
Lecture 20: PGP, IPSec, SSL/TLS, and Tor Protocols

Lecture Notes on “Computer and Network Security”

by Avi Kak (kak@purdue.edu)

March 28, 2017
10:08am

c©2017 Avinash Kak, Purdue University

Goals:

• PGP: A case study in email security

• Key management issues in PGP

• Packet-level security with IPSec

• Transport Layer Security with SSL/TLS

• Heartbeat Extension to the SSL/TLS protocol

• The Tor protocol for anonymized routing

CONTENTS

Section Title Page

20.1 Information Security for Network-Centric 3
Applications

20.2 Application Layer Security — PGP for 8
Email Security

20.2.1 Key Management Issues in PGP and PGP’s 15
Web of Trust

20.3 IPSec – Providing Security at the Packet 25
Layer

20.3.1 IPv4 and IPv6 Packet Headers 30

20.3.2 IPSec: Authentication Header (AH) 33

20.3.3 IPSec: Encapsulating Security Payload (ESP) 40
and Its Header

20.3.4 IPSec Key Exchange 47

20.4 SSL/TLS for Transport Layer Security 50

20.4.1 The Twin Concepts of “SSL Connection” and 56
“SSL Session”

20.4.2 The SSL Record Protocol 60

20.4.3 The SSL Handshake Protocol 63

20.4.4 The Heartbeat Extension to the SSL/TLS Protocol 68

20.5 The Tor Protocol for Anonymized Routing 72

20.5.1 Using Tor in Linux 86

20.5.2 How Tor is Blocked in Some Countries 94

20.5.3 Tor vs. VPN 101

20.6 Homework Problems 105

2

Computer and Network Security by Avi Kak Lecture 20

20.1: INFORMATION SECURITY FOR
NETWORK-CENTRIC APPLICATIONS

• As mentioned earlier in these lecture notes, ensuring information

security in network-centric applications requires paying attention

to:

– authentication

– confidentiality

– key management

• As shown in Figure 1, information security may be provided at

different layers in the internet suite of communication protocols:

– We can provide security services in the Network Layer by us-

ing, say, the IPSec protocol, as shown in part (a) of Figure 1.

While eliminating (or reducing) the need for higher level pro-

tocols to provide security, this approach, if solely relied upon,

makes it difficult to customize the security policies to specific

applications. It also takes away the management of security

from the application developer.

3

Computer and Network Security by Avi Kak Lecture 20

TLS/SSL

S/MIME, PGP, etc.

Security Provided at the

Network Layer with IPSec

(a)

IP/IPSec

Application Layer

HTTP, FTP, SMTP, etc.

Transport Layer

TCP, UDP

Network Layer

Ethernet, WiFi, etc.

Link Layer

Application Layer

HTTP, FTP, SMTP, etc.

Link Layer

Ethernet, WiFi, etc.

Network Layer

IP

Transport Layer

TCP, UDP

Network Layer

IP

Transport Layer

Application Layer

HTTP, FTP, SMTP, etc.

TCP, UDP

(b)

Security Provided at the
Transport Layer with TLS/SSL

Ethernet, WiFi, etc.

Link Layer

Security Provided at the Application
Layer with PGP, S/MIME, etc

(c)

Four Layer Representation of the TCP/IP Protocol Stack (See Lecture 16)

Figure 1: Confidentiality and authentication for informa-

tion security can be provided in three different layers in the

TCP/IP protocol stack, as shown in this figure. (This figure is

from Lecture 20 of “Computer and Network Security” by Avi Kak)

4

Computer and Network Security by Avi Kak Lecture 20

– We can provide security in a higher layer, but still in a manner

that is agnostic with regard to specific applications, by adding

security-related features to TCP packets. This can be done

with a Session Layer protocol like the Secure Sockets Layer

(SSL/TLS). This is shown in part (b) of Figure 1. [As stated in

Section 16.2 of Lecture 16, in a 4-layer presentation of the TCP/IP protocol stack,

the SSL/TLS protocol is usually placed in the Application Layer. However, again

as stated in Lecture 16, more accurately speaking, the SSL/TLS protocol belongs to

the Session Layer in the 7-layer OSI model of the TCP/IP stack.] [Note that the

firewall security provided by iptables, as presented in Lecture 18, also operates at the transport

layer of the protocol stack. However, that is primarily defensive security. That is, iptables

based firewall security is not meant for making information secure through authentication and

confidentiality services.]

– We can embed security in the application itself, as shown in

part (c) of Figure 1. The applications PGP, S/MIME, etc.,

in that figure are all security aware. [The proxy servers, as presented in

Lecture 19, can also provide security at the application level. However, as with iptables, that is

again primarily defensive security in the form of access control. It is generally not the job of the

proxy servers to provide authentication and confidentiality services.]

• In each of the three different layers mentioned above, authenti-

cation can be provided by public-key cryptography (see Lecture

12) and by secure transmission of message digests or message au-

thentication codes (see Lecture 15). [As mentioned previously in Lecture 15,

authentication means two things: When information is received from a source, authentication means

that the source is indeed as alleged in the information. Authentication also means that the information

5

Computer and Network Security by Avi Kak Lecture 20

was not altered along the way. The latter type of authentication is also referred to as maintaining data

integrity.]

• Again in each of the three different layers, confidentiality can be

provided by symmetric key cryptography (see Lecture 9).

• However, when public-key cryptography is used for authentica-

tion at any layer, the key-management issues in all layers can

be made complicated by the fact that users are allowed to have

multiple public keys.

• In this lecture, we will present PGP as an example of Application

Layer security, IPSec for Network Layer security, and SSL/TLS

for Session Layer security.

• About the vocabulary used in the rest of this lecture, note that

the internet standards often use octet for a byte and not in-

frequently datagram for a packet. We will consider an octet

to be synonymous with a byte and a packet to be synonymous

with a datagram. [Strictly speaking, a byte is the smallest unit for memory addressing. A

special-purpose computing device may, for example, use 6-bit bytes. For us, a byte will always contain

8 bits. About packets vs. datagrams, a packet is a generic name for the data that is kept together

during transmission through a network. As discussed in Lecture 16, the IP Layer receives a TCP

segment from the TCP Layer and, if the TCP segment is too long, fragments it into smaller packets

that are acceptable to the routers. Before security processing can be applied, it is often necessary to

reassemble these packets back into the original TCP segments. In the context of TCP/IP protocols,

6

Computer and Network Security by Avi Kak Lecture 20

most folks use packet to denote what is sent down by the IP Layer to the Link Layer at the sending

end and what is sent up by the Link Layer to the IP Layer at the receiving end. Additionally, most

folks use TCP segment and datagram interchangeably.]

7

Computer and Network Security by Avi Kak Lecture 20

20.2: APPLICATION LAYER SECURITY
— PGP FOR EMAIL SECURITY

• PGP stands for Pretty Good Privacy. It was developed originally

by Phil Zimmerman. However, in its incarnation asOpenPGP,

it has now become an open-source standard. The standard is

described in the document RFC 4880.

• PGP is widely used for protecting data in long-term storage. In

this lecture, though, our focus is primarily on email security. [As

I also mention in Lecture 22, in these days when it is so easy for your information to be stolen from your

computer through malware, at the least you should keep all your personal information in a GPG encrypted file.

GPG, which stands for Gnu Privacy Guard, is an implementation of OpenPGP (RFC 4880). To encrypt a file

called myinfo.txt, all you have to do is to run a command like ‘gpg --cipher-algo AES256 -c myinfo.txt’.

You will be prompted for a passphrase that is used to create the needed encryption key. This command will

place its output in a file named myinfo.txt.gpg. You can decrypt the encrypted file at any time by calling

‘gpg myinfo.txt.gpg’. Do ‘gpg -help’ for the different command line options that go with the gpg command.

I should also mention that it is easy to use several text editors seamlessly with GPG. IMPORTANT: After

you have used the gpg command in the manner indicated, make sure you delete the original file with the srm

command that stands for “secure remove”. What srm does amounts to wiping clean the part of disk memory

that was occupied by the file you just encrypted.]

8

Computer and Network Security by Avi Kak Lecture 20

• PGP’s operation consists of five services:

1. Authentication Service: Sender authentication con-

sists of the sender attaching his/her digital signature to the

email and the receiver verifying the signature using public-key

cryptography. Here is an example of authentication opera-

tions carried out by the sender and the receiver:

i) At the sender’s end, the SHA-1 hash function is used to cre-

ate a 160-bit message digest of the outgoing email message.

[See Lecture 15 for the SHA hashing functions.]

ii) The message digest is encrypted with RSA using the sender’s

private key and the result prepended to the message. The

composite message is transmitted to the recipient.

iii) The receiver uses RSA with the sender’s public key to de-

crypt the message digest.

iv) The receiver compares the locally computed message digest

with the received message digest.

The above description was based on using a RSA/SHA based

digital signature. PGP also support DSS/SHA based signa-

tures. DSS stands for Digital Signature Standard. [See

9

Computer and Network Security by Avi Kak Lecture 20

Section 13.6 of Lecture 13 and Section 14.13 of Lecture 14 for DSS.] Ad-

ditionally, the above description was based on attaching the

signature to the message. PGP also supports detached sig-

natures that can be sent separately to the receiver. Detached

signatures are also useful when a document must be signed by

multiple individuals.

2. Confidentiality Service: This service can also be used

for encrypting disk files. As you’d expect on the basis of the

discussion in Lecture 13, PGP uses symmetric-key encryption

for confidentiality. The user has a choice of three different

block-cipher algorithms for this purpose: CAST-128, IDEA,

or 3DES, with CAST-128 being the default choice. [Like DES,

CAST-128 is a block cipher that uses the Feistel cipher structure (see Lecture 3 for what is

meant by the Feistel structure). The block size in CAST-128 is 64-bits and the key size varies

between 40 and 128 bits. Depending on the key size, the number of rounds used in the Feistel

structure is between 12 and 16, it being the latter when the key size exceeds 80 bits. Obviously,

as you’d expect, how each round of processing works in CAST is different from how it works in

DES. But, overall, as in DES, each round carries out a series of substitutions and permutations

in the incoming data. IDEA (International Data Encryption Algorithm) is also a block cipher.

IDEA uses 64-bit blocks and 128 bit keys. The cipher uses 8 rounds of processing on the input bit

blocks (and an additional half round), each round consisting of substitutions and permutations.]

– The block ciphers are used in the Cipher Feedback

Mode (CFB) explained in Lecture 9.

10

Computer and Network Security by Avi Kak Lecture 20

– The 128-bit encryption key, called the session key, is

generated for each email message separately.

– The session key is encrypted using RSA with the receiver’s

public key. Alternatively, the session key can also be estab-

lished using the ElGamal algorithm. (See Section 13.6 of

Lecture 13 for the ElGamal variant of the Diffie-Hellman

algorithm.)

– What is put on the wire is the email message after it is

encrypted first with the session key and then with the re-

ceiver’s public key.

– If confidentiality and sender-authentication are needed si-

multaneously, a digital signature for the message is gen-

erated using the hash code of the message plaintext and

appended to the email message before it is encrypted with

the session key. (See the previously shown PGP’s authen-

tication service.)

3. Compression Service: By Default PGP compresses

the email message after appending the signature but before

encryption. This makes long-term storage of messages and

their signatures more efficient. This also decouples the en-

cryption algorithm from the message verification procedures.

Compression is carried out with the ZIP algorithm.

11

Computer and Network Security by Avi Kak Lecture 20

4. E-Mail Compatibility Service: Since encryption, even

when it is limited to the signature, results in arbitrary binary

strings, and since network message transmission is character

oriented, we must represent binary data with ASCII strings.

PGP uses Base64 encoding for this purpose. [Base64 encoding is

referred to as Radix 64 encoding in the PGP documentation. As you should already know from our previ-

ous references to this form of encoding multimedia objects, it has emerged as probably the most common

way to transmit binary data over a network. To briefly review Base64 again (at the risk of beating a dead

horse), it first segments the bytes of the object that needs to be encoded into 6-bit words. The 26 = 64

different possible 6-bit words are represented by printable characters as follows: The first 26 are mapped

to the uppercase letters A through Z, the next 26 to the lowercase a through z, the next 10 to the digits 0

through 9, and the last two to the characters ’/’ and ’+’. This causes each triple of adjoining bytes to be

mapped into four ASCII characters. The Base64 character set includes a 65th character, ‘=’, to indicate

how many characters the binary string is short of being an exact multiple of 3 bytes. When the binary

string is short one byte, that is indicated by terminating the Base64 string with a single ‘=’. And when

it is short two bytes, the termination becomes ‘==’.]

5. Segmentation Service: For long email messages (these are

generally messages with attachments), many email systems

place restrictions on how much of the message will be trans-

mitted as a unit. For example, some email systems segment

long email messages into 50, 000 byte segments and transmit

each segment separately. PGP has built-in facilities for such

segmentation and re-assembly.

• Figure 2 shows the three different modes in which PGP can be

used for secure email exchange. The top diagram is for when only

12

Computer and Network Security by Avi Kak Lecture 20

authentication is desired, the middle when only confidentiality is

needed, and the bottom when both are wanted. The notation

R64 in the figure is for conversion to Radix 64 ASCII format

(which, as already mentioned, is the same as what is accomplished

by Base-64 ecoding).

13

Computer and Network Security by Avi Kak Lecture 20

M
E

S
S

A
G

E

H
as

h

E
n
cr

y
p
t

concatenate

R
6
4

−
1

U
N

Z
IPR

6
4

Z
IP

Decrypt

H
ash

S
ig

n
atu

re
M

E
S

S
A

G
E

A’s Public Key

Compare

M
E

S
S

A
G

E

Z
IP

E
n
cr

y
p
t

Randomly Generated

Symmetric Key
Encrypt

R
6
4

R
6
4

−
1

E
n
cry

p
ted

S
y
m

m
etric K

ey

E
n
cry

p
ed

M
essag

e

Decrypt

Decrypt

S
y
m

m
etric

K
ey

U
N

Z
IP

M
E

S
S

A
G

E

B’s Private KeyB’s Public Key

concatenate

M
E

S
S

A
G

E

H
as

h

E
n
cr

y
p
t

concatenate Z
IP

E
n
cr

y
p
t

Randomly Generated

Symmetric Key
Encrypt

R
6
4

R
6
4

−
1

E
n
cry

p
ted

S
y
m

m
etric K

ey

E
n
cry

p
ed

M
essag

e

Decrypt

U
N

Z
IP

Decrypt

H
ash

S
ig

n
atu

re
M

E
S

S
A

G
E

A’s Public Key

Compare

Decrypt

S
y
m

m
etric

K
ey

A’s Private Key

Some PGP Usage Modes for Secure Email Exchange

For Authentication Only

For Confidentiality Only

For Both Confidentiality and Authentication

Party A

Party A

Party A

Party B

Party B

A’s Private Key

B’s Public Key

concatenate

Party B

B’s Private Key

Figure 2: The three different modes in which PGP can be

used for secure email exchange. (This figure is from “Computer and Network

Security” by Avi Kak)
14

Computer and Network Security by Avi Kak Lecture 20

20.2.1: Key Management Issues in PGP

and PGP’s Web of Trust

• As you have already seen, public key encryption is central to PGP.

It is used for authentication and for confidentiality. A sender uses

his/her private key for placing his/her digital signature on the

outgoing message. And a sender uses the receiver’s public key

for encrypting the symmetric key used for content encryption for

ensuring confidentiality.

• We can expect people to have multiple public and private keys.

This could happen for a number of practical reasons. For exam-

ple, an individual may wish to retire an old public key, but, to

allow for a smooth transition, may decide to make available both

the old and the new public keys for a while.

• So PGP must allow for the possibility that the receiver of a mes-

sage may have stored multiple public keys for a given sender.

This raises the following procedural questions:

– Let’s say PGP uses one of the public keys made available by

the recipient, how does the recipient know which public key it

is?

15

Computer and Network Security by Avi Kak Lecture 20

– Let’s say that the sender uses one of the multiple private keys

that the sender has at his/her disposal for signing the message,

how does the recipient know which of the corresponding public

keys to use?

• Both of these problems can be gotten around by the sender also

sending along the public key used. The only problem here is that

it is wasteful in space because the RSA public keys can

be hundreds of decimal digits long.

• The PGP protocol solves this problem by using the notion of

a relatively short key identifiers (key ID) and requiring that

every PGP agent maintain its own list of paired private/public

keys in what is known as the Private Key Ring; and a list of the

public keys for all its email correspondents in what is known as

the Public Key Ring. Examples of private and public key rings

are shown in Figure 3.

• The keys for a particular user are uniquely identifiable through a

combination of the user ID and the key ID.

• The key ID associated with a public key consists of its least sig-

nificant 64 bits. [This way the key ID is always just 8 bytes long. The entries for the keys

and their IDs shown in Figure 3 are in hex. Each hex string begins with the least significant byte.

Therefore, the sixteen hex characters in a key ID will always be the same as the first sixteen hex

16

Computer and Network Security by Avi Kak Lecture 20

User ID Key ID Public Key
Producer

Trust
Certificate

Certificate
Trust

Key
Legitimacy

EA132....43 EA132....43....A21

Public KeyKey IDUser ID Encrypted

Private Key

34ABF23......A9

Timestamp

041908−11:30kak@abc.com

zaza@foo.com 132AB....02 132AB....02....23A
EA132....43 EA132....43....A21 Full Full 041908−11:30kak@abc.com

toto@bar.com Full231DA....02 231DE....02....33B Zaza’s Full
Full Full

Full

Timestamp

−−−
−−− −−−

−−− −−−

−−−

Public Key Ring Table:

Private Key Ring Table:

Figure 3: Examples of the public and the private key rings

for a user. (This figure is from Lecture 20 of “Computer and Network Security” by Avi Kak)

17

Computer and Network Security by Avi Kak Lecture 20

characters of the public key. The public key ring table always include entries for the public keys of the

owner of the public key ring despite the fact that the same information is contained in the private key

ring table for the owner.]

• Going back to private key ring shown in Figure 3, for security

reasons, PGP stores the private keys in the table in an encrypted

form so that the keys are only accessible to the user who owns

them. [PGP can use any of the three block ciphers at its disposal, CAST-128, IDEA, and 3DES,

with CAST-128 serving as the default choice, for this encryption. The encryption algorithm asks the

user to enter a passphrase. The pass-phrase is hashed with SHA-1 to yield a 160-bit hash code. The

first 128 bits of the hash code are used as the encryption key by the CAST-128 algorithm. Both the

passphrase and the hash code are immediately discarded.]

• With regard to the public key ring shown in Figure 3, the fields

Producer Trust,Key Legitimacy, Certificate, andCer-

tificate Trust are to assess how much trust to place in the pub-

lic keys belonging to other people. [If A has B’s public key in the ring, but the

key really belongs to C (in the sense that C is the legitimate owner of the corresponding private key),

then B can send messages to A and forge C’s signature, assuming that B has also stolen C’s private

key. A would think a message was from C whereas it is really from B and any encrypted messages

from A to C would be readable by B.]

• How to designate trust is implementation dependent. In the rest

of the explanation here, we will use the symbolic values full,

partial, and none for expressing the degree of trust.

18

Computer and Network Security by Avi Kak Lecture 20

• A unique feature of PGP is its own notion of a “certificate au-

thority” for authenticating the binding between a public key and

its owner. This notion is based on PGP’s web of trust that

is a bottom-up approach to establishing trust for authentication.

[This is to be contrasted with the top-down approaches of Public Key Infrastructure (PKI) that we

talked about in Lecture 13. As presented in that lecture, PKI is based on Certificate Authorities (CA)

that are arranged in a strict hierarchy for establishing trust. In PKI, the trust can only flow downwards

from the root node (that must always be trusted implicitly) to the CAs at the other nodes that descend

from the root node.]

• In PGP’s web of trust, a user’s public key can be signed by

any other user. See Lecture 13 for what is meant by signing a public key. For

example, in user kak’s public key ring shown in Figure 3, toto’s

public-key was signed by zaza. The same table shows that the

user kak fully trusts zaza presumably because zaza handed its

public key to kak directly (say, over the phone). Because the

fully-trusted zaza endorses the new user toto’s public key, toto

also becomes a fully-trusted email correspondent for the user kak.

For proper operation of the web of trust, it is important that

everyone who signs a public key for another submits the signature

to a central key server.

• Because there is no hierarchy of trust in PGP, it is possible that

a user will receive two different certificates for a new email corre-

spondent, say one that the receiver will trust fully and the other

that the receiver may trust only partially. Whether or not to

trust such a potential email correspondent is up to the receiver of

19

Computer and Network Security by Avi Kak Lecture 20

the certificates. [As explained in Lecture 13, a certificate is simply a public key digitally

signed by its endorser through his/her private key.]

• The entry stored in the Public Key field is where the public

key is stored.

• The entry in the Producer Trust field of the Public Key Ring

table indicates the extent to which the owner of a particular public

key can be trusted to sign other certificates. This will generally

be one of three values: full, partial, or none.

• The Certificate field holds the certificate(s) that authenticates

the entry in the public key field. The third row in the Public

Key Ring in Figure 3 shows that toto public key was signed by

zaza. That is, zaza supplied the certificate that authenticated

toto’s public key. In other words, zaza used its private key to

digitally sign toto public key and sent that signed document to

kak. The entry in the Certificate field holds that certificate.

• The Certificate Trust field indicates how much trust a user

wants to place in the entry in the Certificate field.

• For a given public key, the value for the Key Legitimacy field

is automatically derived by PGP from the value(s) stored for

the Certificate Trust field(s) and a predefined weight for each

20

Computer and Network Security by Avi Kak Lecture 20

symbolic value for certificate trust. Recall that an individual

may receive multiple signed certificates for a new potential email

correspondent from others in a web of trust.

• Figure 4, based on a figure in Chapter 15 of “Cryptography and

Network Security” by William Stallings, shows the general format

of a PGP message. As the figure shows, a PGP message consists

of three components: a session key component, a signature com-

ponent, and the actual email message itself. Perhaps the only

unexpected entry is the “leading two bytes of message digest.”

This is to enable the recipient to determine that the correct pub-

lic key (of the sender) was used to decrypt the message digest

for authentication. These two bytes also serve as a 16-bit frame

check sequence for the actual email message. The message

digest itself is calculated using SHA-1.

• In modern usage of PGP, creation of the web of trust is

facilitated by the availability of free publicly available PGP Key-

servers (v. 7.0) at various places around the world. In order to

upload your key to such a server, one typically creates a GPG

(Gnu Privacy Guard) key though the following steps: [As mentioned

at the beginning of Section 20.2, Gnu Privacy Guard (abbreviated GnuPG or GPG) is an implementation of

the OpenPGP standard (RFC 4880).]

– create a new .gnupg directory at the top level of your home

directory.

21

Computer and Network Security by Avi Kak Lecture 20

Session Key K encrypted
S

with B’s public key

Encrypt with the

Session Key KS

Transmit
to B

Key ID of B’s public key

Timestamp

Key ID of A’s public key

Leading two bytes of
message digest

Message digest encrypted

with A’s private key

Filename

Timestamp

DATA

S
es

si
o

n
 K

ey
 I

n
fo

S
ig

n
at

u
re

M
es

sa
g

e

ZIP R64

Party A sends a PGP message to party B

Figure 4: The general format of a PGP message. (This figure is

from Lecture 20 of “Computer and Network Security” by Avi Kak)

22

Computer and Network Security by Avi Kak Lecture 20

– Using the following call, execute the gpg key generation com-

mand to create a public/private key pair:

gpg --gen-key

You will be prompted for what type of keys you want. The

default is “RSA and RSA”. Go with the default. You will be

prompted for the size of the modulus for the RSA key. The de-

fault is 2048. Go with the default. You will also be prompted

for when the key should expire. I went for the default, as

indicated by ‘0’, which stands for “keys do not expire”. Sub-

sequently, you will be prompted for what User-ID to use to

identify your key. The User-ID is a concatenation of your

“Real Name’, a “Comment”, and your email address. I left

out the comment and went with “Avi Kak 〈kak@purdue.edu〉”

for the User-ID. Finally, you’ll be prompted for a passphrase

to protect your key.

– After you have supplied the information mentioned above, gpg

will create a key pair for you — assuming it has access to

sufficient entropy to create a true random number of the size

commensurate with the size of modulus for your key. [See Section

10.9 of Lecture 10 on the topic of “Software Entropy Sources”. Also see Section 10.9.2 of the same lecture

on EGD (Entropy Gathering Daemon) that deposits a Unix socket named ‘entropy=’ in your .gnupg

directory though which gpg gathers the entropy it needs for random number generation.] If the

entropy found is insufficient, you will be asked to make mouse

movements and random keyboard entries for increasing the

entropy.

23

Computer and Network Security by Avi Kak Lecture 20

– After the keys are generated, gpg will output a 40-character

“Key Fingerprint”. Save it at a safe place. Your “KeyID”

consists of the last 8 characters of the “Key Fingerprint”. Save

your “KeyID” also at a safe place.

– The public and private keys that are generated are deposited

in the files pubring.gpg and secring.gpg of the .gnupg di-

rectory. There is another file created in this directory that

is called trustdb.gpg. This is the file that keeps the trust

database I talked about earlier.

– Your final step is to export your public key to one of the

worldwide PGP keyservers. Exporting to one automatically

broadcasts it to all other such servers. The most popular

keyserver in the US appears to pgp.mit.edu. You can upload

your public key to this server by

gpg --keyserver pgp.mit.edu --send-keys your_8_char_KeyID

– If you have questions about the uploading of the keys to the

PGP keyserver mentioned above or, perhaps, about possibly

deleting of the keys you have uploaded there, visit the FAQ

at http://pgp.mit.edu/faq.html.

24

Computer and Network Security by Avi Kak Lecture 20

20.3: IPSec – PROVIDING SECURITY AT
THE PACKET LAYER

• A more broad-based approach to security consists of providing

authentication, confidentiality, and key management at the level

of IP packets (the Packet Layer or the Network Layer).

• When security is implemented at the Network Layer in the TCP/IP

protocol, it covers all applications running over the network.

That makes it unnecessary to provide security separately for, say,

email exchange, running distributed databases, file transfer, re-

mote site administration, etc. This, one could argue, spares the

application-level programs the computational overhead of having

to provide for security. The largest application of IPSec is in

Virtual Private Networks (VPN). A VPN is an overlay network

that allows a group of hosts that may be widely scattered in the

internet to act as if they were in a single LAN.

• IP-level authentication means that the source of the packet is

as stated in the packet header. Additionally, it means that the

packet was not altered during transmission. IP-level authen-

tication is provided by inserting an Authentication

25

Computer and Network Security by Avi Kak Lecture 20

Header (AH) into the packets. Stated simply, the AH

stores a hash value for those portions of a packet that are ex-

pected to stay invariant during its transmission from the source

to the destination. The receiver can compute a hash from the

same fields and compare his/her hash to the hash in the AH

associated with the packet.

• IP-level confidentiality means that third-party packet sniffers can-

not eavesdrop on the communications. IP-level confidential-

ity is provided by inserting an Encapsulating Security

Payload (ESP) header into the packets. ESP can also do

the job of the AH header by providing authentication in addition

to confidentiality.

• IPSec is a specification for the IP-level security features that are

built into the IPv6 internet protocol. These security features can

also be used with the IPv4 internet protocol. [To briefly review again the

difference between IPv4 and IPv6, in addition to the built-in security achieved with IPSec, the main features of

IPv6 is its much larger address space. The older and much more widely used IPv4 supports 4.3×109 addresses,

IPv6 supports 3.4 × 1038 addresses. (The population of the earth is only (roughly) 6 × 109.) It is interesting

to note that because of the DHCP protocol, which allows IP addresses to be allocated dynamically, and NAT,

which as explained in Lecture 18 allows for network address translation on the fly, the general concern about

the world running out of IPv4 addresses has subsided a bit. It is also interesting to note that even though IPv6

has now been around for roughly ten years, it still accounts for only a tiny fraction of the live addresses in

the internet. As mentioned in Lecture 16, DHCP stands for the Dynamic Host Configuration Protocol. And,

as mentioned in Lecture 18, NAT, which stands for Network Address Translation, allows all the computers in

a LAN to access the internet using a single public IP address. NAT is achieved by the router rewriting the

26

Computer and Network Security by Avi Kak Lecture 20

source and/or destination address in the IP packets as they pass through.]

• IPSec is used in two different modes: the Transport Mode

and the Tunnel Mode:

– The Transport Mode is the regular mode for packets to travel from
a source to its destination in a network — except for the fact that the

two endpoints must carry out the security checks on the packets on
the basis of the information contained in the authentication header.

– With regard to the Tunnel Mode, the main point here is that the
source and the destination endpoints for a given packet stream may
not have the ability or the resources to carry out the security checks

on the packets. So a source must route the packets to a designated
location — let’s call it P — in the network for inserting the authen-

tication and/or ESP headers. If the originally intended destination
also is not able to carry out the security checks on the packets, P may

need to send the packets to another designated location — let’s call it
Q — that is in the “vicinity” of the actual destination for the packet

stream. The host at Q can then carry out the security verification
on the basis of the information in the security headers inserted by
P and send the packets thus verified to their true destination. P is

sometimes referred to as the encapsulator and Q as the decapsulator.
The points P and Q define the two endpoints of what’s referred to as

a tunnel.

• Here is a good question regarding the tunnel mode: How does the

source of an IP stream send its packets to the designated point

P mentioned above? For the answer, the source can use the IP-

27

Computer and Network Security by Avi Kak Lecture 20

in-IP protocol (RFC 2003) for that purpose. More on that in the

red note that follows. . [Encapsulating the original IP header inside a new IP header finds

applications even outside the security context. For example, a networking app on a mobile device may want to

send the packets to a billing host before they are actually sent to their real destination. Since the IP protocols

do not make it easy to specify the routing at the source, an alternative is to use the notion of IP-in-IP, meaning

encapsulating the IP header that has the actual source and destination fields with another IP header that first

sends the packet to a designated location. The outter IP header is ripped off at that location and the original

IP packet sent onwards to its originally intended destination. You can read more on IP-in-IP in the standards

document RFC 2003. The protocol number for IP-in-IP is 4.]

• IPSec includes filtering capability so that only specified traffic

need be subject to security processing. In other words, only those

packets that are deemed to be security-sensitive need to be further

processed for authentication, confidentiality, etc.

• To summarize, if you want to use IPSec for just authentication of

the sender/receiver information that is placed in the IP headers,

and if the two endpoints of a communication link are able to

their own authentication processing, you will use IPSec in the

Transport Mode with just the additional AH headers. On the

other hand, if the endpoints cannot do their own authentication,

you will have to use IPSec in the Tunnel Mode.

• And if you want to use IPSec for confidentiality (as provided by

encryption), you’ll need to the ESP headers (with or without the

AH headers since the ESP headers can also carry out authenti-

28

Computer and Network Security by Avi Kak Lecture 20

cation). Again, if the two endpoints can do their own security

processing, you will use IPSec in the Transport Mode. Otherwise,

you’ll use IPSec in the Tunnel Mode.

29

Computer and Network Security by Avi Kak Lecture 20

20.3.1: IPv4 and IPv6 Packet Headers

• Before we can talk about the extension headers used for IPSec,

it’s good to review the IPv4 and IPv6 headers. Although you

have already seen these headers in Lecture 16, they are included

here again for your reading convenience. IPSec security features

are implemented as extension headers that follow the main

IP header in an IP packet.

• With regard to the IPv4 header shown in Figure 5, the Total

Length field is a 16-bit word, designates the total length of the

overall packet (including the data payload) in bytes. (There-

fore, the maximum size of an IPv4 packet is 65,536 bytes.) The

Identification, flags, and the Fragment Offset fields hold

values that are assigned by the sender to help the receiver with

the re-assembly of the IP fragments back into an IP datagram.

The Time to Live field, specified by 8 bits, is subtracted by 1

for each pass through a router. The Source Address and the

Destination Address are each represented by 32 bits.

• The Protocol field of the IPv4 header plays an important

role in grafting IPSec onto IPv4. Ordinarily this field

indicates the next higher level protocol in the TCP/IP stack that

is responsible for the contents of the data field of the IP packet.

[Each protocol (such as the TCP protocol) has a number assigned to it. It is this number that is

30

Computer and Network Security by Avi Kak Lecture 20

stored in the Protocol field. For example, the number 6 represents the TCP protocol.] When

IPSec is used with IPv4, this field contains the integer value that

represents the security header to follow the main header. For

example, the integer 50 represents the ESP header that is used

for encryption services in IPSec. Therefore, if the next header is

the ESP header, number 50 will be stored in the Protocol field.

Along the same lines, the number 51 represents the AH protocol

that is used for authentication services. We will talk shortly

about AH and ESP protocols.. [Lecture 16 provides additional

information on the IPv4 header.]

• For the IPv6 header shown in Figure 5, it has a fixed length of

40 bytes. IPv6 was designed from the ground up with the idea

of using an arbitrary number of headers for a packet, the chain

of headers being linked by the Next Header field consisting of

8 bits. The headers that follow the main IPv6 header are called

the extension headers. The extension headers of interest to

us are theAuthentication Header and the Encapsulating

Security Payload Header. The Source Address and the

Destination Address fields that you see in Figure 5 each takes

a 128-bit value.

31

Computer and Network Security by Avi Kak Lecture 20

Main Packet Header for IPv4

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

|version| IHL | DS |ECN| Total Length |

+-+

| Identification |Flags| Fragment Offset |

+-+

| Time To Live | Protocol | Header Checksum |

+-+

| Source IP Address |

+-+

| Destination IP Address |

+-+

| Options | Padding |

+-+

Main Packet Header for IPv6

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

|Version| Traffic Class | Flow Label |

+-+

| Payload Length | Next Header | Hop Limit |

+-+

| |

+ +

| |

+ Source Address +

| |

+ +

| |

+-+

| |

+ +

| |

+ Destination Address +

| |

+ +

| |

+-+

Figure 5: The IP Headers for the IPv4 and the IPv6 pro-

tocols. (This figure is from Lecture 20 of “Computer and Network Security” by Avi Kak)

32

Computer and Network Security by Avi Kak Lecture 20

20.3.2: IPSec: Authentication Header

• Figure 6 shows the Authentication Header (AH).

• In the Transport Mode of IPSec, the AH header is inserted right

after the IP header in both the IPv4 and the IPv6 protocols. The

second packet layout in Figure 7 illustrates the position of the AH

header for IPv4 in the transport mode. And the second packet

layout in Figure 8 illustrates the position of the AH header for

IPv6 in the transport mode. The regular packet layouts in IPv4

and IPv6 are shown in the topmost packet layouts in the two

figures.

• To elaborate, when no AH header is used, an IPv4 packet may

look like

original IP | TCP header | Data

header | |

• When the AH header is included, an IPv4 packet looks like

original IP | AH | TCP header | Data

header | | |

• With IPv6, since it allows for various sorts of extension headers,

under ordinary circumstances a packet is likely to look like:

33

Computer and Network Security by Avi Kak Lecture 20

original IP | extension hdrs | TCP header | Data

header | if present | |

• However, when the AH header is included in the Transport Mode,

an IPv6 packet will looks like

original IP | AH | other extension | TCP header | Data

header | | headers | |

• Referring to Figure 6, the Payload Length field specifies the length

of the AH in 32-bit word, minus the integer 2.

• Again referring to Figure 6, the Security Parameter Index (SPI)

field, a 32-bit value, establishes the Security Association

(SA) for this packet. The Security Association for a packet is

a grouping of the security parameters needed for authentication.

These parameters may involve a public key identifier, an initial-

ization vector identifier, an identifier for the hashing algorithm

used, etc., used for authentication. The Security Parameter In-

dex along with the source IP address is used to establish the

Security Association of the sending party.

34

Computer and Network Security by Avi Kak Lecture 20

Authentication Header

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Next Header | Payload Length| RESERVED |

+---------------+---------------+---------------+---------------+

| Security Parameter Index (SPI) |

+---------------+---------------+---------------+---------------+

| Sequence Number |

+---------------+---------------+---------------+---------------+

| |

+ Authentication Data (variable number of 32-bit words) |

| |

+---------------+---------------+---------------+---------------+

Figure 6: The IPSec Authentication Header (This figure is from

Lecture 20 of “Computer and Network Security” by Avi Kak)

35

Computer and Network Security by Avi Kak Lecture 20

• The Sequence Number field, a 32-bit integer, is a monotonically

increasing number for each packet sent to prevent replay attacks.

[The important point here is that for each SPI as defined above, only one packet can

have a given sequence number. So if an adversary were to capture some of the IP

packets and re-transmit them (say, repeatedly) to the destination (for, say, mounting

a DoS attack), the destination IP engine would detect that there was a problem when

it starts receiving multiple packets with the same sequence number for the same value

of SPI. Since the Sequence Number field is only 32 bits wide, obviously the largest

value permissible for this field is 232 − 1. If the sender needs to go past this number for

a given transmission, the sender must zero out the Sequence Number field and, at

the same time, change the value of SPI.]

• The variable length Authentication Data Field holds the MAC

(Message Authentication Code) of the packet calculated with ei-

ther the SHA-1 hash function or the HMAC algorithm. See Lecture

15 for what the acronyms MAC, HMAC, and SHA stand for.

• The MAC is calculated over the IP header fields that do not

change in transit, obviously including the source and the destina-

tion IP addresses, the AH header (but without the Authentication

Data since it will be the output of the MAC algorithm), and the

inner IP packet for establishing authentication in the tunnel

mode.

• The receiver calculates the MAC value over the appropriate fields

of the packet and compares it with the value that is stored in the

36

Computer and Network Security by Avi Kak Lecture 20

Figure 7: The relationship between how an IPv4 packet is

laid out without and with the Authentication Header, in

the Transport Mode and in the Tunnel Mode. (This figure is from

http://www.tcpguide.com)

37

Computer and Network Security by Avi Kak Lecture 20

Figure 8: The relationship between how an IPv6 packet is

laid out without and with the Authentication Header, in

the Transport Mode and in the Tunnel Mode. (This figure is from

http://www.tcpguide.com)

38

Computer and Network Security by Avi Kak Lecture 20

Authentication Data field. If the two values do not match,

the packet is discarded.

• The bottom-most packet layouts in Figures 7 and 8 are for the

case when AH is used in the Tunnel Mode, the former for IPv4

and the latter for IPv6. Note the word “encapsulated” in these

packet layout diagrams means IP-in-IP sort of encapsulation —

similar to what is described in RFC 2003. Recall what was men-

tioned earlier about the need for the tunnel mode: This mode is

used when the source and the destination endpoints of a commu-

nication link are not able to do their own authentication process-

ing.

39

Computer and Network Security by Avi Kak Lecture 20

20.3.3: IPSec: Encapsulating Security Payload (ESP)

and Its Header

• The ESP (Encapsulating Security Payload) protocol (RFC 4303)

is used for providing encryption services in IPSec.

• Figure 9 shows the layout of the header for the ESP protocol and

the payload that follows the header. The header itself is just the

first eight bytes. That is followed by the payload that consists of

the encrypted information that needs to be transmitted. Finally,

you have the optional authentication data. The whole thing is

commonly referred to by the acronym ESP. [The word “encapsulation” in

ESP is not be confused with our use of the same word when describing the use of AH in the tunnel mode. The

word encapsulation there is more in the sense of the IP-in-IP protocol as described in RFC 2003.]

• Note that when IPSec uses the ESP header, its payload swallows

up the TCP segment in the original IP packet. The encrypted

version of the TCP segment is in the “Encrypted Payload Data”

portion of the ESP payload. The receiving endpoint must obvi-

ously decrypt this payload in order to extract the original TCP

segment.

• While ESP may be used to provide the same services as the AH

header, its main purpose is to provide confidentiality

40

Computer and Network Security by Avi Kak Lecture 20

through encryption. ESP may be applied alone or in con-

junction with the AH header. [More generally, though, ESP can be used to provide

confidentiality, data origin authentication, limited traffic flow confidentiality, and so on, depending on the

options selected through the value stored in the Security Parameter Index (SPI) field. This value must be

between 1 and 255.]

• In the Transport Mode, as shown in the second packet layout in

Figures 10 for IPv4 and in the second packet layout in Figure

11 for IPv6, the Encrypted Payload Data field, of variable length,

is the encrypted version of the TCP segment (meaning the TCP

header plus the data payload of the TCP segment) that would

ordinarily follow the IPv4 header. So that the value of the Next

Header field that you see at the bottom would contain number

6 and point backwards to the main content of the Encrypted

Payload Data. It is interesting to note that an adversary would

not be able see even the Next Header field since it is a part of

what stays encrypted in an ESP packet.

• Note the role played by the fields Padding and Pad Length. Padding

is meant to take care of the fact that the length of the encrypted

segment would ordinarily be a multiple of the block size used

for encryption with symmetric key cryptography. Let’s say the

block size is 1024 bits (128 bytes), then the entire encrypted por-

tion, meaning the ESP payload, would be a multiple of 128 bytes.

As to how much padding is used is stored in the field Pad Length.

Padding must ensure that the ciphertext ends on a 4-byte bound-

ary.

41

Computer and Network Security by Avi Kak Lecture 20

• Before encryption, an ESP Trailer is appended to the data to

be encrypted. As shown in Figure 9, the payload (meaning the

TCP/UDP message in the transport mode or the encapsulated

IP datagram in the tunnel mode) and the ESP Trailer are both

encrypted, but the eight-byte ESP Header is not.

• Whereas in the Transport Mode, ESP achieves confidentiality by

placing in its Encrypted Payload an encrypted version of the entire

TCP segment, in the Tunnel Mode (see the bottom-most packet

layouts in Figures 10 and 11), the payload contains an encryption

of the entire IP packet.

• In the Tunnel Mode, we still have the same 8-byte ESP header

that you see in Figure 9. But now the Encrypted Payload is ob-

tained by encrypting the entire IP packet along with the padding

and the ESP trailer as before. Obviously, now you would need a

new IP header for the destination of the tunnel transmission.

• The Authentication Data field attached at the very end of

what you see in Figure 9 consists of the MAC value of the ESP

packet. In the context of IPSec, this value is known as the

Integrity Check Value.

• ESP’s authentication scheme can be used either independently of

the AH header or in conjunction with it.

42

Computer and Network Security by Avi Kak Lecture 20

• If the optional ESP authentication is used, the authenticator is

calculated over the entire ESP datagram. This includes the ESP

Header, the payload, and the trailer.

• ESP’s authentication service is similar to what is provided by

AH.

43

Computer and Network Security by Avi Kak Lecture 20

ESP Protocol Header and the ESP Payload

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+ ^

| Security Parameter Index (SPI) | |

+---------------+---------------+---------------+---------------+ ESP header

| Sequence Number | |

+---------------+---------------+---------------+---------------+ V

| | ^

+ + |

| | |

+ Encrypted Payload Data (variable) + |

| | |

+ + encrypted

| | |

+ +---------------+---------------+---------------+ | ^

| | Padding (0-255 bytes) | | |

+---------------+ +---------------+---------------+ | trailer

| | Pad Length | Next Header | | |

+---------------+---------------+---------------+---------------+ V V

| |

+ Authentication Data (optional) +

| |

+---------------+---------------+---------------+---------------+

Figure 9: ESP Protocol Header and the ESP Payload (This

figure is from Lecture 20 of “Computer and Network Security” by Avi Kak)

44

Computer and Network Security by Avi Kak Lecture 20

Figure 10: The relationship between how an IPv4 packet is

laid out without and with the ESP Header, in the transport

mode and in the tunnel mode. (This figure is from http://www.tcpguide.com)

45

Computer and Network Security by Avi Kak Lecture 20

Figure 11: The relationship between how an IPv6 packet is

laid out without and with the ESP Header, in the transport

mode and in the tunnel mode. (This figure is from http://www.tcpguide.com)

46

Computer and Network Security by Avi Kak Lecture 20

20.3.4: IPSec Key Exchange

• Before ESP can be used, it is necessary for the two ends of a

communication link to exchange the secret key that will be used

for encryption. Similarly, AH needs an authentication key. [This

is exactly what is achieved by the Security Association (SA) that was previously

mentioned in Section 20.3.2. With IPSec, in general, the two endpoints must first

establish an SA that declares what authentication and encryption algorithms will be

used between the two endpoints.] The Security Association is established

and the keys are exchanged with the Internet Key Exchange

(IKE) protocol, whose latest version is described in RFC 5996.

This version is also known as IKEv2.

• IKE combines the functions of three other protocols:

– The Internet Security Association and Key Management Pro-

tocol (ISAKMP) that provides a generic framework for ex-

changing encryption keys and security association informa-

tion. ISAKMP supports many different key exchange meth-

ods.

– The Oakley Key-Exchange Protocol. it is based on Diffie-

Hellman algorithm but provides additional security. This is

the default method used by ISAKMP for creating a packet

content encryption key.

47

Computer and Network Security by Avi Kak Lecture 20

– The SKEME protocol for key exchange. ISAKMP uses the

re-keying feature of this protocol.

• Diffie-Hellman’s computationally expensive modular exponentia-

tion makes it vulnerable to a clogging attack in which a com-

munication node spends an inordinate amount of time generating

session keys if too many of them are requested all at once. [An adver-

sary may forge the source address of a legitimate party and send a public Diffie-Hellman key to an unsuspecting

host, which then has to carry out modular exponentiation to compute the secret session key. But repeated

receipts of the same request could clog up the host by causing it to spend all its time in modular exponenti-

ation.] Diffie-Hellman is also vulnerable to the man-in-the-middle

attack, as was mentioned in Lecture 13.

• Oakley thwarts the clogging attack by using a cookie-exchange

between the two parties. A request for a secret session key must

be accompanied with a cookie that is nothing but a pseudoran-

dom number.

• Cookie exchange consists of each side sending a pseudorandom

number to the other that must be acknowledged by the receiving

party to the sending party. If the original requester for a secret

session key was masquerading as someone else, they would never

receive the cookie.

• A cookie is generated by hashing the IP source and destination

48

Computer and Network Security by Avi Kak Lecture 20

addresses, the UDP source and destination ports, and a locally

generated secret value.

• Finally, as stated earlier in Section 20.3, the largest application of

IPSec is in VPN. With regard to how IPSec security associations

are used in VPN, each SA is for just one communication link. In

other words, a typical VPN implementation provides you with a

secure point-to-point tunnel between two specific endpoints in the

VPN overlay network. These days there is considerable interest

in extending the idea to Group VPN in which the same SA is

shared by a large collection of communication endpoints.

• At the moment, there are several companies in the Bay Area

working on implementing Group VPN with the GDOI protocol.

GDOI stands for “Group Domain of Interpretation.” It is speci-

fied by the IETF standard RFC 6407. The GDOI protocol runs

on port 848.

49

Computer and Network Security by Avi Kak Lecture 20

20.4: SSL/TLS FOR TRANSPORT LAYER
SECURITY

• SSL (Secure Socket Layer) was developed originally by Netscape

in 1995 to provide secure and authenticated connections between

browsers and servers. [Until recently, the title of this section was “SSL/TLS for Secure

Web Services.” That made sense because SSL/TLS was designed originally for secure exchange of information

between web servers and browsers. More recently, though, SSL/TLS has become critically important to several

other forms of information exchange in the internet. These include the exchange of information between

routers, between routers and servers, between email exchange servers, between hosts and the internet-accessible

printers, and so on. When the two endpoints involved in all these forms of information exchange have a need to

authenticate each other and to create session keys for content encryption, they are likely to use the SSL/TLS

protocol. Considering this widespread application of the protocol, the present section title is more appropriate.]

• SSL provides transport layer security. Recall from Figure 1

that the transport layer is where the TCP and UDP protocols

reside in the TCP/IP stack. [Since SSL sits immediately above TCP in the protocol

stack, a more precise way of stating this would be that SSL provides Session Layer security in the

OSI model of the internet protocols. See Section 16.2 of Lecture 16 for the OSI model.]

• IETF (Internet Engineering Task Force, the body in charge of

the core internet protocols, including the TCP/IP protocol) made

50

Computer and Network Security by Avi Kak Lecture 20

SSL Version 3 an open standard in 1999 and called it TLS

(Transport Layer Security) Version 1. This first version of the

TLS protocol is described in RFC 2246.

• Now it is common to refer to this protocol by the combined

acronym SSL/TLS or TLS/SSL. Probably the biggest reason for

why the acronym SSL continues to survive is the fact the world’s

most popular software library that implements this protocol is

OpenSSL. I’ll have more to say about that library later in this

section.

• SSL/TLS plays a central role in the security and privacy needed

for web commerce to work. As a case in point, before your lap-

top uploads your credit card information to, say, the Amazon.com

website, your laptop must make certain that the remote host is in-

deed what it claims to be. That’s where a protocol like SSL/TLS

comes in. This protocol is also widely used to protect email

servers (running under SMTP, POP, and IMAP protocols), chat

servers (running under XMPP protocol), remote login security

(through SSH servers), instant messaging (IM), and some virtual

private networks (SSL VPNs).

• Fundamental to the security that is established with the SSL/TLS

protocol are the certificates issued by the Certificate Authorities

(CA). See Section 13.8 of Lecture 13 for how it has been possible

for attackers to forge such certificates. These successful attempts

51

Computer and Network Security by Avi Kak Lecture 20

at creating forged certificates undermine the security that can be

achieved with the SSL protocol.

• SSL/TLS allows for either server-only authentication or server-

client authentication. In server-only authentication, the client

receives the server’s certificate. The client verifies the server’s

certificate and generates a secret key that it then encrypts with

the server’s public key. The client sends the encrypted secret

key to the server; the server decrypts it with its own private key

and subsequently uses the client-generated secret key to encrypt

the messages meant for the client. [For a web browser to be able to engage in

an SSL/TLS supported session with a web server — which is what you would want to see happen if

you are exchanging, say, credit-card information with the web server — the web server must be able

to provide the browser with a valid certificate signed by a recognized Certificate Authority (CA). As

you know from Lecture 13, a certificate is validated by checking it with the public key of the CA,

and the validation of the signing CA done in a similar manner, until you reach the Root Certificate

Authority. The public keys of the root authorities are programmed into your browser. If a certificate

cannot be validated by your browser in this manner — say because the CA that has signed that

certificate is not known to your browser — a warning popup will be generated by the browser. If you

tell your browser that you are willing to accept the certificate nonetheless, the authority that signed

the certificate will be entered into the database of legitimate CAs maintained by your browser. Note

that programming the keys of the root CAs into the browser code makes the root verification free of

potential man-in-the-middle attacks. You can yourself check what root CAs are known to your browser

by descending down the menu made available by the Preferences sub-menu under the Editor button

of your browser menu bar.] Note that when a certificate received from a

server is validated by your browser, most browsers will indicate

the fact that you are now engaged in a secure link with the server

52

Computer and Network Security by Avi Kak Lecture 20

by showing a padlock icon usually at the right in the bottom

portion of the browser frame, or by changing ’http’ to ’https’ in

the URL window, or by changing the color of the URL window

to green.

• In the server-client authentication, in addition to the secret key,

the client also sends to the server its certificate that the server

uses for authenticating the client.

• OpenSSL is an implementation of the SSL and the

TLS protocols. [OpenSSL is used by the HTTPS and SMTPS protocols. When

your browser connects with a web server to which you have to upload your credit card or banking

information, your browser is most likely to be using the HTTPS protocol in its interaction with the

server. SMTPS is for the secure transfer of email between hosts in the internet. Another closely related

protocol that uses the libssl library component of the OpenSSL implementation is OpenSSH which

is an implementation of the SSH protocol. As you surely know already, SSH, which stands for “Secure

Shell,” is used for logging into remote machines and for executing commands at those machines.]

• SSL (and, therefore, TLS) is actually not a single protocol, or

even a single protocol layer. SSL is composed of four protocols

in two layers, as shown in Figure 12. Of the four, the two most

important protocols that are at the heart of SSL are the SSL

Handshake Protocol and the SSL Record Protocol. The

former authenticates the clients and the servers to each other

and the latter then transmits the data confidentially. The other

two protocols shown in the figure, the SSL Cipher Change

53

Computer and Network Security by Avi Kak Lecture 20

Protocol and the SSL Alert Protocol play relatively minor

roles in how SSL works.

54

Computer and Network Security by Avi Kak Lecture 20

SSL Handshake
Protocol

SSL Alert
Protocol

SSL Cipher
Change Protocol

The SSL

Protocol Stack

SSL Record Protocol

TCP

IP

(e.g. HTTP)

Application Layer

Figure 12: SSL (and, therefore, TLS) is composed of four

protocols in two layers as shown in this figure. (This figure is

from Lecture 20 of “Computer and Network Security” by Avi Kak)

55

Computer and Network Security by Avi Kak Lecture 20

20.4.1: The Twin Concepts of “SSL Connection” and

“SSL Session”

• In the SSL family of protocols, a connection is a one-time

transport of information between two nodes in a communica-

tion network.

– A connection constitutes a peer-to-peer relationship be-

tween the two nodes.

– Being one-time, connections are transient.

– Every connection is associated with a session.

• A session is an enduring association between a client and a

server.

– A session is created by the SSL Handshaking Protocol.

– A session can consist of multiple connections.

– A session is characterized by a set of security parameters that

apply to all the connections in the session.

56

Computer and Network Security by Avi Kak Lecture 20

• So whereas a connection takes care of transferring information

securly from one endpoint to the other, the concept of a ses-

sion allows for such data transfers to take place back and forth

without having to renegotiate the security parameters for each

separate connection. Note that this does NOT imply that a ses-

sion can continue indefinitely. A session comes to an end when

the exchange of data between the two endpoints has come to an

end. But what if we wanted to leave a session open in

anticipitation of upcoming data exchanges between

the two endpoints? For that, you need what is known as the

Heartbeat Extension to the SSL/TLS protocol. This exten-

sion, described in RFC 6520, will be presented briefly in Section

20.4.4. As mentioned earlier, the basic TLS protocol is described

in RFC 2246.

• An SSL connection state is characterized by the following

parameters:

– Server Write MAC Secret: The secret key used in cal-

culating the MAC (Message Authentication Code) value for

the data sent by the server.

– Client Write MAC Secret: The secret key used in cal-

culating the MAC value for the data sent by the client.

– Server Write Key: The symmetric-key encryption key for

57

Computer and Network Security by Avi Kak Lecture 20

data encrypted by the server and decrypted by the client.

– Client Write Key: The symmetric-key encryption key for

data encrypted by the client and decrypted by the server.

– Initialization vectors: An initialization vector (IV) for

each key used by a block cipher operating in the CBC mode

is maintained. See Lecture 9 for the CBC block cipher mode. The

vectors are initialized by the SSL Handshake Protocol.

Subsequently, the final ciphertext block from each record is

preserved for use as the IV with the following record. (This

will become clearer after we have discussed the SSL Record

Protocol.)

– Sequence Numbers: Each party maintains separate sequence

numbers for the transmitted and received messages through

each connection. When a party sends or receives a change

cipher spec message, the appropriate sequence number is

set to zero. Sequence numbers may not exceed 264 − 1.

• An SSL session state is characterized by the following param-

eters:

– Session Identifier: An arbitrary byte sequence chosen

by the server to identify an active or resumable session state.

58

Computer and Network Security by Avi Kak Lecture 20

– Peer Certificate: An X509.v3 certificate of the peer. This

element of the state may be null.

– Compression Method: The algorithm used to compress the

data prior to encryption.

– Cipher Spec: Specifics of the bulk data encryption algo-

rithm and the hash algorithm used for MAC (Message Au-

thentication Code) calculations. See Lecture 15 for further information

on MAC and the related acronyms HMAC, SHA, etc.

– Master Secret: A 48-byte secret shared between the client

and the server.

– IsResumable: A flag indicating whether the session is al-

lowed to initiate new connections.

59

Computer and Network Security by Avi Kak Lecture 20

20.4.2: The SSL Record Protocol

• The SSL Record Protocol sits directly above the TCP pro-

tocol.

• This protocol provides two services: Confidentiality andMes-

sage Integrity.

• In a nutshell, this protocol is in charge of taking the actual data

that the server wants to send to a client or that the client wants

to send to a server, fragmenting the data into blocks, apply-

ing authentication and encryption primitives to each block, and

handing the block to TCP for transmission over the network. On

the receive side, the blocks are decrypted, verified for message

integrity, reassembled, and delivered to the higher-level protocol.

• The operation of the SSL Record Protocol consists of the

following five steps:

– Fragmentation: The message (either from server to client,

or from client to server) is fragmented into blocks whose length

does not exceed 214 (16384) bytes.

60

Computer and Network Security by Avi Kak Lecture 20

– Compression: This optional step requires lossless compres-

sion and carries the stipulation that the size of the input block

will not increase by more than 1024 bytes. [As you’d expect, com-

pression will, in most cases, reduce the length of a block produced by the fragmen-

tation step. But for very short blocks, the length may increase.] SSLv3, the

current version of SSL, does not specify compression.

– Adding MAC: This step computes the MAC (Message Au-

thentication Code) for the block. The MAC is appended to

the compressed message block.

– Encryption: The compressed message and the MAC are

encrypted using symmetric-key encryption. The encryption

may be carried out with a block cipher such as 3DES or with

a stream cipher such as RC4-128. A number of choices are

available for the encryption step depending on the level of

security needed.

– Append SSL Record Header: Finally, an SSL header is is

prepended to the encrypted block. The header consists of 8

bits for declaring the content type, 8 bits for declaring the ma-

jor version used for SSL, 8 bits for declaring the minor version

used, and 16 bits for declaring the length of the compressed

plaintext (or the plaintext if no compression was used).

• Each output block produced by the SSL Record Protocol is

61

Computer and Network Security by Avi Kak Lecture 20

referred to as an SSL record. The length of a record is not to

exceed 32, 767 bytes.

62

Computer and Network Security by Avi Kak Lecture 20

20.4.3: The SSL Handshake Protocol

• Before the SSL Record Protocol can do its thing, it must

become aware of what algorithms to use for compression, authen-

tication, and encryption. All of that information is generated by

the SSL Handshake Protocol.

• The SSL Handshake Protocol is also responsible for the

server and the client to authenticate each other.

• This protocol must also come up with the cryptographic keys to

be used for the encryption and the authentication of each SSL

record.

• As shown by Figure 13, the SSL Handshake protocol works

in four phases.

• Phase 1 handshaking, initiated by the client, is used to establish

the security capabilities present at the two ends of a connection.

The client sends to the server a client hello message with

the following parameters:

– Version (the highest SSL version understood by the client)

63

Computer and Network Security by Avi Kak Lecture 20

– Random (a 32-bit timestamp and a 28-byte random field that

together serve as nonces during key exchange to prevent re-

play attacks)

– Session ID (a variable length session identifier);

– Cipher Suite (a list of cryptographic algorithms supported

by the client, in decreasing order of preference); and

– Compression Method (a list of compression methods the

client supports).

• The server responds with its server hello message that has

a similar set of parameters. Server’s response, as you’d expect,

includes the specific algorithms selected by the server from the

client’s lists for compression, authentication, and encryption.

• The Cipher Suite parameter in the server hello message

consists of two elements. The first element declares the key

exchange method selected. (The choice is between RSA, three

different types of Diffie-Hellman, etc.) The second element

of the Cipher Suite parameter is called CipherSpec; it has a

number of fields that indicate the authentication algorithm se-

lected, the length of MAC, the encryption algorithm, etc.

• Phase 2 handshaking is initiated by the server by sending the

server certificate to the client. The server sends to the client the

64

Computer and Network Security by Avi Kak Lecture 20

message labeled certificate containing its one or more certifi-

cates for the validation of the server public key. [From the perspective of a

user who wants his browser to upload his credit-card information to a website like www.amazon.com, this

is probably the most critical part of the the handshake between the browser and the server at Amazon.

Your browser must make sure that the server at the other end is the real thing and not someone else

masquerading as Amazon. The browser establishes its trust in the server by validating the certificate

downloaded from the Amazon server. See Section 13.8 of Lecture 13 regarding the integrity of such

certificates.] This could be followed by a server key exchange

message, and a certificate requestmessage if the server also

wants to validate the client. The server key exchange mes-

sage could, for example, consist of the global Diffie-Hellman val-

ues (a prime number and a primitive root of that number) and the

server’s Diffie-Hellman public key. Phase 2 handshaking ends

when the server sends the client a server hello done message.

• Phase 3 handshaking is initiating by the client by sending to

the server the client’s certificate (but only if the server made a

request for such a certificate in Phase 2). [In most routine applications

of SSL, the client will NOT send a certificate to the server. As mentioned above, if are ordering

stuff from a website like www.amazon.com, your browser has a need to authenticate the server and

therefore needs the server’s certificate. But the server has no real need to authenticate the client.

In a business transaction when you are, say, ordering stuff, the server will authenticate you by, say,

seeking validation for your credit-card number.] This is the message labeled

certificate in Figure 13. Next, the client sends to the server

a mandatory client key exchange message that could, for ex-

ample, consist of a secret session key encrypted with the server’s

public key. This phase ends when the client sends to the server

65

Computer and Network Security by Avi Kak Lecture 20

a certificate verify message to provide a verification of its

certificates if they are signed by a certificate authority.

• Phase 4 handshaking completes the setting up of a secure con-

nection between the client and the server. The client sends to the

server a change cipher specmessage indicating that it is copy-

ing the pending CipherSpec into the current CipherSpec. (See

Phase 1 handshaking for CipherSpec.) Next, the client sends to

the server the finished message. As shown in Figure 13, the

server does the same vis-a-vis the client.

• The change cipher spec message format must correspond to

the Change Cipher Spec Protocol. This protocol says that

the message must consist of a single byte with a value of 1 indi-

cating the change.

• The last of the SSL protocols,Alert Protocol, is used to convey

SSL-related alerts to the peer entity.

66

Computer and Network Security by Avi Kak Lecture 20

Client Server

Phase 2

Phase 1

Phase 3

Phase 4

certificate

server_key_exchange

certificate_request

server_hello_done

certificate

client_key_exchange

certificate_verify

change_cipher_spec

finished

change_cipher_spec

finished

client_hello

server_hello

Figure 13: The four phases of the SSL Handshake protocol

(This figure is from Lecture 20 of “Computer and Network Security” by Avi Kak)

67

Computer and Network Security by Avi Kak Lecture 20

20.4.4: The Heartbeat Extension to the SSL/TLS

Protocol (RFC 6520)

• As mentioned earlier in Section 20.4.1, the SSL/TLS protocol has

the notion of a connection and a session. Whereas a connection

takes care of transferring data from one endpoint to the other,

a session allows for multiple connections so that data can be

exchanged back and forth between two endpoints.

• However, what a session does not allow for is to keep a session

alive in anticipation of upcoming data exchanges between the two

endpoints. That is, as soon as the data exchange between two

endpoints terminates, the session will also terminate.

• Since there is significant overhead associated with the negotia-

tion of the security parameters for establishing a secure session,

some applications may require that once the security parameters

have been agreed upon through the SSL/TLS Handshake proto-

col, they should continue to hold good even through lulls in data

exchange between the two endpoints. So the question is how

does one do that? How does either of the endpoints distinguish

between a temporary lull in the data exchange and the final ter-

mination of a secure connection? These questions are answered

by the SSL/TLS Heartbeat Extension Protocol as described in

RFC 6520.

68

Computer and Network Security by Avi Kak Lecture 20

• The Heartbeat Extension Protocol sits on top of the SSL/TLS

Record Protocol we presented in Section 20.4.2.

• Central to the Heartbeat Extension Protocol are two messages,

HeartbeatRequest and HeartbeatResponse. When one endpoint

sends a HeartbeatRequest message to the other endpoint, the for-

mer expects a HeartbeatResponse from the latter. A Heartbeat

Request message may arrive at any time during the lifetime of a

session.

• When one endpoint sends a HeartbeatRequest message to the

other endpoints, the former also starts what is known as the re-

transmit timer. During the time interval of the retransmit timer,

the sending endpoint will not send another HeartbeatRequestmes-

sage. An SSL/TLS session is considered to have terminated in

the absence of a HeartbeatResponse packet within a time interval.

• The Heartbeat Extension protocol also includes “Heartbeat Hello

Extension” that an endpoint can use to inform the other endpoint

whether its implementation supports Heartbeats. In addition to

declaring its support for Heartbeats, an endpoint can also indicate

whether it is only willing to send HeartbeatRequest messages, or

only willing to accept HeartbeatResponse messages, or both.

• As a protection against a replay attack, a HeartbeatRequest packet

69

Computer and Network Security by Avi Kak Lecture 20

must include a payload that must be returned without change

by the receiver in its HeartbeatResponse packet. The payload is

allowed to be arbitrary (and could potentially be a random se-

quence of bytes). More precisely, the Heartbeat protocol specifies

that a request packet include values for the following two fields:

an arbitrary payload and an integer that specifies the length of

the payload. The protocol also specifies that the payload must be

followed by padding (again an arbitrary sequence of bytes) whose

length must be at least 16 bytes. The padding bytes are ignored

by the receiving endpoint.

• The protocol specification for a Heartbeat message is:

struct {

HeartbeatMessageType type;

uint16 payload_length;

opaque payload[HeartbeatMessage.payload_length];

opaque padding[padding_length];

} HeartbeatMessage;

where the first field, of size one byte, specifies whether it is a

HeartbeatRequest message or a HeartbeatResponse message. In

an implementation, the second field, payload length, would be

represented by two bytes. What that implies is that the maxi-

mum size of the payload is 216. The protocol, however, limits the

payload to 214 bytes. As already mentioned, the padding is at

least 16 bytes in length. [The now well-known Heartbleed bug in OpenSSL, discovered on

April 7, 2014, was caused by the fact that the receiver of a HeartbeatRequest packet did not check that the size

of the payload in the packet actually equaled the value given by the sender to the payload length field in the

request packet. This gave the sender the freedom to use the largest possible value of 16 bytes to payload length

70

Computer and Network Security by Avi Kak Lecture 20

while placing virtually no content in the actual payload field. For preparting the response packet, this would

cause the receiver to allocate memory on the basis of the sender’s value for the payload length field. This

memory would then be filled with 216 bytes of content starting with what was at the memory address of where

the payload received from the sender was stored. Consequently, the actual payload returned by the sender

could potentially include objects in the memory that had nothing to do with the received payload. It would

be possible for these objects to be private keys, passwords, and such.]

71

Computer and Network Security by Avi Kak Lecture 20

20.5: THE Tor PROTOCOL FOR
ANONYMIZED ROUTING

• The Tor protocol for anonymized routing is described in the paper

“Tor: The Second-Generation Onion Router” by Roger Dingle-

dine, Nick Mathewson, and Paul Syverson that was presented at

the 13th Usenix Security Symposium in 2004.

• Tor’s genesis lies in the “onion routing” research that was funded

by several US Government organizations starting in 1995. The

basic motivation for this research was to figure out a way to

set up internet communications so that an adversary snooping

on the enroute packet traffic would not be able to analyze the

packet headers for the purpose of finding out who was talking

to whom. Gleaning information regarding the original source

of the packets and their ultimate destination is referred to as the

traffic analysis attack. [As you already know, even when protocols based

on TLS are used for establishing encrypted communication channels for the transfer of

information between the web browsers and the web servers, the packet headers are

always in clear text. Even a protocol like IPSec, or the higher level protocols like

VPN that are based on IPSec, do NOT safeguard you against traffic analysis attacks

since the packet headers containing the source and the destination IP addresses are

visible to all, especially so to the packet sniffers at the point of origination. And that

72

Computer and Network Security by Avi Kak Lecture 20

is true even when IPSec is used in the Tunnel Mode — a packet sniffer at any point

before the packets get to the encapsulator used for the Tunnel Mode would know both

the source and the destination of the packets.]

• Tor is open-source and available to all from http://www.torproject.

org

• Although originally an acronym standing for “The Onion Router,”

“Tor” is now used as a name unto itself.

• It is believed that the folks who like to use BitTorrent to down-

load media content generate a significant fraction of the Tor traf-

fic. However, Tor is also popular with folks in countries where

the free flow of information is restricted and with folks who want

to “leak” information anonymously. Tor is also popular for some-

thing that the internet has become such a common ground for:

anonymous defamation. [IMPORTANT: If you are using Tor for Bit-

Torrent downloads, you owe it to yourself to read the INRIA report “One Bad Apple

Spoils the Bunch” by Stevens Le Blond, Pere Manils, Abdelberi Chaabane, Mohamed

Ali Kaafar, Claude Castelluccia, Arnaud Legout, and Walid Dabbous. These authors

were able to reveal the source IP addresses of 10,000 users of Tor engaged in BitTorrent

downloads through the data collected from six Tor exit nodes over a period of 23 days.]

• As the reader will see from the description that follows, what

makes the Tor protocol work is a very clever interplay between

the RSA public-key cryptography and the DH (Diffie-Hellman)

73

Computer and Network Security by Avi Kak Lecture 20

public-key cryptography. [The more recent versions of Tor use ECDH (Elliptic Curve

Diffie Hellman) that is presented in Lecture 14.]

• The Tor protocol is based on the twin notions of Onion Proxies

(OP) and Onion Routers (OR). A user’s OP first queries a Tor

directory for the IP addresses of the ORs in the Tor overlay. [The

notion of an overlay network will become clearer in Lecture 25.] The user then

selects a subset of these ORs, commonly just 3, for constructing a

path to the destination resource. [As for the word “onion” in the acronyms

OP and OR, it is meant to be evocative of the layers of encryption placed on the Tor

messages such that, except for the user’s OP, the routing knowledge at any single node

on a path through the Tor overlay is limited to exactly two nodes, the immediately

preceding node on the path and the immediately following node.] Figure 14

illustrates the notion of a user’s OP having selected the subset

{B, C, D} of ORs for a path to the intended destination. [Note

that all the ORs together constitute a fully-connected overlay, meaning that every OR

can talk directly to every other OR if so needed.]

• There are two other notions that are important to understand-

ing Tor: circuits and streams. A user’s OP constructs a path

through the Tor overlay. This path constitutes a circuit. Sub-

sequently, the two parties at the two end of a circuit may use it

for an arbitrary number of TCP streams.

• To see how a user’s OP constructs a path through the Tor overlay

in a way that each node on the path has only local knowledge con-

74

Computer and Network Security by Avi Kak Lecture 20

A

B

C

D

E

G

H

J

User’s OP Web Server

Internet

Tor Overlay

OR

I
OR K

OR

OR
F

OR

OR

OR
OR

OR

Figure 14: B, C, and D are the ORs selected by user A for

a path to the destination E. (This figure is from Lecture 20 of “Computer and

Network Security” by Avi Kak)

75

Computer and Network Security by Avi Kak Lecture 20

cerning the overall path, you need to understand the control and

the data bearing messages that are specified by the Tor protocol.

• In the specification itself, as described in the paper by Dingledine

et al., a message that is exchanged between an OP and an OR or

between two ORs is called a cell. We’ll refer to these messages

by a more descriptive name torpacket.

• There are two types of torpackets: control torpackets and relay

torpackets. Each torpacket consists of 512 bytes. Shown below

is the structure of a control torpacket:

2 1 509 bytes

__

| | | |

| CircID | CMD | DATA |

| | | |

--

0 511

and shown below the structure of a relay torpacket:

2 1 2 6 2 1 498

__

| | | | | | | |

| CircID |Relay| StreamID | Digest | Len | CMD | DATA |

| | | | | | | |

--

0 511

The meanings to be associated with the various fields shown

above should become clear from the discussion that follows re-

76

Computer and Network Security by Avi Kak Lecture 20

garding the different kinds of control and relay torpackets. As

you will see, a control torpacket can be of the following kinds:

create, created, destroy, and padding. Similarly, a relay

torpacket can be of the following kinds: relay extend, relay

extended, relay truncate, etc. [As one might guess, the role of a

control torpacket is to alter the relationship between the sender node and the next node

on the path that receives such a packet. But what about a relay torpacket? As paths

are constructed (and torn down) incrementally by a user’s OP, while the first link of the

path can be constructed directly by the OP using a control torpacket, any extensions to

the path are going to require that the commands for doing so be relayed to the currently

last node on the path. Hence the need for relay torpackets. The discussion that follows

makes this point clearer.]

• Initially, the control and the relay torpackets work together to

create an end-to-end path (meaning a circuit) in the Tor over-

lay in such a way that each interior node on the path has only

local knowledge of the path. While the basic purpose of a relay

torpacket is to carry the data that is exchanged between the two

endpoints, that can only be done after a path is fully constructed.

During the process of path construction, the data carried by relay

torpackets is for the purpose of extending the path beyond the

current termination point. Such relay torpackets generate contol

torpackets at the current terminal node on the path for extending

the path.

• The first field in each control torpacket, circID, is a 2-byte integer

circuit identifier. As you will see, a circuit identifier is unique to

77

Computer and Network Security by Avi Kak Lecture 20

each hop in a circuit — despite the fact that the circuit abstrac-

tion applies to entire end-to-end path.

• The second field, CMD, in a control torpacket is a one-byte

integer representation of a command. A control torpacket may

contain the following different commands:

create : sent by an OP or OR to another OR to extend the path

to the next node

created : when an OR successfully extends the path to the next

node in response to a create command from the previous node

on a path, it sends back a created message to the previous

node.

destroy : sent by a node to another node to teardown the path

padding : used for “keepalive” when a timeout might shut down

a circuit otherwise

• The 1-byte command field (CMD) in the header of a relay tor-

packet can be used to create following kinds of such packets:

relay extend : to extend the circuit by one hop

78

Computer and Network Security by Avi Kak Lecture 20

relay extended : to notify that relay extend was successful

relay truncate : to drop the last the OR on the path

relay truncated : to notify that relay truncate was successful

relay begin : to open a new stream

relay connected : to notify the OP that a stream was success-

fully opened

relay end : to close a previously opened stream

relay data : for transmission of data in stream

relay sendme : used for congestion control

relay teardown : used to close a broken stream

• What follows is a description of how a user’s OP uses the control

torpackets to create an end-to-end circuit incrementally, one hop

at a time, in the Tor overlay. This explanation assumes that

every OR node has a public RSA key that it makes available to the

user’s OP. These public keys will be static. So any communication

sent to an OR that is encrypted with its RSA public key can

only be understood by that OR. The explanation that follows

79

Computer and Network Security by Avi Kak Lecture 20

also includes another type of a public key — the Diffie-Hellman

(DH) public key. Since these keys are not truly public (they are

not even static), we will refer to them as the Y keys in order to

remain consistent with the explanation of DH in Section 13.5 of

Lecture 13. The DH Y keys are created on the fly between the

user’s OP and each of the ORs on the path chosen by the user.

The purpose of the DH Y keys is that when the user’s OP wants

to send a message to a designated OR on the path, it is encrypted

with the session key derived from the OP’s DH Y key and that

OR’s DH Y key. [As a side note, AES is used for the symmetric-key encryption

with such session keys.] So here we go:

– The user’s OP sends a create control torpacket to the first

node in the path chosen by the user. In Figure 14, this would

be a create control torpacket from A to B. A’s OP sets

the CircID field of this torpacket to a new value, circIDAB,

that was not previously used. The DATA field of this packet

contains A’s DH Y key YA→B that is encrypted with B’s RSA

public key.

– B responds back to A with the created control torpacket. The

DATA field of this torpacket contains B’s DH Y key YB→A.

Now both A and B can calculate the secret session key KAB

for their link as described in Section 13.5 of Lecture 13. [Note

that all communications between any pair of nodes in the underlying network takes

place using the TSL/SSL protocol for confidentiality. So the public DH Y key

being sent by B back to A would not be visible to a packet sniffer. The RSA

80

Computer and Network Security by Avi Kak Lecture 20

public/private keys used specifically in the transmission of the control and relay

torpackets are not to be confused with the RSA public/private keys that may be

needed for routine but encrypted communications between any pair of nodes in the

underlying network.]

– At this point we have a circuit with just one link in it. Since

a circuit of any length is a legitimate circuit, the nodes A and

B can now start exchanging relay torpackets, all using the

identifier circIDAB for the circID field. In order to extend

the circult, A sends B a relay torpacket with the relay extend

command. The DATA field of this relay extend torpacket

includes a DH Y key YA→C that is meant specifically for the

new terminal node on the path, that is, for the node C in

Figure 14, and the identity of the new node. In order to make

sure that the key YA→C is not seen by node B, it is encrypted

with C’s RSA public key. As you would expect, the DATA

field in the relay extend torpacket from A to B is encrypted

with the session key KAB.

– When B receives the relay extend torpacket from A, it knows

that it is the current endpoint on the path. So it generates

a control torpacket whose DATA field contains A’s DH Y

key YA→C that was meant specifically for node C and that

was encrypted with C’s RSA public key. This DATA field is

encrypted with C’s RSA public key. The control torpacket

sent by B to C uses a new randomly generated number for

the circID field, circIDBC . This becomes the identifier for the

segment of the circuit between the nodes B and C. There is

81

Computer and Network Security by Avi Kak Lecture 20

no need for A to know this identifier. In other words, only the

node B knows both circIDAB and circIDBC . This fact plays

an important role in ensuring that each node on the path has

only the local knowledge of the path.

– Node C responds back to B with a created control torpacket.

The DATA field of this torpacket contains C’s DH Y key

YC→A meant for A. Node B sends this acknowledgment back

to A using the relay extended torpacket, with its DATA field

containing the key YC→A. Now both A and C can calculate

the secret session key KAC for any messages that A may want

to send to C (through B of course) that B is not allowed to

see.

– The path may be extended in the same manner to the node

D shown in Figure 14 by using a combination of control and

relay torpackets.

• In constructing an end-to-end circuit in the manner described

above, there was never a need for using A’s public RSA key. In

that sense, the user A remains anonymous to all the ORs in the

circuit. By the same token, B will remain anonymous to D and

so on. But all the ORs in a circuit are known to the user A (not

surprising, since A chose them for the circuit).

• After an end-to-end circuit is created in this manner, the user A

82

Computer and Network Security by Avi Kak Lecture 20

can start pushing data into the circuit that is meant for the final

destination E shown in Figure 14. However, before placing this

data on the wire, A sends a relay begin torpacket to B, from

where it is forwarded to the next node on the circuit, and so on,

thus creating an end-to-end stream between A and E. The user

A is allowed to create an arbitrary number of streams and they

can all share the same circuit. While the different TCP streams

will have different streamID values in the relay torpackets that

carry the stream data, they will have the same value for the circID

field (even though the value of this circID field will change from

hop to hop in a circuit).

• Assuming the A → B → C → D path in the Tor overlay as

shown in Figure 14, the stream data that the user A places on

the wire is encrypted with the KAD session key, followed by its

encryption with KAC session key, followed by its encryption by

KAB session key. [Hence the analogy with the onion.] As these stream

data bearing relay data torpackets are received by B from A,

the node B uses the session key KAB to decrypt the top layer

of encryption and forward the stream to the next code, node

C, in the circuit. This process continues until the stream data

reaches the final node D, from where it goes via the normal TCP

transmission to the application running at the destination E.

• Here are the two most important questions that give people much

anxiety when contemplating using Tor for accessing a web re-

source: (1) Can the exit node operator see the source

83

Computer and Network Security by Avi Kak Lecture 20

IP address, meaning the IP address of node A in our

example? And (2) Can the exit node operator see

the data payload of the source packet? The answer

to the second question is easy: If node A is trying to reach an

HTTPS web site, that implies end-to-end encryption of the pay-

load in the packets. In that case, the exit node operator obviously

cannot peer inside the packets that A is sending out.

• But what about the first question raised above? That is, can the

exit node operator see the source IP address? In principle,

that should not be possible. The Tor logic that keeps A’s

IP address shielded from the exit node D is the same as the logic

that keeps B’s IP address shielded from D. The packets that

go out from D to the web server at E should only bear D’s IP

address in the source fields. When D receives replies to those

packets from the web server, it simply forwards them back to C.

• Nonetheless, one should note that Le Blond et al. were able to

successfully reveal the source IP addresses of 10,000 hosts that

used Tor for BitTorrent downloads during a period of 23 days in

2011. (This report was cited at the start of this section.) So the

question is how did Le Blond et al. manage to accomplish their

feat despite the anonymity guarantees built into the Tor protocol.

• The attack by Le Blond et al. took advantage of the peculiarities

of the BitTorrent protocol. Being a P2P protocol (See Lecture

84

Computer and Network Security by Avi Kak Lecture 20

25 for BitTorrent), a BitTorrent client must somehow acquire a

list of the peers that are the keepers of the media content that

the client wishes to download and then, subsequently, join the

peers. BitTorrent gives a client three different ways to discover

the peers: (1) By contacting a centralized tracker that keeps a

list of all the peers currently in possession of the media content

of interest to the client; (2) by contacting a DHT based tracker

in accordance with the explanation in Section 25.10 of Lecture

25; and (3) through the ancillary protocol PEX as also explained

in Section 25.10 of Lecture 25. [When a BitTorrent client contacts a tracker through

Tor, the IP address of the client is protected since what the tracker sees is the IP address of the Tor exit

node.] The Le Blond et al. attack exploited the first two methods

for peer discovery. In both these methods, as things work at the

moment, the peer list of IP addresses that is received by a client

is without encryption. Since this list consists of the other users

of BitTorrent, by simply monitoring an exit node, it is possible

to figure out the identities of the BitTorrent users.

85

Computer and Network Security by Avi Kak Lecture 20

20.5.1: Using Tor in Linux

• The Tor project, https://www.torproject.org, makes is very easy

to use Tor in Linux — at least when it comes to becoming familiar

with it initially. The goal of this section is to help you download

the packages you need for experimenting with Tor.

• Use the apt-get command or your Synaptics Package Manager to

download the “tor” package. This will cause the following three

packages to be downloaded into your Ubuntu machine [’sudo apt-get

install tor’ installs all three packages listed below]:

1. tor

2. tor-geoipdb

3. torsocks

This download action will also install a Tor SOCKS proxy server

in your machine. By default, the port assigned to this proxy

server is 9050. It is this proxy server that will act as OP (Onion

Proxy) in your machine. You interact with the Tor SOCKS proxy

with the shellscript torsocks that is installed at /usr/bin/torsocks.

Take a look at this shell script before proceeding further.

• The database file tor-geoipdb that is mentioned above contains

the mapping from IP address prefixes to different countries.

86

Computer and Network Security by Avi Kak Lecture 20

• Now also download the curl package through your Synaptic Pack-

age Manager. Although curl is NOT needed for Tor to work,

nonetheless it makes it easier to demonstrate the magic of Tor

with regard to anonymized routing. As I will show later you can

also use wget for this purpose if that’s what you’d rather prefer.

[Think of curl as “Connect-with-URL”. Curl lets you use the command line for downloading web pages and

more. More generally, curl uses the URL syntax to transfer data under the following protocols: DICT, FILE,

FTP, FTPS, GOPHER, HTTP, HTTPS, IMAP, IMAPS, LDAP, LDAPS, POP3, POP3S, RTMP, RTSP, SCP,

SFTP, SMTP, SMTPS, TELNET and TFTP. Additionally, curl supports SSL certificates and can upload

data with HTTP POST, HTTP PUT, FTP uploading, HTTP form based upload, etc. Curl also understands

proxies, cookies, user+password authentication etc.] Here is how I can use curl to

download my homepage at Purdue and see the contents of my

page in the terminal window:

curl https://engineering.purdue.edu/kak/

• With all the packages downloaded, you now need to customize

the Tor config file that is located at /etc/tor/torrc. This file is

going to require a password hash for the password you plan to

use in order to limit access to your Tor SOCKS proxy running on

your machine. So before bringing up the config file in your text

editor, do the following:

tor --hash-password your_password

This will return a hash value like

’16:073B3DDAD20FF5CF6024AF0B135E3F4F1A6032A97B2A61B9D92E2EFCF6’.

87

Computer and Network Security by Avi Kak Lecture 20

• You are now ready to make changes to the config file. For this

step, I’d invoke my Emacs editor with the following command

sudo emacs -nw /etc/tor/torrc

For config file customization, I uncommented the following lines:

Log debug file /var/log/tor/debug.log

ControlPort 9051

HashedControlPassword xxxxxxxxxxxxxxxxx

where xxxxxxxxxxxxxxxxx is the password hash you created pre-

viously.

• Now restart tor using the command

sudo /etc/init.d/tor restart

• In order to verify that everything is working fine, execute the

following command

sudo echo -e ’AUTHENTICATE "your_password"\r\nsignal NEWNYM\r\nQUIT’| nc 127.0.0.1 9051

where your password must be withing double quotes as shown. It

is the same password for which you generated a hash previously.

If your install of Tor and its customization worked, you will see

the following output returned by the above command:

250 OK

250 OK

250 closing connection

88

Computer and Network Security by Avi Kak Lecture 20

You can also verify that the tor client is working on your machine

by executing ’ps ax | grep tor’. In the jumble of entries that

this command will elicit, you should be able to see something

like:

/usr/bin/tor --defaults-torrc /usr/share/tor/tor-service-defaults-torrc -f /etc/tor/torrc --RunAsDaemon 0

• If everything so far has checked out okay, you are ready to do

some experiments in anonymized routing with Tor. Let’s first

find what your network-facing IP address is without Tor. You

can obviously figure that out by entering a string like “what is

my ip address” in the search window of a website like http://

whatismyipaddress.com/ . However, in our case, let’s do the same

through the command line by

curl https://api.ipify.org

which in my case returns the address 128.210.106.81, which is

the network address of Purdue PAL3 WiFi network. [The advantage

of using https://api.ipify.org for this experiment is that this website returns just what it believes is your

IP address. If, suppose, you try a command like curl ’http://www.ip2location.com/demo’ you’ll end

up with the IP address you are looking for buried in a web page with advertisements and so on.] As

mentioned earlier in this section, you can also use wget to see the

same output that you get with curl provided you are either in sh

or bash shells by using the command:

wget -O - 2>/dev/null https://api.ipify.org

where ’-O -’ option asks wget to write its output to the terminal

window. Without this option, wget will write its output to a file

89

Computer and Network Security by Avi Kak Lecture 20

of the same name as at the destination. [Note that without the stream redirect

’2>/dev/null’, wget will also show in the terminal window a lot of information related to the connection

made with the destination that you don’t need to see for our current demonstration.]

• Let’s now run the same command with the help of our tor client

through the Tor SOCKS proxy running at port 9050 by:

torsocks curl https://api.ipify.org

we get the following IP address 217.115.10.131. If you enter this

IP address in the search window of, say, http://whatismyipaddress.

com/, you can see that this IP address belongs to a host in Ger-

many.

• The shellscript torsocks in the call shown above causes the tor

client in your Ubuntu machine at /usr/bin/tor to reach out

to a special Tor server known as a Directory Authority for a list

of ORs, now more generally referred to as Tor relays. [In the next

section, I’ll have more to say about how the Tor client /usr/bin/tor running in your machine knows about

all the Directory Authorities.] From the list of the relays returned by the

Directory Authority, your Tor client constructs a circuit, which

typically involves three relays, to the destination IP address. In

the example shown above, the destination is the web server at

ttps://api.ipify.org. [Tor makes a distinction between non-exit relays and the

exit relays. An exit relay is simply a relay that is configured to act as an exit point for

the Tor traffic.] Note that the main job of the Tor client /usr/bin/tor

is to construct a circuit through the list of relays supplied by one

90

Computer and Network Security by Avi Kak Lecture 20

of the Directory Authorities.

• What that implies is that the IP address returned

by https://api.ipify.org must be that of the exit node

in the Tor circuit. So, as far as the https://api.ipify.

org website is concerned, it received the query for the IP address

from the Tor exit node at 217.115.10.131 in Germany (and NOT

from a host in the Purdue domain). This is obviously an

example of anonymized routing in the internet.

• By the way, you can always get your Tor client /usr/bin/tor

to construct a new circuit through the network of Tor relays by

executing

sudo echo -e ’AUTHENTICATE "your_password"\r\nsignal NEWNYM\r\nQUIT’| nc 127.0.0.1 9051

Try it out and then then run the previous experiment again. This

time you’ll get a different exit node for the Tor circuit.

• If after constructing a Tor circuit, I want to download my own

home page through the circuit, I’d call

torsocks curl ’https://engineering.purdue.edu/kak/’

Now Purdue ECN folks will think that my homepage was being

downloaded by a remote site, possibly in some other country.

91

Computer and Network Security by Avi Kak Lecture 20

• Finally, for some additional notes regarding Tor, you can install

the torouter package if you want your install of Tor to act as a

Tor relay. If you want to manually do what the above package

accomplishes for you, see the web page

https://trac.torproject.org/projects/tor/wiki/doc/TorDreamPlug.

• You can configure your own install of Tor to run as a bridge by

making the following entries in the config file /etc/tor/torrc [The

next subsection has a lot more to say about Tor bridges]:

Run Tor as a bridge/relay only, not as a client

SocksPort 0

What port to advertise for incoming Tor connections

ORPort 443

Be a bridge

BridgeRelay 1

Don’t allow any Tor traffic to exit

Exitpolicy reject *:*

• Note that it is possible for a user of the tor client to set preferred

entry and exit nodes as well as specify which specific nodes you do

not want to use by using the EntryNodes, ExitNodes, ExcludeNodes,

and ExcludeExitNodes directives. However, according to the in-

formation provided at the homepage of the Tor project, you are

likely to get the best security that Tor can provide when you

92

Computer and Network Security by Avi Kak Lecture 20

leave the route selection to the tor client. If you must use these

options, you can also specify a two-letter ISO3166 country code

in curly braces or an IP for the option values.

93

Computer and Network Security by Avi Kak Lecture 20

20.5.2: How Tor is Blocked in Some Countries

• The comments made in this section are based on the paper “How

the Great Firewall of China is Blocking Tor” by Philipp Win-

ter and Stefan Lindskog. This paper is from the Proceedings of

the 2nd USENIX Workshop on Free and Open Communications

on the Internet, 2012.

• Another publication relevant to this section is “Design of a

Blocking-Resistant Anonymity System, Tech. Report, The

Tor Project, 2006” by Roger Dingledine and Nick Mathewson.

I believe it is this report that first introduced the notion of a

bridge for Tor, which has turned out to be a very important

concept in making Tor more blocking resistant in countries where

the government prohibits its use.

• Before actually getting to the subject matter of the two reports

cited above, first note that Tor has a few special servers known

as the Directory Authorities – a fact that I first mentioned

in the previous section. All these servers maintain a list of the IP

addresses of all the currently available relays for setting up Tor

circuits. The IP addresses of all these servers are hardcoded into

your Tor client. Recall that Tor is an open-source project and all

its source code is accessible for all to see. For example, the Tor

client source code file made available at the following URL

94

Computer and Network Security by Avi Kak Lecture 20

https://gitweb.torproject.org/tor.git/tree/src/or/config.c

contains the following block that shows the IP addresses of all

the Directory Authorities in Tor:

/** List of default directory authorities */

static const char *default_authorities[] = {

"moria1 orport=9101 "

"v3ident=D586D18309DED4CD6D57C18FDB97EFA96D330566 "

"128.31.0.39:9131 9695 DFC3 5FFE B861 329B 9F1A B04C 4639 7020 CE31",

"tor26 orport=443 "

"v3ident=14C131DFC5C6F93646BE72FA1401C02A8DF2E8B4 "

"ipv6=[2001:858:2:2:aabb:0:563b:1526]:443 "

"86.59.21.38:80 847B 1F85 0344 D787 6491 A548 92F9 0493 4E4E B85D",

"dizum orport=443 "

"v3ident=E8A9C45EDE6D711294FADF8E7951F4DE6CA56B58 "

"194.109.206.212:80 7EA6 EAD6 FD83 083C 538F 4403 8BBF A077 587D D755",

"Bifroest orport=443 bridge "

"37.218.247.217:80 1D8F 3A91 C37C 5D1C 4C19 B1AD 1D0C FBE8 BF72 D8E1",

"gabelmoo orport=443 "

"v3ident=ED03BB616EB2F60BEC80151114BB25CEF515B226 "

"ipv6=[2001:638:a000:4140::ffff:189]:443 "

"131.188.40.189:80 F204 4413 DAC2 E02E 3D6B CF47 35A1 9BCA 1DE9 7281",

"dannenberg orport=443 "

"v3ident=0232AF901C31A04EE9848595AF9BB7620D4C5B2E "

"193.23.244.244:80 7BE6 83E6 5D48 1413 21C5 ED92 F075 C553 64AC 7123",

"maatuska orport=80 "

"v3ident=49015F787433103580E3B66A1707A00E60F2D15B "

"ipv6=[2001:67c:289c::9]:80 "

"171.25.193.9:443 BD6A 8292 55CB 08E6 6FBE 7D37 4836 3586 E46B 3810",

"Faravahar orport=443 "

"v3ident=EFCBE720AB3A82B99F9E953CD5BF50F7EEFC7B97 "

"154.35.175.225:80 CF6D 0AAF B385 BE71 B8E1 11FC 5CFF 4B47 9237 33BC",

"longclaw orport=443 "

"v3ident=23D15D965BC35114467363C165C4F724B64B4F66 "

"ipv6=[2620:13:4000:8000:60:f3ff:fea1:7cff]:443 "

"199.254.238.52:80 74A9 1064 6BCE EFBC D2E8 74FC 1DC9 9743 0F96 8145",

NULL

};

Each Tor non-exit and exit relay sends information about itself

to these Directory Authority servers once every 18 hours. The

Directory Authority servers compile this information and publish

a list of all the current non-exit and exit relays once every hour.

95

Computer and Network Security by Avi Kak Lecture 20

• The following blog

http://raidersec.blogspot.com/2013/09/mapping-tor-relays-and-exit-nodes.html

shows how anyone can query a Directory Authority server and

download a list of all the currently operational exit and non-exit

Tor relays. The blog provides the following Python script

#!/usr/bin/env python

get_tor_relays.py

This script is from the following blog by Jordan:

##

http://raidersec.blogspot.com/2013/09/mapping-tor-relays-and-exit-nodes.html

import requests

import re

import json

relays = {’relays’: []}

We pick a random directory authority, and download the consensus

consensus = requests.get(’http://128.31.0.39:9131/tor/status-vote/current/consensus’).text

Then, we parse out the IP address, nickname, and flags using a regular expression

regex = re.compile(’’’^r\s(.*?)\s(?:.*?\s){4}(.*?)\s.*?\ns\s(.*?)\n’’’, re.MULTILINE)

Find all the matches in the consenses

matches = regex.finditer(consensus)

for record in regex.finditer(consensus):

For each record, create a dictionary object for the relay

relay = {

’nickname’: record.group(1),

’ip’: record.group(2),

’type’: ’exit’ if ’Exit’ in record.group(3) else ’normal’

}

And append it to the master list

relays[’relays’].append(relay)

open(’tor_relays.txt’,’w’).write(json.dumps(relays, indent=4))

When I executed this Python script, it downloaded a list of about

9000 Tor relays spread around the world, with a vast majority of

96

Computer and Network Security by Avi Kak Lecture 20

them in the US and Europe, and, as you’d expect, none in the

countries where Tor is forbidden. The script shown above creates

a JSON file named tor relays.txt that, as shown in the blog,

can subsequently be used to make a geo-plot of the locations of

all the relays.

• Since, as shown above, the list of all the Tor exit and non-exit

relays is publicly available, any authoritarian country can obvi-

ously block all of these IP addresses at all its major network traffic

routing points and thus make Tor unusable in that country. In

addition, since anyone downloading the Tor software can turn

their host into a Tor relay, what if the authoritarian country’s

agents own a small number of relays situated in other countries?

Since under ordinary circumstances relays are chosen randomly

as entry points, that country would be able to track unauthorized

use of Tor by its citizens.

• As to how one can circumvent this censorship of Tor, note that

Tor has the following special property: the above mentioned vul-

nerability to censorship only affects the selection of the entry

point into the Tor network – yes, this does sound paradoxical.

That is, if a Tor client could somehow connect with an entry

point in the Tor network of relays, it would then be able to con-

struct the rest of a Tor circuit that is guaranteed to work because

all the relays in the circuit are going to be in other countries and

thus outside the jurisdiction of the country that is censoring Tor.

97

Computer and Network Security by Avi Kak Lecture 20

• It is the notion of a bridge that makes possible this selection of

an entry point even when the IP addresses of all of the relays as

made available by a Directory Authority have been blacklisted

by a country.

• A Tor bridge is a third type of a relay, the other two being an

exit relay and a non-exit relay.

• The only difference between a bridge relay and the other two types

of relays is that a bridge relay does NOT publish its information

to any Directory Authority. A Tor user may, for example, turn

his/her client into a bridge relay and let his/her friends know

about its IP address through direct communication, such as by

phone, text, or email. Since such a relay would not broadcast

its presence to a Directory Authority, it would remain unblocked

until such time its presence is discovered.

• A bridge relay inside the country where Tor is officially blocked

is probably not of much help to the prospective Tor users inside

the country — since such a bridge would have the same difficulty

reaching a non-exit Tor relay as any other client in the country.

However, a bridge outside the jurisdiction of that country is en-

tirely another matter. Let’s say you want to convert your own

Tor client in the US into a bridge and let some folks in China

know about it. They would be able to use your bridge as a Tor

entry point without raising suspicions of the authorities in China

98

Computer and Network Security by Avi Kak Lecture 20

— at least until the word gets out about your bridge.

• That still leaves the question as to how an average user of Tor

who is looking for an unblocked entry point can find a bridge

relay. See the paper by Dingledine and Mathewson regarding

this issue. As that paper mentions, Tor also uses the notion of

Bridge Authorities that at any given time contain only partial

information on the bridge relays and “families” of such relays

and even that information is subject to randomization. A Tor

client that you download comes with trusted keys for the Bridge

Authorities.

• Regarding Tor access made possible by the bridge relays, note

that, as reported by Winter and Lindskog, the Great Firewall of

China (GFC) now has the ability to block such relays by packet

filtering at the major network traffic routing points in the coun-

try. These packet filters, operating at network speed, use what

is known as Deep Packet Inspection (DPI). [The packet filtering we talked

about in Lecture 18 was all based on the information in the packet headers. Most of the packet filtering rules

presented in that lecture were based on the IP and the TCP headers. That kind of filtering uses what may

be referred to as shallow packet inspection. Deep packet inspection (DPI), on the other hand, also examines

the data payload of a packet.] In the context of Tor, DPI may be based on

the nature of SSL/TLS handshake used by Tor packets, or the

network fingerprint associated with such packets (more on “fin-

gerprints” in Lecture 23). Once a packet is suspected of trying to

make a connection with a bridge relay, the adversary can confirm

whether or not the destination IP address is a bridge relay by

99

Computer and Network Security by Avi Kak Lecture 20

sending it a packet with the purpose of initiating the construc-

tion of a circuit. If the targeted IP address turns out to be a

bridge relay, that address can subsequently be blocked.

100

Computer and Network Security by Avi Kak Lecture 20

20.5.3: Tor vs. VPN

• If you are not too concerned about anonymity (because you do

not expect there to be any consequences if you are found violating

internet access rules) and all you want is to get past the censorship

of an internet service in your country, a VPN service can be a

very attractive — and perhaps faster — alternative to Tor.

• Before talking about VPNs specifically, let’s first revisit Tor from

the standpoint of how each attempt at making Tor more blocking

resistant elicits a new set of techniques to block it.

• As you have surely surmised from the discussion in the previous

subsection, Tor is still a work in progress. While the original Tor

design does give a great deal of route anonymity to its users, that

design with its publicly available list of relays makes it much too

easy for authoritative regimes to block it. Subsequently, Tor was

augmented with the idea of bridge relays to make it more blocking

resistant. However, there are reports that the Chinese authorities

might be succeeding in using DPI based packet filtering to detect

and block traffic to bridge relays. [See the previous subsection for what is meant by

DPI]

• What we are witnessing is that for each advance Tor makes to

101

Computer and Network Security by Avi Kak Lecture 20

make it more difficult for the authorities to block it, the author-

ities figure out new ways to keep Tor from becoming accessible

too widely. This smacks of the old arms race between the world

superpowers.

• The same is true of yet another technology that, although not pro-

viding routing anonymity in the same way that Tor does, can be

used for circumventing censorship and accessing restricted servers

in the internet — Virtual Private Networks (VPN).

• When you connect with a service in the internet through a VPN

server, the service will only see the IP address of the VPN server,

and not your actual IP address. What that means is that if you

are in a country that forbids directly connecting with a service in

the internet, you might be able to access that service through a

VPN server in another country and, in the process, you might be

able to get past the access restriction imposed by your govern-

ment. [To the extent that the destination server will not see your IP address does give you a measure

of anonymity, but not to the same extent you get with Tor. The logs at the VPN proxy server would surely

know your IP address.]

• However, using VPN in the manner described above to circum-

vent censorship often fails because third-party VPN servers you

might use often have fixed IP addresses that can easily be blocked

by the authorities simply by packet filtering at the main routing

points in a country. [CNN carried the following news story on Jan 24, 2017: “China’s Ministry

102

Computer and Network Security by Avi Kak Lecture 20

of Industry and Information Technology has announced a 14-month clean up of internet access services, which

includes a crackdown on virtual private networks, or VPNs. The new regulations require VPN services to

obtain government approval before operating. Using a VPN without permission is also prohibited. VPNs use

encryption to disguise internet traffic, allowing users in China to bypass the Great Firewall to access censored

and restricted websites. The services typically cost around $10 a month.”]

• Perhaps an extended VPN service known as VPN Gate might

be more blocking resistant than the run-of-the-mill VPN servers.

VPN Gate was first proposed in the the paper “VPN Gate: A

Volunteer-Organized Public VPN Relay System with Block-

ing Resistance for Bypassing Government Censorship Fire-

walls” by Daiyuu Nobori and Yasushi Shinjo of the University of

Tsukuba in Japan.

• VPN Gate involves a large number of volunteer-provided VPN

servers and it supports several different VPN protocols, such as

the SSL-VPN (SoftEther VPN) protocol, the L2TP/IPsec proto-

col, the OpenVPN protocol, and the Microsoft SSTP protocol.

• What makes VPN Gate blocking resistant is that a large number

of its VPN servers change their IP addresses everyday. Here is

a statement from the paper by Nobori and Shinjo: “On average,

40% of VPN servers had new IP addresses every day. This chang-

ing of IP addresses contributed to increasing the reachability from

countries subject to censorship.”

103

Computer and Network Security by Avi Kak Lecture 20

• VPN Gate cannot provide route anonymity since all communica-

tions between a VPN client and the final destination server are

relayed by a single VPN server in VPN Gate. So the logs at that

VPN server would know the IP addresses of the client and of

the targeted server. However, the fact that only a single relay is

involved means that your connection with the targeted server is

likely to be faster.

• If you’d like to try out VPN Gate, visit its website at http:

//www.vpngate.net where you will see the IP addresses for all the

participating VPN servers at any given time.

104

Computer and Network Security by Avi Kak Lecture 20

20.6: HOMEWORK PROBLEMS

1. What are the pros and cons of providing security at the different

layers of the TCP/IP protocol stack?

2. How is the sender authentication carried out in PGP?

3. A truly unique feature of PGP is that it is NOT based on the no-

tion of a Certificate Authority (CA) for authenticating the bind-

ing between a given public key and its owner. On the other hand,

PGP uses the idea of “web of trust.” What does it mean and

what are its pros and cons vis-a-vis the more commonly used

CA-based approach?

4. How is IPSec grafted onto IPv4? The “Protocol” field of the IPv4

header plays a critical role in this. How?

5. What is the difference between the server-only authentication and

server-client authentication in SSL/TLS?

105

Computer and Network Security by Avi Kak Lecture 20

6. We say that SSL/TLS is not really a single protocol, but a stack

of protocols. Explain. What are the different protocols in the

SSL/TLS stack?

7. What is the difference between a connection and a session in

SSL/TLS? Can a session include multiple connections? Explain

the notions “connection state” and “session state” in SSL/TLS.

What security feature apply to each?

8. What is the role of the SSL Record Protocol in SSL/TLS?

9. What is the role of the Heartbeat Extension Protocol in SSL/TLS?

10. What lesson is to be learned from the Heartbleed bug with regard

to testing of C-based networking software? [See the note in red at the end

of Section 20.4.4.]

106

