ 1.

• To explain what I mean by polynomial arithmetic modulo the

irreduciable polynomial, when an algebraic operation — we are

5

Computer and Network Security by Avi Kak Lecture 7

obviously talking about polynomial multiplication — results

in a polynomial whose degree equals or exceeds that of the

irreducible polynomial, we will take for our result the remainder

modulo the irreducible polynomial.

• For example,

(x2 + x + 1) × (x2 + 1) mod (x3 + x + 1)

= (x4 + x3 + x2) + (x2 + x + 1) mod (x3 + x + 1)

= (x4 + x3 + x + 1) mod (x3 + x + 1)

= −x2 − x

= x2 + x

Recall that 1 + 1 = 0 in GF (2). That’s what caused the x2

term to disappear in the second expression on the right hand side

of the equality sign.

• For the division by the modulus in the above example, we used

the result

(x4 + x3 + x + 1)

(x3 + x + 1)
= x + 1 +

−x2 − x

x3 + x + 1

Obviously, for the division on the left hand side, our first quotient

term is x. Multiplying the divisor by x yields x4 + x2 + x that

6

Computer and Network Security by Avi Kak Lecture 7

when subtracted from the dividend gives us x3 − x2 + 1. This

dictates that the next term of the quotient be 1, and so on.

7

Computer and Network Security by Avi Kak Lecture 7

7.3: HOW LARGE IS THE SET OF
POLYNOMIALS WHEN

MULTIPLICATIONS ARE CARRIED OUT
MODULO x3 + x + 1

• With multiplications modulo x3 + x + 1, we have only the fol-

lowing eight polynomials in the set of polynomials over GF (2):

0

1

x

x2

x + 1

x2 + 1

x2 + x

x2 + x + 1

• We will refer to this set asGF (23) where the exponent of 2, which

in this case is 3, is the degree of the modulus polynomial.

• Our conceptualization of GF (23) is analogous to our conceptual-

ization of the set Z8. The eight elements of Z8 are to be thought

8

Computer and Network Security by Avi Kak Lecture 7

of as integers modulo 8. So, basically, Z8 maps all integers to the

eight numbers in the set Z8. Similarly, GF (23) maps all of the

polynomials over GF (2) to the eight polynomials shown above.

• But note the crucial difference between GF (23) and Z8: GF (23)

is a field, whereas Z8 is NOT.

9

Computer and Network Security by Avi Kak Lecture 7

7.4: HOW DO WE KNOW THAT GF (23) IS
A FINITE FIELD?

• We do know thatGF (23) is an abelian group because of the oper-

ation of polynomial addition satisfies all of the requirements on a

group operator and because polynomial addition is commutative.

[Every polynomial in GF (23) is its own additive inverse because of how the two numbers in GF (2) behave

with respect to modulo 2 addition.]

• GF (23) is also a commutative ring because polynomial multipli-

cation distributes over polynomial addition (and because polyno-

mial multiplication meets all the other stipulations on the ring

operator: closedness, associativity, commutativity).

• GF (23) is an integral domain because of the fact that the set

contains the multiplicative identity element 1 and because if for

a ∈ GF (23) and b ∈ GF (23) we have

a× b = 0 mod (x3 + x + 1)

then either a = 0 or b = 0. This can be proved easily as

follows:

10

Computer and Network Security by Avi Kak Lecture 7

– Assume that neither a nor b is zero when a×b = 0mod (x3 + x+ 1).

In that case, the following equality must also hold

a× b = (x3 + x + 1)

since

0 ≡ (x3 + x + 1) mod (x3 + x + 1)

– But the above implies that the irreducible polynomial

x3 + x + 1 can be factorized, which by definition cannot be

done.

• We now argue thatGF (23) is a finite field because it is a finite set

and because it contains a unique multiplicative inverse for every

non-zero element.

• GF (23) contains a unique multiplicative inverse for every non-

zero element for the same reason that Z7 contains a unique mul-

tiplicative inverse for every non-zero integer in the set. (For a

counterexample, recall that Z8 does not possess multiplicative

inverses for 2, 4, and 6.) Stated formally, we say that for every

non-zero element a ∈ GF (23) there is always a unique element

b ∈ GF (23) such that a× b = 1.

• The above conclusion follows from the fact if you multiply a non-

zero element a with each of the eight elements of GF (23), the

11

Computer and Network Security by Avi Kak Lecture 7

result will the eight distinct elements of GF (23). Obviously,

the results of such multiplications must equal 1 for exactly one

of the non-zero element of GF (23). So if a× b = 1, then b must

be the multiplicative inverse for a.

• The same thing happens in Z7. If you multiply a non-zero element

a of this set with each of the seven elements of Z7, you will get

seven distinct answers. The answer must therefore equal 1

for at least one such multiplication. When the answer is 1, you

have your multiplicative inverse for a.

• For a counterexample, this is not what happens in Z8. When

you multiply 2 with every element of Z8, you do not get eight

distinct answers. (Multiplying 2 with every element of Z8 yields

{0, 2, 4, 6, 0, 2, 4, 6} that has only four distinct elements).

• For a more formal proof (by contradiction) of the fact that if you

multiply a non-zero element a of GF (23) with every element of

the same set, no two answers will be the same, let’s assume that

this assertion is false. That is, we assume the existence of two

distinct b and c in the set such that

a× b ≡ a× c mod (x3 + x + 1)

That implies

a× (b − c) ≡ 0 mod (x3 + x + 1)

12

Computer and Network Security by Avi Kak Lecture 7

That implies that either a is 0 or that b equals c. In either case,

we have a contradiction.

• The upshot is that GF (23) is a finite field.

13

Computer and Network Security by Avi Kak Lecture 7

7.5: GF (2n) IS A FINITE FIELD FOR
EVERY n

• None of the arguments on the previous three pages is limited by

the value 3 for the power of 2. That means that GF (2n) is a

finite field for every n.

• To find all the polynomials in GF (2n), we obviously need an

irreducible polynomial of degree n.

• AES arithmetic, presented in the next lecture, is based onGF (28).

It uses the following irreducible polynomial

x8 + x4 + x3 + x + 1

• The finite field GF (28) used by AES obviously contains 256 dis-

tinct polynomials over GF (2).

• In general, GF (pn) is a finite field for any prime p. The elements

of GF (pn) are polynomials over GF (p) (which is the same as the

set of residues Zp).

14

Computer and Network Security by Avi Kak Lecture 7

7.6: REPRESENTING THE INDIVIDUAL
POLYNOMIALS IN GF (2n) BY BINARY

CODE WORDS

• Let’s revisit the eight polynomials in GF (23) (when the mod-

ulus polynomial is x3 + x + 1:

0

1

x

x + 1

x2

x2 + 1

x2 + x

x2 + x + 1

• We now claim that there is nothing sacred about the variable x.

in such polynomials.

• We can think of xi as being merely a place-holder for a bit.

15

Computer and Network Security by Avi Kak Lecture 7

• That is, we can think of the polynomials as bit strings correspond-

ing to the coefficients that can only be 0 or 1, each power of

x representing a specific position in a bit string.

• So the 23 polynomials of GF (23) can therefore be represented by

the bit strings:

0 ⇒ 000

1 ⇒ 001

x ⇒ 010

x2 ⇒ 100

x + 1 ⇒ 011

x2 + 1 ⇒ 101

x2 + x ⇒ 110

x2 + x + 1 ⇒ 111

• If we wish, we can give a decimal representation to each of the

above bit patterns. The decimal values between 0 and 7, both

limits inclusive, would have to obey the addition and multiplica-

tion rules corresponding to the underlying finite field.

• Given any n at all, exactly the same approach can be used to

come up with 2n bit patterns, each pattern consisting of n bits,

16

Computer and Network Security by Avi Kak Lecture 7

for a set of integers that would constitute a finite field, provided

we have available to us an irreducible polynomial of degree n.

17

Computer and Network Security by Avi Kak Lecture 7

7.7: SOME OBSERVATIONS ON
BIT-PATTERN ADDITIONS IN GF (2n)

• We know that the polynomial coefficients in GF (2n) must obey

the arithmetic rules that apply to GF (2) (which is the same as

Z2, the set of remainders modulo 2).

• And we know that the operation of addition in GF (2) is like the

logical XOR operation.

• Therefore, adding the bit patterns in GF (2n) simply amounts to

taking the bitwise XOR of the bit patterns. For example,

the following must hold in GF (28):

5 + 13 = 0000 0101 + 0000 1101 = 0000 1000 = 8

76 + 22 = 0100 1100 + 0001 0110 = 0101 1010 = 90

7 − 3 = 0000 0111 − 0000 0011 = 0000 0100 = 4

7 + 3 = 0000 0111 + 0000 0011 = 0000 0100 = 4

18

Computer and Network Security by Avi Kak Lecture 7

• The last two examples above illustrate that subtracting is the

same as adding in GF (28). That is because each “number”

is its own additive inverse in GF (28). In other words, for every

x ∈ GF (28), we have −x = x. Yet another way of saying the

same thing is that for every x ∈ GF (28), we have x + x = 0.

19

Computer and Network Security by Avi Kak Lecture 7

7.8: SOME OBSERVATIONS ON
ARITHMETIC MULTIPLICATION IN

GF (2n)

• As you just saw, it is obviously convenient to use simple bi-

nary arithmetic (in the form of XOR operations) for additions

in GF (2n). Could we do the same for multiplications?

• We can of course multiply the bit patterns of GF (2n) by going

back to the modulo polynomial arithmetic and using the multi-

plications operations defined in GF (2) for the coefficients. [Recall

that in GF (2), multiplication is the same as logical AND.]

• But it would be nice if we could directly multiply the bit pat-

terns of GF (2n) without having to think about the underlying

polynomials.

• It turns out that we can indeed do so, but the technique is specific

to the order of the finite field being used. The order of a finite

field refers to the number of elements in the field. So the order

of GF (2n) is 2n.

20

Computer and Network Security by Avi Kak Lecture 7

• More particularly, the bitwise operations needed for directly mul-

tiplying two bit patterns in GF (2n) are specific to the irreducible

polynomial that defines a given GF (2n).

• On the next slide, we will focus specifically on the GF (28) finite

field that is used in AES, which we will take up in the next lecture,

and show that multiplications can be carried out directly in this

field by using bitwise operations.

21

Computer and Network Security by Avi Kak Lecture 7

7.9: DIRECT BITWISE OPERATIONS
FOR MULTIPLICATIONS IN GF (28)

• Let’s consider the finite field GF (28) that is used in AES. As you

will see in the next lecture, this field is derived using the following

irreducible polynomial of degree 8:

m(x) = x8 + x4 + x3 + x + 1

• Now let’s see how we can carry out multiplications with direct

bitwise operations in this GF (28).

• We first take note of the following equality in GF (28):

x8 mod m(x) = x4 + x3 + x + 1

The result follows immediately by a long division of x8 by x8 +

x4 + x3 + x + 1. Obviously, the first term of the quotient will

be 1. Multiplying the divisor by the quotient yields x8 + x4 +

x3+x+1. When this is subtracted from the dividend x8, we get

−x4 − x3 − x− 1, which is the same as the result shown above.

22

Computer and Network Security by Avi Kak Lecture 7

• Now let’s consider the general problem of multiplying a general

polynomial f(x) in GF (28) by just x. Let’s represent f(x) by

f(x) = b7x
7 + b6x

6 + b5x
5 + x4x

4 + b3x
3 + b2x

2 + b1x + b0

Therefore, this f(x) stands for the bit pattern b7b6b5b4b3b2b1b0.

• Obviously,

f(x)×x = b7x
8 + b6x

7 + b5x
6 + x4x

5 + b3x
4 + b2x

3 + b1x
2 + b0x

But now recall that we must take the modulo of this polynomial

with respect to m(x) = x8 + x4 + x3 + x + 1. What that

yields depends on whether or not the bit b7 is set.

• If the bit b7 of f(x) is equals 0, then the right hand above is

already in the set of polynomials in GF (28) and nothing fur-

ther needs to be done. In this case, the output bit pattern is

b6b5b4b3b2b1b00.

• However, if b7 equals 1, we need to divide the polynomial we have

for f(x)× x by the modulus polynomial m(x) and keep just the

remainder. Therefore, when b7 = 1, we can write

23

Computer and Network Security by Avi Kak Lecture 7

(f(x)× x) mod m(x)

= (b7x
8 + b6x

7 + b5x
6 + b4x

5 + b3x
4 + b2x

3 + b1x
2 + b0x) mod m(x)

= (b6x
7 + b5x

6 + b4x
5 + b3x

4 + b2x
3 + b1x

2 + b0x) + (x8 mod m(x))

= (b6x
7 + b5x

6 + b4x
5 + b3x

4 + b2x
3 + b1x

2 + b0x) + (x4 + x3 + x + 1)

= (b6b5b4b3b2b1b00) ⊗ (00011011)

where, in the last expression shown, we have used the fact that

the addition in GF (28) corresponds to the logical XOR operation

for the bit patterns involved.

24

Computer and Network Security by Avi Kak Lecture 7

7.10: SUMMARY OF HOW A
MULTIPLICATION IS CARRIED OUT IN

GF (28)

• Let’s say you want to multiply two bit patterns B1 and B2, each

8 bits long.

• If B2 is the bit pattern 00000001, then obviously nothing needs

to be done. The result is B1 itself.

• If B2 is the bit pattern 00000010, then we are multiplying B1 by

x. Now the answer depends on the value of the most significant

bit in B1. If B1’s MSB is 0, the result is obtained by shifting the

B1 bit pattern to the left by one bit and inserting a 0 bit from

the right. On the other hand, if B1’s MSB is 1, first we again

shift the B1 bit pattern to the left as above. Next, we take the

XOR of the shifted pattern with the bit pattern 00011011 for the

final answer.

• If B2 is the bit pattern 00000100, then we are multiplying B1 by

x2. This amounts to first multiplying B1 by x, and then multi-

25

Computer and Network Security by Avi Kak Lecture 7

plying the result again by x. So it amounts to two applications

of the logic in the previous two steps.

• In general, if B2 consists of a single bit in the jth position from

the right (using the 0 index for the right-most position), we need

j applications of the logic laid out above for multiplying with x.

• Even more generally, whenB2 consists of an arbitrary bit pattern,

we consider the bit pattern to be a sum of bit patterns each

containing only single bit.

• For example, if B2 is 10000011, we can write

B1 × 10000011

= B1 × (00000001 + 00000010 + 10000000)

= (B1 × 00000001) + (B1 × 00000010) + (B1 × 10000000)

= (B1 × 00000001) ⊗ (B1 × 00000010) ⊗ (B1 × 10000000)

Each of the three multiplications shown in the final expression

involves multiplying B1 with a single power of x. That we can

easily do with the logic already explained.

26

Computer and Network Security by Avi Kak Lecture 7

7.11: FINDING MULTIPLICATIVE
INVERSES IN GF (2n)

• So far we have talked about efficient bitwise operations for im-

plementing the addition, the subtraction, and the multiplication

operations for the bit patterns in GF (2n).

• But what about division? Can division be carried out directly

on the bit patterns? You could if you knew the multiplicative

inverses of the bit patterns. Dividing a bit pattern B1 by the

bit pattern B2 would mean multiplying B1 by the multiplicative

inverse of B2.

• In general, you can use the Extended Euclid’s Algorithm (See

Section 5.7 of Lecture 5) for finding the multiplicative inverse

(MI) of a bit pattern in GF (2n) provided you carry out all the

arithmetic in that algorithm according to the rules appropriate

for GF (2n). Toward that end, shown on the next page is my

implementation of the bit array arithmetic in GF (2n). The func-

tion gf MI(num, mod, n) returns the multiplicative inverse of

a num bit pattern in the finite field GF (2n) when the modulus

bit pattern is as specified by mod. As the note at the beginning

27

Computer and Network Security by Avi Kak Lecture 7

of the code presented says, the OO version of this implementation

is included in Versions 2.1 and higher of my Python BitVector

class.

#!/usr/bin/env python

GF_Arithmetic.py

Author: Avi Kak

Date: February 13, 2011

Note: The code you see in this file has already been incorporated in

Version 2.1 and above of the BitVector module. If you like

object-oriented approach to scripting, just use that module

directly. The documentation in that module shows how to make

function calls for doing GF(2^n) arithmetic.

from BitVector import *

def gf_divide(num, mod, n):

’’’

Using the arithmetic of the Galois Field GF(2^n), this function divides

the bit pattern ’num’ by the modulus bit pattern ’mod’

’’’

if mod.length() > n+1:

raise ValueError("Modulus bit pattern too long")

quotient = BitVector(intVal = 0, size = num.length())

remainder = num.deep_copy()

i = 0

while 1:

i = i+1

if (i==num.length()): break

mod_highest_power = mod.length() - mod.next_set_bit(0) - 1

if remainder.next_set_bit(0) == -1:

remainder_highest_power = 0

else:

remainder_highest_power = remainder.length() \

- remainder.next_set_bit(0) - 1

if (remainder_highest_power < mod_highest_power) \

or int(remainder)==0:

break

else:

exponent_shift = remainder_highest_power - mod_highest_power

quotient[quotient.length() - exponent_shift - 1] = 1

quotient_mod_product = mod.deep_copy();

quotient_mod_product.pad_from_left(remainder.length() - \

mod.length())

quotient_mod_product.shift_left(exponent_shift)

remainder = remainder ^ quotient_mod_product

28

Computer and Network Security by Avi Kak Lecture 7

if remainder.length() > n:

remainder = remainder[remainder.length()-n:]

return quotient, remainder

def gf_multiply(a, b):

’’’

Using the arithmetic of the Galois Field GF(2^n), this function multiplies

the bit pattern ’a’ by the bit pattern ’b’.

’’’

a_highest_power = a.length() - a.next_set_bit(0) - 1

b_highest_power = b.length() - b.next_set_bit(0) - 1

result = BitVector(size = a.length()+b.length())

a.pad_from_left(result.length() - a.length())

b.pad_from_left(result.length() - b.length())

for i,bit in enumerate(b):

if bit == 1:

power = b.length() - i - 1

a_copy = a.deep_copy()

a_copy.shift_left(power)

result ^= a_copy

return result

def gf_multiply_modular(a, b, mod, n):

’’’

Using the arithmetic of the Galois Field GF(2^n), this function returns ’a’

divided by ’b’ modulo the bit pattern in ’mod’.

’’’

a_copy = a.deep_copy()

b_copy = b.deep_copy()

product = gf_multiply(a_copy,b_copy)

quotient, remainder = gf_divide(product, mod, n)

return remainder

def gf_MI(num, mod, n):

’’’

Using the arithmetic of the Galois Field GF(2^n), this function returns the

multiplicative inverse of the bit pattern ’num’ when the modulus polynomial

is represented by the bit pattern ’mod’.

’’’

NUM = num.deep_copy(); MOD = mod.deep_copy()

x = BitVector(size=mod.length())

x_old = BitVector(intVal=1, size=mod.length())

y = BitVector(intVal=1, size=mod.length())

y_old = BitVector(size=mod.length())

while int(mod):

quotient, remainder = gf_divide(num, mod, n)

num, mod = mod, remainder

x, x_old = x_old ^ gf_multiply(quotient, x), x

y, y_old = y_old ^ gf_multiply(quotient, y), y

if int(num) != 1:

return "NO MI. However, the GCD of ", str(NUM), " and ", \

str(MOD), " is ", str(num)

else:

quotient, remainder = gf_divide(x_old ^ MOD, MOD, n)

return remainder

29

Computer and Network Security by Avi Kak Lecture 7

mod = BitVector(bitstring = ’100011011’) # AES modulus

a = BitVector(bitstring = ’10000000’)

result = gf_MI(a, mod, 8)

print("\nMI of %s is: %s" % (str(a), str(result)))

a = BitVector(bitstring = ’10010101’)

result = gf_MI(a, mod, 8)

print("\nMI of %s is: %s" % (str(a), str(result)))

a = BitVector(bitstring = ’00000000’)

result = gf_MI(a, mod, 8)

print("\nMI of %s is: %s" % (str(a), str(result)))

• When you run the above script, it returns the following result:

MI of 10000000 is: 10000011

MI of 10010101 is: 10001010

MI of 00000000 is: (’NO MI. However, the GCD of ’, ’00000000’, ’ and ’, ’100011011’, ’ is ’, ’100011011’)

• Shown below is a Perl version of the same code. The version uses

my open-source module Algorithm::BitVector that you can

download from the CPAN archive.

#!/usr/bin/env perl

GF_Arithmetic.pl

Author: Avi Kak

Date: February 5, 2016

Note: The code you see in this file has already been incorporated in

Version 1.24 and above of the Perl Algorithm::BitVector module.

If you like object-oriented approach to scripting, just use that

module directly. The documentation in that module shows how to

make function calls for doing GF(2^n) arithmetic.

use strict;

30

Computer and Network Security by Avi Kak Lecture 7

use warnings;

use Algorithm::BitVector;

my $mod = Algorithm::BitVector->new(bitstring => ’100011011’); # AES modulus

my $a = Algorithm::BitVector->new(bitstring => ’10000000’);

my $result = gf_MI($a, $mod, 8);

print "\n\nMI of $a is: $result\n";

$a = Algorithm::BitVector->new(bitstring => ’10010101’);

$result = gf_MI($a, $mod, 8);

print "\nMI of $a is: $result\n";

$a = Algorithm::BitVector->new(bitstring => ’00000000’);

$result = gf_MI($a, $mod, 8);

print "\nMI of $a is: $result\n";

Using the arithmetic of the Galois Field GF(2^n), this function divides

the bit pattern $num by the modulus bit pattern $mod

sub gf_divide {

my ($num, $mod, $n) = @_;

die "Modulus bit pattern too long" if $mod->length() > $n + 1;

my $quotient = Algorithm::BitVector->new(intVal => 0, size => $num->length());

my $remainder = $num->deep_copy();

for (my $i = 0; $i < $num->length(); $i++) {

my $mod_highest_power = $mod->length() - $mod->next_set_bit(0) - 1;

my $remainder_highest_power;

if ($remainder->next_set_bit(0) == -1) {

$remainder_highest_power = 0;

} else {

$remainder_highest_power = $remainder->length() - $remainder->next_set_bit(0) - 1;

}

if (($remainder_highest_power < $mod_highest_power) or (int($remainder)==0)) {

last;

} else {

my $exponent_shift = $remainder_highest_power - $mod_highest_power;

$quotient->set_bit($quotient->length() - $exponent_shift - 1, 1);

my $quotient_mod_product = $mod->deep_copy();

$quotient_mod_product->pad_from_left($remainder->length() - $mod->length());

$quotient_mod_product->shift_left($exponent_shift);

$remainder ^= $quotient_mod_product;

}

}

$remainder = Algorithm::BitVector->new(bitlist =>

$remainder->get_bit([$remainder->length()-$n .. $remainder->length()-1]))

if $remainder->length() > $n;

return ($quotient, $remainder);

}

Using the arithmetic of the Galois Field GF(2^n), this function multiplies

the bit pattern $arg1 by the bit pattern $arg2

sub gf_multiply {

my ($arg1,$arg2) = @_;

31

Computer and Network Security by Avi Kak Lecture 7

my ($a, $b) = ($arg1->deep_copy(), $arg2->deep_copy());

my $a_highest_power = $a->length() - $a->next_set_bit(0) - 1;

my $b_highest_power = $b->length() - $b->next_set_bit(0) - 1;

my $result = Algorithm::BitVector->new(size => $a->length()+ $b->length());

$a->pad_from_left($result->length() - $a->length());

$b->pad_from_left($result->length() - $b->length());

foreach my $i (0 .. $b->length() - 1) {

my $bit = $b->get_bit($i);

if ($bit == 1) {

my $power = $b->length() - $i - 1;

my $a_copy = $a->deep_copy();

$a_copy->shift_left($power);

$result ^= $a_copy;

}

}

return $result;

}

Using the arithmetic of the Galois Field GF(2^n), this function returns $a

divided by $b modulo the bit pattern in $mod

sub gf_multiply_modular {

my ($a, $b, $mod, $n) = @_;

my $a_copy = $a->deep_copy();

my $b_copy = $b->deep_copy();

my $product = gf_multiply($a_copy,$b_copy);

my ($quotient, $remainder) = gf_divide($product, $mod, $n);

return $remainder;

}

Using the arithmetic of the Galois Field GF(2^n), this function returns the

multiplicative inverse of the bit pattern $num when the modulus polynomial

is represented by the bit pattern $mod

sub gf_MI {

my ($num, $mod, $n) = @_;

my $NUM = $num->deep_copy(); my $MOD = $mod->deep_copy();

my $x = Algorithm::BitVector->new(size => $mod->length());

my $x_old = Algorithm::BitVector->new(intVal => 1, size => $mod->length());

my $y = Algorithm::BitVector->new(intVal => 1, size => $mod->length());

my $y_old = Algorithm::BitVector->new(size => $mod->length());

my ($quotient, $remainder);

while (int($mod)) {

($quotient, $remainder) = gf_divide($num, $mod, $n);

($num, $mod) = ($mod, $remainder);

($x, $x_old) = ($x_old ^ gf_multiply($quotient, $x), $x);

($y, $y_old) = ($y_old ^ gf_multiply($quotient, $y), $y);

}

if (int($num) != 1) {

return "NO MI. However, the GCD of $NUM and $MOD is: $num\n";

} else {

($quotient, $remainder) = gf_divide($x_old ^ $MOD, $MOD, $n);

return $remainder;

}

}

32

Computer and Network Security by Avi Kak Lecture 7

• As you’d exect, when you execute the file shown above, you get

exactly the same output that you saw earlier for the Python

version of the code.

• If you have fixed the value of n for a particular GF (2n) field

(and if n is not too large), you can precompute the multiplicative

inverses for all the elements of GF (2n) and store them away.

(Recall that the MI of a bit pattern A in GF (2n) is a bit pattern

B so that A×B = 1.

• The table below shows the multiplicative inverses for the bit pat-

terns of GF (23). Also shown are the additive inverses. But note

that every element x is its own additive inverse. Also note that

the additive identity element is not expected to possess a multi-

plicative inverse.

Additive Multiplicative

Inverse Inverse

000 000 -----

001 001 001

010 010 101

011 011 110

100 100 111

101 101 010

33

Computer and Network Security by Avi Kak Lecture 7

110 110 011

111 111 100

34

Computer and Network Security by Avi Kak Lecture 7

7.12: USING A GENERATOR TO
REPRESENT THE ELEMENTS OF GF (2n)

• It is particularly convenient to represent the elements of a Galois

Field GF (2n) with the help of a generator element. [As men-

tioned in Section 5.5 of Lecture 5, GF in the notation GF (pn) stands for “Galois Field” after the French

mathematician Evariste Galois who died in 1832 at the age of 20 in a duel with a military officer who had cast

aspersions on a young woman Galois was in love with. The young woman was the daughter of the physician

of the hostel where Galois stayed. Galois was the first to use the word “group” in the sense we have used in

these lectures.]

• If g is a generator element, then every element of GF (2n),

except for the 0 element, can be expressed as some power of g.

• Consider a finite field of order q. As mentioned previously in

Section 7.8, the order of a finite field is the number of elements

in the field. If g is the generator of this finite field, then the finite

field can be expressed by the set

{0, g0, g1, g2, . . . , gq−2}

35

Computer and Network Security by Avi Kak Lecture 7

• How does one specify a generator?

• A generator is obtained from the irreducible polynomial that went

into the creation of the finite field. If f(g) is the irreducible poly-

nomial used, then g is that element which symbolically satisfies

the equation f(g) = 0. You do not actually solve this equation

for its roots since an irreducible polynomial cannot have actual

roots in the underlying number system used, but only use this

equation for the relationship it gives between the dif-

ferent powers of g.

• Consider the case of GF (23) defined with the irreducible polyno-

mial x3 + x + 1. The generator g is that element which symbol-

ically satisfies g3 + g + 1 = 0, implying that such an element

will obey

g3 = − g − 1 = g + 1

• Now we can show that every power of g will correspond to some

element of GF (23).

• Shown below are the first several powers of g along with the
element 0 at the very top:

0

g0 = 1

g1 = g

36

Computer and Network Security by Avi Kak Lecture 7

g2 = g2

g3 = g + 1

g4 = g(g3) = g(g + 1) = g2 + g

g5 = g(g4) = g(g2 + g) = g3 + g2 = g2 + g + 1

g6 = g(g5) = g(g2 + g + 1) = g3 + g2 + g = g2 + 1

g7 = g(g6) = g(g2 + 1) = g3 + g = 1
...

• Note the powers g0 through g6 of the generator element, along

with the element 0, correspond to the eight polynomials ofGF (23)

shown on Slide 10.

• The higher powers of g obey the relationship gk = gk mod 7 for

the example shown. As shown above, g7 is the same as g0.

• Since every polynomial in GF (2n) is represented by a power of g,

multiplying any two polynomials in GF (2n) becomes trivial —

we just have to add the exponents of g modulo (2n − 1).

• So we have the conclusion that if g is the generator element of

a finite field of the form GF (2n), then all the powers of g from

g0 through g2
n−2, along with the element 0, correspond to the

elements of the finite field.

37

Computer and Network Security by Avi Kak Lecture 7

• That is, using the generator notation allows the multiplications of

the elements of the finite field to be carried out without reference

to the irreducible polynomial.

38

Computer and Network Security by Avi Kak Lecture 7

7.13: HOMEWORK PROBLEMS

1. This question is a litmus test of whether you understand the

concepts presented in this lecture at a deep level: As mentioned

in Section 7.2, there exist two different irreducible polynomials

of degree 3 over GF (2):

x3 + x + 1

and

x3 + x2 + 1

Obviously, the finite field GF (23) can be constructed with ei-

ther of these two irreducible polynomials. Regardless of which

polynomial we use, we end up with the same set of bit patterns:

{000, 001, 010, 011, 100, 101, 110, 111}. The MI (multi-

plicative inverse) of 010 is 101 when you base GF (23) on the

irreducible polynomial x3 + x + 1. (You can verify this fact by

multiplying the polynomials x and x2 + 1 and evaluating the

result modulo the polynomial x3 + x + 1.) The question you

are being asked is whether the MI of 010 will be different when

GF (23) is based on x3 + x2 + 1?

39

Computer and Network Security by Avi Kak Lecture 7

2. When the set of all integers is divided by a prime, we obtain a

set of remainders whose elements obey a certain special property

with regard to the modulo multiplication operator over the set.

What is that property?

3. As computer engineers, our world of work is steeped in bits and

bytes. Yet we seem to be obsessing about polynomials. Pourquoi?

4. When the set of all polynomials over GF (p) for a prime p is di-

vided by an irreducible polynomial, we obtain a set of remainders

with some very special properties. What is so special about this

set? How is such a set denoted?

5. How do we get a finite field of the form GF (2n) ?

6. If GF (p) gives us a finite field (with p elements), why is that not

good enough for us? Why do we need finite fields of the form

GF (2n)?

7. How will you prove that GF (23) is at least an integral domain?

How will you prove it is a finite field?

8. Let’s say that our irreducible polynomial is x3+x+1. Obviously,

each polynomial in GF (23) will be of degree 2 or less. Drawing a

40

Computer and Network Security by Avi Kak Lecture 7

parallel between the polynomials and the bit patterns, how many

polynomials are there in GF (23) ?

9. With polynomial coefficients drawn from GF (2), let’s use the

irreducible polynomial x3 + x + 1 to construct the finite field

GF (23). Now calculate

(x2 + x + 1) + (x2 + 1) = ?

(x2 + x + 1)− (x2 + 1) = ?

(x2 + x + 1)× (x2 + 1) = ?

(x2 + x + 1) / (x2 + 1) = ?

10. Given the following two 3-bit binary code words from GF (23)

with the modulus polynomial x3 + x + 1:

B1 = 1 1 1

B2 = 1 0 1

Now calculate:

B1 +B2 = ?

B1 − B2 = ?

41

Computer and Network Security by Avi Kak Lecture 7

B1 × B2 = ?

B1 / B2 = ?

Do you see any similarities between this question and the previous

question? What would happen to the results in this question if

we changed the modulus polynomial to x3 + x2 + 1 ?

11. Programming Assignment:

Write a Perl or Python script that can serve as a four function

calculator for carrying out the arithmetic operations (+, −, ×,

and ÷) on the polynomials that belong to the finite field GF (28)

using the irreducible polynomial m(x) = x8 + x4 + x3 + x + 1.

When started, your script should place the user in an interactive

mode and wait for the user to enter expressions for evaluation.

Your script should prompt the user for three items: 1) a bitstring

that would serve as the first operand; 2) another bitstring that

would serve as the second operand; and, finally, 3) the operator

to be used. The bits in each input bit pattern supplied by the

user would stand for the respective polynomial coefficients. The

script should output a bitstring that is the result of the operation.

42

