

1.1

1.2

1.3

1.4

1.4.1

1.4.2

1.4.3

1.4.4

1.5

1.5.1

1.5.2

1.5.3

1.5.4

1.5.5

1.5.6

1.5.7

1.6

1.6.1

1.6.2

1.6.3

1.6.4

1.6.5

1.6.6

1.6.7

1.6.8

1.7

1.7.1

1.7.2

1.7.3

1.7.4

Table	of	Contents
Introduction

1.	What	Is	React

2.	React	Semantics/Terminology

3.	React	&	Babel	Basic	Setup

3.1	Using	react.js	&	react-dom.js

3.2	Using	JSX	via	Babel

3.3	Using	ES6	&	ES*	with	React

3.4	Writing	React	With	JSFiddle

4.	React	Nodes

4.1	What	Is	a	React	Node?

4.2	Creating	React	Nodes

4.3	Rendering	to	DOM

4.4	Defining	Node	Attributes/Props

4.5	Inlining	CSS	on	Element	Nodes

4.6	Using	Built-in	Element	Factories

4.7	Defining	React	Node	Events

5.	JavaScript	Syntax	Extension	(a.k.a.,	JSX)

5.1	What	Is	a	JSX?

5.2	Creating	React	Nodes	With	JSX

5.3	Rendering	JSX	to	DOM

5.4	Using	JS	Expressions	in	JSX

5.5	Using	JS	Comments	in	JSX

5.6	Using	Inline	CSS	in	JSX

5.7	Defining	JSX	Attributes/Props

5.8	Defining	Events	in	JSX

6.	Basic	React	Components

6.1	What	Is	a	React	Component?

6.2	Creating	Components

6.3	Return	One	Starting	Node/Component

6.4	Referring	to	a	Component	Instance

2

1.7.5

1.7.6

1.7.7

1.7.8

1.7.9

1.7.10

1.8

1.8.1

1.8.2

1.8.3

1.8.4

1.8.5

1.8.6

1.9

1.9.1

1.9.2

1.9.3

1.9.4

6.5	Defining	Events	on	Components

6.6	Composing	Components

6.7	Grokking	Component	Lifecycle's

6.8	Accessing	Children	Components/Nodes

6.9	Using	ref	Attribute

6.10	Re-rendering	A	Component

7.	React	Component	Props

7.1	What	Are	Component	Props?

7.2	Sending	Component	Props

7.3	Getting	Component	Props

7.4	Setting	Default	Component	Props

7.5	Component	Props	More	Than	Strings

7.6	Validating	Component	Props

8.	React	Component	State

8.1	What	Is	Component	State?

8.2	Working	with	Component	State

8.3	State	vs.	Props

8.4	Creating	Stateless	Function	Components

3

React	Enlightenment
Written	by	Cody	Lindley	sponsored	by	—	Frontend	Masters

Learn	React	in	the	terse	cookbook	style	found	with	previous	Enlightenment	titles	(i.e.,	jQuery
Enlightenment,	JavaScript	Enlightenment,	DOM	Enlightenment)

Read	Online	At:

reactenlightenment.com

download	a	.pdf,	.epub,	or	.mobi	file	from:

https://www.gitbook.com/book/frontendmasters/react-enlightenment/details

contribute	content,	suggestions,	and	fixes	on	github:

https://github.com/FrontendMasters/react-enlightenment

This	work	is	licensed	under	a	Creative	Commons	Attribution-NonCommercial-NoDerivs	3.0
Unported	License.

Introduction

4

http://codylindley.com/
https://frontendmasters.com/
http://jqueryenlightenment.com/
http://javascriptenlightenment.com/
http://domenlightenment.com/
http://www.reactenlightenment.com/
https://www.gitbook.com/book/frontendmasters/react-enlightenment/details
https://github.com/FrontendMasters/react-enlightenment
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

What	is	React?
React	is	a	JavaScript	tool	that	makes	it	easy	to	reason	about,	construct,	and	maintain
stateless	and	stateful	user	interfaces.	It	provides	the	means	to	declaratively	define	and
divide	a	UI	into	UI	components	(a.k.a.,	React	components)	using	HTML-like	nodes	called
React	nodes.	React	nodes	eventually	get	transformed	into	a	format	for	UI	rendering	(e.g.,
HTML/DOM,	canvas,	svg,	etc.).

I	could	ramble	on	trying	to	express	in	words	what	React	is,	but	I	think	it	best	to	just	show
you.	What	follows	is	a	whirlwind	tour	of	React	and	React	components	from	thirty	thousand
feet.	Don't	try	and	figure	out	all	the	details	yet	as	I	describe	React	in	this	section.	The	entire
book	is	meant	to	unwrap	the	details	showcased	in	the	following	overview.	Just	follow	along
grabbing	a	hold	of	the	big	concepts	for	now.

Using	React	to	create	UI	components	similar	to
a		<select>	
Below	is	an	HTML		<select>		element	that	encapsulates	child	HTML		<option>		elements.
Hopefully	the	creation	and	functionality	of	an	HTML		<select>		is	already	familiar.

source	code

When	a	browser	parses	the	above	tree	of	elements	it	will	produce	a	UI	containing	a	textual
list	of	items	that	can	be	selected.	Click	on	the	"Result"	tab	in	the	above	JSFiddle,	to	see
what	the	browser	produces.

The	browser,	the	DOM,	and	the	shadow	DOM	are	working	together	behind	the	scenes	to
turn	the		<select>		HTML	into	a	UI	component.	Note	that	the		<select>		component	allows
the	user	to	make	a	selection	thus	storing	the	state	of	that	selection	(i.e.,	click	on	"Volvo",	and
you	have	selected	it	instead	of	"Mercedes").

Using	React	you	can	create	a	custom		<select>		by	using	React	nodes	to	make	a	React
component	that	eventually	will	result	in	HTML	elements	in	an	HTML	DOM.

Let's	create	our	own		<select>	-like	UI	component	using	React.

Defining	a	React	component

1.	What	Is	React

5

https://jsfiddle.net/s2pxp36L/#tabs=html,result
http://domenlightenment.com/
https://developer.mozilla.org/en-US/docs/Web/Web_Components/Shadow_DOM

Below	I	am	creating	a	React	component	by	invoking	the		React.createClass		function	in	order
to	create	a		MySelect		React	component.

As	you	can	see,	the		MySelect		component	is	made	up	of	some	styles	and	an	empty	React
	<div>		node	element.

var	MySelect	=	React.createClass({	//define	MySelect	component

				render:	function(){

								var	mySelectStyle	=	{

												border:	'1px	solid	#999',

												display:	'inline-block',

												padding:	'5px'

								};

								//	using	{}	to	reference	a	JS	variable	inside	of	JSX

								return	<div	style={mySelectStyle}></div>;	//react	div	element,	via	JSX

				}

});

That		<div>		is	an	HTML-like	tag,	yes	in	JavaScript,	called	JSX.	JSX	is	an	optional	custom
JavaScript	syntax	used	by	React	to	express	React	nodes	that	can	map	to	real	HTML
elements,	custom	elements,	and	text	nodes.	React	nodes,	defined	using	JSX	should	not	be
considered	a	one	to	one	match	to	HTML	elements.	There	are	differences	and	some	gotchas.

JSX	syntax	must	be	transformed	from	JSX	to	real	JavaScript	in	order	to	be	parsed	by	ES5
JS	engines.	The	above	code,	if	not	transformed	would	of	course	cause	a	JavaScript	error.

The	official	tool	used	to	transform	JSX	to	actual	JavaScript	code	is	called	Babel.

After	Babel	(or	something	similar)	transforms	the	JSX		<div>		in	the	above	code	into	real
JavaScript,	it	will	look	like	this:

return	React.createElement('div',	{	style:	mySelectStyle	});

instead	of	this:

return	<div	style={mySelectStyle}></div>;

For	now,	just	keep	in	mind	that	when	you	write	HTML-like	tags	in	React	code,	eventually	it
must	be	transformed	into	real	JavaScript,	along	with	any	ES6	syntax.

The		<MySelect>		component	at	this	point	consist	of	an	empty	React		<div>		node	element.
That's	a	rather	trivial	component,	so	let's	change	it.

I'm	going	to	define	another	component	called		<MyOption>		and	then	use	the		<MyOption>	
component	within	the		<MySelect>		component	(a.k.a.,	composition).

1.	What	Is	React

6

https://facebook.github.io/jsx/
https://facebook.github.io/react/docs/dom-differences.html
https://facebook.github.io/react/docs/jsx-gotchas.html
http://babeljs.io/

Examine	the	updated	JavaScript	code	below	which	defines	both	the		<MySelect>		and
	<MyOption>		React	components.

var	MySelect	=	React.createClass({

				render:	function(){

								var	mySelectStyle	=	{

												border:	'1px	solid	#999',

												display:	'inline-block',

												padding:	'5px'

								};

								return	(//react	div	element,	via	JSX,	containing	<MyOption>	component

												<div	style={mySelectStyle}>

																<MyOption	value="Volvo"></MyOption>

																<MyOption	value="Saab"></MyOption>

																<MyOption	value="Mercedes"></MyOption>

																<MyOption	value="Audi"></MyOption>

												</div>

);

				}

});

var	MyOption	=	React.createClass({		//define	MyOption	component

				render:	function(){

								return	<div>{this.props.value}</div>;	//react	div	element,	via	JSX

				}

});

You	should	note	how	the		<MyOption>		component	is	used	inside	of	the		<MySelect>	
component	and	that	both	are	created	using	JSX.

Passing	Component	Options	Using	React
attributes/props
Notice	that	the		<MyOption>		component	is	made	up	of	one		<div>		containing	the	expression
	{this.props.value}	.	The		{}		brackets	indicate	to	JSX	that	a	JavaScript	expression	is	being
used.	In	other	words,	inside	of		{}		you	can	write	JavaScript.

The		{}		brackets	are	used	to	gain	access	(i.e.,		this.props.value)	to	the	properties	or
attributes	passed	by	the		<MyOption>		component.	In	other	words,	when	the		<MyOption>	
component	is	rendered	the		value		option,	passed	using	an	HTML-like	attribute	(i.e.,
	value="Volvo"),	will	be	placed	into	the		<div>	.	These	HTML	looking	attributes	are
considered	React	attributes/props.	React	uses	them	to	pass	stateless/immutable	options
into	components.	In	this	case	we	are	simply	passing	the		value		prop	to	the		<MyOption>	
component.	Not	unlike	how	an	argument	is	passed	to	a	JavaScript	function.	And	in	fact	that
is	exactly	what	is	going	on	behind	the	JSX.

1.	What	Is	React

7

https://facebook.github.io/react-native/docs/props.html

Rendering	a	component	to	the	Virtual	DOM,
then	HTML	DOM
At	this	point	our	JavaScript	only	defines	two	React	Components.	We	have	yet	to	actually
render	these	components	to	the	Virtual	DOM	and	thus	to	the	HTML	DOM.

Before	we	do	that	I'd	like	to	mention	that	up	to	this	point	all	we	have	done	is	define	two
React	components	using	JavaScript.	In	theory,	the	JavaScript	we	have	so	far	is	just	the
definition	of	a	UI	component.	It	doesn't	strictly	have	to	go	into	a	DOM,	or	even	a	Virtual
DOM.	This	same	definition,	in	theory,	could	also	be	used	to	render	this	component	to	a
native	mobile	platform	or	an	HTML	canvas.	But	we're	not	going	to	do	that,	even	though	we
could.	Just	be	aware	that	React	is	a	pattern	for	organizing	a	UI	that	can	transcend	the	DOM,
front-end	applications,	and	even	the	web	platform.

Let's	now	render	the		<MySelect>		component	to	the	virtual	DOM	which	in	turn	will	render	it	to
the	actual	DOM	inside	of	an	HTML	page.

In	the	JavaScript	below	notice	I	added	a	call	to	the		ReactDOM.render()		function	on	the	last
line.	Here	I	am	passing	the		ReactDOM.render()		function	the	component	we	want	to	render
(i.e.,		<MySelect>)	and	a	reference	to	the	HTML	element	already	in	the	HTML	DOM	(i.e.,
	<div	id="app"></div>)	where	I	want	to	render	my	React		<MySelect>		component.

Click	on	the	"Result"	tab	and	you	will	see	our	custom	React		<MySelect>		component
rendered	to	the	HTML	DOM.

source	code

Note	that	all	I	did	was	tell	React	where	to	start	rendering	components	and	which	component
to	start	with.	React	will	then	render	any	children	components	(i.e.,		<MyOption>)	contained
within	the	starting	component	(i.e.,		<MySelect>).

Hold	up,	you	might	be	thinking.	We	haven't	actually	created	a		<select>		at	all.	All	we	have
done	is	create	a	static/stateless	list	of	text	strings.	We'll	fix	that	next.

Before	I	move	on	I	want	to	point	out	that	no	implicit	DOM	interactions	were	written	to	get	the
	<MySelect>		component	into	the	real	DOM.	In	other	words,	no	jQuery	code	was	invoked
during	the	creation	of	this	component.	The	dealings	with	the	actual	DOM	have	all	been
abstracted	by	the	React	virtual	DOM.	In	fact,	when	using	React	what	you	are	doing	is
describing	a	virtual	DOM	that	React	takes	and	uses	to	create	a	real	DOM	for	you.

Using	React	state

1.	What	Is	React

8

https://github.com/facebook/react-native
https://github.com/Flipboard/react-canvas
https://facebook.github.io/react/docs/top-level-api.html#reactdomserver
https://jsfiddle.net/zp86ez31/#tabs=js,result,html,resources

In	order	for	our		<MySelect>		component	to	mimic	a	native		<select>		element	we	are	going
to	have	to	add	state.	After	all	what	good	is	a	custom		<select>		element	if	it	can't	keep	the
state	of	the	selection.

State	typically	gets	involved	when	a	component	contains	snapshots	of	information.	In
regards	to	our	custom		<MyOption>		component,	its	state	is	the	currently	selected	text	or	the
fact	that	no	text	is	selected	at	all.	Note	that	state	will	typically	involve	user	events	(i.e.,
mouse,	keyboard,	clipboard,	etc.)	or	network	events	(i.e.,	AJAX)	and	its	value	is	used	to
determine	when	the	UI	needs	to	be	re-rendered	(i.e.,	when	value	changes	re-render).

State	is	typically	found	on	the	top	most	component	which	makes	up	a	UI	component.	Using
the	React		getInitialState()		function	we	can	set	the	default	state	of	our	component	to
	false		(i.e.,	nothing	selected)	by	returning	a	state	object	when		getInitialState		is	invoked
(i.e.,		return	{selected:	false};).	The		getInitialState		lifecycle	method	gets	invoked	once
before	the	component	is	mounted.	The	return	value	will	be	used	as	the	initial	value	of
	this.state	.

I've	updated	the	code	below	accordingly	to	add	state	to	the	component.	As	I	am	making
updates	to	the	code,	make	sure	you	read	the	JavaScript	comments	which	call	attention	to
the	changes	in	the	code.

1.	What	Is	React

9

https://facebook.github.io/react/docs/react-component.html#the-component-lifecycle

var	MySelect	=	React.createClass({

				getInitialState:	function(){	//add	selected,	default	state

								return	{selected:	false};	//this.state.selected	=	false;

				},

				render:	function(){

								var	mySelectStyle	=	{

												border:	'1px	solid	#999',

												display:	'inline-block',

												padding:	'5px'

								};

								return	(

												<div	style={mySelectStyle}>

																<MyOption	value="Volvo"></MyOption>

																<MyOption	value="Saab"></MyOption>

																<MyOption	value="Mercedes"></MyOption>

																<MyOption	value="Audi"></MyOption>

												</div>

);

				}

});

var	MyOption	=	React.createClass({

				render:	function(){

								return	<div>{this.props.value}</div>;

				}

});

ReactDOM.render(<MySelect	/>,	document.getElementById('app'));

With	the	default	state	set,	next	we'll	add	a	callback	function	called		select		that	gets	called
when	a	user	clicks	on	an	option.	Inside	of	this	function	we	get	the	text	of	the	option	that	was
selected	(via	the		event		parameter)	and	use	that	to	determine	how	to		setState		on	the
current	component.	Notice	that	I	am	using		event		details	passed	to	the		select		callback.
This	pattern	should	look	familiar	if	you've	had	any	experience	with	jQuery.

1.	What	Is	React

10

var	MySelect	=	React.createClass({

				getInitialState:	function(){

								return	{selected:	false};

				},

				select:function(event){//	added	select	function

								if(event.target.textContent	===	this.state.selected){//remove	selection

												this.setState({selected:	false});	//update	state

								}else{//add	selection

												this.setState({selected:	event.target.textContent});	//update	state

								}			

				},

				render:	function(){

								var	mySelectStyle	=	{

												border:	'1px	solid	#999',

												display:	'inline-block',

												padding:	'5px'

								};

								return	(

												<div	style={mySelectStyle}>

																<MyOption	value="Volvo"></MyOption>

																<MyOption	value="Saab"></MyOption>

																<MyOption	value="Mercedes"></MyOption>

																<MyOption	value="Audi"></MyOption>

												</div>

);

				}

});

var	MyOption	=	React.createClass({

				render:	function(){

								return	<div>{this.props.value}</div>;

				}

});

ReactDOM.render(<MySelect	/>,	document.getElementById('app'));

In	order	for	our		<MyOption>		components	to	gain	access	to	the		select		function	we'll	have	to
pass	a	reference	to	it,	via	props,	from	the		<MySelect>		component	to	the		<MyOption>	
component.	To	do	this	we	add		select={this.select}		to	the		<MyOption>		components.

With	that	in	place	we	can	add		onClick={this.props.select}		to	the		<MyOption>		components.
Hopefully	it's	obvious	that	all	we	have	done	is	wired	up	a		click		event	that	will	call	the
	select		function.	React	takes	care	of	wiring	up	the	real	click	handler	in	the	real	DOM	for
you.

1.	What	Is	React

11

var	MySelect	=	React.createClass({

				getInitialState:	function(){

								return	{selected:	false};

				},

				select:function(event){

								if(event.target.textContent	===	this.state.selected){

												this.setState({selected:	false});

								}else{

												this.setState({selected:	event.target.textContent});

								}			

				},

				render:	function(){

								var	mySelectStyle	=	{

												border:	'1px	solid	#999',

												display:	'inline-block',

												padding:	'5px'

								};

								return	(//pass	reference,	using	props,	to	select	callback	to	<MyOption>

												<div	style={mySelectStyle}>

																<MyOption	select={this.select}	value="Volvo"></MyOption>

																<MyOption	select={this.select}	value="Saab"></MyOption>

																<MyOption	select={this.select}	value="Mercedes"></MyOption>

																<MyOption	select={this.select}	value="Audi"></MyOption>

												</div>

);

				}

});

var	MyOption	=	React.createClass({

				render:	function(){//add	event	handler	that	will	invoke	select	callback

								return	<div	onClick={this.props.select}>{this.props.value}</div>;

				}

});

ReactDOM.render(<MySelect	/>,	document.getElementById('app'));

By	doing	all	this	we	can	now	set	the	state	by	clicking	on	one	of	the	options.	In	other	words,
when	you	click	on	an	option	the		select		function	will	now	run	and	set	the	state	of	the
	MySelect		component.	However,	the	user	of	the	component	has	no	idea	this	is	being	done
because	all	we	have	done	is	update	our	code	so	that	state	is	managed	by	the	component.	At
this	point	we	have	no	feedback	visually	that	anything	is	selected.	Let's	fix	that.

The	next	thing	we	will	need	to	do	is	pass	the	current	state	down	to	the		<MyOption>	
component	so	that	it	can	respond	visually	to	the	state	of	the	component.

Using	props,	again,	we	will	pass	the		selected		state	from	the		<MySelect>		component	down
to	the		<MyOption>		component	by	placing	the	property		state={this.state.selected}		on	all	of
the		<MyOption>		components.	Now	that	we	know	the	state	(i.e.,		this.props.state)	and	the
current	value	(i.e.,		this.props.value)	of	the	option	we	can	verify	if	the	state	matches	the

1.	What	Is	React

12

value	in	a	given		<MyOption>		component	.	If	it	does,	we	then	know	that	this	option	should	be
selected.	We	do	this	by	writing	a	simple		if		statement	which	adds	a	styled	selected	state
(i.e.,		selectedStyle)	to	the	JSX		<div>		if	the	state	matches	the	value	of	the	current	option.
Otherwise,	we	return	a	React	element	with		unSelectedStyle		styles.

source	code

Make	sure	you	click	on	the	"Result"	tab	above	and	use	the	custom	React	select	component
to	verify	the	new	functioning.

While	our	React	UI	select	component	is	not	as	pretty	or	feature	complete	as	you	might	hope,
I	think	you	can	see	still	where	all	this	is	going.	React	is	a	tool	that	can	help	you	reason
about,	construct,	and	maintain	stateless	and	stateful	UI	components,	in	a	structure	tree	(i.e.,
a	tree	of	components).

Before	moving	on	to	the	role	of	the	virtual	DOM	I	do	want	to	stress	that	you	don't	have	to
use	JSX	and	Babel.	You	can	always	bypass	these	tools	and	just	write	straight	JavaScript.
Below,	I'm	showing	the	final	state	of	the	code	after	the	JSX	has	been	transformed	by	Babel.
If	you	choose	not	to	use	JSX,	then	you'll	have	to	write	the	following	code	yourself	instead	of
the	code	I've	written	throughout	this	section.

var	MySelect	=	React.createClass({

		displayName:	'MySelect',

		getInitialState:	function	getInitialState()	{

				return	{	selected:	false	};

		},

		select:	function	select(event)	{

				if	(event.target.textContent	===	this.state.selected)	{

						this.setState({	selected:	false	});

				}	else	{

						this.setState({	selected:	event.target.textContent	});

				}

		},

		render:	function	render()	{

				var	mySelectStyle	=	{

						border:	'1px	solid	#999',

						display:	'inline-block',

						padding:	'5px'

				};

				return	React.createElement(

						'div',

						{	style:	mySelectStyle	},

						React.createElement(MyOption,	{	state:	this.state.selected,	select:	this.select,

	value:	'Volvo'	}),

						React.createElement(MyOption,	{	state:	this.state.selected,	select:	this.select,

	value:	'Saab'	}),

						React.createElement(MyOption,	{	state:	this.state.selected,	select:	this.select,

	value:	'Mercedes'	}),

1.	What	Is	React

13

https://jsfiddle.net/L1z9za23/#tabs=js,result,html,resources

						React.createElement(MyOption,	{	state:	this.state.selected,	select:	this.select,

	value:	'Audi'	})

);

		}

});

var	MyOption	=	React.createClass({

		displayName:	'MyOption',

		render:	function	render()	{

				var	selectedStyle	=	{	backgroundColor:	'red',	color:	'#fff',	cursor:	'pointer'	};

				var	unSelectedStyle	=	{	cursor:	'pointer'	};

				if	(this.props.value	===	this.props.state)	{

						return	React.createElement(

								'div',

								{	style:	selectedStyle,	onClick:	this.props.select	},

								this.props.value

);

				}	else	{

						return	React.createElement(

								'div',

								{	style:	unSelectedStyle,	onClick:	this.props.select	},

								this.props.value

);

				}

		}

});

ReactDOM.render(React.createElement(MySelect,	null),	document.getElementById('app'));

Understanding	the	role	of	the	Virtual	DOM
I'm	going	to	end	this	whirlwind	tour	where	most	people	typically	start	talking	about	React.	I'll
finish	off	this	React	overview	by	talking	about	the	merits	of	the	React	virtual	DOM.

Hopefully	you	notice	the	only	interaction	with	the	real	DOM	we	had	during	the	creation	of	our
custom	select	UI	is	when	we	told	the		ReactDOM.render()		function	where	to	render	our	UI
component	in	the	HTML	page	(i.e.,	render	it	to		<div	id="app"></div>).	This	might	just	be
the	only	interaction	you	ever	have	with	the	real	DOM	when	building	out	a	React	application
from	a	tree	of	React	components.	And	herein	lies	much	of	the	value	of	React.	By	using
React,	you	really	don't	ever	have	to	think	about	the	DOM	like	you	once	did	when	you	were
writing	jQuery	code.	React	replaces	jQuery,	as	a	complete	DOM	abstraction,	by	removing
most,	if	not	all,	implicit	DOM	interactions	from	your	code.	Of	course,	that's	not	the	only
benefit,	or	even	the	best	benefit.

1.	What	Is	React

14

Because	the	DOM	has	been	completely	abstracted	by	the	Virtual	DOM	this	allows	for	a
heavy	handed	performance	pattern	of	updating	the	real	DOM	when	state	is	changed.	The
Virtual	DOM	keeps	track	of	UI	changes	based	on	state	and	props.	It	then	compares	that	to
the	real	DOM,	and	then	makes	only	the	minimal	changes	required	to	update	the	UI.	In	other
words,	the	real	DOM	is	only	ever	patched	with	the	minimal	changes	needed	when	state	or
props	change.

Seeing	these	performant	updates	in	real	time	will	often	clarify	any	confusion	about	the
performant	DOM	diffing.	Look	at	the	animated	image	below	showcasing	the	usage	(i.e.,
changing	state)	of	the	UI	component	we	created	in	this	chapter.

Notice	that	as	the	UI	component	changes	state	only	the	minimally	needed	changes	to	the
real	DOM	are	occurring.	We	know	that	React	is	doing	it's	job	because	the	only	parts	of	the
real	DOM	that	are	actually	being	updated	are	the	parts	with	a	green	outline/background.	The
entire	UI	component	is	not	being	updated	on	each	state	change,	only	the	parts	that	require	a
change.

Let	me	be	clear,	this	isn't	a	revolutionary	concept.	You	could	accomplish	the	same	thing	with
some	carefully	crafted	and	performant	minded	jQuery	code.	However,	by	using	React	you'll
rarely,	if	ever,	have	to	think	about	it.	The	Virtual	DOM	is	doing	all	the	performance	work	for
you.	In	a	sense,	this	is	the	best	type	of	jQuery/DOM	abstraction	possible.	One	where	you
don't	even	have	to	worry	about,	or	code	for,	the	DOM.	It	all	just	happens	behinds	the	scene
without	you	ever	implicitly	having	to	interact	with	the	DOM	itself.

Now,	it	might	be	tempting	to	leave	this	overview	thinking	the	value	of	React	is	contained	in
the	fact	that	it	almost	eliminates	the	need	for	something	like	jQuery.	And	while	the	Virtual
DOM	is	certainly	a	relief	when	compared	to	implicit	jQuery	code,	the	value	of	React	does	not
rest	alone	on	the	Virtual	DOM.	The	Virtual	DOM	is	just	the	icing	on	the	cake.	Simply	stated,
the	value	of	React	rests	upon	the	fact	it	provides	a	simple	and	maintainable	pattern	for
creating	a	tree	of	UI	components.	Imagine	how	simple	programming	a	UI	could	be	by
defining	the	entire	interface	of	your	application	using	reusable	React	components	alone.

1.	What	Is	React

15

React	Semantics
Before	I	enlighten	you	with	the	mechanics	of	React	I'd	first	like	to	define	a	few	terms	so	as	to
grease	the	learning	process.

Below	I	list	the	most	common	terms,	and	their	definitions,	used	when	talking	about	React.

Babel

Babel	transforms	JavaScript	ES*	(i.e.,	JS	2016,	2016,	2017)	to	ES5.	Babel	is	the	tool	of
choice	from	the	React	team	for	writing	future	ES*	code	and	transforming	JSX	to	ES5	code.

Babel	CLI

Babel	comes	with	a	CLI	tool,	called	Babel	CLI,	that	can	be	used	to	compile	files	from	the
command	line.

Component	Configuration	Options	(a.k.a,	"Component
Specifications")

The	configuration	arguments	passed	(as	an	object)	to	the		React.createClass()		function
resulting	in	an	instance	of	a	React	component.

Component	Life	Cycle	Methods

A	sub	group	of	component	events,	semantically	separated	from	the	other	component
configuration	options	(i.e.,		componentWillUnmount	,		componentDidUpdate	,
	componentWillUpdate	,		shouldComponentUpdate	,		componentWillReceiveProps	,
	componentDidMount	,		componentWillMount).	These	methods	are	executed	at	specific	points	in
a	component's	existence.

Document	Object	Model	(a.k.a.,	DOM)

2.	React	Semantics/Terminology

16

https://babeljs.io/
https://babeljs.io/docs/usage/cli/

"The	Document	Object	Model	(DOM)	is	a	programming	interface	for	HTML,	XML	and	SVG
documents.	It	provides	a	structured	representation	of	the	document	as	a	tree.	The	DOM
defines	methods	that	allow	access	to	the	tree,	so	that	they	can	change	the	document
structure,	style	and	content.	The	DOM	provides	a	representation	of	the	document	as	a
structured	group	of	nodes	and	objects,	possessing	various	properties	and	methods.	Nodes
can	also	have	event	handlers	attached	to	them,	and	once	an	event	is	triggered,	the	event
handlers	get	executed.	Essentially,	it	connects	web	pages	to	scripts	or	programming
languages."	-	MSD

ES5

The	5th	edition	of	the	ECMAScript	standard.	The	ECMAScript	5.1	edition	was	finalized	in
June	2011.

ES6/ES	2015

The	6th	edition	of	the	ECMAScript	standard.	A.k.a,	JavaScript	2015	or	ECMAScript	2015.
The	ECMAScript	6th	edition	was	finalized	in	June	2015.

ECMAScript	2016	(a.k.a,	ES7)

The	7th	edition	of	the	ECMAScript	standard.	The	ECMAScript	7th	edition	was	finalized	in
June	2016.

ES*

Used	to	represent	the	current	version	of	JavaScript	as	well	as	potential	future	versions	that
can	written	today	using	tools	like	Babel.	When	you	see	"ES*"	it	more	than	likely	means	you'll
find	uses	of	ES5,	ES6,	and	ES7	together.

JSX

JSX	is	an	optional	XML-like	syntax	extension	to	ECMAScript	that	can	be	used	to	define	an
HTML-like	tree	structure	in	a	JavaScript	file.	The	JSX	expressions	in	a	JavaScript	file	must
be	transformed	to	JavaScript	syntax	before	a	JavaScript	engine	can	parse	the	file.	Babel	is

2.	React	Semantics/Terminology

17

https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model
https://www.ecma-international.org/ecma-262/5.1/
http://www.ecma-international.org/ecma-262/6.0/index.html
http://www.ecma-international.org/ecma-262/7.0/index.html
https://jsx.github.io/

typically	used	and	recommended	for	transforming	JSX	expressions.

Node.js

Node.js	is	an	open-source,	cross-platform	runtime	environment	for	writing	JavaScript.	The
runtime	environment	interprets	JavaScript	using	Google's	V8	JavaScript	engine.

npm

npm	is	the	package	manager	for	JavaScript	born	from	the	Node.js	community.

React	Attributes/Props

In	one	sense	you	can	think	of	props	as	the	configuration	options	for	React	nodes	and	in
another	sense	you	can	think	of	them	as	HTML	attributes.

Props	take	on	several	roles:

1.	 Props	can	become	HTML	attributes.	If	a	prop	matches	a	known	HTML	attribute	then	it
will	be	added	to	the	final	HTML	element	in	the	DOM.

2.	 Props	passed	to		createElement()		become	values	stored	in	a		prop		object	as	an
instance	property	of		React.createElement()		instances	(i.e.,		[INSTANCE].props.[NAME	OF
PROP]).	Props	by	and	large	are	used	to	input	values	into	components.

3.	 A	few	special	props	have	side	effects	(e.g.,		key	,		ref	,	and		dangerouslySetInnerHTML)

React

React	is	an	open	source	JavaScript	library	for	writing	declarative,	efficient,	and	flexible	user
interfaces.

React	Component

A	React	component	is	created	by	calling		React.createClass()		(or,		React.Component		if	using
ES6	classes).	This	function	takes	an	object	of	options	that	is	used	to	configure	and	create	a
React	component.	The	most	common	configuration	option	is	the		render		function	which

2.	React	Semantics/Terminology

18

https://nodejs.org/
https://developers.google.com/v8/
https://www.npmjs.com/
https://facebook.github.io/react/docs/multiple-components.html#dynamic-children
https://facebook.github.io/react/docs/more-about-refs.html
https://facebook.github.io/react/tips/dangerously-set-inner-html.html
https://facebook.github.io/react/

returns	React	nodes.	Thus,	you	can	think	of	a	React	component	as	an	abstraction
containing	one	or	more	React	nodes/components.

React	Element	Nodes	(a.k.a.,		ReactElement)

An	HTML	or	custom	HTML	element	node	representation	in	the	Virtual	DOM	created	using
	React.createElement();	.

React	Nodes

React	nodes	(i.e.,	element	and	text	nodes)	are	the	primary	object	type	in	React	and	can	be
created	using		React.createElement('div');	.	In	other	words	React	nodes	are	objects	that
represent	DOM	nodes	and	children	DOM	nodes.	They	are	a	light,	stateless,	immutable,
virtual	representation	of	a	DOM	node.

React	Node	Factories

A	function	that	generates	a	React	element	node	with	a	particular	type	property.

React	Stateless	Function	Component

When	a	component	is	purely	a	result	of	props	alone,	no	state,	the	component	can	be	written
as	a	pure	function	avoiding	the	need	to	create	a	React	component	instance.

var	MyComponent	=	function(props){

				return	<div>Hello	{props.name}</div>;

};

ReactDOM.render(<MyComponent	name="doug"	/>,	app);

React	Text	Nodes	(a.k.a.,		ReactText)

A	text	node	representation	in	the	Virtual	DOM	created	using
	React.createElement('div',null,'a	text	node');	.

2.	React	Semantics/Terminology

19

Virtual	DOM

An	in-memory	JavaScript	tree	of	React	elements/components	that	is	used	for	efficient	re-
rendering	(i.e.,	diffing	via	JavaScript)	of	the	browser	DOM.

Webpack

Webpack	is	a	module	loader	and	bundler	that	takes	modules	(.js,	.css,	.txt,	etc.)	with
dependencies	and	generates	static	assets	representing	these	modules.

2.	React	Semantics/Terminology

20

https://webpack.github.io/

React	Setup
This	section	will	discuss	setting	up	an	HTML	page	so	that	when	it	is	parsed	by	a	web
browser,	at	runtime,	the	browser	can	transform	JSX	expressions	and	correctly	run	React
code.

3.	React	&	Babel	Basic	Setup

21

Using	 	react.js		and	 	react-dom.js		in	an
HTML	Page
The		react.js		file	is	the	core	file	needed	to	create	React	elements	and	write	react
components.	When	you	intend	to	render	your	components	in	an	HTML	document	(i.e.,	the
DOM)	you'll	also	need	the		react-dom.js		file.	The		react-dom.js		file	is	dependent	on	the
	react.js		file	and	must	be	included	after	first	including	the		react.js		file.

An	example	of	an	HTML	document	properly	including	React	is	shown	below.

<!DOCTYPE	html>

<html>

		<head>

				<script	src="https://fb.me/react-15.2.0.js"></script>

				<script	src="https://fb.me/react-dom-15.2.0.js"></script>

		</head>

<body>

</body>

</html>

With	the		react.js		file	and		react-dom.js		file	loaded	into	an	HTML	page	it	is	then	possible
to	create	React	nodes/components	and	then	render	them	to	the	DOM.	In	the	HTML	below	a
	HelloMessage		React	component	is	created	containing	a	React		<div>		node	that	is	rendered
to	the	DOM	inside	of	the		<div	id="app"></div>		HTML	element.

3.1	Using	react.js	&	react-dom.js

22

<!DOCTYPE	html>

<html>

				<head>

								<script	src="https://fb.me/react-15.2.0.js"></script>

								<script	src="https://fb.me/react-dom-15.2.0.js"></script>

				</head>

<body>

				<div	id="app"></div>

				<script>

								var	HelloMessage	=	React.createClass({

												displayName:	'HelloMessage',

												render:	function	render()	{

																return	React.createElement('div',null,'Hello	',this.props.name);

												}

								});

								ReactDOM.render(React.createElement(HelloMessage,{	name:	'John'	}),	document.g

etElementById('app'));

				</script>

</body>

</html>

This	setup	is	all	you	need	to	use	React.	However	this	setup	does	not	make	use	of	JSX.	The
next	section	will	discuss	JSX	usage.

Notes

An	alternative		react.js		file	called		react-with-addons.js		is	available	containing	a
collection	of	utility	modules	for	building	React	applications.	The	"addons"	file	can	be
used	in	place	of	the		react.js		file.
Don't	make	the		<body>		element	the	root	node	for	your	React	app.	Always	put	a	root
	<div>		into		<body>	,	give	it	an	ID,	and	render	into	it.	This	gives	React	its	own	pool	to
play	in	without	worrying	about	what	else	potentially	wants	to	make	changes	to	the
children	of	the		<body>		element.

3.1	Using	react.js	&	react-dom.js

23

https://facebook.github.io/react/docs/addons.html

Using	JSX	via	Babel
The	creation	of	the	React		HelloMessage		component	and	React		<div>		element	node	in	the
HTML	page	below	was	done	using	the		React.createClass()		and		React.createElement()	
functions.	This	code	should	look	familiar	as	it	is	identical	to	the	HTML	from	the	previous
section.	This	HTML	will	run	without	errors	in	ES5	browsers.

<!DOCTYPE	html>

<html>

				<head>

								<script	src="https://fb.me/react-15.2.0.js"></script>

								<script	src="https://fb.me/react-dom-15.2.0.js"></script>

				</head>

<body>

				<div	id="app"></div>

				<script>

								var	HelloMessage	=	React.createClass({

												displayName:	'HelloMessage',

												render:	function	render()	{

																return	React.createElement('div',null,'Hello	',this.props.name);

												}

								});

								ReactDOM.render(React.createElement(HelloMessage,{	name:	'John'	}),	document.g

etElementById('app'));

				</script>

</body>

</html>

Optionally,	by	using	JSX	via	Babel,	it	is	possible	to	simplify	the	creation	of	React	elements
by	abstracting	the		React.createElement()		JavaScript	function	calls	so	they	can	be	written	in
a	more	natural	HTML-like	style	and	syntax.

Instead	of	writing	the	following,	which	uses		React.createElement()	:

return	React.createElement('div',null,'Hello	',this.props.name);

Using	JSX,	you	can	write	this:

return	<div>Hello	{this.props.name}</div>;

And	then	Babel	will	convert	it	back	to	the	code	which	uses		React.createElement()		so	it	can
be	parsed	by	a	JavaScript	engine.

3.2	Using	JSX	via	Babel

24

https://kangax.github.io/compat-table/es5/

Loosely	stated	you	can	consider	JSX	a	form	of	HTML	that	you	can	directly	write	in
JavaScript	that	requires	a	transformation	step,	done	by	Babel,	into	ECMAScript	5	code	that
browsers	can	run.

More	will	be	said	about	JSX	in	the	JSX	chapter.	For	now,	just	realize	that	JSX	is	an	optional
abstraction	provided	for	your	convenience	when	creating	React	elements	and	it	won't	run	in
ES5	browsers	without	first	being	transformed	by	Babel.

Transforming	JSX	via	Babel	in	the	Browser
Normally,	Babel	is	setup	to	automatically	process	your	JavaScript	files	during	development
using	the	Babel	CLI	tool	(e.g.,	via	something	like	webpack).	However,	it	is	possible	to	use
Babel	directly	in	the	browser	by	way	of	a	script	include.	As	we	are	just	getting	started	we'll
avoid	CLI	tools	or	learning	a	module	loader	to	focus	on	learning	React.	Note	that	you	should
never	use	this	browser	transformation	in	a	production	environment.

The	Babel	project	unfortunately,	as	of	Babel	6,	no	longer	provides	the	script	file	needed	(i.e.,
	browser.js)	to	transform	JSX	code	to	ES5	code	in	the	browser.	Thus	you	will	have	to	use
an	older	version	of	Babel	(i.e.,	5.8.23)	that	provides	the	needed	file	(i.e.,		browser.js)	for
transforming	JSX/ES*	in	the	browser.

Using		browser.js		(Babel	5.8.23)	to	Transform	JSX	in	the
Browser

In	the	HTML	file	below	the	React	code	we	have	been	working	with	to	create	the
	HelloMessage		component	has	been	updated	to	use	JSX.	The	transformation	of	the	code	is
occurring	because	we	have	included	the		browser.js		Babel	file	and	given	the		<script>	
element	a		type		attribute	of		type="text/babel"	.

3.2	Using	JSX	via	Babel

25

https://webpack.github.io/

<!DOCTYPE	html>

<html>

				<head>

								<script	src="https://fb.me/react-15.2.0.js"></script>

								<script	src="https://fb.me/react-dom-15.2.0.js"></script>

								<script	src="https://cdnjs.cloudflare.com/ajax/libs/babel-core/5.8.23/browser.

min.js"></script>

				</head>

<body>

				<div	id="app"></div>

				<script	type="text/babel">

								var	HelloMessage	=	React.createClass({

												render:	function()	{

																return	 ;

												}

								});

								ReactDOM.render(

</script>

</body>

</html>

While	transforming	JSX	in	the	browser	is	convenient	and	easy	to	setup,	it	isn't	ideal	because
the	transformation	cost	is	occurring	at	runtime.	This	will	slow	down	your	web	pages	and	may
cause	memory	issues.	Therefore	using	browser.js	is	not	a	production	solution.

You	should	be	aware	that	the	code	examples	used	in	this	book	via	JSFiddle	will	be	using	the
	browser.js		(Babel	5.8.23)	to	transform	JSX	into	ES5	code.	In	other	words,	JSFiddle	is
pretty	much	doing	what	you	see	in	the	HTML	file	above	when	running	React	code.

Notes

The	Babel	tool	is	a	subjective	selection	from	the	React	team	for	transforming	ES*	code
and	JSX	syntax	to	ES5	code.	Learn	more	about	Babel	by	reading	the	Babel	handbook.
By	using	JSX:

Less	technical	people	can	still	understand	and	modify	the	required	parts.	CSS
developers	and	designers	will	find	JSX	more	familiar	than	JavaScript	alone.
You	can	leverage	the	full	power	of	JavaScript	in	HTML	and	avoid	learning	or	using
a	templating	language.	JSX	is	not	a	templating	solution.	It	is	a	declarative	syntax
used	to	express	a	tree	structure	of	UI	components.
The	compiler	will	find	errors	in	your	HTML	you	might	otherwise	miss.
JSX	promotes	the	idea	of	inline	styles.	Which	can	be	a	good	thing.

Beware	of	JSX	Gotchas.
A	JSX	specification	is	currently	being	drafted.	It	can	be	used	by	anyone	as	an	a	XML-
like	syntax	extension	to	ECMAScript	without	any	defined	semantics.

3.2	Using	JSX	via	Babel

26

https://facebook.github.io/react/blog/2015/09/10/react-v0.14-rc1.html#compiler-optimizations
https://github.com/thejameskyle/babel-handbook/blob/master/translations/en/user-handbook.md
http://facebook.github.io/react/docs/jsx-gotchas.html
https://facebook.github.io/jsx/

3.2	Using	JSX	via	Babel

27

Using	ES6	&	ES*	With	React
Babel	is	not	part	of	React.	In	fact,	Babel's	purpose	isn't	even	that	of	a	JSX	transformer.
Babel	is	a	JavaScript	compiler	first.	It	takes	ES*	code	and	transforms	it	to	run	in	browsers
that	don't	support	ES*	code.	As	of	today,	Babel	mostly	takes	ES6	and	ES7	code	and
transforms	it	into	ES5	code.	When	doing	these	ECMAScript	transformations	it	is	trivial	to
also	transform	JSX	expressions	into		React.createElement()		calls.	This	is	what	we	examined
in	the	previous	section.

Given	that	Babel	is	the	mechanism	for	transforming	JSX,	it	allows	you	to	write	code	that	will
run	in	future	versions	of	ES*.

In	the	HTML	page	below	the	familiar		HelloMessage		component	has	been	rewritten	to	take
advantage	of	ES6	classes.	Not	only	is	Babel	transforming	the	JSX	syntax,	it	is	also
transforming	ES6	class	syntax	to	ES5	syntax	which	can	then	be	parsed	by	ES5	browser
engines.

3.3	Using	ES6	&	ES*	with	React

28

http://babeljs.io/blog/2015/06/07/react-on-es6-plus/
https://github.com/lukehoban/es6features#classes

<!DOCTYPE	html>

<html>

				<head>

								<script	src="https://fb.me/react-15.2.0.js"></script>

								<script	src="https://fb.me/react-dom-15.2.0.js"></script>

								<script	src="https://cdnjs.cloudflare.com/ajax/libs/babel-core/5.8.23/browser.

min.js"></script>

				</head>

<body>

				<div	id="app"></div>

				<script	type="text/babel">

								class	HelloMessage	extends	React.Component	{	//notice	use	of	React.Component

												render(){

																return	<div>Hello	{this.props.name}</div>;

												}

								};

								ReactDOM.render(<HelloMessage	name="John"	/>,	document.getElementById('app'));

								/***	PREVIOUSLY	***/

								/*	var	HelloMessage	=	React.createClass({

									*				render:	function()	{

									*								return	<div>Hello	{this.props.name}</div>;

									*				}

									*	});

									*

									*	ReactDOM.render(<HelloMessage	name="John"	/>,	document.getElementById('app'

));

									*/

				</script>

</body>

</html>

In	the	above	HTML	document	Babel	is	taking	in:

class	HelloMessage	extends	React.Component	{

				render(){

								return	<div>Hello	{this.props.name}</div>;

				}

};

ReactDOM.render(<HelloMessage	name="John"	/>,	document.getElementById('app'));

And	transforming	it	to	this:

"use	strict";

var	_createClass	=	(function	()	{	function	defineProperties(target,	props)	{	for	(var	

3.3	Using	ES6	&	ES*	with	React

29

i	=	0;	i	<	props.length;	i++)	{	var	descriptor	=	props[i];	descriptor.enumerable	=	des

criptor.enumerable	||	false;	descriptor.configurable	=	true;	if	("value"	in	descriptor

)	descriptor.writable	=	true;	Object.defineProperty(target,	descriptor.key,	descriptor

);	}	}	return	function	(Constructor,	protoProps,	staticProps)	{	if	(protoProps)	define

Properties(Constructor.prototype,	protoProps);	if	(staticProps)	defineProperties(Const

ructor,	staticProps);	return	Constructor;	};	})();

var	_get	=	function	get(_x,	_x2,	_x3)	{	var	_again	=	true;	_function:	while	(_again)	{	

var	object	=	_x,	property	=	_x2,	receiver	=	_x3;	_again	=	false;	if	(object	===	null)	

object	=	Function.prototype;	var	desc	=	Object.getOwnPropertyDescriptor(object,	proper

ty);	if	(desc	===	undefined)	{	var	parent	=	Object.getPrototypeOf(object);	if	(parent	

===	null)	{	return	undefined;	}	else	{	_x	=	parent;	_x2	=	property;	_x3	=	receiver;	_a

gain	=	true;	desc	=	parent	=	undefined;	continue	_function;	}	}	else	if	("value"	in	de

sc)	{	return	desc.value;	}	else	{	var	getter	=	desc.get;	if	(getter	===	undefined)	{	r

eturn	undefined;	}	return	getter.call(receiver);	}	}	};

function	_classCallCheck(instance,	Constructor)	{	if	(!(instance	instanceof	Constructo

r))	{	throw	new	TypeError("Cannot	call	a	class	as	a	function");	}	}

function	_inherits(subClass,	superClass)	{	if	(typeof	superClass	!==	"function"	&&	sup

erClass	!==	null)	{	throw	new	TypeError("Super	expression	must	either	be	null	or	a	fun

ction,	not	"	+	typeof	superClass);	}	subClass.prototype	=	Object.create(superClass	&&	

superClass.prototype,	{	constructor:	{	value:	subClass,	enumerable:	false,	writable:	t

rue,	configurable:	true	}	});	if	(superClass)	Object.setPrototypeOf	?	Object.setProtot

ypeOf(subClass,	superClass)	:	subClass.__proto__	=	superClass;	}

var	HelloMessage	=	(function	(_React$Component)	{

				_inherits(HelloMessage,	_React$Component);

				function	HelloMessage()	{

								_classCallCheck(this,	HelloMessage);

								_get(Object.getPrototypeOf(HelloMessage.prototype),	"constructor",	this).apply(

this,	arguments);

				}

				_createClass(HelloMessage,	[{

								key:	"render",

								value:	function	render()	{

												return	React.createElement(

																"div",

																null,

																"Hello	",

																this.props.name

);

								}

				}]);

				return	HelloMessage;

})(React.Component);

;

3.3	Using	ES6	&	ES*	with	React

30

ReactDOM.render(React.createElement(HelloMessage,	{	name:	"John"	}),	document.getEleme

ntById('app'));

Most	ES6	features	with	a	few	caveats	can	be	used	when	writing	JavaScript	that	is
transformed	by	Babel	5.8.23	(i.e.,	https://cdnjs.cloudflare.com/ajax/libs/babel-
core/5.8.23/browser.js).

Notes

Obviously	one	can	could	still	use	Babel	for	it's	intended	purpose	(i.e.,	compiling	newer
JavaScript	code	to	older	JavaScript	code)	without	using	JSX.	However,	most	people
using	React	are	taking	advantage	of	Babel	for	both	unsupported	ES*	features	and	JSX
transforming.
Learn	more	about	Babel	by	reading	the	Babel	handbook.

3.3	Using	ES6	&	ES*	with	React

31

https://github.com/lukehoban/es6features
https://cdnjs.cloudflare.com/ajax/libs/babel-core/5.8.23/browser.js
https://github.com/thejameskyle/babel-handbook/blob/master/translations/en/user-handbook.md

Writing	React	With	JSFiddle
The	basic	setup	that	has	been	described	in	this	chapter	can	be	used	online	via	JSfiddle.
JSFiddle	uses	the	same	three	resources	used	earlier	to	make	writing	React	online	simple.

	react-with-addons.js		(the	newer	version	of		react.js)
	react-dom.js	

	browser.js	

Below	is	an	embedded	JSFiddle	containing	the		HelloMessage		component	used	throughout
this	chapter.	By	clicking	on	the	"results"	tab	you	can	view	the	React	component	rendered	to
the	DOM.	To	edit	the	code	just	click	on	"edit	with	JSFiddle".

source	code

Note	that	the	"Babel"	tab	indicates	the	JavaScript	written	into	this	tab	will	be	transformed	by
Babel	(similar	too,	if	not	directly	using		browser.js).	The	"Resources"	tab	shows	that
JSFiddle	is	pulling	in	the		react.js		and		react-dom.js		files.

It	will	be	assumed	that	after	reading	this	chapter	that	you	understand	the	basic	requirements
to	setup	React	and	Babel	via		browser.js	.	And	that	while	JSFiddle	does	not	make	it
obvious,	this	is	the	same	exact	setup	being	used	by	JSFiddle	to	run	React	code.

JSFiddle	will	be	used	throughout	the	rest	of	this	book	to	show	the	results	of	React	code
transformed	by	Babel.

3.4	Writing	React	With	JSFiddle

32

https://jsfiddle.net/bvpe4j39/

React	Nodes
This	section	will	discuss	creating	React	nodes	(text	or	element	nodes)	using	JavaScript.

4.	React	Nodes

33

http://domenlightenment.com/#7
http://domenlightenment.com/#3

What	Is	a	React	Node?
The	primary	type	or	value	that	is	created	when	using	React	is	known	as	a	React	node.	A
React	node	is	defined	as:

a	light,	stateless,	immutable,	virtual	representation	of	a	DOM	node.

React	nodes	are	not	real	DOM	nodes	(e.g.,	text	or	element	nodes)	themselves,	but	a
representation	of	a	potential	DOM	node.	The	representation	is	considered	the	virtual	DOM.
In	a	nutshell,	React	is	used	to	define	a	virtual	DOM	using	React	nodes,	that	fuel	React
components,	that	can	eventually	be	used	to	create	a	real	DOM	structured	or	other	structures
(e.g.,	React	Native).

React	nodes	can	be	created	using	JSX	or	JavaScript.	In	this	chapter	we'll	look	at	creating
React	nodes	using	JavaScript	alone.	No	JSX	yet.	I	believe	that	you	should	first	learn	what
JSX	is	concealing	in	order	to	understand	JSX.

You	might	be	tempted	to	skip	this	chapter	because	you	already	know	that	you	will	be	using
JSX.	I'd	suggest	reading	this	chapter	so	you	are	aware	of	what	JSX	is	doing	for	you.	This	is
likely	the	most	important	chapter	in	the	book	to	Grok.

4.1	What	Is	a	React	Node?

34

http://domenlightenment.com/#1
http://domenlightenment.com/#7
http://domenlightenment.com/#3
https://facebook.github.io/react-native/
https://en.wikipedia.org/wiki/Grok

Creating	React	Nodes
In	most	cases	developers	using	React	will	favor	JSX	and	use	it	to	create	React	nodes.
Despite	this,	in	this	chapter	we	are	going	to	examine	how	React	nodes	can	be	created
without	JSX,	using	only	JavaScript.	The	next	chapter	will	discuss	creating	React	nodes
using	JSX.

Creating	React	nodes	using	JavaScript	is	as	simple	as	calling	the
	React.createElement(type,props,children)		function	and	passing	it	a	set	of	arguments
defining	an	actual	DOM	node	(e.g.,	type	=	an	html	element	e.g.,				or	custom	element
e.g.,		<my-li>).

The		React.createElement()		arguments	are	explained	below:

type	(string	|		React.createClass()):

Can	be	a	string	which	represents	an	HTML	element	(or	custom	HTML	element)	or
React	component	instance	(i.e.,	an	instance	of		React.createClass())

props	(null	|	object):

Can	be		null		or	an	object	containing	attributes/props	and	values

children	(null	|	string	|		React.createClass()		|		React.createElement()):

Children	can	be		null	,	a	string	that	gets	turned	into	a	text	node,	an	instance	of
	React.createClass()		or		React.createElement()	

Below	I	use	the		React.createElement()		function	to	create	a	virtual	DOM	representation	of	a
			element	node	containing	a	text	node	of		one		(a.k.a.,	React	text)	and	an		id		of		li1	.

var	reactNodeLi	=	React.createElement('li',	{id:'li1'},	'one');

Notice	that	the	first	argument	defines	the	HTML	element	I	want	to	represent.	The	second
argument	defines	the	attributes/props	on	the			.	And	the	third	argument	defines	what	the
node	inside	of	the	element	will	be.	In	this	case,	I	am	simply	placing	a	child	text	node	(i.e.,
	'one')	inside	the			.	The	last	argument	that	becomes	a	child	of	the	node	being	created
can	be

A	React	text	node
A	React	element	node,	or
A	React	component	instance.

4.2	Creating	React	Nodes

35

At	this	point	all	I've	done	is	create	a	React	element	node	containing	a	React	text	node	that	I
have	stored	into	the	variable		reactNodeLi	.	To	create	a	virtual	DOM	we	have	to	actually
render	the	React	element	node	to	a	real	DOM.	To	do	this	we	use	the		ReactDOM.render()	
function.

ReactDOM.render(reactNodeLi,	document.getElementById('app'));

The	above	code,	loosely	stated,	invokes	the	following:

1.	 Create	a	virtual	DOM	constructed	from	the	React	element	node	passed	in
(reactNodeLi)

2.	 Use	the	virtual	DOM	to	re-construct	a	real	DOM	branch
3.	 Insert	the	real	DOM	branch	(i.e.,		<li	id="li1">one)	into	the	DOM	as	a	child	node

of		<div	id="app"></div>	.

In	other	words,	the	HTML	DOM	changes	from	this:

<div	id="app"></div>

to	this:

<div	id="app">

				//note	that	React	added	the	react	data-reactid	attribute

				<li	id="li1"	data-reactid=".0">one

</div>

This	was	a	rather	simplistic	example.	Using		React.createElement()		a	complex	structure	can
be	created	as	well.	For	example,	below	I'm	using		React.createElement()		to	create	a	bunch
of	React	nodes	representing	an	HTML	unordered	list	of	text	words	(i.e.,).

//	Create	React	element	's

var	rElmLi1	=	React.createElement('li',	{id:'li1'},	'one'),

				rElmLi2	=	React.createElement('li',	{id:'li2'},	'two'),

				rElmLi3	=	React.createElement('li',	{id:'li3'},	'three');

//	Create		React	element	and	add	child

//	React		elements	to	it

var	reactElementUl	=	React.createElement('ul',	{className:'myList'},	rElmLi1,	rElmLi2,

	rElmLi3);

Before	rendering	the	unordered	list	to	the	DOM	I	think	it	is	worth	showing	that	the	above
code	can	be	simplified	by	using	the		React.createElement()		in	place	of	variables.	This	also
demonstrates	how	a	hierarchy	or	DOM	branch	can	be	defined	using	JavaScript.

4.2	Creating	React	Nodes

36

var	reactElementUl	=	React.createElement(

				'ul',	{

								className:	'myList'

				},

				React.createElement('li',	{id:	'li1'},	'one'),

				React.createElement('li',	{id:	'li2'},	'two'),

				React.createElement('li',	{id:	'li3'},	'three')

);

When	the	above	code	is	rendered	to	the	DOM	the	resulting	HTML	will	look	like:

<ul	class="myList"	data-reactid=".0">

				<li	id="li1"	data-reactid=".0.0">one

				<li	id="li2"	data-reactid=".0.1">two

				<li	id="li3"	data-reactid=".0.2">three

You	can	investigate	this	yourself	using	the	JSFiddle	below:

source	code

It	should	be	obvious	that	React	nodes	are	just	JavaScript	objects	in	a	tree	that	represent	real
DOM	nodes	inside	of	a	virtual	DOM	tree.	The	virtual	DOM	is	then	used	to	construct	an
actual	DOM	branch	in	an	HTML	page.

Notes

The		type		argument	passed	to		React.createElement(type,	props,	children)		can	be
A	string	indicating	a	standard	HTML	element	(e.g.,		'li'		=),	or
A	custom	element	(e.g.,		'foo-bar'		=		<foo-bar></foo-bar>	,	or	a	React	component
instance	(i.e.,	an	instance	of		React.createClass()	.

These	are	the	standard	HTML	elements	that	React	supports	(i.e.	these	elements
passed	as	a	string		type		to		createElement()).	They	create	the	associating	standard
HTML	element	in	the	DOM):

a	abbr	address	area	article	aside	audio	b	base	bdi	bdo	big	blockquote	body	br

button	canvas	caption	cite	code	col	colgroup	data	datalist	dd	del	details	dfn

dialog	div	dl	dt	em	embed	fieldset	figcaption	figure	footer	form	h1	h2	h3	h4	h5

h6	head	header	hgroup	hr	html	i	iframe	img	input	ins	kbd	keygen	label	legend	li

link	main	map	mark	menu	menuitem	meta	meter	nav	noscript	object	ol	optgroup

option	output	p	param	picture	pre	progress	q	rp	rt	ruby	s	samp	script	section

select	small	source	span	strong	style	sub	summary	sup	table	tbody	td	textarea

tfoot	th	thead	time	title	tr	track	u	ul	var	video	wbr

4.2	Creating	React	Nodes

37

https://jsfiddle.net/bLy9Lu47/#tabs=js,result,html,resources

4.2	Creating	React	Nodes

38

Rendering	to	DOM
React	provides	the		ReactDOM.render()		function	from		react-dom.js		that	can	be	used	to
render	React	nodes	to	the	DOM.	We've	already	seen	this		render()		function	in	use	in	this
chapter.

In	the	code	example	below,	using		ReactDOM.render()	,	the		''		and		'<foo-bar>'		React
nodes	are	rendered	to	the	DOM.

source	code

Once	rendered	to	the	DOM,	the	updated	HTML	will	be:

<body>

				<div	id="app1"><li	class="bar"	data-reactid=".0">foo</div>

				<div	id="app2"><foo-bar	classname="bar"	children="foo"	data-reactid=".1">foo</foo-

bar></div>

</body>

The		ReactDOM.render()		function	is	initially	how	you	get	the	React	nodes	to	the	Virtual	DOM,
then	to	the	HTML	DOM.

Notes

Any	DOM	nodes	inside	of	the	DOM	element	which	you	are	rendering	into	will	be
replaced	(i.e.,	removed).
	ReactDOM.render()		does	not	modify	the	DOM	element	node	in	which	you	are	rendering
React.	However,	when	rendering	React	wants	complete	ownership	of	the	node.	You
should	not	add	children	to	or	remove	children	from	a	node	in	which	React	inserts	a
React	node/component.
Rendering	to	an	HTML	DOM	is	only	one	option	with	React,	other	rendering	APi's	are
available.	For	example,	it	is	also	possible	to	render	to	a	string	(i.e.,
	ReactDOMServer.renderToString())	on	the	server-side.
Re-rendering	to	the	same	DOM	element	will	only	update	the	current	child	nodes	if	a
change	has	been	made	or	a	new	child	node	has	been	added.

4.3	Rendering	to	DOM

39

https://github.com/facebook/react/blob/master/src/renderers/dom/ReactDOM.js
https://jsfiddle.net/LLz4p3ox/#tabs=js,result,html,resources
https://facebook.github.io/react/docs/top-level-api.html#reactdomserver.rendertostring

Defining	Node	Attributes/Props
The	second	argument	that	is	passed	to		React.createElement(type,	props,	children)		is	an
object	containing	name	value	properties	(a.k.a,	props).

Props	take	on	several	roles:

1.	 Props	can	become	HTML	attributes.	If	a	prop	matches	a	known	HTML	attribute	then	it
will	be	added	to	the	final	HTML	element	in	the	DOM.

2.	 Props	passed	to		createElement()		become	values	stored	in	a		prop		object	as	an
instance	property	of		React.createElement()		instances	(i.e.,		[INSTANCE].props.[NAME	OF
PROP]).	Props	are	normally	used	to	input	values	into	components.

3.	 A	few	special	props	have	side	effects	(e.g.,		key	,		ref	,	and		dangerouslySetInnerHTML)

In	one	sense	you	can	think	of	props	as	the	configuration	options	for	React	nodes	and	in
another	sense	you	can	think	of	them	as	HTML	attributes.

In	the	code	example	below	I	am	defining	a	React				element	node	with	five	props.	One
is	a	non-standard	HTML	attribute	(i.e.,		foo:'bar')	and	the	others	are	known	HTML
attributes.

var	reactNodeLi	=	React.createElement('li',

				{

								foo:	'bar',

								id:	'li1',

								//	Note	the	use	of	the	JS	className	property	to	change	the	

								//	class	attribute	below

								className:	'blue',

								'data-test':	'test',

								'aria-role'	:'listitem',

								//	Note	use	of	JS	camel-cased	CSS	property	backgroundColor	below

								style:	{backgroundColor:'red'}

				},

				'text'

);

When	the	above	code	is	rendered	to	an	HTML	page	the	actual	HTML	created	will	look	like:

<li	id="li1"	data-test="test"	class="blue"	aria-role="listitem"	style="background-colo

r:red;"	data-reactid=".0">text

What	you	need	to	realize	is	only	the	following	attributes	get	passed	to	the	real	DOM	from	the
Virtual	DOM

4.4	Defining	Node	Attributes/Props

40

https://facebook.github.io/react/docs/multiple-components.html#dynamic-children
https://facebook.github.io/react/docs/more-about-refs.html
https://facebook.github.io/react/tips/dangerously-set-inner-html.html

Standard	HTML	attributes,
Custom	data	attributes		data-*	,	and
Accessibility	attributes		aria-*	

The		foo		attribute/prop	does	not	show	up	in	the	real	DOM.	This	non-standard	HTML
attribute	is	available	as	an	instance	property	of	the	created		li		React	node	instance.	(e.g.,
	reactNodeLi.props.foo).

source	code

React	attributes/props	not	only	translate	to	real	HTML	attributes	props,	they	become
configuration	values	that	are	passed	to	React	components.	This	aspect	of	props	will	be
covered	in	the	React	component	props	chapter.	For	now	simply	realize	that	passing	a	prop
into	a	React	node	is	different	from	defining	a	prop	on	a	component	to	be	used	as
configuration	input	within	a	component.

Notes

Leaving	an	attribute/prop	blank	results	in	that	attribute	value	becoming	true	(e.g.,
	id=""		becomes		id="true"		and		test		becomes		test="true")
If	an	attribute/prop	is	duplicated	the	last	one	defined	wins.
If	you	pass	props/attributes	to	native	HTML	elements	that	do	not	exist	in	the	HTML
specification	React	will	not	render	them.	However,	if	you	use	a	custom	element	(i.e.,	not
a	standard	HTML	element)	then	arbitrary/custom	attributes	will	be	added	to	custom
elements	(e.g.,		<x-my-component	custom-attribute="foo"/>).
The		class		attribute	has	to	be	written		className	
The		for		attribute	has	to	be	written		htmlFor	
The		style		attribute	takes	a	reference	to	an	object	of	camel-cased	style	properties
HTML	form	elements	(e.g.,		<input></input>	,		<textarea></textarea>	,	etc.)	created	as
React	nodes	support	a	few	attributes/props	that	are	affected	by	user	interaction.	These
are:		value	,		checked	,	and		selected	.
React	offers	the		key	,		ref	,	and		dangerouslySetInnerHTML		attributes/props	that	don't
exist	in	DOM	and	take	on	a	unique	role/function.
All	attributes	are	camel-cased	(e.g.,		accept-charset		is	written	as		acceptCharset)	which
differs	from	how	they	are	written	in	HTML.
The	following	are	the	HTML	attributes	that	React	supports	(shown	in	camel-case):

4.4	Defining	Node	Attributes/Props

41

https://developer.mozilla.org/en-US/docs/Web/HTML/Attributes
https://developer.mozilla.org/en-US/docs/Web/HTML/Global_attributes/data-*
https://developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA
https://jsfiddle.net/codylindley/8ca0z80m/1/#tabs=js,result,html,resources
https://www.w3.org/TR/DOM-Level-2-Style/css.html#CSS-CSS2Properties
https://facebook.github.io/react/docs/forms.html
https://facebook.github.io/react/docs/multiple-components.html#dynamic-children
https://facebook.github.io/react/docs/more-about-refs.html
https://facebook.github.io/react/tips/dangerously-set-inner-html.html

accept	acceptCharset	accessKey	action	allowFullScreen	allowTransparency	alt

async	autoComplete	autoFocus	autoPlay	capture	cellPadding	cellSpacing	challenge

charSet	checked	classID	className	colSpan	cols	content	contentEditable

contextMenu	controls	coords	crossOrigin	data	dateTime	default	defer	dir

disabled	download	draggable	encType	form	formAction	formEncType	formMethod

formNoValidate	formTarget	frameBorder	headers	height	hidden	high	href	hrefLang

htmlFor	httpEquiv	icon	id	inputMode	integrity	is	keyParams	keyType	kind	label

lang	list	loop	low	manifest	marginHeight	marginWidth	max	maxLength	media

mediaGroup	method	min	minLength	multiple	muted	name	noValidate	nonce	open

optimum	pattern	placeholder	poster	preload	radioGroup	readOnly	rel	required

reversed	role	rowSpan	rows	sandbox	scope	scoped	scrolling	seamless	selected

shape	size	sizes	span	spellCheck	src	srcDoc	srcLang	srcSet	start	step	style

summary	tabIndex	target	title	type	useMap	value	width	wmode	wrap

4.4	Defining	Node	Attributes/Props

42

Inlining	CSS	on	Element	Nodes
To	apply	inline	CSS	to	a	React	node	you	have	to	pass	a		style		attribute/prop	with	an	object
value	containing	CSS	properties	and	values.

For	example,	in	the	code	below	I	am	passing	a		style		prop	referencing	(i.e.,		inlineStyle)
an	object	containing	CSS	properties	and	values:

var	inlineStyles	=	{backgroundColor:	'red',	fontSize:	20};

var	reactNodeLi	=		React.createElement('div',{style:	inlineStyles},	'styled')

ReactDOM.render(reactNodeLi,	document.getElementById('app1'));

The	resulting	HTML	will	look	like	so:

<div	id="app1">

		<div	style="background-color:	red;font-size:	20px;"	data-reactid=".0">styled</div>

</div>

Note	two	things	in	the	JavaScript	code	above:

1.	 I	didn't	have	to	add	the	"px"	to	the		fontSize		value	because	React	did	it	for	me.
2.	 When	writing	CSS	properties	in	JavaScript	you	have	to	use	the	camelCased	version	of

the	CSS	property	(e.g.,		backgroundColor		not		background-color).

Notes

Vendor	prefixes	other	than	ms	should	begin	with	a	capital	letter.	This	is	why
WebkitTransition	has	an	uppercase	"W".
CamelCased	CSS	properties	shouldn't	be	a	surprise	given	this	is	how	it	is	done	when
accessing	properties	on	DOM	nodes	from	JS	(e.g.,
	document.body.style.backgroundImage)
When	specifying	a	pixel	value	React	will	automatically	append	the	string	"px"	for	you
after	your	number	value	except	for	the	following	properties:

columnCount	fillOpacity	flex	flexGrow	flexShrink	fontWeight	

lineClamp	lineHeight	opacity	order	orphans	strokeOpacity	

widows	zIndex	zoom

4.5	Inlining	CSS	on	Element	Nodes

43

https://www.w3.org/TR/DOM-Level-2-Style/css.html#CSS-ElementCSSInlineStyle

4.5	Inlining	CSS	on	Element	Nodes

44

Using	Built-in	Element	Factories
React	provides	built-in	shortcuts	for	creating	commonly	used	HTML	element	nodes.	These
shortcuts	are	called	React	element	factories.

A	ReactElement-factory	is	simply	a	function	that	generates	a	ReactElement	with	a
particular	type	property.

Using	a	built-in	element	factory	(i.e.,		React.DOM.li()),	the	React	element	node		<li
id="li1">one		can	be	created	like	so:

//	uses	React.DOM.li(props,	children);

var	reactNodeLi	=	React.DOM.li({id:	'li1'},	'one');

instead	of	using:

//	uses	React.createElement(type,	prop,	children)

var	reactNodeLi	=	React.createElement('li',	{id:	'li1'},	'one');

Below	I	list	out	all	of	the	built	in	node	factories:

a,abbr,address,area,article,aside,audio,b,base,bdi,bdo,big,blockquote,body,br,button,

canvas,caption,cite,code,col,colgroup,data,datalist,dd,del,details,dfn,dialog,div,dl,

dt,em,embed,fieldset,figcaption,figure,footer,form,h1,h2,h3,h4,h5,h6,head,header,hgrou

p,

hr,html,i,iframe,img,input,ins,kbd,keygen,label,legend,li,link,main,map,mark,menu,

menuitem,meta,meter,nav,noscript,object,ol,optgroup,option,output,p,param,picture,

pre,progress,q,rp,rt,ruby,s,samp,script,section,select,small,source,span,strong,

style,sub,summary,sup,table,tbody,td,textarea,tfoot,th,thead,time,title,tr,track,

u,ul,var,video,wbr,circle,clipPath,defs,ellipse,g,image,line,linearGradient,mask,

path,pattern,polygon,polyline,radialGradient,rect,stop,svg,text,tspa

Notes

If	you	are	using	JSX	you	might	not	ever	use	factories
React	has	a	built-in	helper	for	you	to	create	custom	factories.	It's
	React.createFactory(type)	.

4.6	Using	Built-in	Element	Factories

45

https://facebook.github.io/react/docs/top-level-api.html#react.createfactory

Defining	React	Node	Events
Events	can	be	added	to	React	nodes	much	like	events	can	be	added	to	DOM	nodes.	In	the
code	example	below	I	am	adding	a	very	simple		click		and		mouseover		event	to	a	React
	<div>		node.

source	code

Note	how	the	property	name	for	an	event	in	React	starts	with	'on'	and	is	passed	in	the
	props		argument	object	to	the		ReactElement()		function.

React	creates	what	it	calls	a		SyntheticEvent		for	each	event,	which	contains	the	details	for
the	event.	Similar	to	the	details	that	are	defined	for	DOM	events.	The		SyntheticEvent	
instance,	for	an	event,	is	passed	into	the	events	handlers/callback	functions.	In	the	code
below	I	am	logging	the	details	of	a	SyntheticEvent	instance.

source	code

Every	SyntheticEvent	object	instance	has	the	following	properties.

boolean	bubbles

boolean	cancelable

DOMEventTarget	currentTarget

boolean	defaultPrevented

number	eventPhase

boolean	isTrusted

DOMEvent	nativeEvent

void	preventDefault()

boolean	isDefaultPrevented()

void	stopPropagation()

boolean	isPropagationStopped()

DOMEventTarget	target

number	timeStamp

string	type

Additional	properties	are	available	depending	upon	the	type/category	of	event	that	is	used.
For	example	the		onClick		syntheticEvent	event	also	contains	the	following	properties.

4.7	Defining	React	Node	Events

46

https://jsfiddle.net/ct5acw2y/#tabs=js,result,html,resources
https://facebook.github.io/react/docs/events.html
https://jsfiddle.net/9yn5qtxu/#tabs=js,result,html,resources

boolean	altKey

number	button

number	buttons

number	clientX

number	clientY

boolean	ctrlKey

boolean	getModifierState(key)

boolean	metaKey

number	pageX

number	pageY

DOMEventTarget	relatedTarget

number	screenX

number	screenY

boolean	shiftKey

The	table	below	outlines	the	unique	SyntheticEvent	properties	for	each	type/category	of
events.

Event
Type/Category: Events: Event	Specific

Properties:

Clipboard onCopy,	onCut,	onPaste DOMDataTransfer,
clipboardData

Composition onCompositionEnd,	onCompositionStart,
onCompositionUpdate data

Keyboard onKeyDown,	onKeyPress,	onKeyUp

altKey,	charCode,
ctrlKey,
getModifierState(key),
key,	keyCode,	locale,
location,	metaKey,
repeat,	shiftKey,
which

Focus onChange,	onInput,	onSubmit DOMEventTarget,
relatedTarget

Form onFocus,	onBlur

Mouse

onClick,	onContextMenu,	onDoubleClick,
onDrag,	onDragEnd,	onDragEnter,
onDragExit	onDragLeave,	onDragOver,
onDragStart,	onDrop,	onMouseDown,
onMouseEnter,	onMouseLeave
onMouseMove,	onMouseOut,
onMouseOver,	onMouseUp

altKey,	button,
buttons,	clientX,
clientY,	ctrlKey,
getModifierState(key),
metaKey,	pageX,
pageY,
DOMEventTarget
relatedTarget,
screenX,	screenY,
shiftKey,

Selection onSelect

4.7	Defining	React	Node	Events

47

Touch onTouchCancel,	onTouchEnd,
onTouchMove,	onTouchStart

altKey	DOMTouchList
changedTouches,
ctrlKey,
getModifierState(key),
metaKey,	shiftKey,
DOMTouchList
targetTouches,
DOMTouchList
touches,

UI onScroll
detail,
DOMAbstractView
view

Wheel onWheel deltaMode,	deltaX,
deltaY,	deltaZ,

Media

onAbort,	onCanPlay,	onCanPlayThrough,
onDurationChange,	onEmptied,
onEncrypted,	onEnded,	onError,
onLoadedData,	onLoadedMetadata,
onLoadStart,	onPause,	onPlay,	onPlaying,
onProgress,	onRateChange,	onSeeked,
onSeeking,	onStalled,	onSuspend,
onTimeUpdate,	onVolumeChange,
onWaiting

Image onLoad,	onError

Animation onAnimationStart,	onAnimationEnd,
onAnimationIteration

animationName,
pseudoElement,
elapsedTime

Transition onTransitionEnd
propertyName,
pseudoElement,
elapsedTime

Notes

React	normalizes	events	so	that	they	behave	consistently	across	different	browsers.
Events	in	React	are	triggered	on	the	bubbling	phase.	To	trigger	an	event	on	the
capturing	phase	add	the	word	"Capture"	to	the	event	name	(e.g.,		onClick		would
become		onClickCapture).
If	you	need	the	browser	event	details	you	can	access	this	by	using	the		nativeEvent	
property	found	in	the	SyntheticEvent	object	passed	into	React	event	hander/callback.
React	doesn't	actually	attach	events	to	the	nodes	themselves,	it	uses	event	delegation.
	e.stopPropagation()		or		e.preventDefault()		should	be	triggered	manually	to	stop
event	propagation	instead	of		return	false;	.
Not	all	DOM	events	are	provided	by	React.	But	you	can	still	make	use	of	them	using

4.7	Defining	React	Node	Events

48

http://domenlightenment.com/#11.14
http://domenlightenment.com/#11.9
http://domenlightenment.com/#11.10

React	lifecycle	methods.

4.7	Defining	React	Node	Events

49

https://facebook.github.io/react/tips/dom-event-listeners.html

JavaScript	Syntax	Extension	(a.k.a,	JSX)
In	the	previous	chapter	we	learned	how	to	create	React	nodes	using	plain	ES5	JavaScript
code.	In	this	chapter	we	look	at	creating	React	nodes	using	the	JSX	syntax	extension.

After	this	Chapter	JSX	will	be	used	for	the	remainder	of	this	book	unless	invoking	a
	React.createElement()		function	is	required	for	the	sake	of	clarity.

5.	JavaScript	Syntax	Extension	(a.k.a.,	JSX)

50

What	Is	JSX?
JSX	is	an	XML/HTML-like	syntax	used	by	React	that	extends	ECMAScript	so	that
XML/HTML-like	text	can	co-exist	with	JavaScript/React	code.	The	syntax	is	intended	to	be
used	by	preprocessors	(i.e.,	transpilers	like	Babel)	to	transform	HTML-like	text	found	in
JavaScript	files	into	standard	JavaScript	objects	that	a	JavaScript	engine	will	parse.

Basically,	by	using	JSX	you	can	write	concise	HTML/XML-like	structures	(e.g.,	DOM	like	tree
structures)	in	the	same	file	as	you	write	JavaScript	code,	then	Babel	will	transform	these
expressions	into	actual	JavaScript	code.	Unlike	the	past,	instead	of	putting	JavaScript	into
HTML,	JSX	allows	us	to	put	HTML	into	JavaScript.

By	using	JSX	one	can	write	the	following	JSX/JavaScript	code:

var	nav	=	(

				<ul	id="nav">

						Home

						About

						Clients

						Contact	Us

				

);

And	Babel	will	transform	it	into	this:

5.1	What	Is	a	JSX?

51

var	nav	=	React.createElement(

			"ul",

			{	id:	"nav"	},

			React.createElement(

						"li",

						null,

						React.createElement(

									"a",

									{	href:	"#"	},

									"Home"

)

),

			React.createElement(

						"li",

						null,

						React.createElement(

									"a",

									{	href:	"#"	},

									"About"

)

),

			React.createElement(

						"li",

						null,

						React.createElement(

									"a",

									{	href:	"#"	},

									"Clients"

)

),

			React.createElement(

						"li",

						null,

						React.createElement(

									"a",

									{	href:	"#"	},

									"Contact	Us"

)

)

);

You	can	think	of	JSX	as	a	shorthand	for	calling		React.createElement()	.

The	idea	of	mixing	HTML	and	JavaScript	in	the	same	file	can	be	a	rather	contentious	topic.
Ignore	the	debate.	Use	it	if	you	find	it	helpful.	If	not,	write	the	React	code	required	to	create
React	nodes.	Your	choice.	My	opinion	is	that	JSX	provides	a	concise	and	familiar	syntax	for
defining	a	tree	structure	with	attributes	that	does	not	require	learning	a	templating	language
or	leaving	JavaScript.	Both	of	which	can	be	a	win	when	building	large	applications.

5.1	What	Is	a	JSX?

52

It	should	be	obvious	but	JSX	is	easier	to	read	and	write	over	large	pyramids	of	JavaScript
function	calls	or	object	literals	(e.g.,	contrast	the	two	code	samples	in	this	section).
Additionally	the	React	team	clearly	believes	JSX	is	better	suited	for	defining	UI's	than	a
traditional	templating	(e.g.,	Handlebars)	solution:

markup	and	the	code	that	generates	it	are	intimately	tied	together.	Additionally,	display
logic	is	often	very	complex	and	using	template	languages	to	express	it	becomes
cumbersome.	We've	found	that	the	best	solution	for	this	problem	is	to	generate	HTML
and	component	trees	directly	from	the	JavaScript	code	such	that	you	can	use	all	of	the
expressive	power	of	a	real	programming	language	to	build	UIs.

Notes

Don't	think	of	JSX	as	a	template	but	instead	as	a	special/alternative	JS	syntax	that	has
to	be	compiled.	I.e.,	JSX	is	simply	converting	XML-like	markup	into	JavaScript.
The	Babel	tool	is	a	subjective	selection	from	the	React	team	for	transforming	ES*	code
and	JSX	syntax	to	ES5	code.	You	can	learn	more	about	Babel	at	http://babeljs.io/	or	by
reading	the	Babel	handbook.
The	merits	of	JSX	in	four	bullet	points:

Less	technical	people	can	still	understand	and	modify	the	required	parts.	CSS
developers	and	designers	will	find	JSX	more	familiar	than	JavaScript	alone.	I.e.,
HTML	markup,	using	JSX,	looks	like	HTML	markup	instead	of	a	pyramid	of
	createElement()		function.
You	can	leverage	the	full	power	of	JavaScript	in	HTML	and	avoid	learning	or	using
a	templating	language.	JSX	is	not	a	templating	solution.	It	is	a	declarative	syntax
used	to	express	a	tree	structure	of	UI	nodes	and	components.
By	adding	a	JSX	transformation	step	you'll	find	errors	in	your	HTML	you	might
otherwise	miss.
JSX	promotes	the	idea	of	inline	styles.	Which	can	be	a	good	thing.

Beware	of	JSX	Gotchas.
JSX	is	a	separate	thing	from	React	itself.	JSX	does	not	attempt	to	comply	with	any	XML
or	HTML	specifications.	JSX	is	designed	as	an	ECMAScript	feature	and	the	similarity	to
XML/HTML	is	only	at	the	surface	(i.e.,	it	looks	like	XML/HTML	so	you	can	just	write
something	familiar).	A	JSX	specification	is	currently	being	drafted	to	by	used	by	anyone
as	an	a	XML-like	syntax	extension	to	ECMAScript	without	any	defined	semantics.
In	JSX,		<foo-bar	/>		alone	is	valid	while		<foo-bar>		alone	isn't.	You	have	to	close	all
tags,	always.

5.1	What	Is	a	JSX?

53

https://facebook.github.io/react/blog/2015/09/10/react-v0.14-rc1.html#compiler-optimizations
http://babeljs.io/
https://github.com/thejameskyle/babel-handbook/blob/master/translations/en/user-handbook.md
http://facebook.github.io/react/docs/jsx-gotchas.html
https://facebook.github.io/jsx/

Creating	React	Nodes	With	JSX
Working	off	the	knowledge	given	in	the	previous	chapter	you	should	be	familiar	with	creating
React	nodes	using	the		React.createElement()		function.	For	example,	using	this	function	one
can	create	React	nodes	which	both	represent	HTML	DOM	nodes	and	custom	HTML	DOM
nodes.	Below	I	use	this	familiar	function	to	create	two	React	nodes.

//React	node,	which	represents	an	actual	HTML	DOM	node

var	HTMLLi	=	React.createElement('li',	{className:'bar'},	'foo');

//React	node,	which	represents	a	custom	HTML	DOM	node

var	HTMLCustom	=	React.createElement('foo-bar',	{className:'bar'},	'foo');

To	use	JSX	instead	(assuming	you	have	Babel	setup)	of		React.createElement()		to	create
these	React	nodes	one	just	has	to	replace		React.createElement()		function	calls	with	the
HTML/XML	like	tags	which	represent	the	HTML	you'd	like	the	virtual	DOM	to	spit	out.	The
above	code	can	be	written	in	JSX	like	so.

//React	node,	which	represents	an	actual	HTML	DOM	node

var	HTMLLi	=	<li	className="bar">foo;

//React	node,	which	represents	a	custom	HTML	DOM	node

var	HTMLCustom	=	<foo-bar	className="bar"	>foo</foo-bar>;

Notice	that	the	JSX	is	not	in	a	JavaScript	string	format	and	can	just	be	writing	as	if	you	are
writing	it	inside	of	an		.html		file.	As	stated	many	times	already	JSX	is	then	transformed
back	into	the		React.createElement()		functions	calls	by	Babel.	You	can	see	the
transformation	occurring	in	the	following	JSFiddle	(i.e.,	Babel	is	transforming	JSX	to
JavaScript,	then	React	is	creating	DOM	nodes).

source	code

If	you	were	to	examine	the	actual	HTML	produced	in	the	above	JSfiddle	it	would	look	like	so:

<body>

				<div	id="app1"><li	class="bar"	data-reactid=".0">foo</div>

				<div	id="app2"><foo-bar	class="bar"	data-reactid=".1">foo</foo-bar></div>

</body>

Creating	React	nodes	using	JSX	is	as	simple	as	writing	HTML	like	code	in	your	JavaScript
files.

5.2	Creating	React	Nodes	With	JSX

54

https://jsfiddle.net/wc6dtkov/#tabs=js,result,html,resources

Notes

JSX	tags	support	the	XML	self	close	syntax	so	you	can	optionally	leave	the	closing	tag
off	when	no	child	node	is	used.
If	you	pass	props/attributes	to	native	HTML	elements	that	do	not	exist	in	the	HTML
specification,	React	will	not	render	them	to	the	actual	DOM.	However,	if	you	use	a
custom	element	(i.e.,	not	a	stand	HTML	element)	then	arbitrary/custom	attributes	will	be
added	to	custom	elements	(e.g.,		<x-my-component	custom-attribute="foo"	/>).
The		class		attribute	has	to	be	written		className	
The		for		attribute	has	to	be	written		htmlFor	
The		style		attribute	takes	an	object	of	camel-cased	style	properties
All	attributes	are	camel-cased	(e.g.,		accept-charset		is	written	as		acceptCharset)
To	represent	HTML	elements,	ensure	the	HTML	tag	is	lower-cased
The	following	are	the	HTML	attributes	that	React	supports	(shown	in	camel-case):

accept	acceptCharset	accessKey	action	allowFullScreen	allowTransparency	alt

async	autoComplete	autoFocus	autoPlay	capture	cellPadding	cellSpacing	challenge

charSet	checked	classID	className	colSpan	cols	content	contentEditable

contextMenu	controls	coords	crossOrigin	data	dateTime	default	defer	dir

disabled	download	draggable	encType	form	formAction	formEncType	formMethod

formNoValidate	formTarget	frameBorder	headers	height	hidden	high	href	hrefLang

htmlFor	httpEquiv	icon	id	inputMode	integrity	is	keyParams	keyType	kind	label

lang	list	loop	low	manifest	marginHeight	marginWidth	max	maxLength	media

mediaGroup	method	min	minLength	multiple	muted	name	noValidate	nonce	open

optimum	pattern	placeholder	poster	preload	radioGroup	readOnly	rel	required

reversed	role	rowSpan	rows	sandbox	scope	scoped	scrolling	seamless	selected

shape	size	sizes	span	spellCheck	src	srcDoc	srcLang	srcSet	start	step	style

summary	tabIndex	target	title	type	useMap	value	width	wmode	wrap

5.2	Creating	React	Nodes	With	JSX

55

https://www.w3.org/TR/DOM-Level-2-Style/css.html#CSS-CSS2Properties

Rendering	JSX	to	DOM
The		ReactDOM.render()		function	can	be	used	to	render	JSX	expressions	to	the	DOM.
Actually,	after	Babel	transforms	the	JSX	all	it	is	doing	is	rendering	nodes	created	by
	React.createElement()	.	Again,	JSX	is	just	a	stand	in	expression	for	having	to	write	out	the
	React.createElement()		function	calls.

In	the	code	example	I	am	rendering	a				element	and	a	custom		<foo-bar>		element	to
the	DOM	using	JSX	expressions.

source	code

Once	rendered	to	the	DOM,	the	HTML	will	look	like	so:

<body>

				<div	id="app1"><li	class="bar"	data-reactid=".0">foo</div>

				<div	id="app2"><foo-bar	classname="bar"	children="foo"	data-reactid=".1">foo</foo-

bar></div>

</body>

Just	remember	that	Babel	is	taking	the	JSX	in	your	JavaScript	files	transforming	it	to	React
nodes	(i.e.,		React.createElement()		functions	calls)	then	using	these	nodes	created	by	React
(i.e.,	the	Virtual	DOM)	as	a	template	for	creating	a	real	html	DOM	branch.	The	part	where
the	React	nodes	are	turned	into	the	real	DOM	nodes	and	added	to	the	DOM	in	an	HTML
page	occurs	when		ReactDOM.render()		is	called.

Notes

Any	DOM	nodes	inside	of	the	DOM	element	in	which	you	are	rendering	will	be
removed/replaced.
	ReactDOM.render()		does	not	modify	the	DOM	element	node	in	which	you	are	rendering
React.
Rendering	to	an	HTML	DOM	is	only	one	option	with	React,	other	rendering	APi's	are
available.	For	example,	it	is	also	possible	to	render	to	a	string	(i.e.,
	ReactDOMServer.renderToString())	on	the	server-side.
Re-rendering	to	the	same	DOM	element	will	only	update	the	current	child	nodes	if	a
change	(i.e.,	diff)	has	occurred	or	a	new	child	node	have	been	added.
Don’t	ever	call		this.render()		yourself,	leave	that	to	React

5.3	Rendering	JSX	to	DOM

56

https://jsfiddle.net/e1thfjro/#tabs=js,result,html,resources
https://facebook.github.io/react/docs/top-level-api.html#reactdomserver.rendertostring

5.3	Rendering	JSX	to	DOM

57

Using	JavaScript	Expressions	in	JSX
Hopefully	by	now	it's	obvious	that	JSX	is	just	syntactical	sugar	that	gets	converted	to	real
JavaScript.	But	what	happens	when	you	want	to	intermingle	real	JavaScript	code	within
JSX?	To	write	a	JavaScript	expression	within	JSX	you	will	have	to	surround	the	JavaScript
code	in		{	}		brackets.

In	the	React/JSX	code	below	I	am	mixing	JavaScript	expressions	(e.g.,		2+2),	surround	by
	{	}		among	the	JSX	that	will	eventually	get	evaluated	by	JavaScript.

source	code

The	JSX	transformation	will	result	in	the	follow:

var	label	=	'2	+	2';

var	inputType	=	'input';

var	reactNode	=	React.createElement(

		'label',

		null,

		label,

		'	=	',

		React.createElement('input',	{	type:	inputType,	value:	2	+	2	})

);

ReactDOM.render(reactNode,	document.getElementById('app1'));

Once	this	code	is	parsed	by	a	JavaScript	engine	(i.e.,	a	browser)	the	JavaScript	expressions
are	evaluated	and	the	resulting	HTML	will	look	like	so:

<div	id="app1">

				<label	data-reactid=".0">2	+	2<span	data-reactid=

".0.1">	=	<input	type="input"	value="4"	data-reactid=".0.2"></label>

</div>

Nothing	that	complicated	is	going	on	here	once	you	realize	that	the	brackets	basically
escape	the	JSX.	The		{	}		brackets	simply	tells	JSX	that	the	content	is	JavaScript	so	leave
it	alone	so	it	can	eventually	be	parsed	by	a	JavaScript	engine	(e.g.,		2+2).	Note	that		{	}	
brackets	can	be	used	anywhere	among	the	JSX	expressions	as	long	as	the	result	is	valid
JavaScript.

Notes

5.4	Using	JS	Expressions	in	JSX

58

https://jsfiddle.net/9x24jp95/#tabs=js,result,html,resources

If	you	have	to	escape	brackets	(i.e.,	you	want	brackets	in	a	string)	use		{'{}'}	.

5.4	Using	JS	Expressions	in	JSX

59

Using	JavaScript	Comments	in	JSX
You	can	place	JavaScript	comments	anywhere	in	React/JSX	you	want	except	locations
where	JSX	might	expect	a	React	child	node.	In	this	situation	you'll	have	to	escape	the
comment	using		{	}		so	that	JSX	knows	to	pass	that	on	as	actual	JavaScript.

Examine	the	code	below,	make	sure	you	understand	where	you'll	have	to	tell	JSX	to	pass
along	a	JS	comment	so	a	child	React	node	is	not	created.

var	reactNode	=	<div	/*comment*/>{/*	use	{'{}'}	here	to	comment*/}</div>;

In	the	above	code	if	I	had	not	wrapped	the	comment	inside	of	the		<div>		with		{	}		brackets
then	Babel	would	have	converted	the	comment	to	a	React	text	node.	The	outcome,
unintentionally,	without	the		{	}		would	be:

var	reactNode	=	React.createElement(

		"div",

		null,

		"/*	use	",

		"{}",

		"	here	to	comment*/"

);

Which	would	result	in	the	following	HTML	that	would	have	unintended	text	nodes.

<div	data-reactid=".0">

				/*	use	

				{}

					here	to	comment*/

</div>

5.5	Using	JS	Comments	in	JSX

60

Using	Inline	CSS	in	JSX
In	order	to	define	inline	styles	on	React	nodes	you	need	to	pass	the		style		prop/attribute	a
JavaScript	object	or	reference	to	an	object	containing	CSS	properties	and	values.

In	the	code	below	I	first	setup	a	JavaScript	object,	named		styles	,	containing	inline	styles.
Then	I	use	the		{	}		brackets	to	reference	the	object	that	should	be	used	for	the	value	of	the
style	prop/attribute	(e.g.,		style={styles}).

source	code

Notice	that,	the	CSS	properties	are	in	a	camelCased	form	similar	to	what	is	used	when
writing	CSS	properties	in	JavaScript.	This	is	required	because	JavaScript	does	not	allow
hyphens	in	names.

When	the	above	React/JSX	code	is	transformed	by	Babel,	and	then	parsed	by	a	JavaScript
engine,	the	resulting	HTML	will	be:

<div	style="color:red;background-color:black;font-weight:bold;"	data-reactid=".0">test

</div>

Notes

Vendor	prefixes	other	than	ms	should	begin	with	a	capital	letter.	This	is	why
WebkitTransition	has	an	uppercase	"W".
CamelCased	CSS	properties	shouldn't	be	a	suprise	given	this	is	how	it	is	done	when
accessing	properties	on	DOM	nodes	from	JS	(e.g.,
	document.body.style.backgroundImage)
When	specifying	a	pixel	value	React	will	automatically	append	the	string	"px"	for	you
after	your	number	value	except	for	the	following	properties:

columnCount	fillOpacity	flex	flexGrow	flexShrink	fontWeight	lineClamp	lineHeight

opacity	order	orphans	strokeOpacity	widows	zIndex	zoom

5.6	Using	Inline	CSS	in	JSX

61

https://jsfiddle.net/4pw9w9h7/#tabs=js,result,html,resources
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Properties_Reference

Defining	Attributes/Props	in	JSX
In	the	previous	chapter,	section	4.4,	I	discussed	passing		React.createElement(type,	props,
children)		attributes/props	when	defining	React	nodes.	Since	JSX	is	transformed	into
	React.createElement()		function	calls	you	basically	already	have	a	understanding	of	how
React	node	attributes/props	work.	However,	since	JSX	is	used	to	express	XML-like	nodes
that	get	turned	into	HTML,	attribute/props	are	defined	by	adding	the	attributes/props	to	JSX
expressions	as	name-value	attributes.

In	the	code	example	below	I	am	defining	a	React				element	node,	using	JSX,	with	five
attributes/props.	One	is	a	non-standard	HTML	attribute	(e.g.,		foo:'bar')	and	the	others	are
known	HTML	attributes.

var	styles	=	{backgroundColor:'red'};

var	tested	=	true;

var	text	=	'text';

var	reactNodeLi	=	<li	id=""

																						data-test={tested?'test':'false'}

																						className="blue"

																						aria-test="test"

																						style={styles}

																						foo="bar">

																										{text}

																		;

ReactDOM.render(reactNodeLi,	document.getElementById('app1'));

The	JSX	when	it	is	transformed	will	look	like	this	(note	that	attributes/props	just	become
arguments	to	a	function):

var	reactNodeLi	=	React.createElement(

				'li',

				{	id:	'',

								'data-test':	tested	?	'test'	:	'false',

								className:	'blue',

								'aria-test':	'test',

								style:	styles,

								foo:	'bar'	},

				text

);

When	the		reactNodeLi		node	is	render	to	the	DOM	it	will	look	like	this:

5.7	Defining	JSX	Attributes/Props

62

<div	id="app1">

				<li	id="true"

								data-test="test"

								class="blue"

								aria-test="test"

								style="background-color:red;"

								data-reactid=".0">

												text

				

</div>

You	should	note	the	following:

1.	 Leaving	an	attribute/prop	blank	results	in	that	attribute	value	becoming	true	(e.g.,
	id=""		becomes		id="true"		and		test		becomes		test="true")

2.	 The		foo		attribute,	because	it	was	not	a	standard	HTML	attribute,	doesn't	become	a
final	HTML	attribute.

Notes

If	an	attribute/prop	is	duplicated	the	last	one	defined	wins.
If	you	pass	props/attributes	to	native	HTML	elements	that	do	not	exist	in	the	HTML
specification,	React	will	not	render	them.	However,	if	you	use	a	custom	element	(i.e.,
not	a	standard	HTML	element)	then	arbitrary/custom	attributes	will	be	added	to	custom
elements	(e.g.,		<x-my-component	custom-attribute="foo"	/>).
Omitting	the	value	of	an	attribute/prop	causes	JSX	to	treat	it	as	true	(i.e.,		<input
checked	id	type="checkbox"	/>		becomes		<input	checked="true"	id="true"
type="checkbox">).	This	will	even	occur	for	attributes/props	that	are	not	presented	in	the
final	HTML	due	to	the	fact	they	are	not	actual	HTML	attributes.
The		class		attribute	has	to	be	written		className	
The		for		attribute	has	to	be	written		htmlFor	
The		style		attribute	takes	a	reference	to	an	object	of	camel-cased	style	properties
HTML	form	elements	(e.g.,		<input></input>	,		<textarea></textarea>	,	etc.)	created	as
React	nodes	support	a	few	attributes/props	that	are	affected	by	user	interaction.	These
are:		value	,		checked	,	and		selected	.
React	offers	the		key	,		ref	,	and		dangerouslySetInnerHTML		attributes/props	that	don't
exist	in	DOM	and	take	on	a	unique	role/function.
All	attributes	are	camel-cased	(e.g.,		accept-charset		is	written	as		acceptCharset)	which
differs	from	how	they	are	written	in	HTML.
The	following	are	the	HTML	attributes	that	React	supports	(shown	in	camel-case):

5.7	Defining	JSX	Attributes/Props

63

https://www.w3.org/TR/DOM-Level-2-Style/css.html#CSS-CSS2Properties
https://facebook.github.io/react/docs/forms.html
https://facebook.github.io/react/docs/multiple-components.html#dynamic-children
https://facebook.github.io/react/docs/more-about-refs.html
https://facebook.github.io/react/tips/dangerously-set-inner-html.html

accept	acceptCharset	accessKey	action	allowFullScreen	allowTransparency	alt

async	autoComplete	autoFocus	autoPlay	capture	cellPadding	cellSpacing	challenge

charSet	checked	classID	className	colSpan	cols	content	contentEditable

contextMenu	controls	coords	crossOrigin	data	dateTime	default	defer	dir

disabled	download	draggable	encType	form	formAction	formEncType	formMethod

formNoValidate	formTarget	frameBorder	headers	height	hidden	high	href	hrefLang

htmlFor	httpEquiv	icon	id	inputMode	integrity	is	keyParams	keyType	kind	label

lang	list	loop	low	manifest	marginHeight	marginWidth	max	maxLength	media

mediaGroup	method	min	minLength	multiple	muted	name	noValidate	nonce	open

optimum	pattern	placeholder	poster	preload	radioGroup	readOnly	rel	required

reversed	role	rowSpan	rows	sandbox	scope	scoped	scrolling	seamless	selected

shape	size	sizes	span	spellCheck	src	srcDoc	srcLang	srcSet	start	step	style

summary	tabIndex	target	title	type	useMap	value	width	wmode	wrap

5.7	Defining	JSX	Attributes/Props

64

Defining	Events	in	JSX
In	the	previous	chapter,	in	section	4.7,	it	was	explained	and	demonstrated	how	events	are
defined	on	React	nodes.	To	do	the	same	thing	in	JSX	you	add	the	same	camelCased	event
and	the	corresponding	handler/callback	as	a	prop/attribute	of	the	JSX	representing	the
React	node.

Below	is	the	none	JSX	way	of	adding	an	event	to	a	React	node	(example	from	Previous
chapter,	section	4.7):

source	code

The	above	code	written	using	JSX:

source	code

Note	that	we	are	using	the		{	}		brackets	to	connect	a	JS	function	to	an	event	(i.e.,
	onMouseOver={mouseOverHandler}).	This	style	of	adding	events	to	nodes	mimics	the	DOM	0
style	of	inlining	events	on	HTML	elements	(Don't	worry,	just	mimics,	does	not	really	create
inline	events	in	the	DOM).

React	supports	the	following	events	and	event	specific	syntheticEvent	properties:

Event
Type/Category: Events: Event	Specific

Properties:

Clipboard onCopy,	onCut,	onPaste DOMDataTransfer,
clipboardData

Composition onCompositionEnd,	onCompositionStart,
onCompositionUpdate data

Keyboard onKeyDown,	onKeyPress,	onKeyUp

altKey,	charCode,
ctrlKey,
getModifierState(key),
key,	keyCode,	locale,
location,	metaKey,
repeat,	shiftKey,
which

Focus onChange,	onInput,	onSubmit DOMEventTarget,
relatedTarget

Form onFocus,	onBlur

onClick,	onContextMenu,	onDoubleClick,
onDrag,	onDragEnd,	onDragEnter,

altKey,	button,
buttons,	clientX,
clientY,	ctrlKey,

5.8	Defining	Events	in	JSX

65

https://jsfiddle.net/ct5acw2y/#tabs=js,result,html,resources
https://jsfiddle.net/tvmqwuu1/#tabs=js,result,html,resources
http://stackoverflow.com/questions/5642659/what-is-the-difference-between-dom-level-0-events-vs-dom-level-2-events

Mouse
onDragExit	onDragLeave,	onDragOver,
onDragStart,	onDrop,	onMouseDown,
onMouseEnter,	onMouseLeave
onMouseMove,	onMouseOut,
onMouseOver,	onMouseUp

getModifierState(key),
metaKey,	pageX,
pageY,
DOMEventTarget
relatedTarget,
screenX,	screenY,
shiftKey,

Selection onSelect

Touch onTouchCancel,	onTouchEnd,
onTouchMove,	onTouchStart

altKey	DOMTouchList
changedTouches,
ctrlKey,
getModifierState(key),
metaKey,	shiftKey,
DOMTouchList
targetTouches,
DOMTouchList
touches,

UI onScroll
detail,
DOMAbstractView
view

Wheel onWheel deltaMode,	deltaX,
deltaY,	deltaZ,

Media

onAbort,	onCanPlay,	onCanPlayThrough,
onDurationChange,	onEmptied,
onEncrypted,	onEnded,	onError,
onLoadedData,	onLoadedMetadata,
onLoadStart,	onPause,	onPlay,	onPlaying,
onProgress,	onRateChange,	onSeeked,
onSeeking,	onStalled,	onSuspend,
onTimeUpdate,	onVolumeChange,
onWaiting

Image onLoad,	onError

Animation onAnimationStart,	onAnimationEnd,
onAnimationIteration

animationName,
pseudoElement,
elapsedTime

Transition onTransitionEnd
propertyName,
pseudoElement,
elapsedTime

Notes

React	normalizes	events	so	that	they	behave	consistently	across	different	browsers.
Events	in	React	are	triggered	on	the	bubbling	phase.	To	trigger	an	event	on	the
capturing	phase	add	the	word	"Capture"	to	the	event	name	(e.g.,		onClick		would

5.8	Defining	Events	in	JSX

66

become		onClickCapture).
If	you	need	the	browser	event	details	for	a	given	event	you	can	access	this	by	using	the
	nativeEvent		property	found	in	the	SyntheticEvent	object	passed	into	React	event
hander/callbacks.
React	does	not	actually	attach	events	to	the	nodes	themselves,	it	uses	event
delegation.
	e.stopPropagation()		or		e.preventDefault()		should	be	triggered	manually	to	stop
event	propagation	instead	of		returning	false;	.
Not	all	DOM	events	are	provided	by	React.	But	you	can	still	make	use	of	them	using
React	lifecycle	methods.

5.8	Defining	Events	in	JSX

67

http://domenlightenment.com/#11.14
http://domenlightenment.com/#11.9
http://domenlightenment.com/#11.10
https://facebook.github.io/react/tips/dom-event-listeners.html

Basic	React	Components
This	chapter	will	show	how	React	nodes	are	used	to	create	basic	React	components.

6.	Basic	React	Components

68

What	Is	a	React	Component?
The	next	section	will	provide	a	mental	model	around	the	nature	of	a	React	component	and
cover	details	around	creating	React	components.

Typically	a	single	view	of	a	user	interface	(e.g.,	the	tree	or	trunk)	is	divided	up	into	logical
chunks	(e.g.,	branches).	The	tree	becomes	the	starting	component	(e.g.,	a	layout
component)	and	then	each	chunk	in	the	UI	will	become	a	sub-component	that	can	be
divided	further	into	sub	components	(i.e.,	sub-branches).	This	not	only	keeps	the	UI
organized	but	it	also	allows	data	and	state	changes	to	logically	flow	from	the	tree,	to
branches,	then	sub	branches.

If	this	description	of	React	components	is	cryptic	then	I	would	suggest	that	you	examine	any
application	interface	and	mentally	start	dividing	the	UI	into	logical	chunks.	Those	chunks
potentially	are	components.	React	components	are	the	programatic	abstraction	(i.e.,	UI,
events/interactions,	state	changes,	DOM	changes)	making	it	possible	to	literally	create	these
chunks	and	sub-chunks.	For	example,	a	lot	of	application	UI's	will	have	a	layout	component
as	the	top	component	in	a	UI	view.	This	component	will	contain	several	sub-components,
like	maybe,	a	search	component	or	a	menu	component.	The	search	component	can	then	be
divided	further	into	sub-components.	Maybe	the	search	input	is	a	separate	component	from
the	button	that	invokes	the	search.	As	you	can	see,	a	UI	can	quickly	become	a	tree	of
components.	Today,	software	UI's	are	typically	created	by	crafting	a	tree	of	very	simple
single	responsibility	components.	React	provides	the	means	to	create	these	components	via
the		React.createClass()		function	(or,		React.Component		if	using	ES6	classes).	The
	React.createClass()		function	takes	in	a	configuration	object	and	returns	a	React
component	instance.

A	React	component	is	basically	any	part	of	a	UI	that	can	contain	React	nodes	(via
	React.createElement()		or	JSX).	I	spent	a	lot	of	time	up	front	talking	about	React	nodes	so
that	the	ingredients	of	a	React	component	would	be	firmly	understood.	Sounds	simple	until
one	realizes	that	React	components	can	contained	other	React	sub-components	which	can
result	in	a	complex	tree	of	components.	This	is	not	unlike	the	idea	that	React	nodes	can
contain	other	React	nodes	in	a	Virtual	DOM.	It	might	hurt	your	brain,	but	if	you	think	hard
about	it	all	a	component	does	it	wraps	itself	around	a	logical	set	of	branches	from	a	tree	of
nodes.	In	this	sense,	you	define	an	entire	UI	from	components	using	React	but	the	result	is	a
tree	of	React	nodes	that	can	easily	be	translated	to	something	like	an	HTML	document	(i.e.,
tree	of	DOM	nodes	that	produces	a	UI).

6.1	What	Is	a	React	Component?

69

https://facebook.github.io/react/docs/thinking-in-react.html#step-1-break-the-ui-into-a-component-hierarchy
https://facebook.github.io/react/docs/thinking-in-react.html#step-1-break-the-ui-into-a-component-hierarchy
https://en.wikipedia.org/wiki/Single_responsibility_principle

6.1	What	Is	a	React	Component?

70

Creating	React	components
A	React	component	that	will	potentially	contain		state		can	be	created	by	calling	the
	React.createClass()		function.	This	function	takes	one	argument	object	used	to	specify	the
details	of	the	component.	The	available	component	configuration	options	are	listed	below
(a.k.a.,	component	specifications).

	render()	
A	required	value,	typically	a	function	that	returns	React
nodes,	other	React	components,	or		null	/	false	

	getInitialState()	
Function	which	returns	an	object	containing	initial	value
of		this.state	

	getDefaultProps()	
Function	which	returns	an	object	containing	values	to
be	set	on		this.props	

	propTypes	 Object	containing	validation	specifications	for	props

	mixins	
Array	of	mixins	(object	containing	methods)	that	can	be
share	among	components

	statics	 Object	containing	static	methods

	displayName	
String,	naming	the	component,	used	in	debugging
messages.	If	using	JSX	this	is	set	automatically.

	componentWillMount()	
Callback	function	invoked	once	immediately	before	the
initial	rendering	occurs

	componentDidMount()	
Callback	function	invoked	immediately	after	the	initial
rendering	occurs

	componentWillReceiveProps()	
Callback	function	invoked	when	a	component	is
receiving	new	props

	shouldComponentUpdate()	
Callback	function	invoked	before	rendering	when	new
props	or	state	are	being	received

	componentWillUpdate()	
Callback	function	invoked	immediately	before
rendering	when	new	props	or	state	are	being	received.

	componentDidUpdate()	
Callback	function	invoked	immediately	after	the
component's	updates	are	flushed	to	the	DOM

	componentWillUnmount()	
Callback	function	invoked	immediately	before	a
component	is	unmounted	from	the	DOM

The	most	important	component	configuration	option	is		render	.	This	configuration	option	is
required	and	is	a	function	that	returns	React	nodes	and	components.	All	other	component
configurations	are	optional.

6.2	Creating	Components

71

http://facebook.github.io/react/docs/component-specs.html#render
http://facebook.github.io/react/docs/component-specs.html#getinitialstate
http://facebook.github.io/react/docs/component-specs.html#getdefaultprops
http://facebook.github.io/react/docs/component-specs.html#proptypes
http://facebook.github.io/react/docs/reusable-components.html#prop-validation
http://facebook.github.io/react/docs/component-specs.html#mixins
http://facebook.github.io/react/docs/reusable-components.html#mixins
http://facebook.github.io/react/docs/component-specs.html#statics
http://facebook.github.io/react/docs/component-specs.html#displayname
http://facebook.github.io/react/docs/component-specs.html#displayname
http://facebook.github.io/react/docs/component-specs.html#mounting-componentdidmount
http://facebook.github.io/react/docs/component-specs.html#updating-componentwillreceiveprops
http://facebook.github.io/react/docs/component-specs.html#updating-shouldcomponentupdate
http://facebook.github.io/react/docs/component-specs.html#updating-componentwillupdate
http://facebook.github.io/react/docs/component-specs.html#updating-componentdidupdate
http://facebook.github.io/react/docs/component-specs.html#unmounting-componentwillunmount

The	following	code	is	an	example	of	creating	a		Timer		React	component	from	React	nodes
using		React.createClass()	.

Make	sure	you	read	the	comments	in	the	code.

source	code

It	looks	like	a	lot	of	code.	However,	the	bulk	of	the	code	simply	involves	creating	a		<Timer/>	
component	and	then	passing	the		createClass()		function	creating	the	component	a
configuration	object	containing	5	properties	(getInitialState	,		tick	,		componentDidMount	,
	componentWillUnmount	,		render).

Notice	that		Timer		is	capitalized.	When	creating	custom	React	components	you	need	to
capitalize	the	name	of	the	component.	Additionally,	the	value		this		among	the	configuration
options	refers	to	the	component	instance	created.	We'll	discuss	the	component	API	in	more
detail	at	the	end	of	this	chapter.	For	now,	just	meditate	on	the	configuration	options	available
when	defining	a	React	component	and	how	a	reference	to	the	component	is	achieved	using
the		this		keyword.	Also	note,	that	in	the	code	example	above	I	added	my	own	custom
instance	method	(i.e.,		tick)	during	the	creation	of	the		<Timer/>		component.

Once	a	component	is	mounted	(i.e.,	created)	you	can	use	the	component	API.	The	api
contains	four	methods.

API	method Example Description

	setState()	

		this.setState({mykey:	'my	new

value'});			

	

this.setState(function(previousState,

currentProps)	{	return	{myInteger:

previousState.myInteger	+	1};	});		

Primary	method	used	to
re-render	a	component
and	sub	components.

	replaceState()	
		this.replceState({mykey:	'my	new

value'});		

Like		setState()		but	does
not	merge	old	state	just
deletes	it	uses	new	object
sent.

	forceUpdate()	
		this.forceUpdate(function()

{//callback});		

Calling		forceUpdate()		will
cause		render()		to	be
called	on	the	component,
skipping
	shouldComponentUpdate()	.

	isMounted()	 		this.isMounted()		

isMounted()	returns	true	if
the	component	is	rendered
into	the	DOM,	false
otherwise.

The	most	commonly	used	component	API	method	is		setState()	.	Its	usage	will	be	covered
in	the	React	Component	State	chapter.

6.2	Creating	Components

72

https://jsfiddle.net/12u58fjb/#tabs=js,result,html,resources
https://facebook.github.io/react/docs/component-api.html#setstate
https://facebook.github.io/react/docs/component-api.html#replacestate
https://facebook.github.io/react/docs/component-api.html#forceupdate
https://facebook.github.io/react/docs/component-api.html#ismounted

Notes

The	component	callback	configuration	options	(componentWillUnmount	,
	componentDidUpdate	,		componentWillUpdate	,		shouldComponentUpdate	,
	componentWillReceiveProps	,		componentDidMount	,		componentWillMount)	are	also	known
as	"lifecycle	methods"	because	these	various	methods	are	executed	at	specific	points	in
a	component's	life.
The		React.createClass()		function	is	a	convenience	function	that	creates	component
instances	for	you	(via	JavaScript		new		keyword).
The		render()		function	should	be	a	pure	function.	Which	means:

it	does	not	modify	component	state,	it	returns	the	same	result	each	time	it's	invoked,
and	it	does	not	read	from	or	write	to	the	DOM	or	otherwise	interact	with	the	browser
(e.g.,	by	using		setTimeout).	If	you	need	to	interact	with	the	browser,	perform	your	work
in		componentDidMount()		or	the	other	lifecycle	methods	instead.	Keeping		render()		pure
makes	server	rendering	more	practical	and	makes	components	easier	to	think	about.

6.2	Creating	Components

73

Components	Return	One	Node/Component
The		render		configuration	value	defined	when	creating	a	component	should	return	only	one
React	node	(or,	component).	This	one	node/component	can	contain	any	number	of	children.
In	the	code	below	the		<reactNode>		is	the	starting	node.	Inside	of	this	node	any	number	of
sibling	and	child	nodes	can	be	returned.

source	code

Note	that	if	you	want	to	return	React	nodes	on	more	than	one	line	(taking	advantage	of
whitespace)	you	will	have	to	surround	the	returned	value	in		()	.	In	the	code	below	the	JSX
defining	(i.e.,	rendered)	the		MyComponent		is	returned	in		()	.

source	code

An	error	will	occur	if	more	than	one	starting	React	node	is	attempted	to	be	returned.	If	you
think	about	it,	the	error	occurs	because	returning	two		React.createElement()		functions	isn't
possible	with	JavaScript.

source	code

Thus,	the	above	code	will	result	in	the	following	error:

babel.js:62789	Uncaught	SyntaxError:	embedded:	Adjacent	JSX	elements	must	be	wrapped	i

n	an	enclosing	tag	(10:3)

			8	|					return	(

			9	|													test

>	10	|													test

					|				^

		11	|);

		12	|			}

		13	|	});

Commonly,	developers	will	add	a	wrapping	element		<div>		element	to	avoid	this	error.

This	issue	also	concerns	components.	Just	like	React	nodes,	if	you	are	returning	a
component,	only	one	starting	component	can	be	returned	but	that	component	can	have
unlimited	children.

source	code

If	you	return	two	sibling	components,	the	same	error	will	occur.

source	code

6.3	Return	One	Starting	Node/Component

74

https://jsfiddle.net/fv26rjdL/#tabs=js,result,html,resources
https://jsfiddle.net/e2awasnk/#tabs=js,result,html,resources
https://jsfiddle.net/xe5kkpub/#tabs=js,result,html,resources
https://jsfiddle.net/o0fqta42/#tabs=js,result,html,resources
https://jsfiddle.net/3968zzv3/#tabs=js,result,html,resources

VM7370	babel.js:62789	Uncaught	SyntaxError:	embedded:	Adjacent	JSX	elements	must	be	wr

apped	in	an	enclosing	tag	(10:2)

			8	|					return	(

			9	|									<MyChildComponent/>

>	10	|									<AnotherChildComponent/>

					|			^

		11	|);

		12	|			}

		13	|	});

6.3	Return	One	Starting	Node/Component

75

Referring	to	a	Component	Instance
When	a	component	is		render	'ed',	a	React	component	instance	is	created	from	the	passed
configuration	options.	One	can	gain	access	to	this	instance	and	it's	properties	(e.g.,
	this.props)	and	methods	(e.g.,		this.setState())	in	two	ways.

The	first	way	is	by	using	the		this		keyword	from	within	a	configuration	function	option.	In
the	code	example	below	all	of	the		console.log(this)		statements	will	refer	to	the	component
instance.

source	code

The	other	way	to	gain	a	reference	to	a	component	instance	involves	making	use	of	the
return	value	from	calling		ReactDOM.render()	.	In	other	words,	the		ReactDOM.render()		function
will	return	a	reference	to	the	top	most	rendered	component.

source	code

Notes

The		this		keyword	will	commonly	be	used	from	within	a	component	to	access	instance
properties	like		this.props.[NAME	OF	PROP]	,		this.props.children	,	and		this.state	,.	It
will	also	be	used	to	call	class	methods/properties,	that	all	components	share	like
	this.setState		and		this.replaceState()	.

6.4	Referring	to	a	Component	Instance

76

https://jsfiddle.net/codylindley/xkz0ph2d/4/#tabs=js,result,html,resources
https://jsfiddle.net/codylindley/vavk9b5t/2/#tabs=js,result,html,resources

Defining	Events	on	Components
Events	can	be	added	to	React	nodes	inside	of	a	components		render		configuration	option
(discussed	in	Ch.	4	section	4.7	and	Ch.	5	section	5.8).

In	the	code	example,	two	React	events	(i.e.,		onClick		&		onMouseOver)	are	set	on	React
nodes	(via	JSX)	using	what	looks	like	component	props.

source	code

Basically,	React	when	rendering	a	component	looks	for	special	React	prop	events	(e.g.,
	onClick)	and	treats	these	props	differently	from	other	props	(all	React	events	shown	in
table	below).	Obviously	the	difference	being,	that	eventing	in	the	real	DOM	is	being	wired	up
behind	the	scenes.

Part	of	this	wiring	is	auto	binding	the	context	of	the	handler/callback	to	the	scope	of	the
component	instance.	In	the	code	example	below	the	value	of		this		inside	of	the
handlers/callbacks	will	reference	the	component	instance	itself.

source	code

React	supports	the	following	events	and	event	specific	syntheticEvent	properties:

Event
Type/Category: Events: Event	Specific

Properties:

Clipboard onCopy,	onCut,	onPaste DOMDataTransfer,
clipboardData

Composition onCompositionEnd,	onCompositionStart,
onCompositionUpdate data

Keyboard onKeyDown,	onKeyPress,	onKeyUp

altKey,	charCode,
ctrlKey,
getModifierState(key),
key,	keyCode,	locale,
location,	metaKey,
repeat,	shiftKey,
which

Focus onChange,	onInput,	onSubmit DOMEventTarget,
relatedTarget

Form onFocus,	onBlur

onClick,	onContextMenu,	onDoubleClick,
onDrag,	onDragEnd,	onDragEnter,

altKey,	button,
buttons,	clientX,
clientY,	ctrlKey,

6.5	Defining	Events	on	Components

77

https://jsfiddle.net/sjL64ogk/#tabs=js,result,html,resources
https://jsfiddle.net/gke6vmc9/#tabs=js,result,html,resources

Mouse
onDragExit	onDragLeave,	onDragOver,
onDragStart,	onDrop,	onMouseDown,
onMouseEnter,	onMouseLeave
onMouseMove,	onMouseOut,
onMouseOver,	onMouseUp

getModifierState(key),
metaKey,	pageX,
pageY,
DOMEventTarget
relatedTarget,
screenX,	screenY,
shiftKey,

Selection onSelect

Touch onTouchCancel,	onTouchEnd,
onTouchMove,	onTouchStart

altKey	DOMTouchList
changedTouches,
ctrlKey,
getModifierState(key),
metaKey,	shiftKey,
DOMTouchList
targetTouches,
DOMTouchList
touches,

UI onScroll
detail,
DOMAbstractView
view

Wheel onWheel deltaMode,	deltaX,
deltaY,	deltaZ,

Media

onAbort,	onCanPlay,	onCanPlayThrough,
onDurationChange,	onEmptied,
onEncrypted,	onEnded,	onError,
onLoadedData,	onLoadedMetadata,
onLoadStart,	onPause,	onPlay,	onPlaying,
onProgress,	onRateChange,	onSeeked,
onSeeking,	onStalled,	onSuspend,
onTimeUpdate,	onVolumeChange,
onWaiting

Image onLoad,	onError

Animation onAnimationStart,	onAnimationEnd,
onAnimationIteration

animationName,
pseudoElement,
elapsedTime

Transition onTransitionEnd
propertyName,
pseudoElement,
elapsedTime

Notes

React	normalizes	events	so	that	they	behave	consistently	across	different	browsers.
Events	in	React	are	triggered	on	the	bubbling	phase.	To	trigger	an	event	on	the
capturing	phase	add	the	word	"Capture"	to	the	end	of	the	event	name	(e.g.,		onClick	

6.5	Defining	Events	on	Components

78

would	become		onClickCapture).
If	you	need	the	browser	event	details	for	a	given	event	you	can	access	this	by	using	the
	nativeEvent		property	found	in	the	SyntheticEvent	object	passed	into	React	event
hander/callbacks.
React	does	not	actually	attach	events	to	the	nodes	themselves,	it	uses	event
delegation.
	e.stopPropagation()		or		e.preventDefault()		should	be	triggered	manually	to	stop
event	propagation	instead	of		returning	false;	.
Not	all	DOM	events	are	provided	by	React.	But	you	can	still	make	use	of	them	using
React	lifecycle	methods.

6.5	Defining	Events	on	Components

79

http://domenlightenment.com/#11.14
http://domenlightenment.com/#11.9
http://domenlightenment.com/#11.10
https://facebook.github.io/react/tips/dom-event-listeners.html

Composing	Components
If	it	is	not	obvious	React	components	can	make	use	of	other	React	components.	That	is,
when	defining	a	component	the		render		configuration	function	can	contain	references	to
other	components.	When	a	component	contains	another	component	it	can	be	said	that	the
parent	component	owns	the	child	component	(aka	composition).

In	the	code	below	the		BadgeList		component	contains/owns	the		BadgeBill		and		BadgeTom	
component.

source	code

This	code	was	purposefully	simplistic	in	order	to	demonstrate	component	composition.	In	the
next	chapter,	we	will	look	at	how	the	code	will	typically	be	written	making	use	of	props	to
create	a	generic		Badge		component.	The	generic	Badge	component	can	take	any	name
value	v.s.	creating	a	unique	badge	and	hard	coding	the	name	in	the	component.

Notes

A	key	tenet	of	maintainable	UI	are	composable	components.	React	components	by
design	are	meant	to	contain	other	React	components.
Notice	how	HTML	and	previously	defined	components	are	mixed	together	in	the
	render()		configuration	function.

6.6	Composing	Components

80

https://jsfiddle.net/codylindley/0m9s4ow7/#tabs=js,result,html,resources

Grokking	Component	Lifecycle's
React	components	live	certain	life	events	that	are	called	lifecycle	events.	These	lifecycle's
events	are	tied	to	lifecycle	methods.	I	discussed	several	of	these	methods	at	the	start	of	this
chapter	when	discussing	the	creation	of	components.

The	lifecycle	methods	provide	hooks	into	the	phases	and	the	nature	of	a	component.	In	the
code	example,	taken	from	section	6.2,	I	am	console	logging	the	occurrence	of	the	lifecycle
events		componentDidMount	,		componentWillUnmount	,	and		getInitialState		lifecycle	methods.

source	code

The	methods	can	be	divided	into	three	categories	(Mounting,	Updating,	and	Unmounting
phases).

Below	I	show	a	table	for	each	category	and	the	containing	lifecycle	methods.

Mounting	Phase	(happens	once	in	a	components	life):

"The	first	phase	of	the	React	Component	life	cycle	is	the	Birth/Mounting	phase.	This	is
where	we	start	initialization	of	the	Component.	At	this	phase,	the	Component's	props
and	state	are	defined	and	configured.	The	Component	and	all	its	children	are	mounted
on	to	the	Native	UI	Stack	(DOM,	UIView,	etc.).	Finally,	we	can	do	post-processing	if
required.	The	Birth/Mounting	phase	only	occurs	once."	-	React	In-depth

Method Description

	getInitialState()	

is	invoked	before	a	component	is	mounted.	Stateful
components	should	implement	this	and	return	the	initial	state
data.

	componentWillMount()	 is	invoked	immediately	before	mounting	occurs.

	componentDidMount()	
is	invoked	immediately	after	mounting	occurs.	Initialization
that	requires	DOM	nodes	should	go	here.

Updating	Phase	(happens	over	and	over	in	a	components
life):

6.7	Grokking	Component	Lifecycle's

81

https://jsfiddle.net/codylindley/s3v614b3/#tabs=js,result,html,resources
https://developmentarc.gitbooks.io/react-indepth/content/life_cycle/introduction.html

"The	next	phase	of	the	life	cycle	is	the	Growth/Update	phase.	In	this	phase,	we	get	new
props,	change	state,	handle	user	interactions	and	communicate	with	the	component
hierarchy.	This	is	where	we	spend	most	of	our	time	in	the	Component's	life.	Unlike	Birth
or	Death,	we	repeat	this	phase	over	and	over."	-	React	In-depth

Method Description

	componentWillReceiveProps(object

nextProps)	

is	invoked	when	a	mounted	component	receives
new	props.	This	method	should	be	used	to
compare	this.props	and	nextProps	to	perform	state
transitions	using	this.setState().

	shouldComponentUpdate(object

nextProps,	object	nextState)	

is	invoked	when	a	component	decides	whether	any
changes	warrant	an	update	to	the	DOM.
Implement	this	as	an	optimization	to	compare
this.props	with	nextProps	and	this.state	with
nextState	and	return	false	if	React	should	skip
updating.

	componentWillUpdate(object

nextProps,	object	nextState)	

is	invoked	immediately	before	updating	occurs.
You	cannot	call	this.setState()	here.

	componentDidUpdate(object

prevProps,	object	prevState)	
is	invoked	immediately	after	updating	occurs.

Unmounting	Phase	(happens	once	in	a	components	life):

"The	final	phase	of	the	life	cycle	is	the	Death/Unmount	phase.	This	phase	occurs	when
a	component	instance	is	unmounted	from	the	Native	UI.	This	can	occur	when	the	user
navigates	away,	the	UI	page	changes,	a	component	is	hidden	(like	a	drawer),	etc.
Death	occurs	once	and	readies	the	Component	for	Garbage	Collection."	-	React	In-
depth

Method Description

	componentWillUnmount()	
is	invoked	immediately	before	a	component	is	unmounted
and	destroyed.	Cleanup	should	go	here.

Notes

	componentDidMount		and		componentDidUpdate	are	good	places	to	put	other	libraries'	logic.
Read	React	In-depth	for	a	detailed	look	into	the	React	component	lifecycle	events
Mounting	Phase	follows	this	order:
1.	 Initialize	/	Construction
2.	 	getDefaultProps()		(React.createClass)	or		MyComponent.defaultProps		(ES6	class)

6.7	Grokking	Component	Lifecycle's

82

https://developmentarc.gitbooks.io/react-indepth/content/life_cycle/introduction.html
https://developmentarc.gitbooks.io/react-indepth/content/life_cycle/introduction.html
https://developmentarc.gitbooks.io/react-indepth/content/life_cycle/introduction.html

3.	 	getInitialState()		(React.createClass)	or		this.state	=	...		(ES6	constructor)
4.	 	componentWillMount()	

5.	 	render()	

6.	 Children	initialization	&	life	cycle	kickoff
7.	 	componentDidMount()	

Updating	Phase	follows	this	order:
1.	 	componentWillReceiveProps()	

2.	 	shouldComponentUpdate()	

3.	 	componentWillUpdate()	

4.	 	render()	

5.	 Children	Life	cycle	methods
6.	 	componentDidUpdate()	

Unmount	Phase	follows	this	order:
1.	 	componentWillUnmount()	

2.	 Children	Life	cycle	methods
3.	 Instance	destroyed	for	Garbage	Collection

6.7	Grokking	Component	Lifecycle's

83

Accessing	Children	Components/Nodes
If	a	component,	when	used,	contains	child	React	components	or	React	nodes	inside	of	the
component	(e.g.,		<Parent><Child	/></Parent>		or		<Parent>test</Parent>)	these
React	node	or	component	instances	can	be	accessed	by	using		this.props.children	.

In	the	code	below	the		Parent		component	when	used,	contains	two		<div>		React	node
children,	which	contains	React	text	nodes.	All	of	the	children	instances,	inside	of	the
component	are	accessible	using		this.props.children	.	In	the	code	below	I	access	these
children	inside	of	the		Parent			componentDidMount		lifecycle	function.

source	code

The		this.props.children		of	the		Parent		component	instance	returns	an	array	containing
the	references	to	the	child	React	node	instances.	This	array	is	logged	out	to	the	console.
Additionally,	in	the		Parent		component	I	am	logging	out	the	child	of	the	first		<div>		(i.e.,	a
text	node).

Note	how	when	I	use	the		Parent2		component	inside	of	the		Parent		component	the	child
React	node	of		Parent2		only	contains	one				React	node	(i.e.,
	child2text).	Thus,		this.props.children		used	in		componentDidMount		lifecycle
function	for		Parent2		component	will	be	a	direct	reference	to	this				React	node	(i.e.,
not	an	array	containing	a	single	reference).

Given	that		this.props.children		can	potentially	contain	a	wide	set	of	nodes	and
components	React	provides	a	set	of	utilities	to	deal	with	this	data	structure.	These	utilities
are	listed	below.

6.8	Accessing	Children	Components/Nodes

84

https://jsfiddle.net/codylindley/z7u11n44/#tabs=js,result,html,resources

Utilitie Description

	React.Children.map(this.props.children,

function(){})	

Invoke	fn	on	every	immediate	child
contained	within	children	with	this	set
to	thisArg.	If	children	is	a	keyed
fragment	or	array	it	will	be	traversed:
fn	will	never	be	passed	the	container
objects.	If	children	is	null	or	undefined
returns	null	or	undefined	rather	than
an	array.

	React.Children.forEach(this.props.children,

function(){})	

Like	React.Children.map()	but	does
not	return	an	array.

	React.Children.count(this.props.children)	

Return	the	total	number	of
components	in	children,	equal	to	the
number	of	times	that	a	callback
passed	to	map	or	forEach	would	be
invoked.

	React.Children.only(this.props.children)	
Return	the	only	child	in	children.
Throws	otherwise.

	React.Children.toArray(this.props.children)	

Return	the	children	opaque	data
structure	as	a	flat	array	with	keys
assigned	to	each	child.	Useful	if	you
want	to	manipulate	collections	of
children	in	your	render	methods,
especially	if	you	want	to	reorder	or
slice	this.props.children	before	passing
it	down.

Notes

When	there	is	only	a	single	child,		this.props.children		will	be	the	single	child
component	itself	without	the	array	wrapper.	This	saves	an	array	allocation.
It	can	be	confusing	at	first	to	realize	that		children		are	not	what	a	component	returns,
but	instead	what	is	contained	inside	of	component	anywhere	(including	in	a		render)	it
is	instantiated.

6.8	Accessing	Children	Components/Nodes

85

https://facebook.github.io/react/tips/children-undefined.html

Using	 	ref		Attribute
The		ref		attribute	makes	it	possible	to	store	a	reference	to	a	particular	React	element	or
component	returned	by	the	component		render()		configuration	function.	This	can	be
valuable	when	you	need	a	reference,	from	within	a	component,	to	some	element	or
component	contained	within	the		render()		function.

To	make	a	reference,	place	the		ref		attribute	with	a	function	value	on	any	React	element	or
component.	Then,	inside	of	the	function,	the	first	parameter	within	the	scope	of	the	function
will	be	a	reference	to	the	element	or	component	the		ref		is	on.

For	example	in	the	code	below	I	am	console	logging	the	reference	out	for	each		ref	.

source	code

Notice	(see	console)	that	references	to	components	return	component	instances	while
references	to	React	elements	return	a	reference	to	the	actual	DOM	element	in	the	HTML
DOM	(i.e.,	not	a	reference	to	the	virtual	DOM,	but	the	actual	HTML	DOM).

A	common	use	for		ref	's	are	to	store	a	reference	on	the	component	instance.	In	the	code
below	I	use	the		ref		callback	function	on	the	text		<input>		to	store	a	reference	on	the
component	instance	so	other	instance	methods	have	access	to	the	reference	via		this		(i.e.,
	this.textInput.focus()).

source	code

Notes

Refs	can't	be	attached	to	a	stateless	function	because	the	component	does	not	have	a
backing	instance.
You	might	see	a		ref		attribute	with	a	string	instead	of	a	function;	this	is	called	a	string
	ref		and	will	likely	be	deprecated	in	the	future.	Function		ref	s	are	preferred.
The		ref		callback	function	is	called	immediately	after	the	component	is	mounted.
References	to	a	component	instance	allow	one	to	call	custom	methods	on	the
component	if	any	are	exposed	when	defining	it.
Writing	refs	with	inline	function	expressions	means	React	will	see	a	different	function
object	on	every	update,		ref		will	be	called	with	null	immediately	before	it's	called	with
the	component	instance.	I.e.,	when	the	referenced	component	is	unmounted	and
whenever	the		ref		changes,	the	old		ref		will	be	called	with		null		as	an	argument.
React	makes	two	suggestions	when	using	refs:	"Refs	are	a	great	way	to	send	a
message	to	a	particular	child	instance	in	a	way	that	would	be	inconvenient	to	do	via

6.9	Using	ref	Attribute

86

https://jsfiddle.net/codylindley/2oj6x0o6/#tabs=js,result,html,resources
https://jsfiddle.net/codylindley/ttfh7mdh/#tabs=js,result,html,resources

streaming	Reactive	props	and	state.	They	should,	however,	not	be	your	go-to
abstraction	for	flowing	data	through	your	application.	By	default,	use	the	Reactive	data
flow	and	save	refs	for	use	cases	that	are	inherently	non-reactive."	and	"If	you	have	not
programmed	several	apps	with	React,	your	first	inclination	is	usually	going	to	be	to	try	to
use	refs	to	"make	things	happen"	in	your	app.	If	this	is	the	case,	take	a	moment	and
think	more	critically	about	where	state	should	be	owned	in	the	component	hierarchy.
Often,	it	becomes	clear	that	the	proper	place	to	"own"	that	state	is	at	a	higher	level	in
the	hierarchy.	Placing	the	state	there	often	eliminates	any	desire	to	use	refs	to	"make
things	happen"	–	instead,	the	data	flow	will	usually	accomplish	your	goal."

6.9	Using	ref	Attribute

87

Re-rendering	A	Component
You	likely	realize	that	calling		ReactDom.render()		is	the	initial	kicking	off	of	the	rendering	of	a
component	and	all	sub	components.

After	the	initial	mounting	of	components,	a	re-rendering	will	occur	when:

1.	 A	component's		setState()		method	is	called
2.	 A	component's		forceUpdate()		method	is	called

Anytime	a	component	is	re-rendered	(or	initially	rendered)	all	of	its	children	components	are
rendered	inside	of	the	virtual	DOM	possibly	causing	a	change	to	the	real	DOM	(i.e.,	the	UI).
The	distinction	I	am	making	here	is	that	just	because	a	component	is	re-rendered	in	the
virtual	DOM,	it	does	not	always	follow	that	an	update	to	the	DOM	will	occur.

In	the	code	example	below		ReactDOM.render(<	App	/	>,	app);		starts	the	first	cascade	of
rendering,	rendering		<App	/>		and		<Timer/>	.	The	next	re-render	occurs	when	the
	setInterval()		calls	the		setState()		component	method,	which	causes		<App	/>		and
	<Timer/>		to	be	re-rendered.	Note	the	UI	changes	when	the		now		state	is	changed.

source	code

The	next	re-render	occurs	when	the		setTimeout()		is	invoked	and		this.forceUpdate()		is
called.	Note	that	simply	updating	the	state	(i.e.,		this.state.now	=	'foo';)	does	not	cause	a
re-render.	I	set	the	state	using		this.state	,	and	then	I	have	to	call		this.forceUpdate()		so
the	component	will	re-render	with	the	new	state.

NEVER	UPDATE	THE	STATE	USING		this.state.	,	DID	IT	HERE	TO	SHOW	USE	OF
	this.forceUpdate()	.

6.10	Re-rendering	A	Component

88

https://jsfiddle.net/codylindley/ewewfxg0/#tabs=js,result,html,resources

React	Component	Properties
This	section	will	discuss	component	properties	(a.k.a.,	props).

7.	React	Component	Props

89

What	Are	Component	Props?
The	simplest	way	to	explain	component	props	would	be	to	say	that	they	function	similarly	to
HTML	attributes.	In	other	words,	props	provide	configuration	values	for	the	component.	For
example,	in	the	code	below	a		Badge		component	is	created	and	it	is	expecting	a	'name'	prop
to	be	sent	when	the	component	is	instantiated.

source	code

Inside	the	render	function	of	the		<BadgeList>		component,	where		<Badge>		is	used,	the
	name		prop	is	added	to	the		<Badge>		component	much	like	an	HTML	attribute	is	added	to	an
HTML	element	(i.e.,		<Badge	name="Bill"	/>).	The		name		prop	is	then	used	by	the		Badge	
component	(i.e.,		this.props.name)	as	the	text	node	for	the	React		<div>		node	rendered	by
the		Badge		component.	This	is	similar	to	how	an		<input>		can	take	a	value	attribute	which	it
uses	to	display	a	value.

Another	way	to	think	about	component	props	is	that	they	are	the	configuration	values	sent	to
a	component.	If	you	look	at	the	non-JSX	version	of	the	previous	code	example	it	should	be
obvious	component	props	are	just	an	object	that	gets	passed	to	the		createElement()	
function	(i.e.,		React.createElement(Badge,	{	name:	"Bill"	})).

7.1	What	Are	Component	Props?

90

https://jsfiddle.net/codylindley/xcL8pff7/1/#tabs=js,result,html,resources

var	Badge	=	React.createClass({

				displayName:	"Badge",

				render:	function	render()	{

								return	React.createElement(

												"div",

												null,	//no	props	defined,	so	null

												this.props.name	//use	passed	this.prop.name	as	text	node

);

				}

});

var	BadgeList	=	React.createClass({

				displayName:	"BadgeList",

				render:	function	render()	{

								return	React.createElement(

												"div",

												null,

												React.createElement(Badge,	{	name:	"Bill"	}),

												React.createElement(Badge,	{	name:	"Tom"	})

);

				}

});

ReactDOM.render(React.createElement(BadgeList,	null),	document.getElementById('app'));

This	is	similar	to	how	props	can	be	set	directly	on	React	nodes	(see	4.4	and	5.7).	However,
when	the		createElement()		function	is	passed	a	component	definition	(i.e.,		Badge)	instead
of	a	node,	the	props	become	available	on	the	component	itself	(i.e.,		this.props.name).
Component	props	make	it	possible	to	re-use	the		<Badge>		component	with	any	name.

In	the	previous	code	example	examined	in	this	section,	the		BadgeList		component	uses	two
	Badge		components	each	with	their	own		this.props		object.	We	can	verify	this	by	console
logging	out	the	value	of		this.props		when	a		Badge		component	is	instantiated.

source	code

Basically	every	React	component	instance	has	a	unique	instance	property	called		props	
that	starts	as	an	empty	JavaScript	object.	The	empty	object	can	get	filled,	by	a	parent
component,	with	any	JavaScript	value/	reference.	These	values	are	then	used	by	the
component	or	passed	on	to	child	components.

Notes

In	ES5	environments/engines	you	won’t	be	able	to	mutate		this.props		because	its
frozen	(i.e.,		Object.isFrozen(this.props)	===	true;).

7.1	What	Are	Component	Props?

91

https://jsfiddle.net/codylindley/Lv1zaudj/2/#tabs=js,result,html,resources

You	should	consider		this.props		to	be	readonly.

7.1	What	Are	Component	Props?

92

Sending	Component	Props
Sending	properties	to	a	component	entails	adding	HTML	attribute	like	named	values	to	the
component	when	it	is	used,	not	when	it	is	defined.	For	example,	the	below		Badge	
component	is	defined	first.	Then,	to	send	a	prop	to	the		Badge		component,		name="Bill"		is
added	to	the	component	when	it	is	used	(i.e.,	when		<Badge	name="Bill"	/>		is	rendered).

var	Badge	=	React.createClass({

				render:	function()	{

								return	<div>{this.props.name}</div>;

				}

});

ReactDOM.render(<Badge	name="Bill"	/>,	document.getElementById('app'));

Keep	in	mind	anywhere	a	component	is	used	a	property	can	be	sent	to	it.	For	example,	the
code	from	the	previous	section	demonstrates	the	use	of	the		Badge		component	and		name	
property	from	within	the		BadgeList		component.

var	Badge	=	React.createClass({

				render:	function()	{

								return	<div>{this.props.name}</div>;

				}

});

var	BadgeList	=	React.createClass({

				render:	function()	{

								return	(<div>

												<Badge	name="Bill"	/>

												<Badge	name="Tom"	/>

								</div>);

				}

});

ReactDOM.render(<BadgeList	/>,	document.getElementById('app'));

Notes

A	components	properties	should	be	considered	immutable	and	components	should	not
internally	alter	the	properties	sent	to	them	from	above.	If	you	need	to	alter	the	properties
of	a	component	then	a	re-render	should	occur;	don't	set		props		by	adding/updating
them	using		this.props.[PROP]	=	[NEW	PROP]	.

7.2	Sending	Component	Props

93

7.2	Sending	Component	Props

94

Getting	Component	Props
As	discussed	in	section	6.4	a	component	instance	can	be	accessed	from	any	configuration
option	that	uses	a	function	by	way	of	the		this		keyword.	For	example,	in	the	code	below	the
	this		keyword	is	used	to	access	the		Badge			props		from	the	component		render	
configuration	option	(i.e.,		this.props.name).

var	Badge	=	React.createClass({

				render:	function()	{

								return	<div>{this.props.name}</div>;

				}

});

ReactDOM.render(<Badge	name="Bill"	/>,	document.getElementById('app'));

Nothing	that	difficult	to	grasp	is	happening	if	you	look	at	the	transformed	JavaScript	(i.e.,
JSX	to	JS)

var	Badge	=	React.createClass({

				displayName:	"Badge",

				render:	function	render()	{

								return	React.createElement(

												"div",

												null,

												this.props.name

);

				}

});

ReactDOM.render(React.createElement(Badge,	{	name:	"Bill"	}),	document.getElementById(

'app'));

The		{	name:	"Bill"	}		object	is	sent	to	the		createElement()		function	along	with	a	reference
to	the		Badge		component.	The	value		{	name:	"Bill"	}		is	set	as	an	instance	property	value
of	the	component	accessible	from	the		props		property	(ie.		this.props.name	===	"Bill").

Notes

You	should	consider		this.props		to	be	readonly,	don't	set	props	using		this.props.PROP
=	'foo'	.

7.3	Getting	Component	Props

95

7.3	Getting	Component	Props

96

Setting	Default	Component	Props
Default	props	can	be	set	when	a	component	is	being	defined	by	using	the		getDefaultProps	
configuration	value.

In	the	code	example	below,	the		Badge		component	has	a	default	value	for	the		name		prop.

source	code

Default	props	will	be	set	on		this.props		if	no	prop	is	sent	into	the	component.	You	can	verify
this	by	the	fact	that	the		Badge		component	instance	with	no		name		prop	uses	the	default
name		'John	Doe'	.

Notes

The		getDefaultProps		is	invoked	once	and	cached	when	the	component	is	created.
The		getDefaultProps		is	run	before	any	instances	are	created	thus	using		this.props	
inside	of	the		getDefaultProps		will	not	work.
Any	objects	returned	by		getDefaultProps()		will	be	shared	across	instances,	not	copied.

7.4	Setting	Default	Component	Props

97

https://jsfiddle.net/jv5xrqc4/#tabs=js,result,html,resources

Component	Props	More	Than	Strings
Before	looking	at	validating	props	one	needs	to	make	sure	they	understand	that	a
component	prop	can	be	any	valid	JavaScript	value.

In	the	code	example	below	I	setup	several	default	props	containing	several	different
JavaScript	values.

source	code

Note	how	the		propArray		and		propObject		were	overwritten	with	new	values	when	the
	MyComponent		instance	is	created.

The	main	take	away	here	is	that	you	are	not	limited	to	string	values	when	passing	prop
values.

7.5	Component	Props	More	Than	Strings

98

https://jsfiddle.net/u02vckfd/#tabs=js,result,html,resources

Validating	Component	Props
The	enforcement	of	a	prop	can	be	validated	when	component	instances	are	created.

When	defining	a	component,	the		propTypes		configuration	option	can	be	used	to	identify	if
and	how	props	should	be	validated.	In	the	code	example	below	I'm	checking	to	see	that
	propArray		and		propFunc		are	in	fact	the	correct	data	types	and	are	sent	into	the	component
when	it	is	instantiated.

source	code

I	am	not	sending	the	correct	props	as	specified	using		propTypes		to	demonstrate	that	doing
so	will	cause	an	error.	The	above	code	will	result	in	the	following	error	showing	up	in	the
console.

Warning:	Failed	propType:	Invalid	prop	`propArray`	of	type	`object`	supplied	to	`MyCom

ponent`,	expected	`array`

Warning:	Failed	propType:	Required	prop	`propFunc`	was	not	specified	in	`MyComponent`.

Uncaught	TypeError:	this.props.propFunc	is	not	a	function

Note	however,	the	commented	below	will	not	cause	an	error:

ReactDOM.render(<MyComponent	propArray={[1,2]}	propFunc={function(){return	3;}}	/>,	do

cument.getElementById('app'));

React	offers	several	built	in	validators	(e.g.,		React.PropTypes[VALIDATOR])	which	I	outline
below	(Note	that	creating	custom	validators	are	possible	as	well.):

Basic	type	validators:

These	validators	check	to	see	if	the	prop	is	a	specific	JS	primitive.	By	default	all	these	are
optional.	In	other	words,	the	validation	only	occurs	if	the	prop	is	set.

7.6	Validating	Component	Props

99

https://jsfiddle.net/jxbdodh8/#tabs=js,result,html,resources

	React.PropTypes.string	 If	prop	is	used,	verify	it	is	a	string

	React.PropTypes.bool	 If	prop	is	used,	verify	it	is	a	boolean

	React.PropTypes.func	 If	prop	is	used,	verify	it	is	a	function

	React.PropTypes.number	 If	prop	is	used,	verify	it	is	a	number

	React.PropTypes.object	 If	prop	is	used,	verify	it	is	a	object

	React.PropTypes.array	 If	prop	is	used,	verify	it	is	a	array

	React.PropTypes.any	 If	prop	is	used,	verify	it	is	of	any	type

Required	type	validators:

	React.PropTypes.

[TYPE].isRequired	

Chaining	the		.isRequired		on	to	any	type	validation	to	make	sure
the	prop	is	provided	(e.g.,		propTypes:
{propFunc:React.PropTypes.func.isRequired})

Element	validators:

	React.PropTypes.element	 Is	a	React	element.

	React.PropTypes.node	
Is	anything	that	can	be	rendered:	numbers,	strings,
elements	or	an	array	(or	fragment)	containing	these	types.

Enumerables	validators:

	React.PropTypes.oneOf(['Mon','Fri'])	

Is	one
of
several
types
of
specific
values.

	React.PropTypes.oneOfType([React.PropTypes.string,React.PropTypes.number])	

Is	an
object
that
could
be	one
of
many
types

Array	and	Object	validators:

7.6	Validating	Component	Props

100

	React.PropTypes.arrayOf(React.PropTypes.number),	
Is	an	array	containing
only	one	type	of	values.

	React.PropTypes.objectOf(React.PropTypes.number)	

Is	an	object	containing
only	one	type	of	property
values

	React.PropTypes.instanceOf(People)	

Is	object	instance	of
specific	constructor(uses
`instanceof`)

	React.PropTypes.shape({color:React.PropTypes.string,size:

React.PropTypes.number})	

Is	object	containing
properties	having	a
specific	type

Custom	validators:

	function(props,

propName,

componentName){}	

Supply	your	own	function.	For	example:

				propTypes:	{

						customProp:	function(props,	propName,	componentName)	{

								if	(!/matchme/.test(props[propName]))	{

										return	new	Error('Validation	failed!');

								}

						}

				}

				

7.6	Validating	Component	Props

101

React	Component	State
This	section	will	discuss	component	state.

8.	React	Component	State

102

What	Is	Component	State?
Most	components	should	simply	take	in	props	and	render.	But,	components	also	offer	state,
and	it	is	used	to	store	information/data	about	the	component	that	can	change	over	time.
Typically	the	change	comes	as	a	result	of	user	events	or	system	events	(i.e.,	as	a	response
to	user	input,	a	server	request,	or	the	passage	of	time).

According	to	the	React	documentation	state	should:

Contain	data	that	a	component's	event	handlers	may	change	to	trigger	a	UI	update.	In
real	apps	this	data	tends	to	be	very	small	and	JSON-serializable.	When	building	a
stateful	component,	think	about	the	minimal	possible	representation	of	its	state,	and
only	store	those	properties	in	this.state.	Inside	of	render()	simply	compute	any	other
information	you	need	based	on	this	state.	You'll	find	that	thinking	about	and	writing
applications	in	this	way	tends	to	lead	to	the	most	correct	application,	since	adding
redundant	or	computed	values	to	state	means	that	you	need	to	explicitly	keep	them	in
sync	rather	than	rely	on	React	computing	them	for	you.

8.1	What	Is	Component	State?

103

Working	with	Component	State
Working	with	component	state	typically	involves	setting	a	components	default	state,
accessing	the	current	state,	and	updating	the	state.

In	the	code	example	below	I	am	creating	a		<MoodComponent	/>		that	demonstrates	the	use	of
	getInitialState	,		this.state.[STATE]	,	and		this.setState()	.	If	you	click	on	the	component
in	a	web	browser	(i.e.,	the	face)	then	it	will	cycle	through	the	states	(i.e.,	moods)	available.
Thus,	the	component	has	three	potential	states,	tied	to	the	UI,	based	on	clicks	from	the	UI
user.	Go	ahead	and	click	on	the	face	in	the	results	tab	below.

source	code

Note	that	the		<MoodComponent	/>		has	an	initial	state	of	':|',	that	is	set	using		getInitialState:
function()	{return	{mood:	':|'};}	,	which	is	used	in	the	component	when	it	is	first	rendered
by	writing,		{this.state.mood}	.

To	change	the	state,	an	event	listener	is	added;	in	this	case	a	click	event	(i.e.,		onClick)	on
the				node	that	will	call	the		changeMood		function.	Within	this	function	I	use
	this.setState()		to	cycle	to	the	next	mood	based	on	the	current	mood/state.	After	the	state
is	update	(i.e.,		setState()		merges	the	changes)	the	component	will	re-render	itself	and	the
UI	will	change.

Things	to	keep	in	mind	about	React	component	state:

1.	 If	a	component	has	state,	a	default	state	should	be	provided	using		getInitialState()	
2.	 State	changes	are	typically	how	you	start	the	re-rendering	of	a	component	and	all	sub

components	(i.e.,	children,	grandchildren,	great	grand	chidlren,	etc.).
3.	 The	only	way	a	component	should	have	its	state	update	should	be	by	using

	this.setState()	.	While	other	ways	are	possible	(i.e.		forceUpdate()),	they	should	likely
not	be	used	(except	maybe	when	integrating	with	third-party	solutions).

4.	 You	inform	a	component	of	a	state	change	by	using		this.setState()		to	set	a	new
state.	This	will	result	in	re-render	of	the	component	and	all	children	components	that
need	re-rendered.

5.	 A	state	change	merges	new	data	with	old	data	that	is	already	contained	in	the	state.	But
this	is	only	a	shallow	update/merge,	it	won't	do	a	deep	update/merge.

6.	 A	state	change	internally	deals	with	calling	re-renders.	You	should	never	have	to	call
	this.render()		directly.

7.	 The	state	object	should	only	contain	the	minimal	amount	of	data	needed	for	the	UI.
Don't	place	computed	data,	other	React	components,	or	props	in	the	state	object.

8.2	Working	with	Component	State

104

https://jsfiddle.net/codylindley/zr398avp/#tabs=js,result,html,resources

8.2	Working	with	Component	State

105

State	vs.	Props
A	components		state		and		props		do	share	some	common	ground:

1.	 Both	are	plain	JS	objects
2.	 Both	can	have	default	values
3.	 Both	should	be	accessed/read	via		this.props		or		this.state	,	but	neither	should	be

given	values	this	way.	I.e.,	both	are	readonly	when	using		this.	

However	they	are	used	for	different	reasons	and	in	different	ways.

Props:

1.	 Props	are	passed	into	a	component	from	above,	either	a	parent	component	or	from	the
starting	scope	where	React	is	originally	rendered.

2.	 Props	are	intended	as	configuration	values	passed	into	the	component.	Think	of	them
like	arguments	passed	into	a	function	(If	you	don't	use	JSX	that	is	exactly	what	they
are).

3.	 Props	are	immutable	to	the	component	receiving	them.	I.e.,	don't	change	props	passed
to	a	component	from	within	the	component

State:

1.	 State	is	a	serializable	representation	of	data	(a	JS	object)	at	one	point	in	time	that
typically	is	tied	to	UI

2.	 State	should	always	start	with	a	default	value	and	then	the	state	is	mutated	internally	by
the	component	using		setState()	

3.	 State	can	only	be	mutated	by	the	component	that	contains	the	state.	It	is	private	in	this
sense.

4.	 Don't	mutate	the	state	of	child	components.	A	component	should	never	have	shared
mutable	state.

5.	 State	should	only	contain	the	minimal	amount	of	data	needed	to	represent	your	UI's
state.	It	should	not	contain	computed	data,	other	React	components,	or	duplicated	data
from	props.

6.	 State	should	be	avoided	if	at	all	possible.	I.e.,	stateless	components	are	ideal,	stateful
components	add	complexity.	The	React	documentation	suggest:	"A	common	pattern	is
to	create	several	stateless	components	that	just	render	data,	and	have	a	stateful
component	above	them	in	the	hierarchy	that	passes	its	state	to	its	children	via	props.
The	stateful	component	encapsulates	all	of	the	interaction	logic,	while	the	stateless
components	take	care	of	rendering	data	in	a	declarative	way."

8.3	State	vs.	Props

106

8.3	State	vs.	Props

107

Creating	Stateless	Function	Components
When	a	component	is	purely	a	result	of		props		alone,	no		state	,	the	component	can	be
written	as	a	pure	function	avoiding	the	need	to	create	a	React	component	instance.	In	the
code	example	below		MyComponent		is	the	result	of	a	function	that	returns	the	results	from
	React.createElement()	.

source	code

Having	look	at	the	same	code	not	using	JSX	should	clarify	what	is	going	on.

var	MyComponent	=	function	MyComponent(props)	{

				return	React.createElement(

								"div",

								null,

								"Hello	",

								props.name

);

};

ReactDOM.render(React.createElement(MyComponent,	{	name:	"doug"	}),	app);

Constructing	a	React	component	without	calling		React.createClass()		is	typically	referred	to
as	a	stateless	function	component.

Stateless	function	components	can't	be	passed	component	options	(i.e.,		render	,
	componentWillUnmount	,	etc.).	However		.propTypes		and		.defaultProps		can	be	set	as
properties	on	the	function.

The	code	example	below	demonstrates	a	stateless	function	component	making	use	of
	.propTypes		and		.defaultProps	.

source	code

Notes

Make	as	many	of	your	components	as	possible,	as	stateless	components.

8.4	Creating	Stateless	Function	Components

108

https://jsfiddle.net/5nzpxyuu/#tabs=js,result,html,resources
https://jsfiddle.net/tpvjyp34/#tabs=js,result,html,resources

	Introduction
	1. What Is React
	2. React Semantics/Terminology
	3. React & Babel Basic Setup
	3.1 Using react.js & react-dom.js
	3.2 Using JSX via Babel
	3.3 Using ES6 & ES* with React
	3.4 Writing React With JSFiddle

	4. React Nodes
	4.1 What Is a React Node?
	4.2 Creating React Nodes
	4.3 Rendering to DOM
	4.4 Defining Node Attributes/Props
	4.5 Inlining CSS on Element Nodes
	4.6 Using Built-in Element Factories
	4.7 Defining React Node Events

	5. JavaScript Syntax Extension (a.k.a., JSX)
	5.1 What Is a JSX?
	5.2 Creating React Nodes With JSX
	5.3 Rendering JSX to DOM
	5.4 Using JS Expressions in JSX
	5.5 Using JS Comments in JSX
	5.6 Using Inline CSS in JSX
	5.7 Defining JSX Attributes/Props
	5.8 Defining Events in JSX

	6. Basic React Components
	6.1 What Is a React Component?
	6.2 Creating Components
	6.3 Return One Starting Node/Component
	6.4 Referring to a Component Instance
	6.5 Defining Events on Components
	6.6 Composing Components
	6.7 Grokking Component Lifecycle's
	6.8 Accessing Children Components/Nodes
	6.9 Using ref Attribute
	6.10 Re-rendering A Component

	7. React Component Props
	7.1 What Are Component Props?
	7.2 Sending Component Props
	7.3 Getting Component Props
	7.4 Setting Default Component Props
	7.5 Component Props More Than Strings
	7.6 Validating Component Props

	8. React Component State
	8.1 What Is Component State?
	8.2 Working with Component State
	8.3 State vs. Props
	8.4 Creating Stateless Function Components

