
Lecture 32: Security Vulnerabilities of Mobile Devices

Lecture Notes on “Computer and Network Security”

by Avi Kak (kak@purdue.edu)

April 20, 2017
4:17pm

c©2017 Avinash Kak, Purdue University

Goals:

• What makes mobile devices less vulnerable to malware (to the extent

that is the case) and Android’s “Verify Apps” security scanner

• Protection provided by sandboxing the apps

• Security (or lack thereof) provided by over-the-air encryption for cellular

communications with a Python implementation of A5/1 cipher

• Side-channel attacks on specialized mobile devices

• Examples of side-channel attacks: fault injection attacks and timing at-
tacks

• Python scripts for demonstrating fault injection and timing at-

tacks

• USB devices as a source of deadly malware

• Mobile IP

CONTENTS

Section Title Page

32.1 Malware and Mobile Devices 3

32.2 The Good News is ... 9

32.3 Android’s “Verify Apps” Security 12
Scanner

32.4 Sandboxing the Apps 14

32.5 What About the Security of Over-the-Air 30
Communications with Mobile Devices?

32.5.1 Python Implementation of A5/1 Cipher 37

32.6 Side-Channel Attacks on Specialized 44
Mobile Devices

32.7 Fault Injection Attacks 47

32.7.1 Demonstration of Fault Injection with a 54
Python script

32.8 Timing Attacks 59

32.8.1 A Python Script That Demonstrates How 67
To Use Code Execution Time for Mounting
a Timing Attack

32.9 USB Memory Sticks as a Source of 82
Deadly Malware

32.10 Mobile IP 89

2

Computer and Network Security by Avi Kak Lecture 32

32.1: MALWARE AND MOBILE DEVICES

• Mobile devices — cellphones, smartphones, smartcards, tablets,

navigational devices, memory sticks, etc., — have now permeated

nearly all aspects of how we live on a day-to-day basis. While at

one time their primary function was only communications, now

they are used for just about everything: as cameras, as music

players, as news readers, for checking email, for web surfing, for

navigation, for banking, for connecting with friends through social

media, and, Ah!, not to be forgotten, as boarding passes when

traveling by air.

• A unanimous ruling by the Supreme Court of the United States

not too long ago is indicative of how integral and central such de-

vices have become to our lives. In a 9-0 decision on June 25, 2014,

the justices ruled that police may not search a suspect’s cellphone

without a warrant. Normally, police is allowed to search your per-

sonal possessions — such as your wallet, briefcase, vehicle, etc. —

without a warrant if there is “probable cause” that a crime was

committed. Regarding cellphones, Chief Justice John Roberts

said: “They are such a pervasive and insistent part of

daily life that the proverbial visitor from Mars might

conclude they were an important feature of human

3

Computer and Network Security by Avi Kak Lecture 32

anatomy.” Justice Roberts also observed: “Modern cellphones,

as a category, implicate privacy concerns far beyond those impli-

cated by the search of a cigarette pack, a wallet, or a purse. Cell

phones differ in both a quantitative and a qualitative sense from

other objects that might be kept on an arrestee’s person.”

• The justices obviously based their decision on the fact that peo-

ple now routinely store private and sensitive information in their

mobile devices — the sort of information that you would have

stored securely at home in the years gone by.

• Given this modern reality, it is not surprising that folks who

engage in the production and propagation of malware are training

their guns increasingly on mobile devices.

• In a report on the security of mobile devices submitted to Congress,

the United States Government Accountability Office (GAO) stated

that the number of different malware variants aimed at smart-

phones had increased from 14,000 to 40,000 in just one year

(from July 2011 to May 2012). You can access this report at

http://www.gao.gov/assets/650/648519.pdf [The same report

also mentions that the worldwide sales of mobile devices increased from 300 million to 650 million in 2012. One

might therefore guess that the worldwide sale of mobile devices in 2015 would amount to over 1 billion. This

makes mobile devices the fastest growing consumer technology ever.]

• Mobile devices have become a magnet for malware producers

4

Computer and Network Security by Avi Kak Lecture 32

because they can be a source of sensitive information that an

attacker may be able to use for monetary gain, to seek political

advantage, to use as a means to break into a corporate network,

and so on.

• As you would expect, many of the attack methods on mobile

devices are the same as those on the more traditional comput-

ing devices such as desktops, laptops, etc., — except for one

very important difference: Unless it is in a private network,

a non-mobile host is usually directly plugged into the internet

where it is constantly exposed to break-in attempts through soft-

ware that scans large segments of IP address blocks for discover-

ing vulnerable hosts. That is, in addition to facing targeted at-

tacks through social engineering and other means, a non-mobile

host connected to the internet also faces un-targeted attacks by

cyber criminals who simply want to discover hosts (regardless of

where they are) on which they can install their malware.

• On the other hand, in general, mobile devices when they are

plugged into cellular networks can only be accessed by outsiders

through gateways that are tightly controlled by the cellphone

companies. [Consider the opposite situation of a mobile device being able to

access the internet directly through, say, a WiFi network. When on WiFi, the mobile

device will be in a private network (normally a class C private network) behind a wireless

router/access-point. So the mobile device would not be exposed directly to IP address-

block scanning. However, now, a mobile device could be vulnerable to eavesdropping

and man-in-the-middle attacks if, say, you are exchanging sensitive information with a

5

Computer and Network Security by Avi Kak Lecture 32

remote host in plain text. In the most common modes of using a smartphone, though,

you are unlikely to be a target of even such attacks on account of the overall security

provided by the servers. For example, your smartphone will establish a secure link with a

website like Amazon.com before uploading your credit-card information to that website.

As you know from Lecture 13, your smartphone will accomplish that by downloading

Amazon.com’s certificate, verifying the certificate with the public key of the applicable

root CA that is already stored in your smartphone, and your smartphone and the remote

website will then jointly establish a session key for content encryption.]

• Therefore, it is unlikely that a mobile device you own is going to

get hit by random fly-by attack software.

• On account of the protection provided by (1) the cellular com-

pany gateways; (2) the protection made possible by encrypted

connections with servers that seek your private information; (3)

the protection provided by on-line app stores (like Google Play

and Apple’s App Store) through their vetting of the apps for se-

curity holes before making them available to you; and, finally, (4)

the protection provided by the fact that a mobile OS is likely to

run the apps in a sandbox; it is not surprising that malware in-

fection rates in smartphones are as low as mentioned in the next

section.

• However, the mobile devices are just as vulnerable to social en-

gineering attacks as the more traditional computing devices such

as desktops and laptops. (See Lecture 30 for Social Engineering

6

Computer and Network Security by Avi Kak Lecture 32

attacks.) Of course, it goes without saying that if a mobile de-

vice contains unpatched software with known vulnerabilities, the

device could be exploited through regular network attacks that

do not depend on social engineering.

• Additionally, a certain class of more specialized mobile devices

— smartcards in particular — may be vulnerable to attacks that

come under the category of side-channel attacks. [Smartcards have

become ubiquitous. They are now used for paying fare in public transportation systems, car theft protection

(your electronic car key), access control in buildings, etc.] These attacks are most effec-

tive if an adversary can take physical control of a mobile device

and subject it to scrutiny that either treats it as a block box and

applies different kinds of inputs to it, or, when possible, exam-

ines it directly at the hardware/circuit level. Karsten Nohl gave

a Black Hat talk in 2008 that showed how he could break the

encryption in Mifare smartcards directly from the silicon. [A famous

line from that talk: “There are no secrets in silicon”] Check it out at (all in one line):

https://www.blackhat.com/presentations/bh-jp-08/bh-jp-08-Nohl/

BlackHat-Japan-08-Nohl-Secret-Algorithms-in-Hardware.pdf

• In the rest of this lecture, I’ll first review some of the main con-

clusions in the Google Android 2016 security report that was just

released.

• Subsequently, I’ll review the concepts of sandboxing the apps

since that adds significantly to the protection of a mobile device

7

Computer and Network Security by Avi Kak Lecture 32

against malicious apps.

• Next, I’ll review the A5/1 algorithm that has been widely de-

ployed around the world for encrypting over-the-air voice and

SMS data in GSM (2G) cellphone networks. This algorithm is one

of the best case studies in what can happen when people decide

to create security by obscurity. This algorithm was kept secret

for several years by cellphone operators. As is almost always the

case with such things, eventually the algorithm was leaked out.

As soon as the algorithm made its way into the public domain,

it was shown to possess practically no security.

• Then I’ll will present what is meant by side-channel attacks.

As mentioned previously in this section, specialized mobile de-

vices such as smartcards are particularly vulnerable to these at-

tacks. In order to lend further clarity to how one can construct

such attacks, I’ll provide my Python implementations for some

of the more common forms of such attacks.

• Finally, I’ll go over a topic that has been much in the news lately:

the ease with which malware infections can be spread with USB

devices such as memory sticks and why such infections cannot be

detected by common anti-virus tools.

8

Computer and Network Security by Avi Kak Lecture 32

32.2: THE GOOD NEWS IS ...

• As was mentioned toward the end of the previous section, mobile

devices — especially of the smartphone variety — benefit from

multiple layers of protection. These are:

– For the most part, individual smartphones can only be accessed through

the gateways controlled by the cellular network companies;

– When engaged in e-commerce interactions and regardless of whether

a smartphone is communicating directly over a cellular network or
through WiFi, the fact that a smartphone and the server create an

encrypted session before any sensitive information is exchanged be-
tween the two (in accordance with client-server interactions described

in Lecture 13);

– The app stores (Google Play, Apple’s App Store, Windows Phone
Store) scan and analyze the apps for malware before making them
available to customers;

– The fact that apps are typically run by the mobile OS in a sandbox.

This is certainly true of the Android OS for the Android devices; iOS
for all mobile devices by Apple and that includes various versions

of iPhones, iPods, and iPads; and the Windows Phone OS for the
Windows based mobile devices.

9

Computer and Network Security by Avi Kak Lecture 32

• Despite these layers of protection, the security of a smartphone

can easily be compromised by: (1) man-in-the-middle attacks

when the device is plugged into an unlocked WiFi network (es-

pecially if the user is sending or receiving sensitive information

in plaintext); and (2) a user visiting a website that tricks or lures

the user into downloading a document that either is malware or

contains malware. But then these forms of vulnerability apply

just as much to non-mobile computing devices such as desktops

and laptops.

• Nonetheless, it remains that the four layers of security mentioned

on the previous page make it less likely that your smartphone

contains malware. This conclusion is borne out by the report

“Android Security, 2016 Year in Review” just released by Google

that you’ll find at the following URL:

https://source.android.com/security/reports/Google_Android_Security_2016_Report_Final.pdf

• The Android security report says:

“By Q4 2016, fewer than 0.71% of devices had Potentially Harmful
Applications (PHAS) installed and for devices that exclusively

download apps from Google Play, that number was even smaller
at 0.05%.” [As to the defintion of what constitutes a PHA, see the list provided in Lecture

2.]

• Given the worldwide proliferation of Android devices, you are

10

Computer and Network Security by Avi Kak Lecture 32

probably wondering how it is that Google is able to make such

strong claims. The next section goes into that.

11

Computer and Network Security by Avi Kak Lecture 32

32.3: ANDROID’S “VERIFY APPS”
SECURITY SCANNER

• Considering that there now exist over 1 billion Android powered

devices worldwide, you might wonder as to how Google is able

to make the security claims summarized in the previous section.

Here is how Google collects the data that form the basis for these

claims:

• Google has introduced into the Android ecosystem a security

monitoring framework they call “Verify Apps.” Unless its access

to an Android device is disabled by a user, Verify Apps scans all

apps installed in an Android powered device for instances of what

Google calls “Potentially Harmful App” (PHA). While the pri-

mary job of the Verify Apps scanner is to examine the apps you

download from Google Apps, it includes a feature called “Safety

Net” that also looks at the apps downloaded from other sources.

The Safety Net scan additionally examines non-app based se-

curity threats — such as network attacks — aimed at Android

devices.

• Roughly 200 million Android devices a day report back to Google

if they discover a PHA using a number of criteria that include

12

Computer and Network Security by Avi Kak Lecture 32

authentication of the apps downloaded from Google Play on the

basis of the associated digital signatures, analysis of the app byte-

code for security vulnerabilities, certain quality parameters, etc.

• In addition, through the Safety Net part of Verify Apps, Google

conducts around 400 millions scans a day of the Android devices

worldwide to test their network related vulnerabilities.

• Between what Verify Apps does directly and what is accom-

plished by Safety Net, a participating Android device has all its

application software analyzed frequently for security vulnerabili-

ties — and that includes the software you install yourself as APK

archives. [APK, which stands for “Application Package,” is a Zipped archive whose name must carry

the suffix “.apk”. Besides the manifest, the primary components of this archive are a lib directory that contains

the executables for the different processor architectures supported by the Android operating system (ARM,

x86, and MIPS); and a classes directory that contains the bytecode for the Java classes in the dex file format.

Note that when you bypass the app stores and install an application directly in your smartphone, such as when

you install an APK archive directly in an Android device, that is referred to as sideloading. Apple iOS does

not let you engage in sideloading legitimately. That is, you must jailbreak an iOS device if you want to sideload

applications into it.]

• Google based its estimate of malware prevalence rates on these

reports returned by the Android devices worldwide.

13

Computer and Network Security by Avi Kak Lecture 32

32.4: SANDBOXING THE APPS

• A great deal of the security you get with mobile devices such as

smartphones is owing to the fact that the third-party software

(the apps) is executed in a sandbox. This is true for all major

mobile operating systems today, such as the Android OS, iOS,

Windows Phone OS, etc.

• In general, each app is run as a separate process in its own sand-

box.

• Sandboxing means isolating the app processes from one another,

on the one hand, and from the system resources, on the other.

Sandboxing also requires putting in place a permissions frame-

work that tightly regulates as to which other apps get access to

the data produced by any given app. [Sandboxing is now also widely used for

desktop/laptop applications. The web browser on your desktop/laptop is most likely being run in a sandbox.

That way, any data downloaded/created by say a plug-in like Adobe Flash or Microsoft Silverlight is unlikely

to corrupt your other files even when the downloaded data contains malware. Sandboxes are now also used by

document readers for PDF and other formats so that any malware macros in those documents do not harm

the other files.]

14

Computer and Network Security by Avi Kak Lecture 32

• The rest of this section focuses primarily on how Android isolates

a process by running it in a sandbox. However, before talking

about sandboxing in Android, let’s quickly review some of the

highlights of the Android OS since it is the OS that demands

that each app run in its own sandbox.

• I suppose you already know that Android was born from Linux.

The very first release of Android was based on Version 2.6.25 of

the Linux kernel. More recent versions of Android are based on

Versions 3.4, 3.8 and 3.10 of the Linux kernel, depending on the

unerlying hardware platform. (As of mid April 2017, the latest

stable version of the Linux kernel was 4.10.11 according to the

information posted at the http://www.kernel.org website.) [If you are

using your knowledge of Linux as a springboard to learn about Android, a good place to visit to learn about the

features that are unique to Android is http://elinux.org/Android_Kernel_Features. To summarize some of

the main differences: (1) One significant difference relates to how the interprocess communications is carried

out in Android. (2) Android’s power management primitive known as “wakelock” that an app can use to

keep the CPU humming at its normal frequency and the screen on even in the absence of any user interaction.

The normal mode of smartphone operation requires that the phone go into deep sleep (by turning off the

screen and reducing the frequency of the CPU in order to conserve power) when there is no user interaction.

However, that does not work for, say, a Facebook app that may need to check on events every few minutes.

Those sorts of apps can acquire a wakelock to keep the CPU running at its normal frequency and, if needed,

to turn on the screen when a new event of interest to the smartphone owner is detected. (Since the Facebook

app’s need to acquire the wakelock every few minutes can put a drain on your battery, some Android users

install a free root app called Greenify to first get a sense of how much battery is consumed by such an app

and to then better control its need to wake up frequently.) (3) Android’s memory allocation functions. (4)

And so on. In addition to these differences between Linux and Android, note also that the Android OS must

15

Computer and Network Security by Avi Kak Lecture 32

work with several different types of sensors and hardware components that a desktop/laptop OS need not

bother with. We are talking about sensors and hardware components such as the touchscreen, cameras, audio

components, orientation sensors, accelerometers, gyroscopes, etc. Finally, note that Android was originally

developed for the ARM architecture. However, it is now also supported for the x86 and the MIPS processor

architectures.] Despite the differences between Linux and Android,

the Linux Foundation and many others consider Android to be a

Linux distribution (even though it does not come with the Gnu

C libraries, etc. Android comes with its own C library that has

a smaller memory footprint; it is called Bionic).

• As already mentioned, every Android app — written in Java —

is run in a sandbox as a separate process. [More precisely speaking, a separate

process is created for a digitally signed Linux user ID. If there exist multiple apps that are associated with

the same Linux user ID, they can all be run in the same Linux process. Here is a good tutorial on how

you go about creating public and private keys for digitally signing an Android app that you have created:

http://www.ibm.com/developerworks/library/x-androidsecurity/] When you download

a new app or update one of the apps already in your device, it

is this sandboxing feature that causes your smartphone to ask

you whether the app is allowed to access the data produced by

other programs and various components of your smartphone —

these would be the location information, the camera, the logs,

the bookmarks, etc.

• By default, an app runs with no permissions assigned to it. When

an app requests access to the data produced by another app, it

is subject to the rules declared in the latter’s manifest file.

16

Computer and Network Security by Avi Kak Lecture 32

• Sandboxing ensures that, in general, any files created by an app

can only be read by that app. Android does give app developers

facilities for creating more globally accessible files through modes

named MODE WORLD WRITABLE and MODE WORLD READABLE. Apps using

these read/write modes are subject to greater scrutiny from a

security standpoint.

• For greater control over what other app processes can access the

data created by your own app, instead of using the two read/write

modes mentioned in the previous bullet, your app can place

its data in an object that is subclassed from the Android Java

class ContentProvider and specify its android:exported, android:

protectionLevel, and other attributes. [In most cases, a ContentProvider stores

its information in an SQlite database, which as its name implies is an SQL database for storing structured

information. An app requesting information from such a database must first create a client by subclassing from

the Java class ContentResolver.]

• In Linux systems, the two most widely deployed techniques for

sandboxing a process are SELinux and AppArmor. SELinux —

the name is a shorthand for “Security Enhanced Linux” — is

a Linux kernel module that makes it possible for the operating

system to exercise fine-grained access control with regard to the

resource requests by running programs.

• Both SELinux and AppArmor are based on the LSM (Linux Se-

curity Modules) API for enforcing what is known as Mandatory

17

Computer and Network Security by Avi Kak Lecture 32

Access Control (MAC). MAC is meant specifically for operating

systems to place constraints on the resources that can be accessed

by running programs. By resources, we mean files, directories,

ports, communication interfaces, etc.

• Perhaps the most significant difference between SELinux and Ap-

pArmor is that the former is based on context labels that are

associated with all the files, the interfaces, the system resources,

etc., and the latter is based on the pathnames to the same. [By

default, Ubuntu installs Linux with AppArmor. However, you can yourself install the SELinux kernel patch

through the Synaptic Package Manager. Keep in mind, though, when you install SELinux, the AppArmor pack-

age will be automatically uninstalled. About comparing SELinux with AppArmor, there are many developers

out there who prefer the latter because they consider the SELinux policy rules for isolating the processes to be

much too complex for manual generation. While there do exist tools that can generate the rules for you, the

complexity of the rules makes it difficult to verify them, according to these developers. On the other hand, the

AppArmor rules are relatively simple, can be expressed manually, and are therefore more amenable to human

validation. However, the access control you can achieve with AppArmor is not as fine grained as what you can

get with SELinux.] The following three sources provide a comparative

assessment of SELinux and AppArmor for isolating the processes

running in your computer:

http://elinux.org/images/3/39/SecureOS_nakamura.pdf

http://researchrepository.murdoch.edu.au/6177/1/empowering_end_users.pdf

https://www.suse.com/support/security/apparmor/features/selinux_comparison.html

• The Mandatory Access Control (MAC) used by An-

droid to isolate a process by running it in a sandbox

18

Computer and Network Security by Avi Kak Lecture 32

is based on SELinux. [This is true for versions 4.3 and higher of Android.

I believe the latest version of Android is 7.1.2.] For that reason, the rest of

this section focuses on SELinux.

• A good starting point for understanding the access control made

possible by SELinux is what you get with a standard distribution

of Linux. The standard distribution regulates access on the basis

of the privileges associated with a running program. In general,

if a program runs with superuser privileges (that is, privileges

associated with user ID 0), it can bypass all security restrictions.

That is, such a program has no constraints regarding what files,

interfaces, interprocess communications, and so on, it can access.

(Just imagine a rogue program in your machine that has managed

to guess your root password.) [In case you happen to be thinking of access privileges in

Windows platforms, the accounts SYSTEM and ADMINISTRATOR have privileges similar to those of root

in Unix/Linux systems.] The access control in a standard distribution of

Linux is referred to as the Linux Discretionary Access Control

(DAC).

• SELinux, on the other hand, associates a context label with every

file, directory, user account, process, etc., in your computer. A

context label consists of four colon separated parts (with the last

part being optional):

user : role : type : level

You can see the context label associated with a file or a directory

by executing the command ‘ls -Z filename’. For example, when

19

Computer and Network Security by Avi Kak Lecture 32

I execute the command ‘ls -Z /home/kak/’, here are a few lines

of what I get back:

system_u:object_r:file_t:s0 AdaBoost/

system_u:object_r:file_t:s0 admin/

system_u:object_r:file_t:s0 analytics/

system_u:object_r:file_t:s0 ArgoUML/

system_u:object_r:file_t:s0 av/

system_u:object_r:file_t:s0 backup/

system_u:object_r:file_t:s0 beamer/

...

...

What you see in the first column are the context labels created by

SELinux for the subdirectories in my home directory. Therefore,

for the subdirectory AdaBoost, the ‘user’ is system u, the ‘role’

object t, the ‘type’ file t, and the ‘level’ s0. SELinux uses these

individual pieces of information to make access control decisions.

When the security policy allows it, you can change components

of a context label selectively by using the chcon command. That

command stands for “change context”.

• And if you want to see the context labels associated with the pro-

cesses currently running in your computer, execute the command

‘ps -eZ’. When I execute this command on my Ubuntu laptop, I

get a very long list, of which just a few of the beginning entries

are:

system_u:system_r:kernel_t:s0 1 ? 00:00:02 init

system_u:system_r:kernel_t:s0 2 ? 00:00:00 kthreadd

system_u:system_r:kernel_t:s0 3 ? 00:00:01 ksoftirqd/0

20

Computer and Network Security by Avi Kak Lecture 32

system_u:system_r:kernel_t:s0 5 ? 00:00:00 kworker/0:0H

system_u:system_r:kernel_t:s0 7 ? 00:10:26 rcu_sched

system_u:system_r:kernel_t:s0 8 ? 00:05:49 rcuos/0

system_u:system_r:kernel_t:s0 9 ? 00:03:22 rcuos/1

...

...

...

• As you can imagine, when you associate with every entity in your

computer a context label of the sort shown above, you can set

up a fine-grained access control policy by placing constraints on

which resource a user (in the sense used in the context labels) in

a given role and of a certain given type and level is allowed to

access taking into account the resource’s own context label. You

can now create a Role-Based Access Control (RBAC) policy, or

a Type Enforcement (TE) policy, and, if SELinux specifies the

optional ‘level’ field in the context labels, a Multi-Level Security

(MLS) policy. In addition, you can set up a Multi-Category

Security (MCS) policy — we will talk about that later.

• To show a simple example of type enforcement from the SELinux

FAQ, assume that all the files in a user account are given the type

label user home t. And assume that the Firefox browser running

in your machine is given the type label firefox t. The following

access control declaration

allow firefox_t user_home_t : file { read write };

will then ensure that the browser has only read and write permis-

21

Computer and Network Security by Avi Kak Lecture 32

sions with respect to user files — even if the browser is being run

by someone with root privileges. [You can see why some people think of SELinux as a

firewall between programs. Ordinarily, as you saw in Lecture 18, a firewall regulates traffic between a computer

and the rest of the network.]

• In order to make it easier to create the access control policies for

a new application, SELinux gives you a Reference Policy that can

be modified as needed. A company named Tresys Technologies

updates the Reference Policy on the basis of the user feedback sent

to the Policy Project mailing list at GitHub. This reference policy

is typically customized by the provider of your Linux platform.

• In order to become more familiar with SELinux, you can down-

load and install SELinux in a Ubuntu machine through your

Synaptic Package Manager. [Or you can do ‘sudo apt-get remove apparmor’ followed

by ‘sudo apt-get install selinux’] Make sure you choose the meta-package

selinux and not the package selinux-basics. SELinux becomes

operational (although not enabled) just by installing it. Note

that with Ubuntu, the reference policy you get is stored in the

file /etc/selinux/ubuntu/policy/policy29.

• After you have installed SELinux as described above, you will

need to reboot the machine in order to enable SELinux. [During this

reboot, all of the files on the disk will acquire context labels in accordance with the explanation presented earlier

in this section.] Subsequently, if you execute a command like ‘sestatus’

(you don’t have to be root to run this command), you’ll see the

22

Computer and Network Security by Avi Kak Lecture 32

following output returned by SELinux:

SELinux status: enabled

SELinuxfs mount: /sys/fs/selinux

SELinux root directory: /etc/selinux

Loaded policy name: ubuntu

Current mode: permissive

Mode from config file: permissive

Policy MLS status: enabled

Policy deny_unknown status: allowed

Max kernel policy version: 28

If you now execute the command ‘sudo setenforce 1’, you’ll see

the same output as shown above, but with the line ‘Current mode:

permissive’ changed to ‘Current mode: enforcing’.

• If you want to see a listing of all the SELinux users, you can

enter the command ‘seinfo -u’. When I run this command on

my Ubuntu laptop, I get

Users: 6

sysadm_u

system_u

root

staff_u

user_u

unconfined_u

And if I execute the command ‘seinfo -r’ to see all of the roles

used in the context labels, I get back

23

Computer and Network Security by Avi Kak Lecture 32

Roles: 6

staff_r

user_r

object_r

sysadm_r

system_r

unconfined_r

Along the same lines, executing the command ‘seinfo -t’ returns

a long list of all of the types used in the context labels. This list

in my laptop has 1041 entries. The list starts with:

Types: 1041

bluetooth_conf_t

etc_runtime_t

audisp_var_run_t

auditd_var_run_t

ipsecnat_port_t

...

...

...

• To get a sense of how fine-grained access control with SELinux

can be made, execute the command ‘seinfo -a’ to see a list of the

large number of attributes that go with the type labels. When I

execute this command, I get a list with 174 entries. Here is how

the list begins:

Attributes: 174

direct_init

privfd

file_type

24

Computer and Network Security by Avi Kak Lecture 32

mlsnetinbound

can_setenforce

exec_type

xproperty_type

dbusd_unconfined

kern_unconfined

mlsxwinwritecolormap

node_type

packet_type

proc_type

port_type

...

...

...

• In case you are curious, you can see the context label assigned to

your account name by entering the usual ‘id’ command. Prior to

installing SELinux, this command just returns the user ID and

group ID associated with your account. However, after having

installed SELinux, I get back the following (all in one line):

uid=1001(kak) gid=1001(kak) groups=1001(kak),4(adm),7(lp),27(sudo),109(lpadmin),124(sambashare)

context=system_u:system_r:kernel_t:s0

What you see at the end is the context label associated with my

account. If I just wanted to see the context label, I can execute

the command ‘id -Z’. Running this command yields

system_u:system_r:kernel_t:s0

25

Computer and Network Security by Avi Kak Lecture 32

which says that I am a system u user (presumably because of my

sudo privileges), that my role is system r, that the type label

associated with me is kernel t, and that my level is s0.

• Remember the following six SELinux users returned by the com-

mand ‘seinfo -u’: sysadm u, system u, root, staff u, user u, and

unconfined u. Suppose we want to find out what different possi-

ble roles can be played by each of these users, we can execute the

command ‘sudo semanage user -l’. This command returns:

Labeling MLS/ MLS/

SELinux User Prefix MCS Level MCS Range SELinux Roles

root user s0 s0-s0:c0.c255 staff_r sysadm_r system_r

staff_u user s0 s0-s0:c0.c255 staff_r sysadm_r

sysadm_u user s0 s0-s0:c0.c255 sysadm_r

system_u user s0 s0-s0:c0.c255 system_r

unconfined_u user s0 s0-s0:c0.c255 system_r unconfined_r

user_u user s0 s0 user_r

This display shows that a ‘root’ user in my laptop is allowed to

acquire any of the three roles: staff r, sysadm r, and system r.

However, since as ’kak’ I am a system u user, the only role I am

allowed is system r.

• Let’s now talk about the fourth column in the tabular presenta-

tion returned by the command ‘sudo semanage user -l’. This is

the column with the heading “MLS/MCS Range”. Each entry in

this column consists of two parts that are separated by a colon.

What is to the left of the colon is the range of levels that is al-

lowed for each SELinux user (where, again, by ’user’ we mean

26

Computer and Network Security by Avi Kak Lecture 32

one of the six user labels that SELinux understands). As you will

recall, earlier in this section we talked about MLS standing for

Multi-Level Security that is made possible by the level field in the

context labels. What is displayed on the right of the colon — it

is important to the implementation of an MCS (Multi-Category

Security) access control policy mentioned earlier — is the range of

categories allowed for each SELinux user. You can, for example,

associate a set of different categories with each file in a directory.

A user will be able to access a file in that directory only if

the user belongs to all of the categories specified for that file.

The declaration syntax ‘c0.c255’ is a shorthand for categories c0

through c255. When MCS based access control is used, it comes

subsequent to the access control stipulated by LDAC, and the

access constraints created through role-based, type-based, and

level-based access control enforcement. So MCS can only further

constrain what resources can be accessed on a computer. [As men-

tioned earlier in this section, the access control made available by a standard distribution of Linux is referred

to as Linux Discretionary Access Control (DAC).]

• In case you need to, you can disable SELinux with a command

like

sudo setenforce 0

and re-enable it with

sudo setenforce 1

As mentioned earlier, you can check the status of SELinux run-

ning on our machine by

27

Computer and Network Security by Avi Kak Lecture 32

sestatus

If it says “enforcing,” that means that SELinux is providing pro-

tection. To completely disable the SELinux install in your ma-

chine, change the SELINUX variable in the /etc/selinux/config

file to read

SELINUX=disabled

• Should it happen that you run into some sort of a jam after

installing SELinux in a host, perhaps you could try executing

the command ‘sudo setenforce 0’ in that host in order to place

SELinux in a permissive mode. To elaborate with an example,

let’s say you try to scp a file into a SELinux enabled host as a user

named ‘xxxx’ (assuming that xxxx has login privileges at the host)

and it doesn’t work. You check the ‘/var/log/auth.log’ file in the

host and you see there the error message “failed to get default SELinux security

context for xxxx (in enforcing mode)”. In order to solve this problem, you’d need

to fix the context label associated with the user ‘xxxx’. Barring

that, you can also momentarily place the host in a permissive

mode through the command ‘sudo setenforce 0’ and get the job

done.

• What is achieved in Linux with MAC is achieved in Windows

systems with Mandatory Integrity Control (MIC) that associates

one of the following five Integrity Levels (IL) with processes: Low,

Medium, High, System, and Trusted Installer.

28

Computer and Network Security by Avi Kak Lecture 32

• While we achieve significant security by sandboxing the apps,

one cannot be lulled into thinking that that’s is the answer to

all systems related vulnerabilities in computing devices. When

it comes to systems related issues in computer security, here is

some food for thought: Is it possible that your OS bootstrap

loader (such as the GRUB bootloader) could be used by a rogue

program to download a corrupted OS kernel? Is it possible that

the /sbin/init file (that is used to launch the init process from

which all other processes are spawned in Unix/Linux platforms)

could itself be replaced by a corrupted version? And what about

an adversary exploiting the ptrace tools that is normally used

in Linux by one process to observe and control the execution of

another process?

29

Computer and Network Security by Avi Kak Lecture 32

32.5: WHAT ABOUT THE SECURITY OF
OVER-THE-AIR COMMUNICATIONS

WITH MOBILE DEVICES?

• Even though we may have the comfort of knowing that, for the

most part, our smartphones are free of malware (and that, there-

fore, our personal information stored in our phones is secure),

what does that imply with respect to the ability of

the devices to engage in secure voice and data com-

munications with the base stations of cellular opera-

tors? It is this question that I’ll briefly address in this section.

• The answer to the question posed above depends on which gen-

eration of cellphone technology you are talking about. As you

know, we now have 2G (GSM), 3G (UMTS), and 4G (LTE, ITU)

wireless standards for cellphone communications. The algorithms

that are used for encrypting over-the-air voice and data commu-

nications with these various standards are referred to as the A5

series of algorithms. The algorithm that is used for encrypting

voice and SMS in the 2G standard (which, by the way, still dom-

inates in most geographies around the world) is the A5/1 stream

cipher. A5/2, a weaker version of A5/1 created to meet certain

export restrictions of about a decade ago, turned out to be an ex-

30

Computer and Network Security by Avi Kak Lecture 32

tremely weak cipher and has been discontinued. A5/3 and A5/4

are meant for 3G and 4G wireless technologies. [The GSM standard defines a

set of algorithms for encryption and authentication services. These algorithms are named ‘Ax’ where ‘x’ in an

integer that indicates the function of the algorithm. For example, a base station can call on the A3 algorithm

to authenticate a mobile device. The A5 algorithm provides the encryption/decryption services. The algorithm

A8 is used to generate a 64 bit session key. An algorithm with the name COMP128 combines the functionality

of A3 and A8.]

• Both A5/3 and A5/4 are based on the KASUMI block cipher,

which in turn is based on a block cipher called MISTY1 devel-

oped by Mitsubishi. The KASUMI cipher is used in the Output

Feedback Mode that we talked about in Lecture 9, which gener-

ates a bitstream in multiples of 64 bits. Regarding KASUMI, it

is a 64-bit block cipher with a Feistel structure (that you learned

in Lecture 3) with eight rounds. KASUMI needs a 128-bit en-

cryption key.

• The rest of this section, and the subsection that follows, focuses

on the A5/1 cipher that is used widely in 2G cellular networks. It

is now well known that this cipher provides essentially no security

because of the speed with which it can be cracked using ordinary

computing hardware.

• What makes A5/1 interesting is that it is a great case study in

how things can go wrong when you believe in security through

obscurity. As I mentioned in Section 32.1, this algorithm was

31

Computer and Network Security by Avi Kak Lecture 32

kept secret for several years by the cellphone operators. But,

eventually, it was leaked out and found to provide virtually no

security with regard to the privacy of voice data and SMS mes-

sages.

• A5/1 is bit-level stream cipher with a 64-bit encryption key. The

encryption key is created for each session from a master key that

is shared by the cellphone operator (with which the phone is

registered) and the SIM card in the phone. When a base station

(which may belong to some other cellphone operator) needs a

session key, it fetches it from the cellphone operator that holds

the master key.

• GSM transmissions are bursty. Time division multiplexing is used

to quickly transmit a collected stream of bits that need to be sent

over a given communication link between the base station and a

phone. A single burst in each direction consist of 114 bits of 4.615

milliseconds duration.

• The purpose of A5/1 is to produce two pseudorandom 114-bit

streams — called the keystreams — one for the uplink and the

other for the downlink. The 114-bit data in each direction is

XORed with the keystream. The destination can recover the

original data by XORing the received bit stream with the same

keystream.

32

Computer and Network Security by Avi Kak Lecture 32

• In addition to the 64-bit key, the encryption of each 114-bit

stream is also controlled by a 22-bit frame number which is always

publicly known.

• A5/1 works off three LFSRs (Linear Feedback Shift Register),

designated R1, R2, and R3, of sizes 19, 22, and 23 bits, as shown

in Figure 1. Each shift register is initialized with the 64-bit en-

cryption key and the 22-bit frame number in the manner illus-

trated by the Python code in the next subsection.

• Each shift register has what is known as a clocking bit — for

each register it’s marked with a red box in Figure 1. As you can

tell from the figure, for R1, the clocking bit is at index 8, and

for both R2 and R3 at index 10. During the production of the

keystream, the clocking bits are used to decide whether or not to

clock a shift register.

• Clocking a shift register involves the following operations: (1)

You record the bits at the feedback taps in the register; (2) You

shift the register by one bit position towards the MSB; and (3)

You set the value of the LSB to an XOR of the feedback bits.

When you are first initializing a register with the encryption key,

you add a fourth step, which is to XOR the LSB with the key bit

corresponding to that clock tick, etc.

33

Computer and Network Security by Avi Kak Lecture 32

0 18

0 21

1

1

220 1

8

10

10

Register R1

Register R2

Register R3

Clocking Control

Output
Keystream

13 1617

20

20 217

Figure 1: This figure shows how three Linear Feedback Shift

Registers are used in the A5/1 algorithm for encrypting

voice and SMS in 2G cellular networks. (This figure is from Lecture 32

of “Lecture Notes on Computer and Network Security” by Avi Kak)

34

Computer and Network Security by Avi Kak Lecture 32

• After the shift registers have been initialized, you produce a

keystream by doing the following at each clock tick:

– You take a majority vote of the clocking bits in the three

registers R1, R2, and R3. Majority voting means that you

find out whether at least two of the three are either 0’s or 1’s.

– You only clock those registers whose clocking bits are in agree-

ment with the majority bit.

– You take the XOR of the MSB’s of the three registers and

that becomes the output bit.

• The next subsection presents a Python implementation of this

logic to remove any ambiguities about the various steps outlined

above.

• A5/1 has been the subject of cryptanalysis by several researchers.

The most recent attack on A5/1, by Karsten Nohl, was presented

at the 2010 Black Hat conference. The PDF of the paper is

available at:

https://srlabs.de/blog/wp-content/uploads/2010/07/Attacking.Phone_.Privacy_Karsten.Nohl_1.pdf

Here is a quote from Karsten Nohl’s paper:

35

Computer and Network Security by Avi Kak Lecture 32

“..... A5/1 can be broken in seconds with 2TB of fast storage and two graph-
ics cards. The attack combines several time-memory trade-off techniques and
exploits the relatively small effective key size of 61 bits”

Nohl has demonstrated that a rainbow table attack can be mounted

successfully on A5/1. You learned about rainbow tables in Lec-

ture 24.

• Another interesting (but more theoretical) paper about mount-

ing attacks on A5/1 is “Cryptanalysis of the A5/1 GSM Stream

Cipher” by Eli Biham and Orr Dunkelman that appeared in

Progress in Cryptology – INDOCRYPT, 2000. Another impor-

tant publication that talks about cryptanalysis of A5 ciphers

is “Instant Ciphertext-Only Cryptanalysis of GSM Encrypted

Communication” by Elad Barkan, Eli Biham, and Nathan Keller.

36

Computer and Network Security by Avi Kak Lecture 32

32.5.1: A Python Implementation of the A5/1 Cipher

• So that you can better understand the algorithmic steps for the

A5/1 stream cipher described in the previous section, I’ll now

present here its Python implementation. As the comment block

at the top of the code file says, my Python implementation is

based on the C code provided for the algorithm by Marc Briceno,

Ian Goldberg, and David Wagner.

• Line (1) of the code defines the three registers R1, R2, and R3 as

three BitVectors of sizes 19, 22, and 23 bits respectively. It is best

to visualize these registers as shown in Figure 1. The BitVectors

constructed will actually contain the LSB at the left end and the

MSB at the right end.

• Line (2) defines the BitVectors needed for the feedback taps on

R1, R2, and R3. We set the tap bits in Lines (3), (4) and (5).

We can get hold of the feedback bits in each register by simply

taking the logical AND of the register BitVectors, as defined in

Line (1), and the tap BitVectors, as defined in Line (2).

• Lines (9) through (11) set the encryption key. This key can ob-

viously be set to anything at all provided it is 64 bits long. The

37

Computer and Network Security by Avi Kak Lecture 32

specific value shown for the key is the same as used by Briceno,

Goldberg, and Wagner in their C code.

• In a similar fashion, Lines (12) and (13) set the frame number

which must be a 22-bit number. I have used the same number as

Briceno et al.

• Lines (14) and (15) define the two 114-bit long BitVectors that

are used later for storing the two output keystreams.

• Lines (16) through (32) define the support routines parity(),

majority(), clockone(), and clockall(). Their definitions should

make clear the logic used in these functions.

• The setupkey() in Lines (33) through (44) initializes the three

shift registers by, first, clocking in the 64 bits of the encryp-

tion key, then, by clocking in the 22 bits of the frame number,

and, finally, by simply clocking the registers 100 times for the

“avalanche” effect. Note the important difference between how

the registers are clocked in Lines (34) through (39) and in Lines

(40) through (44). In Lines (34) through (39), we clock all three

registers at each clock tick. However, in lines (40) through (44),

a register is clocked depending on how its clocking bit compares

with the clocking bits in other two registers.

38

Computer and Network Security by Avi Kak Lecture 32

• The function that actually produces the keystreams, run(), is de-

fined in Lines (45) through (55). I have combined the production

of the two keystreams into a single 228-iterations loop in Lines

(48) through (53). The first 114 bits generated in this manner are

for the uplink keystream and the next 114 bits for the downlink

keystream. This is reflected by the division made in lines (54)

and (55).

• The rest of the code is for checking the accuracy of the implemen-

tation against the test vector provided by Briceno et al. in their

C-based implementation. The variables goodAtoB and goodBtoA

store the correct values for the two keystreams for the encryption

key of Line (9) and the frame number of Line (12).

#!/usr/bin/env python

A5_1.py

Avi Kak (kak@purdue.edu)

April 21, 2015

This is a Python implementation of the C code provided by Marc Briceno, Ian

Goldberg, and David Wagner at the following website:

##

http://www.scard.org/gsm/a51.html

##

For accuracy, I have compared the output of this Python code against the test

vector provided by them.

The A5/1 algorithm is used in 2G GSM for over-the-air encryption of voice and SMS

data. On the basis of the cryptanalysis of this cipher and the more recent

rainbow table attacks, the A5/1 algorithm is now considered to provide virtually

no security at all. Nonetheless, it forms an interesting case study that shows

that when security algorithm are not opened up to public scrutiny (because some

folks out there believe in "security through obscurity"), it is possible for such

an algorithm to become deployed on a truly global basis before its flaws become

evident.

39

Computer and Network Security by Avi Kak Lecture 32

The A5/1 algorithm is a bit-level stream cipher based on three LFSR (Linear

Feedback Shift Register). The basic operation you carry out in an LFSR at each

clock tick consists of the following three steps: (1) You record the bits at the

feedback taps in the register; (2) You shift the register by one bit position

towards the MSB; and (3) You set the value of the LSB to an XOR of the feedback

bits. When you are first initializing a register with the encryption key, you

add a fourth step, which is to XOR the LSB with the key bit corresponding to that

clock tick, etc.

from BitVector import *

The three shift registers

R1,R2,R3 = BitVector(size=19),BitVector(size=22),BitVector(size=23) #(1)

Feedback taps

R1TAPS,R2TAPS,R3TAPS = BitVector(size=19),BitVector(size=22),BitVector(size=23) #(2)

R1TAPS[13] = R1TAPS[16] = R1TAPS[17] = R1TAPS[18] = 1 #(3)

R2TAPS[20] = R2TAPS[21] = 1 #(4)

R3TAPS[7] = R3TAPS[20] = R3TAPS[21] = R3TAPS[22] = 1 #(5)

print "R1TAPS: ", R1TAPS #(6)

print "R2TAPS: ", R2TAPS #(7)

print "R3TAPS: ", R3TAPS #(8)

keybytes = [BitVector(hexstring=x).reverse() for x in [’12’, ’23’, ’45’, ’67’, \

’89’, ’ab’, ’cd’, ’ef’]] #(9)

key = reduce(lambda x,y: x+y, keybytes) #(10)

print "encryption key: ", key #(11)

frame = BitVector(intVal=0x134, size=22).reverse() #(12)

print "frame number: ", frame #(13)

We will store the two output keystreams in these two BitVectors, each of size 114

bits. One is for the uplink and the other for the downlink:

AtoBkeystream = BitVector(size = 114) #(14)

BtoAkeystream = BitVector(size = 114) #(15)

This function used by the clockone() function. As each shift register is

clocked, the feedback consists of the parity of all the tap bits:

def parity(x): #(16)

countbits = x.count_bits() #(17)

return countbits % 2 #(18)

In order to decide whether or not a shift register should be clocked at a given

clock tick, we need to examine the clocking bits in each register and see what the

majority says:

def majority(): #(19)

sum = R1[8] + R2[10] + R3[10] #(20)

if sum >= 2: #(21)

return 1 #(22)

else: #(23)

return 0 #(24)

This function clocks just one register that is supplied as the first arg to the

function. The second argument must indicate the bit positions of the feedback

40

Computer and Network Security by Avi Kak Lecture 32

taps for the register.

def clockone(register, taps): #(25)

tapsbits = register & taps #(26)

register.shift_right(1) #(27)

register[0] = parity(tapsbits) #(28)

This function is needed for initializing the three shift registers.

def clockall(): #(29)

clockone(R1, R1TAPS) #(30)

clockone(R2, R2TAPS) #(31)

clockone(R3, R3TAPS) #(32)

This function initializes the three shift registers with, first, the 64-bit

encryption key, then with the 22 bits of frame number, and, finally, by simply

clocking the registers 100 times to create the ’avalanche’ effect. Note that

during the avalanche creation, clocking of each register now depends on the

clocking bits in all three registers.

def setupkey(): #(33)

Clock into the registers the 64 bits of the encryption key:

for i in range(64): #(34)

clockall() #(35)

R1[0] ^= key[i]; R2[0] ^= key[i]; R3[0] ^= key[i] #(36)

Clock into the registers the 22 bits of the frame number:

for i in range(22): #(37)

clockall() #(38)

R1[0] ^= frame[i]; R2[0] ^= frame[i]; R3[0] ^= frame[i] #(39)

Now clock all three registers 100 times, but this time let the clocking

of each register depend on the majority voting of the clocking bits:

for i in range(100): #(40)

maj = majority() #(41)

if (R1[8] != 0) == maj: clockone(R1, R1TAPS) #(42)

if (R2[10] != 0) == maj: clockone(R2, R2TAPS) #(43)

if (R3[10] != 0) == maj: clockone(R3, R3TAPS) #(44)

After the three shift registers are initialized with the encryption key and the

frame number, you are ready to run the shift registers to produce the two bit 114

bits long keystreams, one for the uplink and the other for the downlink.

def run(): #(45)

global AtoBkeystream, BtoAkeystream #(46)

keystream = BitVector(size=228) #(47)

for i in range(228): #(48)

maj = majority() #(49)

if (R1[8] != 0) == maj: clockone(R1, R1TAPS) #(50)

if (R2[10] != 0) == maj: clockone(R2, R2TAPS) #(51)

if (R3[10] != 0) == maj: clockone(R3, R3TAPS) #(62)

keystream[i] = R1[-1] ^ R2[-1] ^ R3[-1] #(53)

AtoBkeystream = keystream[:114] #(54)

BtoAkeystream = keystream[114:] #(55)

Initialize the three shift registers:

setupkey() #(56)

Now produce the keystreams:

run() #(57)

Display the two keystreams:

41

Computer and Network Security by Avi Kak Lecture 32

print "\nAtoBkeystream: ", AtoBkeystream #(58)

print "\nBtoAkeystream: ", BtoAkeystream #(59)

Here are the correct values for the two keystreams:

goodAtoB = [BitVector(hexstring = x) for x in [’53’,’4e’,’aa’,’58’,’2f’,’e8’,’15’,’1a’,\

’b6’,’e1’,’85’,’5a’,’72’,’8c’,’00’]] #(60)

goodBtoA = [BitVector(hexstring = x) for x in [’24’,’fd’,’35’,’a3’,’5d’,’5f’,’b6’,’52’,\

’6d’,’32’,’f9’,’06’,’df’,’1a’,’c0’]] #(61)

goodAtoB = reduce(lambda x,y: x+y, goodAtoB) #(62)

goodBtoA = reduce(lambda x,y: x+y, goodBtoA) #(63)

print "\nGood: AtoBkeystream: ", goodAtoB[:114] #(64)

print "\nGood: BtoAkeystream: ", goodBtoA[:114] #(65)

if (AtoBkeystream == goodAtoB[:114]) and (AtoBkeystream == goodAtoB[:114]): #(66)

print "\nSelf-check succeeded: Everything looks good" #(67)

• When you run this code, you should see the following output

R1TAPS: 0000000000000100111

R2TAPS: 0000000000000000000011

R3TAPS: 00000001000000000000111

encryption key: 0100100011000100101000101110011010010001110101011011001111110111

frame number: 0010110010000000000000

AtoBkeystream: 010100110100111010101010010110000010111111101000000101010001

101010110110111000011000010101011010011100101000110000

BtoAkeystream: 001001001111110100110101101000110101110101011111101101100101

001001101101001100101111100100000110110111110001101011

Good AtoBkeystream: 010100110100111010101010010110000010111111101000000101010001

101010110110111000011000010101011010011100101000110000

Good BtoAkeystream: 001001001111110100110101101000110101110101011111101101100101

001001101101001100101111100100000110110111110001101011

Self-check succeeded: Everything looks good

• You are probably wondering as to why I did not show the keystreams

in hex. In general, you can display a BitVector object in hex by

42

Computer and Network Security by Avi Kak Lecture 32

calling its instance method get hex from bitvector() — provided

the number of bits is a multiple of 4. Our keystreams are 114 bits

long, which is not a multiple of 4. I could have augmented the

keystreams by appending a couple of zeros at the end, but then

you are taking liberties with the correctness of the output.

43

Computer and Network Security by Avi Kak Lecture 32

32.6: SIDE-CHANNEL ATTACKS ON
SPECIALIZED MOBILE DEVICES

• I’ll now describe attacks that are best carried out if an adversary

has physical possession of a computing device. Therefore, by their

very nature, mobile devices are vulnerable to these form attacks

— especially so the more specialized mobile devices like smart-

cards that contain rudimentary hardware and software compared

to what you find in smartphones these days. By physically sub-

jecting the hardware connections in such devices to externally

injected momentary faults (say by a transient voltage spike from

an external source), or by measuring the time taken by a cryp-

tographic routine for a very large number of inputs, it may be

possible to make a good guess at the security parameters of such

devices.

• Before reading this section further (and also before reading Sec-

tions 32.7 and 32.8), you should go through Karsten Nohl’s 2008

Black Hat talk at the link shown below. This talk will give you a

good sense of the intrusive nature of the attacks you can mount

on a device like a smartcard in order to break its encryption:

https://www.blackhat.com/presentations/bh-usa-08/Nohl/BH_US_08_Nohl_Mifare.pdf

44

Computer and Network Security by Avi Kak Lecture 32

• In general, a side-channel attack means that an adversary is try-

ing to break a cipher using information that is NOT intrinsic

to the mathematical details of the encryption/decryption algo-

rithms, but that may be inferred from various “external” mea-

surements such as the power consumed by the hardware executing

the algorithms for different possible inputs, the time taken by the

hardware for the same, how the hardware responds to externally

injected faults, etc.

• Various forms of side-channel attacks are:

Fault Injection Attack: These are based on deliberately get-

ting the hardware on which a specific part of encryption/decryption

algorithm is running to return a wrong answer. As shown in

the next section, a wrong answer may give sufficient clues to

figure out the parameters of the cryptographic algorithm being

used.

Timing Attack: These attacks try to infer a cryptographic key

from the time it takes for the processor to execute an algorithm

and the dependence of this time on different inputs.

Power Analysis Attack: Here the goal is to analyze the power

trace of an executing cryptographic algorithm in order to fig-

ure out whether a particular instruction was executed at a

specific time. It has been shown that such traces can reveal

45

Computer and Network Security by Avi Kak Lecture 32

the cryptographic keys used.

EM Analysis Attack: Assuming that the hardware implement-

ing a cryptographic routine is not adequately shielded against

leaking electromagnetic radiation (at the clock frequency of

the processor), if you can construct a trace of this radiation,

you may be able to infer whether or not a particular instruc-

tion was executed at a given time — just as in a power analysis

attack. From such information, you may be able to draw in-

ferences about the bits in a encryption key.

• In the sections that follow, I will consider two of these attacks in

greater detail: the fault-injection attack and the timing attack.

In order to explain the principles involved, for both these attacks,

I will assume that a mobile device is charged with digitally signing

the outgoing messages with the RSA algorithm. The goal of the

attacks will be make a guess at the private exponent used for

constructing a digital signature. Note that these days if an

attack can reliably guess even a single bit of a secret,

it is considered to be a successful attack.

46

Computer and Network Security by Avi Kak Lecture 32

32.7: FAULT INJECTION ATTACKS

• The goal of this section is to show that if you can get the processor

of a mobile device to yield a faulty value for a portion of the

calculations, you may be able to get the device to part with its

secret, which could be the encryption key you are looking for.

• I will assume that the processor of the mobile device has an em-

bedded private key for digitally signing messages with the RSA

algorithm.

• The reader will recall from Lecture 12 that given a modulus n

and a public and private key pair (e, d), we can sign a message

M by calculating its digital signature S = Md mod n. [In practice,

you are likely to calculate the signature of just the hash of the message M . That detail, however, does not

change the overall explanation presented in this section.]

• As explained in Section 12.5 of Lecture 12, calculation of the

signature S = Md (mod n) can be speeded up considerably by

using the Chinese Remainder Theorem (CRT). Since the owner

of the private key d will also know the prime factors p and q of

47

Computer and Network Security by Avi Kak Lecture 32

the modulus n, with CRT you first calculate [In the explanation in Section

12.5 of Lecture 12, our focus was on encryption/decryption with RSA. Therefore, the private exponent d was

applied to the ciphertext integer C. Here we are talking about digital signatures, which calls for applying the

private exponent to the message itself (or to a hash of the message).]

Vp = Md mod p

Vq = Md mod q

In order to construct the signature S from Vp and Vq, we must

calculate the coefficients:

Xp = q × (q−1 mod p)

Xq = p× (p−1 mod q)

The CRT theorem of Section 11.7 of Lecture 11 then tells us that

the signature S is related to the intermediate results Vp and Vq

by

S =
(

Vp ×Xp + Vq ×Xq

)

mod n

=

(

q × (q−1 mod p)× Vp + p× (p−1 mod q)× Vq

)

mod n (1)

• Let’s now assume that we have somehow introduced a fault in the

calculation of Vp by, say, subjecting the hardware to a momentary

voltage surge. Since the voltage surge is limited in duration, we

assume that while Vp is now calculated erroneously as V̂p, the

value of Vq remains unchanged. Let’s use Ŝ to represent the

signature calculated using the erroneous V̂p. We can write:

48

Computer and Network Security by Avi Kak Lecture 32

Ŝ =

(

q × (q−1 mod p)× V̂p + p× (p−1 mod q)× Vq

)

mod n

• Subtracting the faulty signature Ŝ from its true value S, we have

S − Ŝ =

(

q × (q−1 mod p)[Vp − V̂p]

)

mod n (2)

• The above result implies that

q = gcd(S − Ŝ, n) (3)

As you can see, the attacker can immediately figure out the

prime factor q of the modulus by calculating the GCD of S − Ŝ

and n. [See Lecture 5 for how to best calculate the GCD of two numbers.] Subsequently,

a simple division would yield to the attacker the other prime

factor p. In this manner, the attacker would be able to figure

out the prime factors of the RSA modulus without ever having

to factorize it. After acquiring the prime factors p and q, it

becomes a trivial matter for the attacker to find out what the

private key d is since the attacker knows the public key e.

• The ploy described above requires that the attacker calculate both

the true signature S and the faulty signature Ŝ for a messageM .

As it turns out, the attacker can carry out the same exploit with

just the faulty signature Ŝ along with the message M .

49

Computer and Network Security by Avi Kak Lecture 32

• To see why the same exploit works with M and Ŝ, note first that
if we are given the correct signature S, we can recover M by
M = Se mod n. Also note that since Se mod n = M , we can
write:

Se = k1 × n + M

= k1 × p× q + M

for some value of the integer constant k1. The second relationship
shown above leads to:

Se mod p = M (4)

Se mod q = M (5)

• Also note that, using Equation (1), we can write for the correct
signature:

S =

(

q × (q−1 mod p)× Vp + p× (p−1 mod q)× Vq

)

mod n

= q × (q−1 mod p)× Vp + p× (p−1 mod q)× Vq + k2 × p× q

for some value of the constant k2. We can therefore write:

Se =

(

q × (q−1 mod p)× Vp + p× (p−1 mod q)× Vq + k2 × p× q

)e

and that implies

50

Computer and Network Security by Avi Kak Lecture 32

Se mod p =

(

q × (q−1 mod p)× Vp + p× (p−1 mod q)× Vq + k2 × p× q

)e

mod p

=

((

q × (q−1 mod p)× Vp + p× (p−1 mod q)× Vq + k2 × p× q

)

mod p

)e

mod p

=

(

q × (q−1 mod p)× Vp

)e

mod p (6)

We can derive a similar result for Se mod q. Writing the two

results together, we have

Se mod p =

(

q × (q−1 mod p)× Vp

)e

mod p = M (7)

Se mod q =

(

p× (p−1 mod q)× Vq

)e

mod q = M (8)

where we have also placed the result derived earlier in Equations

(4) and (5).

• Let’s now try to see what happens if carry out similar operations

on the faulty signature Ŝ. However, before we raise Ŝ to the

power e, let’s rewrite Ŝ as

Ŝ =

(

q × (q−1 mod p)× V̂p + p× (p−1 mod q)× Vq

)

mod n

= q × (q−1 mod p)× V̂p + p× (p−1 mod q)× Vq + k3 × p× q

for some value of the integer k3. We may now write for Ŝe:

Ŝe =

(

q × (q−1 mod p)× V̂p + p× (p−1 mod q)× Vq + k3 × p× q

)e

51

Computer and Network Security by Avi Kak Lecture 32

This allows us to write:

Ŝe mod p =

(

q × (q−1 mod p)× V̂p + p× (p−1 mod q)× Vq + k3 × p× q

)e

mod p

=

((

q × (q−1 mod p)× V̂p + p× (p−1 mod q)× Vq + k3 × p× q

)

mod p

)e

mod p

=

(

q × (q−1 mod p)× V̂p

)e

mod p (9)

• In a similar manner, one can show

Ŝe mod q =

(

p× (p−1 mod q)× Vq

)e

mod q (10)

• Comparing the results in Equations (6) and (7) with those in

Equations (4) and (5), we claim

Ŝe mod p 6= M (11)

Ŝe mod q = M (12)

• Equation (9) implies that we can write

Ŝe = M + k4 × q (13)

for some value of the constant k4. This relationship may be

expressed as

52

Computer and Network Security by Avi Kak Lecture 32

Ŝe − M = k4 × q (14)

• Since n = p× q, what we have is that Ŝe −M and the modulus

n share common factor, q. Since n possesses only two factors, p

and q, we can therefore write

gcd(Ŝe − M,n) = q (15)

53

Computer and Network Security by Avi Kak Lecture 32

32.7.1: Demonstration of Fault Injection with a

Python Script

• The goal of this demonstration is to illustrate that when you

miscalculate (deliberately) either Vp or Vq in the CRT step of the

modular exponentiation required by the RSA algorithm, you can

easily figure out the private key d.

• In the Python script that follows, lines (1) through (18) show two

functions, gcd() and MI() that you saw previously in Lecture 5.

The gcd() is the Euclid’s algorithm for calculating the greatest

common divisor of two integers. And the function MI() returns

the multiplicative inverse of the first-argument integer in the ring

corresponding to the second-argument integer.

• Subsequently, lines (19) through (29) first declare the two prime

factors for the RSA modulus and then compute the values to

use for the public exponent e and the private exponent d. As

the reader will recall from Section 12.2.2 of Lecture 12, e must

be relatively prime to both p − 1 and q − 1, which are the two

factors of the totient of n. The conditional evaluation in line (25)

guarantees that. After setting e, the statement in line (28) sets

the private exponent d.

54

Computer and Network Security by Avi Kak Lecture 32

• The code in lines (30) through (37) first sets the message integer

M and then calculates the intermediate results Vp and Vq, as de-

fined in the previous section. Note that we use Fermat’s Little

Theorem (see Section 11.2 of Lecture 11) to speed up the calcula-

tion of Vp and Vq. [Given the small sizes of the numbers involved, there is obviously no particular

reason to use FLT here. Nonetheless, should be reader decide to play with this demonstration using large num-

bers, using FLT would certainly make for a faster response time from the demonstration code.] In line

(36), we use the CRT theorem to combine the values for Vp and

Vq into the RSA based digital signature of the message integer

M .

• Finally, the code in lines (39) through (47) is the demonstration

of fault injection and how it can be used to find the prime factor

q of the RSA modulus n. We simulate fault injection by adding

a small random number to the value of Vp in line (42). Subse-

quently, we use Equation (10) of the previous section to estimate

the value for q in line (44).

#!/usr/bin/env python

FaultInjectionDemo.py

Avi Kak (March 30, 2015)

This script demonstrates the fault injection exploit on the CRT step of the

of the RSA algorithm.

GCD calculator (From Lecture 5)

def gcd(a,b): #(1)

while b: #(2)

a,b = b, a%b #(3)

return a #(4)

The code shown below uses ordinary integer arithmetic implementation of

the Extended Euclid’s Algorithm to find the MI of the first-arg integer

vis-a-vis the second-arg integer. (This code segment is from Lecture 5)

55

Computer and Network Security by Avi Kak Lecture 32

def MI(num, mod): #(5)

’’’

The function returns the multiplicative inverse (MI) of num modulo mod

’’’

NUM = num; MOD = mod #(6)

x, x_old = 0L, 1L #(7)

y, y_old = 1L, 0L #(8)

while mod: #(9)

q = num // mod #(10)

num, mod = mod, num % mod #(11)

x, x_old = x_old - q * x, x #(12)

y, y_old = y_old - q * y, y #(13)

if num != 1: #(14)

raise ValueError("NO MI. However, the GCD of %d and %d is %u" \

% (NUM, MOD, num)) #(15)

else: #(16)

MI = (x_old + MOD) % MOD #(17)

return MI #(18)

Set RSA params:

p = 211 #(19)

q = 223 #(20)

n = p * q #(21)

print "RSA parameters:"

print "p = %d q = %d modulus = %d" % (p, q, n) #(22)

totient_n = (p-1) * (q-1) #(23)

Find a candidate for public exponent:

for e in range(3,n): #(24)

if (gcd(e,p-1) == 1) and (gcd(e,q-1) == 1): #(25)

break #(26)

print "public exponent e = ", e #(27)

Now set the private exponent:

d = MI(e, totient_n) #(28)

print "private exponent d = ", d #(29)

message = 6789 #(30)

print "\nmessage = ", message #(31)

Implement the Chinese Remainder Theorem to calculate

message to the power of d mod n:

dp = d % (p - 1) #(32)

dq = d % (q - 1) #(33)

V_p = ((message % p) ** dp) % p #(34)

V_q = ((message % q) ** dq) % q #(35)

signature = (q * MI(q, p) * V_p + p * MI(p, q) * V_q) % n #(36)

print "\nsignature = ", signature #(37)

import random #(38)

print "\nESTIMATION OF q THROUGH INJECTED FAULTS:"

for i in range(10): #(39)

56

Computer and Network Security by Avi Kak Lecture 32

error = random.randrange(1,10) #(40)

V_hat_p = V_p + error #(42)

print "\nV_p = %d V_hat_p = %d error = %d" % (V_p, V_hat_p, error) #(41)

signature_hat = (q * MI(q, p) * V_hat_p + p * MI(p, q) * V_q) % n #(43)

q_estimate = gcd((signature_hat ** e - message) % n, n) #(44)

print "possible value for q = ", q_estimate #(45)

if q_estimate == q: #(46)

print "Attack successful!!!" #(47)

• Shown below is the output of the script. As the reader can see,

for all values of the random error added to the value of Vp, we are

able to correctly estimate the prime factor q of the RSA modulus.

RSA parameters:

p = 211 q = 223 modulus = 47053

public exponent e = 11

private exponent d = 21191

message = 6789

signature = 42038

ESTIMATION OF q THROUGH INJECTED FAULTS:

V_p = 49 V_hat_p = 56 error = 7

possible value for q = 223

Attack successful!!!

V_p = 49 V_hat_p = 55 error = 6

possible value for q = 223

Attack successful!!!

V_p = 49 V_hat_p = 53 error = 4

possible value for q = 223

Attack successful!!!

V_p = 49 V_hat_p = 52 error = 3

possible value for q = 223

Attack successful!!!

57

Computer and Network Security by Avi Kak Lecture 32

V_p = 49 V_hat_p = 54 error = 5

possible value for q = 223

Attack successful!!!

V_p = 49 V_hat_p = 52 error = 3

possible value for q = 223

Attack successful!!!

V_p = 49 V_hat_p = 53 error = 4

possible value for q = 223

Attack successful!!!

V_p = 49 V_hat_p = 56 error = 7

possible value for q = 223

Attack successful!!!

V_p = 49 V_hat_p = 58 error = 9

possible value for q = 223

Attack successful!!!

V_p = 49 V_hat_p = 58 error = 9

possible value for q = 223

Attack successful!!!

• Fault injection attacks were first discovered by Dan Boneh, Richard

DeMillo, and Richard Lipton in 1997 and are described in their

2001 Journal of Cryptology publication “On the Importance of

Eliminating Errors in Cryptographic Computations.” The logic

used in the Python script shown in this section is based on a re-

finement of the original attack by A. K. Lenstra. This refinement

is also mentioned in the publication by Boneh et al.

58

Computer and Network Security by Avi Kak Lecture 32

32.8: TIMING ATTACKS

• Timings attacks are based on the premise that if you can monitor

how long it takes to execute a certain segment of a cryptographic

routine, you may be able to make a good guess for the secret

parameters of the algorithm.

• To elaborate, let’s consider the following algorithm for modular
exponentiation that you saw earlier in Section 12.5.1 of Lecture
12: [The Fault Injection discussion in Section 32.6 of the current lecture focused on the CRT step of

the overall implementation of a modular exponentiation algorithm. As you will recall from Section 12.5.1 of

Lecture 12, after you have carried out the simplification of modular exponentiation with CRT, you still need

to calculate a quantity like A
B

mod n.]

result = 1

while B > 0:

if B & 1: #(1)

result = (result * A) % n #(2)

B = B >> 1

A = (A * A) % n

return result

As explained in Section 12.5.1 of Lecture 12, this algorithm carries

out a bitwise scan of the exponent B from its least significant bit

to its most significant bit. It calculates the square of the base A

59

Computer and Network Security by Avi Kak Lecture 32

at each step of the scan. This squared value is multiplied with the

intermediate value for the result only if the bit of the exponent

is set at the current step.

• Now imagine that you have somehow acquired the means to mon-

itor how long it takes to execute the code in lines (1) and (2)

shown above. Assuming that your time measurements are rea-

sonably accurate, these time measurements would directly yield

the exponent B. And even if your time measurements are not so

reliable, perhaps you can carry out the exponentiation operation

repeatedly and then average out the noise. This is exactly

the basis for the demonstration in the Python script

shown next.

• Obviously, your first reaction to the claim made above would

be: How would you get inside the hardware of a mobile device

to monitor the execution time of the code segments in order to

infer the secret through the time taken by those portions of the

code? In practically all situations, the most an attacker would

be able to do would be to feed different messages into a mobile

device and measure the total time taken by an algorithm for each

of those messages. Subsequently, if at all possible, the attacker

would need to infer the secret from those times.

• The goal of the subsection that follows is to show that it is possi-

ble to determine an encryption key from the overall time taken

60

Computer and Network Security by Avi Kak Lecture 32

by algorithm for each of a large collection of randomly constructed

messages.

• The goal of the current section, however, is simply to focus on

showing how one can measure the execution time associated with

a code fragment and the averaging that is needed to mitigate the

effects of noise associated with such measurements.

• Let’s now address the question of how one might measure the time

associated with the execution of an entire algorithm, or with just a

fragment of the code, and why such measurements are inherently

noisy. You might try to measure the execution time by taking the

difference of the wall clock time just before the entry into the code

segment and just after exiting from that code segment. Such an

estimate is bound to be merely an approximation to the actual

time spent in the processor by that segment of code. You see, at

any given instant of time, there could be tens, if not hundreds, of

processes and threads running “concurrently” in your computer.

Assuming for the sake of argument that you have a single-core

processor, what that means is that all the processes and threads

are time-sliced with regard to their access to the CPU. That is, a

process or a thread currently being executed in the CPU is rolled

out and its state saved in the memory when the quantum of time

for which it is allowed to be executed expires. Subsequently, one

of the waiting processes or threads is rolled into the CPU, and

so on. [All modern operating systems maintain several queues for the concurrent execution of multiple

processes and threads. There is, for example, a queue of processes that are waiting for their turn at the CPU.

61

Computer and Network Security by Avi Kak Lecture 32

Should a process that is currently being executed by the CPU need access to a particular I/O device, it is

taken off the CPU and placed in a queue for that I/O device. After it is done with I/O, it goes back into

the queue of the processes waiting for their turn at the CPU. Unless a process is taken off the CPU for I/O

reasons, or because it has been interrupted, etc., more ordinarily a process is taken off the CPU because its

allotted time-slice in the CPU has expired. In Unix/Linux systems, there is a special process of PID 0 that

acts as a processor scheduler. The scheduler’s job is to figure out which of the waiting processes gets a turn at

the CPU.]

• To demonstrate how noisy the measurement of running time can

be, shown below are 10 trials of the same algorithm that consists

of 16 steps. The execution time of each step was measured as

the difference between the wall-clock time before and after the

execution of the code segment corresponding to that step. That

several of the entries are ‘0.0’ is not surprising because 12 of the

16 steps are essentially do-nothing step. However, the remain-

ing four do require a large multiplication. The four steps that

involve a large multiplication are at the first, eighth, tenth, and

the sixteenth steps.

#1: [5.96e-06, 0.0, 0.0, 0.0, 9.53e-07, 0.0, 0.0, 0.0, 9.53e-07, 0.0, 0.0, 9.53e-07, 0.0, 9.53e-07, 0.0, 0.0]

#2: [5.96e-06, 9.53e-07, 9.53e-07, 0.0, 0.0, 9.53e-07, 0.0, 0.0, 9.53e-07, 0.0, 0.0, 9.53e-07, 0.0, 0.0, 0.0, 0.0]

#3: [5.96e-06, 9.53e-07, 9.53e-07, 0.0, 0.0, 9.53e-07, 0.0, 0.0, 0.0, 0.0, 9.53e-07, 0.0, 0.0, 0.0, 0.0, 1.19e-06]

#4: [5.96e-06, 9.53e-07, 0.0, 0.0, 0.0, 0.0, 1.19e-06, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.19e-06, 0.0]

#5: [5.96e-06, 9.53e-07, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 9.53e-07, 1.19e-06, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]

#6: [5.96e-06, 0.0, 0.0, 0.0, 0.0, 0.0, 1.19e-06, 0.0, 0.0, 0.0, 9.53e-07, 0.0, 9.53e-07, 0.0, 0.0, 0.0]

#7: [5.96e-06, 9.53e-07, 9.53e-07, 0.0, 0.0, 0.0, 0.0, 0.0, 9.53e-07, 0.0, 0.0, 9.53e-07, 0.0, 9.53e-07, 0.0, 0.0]

#8: [5.96e-06, 0.0, 0.0, 0.0, 0.0, 0.0, 9.53e-07, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]

#9: [8.10e-06, 0.0, 0.0, 0.0, 9.53e-07, 0.0, 0.0, 0.0, 9.53e-07, 0.0, 0.0, 0.0, 1.19e-06, 0.0, 0.0, 9.53e-07]

62

Computer and Network Security by Avi Kak Lecture 32

#10: [6.19e-06, 0.0, 0.0, 0.0, 0.0, 0.0, 9.53e-07, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]

• Our goal in this section is to illustrate how to recover the value of

the exponent B in the computation of AB mod n from the noisy

execution times of one key step in the modular exponentiation

algorithm shown in the previous section.

• In the script that follows, lines (1) through (12) define the same

modular exponentiation algorithm you saw earlier — except for

the time measurement statements that are interspersed. The time

measurement statements are in lines (2), (5), (8), and (9). We

want to measure the time it takes to compute the multiplication

step in line (7) recognizing that this multiplication takes place

subject to the condition in line (6). The number of iterations in

the while loop that starts in line (4) is equal to the number of

bits in the binary representation of the exponent B.

• Subsequently, in order to deal with the noise in the measure-

ment of execution time as demonstrated in the previous sec-

tion, we define the function repeated time measurements()

in lines (13) through (20). All that this function does is to

call the modular exponentiation function repeatedly. It is the

third argument to repeated time measurements() that de-

termines how many times the modular exponentiation function

will be called. The time measurements in each call to modular

exponentiation are stored in a list of lists bound to the variable

63

Computer and Network Security by Avi Kak Lecture 32

list of time traces.

• In lines (21) through (24), we then set the values for the base A,

the exponent B, the modulus n, and the number of repetitions

for calling the modular exponentiation function. In line (25), we

then call repeated time measurements() with these values.

• The rest of the code, in lines (26) through (38), is for first aver-

aging the noisy time measurements for each of the steps, finding

a threshold as the half-way point between the minimum and the

maximum of the time measurements, thresholding the time mea-

surements, and constructing a bit string from the 0’s and 1’s thus

obtained.

#!/usr/bin/env python

EstimatingExponentFromExecutionTime.py

Avi Kak (kak@purdue.edu)

March 31, 2015

This script demonstrates the basic idea of how it is possible to infer

the bit field of an exponent by measuring the time it takes to carry

out the one of the key steps in the modular exponentiation algorithm.

import time

This is our basic script for modular exponentiation. See Section 12.5.1 of

Lecture 12:

def modular_exponentiate(A, B, modulus): #(1)

time_trace = [] #(2)

result = 1 #(3)

while B > 0: #(4)

start = time.time() #(5)

if B & 1: #(6)

result = (result * A) % modulus #(7)

elapsed = time.time() - start #(8)

time_trace.append(elapsed) #(9)

64

Computer and Network Security by Avi Kak Lecture 32

B = B >> 1 #(10)

A = (A * A) % modulus #(11)

return result, time_trace #(12)

Since a single experiment does not yield reliable measurements of the time

taken by a computational step, this function helps us carry out repeated

experiments:

def repeated_time_measurements(A, B, modulus, how_many_times): #(13)

list_of_time_traces = [] #(14)

results = [] #(15)

for i in range(how_many_times): #(16)

result, timetrace = modular_exponentiate(A, B, modulus) #(17)

list_of_time_traces.append(timetrace) #(18)

results.append(result) #(19)

Also return ‘results’ for debugging, etc.

return list_of_time_traces, results #(20)

A = 123456789012345678901234567890123456789012345678901234567890 #(21)

B = 0b1111110101001001

modulus = 987654321 #(23)

num_iterations = 1000 #(24)

list_of_time_traces, results = repeated_time_measurements(A, B, modulus, num_iterations)#(25)

sums = [sum(e) for e in zip(*list_of_time_traces)] #(26)

averages = [x/num_iterations for x in sums] #(27)

averages = list(reversed(averages)) #(28)

print "\ntimings: ", averages #(29)

minval, maxval = min(averages), max(averages) #(30)

threshold = (maxval - minval) / 2 #(31)

bitstring = ’’ #(32)

for item in averages: #(33)

if item > threshold: #(34)

bitstring += ’1’ #(35)

else: #(36)

bitstring += ’0’ #(37)

print "\nbitstring for B constructed from timings: ", bitstring #(38)

• If you run the Python script as shown above, it outputs the bit

string:

1111110101001001

which is the same as the bit pattern for the exponent in line

(22). You can run the same experiment with other choices for

the exponent B in line (22). For example, if I change that line

65

Computer and Network Security by Avi Kak Lecture 32

to B = 0b1100110101110101, the answer returned by the script is

1100110101110101, and so on.

• This establishes that, despite the inherently noisy nature of

time measurements, you can figure out the value of the expo-

nent in a modular exponentiation required for a cryptographic

calculation just by measuring how long it takes to execute one of

the key steps of the algorithm.

• That it may be possible to mount the timing attack on a cryp-

tographic routine was first conjectured by Paul Kocher in 1996

in a paper entitled “Timing Attacks on Implementations of Diffie-

Hellman, RSA, DSS, and Other Systems,” that appeared in CRYPTO’96,

Lecture Notes in Computer Science, Vol. 1355.

• Keeping these considerations in mind, the next subsection demon-

strates the basic elements of a Timing Attack with the help of a

Python script.

66

Computer and Network Security by Avi Kak Lecture 32

32.8.1: A Python Script That Demonstrates How To

Use Code Execution Time for Mounting a Timing

Attack

• Let’s now talk about how to actually mount a timing attack using

the times required for fully computing the RSA signatures for a

collection of randomly constructed messages. In other words, we

will no longer assume that we can measure the times taken by

the individual steps of the modular exponentiation algorithm.

• As matters stand today, for a serious attempt at mounting a

timing attack, we will need to implement it in a way that is

described in the paper “A Practical Implementation of the Tim-

ing Attack” by Jean-Francois Dhem, Francois Koeune, Philippe-

Alexandre Leroux, Patrick Mestre, Jean-Jacques Quisquater, and

Jean-Louis Willems that appeared in the Proceedings of the In-

ternational Conference on Smart Cards and Applications, 1998,

pp. 167-182. [This is a probabilistic approach that entails: (1) scanning the bit positions in an

encryption key from right to left; (2) forming two hypotheses at each bit position, one for the bit being 0

and the other for the bit being 1; (3) Finding probabilistic support for each hypothesis taking into account

the bits discovered so far, and the difference between the sizes of the message populations under the two hy-

potheses (membership in the populations takes into account the fact that the hypothesis that calls for the bit

to be 1 would entail a slightly longer computation).] Using this approach, the

authors were able to break a 512-bit key in a few

minutes using 300,000 timing measurements.

67

Computer and Network Security by Avi Kak Lecture 32

• My goal in this section is not to replicate the work described in the

publication cited above. On the other hand, all I want to show is

that there exist correlations between the time measurements for

modular exponentiation for a collection of randomly constructed

messages and the times measured for the same exponentiations

under the hypothesis that a particular bit in the exponent is 1

or 0. Further, that these correlations can be exploited to makes

guesses for the individual bits of the exponent.

• In order to frame the problem that the Python script in this sec-

tion tries to solve with a toy implementation, let’s go back to the

case of a device that uses the RSA algorithm to digitally sign the

outgoing messages. As stated earlier, given a messageM and the

private exponent d, this device must compute Md mod n where

n is the RSA modulus. Earlier, in Section 32.6.1, we saw how the

CRT step that is used to simplify the modular exponentiation

can be subject to fault injection for discovering the value of the

private key.

• We will now assume that we are directly computing modular

exponentiationMd mod n required for digitally signing a message

M with a private exponent d. Our goal is to discover d just

from the time it takes to calculate the signatures for an arbitrary

collection of messages. As will always be the case, we will assume

that d is odd and, therefore, its least significant bit is always 1.

Our goal is to discover the rest of the bits.

68

Computer and Network Security by Avi Kak Lecture 32

• The overall logic of the script is to estimate the bits of the private

exponent d, one bit at a time, starting from its least significant

bit (which, as already mentioned, is 1). The estimation is based

on finding correlations between the times taken to calculate the

signatures under two conditions: when the bit to be estimated can

be assumed to be 0 and when it can be assumed to be 1. Under

each hypothesis, the correlation is with the time measurements

for the actual signature computations. We declare a value for the

next bit on the basis of which correlation is larger.

• The workhorse in the script that follows is the method find next

bit of private key(). Its two main blocks are in lines (F9)

through (F25) and in lines (F33) through (F46). In the first

block, in lines (F9) through (F25), this function calculates the

correlation for the case when we assume 0 for the next bit po-

sition in the private exponent d. In the second block, in lines

(F33) through (F46), we calculate a similar correlation for the

case when we assume the next bit to be 1. The two correlation

values are compared in line (F47).

• You have to use a very large number of message integers for the

attack to work to any extent at all. As you will notice from the

constructor call in lines (A1) through (A6), my own experiments

with this script typically involve 100,000 message integers.

• You might think that in the multiple runs of the overall attack

in lines (A9) through (A25), we could speed up the overall time

69

Computer and Network Security by Avi Kak Lecture 32

taken by the script by placing the call that generates the very

large number of messages in line (A11) outside the loop. Note

that the time taken to generate 100,000 messages is a very small

fraction of the time taken by the modular exponentiation of those

messages through the code in lines (X1) through (X11).

• The dictionary bound to the instance variable correlations

cache in line (J15) is used in find next bit of private key()

in lines (F8) and (F30). This dictionary helps avoid duplicating

the correlation calculations for the same value of the private ex-

ponent.

#!/usr/bin/env python

TimingAttack.py

Avi Kak (kak@purdue.edu)

April 13, 2015

This script demonstrates the basic idea of how the Timing Attack can be

used to infer the bits of the private exponent used in calculating RSA

based digital signatures.

##

CAVEATS: This simple implementation is based on one possible

interpretation of the original paper on timing attacks by Paul

Kocher. Note that this implementation has only been tried on

8-bit moduli.

##

I am quite certain that this extremely simpleminded implementation

will NOT to work on RSA moduli of the size that are actually used

in working algorithms.

##

For a more credible timing attack, you would need to include

in this implementation the probabilstic logic described in the

paper "A Practical Implementation of the Timing Attack’’ by

Dhem, Koeune, Leroux, Mestre, Quisquater, and Willems.

import time

import random

import math

70

Computer and Network Security by Avi Kak Lecture 32

class TimingAttack(object): #(I1)

def __init__(self, **kwargs): #(J2)

if kwargs.has_key(’num_messages’): num_messages = kwargs.pop(’num_messages’) #(J3)

if kwargs.has_key(’num_trials’): num_trials = kwargs.pop(’num_trials’) #(J3)

if kwargs.has_key(’private_exponent’): private_exponent = kwargs.pop(’private_exponent’)

#(J4)

if kwargs.has_key(’modulus_width’): modulus_width = kwargs.pop(’modulus_width’) #(J5)

self.num_messages = num_messages #(J6)

self.num_trials = num_trials #(J7)

self.modulus_width = modulus_width #(J8)

self.d = private_exponent #(J9)

self.d_reversed = ’{:b}’.format(private_exponent)[::-1] #(J10)

self.modulus = None #(J11)

self.list_of_messages = [] #(J12)

self.times_taken_for_messages = [] #(J13)

self.bits_discovered_for_d = [] #(J14)

self.correlations_cache = {} #(J15)

def gen_modulus(self): #(G1)

modulus = self.gen_random_num_of_specified_width(self.modulus_width/2) * \

self.gen_random_num_of_specified_width(self.modulus_width/2) #(G2)

print "modulus is: ", modulus #(G3)

self.modulus = modulus #(G4)

return modulus #(G5)

def gen_random_num_of_specified_width(self, width): #(R1)

’’’

This function generates a random number of specified bit field width:

’’’

candidate = random.getrandbits(width) #(R2)

if candidate & 1 == 0: candidate += 1 #(R3)

candidate |= (1 << width - 1) #(R4)

candidate |= (2 << width - 3) #(R5)

return candidate #(R6)

def modular_exponentiate(self, A, B): #(X1)

’’’

This is our basic function for modular exponentiation as explained in

Section 12.5.1 of Lecture 12:

’’’

if self.modulus is None: #(X2)

raise SyntaxError("You must first set the modulus") #(X3)

time_trace = [] #(X4)

result = 1 #(X5)

while B > 0: #(X6)

if B & 1: #(X7)

result = (result * A) % self.modulus #(X8)

B = B >> 1 #(X9)

A = (A * A) % self.modulus #(X10)

return result #(X11)

def correlate(self, series1, series2): #(C1)

71

Computer and Network Security by Avi Kak Lecture 32

if len(series1) != len(series2): #(C2)

raise ValueError("the two series must be of the same length") #(C3)

mean1, mean2 = sum(series1)/float(len(series1)),sum(series2)/float(len(series2))#(C4)

mseries1, mseries2 = [x - mean1 for x in series1], [x - mean2 for x in series2] #(C5)

products = [mseries1[i] * mseries2[i] for i in range(len(mseries1))] #(C6)

mseries1_squared, mseries2_squared = [x**2 for x in mseries1], [x**2 for x in mseries2]

#(C7)

correlation = sum(products) / math.sqrt(sum(mseries1_squared) * sum(mseries2_squared))

#(C8)

return correlation #(C9)

def gen_messages(self): #(M1)

’’’

Generate a list of randomly created messages. The messages must obey the usual

constraints on the two most significant bits:

’’’

self.correlations_cache = {} #(M2)

self.times_taken_for_messages = [] #(M3)

self.list_of_messages = [] #(M4)

for i in range(self.num_messages): #(M5)

message = self.gen_random_num_of_specified_width(self.modulus_width) #(M6)

self.list_of_messages.append(message) #(M7)

print "Finished generating %d messages" % (self.num_messages) #(M8)

def get_exponentiation_times_for_messages(self): #(T1)

’’’

For each message in list_of_messages, find the time it takes to calculate its

signature. Average each time measurement over num_trials:

’’’

if self.modulus is None: #(T2)

raise SyntaxError("You must first set the modulus") #(T3)

for message in self.list_of_messages: #(T4)

times = [] #(T5)

for j in range(self.num_trials): #(T6)

start = time.time() #(T7)

self.modular_exponentiate(message, self.d) #(T8)

elapsed = time.time() - start #(T9)

times.append(elapsed) #(T10)

avg = sum(times) / float(len(times)) #(T11)

self.times_taken_for_messages.append(avg) #(T12)

print "Finished calculating signatures for all messages" #(T13)

def find_next_bit_of_private_key(self, list_of_previous_bits): #(F1)

’’’

Starting with the LSB, given a sequence of previously computed bits of the

private exponent d, now compute the next bit:

’’’

num_set_bits = reduce(lambda x,y: x+y, \

filter(lambda x: x == 1, list_of_previous_bits)) #(F2)

correlation0,correlation1 = None,None #(F3)

arg_list1, arg_list2 = list_of_previous_bits[:], list_of_previous_bits[:] #(F4)

B = int(’’.join(map(str, list(reversed(arg_list1)))), 2) #(F5)

print "\nB = ", B #(F6)

if B in self.correlations_cache: #(F7)

correlation0 = self.correlations_cache[B] #(F8)

72

Computer and Network Security by Avi Kak Lecture 32

else: #(F9)

times_for_partial_exponentiation = [] #(F10)

for message in self.list_of_messages: #(F11)

signature = None #(F12)

times = [] #(F13)

for j in range(self.num_trials): #(F14)

start = time.time() #(F15)

self.modular_exponentiate(message, B) #(F16)

elapsed = time.time() - start #(F17)

times.append(elapsed) #(F18)

avg = sum(times) / float(len(times)) #(F19)

times_for_partial_exponentiation.append(avg) #(F20)

correlation0 = self.correlate(self.times_taken_for_messages, \

times_for_partial_exponentiation) #(F22)

correlation0 /= num_set_bits #(F23)

self.correlations_cache[B] = correlation0 #(F24)

print "correlation0: ", correlation0 #(F25)

Now let’s see the correlation when we try 1 for the next bit

arg_list2.append(1) #(F26)

B = int(’’.join(map(str, list(reversed(arg_list2)))), 2) #(F27)

print "B = ", B #(F28)

if B in self.correlations_cache: #(F29)

correlation1 = self.correlations_cache[B] #(F30)

else: #(F31)

times_for_partial_exponentiation = [] #(F32)

for message in self.list_of_messages: #(F33)

signature = None #(F34)

times = [] #(F35)

for j in range(self.num_trials): #(F36)

start = time.time() #(F37)

self.modular_exponentiate(message, B) #(F38)

elapsed = time.time() - start #(F39)

times.append(elapsed) #(F40)

avg = sum(times) / float(len(times)) #(F41)

times_for_partial_exponentiation.append(avg) #(F42)

correlation1 = self.correlate(self.times_taken_for_messages, \

times_for_partial_exponentiation) #(F43)

correlation1 /= (num_set_bits + 1) #(F44)

self.correlations_cache[B] = correlation1 #(F45)

print "correlation1: ", correlation1 #(F46)

if correlation1 > correlation0: #(F47)

return 1 #(F48)

else: #(F49)

return 0 #(F50)

def discover_private_exponent_bits(self): #(D1)

’’’

Assume that the private exponent will always be odd and that, therefore, its

LSB will always be 1. Now try to discover the other bits.

’’’

discovered_bits = [1] #(D2)

for bitpos in range(1, self.modulus_width): #(D3)

nextbit = self.find_next_bit_of_private_key(discovered_bits) #(D4)

print "value of next bit: ", nextbit #(D5)

print "its value should be: ", self.d_reversed[bitpos] #(D6)

73

Computer and Network Security by Avi Kak Lecture 32

if nextbit != int(self.d_reversed[bitpos]): #(D7)

raise ValueError("Wrong result for bit at index %d" % bitpos) #(D8)

discovered_bits.append(nextbit) #(D9)

print "discovered bits: ", discovered_bits #(D10)

self.bits_discovered_for_d = discovered_bits #(D11)

return discovered_bits #(D12)

if __name__ == ’__main__’:

private_exponent = 0b11001011 #(A1)

timing_attack = TimingAttack(#(A2)

num_messages = 100000, #(A3)

num_trials = 1000, #(A4)

modulus_width = 8, #(A5)

private_exponent = private_exponent, #(A6)

)

modulus_to_discovered_bits = {} #(A7)

for i in range(10): #(A8)

print "\n\n============Starting run %d of the overall experiment=============\n" % i

#(A9)

discovered_bits = [] #(A10)

timing_attack.gen_messages() #(A11)

modulus = timing_attack.gen_modulus() #(A12)

timing_attack.get_exponentiation_times_for_messages() #(A13)

try: #(A14)

discovered_bits = timing_attack.discover_private_exponent_bits() #(A15)

except ValueError, e: #(A16)

print "exception caught in main:", e #(A17)

e = str(e).strip() #(A18)

if e[-1].isdigit(): #(A19)

pos = int(e.split()[-1]) #(A20)

print "\n Got %d bits!!!" % pos #(A21)

continue #(A22)

if discovered_bits: #(A23)

modulus_to_discovered_bits[i] = \

(modulus, ’’.join(map(str, list(reversed(discovered_bits))))) #(A24)

print "\n SUCCESS!!!!!!!" #(A25)

• Shown below is the output from one session with the code shown

above. Note that, even for the same modulus, your results will

vary from one run to another since the messages are generated

randomly for each run.

• In the 10 runs of the code whose output is shown below, three

of the runs managed to discover correctly six of the eight bits of

74

Computer and Network Security by Avi Kak Lecture 32

the exponent d. Every once in a long while, you will see that the

entire exponent is estimated correctly by the code.

============Starting run 0 of the overall experiment=============

Finished generating 100000 messages

modulus is: 195

Finished calculating signatures for all messages

B = 1

correlation0: 0.00535503170757

B = 3

correlation1: 0.11955357822

value of next bit: 1

its value should be: 1

discovered bits: [1, 1]

B = 3

correlation0: 0.11955357822

B = 7

correlation1: 0.146688433404

value of next bit: 1

its value should be: 0

exception caught in main: Wrong result for bit at index 2

Got 2 bits!!!

============Starting run 1 of the overall experiment=============

Finished generating 100000 messages

modulus is: 195

Finished calculating signatures for all messages

B = 1

correlation0: 0.00658805175542

B = 3

correlation1: 0.144786607015

value of next bit: 1

its value should be: 1

discovered bits: [1, 1]

B = 3

correlation0: 0.144786607015

B = 7

correlation1: 0.191148434475

value of next bit: 1

its value should be: 0

exception caught in main: Wrong result for bit at index 2

Got 2 bits!!!

75

Computer and Network Security by Avi Kak Lecture 32

============Starting run 2 of the overall experiment=============

Finished generating 100000 messages

modulus is: 195

Finished calculating signatures for all messages

B = 1

correlation0: 0.0111837174243

B = 3

correlation1: 0.146686335386

value of next bit: 1

its value should be: 1

discovered bits: [1, 1]

B = 3

correlation0: 0.146686335386

B = 7

correlation1: 0.0666330591075

value of next bit: 0

its value should be: 0

discovered bits: [1, 1, 0]

B = 3

correlation0: 0.146686335386

B = 11

correlation1: 0.166780797308

value of next bit: 1

its value should be: 1

discovered bits: [1, 1, 0, 1]

B = 11

correlation0: 0.166780797308

B = 27

correlation1: 0.143863234986

value of next bit: 0

its value should be: 0

discovered bits: [1, 1, 0, 1, 0]

B = 11

correlation0: 0.166780797308

B = 43

correlation1: 0.161661497094

value of next bit: 0

its value should be: 0

discovered bits: [1, 1, 0, 1, 0, 0]

B = 11

correlation0: 0.166780797308

B = 75

correlation1: 0.140458705926

value of next bit: 0

its value should be: 1

exception caught in main: Wrong result for bit at index 6

76

Computer and Network Security by Avi Kak Lecture 32

Got 6 bits!!!

============Starting run 3 of the overall experiment=============

Finished generating 100000 messages

modulus is: 225

Finished calculating signatures for all messages

B = 1

correlation0: 0.0069115683713

B = 3

correlation1: 0.351567105915

value of next bit: 1

its value should be: 1

discovered bits: [1, 1]

B = 3

correlation0: 0.351567105915

B = 7

correlation1: 0.268789028694

value of next bit: 0

its value should be: 0

discovered bits: [1, 1, 0]

B = 3

correlation0: 0.351567105915

B = 11

correlation1: 0.285057307844

value of next bit: 0

its value should be: 1

exception caught in main: Wrong result for bit at index 3

Got 3 bits!!!

============Starting run 4 of the overall experiment=============

Finished generating 100000 messages

modulus is: 195

Finished calculating signatures for all messages

B = 1

correlation0: 0.00241843558209

B = 3

correlation1: 0.186079682903

value of next bit: 1

its value should be: 1

discovered bits: [1, 1]

B = 3

correlation0: 0.186079682903

B = 7

correlation1: 0.204226222605

value of next bit: 1

77

Computer and Network Security by Avi Kak Lecture 32

its value should be: 0

exception caught in main: Wrong result for bit at index 2

Got 2 bits!!!

============Starting run 5 of the overall experiment=============

Finished generating 100000 messages

modulus is: 169

Finished calculating signatures for all messages

B = 1

correlation0: 0.0184536640473

B = 3

correlation1: 0.217174073139

value of next bit: 1

its value should be: 1

discovered bits: [1, 1]

B = 3

correlation0: 0.217174073139

B = 7

correlation1: 0.202723379241

value of next bit: 0

its value should be: 0

discovered bits: [1, 1, 0]

B = 3

correlation0: 0.217174073139

B = 11

correlation1: 0.241820663832

value of next bit: 1

its value should be: 1

discovered bits: [1, 1, 0, 1]

B = 11

correlation0: 0.241820663832

B = 27

correlation1: 0.192410585206

value of next bit: 0

its value should be: 0

discovered bits: [1, 1, 0, 1, 0]

B = 11

correlation0: 0.241820663832

B = 43

correlation1: 0.189418029495

value of next bit: 0

its value should be: 0

discovered bits: [1, 1, 0, 1, 0, 0]

B = 11

correlation0: 0.241820663832

B = 75

78

Computer and Network Security by Avi Kak Lecture 32

correlation1: 0.175041915625

value of next bit: 0

its value should be: 1

exception caught in main: Wrong result for bit at index 6

Got 6 bits!!!

============Starting run 6 of the overall experiment=============

Finished generating 100000 messages

modulus is: 195

Finished calculating signatures for all messages

B = 1

correlation0: 0.00865525117668

B = 3

correlation1: 0.177818285803

value of next bit: 1

its value should be: 1

discovered bits: [1, 1]

B = 3

correlation0: 0.177818285803

B = 7

correlation1: 0.194471520198

value of next bit: 1

its value should be: 0

exception caught in main: Wrong result for bit at index 2

Got 2 bits!!!

============Starting run 7 of the overall experiment=============

Finished generating 100000 messages

modulus is: 225

Finished calculating signatures for all messages

B = 1

correlation0: 0.000834328683801

B = 3

correlation1: 0.296449299753

value of next bit: 1

its value should be: 1

discovered bits: [1, 1]

B = 3

correlation0: 0.296449299753

B = 7

correlation1: 0.268359146286

value of next bit: 0

its value should be: 0

discovered bits: [1, 1, 0]

79

Computer and Network Security by Avi Kak Lecture 32

B = 3

correlation0: 0.296449299753

B = 11

correlation1: 0.200498385434

value of next bit: 0

its value should be: 1

exception caught in main: Wrong result for bit at index 3

Got 3 bits!!!

============Starting run 8 of the overall experiment=============

Finished generating 100000 messages

modulus is: 195

Finished calculating signatures for all messages

B = 1

correlation0: 0.0099350807053

B = 3

correlation1: 0.100855277594

value of next bit: 1

its value should be: 1

discovered bits: [1, 1]

B = 3

correlation0: 0.100855277594

B = 7

correlation1: 0.123326809251

value of next bit: 1

its value should be: 0

exception caught in main: Wrong result for bit at index 2

Got 2 bits!!!

============Starting run 9 of the overall experiment=============

Finished generating 100000 messages

modulus is: 225

Finished calculating signatures for all messages

B = 1

correlation0: -0.00389727670499

B = 3

correlation1: 0.251815183197

value of next bit: 1

its value should be: 1

discovered bits: [1, 1]

B = 3

correlation0: 0.251815183197

B = 7

correlation1: 0.224629240235

value of next bit: 0

80

Computer and Network Security by Avi Kak Lecture 32

its value should be: 0

discovered bits: [1, 1, 0]

B = 3

correlation0: 0.251815183197

B = 11

correlation1: 0.253504735599

value of next bit: 1

its value should be: 1

discovered bits: [1, 1, 0, 1]

B = 11

correlation0: 0.253504735599

B = 27

correlation1: 0.205049470386

value of next bit: 0

its value should be: 0

discovered bits: [1, 1, 0, 1, 0]

B = 11

correlation0: 0.253504735599

B = 43

correlation1: 0.186280401626

value of next bit: 0

its value should be: 0

discovered bits: [1, 1, 0, 1, 0, 0]

B = 11

correlation0: 0.253504735599

B = 75

correlation1: 0.195741658334

value of next bit: 0

its value should be: 1

exception caught in main: Wrong result for bit at index 6

Got 6 bits!!!

81

Computer and Network Security by Avi Kak Lecture 32

32.9: USB MEMORY STICKS AS A
SOURCE OF DEADLY MALWARE

• Who could have imagined that the innocuous looking USB mem-

ory sticks would become be a potential source of deadly malware!

That this is indeed the case was demonstrated very convincingly

by Karsten Nohl and Jacob Lell at the 2014 Black Hat conference:

https://srlabs.de/blog/wp-content/uploads/2014/07/SRLabs-BadUSB-BlackHat-v1.pdf

This exploit was named BadUSB by its discoverers. It is esti-

mated that roughly half the USB devices out there are vulnerable

to the BadUSB exploit.

• If you do read the Nohl and Lell paper mentioned above, you

owe it your yourself to also go through the following report by

Stephanie Blanchet Hoareau, Erwan Le Disez, David Boucher,

and Benoit Poulo-Cazajou:

http://www.bertin-it.com/brochure/WP-BadUSB_an-unpatchable-flaw-by-Bertin-IT.pdf

One of the things I enjoyed about this well-written report is

the historical context it provides for the BadUSB exploit. It

was through this report I found out that, back in 2011, Ange-

los Stavrou and Zhaohui Wang gave a talk in that year’s Black

Hat conference that was entitled “Exploiting Smart-Phone USB

82

Computer and Network Security by Avi Kak Lecture 32

Connectivity For Fun And Profit,” in which they showed how an

Android phone connected to a computer as a USB device could

be emulated to act like a keyboard in order to inject hostile com-

mands into the host.

• It is important to realize that BadUSB is not about any mal-

ware files in the flash memory of a USB stick. [It is possible to detect those by

anti-virus software and, in the worst case, you can always just reformat a memory stick to get rid of any sus-

pected malware that resides in the flash memory of the stick.] BadUSB is about malware

threats that reside in the microcontroller firmware that con-

trols how the device operates. The current tools for detecting

malware are unable to identity these firmware based threats.

One can make the argument that the very nature of this malware

is such that it will not lend itself to detection by virus scanning

tools, present or future. See the end of this section for this ar-

gument. [BadUSB is also not about the “USB Propagation Mode” for malware that was described in

Lecture 22. As the reader will recall, if a Windows machine has “AutoRun” enabled, a file named autorun.inf

in the USB device would be automatically executed when the device is plugged into the computer. An infected

copy of this file in the device can infect a computer with the malware.]

• Karsten Nohl and Jacob Lell chose to not make public the soft-

ware for their exploit. That talk was followed by a presentation

entitled “Making BadUSB Work For You” at the Derbycon 2014

conference by Adam Caudill and Brandon Wilson where they

showed that they had successfully developed their own imple-

mentation of the BadUSB exploit. They have made their code

available on GitHub.

83

Computer and Network Security by Avi Kak Lecture 32

• Now that the cat is out of the bag and people have started posting

code on the web that makes this exploit possible, you may want

to exercise greater caution when you stick your memory stick in

other people’s computers or stick other people’s memory sticks

in your own. [When in a hotel, who hasn’t downloaded the boarding passes from an airline website

into a personal memory stick and taken the stick over to a hotel computer for printing them out! In light of

the BadUSB exploit, you may never want to do that again. (In the future, you may just want to download

the boarding pass into your smartphone directly). With all and sundry plugging their memory sticks into that

hotel computer in the lobby, there is always the possibility that, intentionally or unintentionally, someone may

use the BadUSB exploit to plant malware on that computer. Just imagine the consequence that after your own

memory stick has become infected in this manner, you plug it into your own computer!]

• To understand the BadUSB exploit, it’s best to revisit the main

reason the USB standard was created back in the mid 1990’s.

What prompted the development of this standard was the ever

increasing choice of peripherals that people could connect with

their computers: keyboard, mouse, webcam, music player, exter-

nal drive, and so on. It was felt that if a single connector type

could be devised for all such peripherals, that would considerably

simplify the hardware support that would need to be incorpo-

rated in a computer for the data transfer connections with the

different peripherals. [The USB standard has fulfilled that goal. The acronym USB stands for

”Universal Serial Bus”. One reason for the popularity of USB for connecting portable devices to a computer is

that you can connect and disconnect the devices without having to reboot the host computer. That is, USB

devices tend to be hot-swappable.]

• Considering that so many different types of devices can present

84

Computer and Network Security by Avi Kak Lecture 32

themselves to your computer through a USB connection, haven’t

you wondered as to how is it that a computer can tell the dif-

ference between, say, a keyboard and a thumb drive if they both

present themselves to your computer through the same hardware

port?

• When you insert a USB device in your computer, the very first

thing the OS in your computer does is to determine what “USB

class” the device belongs to. The USB standard defines a large

number of classes (over 20), some of the most commonly used

being:

Human Interface Device (HID) : USB devices that belong to this class are used
for connecting pointing devices (computer mouse, joystick), keypads, keyboards,
etc.

Image : USB devices that belong to this category are used for connecting webcam,
scanner, etc., to a computer.

Printer : As you might guess from its name, USB devices that fall in this class are
used to connect different types of printers to a computer.

Mass Storage (MSC) : USB devices that belong to this class are used for flash mem-
ory drives, digital audio players, cameras, etc. [As you might have guessed already, the

acronym MSC stands for ”Mass Storage Class”. Another name for this class is UMS for ”USB Mass

Storage”.]

USB Hub : Such a device is used to expand a single USB port into several others.
[Some of the lightest laptops come with only a single USB port. If you wanted to connect multiple devices

to such a laptop, you need a USB Hub. Also, when a machine does possess multiple USB ports, it is

usually an internally built single USB Hub that is expanded into multiple ports you see on the outside of

your laptop (rather than having independent USB circuitry for each separate port).]

85

Computer and Network Security by Avi Kak Lecture 32

Smart Card : These types of USB devices can be used to read smartcards.

and several others

• Each of the USB device classes is given a numerical code in the

USB standard. For example, the numerical code associated with

the HID class is 0x03, the code associated with the MSC class

0x08.

• As mentioned earlier, as soon as the OS on a host computer has

detected a USB device, it queries the USB device for the class

the device belongs to. The USB device responds back with the

numerical code of the class. The OS then loads the software

driver appropriate to that device class. [Subsequently, all communications between

the host computer and the USB device is in the form of packets. The first byte of each packet is the packet

identifier byte, which declares the purpose of the packet. For example, a packet may be a handshaking packet,

or a data bearing packet, or perhaps an error or a status message packet, etc.]

• Assuming the USB device is of class MSC, the software driver

in the host computer then interacts with the firmware in the

microcontroller in the USB device for transferring data between

the host computer and the flash memory in the USB memory

stick. [A microcontroller is just a small inexpensive single-chip computer, with its own CPU, RAM, and

I/O, that, for USB devices, is powered by the current drawn through the USB port from the host computer.

And the firmware consists of program stored in an EEPROM (Electrically Erasable Read Only Memory) that

is executed in the CPU of the microcontroller.]

86

Computer and Network Security by Avi Kak Lecture 32

• The ”mini-review” of USB devices presented so far describes how

such devices work under normal conditions. Let’s now consider

the following aspect of the firmware that sits in the microcon-

trollers of such devices that can turn a memory stick into a dan-

gerous source of malware.

• To allow for bug fixes to be carried out in the firmware in a USB

microcontroller and to also allow for the firmware to be upgraded,

the USB manufacturers permit third-party tools to alter their

firmware. In fact, you can download a manufacturer-consortium

supported open-source tool called ”USB Device Firmware Up-

grade tool” for this purpose from

https://admin.fedoraproject.org/pkgdb/package/dfu-util/

This is a vendor- and device-independent Device Firmware Up-

grade (DFU) tool for upgrading the firmware in the USB devices.

You can use this tool to both download the firmware currently in

the USB device and to upload to the device a new version of the

firmware.

• The fact that one can replace the manufacturer’s

firmware in the microcontroller of a USB opens it

up to exploits for spreading malware infection. Here

is how that can happen: You take a memory stick (that would

normally belong to the class MCS) and you alter its firmware so

that, upon being inserted into a host computer, it reports to the

OS that its class is HID. That would allow the USB stick to act

87

Computer and Network Security by Avi Kak Lecture 32

as a keyboard vis-a-vis the host computer it is connected to. Any

keystrokes sent by the USB masquerading as a keyboard could be

for executing commands that install malware from remote sites.

The commands executed in this manner could also install mal-

ware that would be permanently stored in the host and installed

in all USBs memory sticks that are plugged into the host in the

future.

• What makes this exploit particularly dangerous is that it is unde-

tectable by any virus scanning tools. These tools are not meant

for examining the firmware in the peripheral devices connected

to a computer.

• Obviously, your first reaction to the state of affairs described in

the previous bullet is likely to be: Why not augment the virus

scanning tools to also look at the firmware in the peripheral de-

vices connected to a host? You might think of a scanning tool

that is placed at the disposal of the OS so that when the OS first

detects a USB devices, it makes a point of examining the firmware

before allowing any data exchange with the device. However there

is a problem with that scenario: How would this tool distinguish

between a USB that belongs legitimately to the HID class and

the devices that are masquerading as belonging to the same?

88

Computer and Network Security by Avi Kak Lecture 32

32.10: MOBILE IP

• Let’s say you are at home and you want to use your smartphone

to send a text message to your friend who lives in the same town

as you, but who at the moment happens to be enjoying a local

brew in a Starbucks in a far-away country. Let’s assume that

your friend’s smartphone is connected to that Starbuck’s WiFi.

• The fact that your text message will reach your friend’s smart-

phone regardless of where exactly he/she is on the face of the

earth is pretty amazing. Haven’t you ever wondered how is it

that the cell phone operator at your end of the communication

link knows how to route your packets to your friend’s phone re-

gardless of the location of that phone? [The communication problem involved here

is more complex than you might think. In the old days, when all telephones had fixed numbers, a telephone

exchange at the source end of a communication link could immediately figure out how to route a phone call

just by examining the country code, the area code, etc., associated with a dialed number. But that obviously

does not apply to modern cell-phone based communications. You might think that a smartphone currently

connected to the internet in some remote country has an IP address assigned to it by the ISP in that remote

location. (That would certainly be the case for a non-mobile device like a laptop.) If that is indeed the case,

how would be network at the source end know how to route the packets to the remote phone if it is the source

that is initiating the connection?]

89

Computer and Network Security by Avi Kak Lecture 32

• The answer to the question posed above lies in the concept of

what is known as IP Mobility Support as defined in RFC

5944. What RFC 5944 spells out is also informally referred to as

Mobile IP.

• According to the RFC 5944 standard, every mobile “node” in a

network is always identified by its home IP address, regardless

of the current location of the node. When away from home, a

mobile node also has another IP address associated with it; this

second IP address is known as care-of IP address. [Think of the home IP

address as the permanent identifier for a smartphone. When a smartphone is away from its home network, it

needs both IP addresses, the home IP address and the care-of IP address, to operate according to RFC 5944.]

• Whereas a mobile node is uniquely identified by its home IP ad-

dress, the care-of IP address, when it exists, is the mobile node’s

current point-of-attachment with the internet.

• Informally speaking, the cell phone operator where the home IP

address for a mobile node is registered is referred to as the home

agent in RFC 5944. And the cell phone operator at the mobile

node’s current point of attachment is known as the node’s foreign

agent. [For the official definitions: Home Agent: A router on a mobile node’s home network that

tunnels datagrams for delivery to the mobile node when it is away from home, and maintains current

location information for the mobile node. Foreign Agent: A router on a mobile node’s visited network

that provides routing services to the mobile node while registered. The foreign agent detunnels and

delivers to the mobile node datagrams that were tunneled by the mobile node’s home agent. For

datagrams sent by a mobile node, the foreign agent may serve as a default router for registered mobile

90

Computer and Network Security by Avi Kak Lecture 32

nodes.]

• Regardless of the current point of attachment for a mobile node,

if your smart phone wants to send packets to that mobile node,

it sends the packets to the mobile node’s home agent. The home

agent tunnels the packets to the mobile node’s current foreign

agent, which, in turn, routs the packets to their final destination

using the care-of IP address. This is illustrated by the following

diagram taken from RFC 5944:

2) Datagram is intercepted 3) Datagram is

by home agent and detunneled and

is tunneled to the delivered to the

care-of address. mobile node.

+-----+ +-------+ +------+

|home | =======> |foreign| ------> |mobile|

|agent| | agent | <------ | node |

+-----+ +-------+ +------+

1) Datagram to /|\ /

mobile node | / 4) For datagrams sent by the

arrives on | / mobile node, standard IP

home network | / routing delivers each to its

via standard | |_ destination. In this figure,

IP routing. +----+ the foreign agent is the

|host| mobile node’s default router.

+----+

Operation of Mobile IPv4 (from RFC 5944)

• In the diagram shown above, the “host” at the bottom of the

diagram could be your smart phone and the “mobile node” the

smart phone of your friend at any remote location on earth where

91

Computer and Network Security by Avi Kak Lecture 32

there is cell phone coverage.

• What’s most interesting about the routing diagram shown above

is the path taken by the packets from the remote cell phone back

to your smart phone. As shown by the diagonal arrow, the return

path for the packets bypasses the home agent.

• Another important point related to the return packets is that

source IP address in those packets is the mobile node’s home IP

address. So as far as the “host” at the bottom of the diagram

is concerned, the packets it receives from the remotely located

mobile node look as if the mobile node were located in its home

network.

• Let’s get back to the subject of your smartphone sending packets

to your friend’s smartphone that is currently at a remote loca-

tion. The data coming off your smartphone will look no different

from when your friend phone is plugged into the home network.

It is the job of the router in the home network to tunnel the

packets coming off your phone to the router at the current point

of attachment of your friend’s phone. Tunneling means that the

home router places the packets coming off your smartphone in

the data payload of the packets sent to the router where your

friend’s smartphone is currently located. That router detunnels

the packets and sends them to your friend’s smartphone.

92

