
Lecture 31: Filtering Out Spam

Lecture Notes on “Computer and Network Security”

by Avi Kak (kak@purdue.edu)

April 6, 2017
6:16pm

c©2017 Avinash Kak, Purdue University

Goals:

• Spam and computer security

• How I read my email

• The acronyms MTA, MSA, MDA, MUA, etc.

• Structure of email messages

• How spammers alter email headers

• A very brief introduction to regular expressions

• An overview of procmail based spam filtering

• Writing Procmail recipes

Computer and Network Security by Avi Kak Lecture 31

CONTENTS

Section Title Page

31.1 Spam and Computer Security 3

31.2 How I Read My Email 5

31.3 Structure of an Email Message 13

31.4 How Spammers Alter the Email 20

Headers — A Case Study

31.5 A Very Brief Introduction to 24

Regular Expressions

31.6 Using Procmail for Spam 43
Filtering

31.7 Homework Problems 62

2

Computer and Network Security by Avi Kak Lecture 31

31.1: SPAM AND COMPUTER SECURITY

• Spam is a major source of malware that infects individual com-

puters and, sometimes, entire networks.

• Much spam tries to lure you into clicking on URLs of websites

that serve as hosts for viruses, worms, and trojans. Consequences

of inadvertently downloading such software into your computer

can be deadly — as previously described in Lecture 30.

• In addition to the dangerous spam that may try to steal informa-

tion from your computer or turn it into a spambot for spreading

even more spam, there is also another kind of spam these days:

This consists of email generated by legitimate businesses and or-

ganizations that you either have no interest in reading or have

no time for following up on. [For example, half of my spam consists of unsolicited

messages sent to me by marketing companies, public relations houses, government agencies, university

departments advertising their activities, and students in various parts of the world seeking to come to

Purdue. Even just opening all of these messages would consume a significant portion of each day.]

• I am not much of a believer in spam filters that carry out a

statistical analysis of email to decide whether or not it is spam.

3

Computer and Network Security by Avi Kak Lecture 31

These filters are also sometimes called Bayesian filters for blocking

spam. A statistical filter with sufficiently low “falses” to suit

my tastes would require too many samples of a certain type of

spam before blocking such messages in the future. On the other

hand, with a regular-expression based filter, once you see a spam

message that has leaked through, it is not that difficult to figure

out variations on that message that the spammers may use in the

future. In many cases, you can design a short regular expression

to block the email you just saw and all its variations that the

spammer may use in the future in just one single step.

• Based on my personal experience, and in line with my above

stated observation, you can design nearly 100% effective spam

filters with tools that carry out regular-expression based process-

ing of email messages. [A spam filter is close to 100% effective

if it traps close to 100% of what YOU consider to be spam and

lets through close to 100% of the messages that YOU consider

legitimate.]

• Spam filter that are close to 100% effective for your specific needs

in the sense defined above can only be built slowly. My spam filter

has evolved over several years. It needs to be tweaked up every

once in a while as spammers discover new ways of delivering their

unwelcome goods.

4

Computer and Network Security by Avi Kak Lecture 31

31.2: HOW I READ MY EMAIL

• These days most folks read their email through web based mail

clients. If you are at Purdue, in all likelihood, you log into Pur-

due’s webmail service to check your email. Or, perhaps, you have

it forwarded to your email account at a third party service such

as that provided by gmail or yahoomail. This way of reading

email is obviously convenient for, say, English ma-

jors. However, if you happen to be a CS or a CompE

major, that is not the way to receive and send your

email.

• The web based email tools can only filter out standard spam —

this is, the usual spam about fake drugs, about how you can en-

large certain parts of your body, and things of that sort. But

nowadays there is another kind of spam that is just as much of a

nuisance. As mentioned in the previous section, you have gener-

ally well-meaning folks (and organizations) who want to keep you

informed of all the great stuff they are engaged in and why you

should check out their latest doings. These include local busi-

nesses, marketing companies, PR folks, etc. When you write

your own spam filter, you can deal with such email in

a much more selective manner than would otherwise

5

Computer and Network Security by Avi Kak Lecture 31

be the case.

• Writing your own spam filter is also a great way to become

more proficient with regular-expression based processing of tex-

tual data.

• Shown in Figure 1 is how I receive my email.

• To understand the flow of email in Figure 1, you need to become

familiar with the acronyms MTA, MDA, MUA, etc.

• An MTA (Mail Transfer Agent) is used to transfer email to an-

other MTA in the internet. [It is also called a “Mail Transport Agent,” or a “Mail

Server.” In the context of DNS, it is referred to as a “Mail Exchange Server,” as you saw in Lecture 17.

Although the main function of an MTA is to exchange email with another MTA, they can also be programmed

to receive email directly from MUAs and to send messages directly to the same. More generally, the client

email first goes to an MSA (Mail Submission Agent) and the MSA forwards it to the MTA. By the same token,

when an MTA receives email for clients in its own domain, it generally forwards the email to an MDA (Mail

Delivery Agent) and it is the MDA’s job to send that email to the clients. However, an MTA can also be

programmed to send email directly to the clients.] Let’s say someone in some corner

of the world wants to send an email to kak@purdue.edu. As

you should know from Lecture 17, the name resolver associated

with the email client being used by the sender will ask the DNS

servers for the IP address of the host that is designated to be the

mail exchange server for the purdue.edu domain. Subsequently,

the MTA program running on this host at Purdue will receive

6

Computer and Network Security by Avi Kak Lecture 31

Internet

Purdue Mail Transport Agent (MTA)
(sendmail)

fetchmail makes the email available on port 25 of the laptop where
it is picked up by the sendmail program running on the laptop

sendmail on the laptop deposits the email in /var/mail/kak of the laptop

The email client on the laptop, Thunderbird, picks up the email from the mailbox
/var/mail/kak in the laptop and makes it available to me through a visual interface

My email on RVL4 is made available by the IMAP server
for pickup by fetchmail running on my Ubuntu laptop

The procmail Program on the Engineering Computer Network

The procmail looks at the recipes in the .procmailrc file in the
’kak’ account on my maildrop machine RVL4.ecn.purdue.edu
before depositing the email in RVL4: /var/mail/kak

M
y Spam

 F
ilter

Figure 1: This figure shows how I receive my email

in my Linux laptop. The fetchmail program in my

laptop picks up my email at the maildrop machine

RVL4.ecn.purdue.edu at Purdue. (This figure is from Lecture 31 of “Lec-

ture Notes on Computer and Network Security” by Avi Kak)

7

Computer and Network Security by Avi Kak Lecture 31

the email sent to me. The most popular program that is used

as an MTA is known as Sendmail. Other MTAs include MMDF,

Postfix, Smail, Qmail, Zmailer, Exchange, etc.

• An MTA may use either a Mail Delivery Agent (MDA) to deliver

a received email to the recipient’s mailbox, or deliver it directly to

the recipient’s mailbox. [Note that MTA’s main job is server-to-server transmission of email.

On the other hand, MDA’s job — when MDA is used — is to apply any applicable filters to the email before

sending the messages to the clients in the local network.] On Linux/Unix platforms,

the most commonly used MDA is Procmail. Another MDA one

hears about is called Deliver.

• In typical Linux/Unix environments, the mailbox assigned to a

user is the file /var/mail/user account that, although NOT

in the home directory of the user, can only be read by the user

who owns that mailbox.

• On Linux/Unix machines, the filters used by MDA take the form

of recipes that are placed in files named .procmailrc. These

files may reside either at the system level, or at the user level, or

both.

• After the email is deposited in a user mailbox as mentioned above,

it may be read by the user with the help of an MUA (Mail User

Agent). Widely used examples of MUAs are Thunderbird, MH,

Pine, Elm, Mutt, Outlook, Eudora, Evolution, etc. Informally

8

Computer and Network Security by Avi Kak Lecture 31

speaking, an MUA is also frequently referred to as an an email

client.

• Getting back to how I read my email as shown in Figure 1, I

usually execute the two commands

ssh kak@rvl4.ecn.purdue.edu

tail -f Mail/logfile

in one of the terminal windows of whatever computer I happen

to be working on. As shown in Figure 1, the local email exchange

server sends my email to the machine rvl4.ecn.purdue.edu. The

‘tail -f’ command shows me on a running basis the latest entries

created by Procmail in the logfile ‘Mail/logfile’. That way, when

I so wish, I can see at a glance the decisions being made by my

spam filter with regard to the incoming email. The logfile

that you see mentioned in the second command shown above is

created by my Procmail spam filter.

• The rest of this section is for folks who wish to use the Thun-

derbird MUA on their Ubuntu laptop (or other mobile devices

based on Ubuntu) to pick up email from a designated maildrop

machine (and to also deliver the outgoing email emanating from

your laptop to the SMTP server running on the maildrop ma-

chine or elsewhere in the internet). The material that follows is

particularly applicable if you want your spam filter to do its job

in the maildrop machine itself. That is, you want the incoming

email to be filtered before it is made available for pickup at the

9

Computer and Network Security by Avi Kak Lecture 31

maildrop machine by an IMAP server. So here we go:

– My maildrop machine happens to be RVL4.ecn.purdue.edu and I
want the spam filter to be applied at the maildrop machine before

it is made available by an IMAP server for pickup by my laptop (or
other mobile devices).

– Ordinarily (this is the mode used by a vast majority of folks), when
an MUA client (like the Thunderbird client) in your laptop picks up

email from a maildrop machine, it interacts directly with the IMAP
server on the maildrop machine. That creates a very tight coupling
between the email client running in your laptop and the mailbox file

/var/mail/user name in the maildrop machine where all your your
email is deposited. As an example of this coupling, when you delete

an email in the Thunderbird email client, you can opt for it to also
be deleted from the list of messages stored in /var/mail/user name

on the maildrop machine. [As previously mentioned, a file such as /var/mail/user name

is referred to as the mailbox.]

– For reasons having to do with the management of a very large amount
of email (including spam) that I receive every day, I did not want the
above mentioned coupling between my maildrop machine (RVL4.ecn.

purdue.edu) and the Thunderbird email client on my laptop. What
that implied was that I needed to run Thunderbird off the laptops’s

/var/mail/user name as opposed to RVL4’s /var/mail/user name.

– This required running the fetchmail and sendmail programs on the

Ubuntu laptop. It is the job of fetchmail to serve as a client to the
IMAP server on RVL4 — it picks up the new email once every minute

from /var/mail/user name on RVL4 and offers it on port 25 of the
Ubuntu laptop. Subsequently, sendmail, which is constantly looking

10

Computer and Network Security by Avi Kak Lecture 31

for input on port 25, picks up the messages offered by fetchmail and
deposits them in the laptops’s mailbox /var/mail/usr name.

– I did not have to change anything in the sendmail’s very large config

files for the above mentioned behavior by sendmail.

– The remaining issue is to get Thunderbird (TB) to work off the mail-

box /var/mail/user name in the laptop itself. [To get the TB email
client to work directly off an IMAP server on a remote maildrop ma-

chine is easy. All you have to do is to enter the IMAP server infor-
mation and your email address in the remote machine directly in the
initial welcome screen you see when you bring up TB in the laptop.

But, for reasons already explained, that’s not what I wanted.] To
get TB to work with the local (meaning, on the laptop itself) mailbox

/var/mail/user name, you have to work off the Edit menubutton at
the top of the TB GUI and select “Account Settings...” from its drop-

down menu. After you click on this selection, you click on “Add Other
Account”. That brings up a popup, in which you click on “Choose
Unix Movemail” and hit “next” and so on. This process will also

prompt you for the SMTP server for the outgoing email, which in my
case happened to be smtp.ecn.purdue.edu. [It is choosing “Unix Move-

mail” that causes the TB client to work off the mailbox /var/mail/user name on

the laptop itself.]

– You might ask: What is Movemail? [Before I realized what Movemail was,

the TB would display in the GUI my kak@purdue.edu account that I had created

as described above, but without the Inbox, Sent, Trash, etc., folders.] As
it turns out, for the TB GUI to make available the Inbox, Sent,

Trash, etc., folders, you need to have previously installed the Gnu
email utilities that are included in the mailutils package that you

can install through the Synaptic Package Manager. Movemail is one
of the utilities in this package. The purpose of Movemail — more

11

Computer and Network Security by Avi Kak Lecture 31

accurately called movemail — is to move messages across mailboxes.
[By the way, the others utilities in the Gnu mailutils package are: dotlock to

create lock spool files; frm to display “From:” header lines; from to display “From:”

and “Subject” header lines; maildag the mail delivery agent; mail the standard

/bin/mail interface for a mail sender and reader; messages for counting the number

of messages in a mailbox; movemail to move messages across mailboxes; readmsg

to extract selected messages from a mailbox; and sieve a mail filtering protocol.]

– One more thing: You will also be asked for the SSL/TLS based au-

thorizations for SMTP in a screen that you’ll see after you provide
information about the SMTP server.

12

Computer and Network Security by Avi Kak Lecture 31

31.3: STRUCTURE OF AN EMAIL
MESSAGE

• An email consists of three parts:

body: This is the part that carries the message of the email. It

may also contain multimedia objects.

header: Contains the “From:”, “To:”, “Cc:”, etc., information.

It does NOT usually tell you the route the email took from the

sender to the recipient. The header of an email message ends

at the first empty line encountered from the top. What comes

after that empty line is the body of the email. [It is important to

know where exactly the header of an email ends and where the body begins. That is because spam filter

rules can be based on just the header, or just the body, or both. For a spam filter rule meant for just the

header, the pattern matching operations of the rule are applied to just the header portion of the emails.]

envelope: This part is usually suppressed by an MUA. [Some

MUAs provide you with a menu option to see all the headers, including the routing head-

ers.] It consists of the “conversation” that takes place be-

tween a sender MTA and a receiver MTA involving recipient

authentication, etc.

13

Computer and Network Security by Avi Kak Lecture 31

• Here is a printout of an email as displayed on a terminal by an

MUA:

Date: Sat, 14 Feb 2004 19:06:56 CST

To: kak@ecn.purdue.edu

From: c-donnelly@northwestern.edu

Subject: Re: hi...

Return-Path: c-donnelly@northwestern.edu

Delivery-Date: Sat Feb 14 20:07:06 2004

Content-Disposition: inline

X-Originating-Ip: 165.124.28.55

Priority: 3 (Normal)

X-Webmail-User: cdo388@localhost

X-Priority: 3 (Normal)

MIME-Version: 1.0

X-Http_host: lulu.it.northwestern.edu

Reply-To: c-donnelly@northwestern.edu

X-Mailer: EMUmail 5.2.7 (UA Mozilla/4.0 (compatible; MSIE 6.0; Windows NT

5.1; .NET CLR 1.1.4322))

X-Virus-Scanned-ECN: by AMaVIS version 11 (perl 5.8) (http://amavis.org/)

.............. Body of email

• For the email shown above, here is a printout of what was actually

sent by the MTA to the MDA:

From c-donnelly@northwestern.edu Sat Feb 14 20:07:06 2004

Received: from fairway.ecn.purdue.edu (fairway.ecn.purdue.edu [128.46.125.96])

by rvl4.ecn.purdue.edu (8.12.10/8.12.10) with ESMTP id i1F1758Y006551

(version=TLSv1/SSLv3 cipher=EDH-RSA-DES-CBC3-SHA bits=168 verify=NOT)

for <kak@rvl4.ecn.purdue.edu>; Sat, 14 Feb 2004 20:07:06 -0500 (EST)

Received: from lulu.it.northwestern.edu (lulu.it.northwestern.edu [129.105.16.54])

by fairway.ecn.purdue.edu (8.12.10/8.12.10) with ESMTP id i1F172gN003361

for <kak@ecn.purdue.edu>; Sat, 14 Feb 2004 20:07:02 -0500 (EST)

Received: (from mailnull@localhost)

by lulu.it.northwestern.edu (8.12.10/8.12.10) id i1F1718S028285

for <kak@ecn.purdue.edu>; Sat, 14 Feb 2004 19:07:01 -0600 (CST)

14

Computer and Network Security by Avi Kak Lecture 31

Message-Id: <200402150107.i1F1718S028285@lulu.it.northwestern.edu>

Received: from lulu.it.northwestern.edu (localhost [127.0.0.1]) by lulu.it.northwester

id xma028114; Sat, 14 Feb 04 19:06:56 -0600

Content-Type: text/plain

Content-Disposition: inline

Content-Transfer-Encoding: binary

X-Originating-Ip: 165.124.28.55

Priority: 3 (Normal)

X-Webmail-User: cdo388@localhost

To: kak@ecn.purdue.edu

X-Priority: 3 (Normal)

MIME-Version: 1.0

X-Http_host: lulu.it.northwestern.edu

From: c-donnelly@northwestern.edu

Subject: Re: hi...

Date: Sat, 14 Feb 2004 19:06:56 -0600

Reply-To: c-donnelly@northwestern.edu

X-Mailer: EMUmail 5.2.7 (UA Mozilla/4.0 (compatible; MSIE 6.0; Windows NT

5.1; .NET CLR 1.1.4322))

X-Virus-Scanned-ECN: by AMaVIS version 11 (perl 5.8) (http://amavis.org/)

................. Body of email

• In what was sent by the MTA to the MDA, the following is

abstracted from the conversation that took place between the

different MTA’s as the email was traveling through the internet:

Received: from fairway.ecn.purdue.edu (fairway.ecn.purdue.edu [128.46.125.96])

by rvl4.ecn.purdue.edu (8.12.10/8.12.10) with ESMTP id i1F1758Y006551

(version=TLSv1/SSLv3 cipher=EDH-RSA-DES-CBC3-SHA bits=168 verify=NOT)

for <kak@rvl4.ecn.purdue.edu>; Sat, 14 Feb 2004 20:07:06 -0500 (EST)

Received: from lulu.it.northwestern.edu (lulu.it.northwestern.edu [129.105.16.54])

by fairway.ecn.purdue.edu (8.12.10/8.12.10) with ESMTP id i1F172gN003361

for <kak@ecn.purdue.edu>; Sat, 14 Feb 2004 20:07:02 -0500 (EST)

Received: (from mailnull@localhost)

by lulu.it.northwestern.edu (8.12.10/8.12.10) id i1F1718S028285

for <kak@ecn.purdue.edu>; Sat, 14 Feb 2004 19:07:01 -0600 (CST)

15

Computer and Network Security by Avi Kak Lecture 31

• Also note the first line of what MTA sends MDA:

From c-donnelly@northwestern.edu Sat Feb 14 20:07:06 2004

For an email to be recognized as legal by an MTA, its very first

line must begin with “From”. There can be no punctuation marks

attached to this word. In other words, it can only be followed by

a space.

• Also note that the name of the final recipient is present in the con-

versation that takes place between the MTA’s at the Northwest-

ern end and at Purdue’s fairway.ecn.purdue.edu machine.

The name of the recipient is also present in the conversation that

takes place between Purdue’s fairway machine and the local

RVL4 machine.

• It is the recipient’s name in the envelope part of an email that

determines where an email ends up and NOT what shows up in

the To: header in the header part of an email.

• So you can see why you can get email even if your name shows

up nowhere in any of the headers you can see on your computer.

Here is an example of one such spam email I received:

From leemenjung@kjbd.net Thu Feb 19 10:19:02 2004

Received: from drydock.ecn.purdue.edu (drydock.ecn.purdue.edu [128.46.112.249])

by rvl4.ecn.purdue.edu (8.12.10/8.12.10) with ESMTP id i1JFJ1j4025944

16

Computer and Network Security by Avi Kak Lecture 31

(version=TLSv1/SSLv3 cipher=EDH-RSA-DES-CBC3-SHA bits=168 verify=NOT)

for <kak@rvl4.ecn.purdue.edu>; Thu, 19 Feb 2004 10:19:02 -0500 (EST)

Received: from 128.46.112.249 ([61.38.114.147])

by drydock.ecn.purdue.edu (8.12.10/8.12.10) with SMTP id i1JFImFj028889;

Thu, 19 Feb 2004 10:18:49 -0500 (EST)

Received: from [27.22.18.140] by 128.46.112.249 with ESMTP id <229528-89751>; Thu, 19 Feb 2004 17:13

Message-ID: <joh3yyx-$317$2c-v--21n@hhz6.9t>

From: "leemenjung" <leemenjung@kjbd.net>

Reply-To: "leemenjung" <leemenjung@kjbd.net>

To: jiy@ecn.purdue.edu

Subject: ~^^ u gobkhgtigshjfn ljf

Date: Thu, 19 Feb 04 17:13:48 GMT

X-Mailer: Microsoft Outlook Express 5.00.2919.6700

MIME-Version: 1.0

Content-Type: multipart/alternative;

boundary="0.D6.._EF0B97BFE__AA._6_"

X-Priority: 3

X-MSMail-Priority: Normal

X-Virus-Scanned-ECN: by AMaVIS version 11 (perl 5.8) (http://amavis.org/)

--0.D6.._EF0B97BFE__AA._6_

Content-Type: text/plain;

Content-Transfer-Encoding: quoted-printable

<html>

<TABLE cellpadding=3D’0’ cellspacing=3D’0’ border=3D0 align=3D’center’>=

<TR>

<TD height=3D’50’ bgcolor=3D’#FFFFFF’ align=3D’center’ valign=3D=

’middle’>

<a href=3D"http://nipponbog.com/partner/recom.asp?recome_id=3Dstart"=

target=3D"_blank"><img src=3D"http://nipponbog.com/partner/email/email2=

/1.jpg" border=3D"0">

</TD>

</TR>

</TABLE>

</html>

oada slh vwudbxr sodb frjmh

bs arf

ohf

vjkutctg

yzmyzfuwjadg

ua

uq ffwd

uh

--0.D6.._EF0B97BFE__AA._6_--

17

Computer and Network Security by Avi Kak Lecture 31

In the spam mail shown above, my name shows up only in the

envelope part of the headers.

• Going back to the first c-donnelly email I showed you in this

section, if I examined what the MUA actually stored for that

message (as opposed to what it displayed in the GUI), it would

be something like

Return-Path: c-donnelly@northwestern.edu

Delivery-Date: Sat Feb 14 20:07:06 2004

Received: from fairway.ecn.purdue.edu (fairway.ecn.purdue.edu [128.46.125.96])

by rvl4.ecn.purdue.edu (8.12.10/8.12.10) with ESMTP id i1F1758Y006551

(version=TLSv1/SSLv3 cipher=EDH-RSA-DES-CBC3-SHA bits=168 verify=NOT)

for <kak@rvl4.ecn.purdue.edu>; Sat, 14 Feb 2004 20:07:06 -0500 (EST)

Received: from lulu.it.northwestern.edu (lulu.it.northwestern.edu [129.105.16.54])

by fairway.ecn.purdue.edu (8.12.10/8.12.10) with ESMTP id i1F172gN003361

for <kak@ecn.purdue.edu>; Sat, 14 Feb 2004 20:07:02 -0500 (EST)

Received: (from mailnull@localhost)

by lulu.it.northwestern.edu (8.12.10/8.12.10) id i1F1718S028285

for <kak@ecn.purdue.edu>; Sat, 14 Feb 2004 19:07:01 -0600 (CST)

Message-Id: <200402150107.i1F1718S028285@lulu.it.northwestern.edu>

Received: from lulu.it.northwestern.edu (localhost [127.0.0.1]) by lulu.it.northwester

id xma028114; Sat, 14 Feb 04 19:06:56 -0600

Content-Type: text/plain

Content-Disposition: inline

Content-Transfer-Encoding: binary

X-Originating-Ip: 165.124.28.55

Priority: 3 (Normal)

X-Webmail-User: cdo388@localhost

To: kak@ecn.purdue.edu

X-Priority: 3 (Normal)

MIME-Version: 1.0

X-Http_host: lulu.it.northwestern.edu

From: c-donnelly@northwestern.edu

Subject: Re: hi...

Date: Sat, 14 Feb 2004 19:06:56 -0600

Reply-To: c-donnelly@northwestern.edu

X-Mailer: EMUmail 5.2.7 (UA Mozilla/4.0 (compatible; MSIE 6.0; Windows NT

18

Computer and Network Security by Avi Kak Lecture 31

5.1; .NET CLR 1.1.4322))

X-Virus-Scanned-ECN: by AMaVIS version 11 (perl 5.8) (http://amavis.org/)

................. Body of email

• With regard to the printout shown above, recall I said earlier that

for an email to be legal, its first line must start with “From”,

which in turn must be followed by a blank space. The printout

is meant to convey to you the fact that an MUA may modify the

very first “From” line into two separate lines, one for “Return-

Path” and the other for “Delivery-Date”.

• So what an MTA sends an MDA may not be the same as what

the MUA stores for the email and that, in turn, may not be the

same as what the MUA actually shows you on the screen.

19

Computer and Network Security by Avi Kak Lecture 31

31.4: HOW SPAMMERS ALTER THE
EMAIL HEADERS — A CASE STUDY

• I will now present an instance of a spam email in which the main

From header at the top of the email record was faked. Note

that the receiving MDA has converted the keyword From into

the Return-Path header label.

• Shown below is an email that was received by my Purdue account

on April 4, 2010:

Return-Path: cossacksrg1@ralvm29.vnet.ibm.com

Delivery-Date: Sun Apr 4 12:36:10 2010

Received: from mx03.ecn.purdue.edu (mx03.ecn.purdue.edu [128.46.105.218])

by rvl4.ecn.purdue.edu (8.14.4/8.14.4) with ESMTP id o34GaAhE013679

(version=TLSv1/SSLv3 cipher=DHE-RSA-AES256-SHA bits=256 verify=NOT)

for <kak@rvl4.ecn.purdue.edu>; Sun, 4 Apr 2010 12:36:10 -0400 (EDT)

Received: from 114-24-88-69.dynamic.hinet.net (114-24-88-69.dynamic.hinet.net [114.24.88.69])

by mx03.ecn.purdue.edu (8.14.4/8.14.4) with ESMTP id o34GZ2k8020095;

Sun, 4 Apr 2010 12:35:23 -0400

Received: from 114.24.88.69 by e33.co.us.ibm.com; Mon, 5 Apr 2010 00:34:59 +0800

Message-ID: <000d01cad414$c4404060$6400a8c0@cossacksrg1>

From: "Minerva Souza" <cossacksrg1@ralvm29.vnet.ibm.com>

To: <eatabay@ecn.purdue.edu>

Subject: ecn.purdue.edu account notification

Date: Mon, 5 Apr 2010 00:34:59 +0800

MIME-Version: 1.0

Content-Type: multipart/mixed;

boundary="----=_NextPart_000_0006_01CAD414.C4404060"

X-Priority: 3

X-MSMail-Priority: Normal

X-Mailer: Microsoft Outlook Express 6.00.2900.2180

X-MimeOLE: Produced By Microsoft MimeOLE V6.00.2900.2180

20

Computer and Network Security by Avi Kak Lecture 31

X-ECN-MailServer-VirusScanned: by amavisd-new

X-ECN-MailServer-Origination: 114-24-88-69.dynamic.hinet.net [114.24.88.69]

X-ECN-MailServer-SpamScanAdvice: DoScan

Status: RO

X-Status:

X-Keywords:

X-UID: 7

This is a multi-part message in MIME format.

------=_NextPart_000_0006_01CAD414.C4404060

Content-Type: text/plain;

format=flowed;

charset="iso-8859-1";

reply-type=original

Content-Transfer-Encoding: 7bit

Dear Customer,

This e-mail was send by ecn.purdue.edu to notify you that we have temporanly prevented access to your account.

We have reasons to beleive that your account may have been accessed by someone else. Please run attached file a

(C) ecn.purdue.edu

------=_NextPart_000_0006_01CAD414.C4404060

Content-Type: application/zip;

name="Instructions.zip"

Content-Transfer-Encoding: base64

Content-Disposition: attachment;

filename="Instructions.zip"

UEsDBBQAAgAIAFkQhDwZeJaCR18AADVzAAAQAAAASW5zdHJ1Y3Rpb25zLmV4Ze38BVQfTbcnjP5x

CO4ElwDBHUJwtxDc3d3d3d3dXQNBA8EhENzd3R0S/DZPnvOe98icO3dm7pr5vjW1dknvqv5tqapd

3f1nIa0eC4IAgUCQQH55AYGaQX8SP+j/e3odi0TUggSqhxshaQb7NEKiaGrmQGxrb2Nir2dFbKBn

bW3jSKxvRGzvZE1sZk0sLKNAbGVjaESPiPjmHeh/LsmKgECfwKBAyFiNUv/CWwchg8GDQSH8ZRDK

30yIvzP031aBgf7KkH93/0sNcvx7HJDA/ypR/sZA+QcWyj/JJwbwuF8bsCCQLiLof10CcIn/i256

RyPXV1WNwf/JNoh/Owa4X5fe3lDPUQ8Euv0b8y+7of/tOMAb/PR/hv2xBebvcTD/YVwnvb2DvQHo

.....

.....

.....

------=_NextPart_000_0006_01CAD414.C4404060--

• If you examine the headers, you will see that the email was

generated by 114.24.88.69. If you enter this address in http:

//www.ip2location.com window, you will see that this address belongs

to “Chunghwa Telecom Data Communication Business Group”

21

Computer and Network Security by Avi Kak Lecture 31

in Taipei, Taiwan. Obviously, it is not easy for me to tell whether

this domain is hosting an anonymizing email server that is acting

as a mail forwarder for third-party folks, or being more directly

complicit in sending out the spam.

• You will also notice in the email message shown above that it con-

tains a fake “Received: from” line that seems to indicate that

the email was received by a server named e33.co.us.ibm.com

from the address 114.24.88.69 in Taiwan. This line is fake be-

cause higher up in the email header you can see that the mail

exchange server for the ecn.purdue.edu domain received the

email directly from 114.24.88.69.

• My email log file indicated that this email slipped through my

powerful spam filter, meaning that it fell off the bottom of my

.procmailrc file. That is because the main text portion of

the message in this email does not contain anything offensive. [I

could easily include another recipe in my spam filter that would delete a message that contained a zip

attachment consisting of just ‘.exe’ executables. But then I would not have found this gem.]

• When I unzipped the attachment in the email shown above, it

contained only a single file called Instructions.exe. Executing the

command “file Instructions.exe” yielded the following answer:

PE32 executable for MS Windows (GUI) Intel 80386 32-bit

22

Computer and Network Security by Avi Kak Lecture 31

indicating that the executable was meant for a Windows machine.

About the MS DOS PE header shown above, the Windows NT

OS introduced a new executable file format called the Portable

Executable (PE) file format. It retains the old familiar MZ header

from MS-DOS, as you will see in the partial hexdump of the file

presented below.

• Another way to confirm the fact that this file is a Windows exe-

cutable is by looking at its hexdump:

/usr/bin/hexdump -C Instructions.exe | more

As shown below, in the very first line you can see the telltale

“MZ” marker that is the beginning of a MS-DOS PE header.

00000000 4d 5a 90 00 03 00 00 00 04 00 00 00 ff ff 00 00 |MZ..............|

00000010 b8 00 00 00 00 00 00 00 40 00 00 00 00 00 00 00 |........@.......|

00000020 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|

00000030 00 00 00 00 00 00 00 00 00 00 00 00 b8 00 00 00 |................|

00000040 0e 1f ba 0e 00 b4 09 cd 21 b8 01 4c cd 21 54 68 |........!..L.!Th|

00000050 69 73 20 70 72 6f 67 72 61 6d 20 63 61 6e 6e 6f |is program canno|

00000060 74 20 62 65 20 72 75 6e 20 69 6e 20 44 4f 53 20 |t be run in DOS |

00000070 6d 6f 64 65 2e 0d 0d 0a 24 00 00 00 00 00 00 00 |mode....$.......|

00000080 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|

*

.....

.....

• When I uploaded the malicious file to the online virus analysis

tool at http://www.virustotal.com, I received a report that it was a

well-known virus. The report also included the virus signature

and other attributes of the virus.

23

Computer and Network Security by Avi Kak Lecture 31

31.5: A VERY BRIEF INTRODUCTION
TO REGULAR EXPRESSIONS

• A good knowledge of regular expressions is indispensable to solv-

ing problems related to string processing and that includes spam

filtering.

• Chapter 4 of my book “Scripting with Objects” explains in great

detail how to use regular expressions in Perl and Python scripts.

[If you do not have the book, you might at least want to look at the scripts in the book that are

online.]

• The regular expression engine that is now used by a large number

of languages is the one that was first developed for Perl. This is

the engine that is used by Python, Java, C++ based packages,

etc. Unfortunately, this is not the same engine that is used by

Procmail, the main utility used for spam filtering in Unix/Linux

based platforms. Fortunately, the regular expressions as used in

Perl/Python, on the one hand, and as used by Procmail, on the

other, have much in common. Additionally, by what is known as

Condition Line Filtering, you can always ask Procmail to send

any email to a Perl/Python based script for processing. So in

24

Computer and Network Security by Avi Kak Lecture 31

the remainder of this section, we will focus mainly on the regular

expressions that can be used with Perl and Python. [Procmail uses

what are known as Unix regular expressions. For information on the regex engine used by Procmail,

do either ‘man regexp’ or ‘man egrep’.]

• To become proficient with regular expressions, you must learn:

– How to use anchor metacharacters to force matching to take place at
line and word boundaries

– How to use character classes to specify alternative choices for a single
character position in the matching process

– How to specify alternative subexpressions inside a regular expression

– How to use grouping metacharacters to extract substrings from a
string

– How to use quantifier metacharacters to control repetitions in a string

– The difference between greedy and non-greedy quantifier metachar-
acters

– How to use match modifiers to force matching to be, say, case-insensitive,
global, etc.

– More advanced topics in regular-expression based processing include
non-capturing groupings, lookahead and look-behind assertions, etc.

• String processing with both Perl and Python harnesses, on the

one hand, the power of regular expressions, and, on the other, the

25

Computer and Network Security by Avi Kak Lecture 31

support provided by the language’s I/O facilities, control struc-

tures, and so on.

• A regular expression helps search for desired strings in text files

under very flexible constraints, such as when looking for

a string that starts with a particular sequence of characters and

ends in another sequence of characters without regard to what is

in-between. [Through a regular expression, one can also specify the location of the substring

to search for in relation to the beginning of a line, the end of a line, the beginning of a file, etc. Further

constraints that can be built into a regular expression include specifying the number of repetitions of

a given elemental pattern, whether the matching of the regular expression with an input string should

be greedy or non-greedy, etc. Regular expressions are also useful in search-and-replace operations in

text processing, for specifying the separators for splitting long strings of text substrings, etc.]

• We will refer to the string that will be subject to regex matching

as the input string. [This is simply a device to make it easier to differentiate between the

different strings involved in regex examples. The input string will often be read one line at a time from a text

file, which justifies input in the name input string. But an input string may also be specified directly in a

program.]

• The script word match.pl shown below, taken from Chapter

4 of my SwO book, illustrates the basic syntax of using Perl’s

match operator m// for regular expression matching. Our regular

expression in this case is the string hello. The script will ask you

to enter strings in the terminal window in which you execute this

script. Each string you enter will be matched with the regular

26

Computer and Network Security by Avi Kak Lecture 31

expression pattern. If the match is successful, the script will

print out the portion of the input string before the match, after

the match, etc.

#!/usr/bin/perl -w

word_match.pl

use strict;

my $regular_expression = "hello";

print "Enter a line of text:\n";

while (chomp(my $input_string = <>)) {

if ($input_string =~ /$regular_expression/) {

print ’The line you entered contains "hello"’, "\n";

print "The portion of the line before the match: ", $‘,"\n";

print "The portion of the line after the match: ", $’, "\n";

print "The portion of the line actually matched: ", $&,"\n";

print "The current line number read by <>: ", $., "\n";

print "\nEnter another line of text or Ctrl-C to exit:\n\n";

} else {

print "\nNo match --- try again or enter Ctrl-C to exit\n\n";

}

}

• The regular-expression based matching in the above script takes

place in the conditional of the if statement:

$input_string =~ /$regular_expression/

where =~ is the Perl’s binding operator. In the syntax shown

above, the two forward slashes, ‘//’, which delimit the regular

expression, are a shorthand for ‘m//’, the Perl’s matching opera-

tor.

27

Computer and Network Security by Avi Kak Lecture 31

• Shown below is a Python version of the word match.pl script.

This is also from Chapter 4 of my SwO book:

#!/usr/bin/env python

word_match.py

works with both Python 2.x and Python 3.x

import re

regular_expression = r’hello’

while 1:

import sys

try:

if sys.version_info[0] == 3:

input_string = input("\nEnter a line of text: ")

else:

input_string = raw_input("\nEnter a line of text: ")

except IOError as e:

print(e.strerror)

m = re.search(regular_expression, input_string)

if m:

Print starting position index for the match:

print(m.start())

Print the ending position index for the match:

print(m.end())

Print a tuple of the position indices that span this match:

print(m.span())

print the input strings characters consumed by this match:

print(m.group())

else:

print("no match")

• Note that the regular-expression based matching in the Python

script is carried out by the statement:

m = re.search(regular_expression, input_string)

The call re.search() returns an object of type MatchObject.

28

Computer and Network Security by Avi Kak Lecture 31

The rest of the code then extracts the needed information from

this object. [Regular expression matching in Python is carried out with the re module.

Also note that the prefix r for a string argument causes all the characters in the string to be accepted

literally.]

• In both the Perl and the Python examples shown above, we used

a simple pattern, hello, as our regular expression. The matching

functions invoked in both scripts looked for this pattern anywhere

in the input string.

• But if you wanted to see if the input string contained a pattern

at, say, just the beginning, or at just the end? Now your reg-

ular expression would need to use what are known as anchor

metacharacters.

• Perl and Python use the same set of metacharacters. Typically,

you’d want the match to take place either at the very beginning

of the input string, or at the very end. The anchor metacharacter

^ is used to force a match to take place at the beginning of the

input string and the anchor metacharacter $ to force the match

to take place at the end of the input string. [The regex ^abra will match

the string abracadabra, but not the string cabradababra. Similarly, the regex dabra$ will match

the string abracadabra, but not the string dabracababra. In addition to forcing a regex match

to take place at the beginning and the end of a line with the help of anchor metacharacters, it is also

possible to force a regex to match at the beginning or the end of a word boundary. Both Perl and

Python use the anchor metacharacter \b to denote the word boundary. The symbol \b can stand

29

Computer and Network Security by Avi Kak Lecture 31

for both a non-word to word transition and a word to non-word transition. So the regex \bwhat will

match the string whatever will be will be free, but not the string somewhat happier than

thou. Similarly, the regex ever\b will match the string whatever will be will be free, but

not the string everywhere I go you go. Note that the anchors do not consume any characters from

the input string during the matching operation.]

• We will now talk about character classes for regex match-

ing. When we specify a regex as, say, hello, a successful match

between this regex and an input string requires the input string

to possess exactly the same sequence of characters wherever the

match is scored.

• What if we want more than one choice for an input-string char-

acter for a given character position in a regex? Suppose we want

to detect for the presence of the following substrings in an input

string:

stool spool skool

Can we specify a single regex for extracting all three substrings?

Yes, we can do so with the help of a character class. For ex-

ample, the regex s[tpk]ool which includes the character class

[tpk] will be able to search for any of the three words stool,

spool, and skool.

30

Computer and Network Security by Avi Kak Lecture 31

• A character class is simply a set of choices available for a spe-

cific character position in a regex. The most general notation

for a character class calls for placing the set of choices inside

square brackets. The expressive power of a character class can be

enhanced by using special characters; these are metacharacters

that have specifically designated meanings inside the square-

bracket notation for a character class.

• For both Perl and Python, these character-class metacharacters

are

- ^] \

The character class metacharacter ‘-’ acts like a range operator

for a character class. It allows a compact notation for a character

class consisting of a sequence of either alphabetically contiguous

characters or numerically contiguous characters. For example,

the character class [a-f] is simply a more compact way of writing

[abcdef] and the character class [3-9] is a more compact of

writing the [3456789] pattern.

• Here are some other illustrations of the use of the range operator

inside a character class:

regex matches with

-------- -----------------------------

var[0-9] var0, var1, var2,, var9

31

Computer and Network Security by Avi Kak Lecture 31

[0-9a-fA-F] a digit or letter in a hex sequence

[nN][oO][pP][eE] nope, NOPE, Nope, etc.

• The character-class metacharacter ‘-’ loses its special meaning if

it is either the first or the last character inside the square brackets.

• Let’s now talk about ^ as a character-class metacharacter. If

this character is the first character inside the square brackets, it

negates the entire character class. What that means is that any

input-string character except those in the character class will be

acceptable for matching:

regex matches with

-------- -----------------------------

[^0-9] will match any non-digit character

[^a-fA-F] will match any non-alphabetic character

[^c]at will match aat, bat, dat, eat,

If the character ^ appears anywhere except at the beginning of a

character class, it loses its special meaning vis-a-vis the character

class. Note that a negated character class does not imply a

lack of character at that position in the input string.

• Let’s now talk about specifying alternative subexpres-

sions in a regex. It is sometimes necessary to specify a list of

alternatives for one or more portions of a regex. For example, if

Joe and Mary would work out equally for a job and you want to

see if an input string mentions either name, you could specify a

32

Computer and Network Security by Avi Kak Lecture 31

regex as the \bJoe|Mary\b pattern. The operator ‘|’ is usually

called the ‘or’ operator. If it is possible that Joe’s name could also

show up as Joseph, we could incorporate that possibility in our

regex by rewriting it as the \b(Jo(e|seph))|Mary\b pattern.

• When there exist alternatives in a regex for scoring a match with

an input string, the regex engine seeks the earliest possible match

and, as soon as the engine is successful, stops trying out any

remaining alternatives even if one of the remaining alternatives

provides what seems like a ‘better’ match. In the following

example:

input_string = "hellosweetsie"

regex = h(ey|ello|i)(sweet|sweetsie)

Only the “hellosweet” portion of the input string will be used to

score a successful match with the regex, even though it would

seem that all of the input string would provide a ‘better’ — in

the sense of being a more complete — match.

• Note that when a match with the input string does not work out

with the first choice in a set of alternatives, backtracking is used

to try each of the remaining choices. [To explain why we use the word

‘backtracking’ to describe the matching process in the presence of alternatives, let’s say we have two

alternatives in the first portion of a regex and two alternatives in the remaining portion. Let’s also say

we have a successful match between the input string and the first of the two alternatives in the first

33

Computer and Network Security by Avi Kak Lecture 31

portion of the regex. But, then, we are not able to match either of the two alternatives in the second

part of the regex with what remains of the input string. Now the matcher must backtrack and try the

second choice in the first portion of the regex.]

• We will now talk about using parentheses for grouping

subexpressions in a regular expression. In addition to be-

ing used for specifying alternatives, as you have already seen,

parentheses can also be used to return input string groupings

that match specific subexpressions in a regex. When used for

grouping, the parentheses are known as the grouping metachar-

acters. [A pair of matching parentheses surrounding a subexpression creates a unit for the

following purposes: (i) For specifying one of multiple choices, as you saw earlier. (ii) For being subject

to repetition through the use of quantifier metacharacters. (iii) For extracting a desired substring from

an input string. The input-string substring that matches a parenthesized portion of a regex is available

to the rest of the program through a special variable. It is also available inside later portions of the

regex through a backreference. (iv) For specifying non-capturing groupings in regexes. Non-capturing

parentheses have special notation — ‘(?:)’ — as oppose to ‘()’. (v) For specifying lookahead and

lookbehind assertions. The parentheses are used in the form ‘(?=)’ for lookahead assertions and

‘(?<=)’ for lookbehind assertions.]

• Consider the following example of an input string and a regex:

input string = hellothere! how are you

regex = (hi|hello)there

The regex engine stores in a special variable the input-string sub-

string that matches a parenthesized portion of a regex. Perl actu-

34

Computer and Network Security by Avi Kak Lecture 31

ally stores such a substring in two separate variables, one available

in the regex itself and the other available outside the regex in the

rest of the program. Let’s first focus on the variables available in

the rest of the program that allow us to extract the input-string

portions that matched a parenthesized subexpression in a regex.

These variables, called matching variables, are named:

$1 $2 $3 $4

The value of $1 is set to the input-string substring that matches

the first parenthesized subexpression in a regex, the value of $2

to the substring that matches the second parenthesized subex-

pression, and so on. The same substrings from the input string

are available inside a regex through the backreferences:

\1 \2 \3 \4

• What Perl achieves with matching variables is accomplished in

Python by calling the group() method on a match object. If

m denotes the match object returned by a call to re.search(),

m.group(1), m.group(2), etc., will return portions of the input

string that match with the parentheses-delimited subexpressions

of the regex. The backrefrences work the same in both Perl and

Python — as demonstrated by the Python script that follows the

next Perl script.

35

Computer and Network Security by Avi Kak Lecture 31

• Before showing you the scripts with examples of matching vari-

ables and backreferences, note that Perl and Python also allow us

to specify nonextracting groupings or noncapturing groupings.

The non-capturing version of ’()’ is ’(?:)’. That is, you attach the

symbol pair ’?:’ to the left parenthesis.

• Shown below is a Perl script, taken from Chapter 4 of my book

SwO, that demonstrates how we can extract the portions of an

input string that match a regex. The extracted potions are shown

in the commented-out sections.

#!/usr/bin/perl -w

Grouping.pl

use strict;

Demonstrate using match variables:

my $pattern = ’ab(cd|ef)(gh|ij)’; #(A)

my $input_string = "abcdij"; #(B)

$input_string =~ /$pattern/; #(C)

print "$1 $2\n"; # cd ij #(D)

Demonstrate the binding op returning a list of

matched subgroupings:

$pattern = ’(hi|hello) there(,|!) how are (you|you all)’; #(E)

$input_string = "hello there, how are you."; #(F)

my @vars = ($input_string =~ /$pattern/); #(G)

print "@vars\n"; # hello , you #(H)

Demonstrate using backreferences:

$pattern = ’((a|i)(l|m))\1\2’; #(I)

@ARGV = ’/usr/share/dict/words’; #(J)

while (<>) { #(K)

print if /$pattern/; #(L)

}

output of while loop:

36

Computer and Network Security by Avi Kak Lecture 31

balalaika

balalaikas

• Shown below is a Python version of the Perl script shown above.

This one is also from Chapter 4 of SwO.

#!/usr/bin/env python

Grouping.py

import re #(A)

Demonstrate using group() for extracting matched substrings:

pattern = r’ab(cd|ef)(gh|ij)’ #(B)

input_string = "abcdij" #(C)

m = re.search(pattern, input_string) #(D)

print(m.group(1), m.group(2)) # cd ij #(E)

Another demonstration of the above:

pattern = r’(hi|hello) there(,|!) how are (you|you all)’; #(F)

input_string = "hello there, how are you."; #(G)

m = re.search(pattern, input_string) #(H)

print(m.group(1), m.group(2), m.group(3)) # hello , you #(I)

Demonstrate using backreferenes:

filehandle = open(’/usr/share/dict/words’) #(J)

pattern = r’((a|i)(l|m))\1\2’ #(K)

done = 0 #(L)

while not done: #(M)

line = filehandle.readline() #(N)

if line != "": #(O)

m = re.search(pattern, line) #(P)

if (m != None): #(Q)

print(line) #(R)

else: #(S)

done = 1 #(T)

filehandle.close() #(U)

output of while loop:

balalaika

balalaikas

37

Computer and Network Security by Avi Kak Lecture 31

• Let’s now talk about using quantifier metacharacters in

regular expressions. A quantifier metacharacter is used to

control the number of repetitions of the immediately preceding

smallest possible subexpression in a regex.

• Both Perl and Python use the following as quantifier metachar-

acters:

* + ? {}

A quantifier metacharacter is placed immediately after whatever

portion of the regex it is that we want to see repeated.

• The metacharacter ‘*’ means an indefinite, including zero repeti-

tions of the preceding portion of the regex. The regex ‘ab*’ will

match the following input strings

a

ab

abb

abbb

abbbb

...

...

It is obviously straightforward to interpret the behavior of the

quantifier ‘*’ when it applies to a single preceding character

(that is not a metacharacter), as in the above example where it

is applied to the character ‘b’.

38

Computer and Network Security by Avi Kak Lecture 31

• But now let’s examine the pattern ‘a[bc]*’ as a regex where

the quantifier ‘*’ now applies to the character class ‘[bc]’. It is

best to visualize this regex as a shorthand way of writing a whole

bunch, actually an indefinitely large number, of the following

regexes:

a

a[bc]

a[bc][bc]

a[bc][bc][bc]

a[bc][bc][bc][bc]

...

...

• If there exists a match between the input string and any of these

indefinitely large number of regexes, the regex engine will declare

a successful match between the input string and the regex.

• Now consider the subexpression ‘.*’ that is used very commonly

in regexes. Let’s say our regex is the ‘a.*b’ pattern. This

regex is a compact way of writing an indefinitely large number of

regexes that look like

ab

a.b

a..b

a...b

39

Computer and Network Security by Avi Kak Lecture 31

a....b

a.....b

and so on

Any input string that matches any of these regexes would be

considered to be a match for the regex.

• The quantifier metacharacter ‘+’ again means an indefinite rep-

etitions of the preceding subexpression as long as there is at least

one occurrence of the subexpression.

• When a part of a regex is followed by the quantifier metacharacter

‘?’, that means that the subexpression is an optional part of the

larger regex, meaning that it can appear zero or one times.

• If it is desired to specify the number of repetitions at the both the

high end and at the low end, one can use the quantifier metachar-

acters ‘{}’. The regex, for example, ‘a{n}’ where ‘n’ is a

specific integer value means that exactly ‘n’ repetitions of ‘a’ are

allowed. Therefore, the regex ‘a[bc]{3}’ is a short way of

writing ‘a[bc][bc][bc]’ as a regex.

• A variable number of repetitions within specified bounds is ex-

pressed in the following manner: ‘a{m,n}’ where ‘m’ and ‘n’ are

specific integer values, the former specifying the minimum num-

40

Computer and Network Security by Avi Kak Lecture 31

ber of repetitions of the preceding subexpression and the latter

the maximum number.

• The quantifier metacharacters we have shown so far are greedy, in

the sense they gobble up as much of the input string as possible.

For some string matching problems, you need what are known

as non-greedy quantifiers. The non-greedy quantifiers are

also known as minimal-match quantifiers. The non-greedy ver-

sion of the greedy quantifiers * + ? {} are *? +? ?? {}?,

respectively.

• So, as far as the notation is concerned, the non-greedy version

of each quantifier is the corresponding greedy version with ‘?’

attached as a postfix. As with ‘*’, the quantifier ‘*?’ stands for

an indefinite number of repetitions of the preceding subexpression

in the regex, but it will choose as few as possible.

• Let’s now talk about match modifiers. The matching of a

regular expression with a string can be subject to what are known

as match modifiers that control various aspects of the matching

operation.

• The modifier flags themselves are not directly a part of a regex.

They are more a language feature and, therefore, how they are

specified is different in Perl and Python.

41

Computer and Network Security by Avi Kak Lecture 31

• For case insensitive matching, Perl uses the modifier //i.

And in Python you need to supply the option re.IGNORECASE

to the matching function.

• Ordinarily the regex stops at the first possible position in the

input string where there is a match with the regex. But if you

want the regex engine to continue chugging along and scan the

entire input string for all possible positions where there exist

matches with the regex, you have to set the global option as a

match modifier. The match modifier in Perl for the global option

is m//g. In Python you have to call the function re.findall().

• What precisely is returned by the regex engine when you set the

global option depends on two factors: (i) whether or not the regex

contains any groupings of subexpressions; and (ii) the evaluation

context of matching.

• All of our discussion so far has dealt with input strings that con-

sisted of single lines, which were either read one line at a time

from an input file or were specified directly so in the program.

Another match modifier is to take care of the case when the in-

put string consisting of multiple lines.

42

Computer and Network Security by Avi Kak Lecture 31

31.6: USING procmail FOR SPAM
FILTERING

• As mentioned previously, Procmail is a mail processing utility

for Unix. When used for controlling spam, a procmail filter is

applied at the MDA level. In other words, a procmail filter is

applied BEFORE an email goes to your MUA. (See Section 31.2

for what the acronyms MDA and MUA mean.)

• The first version of procmail was written in 1991 by Stephen R.

van den Berg. But now its maintenance is supervised by Philip

Guenther. Procmail is open source.

• A lot of information about procmail can be gleaned from the

following manpage commands in Unix or Linux:

man procmail

man procmailrc

man procmailsc

man procmailex (A very useful manpage for recipe examples)

• A procmail filter will be invoked by your local MDA if you include

the following sort of a line in your .forward file

43

Computer and Network Security by Avi Kak Lecture 31

"|/usr/local/bin/procmail #kak"

where you must replace ‘kak’ by your own login name. If you

are outside the ‘ecn’ domain at Purdue, you must also replace

the path to the procmail utility with what it is on the host where

the MTA to MDA transfer of email takes place. The pipe symbol

at the very beginning of the string in the .forward file tells the

Sendmail program to make the email available to the Procmail

program on its standard input. What follows ’#’ is really a com-

ment that sendmailmay use to make your .forward file unique

in its own cache.

• The very first thing that Procmail does is to look for the file

$HOME/.procmailrc

in your home directory. The email is processed according the

recipes laid out in the .procmailrc file. If no .procmailrc

file can be found or if the processing of the email according

to the recipes in .procmailrc reaches the end of the file

without any resolution, Procmail stores the email in the de-

fault system mailbox for your account, which for me would be

/var/mail/kak on RVL4. [Included in the code that you can download from the

lecture notes web site is a file called dot procmailrc. You can use it as your starter .procmailrc file. Make

sure you change the name of the file from dot procmailrc to .procmailrc]

• A .procmailrc file consists of three parts:

44

Computer and Network Security by Avi Kak Lecture 31

1. Assignment of relevant environment information to local variables

2. Assignments to variables that will be used locally as macros in the

.procmailrc file

3. Recipes

• Here is the beginning portion of my .procmailrc file:

SHELL=/bin/sh

PATH=/usr/local/lib/mh:$PATH

MAILDIR=$HOME/Mail

LOGFILE=$HOME/Mail/logfile

#VERBOSE=1

VERBOSE=0

EOL="

"

LOG="EOLEOL$EOL"

LOG="New message log:$EOL"

LOG=‘perl GET_MESSAGE_INDEX‘

LOG="$EOL"

where SHELL, PATH, MAILDIR, and LOGFILE are local variables that

store the environment information needed by Procmail. The vari-

ables VERBOSE and EOL are the two other local variables; the first

controls the level of detail placed in the log files and the second

defines the end-of-line character for log entries. The variable EOL

defines a macro that can subsequently be used through the $EOL

syntax shown in the last line. Note that all these variables are

local to the .procmailrc file. Any assignment to the local vari-

45

Computer and Network Security by Avi Kak Lecture 31

able LOG generates information that is written to the logfile. Note

the call ‘perl GET MESSAGE INDEX’ for associating an integer index

with each entry in the logfile. The Perl script GET MESSAGE INDEX

merely reads an integer value stored in a local file, increments

that integer, uses it for the current entry in the logfile, and writes

the incremented value back to the file where the index is stored.

In this manner, you can associate an integer index with each en-

try in the log file — something that comes in handy if you want

to see quickly how many emails your spam filter has processed so

far. [Included in the code that you can download from the lecture notes web site is the GET MESSAGE INDEX

script file that I use.]

• We will now talk about the third part of a .procmailrc file —

the part consisting of recipes. A recipe in a .procmailrc file will

ordinarily consist of the following three parts:

1. A colon line (always begins with :0 for historical reasons)

:0 [flags] [: [locallockfile]]

We will have more to say about the ‘flags’ and ‘locallockfile’
through illustrations of the colon line that you will soon see.

2. A condition (or conditions) starting in a new line. A condition line
always begins with a ‘*’. There can be only one condition per line.

However, you can have any number of condition lines.

Everything in a condition line after ‘*’ is processed by the egrep

regex engine. [As previously mentioned, for information on the regex engine used by Procmail,

46

Computer and Network Security by Avi Kak Lecture 31

do either ‘man regexp’ or ‘man egrep’.] Any white space immediately following
‘*’ and the first non-blank character in a condition line is ignored.

Multiple conditions, each in a different condition line, are “anded”
together. No condition lines mean “true” by default.

3. An action starting in a new line. There can only be one action line
in a recipe.

• Shown below is a recipe that is meant for trapping an email that

contains even a single non-English or non-numeric character in

its subject line. Note that the action consists of deleting such

emails.

:0 :

* ^Subject.*[^ [:alnum:][:punct:]]+.*$

/dev/null

where the metacharacters ^ and $ carry the same meanings as

described in Section 31.5. The meaning of the metacharacter !

is to negate the condition. Also note the use of the character

classes [:alnum:] and [:punct:]. These are defined for the

egrep regex engine; the first stands for the English alphanumeric

characters (it is the same as the character class [0-9A-Za-z]),

and the second stands for the punctuation marks.

• Here are some examples of the colon line. The examples also

illustrate the use of flags in the colon line. Note that when there is

a second colon present in the same line, as in the second recipe, a

47

Computer and Network Security by Avi Kak Lecture 31

local lockfile is used to properly sequence the processing of emails

should they arrive much too quickly. That is, should a new email

arrive while the previous one is being processing by a recipe with

a lockfile indicator, the new email will be made to wait until the

previous one has exited the recipe.

:0 The simplest case. Only the header is

egreped, meaning that only the header is sent

to the regex engine.

:0 : The second colon causes a local lockfile to be used

if multiple emails arrive concurrently.

As this recipe is being used, its invocation for

the next email if it arrives at about the same

time will be put on hold.

Important only if you are writing to a file.

:0 B The recipe will be applied only to the body of

the email

:0 H The recipe will be applied only to the headers.

This, by default, is the same as the first case

shown above.

:0 HB The recipe will be applied to both the head and

the body

:0 c a copy of the email will be processed by this

recipe; the original email will continue to be

processed by the remaining recipes.

:0 D Tell the internal egrep to be case-sensitive in

48

Computer and Network Security by Avi Kak Lecture 31

matching regexes in the condition lines. The default

is case insensitive.

:0 f This sends the email to the program named after the

pipe symbol in the action line. Procmail expects

the external program to return a modified email on

the standard input. Further processing by procmail

is then carried out on this modified email. THIS

FLAG CREATES FILTERING RECIPES.

:0 fhw You will use this for a filtering recipe that tells

procmail that the body of the email will NOT be

changed by the external filtering program. In other

words, the external program in the action line will

only change the header of the email. All that is

accomplished by the ‘h’ flag. The ‘w’ flag tells

procmail to wait for the filtering program to return

and TO CHECK THAT IT EXECUTED SUCCESSFULY.

.... and many others (see procmailrc manpage)

• The following characters immediately after ‘*’ in a condition line

have special meaning. You can think of them as Procmail con-

dition line metacharacters.

! Invert the condition.

? Use the exit code of the specified program

(This is called CONDITION LINE FILTERING)

< Check that the total length of email is less

than the number of bytes that is specified after

this character

> Opposite of above

and others (check procmailrc manpage)

49

Computer and Network Security by Avi Kak Lecture 31

• Here are examples of simple recipes:

Recipe 1:

:0:

* ^From.*joe.shmoe

* ^Subject.*seminar.(announce.*|notice)

junkMail

Recipe 2:

:0:

* !^From.*groothuis

* ^From.*root

junkMail

Recipe 3:

:0:

* ^From.*joe.*bureaucrat

* ^To.*engfaculty

junkMail

Recipe 4:

:0 HB:

* ^Content-Type: text/html

* !(charset="?us-ascii"?|charset="?iso-8859-1"?)

junkMail

Recipe 5:

:0 HB

* ^Content-Disposition:.*attachment

* < 300000

{

:0 c

! avi_kak@yahoo.com

:0 c:

medium_attachments

:0 :

/var/mail/kak

}

• You will find two kinds of recipes in the list shown above:

50

Computer and Network Security by Avi Kak Lecture 31

Delivering Recipes: These cause the email to be written to

a file, or to be forwarded to another email address, or to be

absorbed by a program. Procmail quits processing the email

when it encounters a delivering recipe. Recipes 1 through 4

in the list shown above are delivering recipes.

Non-delivering Recipes: These are recipes that cause the

output of a program to be captured back by Procmail. The

procmail then continues processing this new output in the

same way it processes as a regular email. A non-delivering

recipe is also used to start a nested block of recipes. Recipe 5

shown on the previous page is a non-delivering recipe.

• As shown by the nested block in Recipe 5 above, a delivering

recipe can be made to behave like a non-delivering recipe by

specifying the “c” flag in the colon line. The “c” flag stands

for “copy”. This causes a copy of the email to be sent to the

delivering recipe while the original is saved for processing by the

rest of the .procmailrc file.

• The sole action line that is allowed in a recipe starts with one of

the following symbols:

! the email is forwarded to the email address that

comes after this symbol

| the email is piped into the program you name after

this symbol

51

Computer and Network Security by Avi Kak Lecture 31

{ this marks the beginning of a nested block of

recipes; the block must end in a matching ’}’

none of the above ---- whatever is in the action line

is taken to be the name of a

mailbox file in which the email

is deposited.

You saw all these four types of action lines in the five recipes

shown earlier. Note the very different roles played by the charac-

ter ‘!’ in a condition line and in an action line.

• We will now talk about condition line filtering in recipes. For

condition line filtering, the condition line must have the character

‘?’ after the mandatory ‘*’ character at the beginning of the line.

Consider the recipe:

:0 HB:

* < 15000

* ? $MAILDIR/condfilter2.pl 2>&1

junkMail

This recipe feeds the email into the Perl script condfilter2.pl.

The condition succeeds if the Perl script returns the exit code of

0 and fails if the exit code returned is 1. The string ‘2>&1’ redi-

rects the STDERR stream to the STDOUT stream (which the filtering

program redirects into the log file).

• I will now show a simple example of condition line filtering. The

name of the Perl script shown below is condfilter2.pl. This is the

52

Computer and Network Security by Avi Kak Lecture 31

script that is called in the second condition statement in the recipe

shown above. The main job of this script is to first construct a

single string from all of the Base64 encoded material that forms

a single multimedia partition in the email and to then invoke the

decode base64() function from the MIME::Base64 module on the

encoded string in order to decode it. Then if the size of this

decoded string is less than a threshold, an email to considered to

be potential spam. [It might seem strange that we would want to declare an email to

possibly be spam merely on the basis of the size of its Base64 decoded attachment. But note that such

a filter would be invoked only AFTER a lot of other tests that would have declared the message to be

non-spam if that was indeed the case. Base64 encoding is commonly used by spammers to hide their

text content.]

#!/usr/bin/perl -w

use strict;

use MIME::Base64;

my $encoded_string = "";

my $decoded_string = "";

my $content_html_flag = 0;

my $encoding_flag = 0;

open LOG, ">> /home/rvl4/a/kak/Mail/log_condfilter2";

Change default for output from STDOUT to LOG. Since this is

a condition line filter, its actual output is not of any use

to procmail. Procmail only needs to know whether the program

exits with status 0 or a non-zero status.

select LOG;

print "\n\n"; # separator for new log entry

while (<STDIN>) {

chomp;

if (/^From:/) {

print "$_\n";

next;

}

if (/^Date:/) {

print "$_\n";

next;

53

Computer and Network Security by Avi Kak Lecture 31

}

if (/content-type.*text\/html/i) {

$content_html_flag = 1;

next;

}

if ($content_html_flag && /content.*encoding.*base64/i) {

$encoding_flag = 1;

next;

}

next if $content_html_flag == 0;

next if /^Content-T/;

next if /^X-/;

next if /^\s*$/;

$encoded_string .= $_;

last if (/^s*$/ && ($encoded_string ne ""));

}

if ($encoding_flag == 0) {

print "Exited with non-zero status because no text/html content.\n";

print "This e-mail will stay in processing stream.\n";

exit(1);

} else {

$decoded_string = decode_base64($encoded_string);

my $length = length($decoded_string);

print "length of the decoded string: $length\n";

if ($length < 15000) {

print "Exited with status 0 because of short base64-encoded\n";

print "content. Potential spam\n";

print "This e-mail will go to junkMail.\n";

exit(0);

} else {

print "text/html encoded content is large. Possible not spam.\n";

print "Exited with non-zero status.\n";

print "This e-mail will stay in the processing stream of procmail.\n";

exit(1);

}

}

• We will now talk about filtering recipes. A filtering recipe

merely modifies the email, but keeps it in the processing pipeline

for the recipes that follow. The example shown below only mod-

ifies the ‘Subject:’ line in the header:

:0

* ^From.*ack

* ^Subject.*the key is[]+\/.*[0-9a-z].*

54

Computer and Network Security by Avi Kak Lecture 31

{

KEY=‘echo $MATCH | sed ’s/[^0-9a-zA-Z]//g’ | tr ’A-Z’ ’a-z’‘

SUBJECT=‘echo "the key you supplied $KEY"‘

:0 fhw

| formail -I "Subject: $SUBJECT"

:0

!kak@purdue.edu

}

To understand this recipe, you must know about the special role

played by the symbol pair ‘\/’ in the second condition line. What-

ever portion of the subject line in the email being processed by

this recipe matches the regex that comes after ‘\/’ becomes im-

plicitly the value of the local variable MATCH. Next we have a local

variable KEY inside a sub-recipe. Because of the backquotes, the

value of KEY will be whatever is returned by the Unix process in

which the command(s) that is/are within the backquotes is/are

executed. The first Unix command is echo; this command simply

echos its argument to the standard output, where it is picked up

by the second Unix command sed, etc. What that means is that

the string value of the local variable MATCH will be subject to a

modification by the sed command, and so on.

• To explain further the syntax of the assignment to the local vari-

able KEY at the top of the nested recipe shown in the previous

bullet:

KEY=‘echo $MATCH | sed ’s/[^0-9a-zA-Z]//g’ | tr ’[A-Z]’ ’[a-z]’‘

55

Computer and Network Security by Avi Kak Lecture 31

The command sed as invoked here accepts the characters on

its standard input and drops all non-alphanumeric characters.

Therefore, it can also get rid of any spaces that the email might

have in the key value in the subject line. The output of sed is

piped into the Unix utility tr that simply carries out a ‘transla-

tion’ from uppercase to lowercase. The output of tr is written to

the standard output, where it is captured by the backticks oper-

ator, and the output of the backticks operator becomes the value

of the local variable KEY. [The assignment statement shown above is just to illustrate how

you can invoke various Unix/Linux utilities inside a recipe. You may or may not want to use the sed and tr

utilities in the manner I have shown.]

• Also note that I am using the Unix/Linux utility formail to mod-

ify the Subject header of the email. The ‘-I’ option to formail

will cause any existing Subject fields in the email processed to

be deleted before inserting the new such header. For a further

explanation of what else happens in the above filtering recipe, see

the explanations that follow since I have used the same example

below.

• I will next show a small recipe file called my recipe file whose

job is to accomplish the following:

-- to trap incoming email from the ‘ack’ account

-- to extract the ‘Subject:’ header of the incoming

mail, especially the part that comes after the

phrase ‘the key is’

56

Computer and Network Security by Avi Kak Lecture 31

-- to extract the ‘Date:’ header of the incoming

email

-- to insert a new ‘Subject:’ header for the outgoing

email

-- to insert a new ‘Date:’ header for the outgoing

email

-- and, finally, to insert some additional text just

after the headers in the outgoing email.

Here is what is in the file my recipe file:

name of this file: my_recipe_file

SHELL=/bin/sh

MAILDIR=$HOME/proc_folder

LOGFILE=$HOME/proc_folder/logfile

#VERBOSE=1

VERBOSE=0

EOL="

"

LOG="EOLEOL New message log:$EOL"

:0

* ^From.*ack

* ^Subject.*the key is[]+\/.*[0-9a-z].*

{

KEY=‘echo $MATCH | sed ’s/[^0-9a-zA-Z]//g’ | tr ’[A-Z]’ ’[a-z]’‘

SUBJECT=‘echo "the key you supplied $KEY"‘

DATE=‘formail -x Date:‘

:0

{

:0 fhw

| formail -I "Subject: $SUBJECT"

:0 fhw

| formail -I "Date: $Date"

}

:0 fhw

| cat -; echo "<><><>MESSAGE AT THE BEGINNING OF NEW BODY<><><>"

57

Computer and Network Security by Avi Kak Lecture 31

:0

!kak@purdue.edu

}

• In the recipe shown shown above, note the following two different

uses of the formail Unix utility. I first use this utility in the

line:

DATE=‘formail -x Date:‘

This invokes the formail program in a separate process on account

of the backticks that you see in the line. The backticks will

cause formail to read data on its standard input and to output

the results on the standard output. Whatever formail returns

becomes the value of the variable DATE in the procmail program.

The ‘-x’ option extracts the “Date” field from the header of the

email read from the standard input.

• Now note the second different use of formail in the action line

for the recipe shown in the file my recipe file:

formail -I "Subject: $SUBJECT"

Here I am using formail to insert the Subject: header in the

email being compose by the filtering recipe. As mentioned previ-

ously, the ‘-I’ option will cause the previous value of the “Subject”

header to be replaced by the new value.

58

Computer and Network Security by Avi Kak Lecture 31

• So whereas the first use of formail is extracting information from

the incoming email, the second use is inserting information into

the email being composed for output.

• In the file my_recipe_file, note the condition line

* ^Subject.*the key is[]+\/.*[0-9a-z].*

As mentioned earlier, everything that gets consumed by that part

of the regex that comes after \/ is deposited in the Procmail

variable MATCH. Therefore, if the Subject: header of the incoming

message is something like

Subject: the key is AbcDEF 123

the string ‘AbcDEF 123’ will become the value of the local vari-

able MATCH.

• Again in the file my recipe file, notice from the following action

line how I am adding some additional text to the body of the

incoming email to form the body of the outgoing email:

| cat -; echo "<><><>MESSAGE AT THE BEGINNING OF NEW BODY<><><>"

The echo function will place in the standard output the text that

is given to it as the argument. This additional text will appear

BEFORE the body of the incoming email because only the flag

‘h’ is in the colon line of this sub-recipe. Regarding the invocation

‘cat -’ , note that the basic job of the command cat is to send

59

Computer and Network Security by Avi Kak Lecture 31

to standard output whatever it reads from its argument. When

the argument is just the symbol ‘-’ the command cat takes

its input from whatever the standard input happens to be. In

our case, the recipe would send to the standard input the header

of the incoming email. So, in the example shown above, the

cat command will simply redirect the header to the standard

output, where it is subsequently followed by the output of the

echo command. It is this mechanism that causes the argument

to echo to be placed just after the email header.

• The previous case showed the following sub-recipe for inserting a

message at the beginning of email

:0 fhw

| cat -; echo ‘‘<><><>MESSAGE AT THE BEGINNING OF NEW BODY<><><>’’

We could also have used

:0 fbw

| echo ‘‘<><><><>MESSAGE AT THE BEGINNING OF BODY<><><><>’’; cat -

In the first case, the ‘h’ flag is crucial; and in the second case, the

‘b’ flag is crucial. The ‘h’ flag makes available only the header

section on the standard input. The ‘b’ flag makes available only

the body at the standard input. [Recall that the ‘-’ argument to cat causes the

standard input to be used for reading the input. Of course, in both cases, cat will make its output

available at the standard output.]

• I should also point out that for experimenting with a recipe, you

do NOT have to put it in a .procmailrc file at the top level of

60

Computer and Network Security by Avi Kak Lecture 31

your home directory. For testing purposes, your recipe

can be in any file in any directory. For example, the

recipe file my recipe file that I showed earlier could be tested in

any directory with a command line like:

procmail my_recipe_file < mail_file

where the file mail file is some file that contains a previously

collected email message for testing purposes.

61

Computer and Network Security by Avi Kak Lecture 31

31.7: HOMEWORK PROBLEMS

1. Your ability to write procmail recipes for trapping spam depends

entirely on your proficiency with regular expressions. To figure

out for yourself how good you are at constructing regular expres-

sions, can you create an example for each of the eleven regex

related items shown in magenta on page 27?

2. Programming Assignment:

Using the “starter kit” made available through the Lecture 31

code link at Lecture Notes website, design a procmail based spam

filter that would trap all 75 messages in the junkMail.tar.gz

gzipped tar archive. When you gunzip and untar the archive

with, say,

tar -zxvf junkMail.tar.gz

you’ll see 75 individual spam messages with names junkMail 1

through junkMail 75. About these messages:

junkMail 1 through junkMail 50 : The headers of all these mes-

sages have one thing in common: they contain multiple entries

in the “From:” header. All these messages were trapped by a

single recipe in your instructors spam filter. The regex in your

62

Computer and Network Security by Avi Kak Lecture 31

instructors recipe has only 40 characters in it. (If the regex

engine used by procmail allowed for Perls ‘{}’ metacharacters,

this regex could have been made as short as just 10 charac-

ters.)

junkMail 51 through junkMail 63 : These messages can be trapped

just on the basis of the “Subject:” line in the email headers.

junkMail 64 through junkMail 66 : In your instructors spam fil-

ter, these messages were trapped on basis of the content (email

body) of the messages.

junkMail 67 through junkMail 75 : You can trap these with a

single recipe that contains compound rules. Here is an exam-

ple of a recipe with compound rules:

:0 HB:

* ^Content-Type: text/plain

* !^Content-Type: text/html

* !^content-type: application/pdf

* !^content-type: application/zip

* !^content-type: application/msword

* !^content-type: application/.*signature

* Content-Transfer-Encoding: base64

junkMailCompound6

What this says is that if the “Content-Type” MIME header is

text/plain and none of the MIME objects are of type PDF,

ZIP, etc., and yet the “Content-Transfer-Encoding” MIME

header calls for Base64 encoding, then there is a great chance it

is a spam message. By the way, this is the NOT the compound

63

Computer and Network Security by Avi Kak Lecture 31

recipe you need for trapping the messages junkMail 67 through

junkMail 75.

After you have incorporated the new recipes in your .procmailrc

file, you can test your filter on an individual message by invoking

the command:

procmail .procmailrc < junkMail_XX

where “XX” is the integer suffix for the message file. Obviously,

you would need to write either a shell script, or a Python script,

or a Perl script to execute the above command in a loop for all 75

spam messages. If your recipes work on all 75 messages, you will

not see any messages being subject to the default action of your

procmail filter, which is usually to put the surviving messages in

your mailbox /var/mail/account name.

Since the spam messages in the tar archive are in their raw form,

it is sometimes difficult to see what is in them — especially if the

MIME objects in the messages are Base64 encoded. To help you

decipher those spam messages that are fully or partially encoded,

youll find in the starter kit a Perl script named EmailParser2.pl.

Execute this script and give it a command-line argument that

is the name of the junk mail file you want to decipher. It will

deposit the different MIME objects in the email in a subdirectory

called mimemail in the directory in which you execute the script.

64

