
The Best Practices Book
Version: 3.4

generated on November 13, 2018

The Best Practices Book (3.4)

This work is licensed under the “Attribution-Share Alike 3.0 Unported” license (http://creativecommons.org/
licenses/by-sa/3.0/).

You are free to share (to copy, distribute and transmit the work), and to remix (to adapt the work) under the
following conditions:

• Attribution: You must attribute the work in the manner specified by the author or licensor (but not in
any way that suggests that they endorse you or your use of the work).

• Share Alike: If you alter, transform, or build upon this work, you may distribute the resulting work only
under the same, similar or a compatible license. For any reuse or distribution, you must make clear to
others the license terms of this work.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor SensioLabs shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by
the information contained in this work.

If you find typos or errors, feel free to report them by creating a ticket on the Symfony ticketing system
(http://github.com/symfony/symfony-docs/issues). Based on tickets and users feedback, this book is
continuously updated.

Contents at a Glance

The Symfony Framework Best Practices...4

Creating the Project ..6

Configuration ...9

Organizing Your Business Logic ..13

Controllers ...19

Templates...23

Forms...26

Internationalization...30

Security ..32

Web Assets ...38

Tests...40

PDF brought to you by

generated on November 13, 2018

Contents at a Glance | iii

Chapter 1

The Symfony Framework Best Practices

The Symfony Framework is well-known for being really flexible and is used to build micro-sites,
enterprise applications that handle billions of connections and even as the basis for other frameworks.
Since its release in July 2011, the community has learned a lot about what's possible and how to do things
best.

These community resources - like blog posts or presentations - have created an unofficial set of
recommendations for developing Symfony applications. Unfortunately, a lot of these recommendations
are unneeded for web applications. Much of the time, they unnecessarily overcomplicate things and don't
follow the original pragmatic philosophy of Symfony.

What is this Guide About?

This guide aims to fix that by describing the best practices for developing web apps with the Symfony
full-stack Framework. These are best practices that fit the philosophy of the framework as envisioned
by its original creator Fabien Potencier1.

Best practice is a noun that means "a well defined procedure that is known to produce near-optimum
results". And that's exactly what this guide aims to provide. Even if you don't agree with every
recommendation, we believe these will help you build great applications with less complexity.

This guide is specially suited for:

• Websites and web applications developed with the full-stack Symfony Framework.

For other situations, this guide might be a good starting point that you can then extend and fit to your
specific needs:

• Bundles shared publicly to the Symfony community;
• Advanced developers or teams who have created their own standards;
• Some complex applications that have highly customized requirements;
• Bundles that may be shared internally within a company.

1. https://connect.sensiolabs.com/profile/fabpot

PDF brought to you by

generated on November 13, 2018

Chapter 1: The Symfony Framework Best Practices | 4

Listing 1-1

We know that old habits die hard and some of you will be shocked by some of these best practices. But
by following these, you'll be able to develop apps faster, with less complexity and with the same or even
higher quality. It's also a moving target that will continue to improve.

Keep in mind that these are optional recommendations that you and your team may or may not
follow to develop Symfony applications. If you want to continue using your own best practices and
methodologies, you can of course do it. Symfony is flexible enough to adapt to your needs. That will
never change.

Who this Book Is for (Hint: It's not a Tutorial)

Any Symfony developer, whether you are an expert or a newcomer, can read this guide. But since this
isn't a tutorial, you'll need some basic knowledge of Symfony to follow everything. If you are totally new
to Symfony, welcome! Start with The Quick Tour tutorial first.

We've deliberately kept this guide short. We won't repeat explanations that you can find in the vast
Symfony documentation, like discussions about Dependency Injection or front controllers. We'll solely
focus on explaining how to do what you already know.

The Application

In addition to this guide, a sample application has been developed with all these best practices in mind.
This project, called the Symfony Demo application, can be obtained through the Symfony Installer. First,
download and install2 the installer and then execute this command to download the demo application:

1 $ symfony demo

The demo application is a simple blog engine, because that will allow us to focus on the Symfony
concepts and features without getting buried in difficult implementation details. Instead of developing
the application step by step in this guide, you'll find selected snippets of code through the chapters.

Don't Update Your Existing Applications

After reading this handbook, some of you may be considering refactoring your existing Symfony
applications. Our recommendation is sound and clear: you should not refactor your existing
applications to comply with these best practices. The reasons for not doing it are various:

• Your existing applications are not wrong, they just follow another set of guidelines;
• A full codebase refactorization is prone to introduce errors in your applications;
• The amount of work spent on this could be better dedicated to improving your tests or adding

features that provide real value to the end users.

Next: Creating the Project

2. https://symfony.com/download

PDF brought to you by

generated on November 13, 2018

Chapter 1: The Symfony Framework Best Practices | 5

Listing 2-1

Chapter 2

Creating the Project

Installing Symfony

In the past, Symfony projects were created with Composer1, the dependency manager for PHP
applications. However, the current recommendation is to use the Symfony Installer, which has to be
installed before creating your first project.

Use the Symfony Installer to create new Symfony-based projects.

Read the Installing & Setting up the Symfony Framework article learn how to install and use the Symfony
Installer.

Creating the Blog Application

Now that everything is correctly set up, you can create a new project based on Symfony. In your
command console, browse to a directory where you have permission to create files and execute the
following commands:

1
2
3
4
5
6

$ cd projects/
$ symfony new blog

Windows
c:\> cd projects/
c:\projects\> php symfony new blog

If the installer doesn't work for you or doesn't output anything, make sure that the Phar extension2 is
installed and enabled on your computer.

1. https://getcomposer.org/

2. https://php.net/manual/en/intro.phar.php

PDF brought to you by

generated on November 13, 2018

Chapter 2: Creating the Project | 6

Listing 2-2

This command creates a new directory called blog that contains a fresh new project based on the
most recent stable Symfony version available. In addition, the installer checks if your system meets the
technical requirements to execute Symfony applications. If not, you'll see the list of changes needed to
meet those requirements.

Symfony releases are digitally signed for security reasons. If you want to verify the integrity of your

Symfony installation, take a look at the public checksums repository3 and follow these steps4 to verify
the signatures.

Structuring the Application

After creating the application, enter the blog/ directory and you'll see a number of files and directories
generated automatically:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

blog/
├─ app/
│ ├─ config/
│ └─ Resources/
├─ bin
│ └─ console
├─ src/
│ └─ AppBundle/
├─ var/
│ ├─ cache/
│ ├─ logs/
│ └─ sessions/
├─ tests/
│ └─ AppBundle/
├─ vendor/
└─ web/

This file and directory hierarchy is the convention proposed by Symfony to structure your applications.
The recommended purpose of each directory is the following:

• app/config/, stores all the configuration defined for any environment;
• app/Resources/, stores all the templates and the translation files for the application;
• src/AppBundle/, stores the Symfony specific code (controllers and routes), your domain code (e.g.

Doctrine classes) and all your business logic;
• var/cache/, stores all the cache files generated by the application;
• var/logs/, stores all the log files generated by the application;
• var/sessions/, stores all the session files generated by the application;
• tests/AppBundle/, stores the automatic tests (e.g. Unit tests) of the application.
• vendor/, this is the directory where Composer installs the application's dependencies and you should

never modify any of its contents;
• web/, stores all the front controller files and all the web assets, such as stylesheets, JavaScript files

and images.

Application Bundles

When Symfony 2.0 was released, most developers naturally adopted the symfony 1.x way of dividing
applications into logical modules. That's why many Symfony apps use bundles to divide their code into
logical features: UserBundle, ProductBundle, InvoiceBundle, etc.

3. https://github.com/sensiolabs/checksums

4. http://fabien.potencier.org/signing-project-releases.html

PDF brought to you by

generated on November 13, 2018

Chapter 2: Creating the Project | 7

Listing 2-3

Listing 2-4

But a bundle is meant to be something that can be reused as a stand-alone piece of software. If
UserBundle cannot be used "as is" in other Symfony apps, then it shouldn't be its own bundle. Moreover,
if InvoiceBundle depends on ProductBundle, then there's no advantage to having two separate bundles.

Create only one bundle called AppBundle for your application logic.

Implementing a single AppBundle bundle in your projects will make your code more concise and easier
to understand.

There is no need to prefix the AppBundle with your own vendor (e.g. AcmeAppBundle), because
this application bundle is never going to be shared.

Another reason to create a new bundle is when you're overriding something in a vendor's bundle
(e.g. a controller). See How to Use Bundle Inheritance to Override Parts of a Bundle.

All in all, this is the typical directory structure of a Symfony application that follows these best practices:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

blog/
├─ app/
│ ├─ config/
│ └─ Resources/
├─ bin/
│ └─ console
├─ src/
│ └─ AppBundle/
├─ tests/
│ └─ AppBundle/
├─ var/
│ ├─ cache/
│ ├─ logs/
└─ sessions/

├─ vendor/
└─ web/
├─ app.php
└─ app_dev.php

If your Symfony installation doesn't come with a pre-generated AppBundle, you can generate it by
hand executing this command:

1 $ php bin/console generate:bundle --namespace=AppBundle --dir=src --format=annotation --no-interaction

Extending the Directory Structure

If your project or infrastructure requires some changes to the default directory structure of Symfony, you

can override the location of the main directories: cache/, logs/ and web/.

Next: Configuration

PDF brought to you by

generated on November 13, 2018

Chapter 2: Creating the Project | 8

Listing 3-1

Chapter 3

Configuration

Configuration usually involves different application parts (such as infrastructure and security credentials)
and different environments (development, production). That's why Symfony recommends that you split
the application configuration into three parts.

Infrastructure-Related Configuration

Define the infrastructure-related configuration options in the app/config/parameters.yml file.

The default parameters.yml file follows this recommendation and defines the options related to the
database and mail server infrastructure:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

app/config/parameters.yml
parameters:

database_driver: pdo_mysql
database_host: 127.0.0.1
database_port: ~
database_name: symfony
database_user: root
database_password: ~

mailer_transport: smtp
mailer_host: 127.0.0.1
mailer_user: ~
mailer_password: ~

...

These options aren't defined inside the app/config/config.yml file because they have nothing to do
with the application's behavior. In other words, your application doesn't care about the location of your
database or the credentials to access to it, as long as the database is correctly configured.

Canonical Parameters

PDF brought to you by

generated on November 13, 2018

Chapter 3: Configuration | 9

Listing 3-2

Listing 3-3

Define all your application's parameters in the app/config/parameters.yml.dist file.

Symfony includes a configuration file called parameters.yml.dist, which stores the canonical list of
configuration parameters for the application.

Whenever a new configuration parameter is defined for the application, you should also add it to this
file and submit the changes to your version control system. Then, whenever a developer updates the
project or deploys it to a server, Symfony will check if there is any difference between the canonical

parameters.yml.dist file and your local parameters.yml file. If there is a difference, Symfony

will ask you to provide a value for the new parameter and it will add it to your local parameters.yml
file.

Application-Related Configuration

Define the application behavior related configuration options in the app/config/config.yml file.

The config.yml file contains the options used by the application to modify its behavior, such as the

sender of email notifications, or the enabled feature toggles1. Defining these values in parameters.yml
file would add an extra layer of configuration that's not needed because you don't need or want these
configuration values to change on each server.

The configuration options defined in the config.yml file usually vary from one environment to another.

That's why Symfony already includes app/config/config_dev.yml and app/config/
config_prod.yml files so that you can override specific values for each environment.

Constants vs Configuration Options

One of the most common errors when defining application configuration is to create new options for
values that never change, such as the number of items for paginated results.

Use constants to define configuration options that rarely change.

The traditional approach for defining configuration options has caused many Symfony apps to include
an option like the following, which would be used to control the number of posts to display on the blog
homepage:

1
2
3

app/config/config.yml
parameters:

homepage.number_of_items: 10

If you've done something like this in the past, it's likely that you've in fact never actually needed to change
that value. Creating a configuration option for a value that you are never going to configure just isn't
necessary. Our recommendation is to define these values as constants in your application. You could, for

example, define a NUMBER_OF_ITEMS constant in the Post entity:

1
2
3
4
5
6
7

// src/AppBundle/Entity/Post.php
namespace AppBundle\Entity;

class Post
{

const NUMBER_OF_ITEMS = 10;

1. https://en.wikipedia.org/wiki/Feature_toggle

PDF brought to you by

generated on November 13, 2018

Chapter 3: Configuration | 10

Listing 3-4

Listing 3-5

Listing 3-6

8
9

// ...
}

The main advantage of defining constants is that you can use their values everywhere in your application.
When using parameters, they are only available from places with access to the Symfony container.

Constants can be used for example in your Twig templates thanks to the constant() function2:

1
2
3

<p>
Displaying the {{ constant('NUMBER_OF_ITEMS', post) }} most recent results.

</p>

And Doctrine entities and repositories can now easily access these values, whereas they cannot access the
container parameters:

1
2
3
4
5
6
7
8
9
10
11
12

namespace AppBundle\Repository;

use Doctrine\ORM\EntityRepository;
use AppBundle\Entity\Post;

class PostRepository extends EntityRepository
{

public function findLatest($limit = Post::NUMBER_OF_ITEMS)
{

// ...
}

}

The only notable disadvantage of using constants for this kind of configuration values is that you cannot
redefine them easily in your tests.

Parameter Naming

The name of your configuration parameters should be as short as possible and should include a common prefix
for the entire application.

Using app. as the prefix of your parameters is a common practice to avoid collisions with Symfony and
third-party bundles/libraries parameters. Then, use just one or two words to describe the purpose of the
parameter:

1
2
3
4
5
6
7
8
9
10

app/config/config.yml
parameters:

don't do this: 'dir' is too generic and it doesn't convey any meaning
app.dir: '...'
do this: short but easy to understand names
app.contents_dir: '...'
it's OK to use dots, underscores, dashes or nothing, but always
be consistent and use the same format for all the parameters
app.dir.contents: '...'
app.contents-dir: '...'

Semantic Configuration: Don't Do It

Don't define a semantic dependency injection configuration for your bundles.

2. https://twig.symfony.com/doc/2.x/functions/constant.html

PDF brought to you by

generated on November 13, 2018

Chapter 3: Configuration | 11

Listing 3-7

As explained in How to Load Service Configuration inside a Bundle article, Symfony bundles have two

choices on how to handle configuration: normal service configuration through the services.yml file

and semantic configuration through a special *Extension class.

Although semantic configuration is much more powerful and provides nice features such as configuration
validation, the amount of work needed to define that configuration isn't worth it for bundles that aren't
meant to be shared as third-party bundles.

Moving Sensitive Options Outside of Symfony Entirely

When dealing with sensitive options, like database credentials, we also recommend that you store them
outside the Symfony project and make them available through environment variables:

1
2
3
4
5

app/config/config.yml
doctrine:

dbal:
...
password: "%env(DB_PASSWORD)%"

New in version 3.2: Support for runtime environment variables via the %env(...)% syntax was added in
Symfony 3.2. Prior to version 3.2, you needed to use the special SYMFONY__ variables.

Next: Organizing Your Business Logic

PDF brought to you by

generated on November 13, 2018

Chapter 3: Configuration | 12

Listing 4-1

Listing 4-2

Chapter 4

Organizing Your Business Logic

In computer software, business logic or domain logic is "the part of the program that encodes the real-
world business rules that determine how data can be created, displayed, stored, and changed" (read full

definition1).

In Symfony applications, business logic is all the custom code you write for your app that's not specific to
the framework (e.g. routing and controllers). Domain classes, Doctrine entities and regular PHP classes
that are used as services are good examples of business logic.

For most projects, you should store everything inside the AppBundle. Inside here, you can create
whatever directories you want to organize things:

1
2
3
4
5
6
7
8
9
10

symfony-project/
├─ app/
├─ src/
│ └─ AppBundle/
│ └─ Utils/
│ └─ MyClass.php
├─ tests/
├─ var/
├─ vendor/
└─ web/

Storing Classes Outside of the Bundle?

But there's no technical reason for putting business logic inside of a bundle. If you like, you can create

your own namespace inside the src/ directory and put things there:

1
2
3
4
5
6
7
8

symfony-project/
├─ app/
├─ src/
│ ├─ Acme/
│ │ └─ Utils/
│ │ └─ MyClass.php
│ └─ AppBundle/
├─ tests/

1. https://en.wikipedia.org/wiki/Business_logic

PDF brought to you by

generated on November 13, 2018

Chapter 4: Organizing Your Business Logic | 13

Listing 4-3

Listing 4-4

Listing 4-5

9
10
11

├─ var/
├─ vendor/
└─ web/

The recommended approach of using the AppBundle/ directory is for simplicity. If you're advanced
enough to know what needs to live in a bundle and what can live outside of one, then feel free to do
that.

Services: Naming and Format

The blog application needs a utility that can transform a post title (e.g. "Hello World") into a slug (e.g.
"hello-world"). The slug will be used as part of the post URL.

Let's create a new Slugger class inside src/AppBundle/Utils/ and add the following slugify()
method:

1
2
3
4
5
6
7
8
9
10
11
12

// src/AppBundle/Utils/Slugger.php
namespace AppBundle\Utils;

class Slugger
{

public function slugify($string)
{

return preg_replace(
'/[^a-z0-9]/', '-', strtolower(trim(strip_tags($string)))

);
}

}

Next, define a new service for that class.

1
2
3
4
5
6
7

app/config/services.yml
services:

...

use the fully-qualified class name as the service id
AppBundle\Utils\Slugger:

public: false

If you're using the default services.yml configuration, the class is auto-registered as a service.

Traditionally, the naming convention for a service was a short, but unique snake case key - e.g.

app.utils.slugger. But for most services, you should now use the class name.

The id of your application's services should be equal to their class name, except when you have multiple
services configured for the same class (in that case, use a snake case id).

Now you can use the custom slugger in any controller class, such as the AdminController:

1
2
3
4
5
6

use AppBundle\Utils\Slugger;

public function createAction(Request $request, Slugger $slugger)
{

// ...

PDF brought to you by

generated on November 13, 2018

Chapter 4: Organizing Your Business Logic | 14

Listing 4-6

7
8
9
10
11
12
13
14
15
16
17

// you can also fetch a public service like this
// but fetching services in this way is not considered a best practice
// $slugger = $this->get('app.slugger');

if ($form->isSubmitted() && $form->isValid()) {
$slug = $slugger->slugify($post->getTitle());
$post->setSlug($slug);

// ...
}

}

Services can also be public or private. If you use the default services.yml configuration, all services are
private by default.

Services should be private whenever possible. This will prevent you from accessing that service via

$container->get(). Instead, you will need to use dependency injection.

Service Format: YAML

In the previous section, YAML was used to define the service.

Use the YAML format to define your own services.

This is controversial, and in our experience, YAML and XML usage is evenly distributed among
developers, with a slight preference towards YAML. Both formats have the same performance, so this is
ultimately a matter of personal taste.

We recommend YAML because it's friendly to newcomers and concise. You can of course use whatever
format you like.

Service: No Class Parameter

You may have noticed that the previous service definition doesn't configure the class namespace as a
parameter:

1
2
3
4
5
6
7
8
9

app/config/services.yml

service definition with class namespace as parameter
parameters:

slugger.class: AppBundle\Utils\Slugger

services:
app.slugger:

class: '%slugger.class%'

This practice is cumbersome and completely unnecessary for your own services.

Don't define parameters for the classes of your services.

This practice was wrongly adopted from third-party bundles. When Symfony introduced its service
container, some developers used this technique to easily allow overriding services. However, overriding
a service by just changing its class name is a very rare use case because, frequently, the new service has
different constructor arguments.

PDF brought to you by

generated on November 13, 2018

Chapter 4: Organizing Your Business Logic | 15

Listing 4-7

Listing 4-8

Using a Persistence Layer

Symfony is an HTTP framework that only cares about generating an HTTP response for each HTTP
request. That's why Symfony doesn't provide a way to talk to a persistence layer (e.g. database, external
API). You can choose whatever library or strategy you want for this.

In practice, many Symfony applications rely on the independent Doctrine project2 to define their model
using entities and repositories. Just like with business logic, we recommend storing Doctrine entities in
the AppBundle.

The three entities defined by our sample blog application are a good example:

1
2
3
4
5
6
7
8

symfony-project/
├─ ...
└─ src/
└─ AppBundle/
└─ Entity/
├─ Comment.php
├─ Post.php
└─ User.php

If you're more advanced, you can of course store them under your own namespace in src/.

Doctrine Mapping Information

Doctrine entities are plain PHP objects that you store in some "database". Doctrine only knows about
your entities through the mapping metadata configured for your model classes. Doctrine supports four
metadata formats: YAML, XML, PHP and annotations.

Use annotations to define the mapping information of the Doctrine entities.

Annotations are by far the most convenient and agile way of setting up and looking for mapping
information:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

namespace AppBundle\Entity;

use Doctrine\ORM\Mapping as ORM;
use Doctrine\Common\Collections\ArrayCollection;

/**
* @ORM\Entity
*/
class Post
{

const NUMBER_OF_ITEMS = 10;

/**
* @ORM\Id
* @ORM\GeneratedValue
* @ORM\Column(type="integer")
*/
private $id;

/**
* @ORM\Column(type="string")
*/
private $title;

2. http://www.doctrine-project.org/

PDF brought to you by

generated on November 13, 2018

Chapter 4: Organizing Your Business Logic | 16

Listing 4-9

Listing 4-10

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

/**
* @ORM\Column(type="string")
*/
private $slug;

/**
* @ORM\Column(type="text")
*/
private $content;

/**
* @ORM\Column(type="string")
*/
private $authorEmail;

/**
* @ORM\Column(type="datetime")
*/
private $publishedAt;

/**
* @ORM\OneToMany(
* targetEntity="Comment",
* mappedBy="post",
* orphanRemoval=true
*)
* @ORM\OrderBy({"publishedAt"="ASC"})
*/
private $comments;

public function __construct()
{

$this->publishedAt = new \DateTime();
$this->comments = new ArrayCollection();

}

// getters and setters ...
}

All formats have the same performance, so this is once again ultimately a matter of taste.

Data Fixtures

As fixtures support is not enabled by default in Symfony, you should execute the following command to
install the Doctrine fixtures bundle:

1 $ composer require "doctrine/doctrine-fixtures-bundle"

Then, enable the bundle in AppKernel.php, but only for the dev and test environments:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

use Symfony\Component\HttpKernel\Kernel;

class AppKernel extends Kernel
{

public function registerBundles()
{

$bundles = array(
// ...

);

if (in_array($this->getEnvironment(), array('dev', 'test'))) {
// ...
$bundles[] = new Doctrine\Bundle\FixturesBundle\DoctrineFixturesBundle();

}

return $bundles;
}

PDF brought to you by

generated on November 13, 2018

Chapter 4: Organizing Your Business Logic | 17

Listing 4-11

18
19
20

// ...
}

We recommend creating just one fixture class3 for simplicity, though you're welcome to have more if that
class gets quite large.

Assuming you have at least one fixtures class and that the database access is configured properly, you can
load your fixtures by executing the following command:

1
2
3
4
5

$ php bin/console doctrine:fixtures:load

Careful, database will be purged. Do you want to continue Y/N ? Y
> purging database
> loading AppBundle\DataFixtures\ORM\LoadFixtures

Coding Standards

The Symfony source code follows the PSR-14 and PSR-25 coding standards that were defined by the PHP
community. You can learn more about the Symfony Coding standards and even use the PHP-CS-Fixer6,
which is a command-line utility that can fix the coding standards of an entire codebase in a matter of
seconds.

Next: Controllers

3. https://symfony.com/doc/current/bundles/DoctrineFixturesBundle/index.html#writing-simple-fixtures

4. https://www.php-fig.org/psr/psr-1/

5. https://www.php-fig.org/psr/psr-2/

6. https://github.com/FriendsOfPHP/PHP-CS-Fixer

PDF brought to you by

generated on November 13, 2018

Chapter 4: Organizing Your Business Logic | 18

Listing 5-1

Chapter 5

Controllers

Symfony follows the philosophy of "thin controllers and fat models". This means that controllers should
hold just the thin layer of glue-code needed to coordinate the different parts of the application.

As a rule of thumb, you should follow the 5-10-20 rule, where controllers should only define 5 variables
or less, contain 10 actions or less and include 20 lines of code or less in each action. This isn't an exact
science, but it should help you realize when code should be refactored out of the controller and into a
service.

Make your controller extend the FrameworkBundle base controller and use annotations to configure routing,
caching and security whenever possible.

Coupling the controllers to the underlying framework allows you to leverage all of its features and
increases your productivity.

And since your controllers should be thin and contain nothing more than a few lines of glue-code,
spending hours trying to decouple them from your framework doesn't benefit you in the long run. The
amount of time wasted isn't worth the benefit.

In addition, using annotations for routing, caching and security simplifies configuration. You don't need
to browse tens of files created with different formats (YAML, XML, PHP): all the configuration is just
where you need it and it only uses one format.

Overall, this means you should aggressively decouple your business logic from the framework while, at
the same time, aggressively coupling your controllers and routing to the framework in order to get the
most out of it.

Routing Configuration

To load routes defined as annotations in your controllers, add the following configuration to the main
routing configuration file:

1
2
3
4

app/config/routing.yml
app:

resource: '@AppBundle/Controller/'
type: annotation

PDF brought to you by

generated on November 13, 2018

Chapter 5: Controllers | 19

Listing 5-2

Listing 5-3

This configuration will load annotations from any controller stored inside the src/AppBundle/
Controller/ directory and even from its subdirectories. So if your application defines lots of
controllers, it's perfectly ok to reorganize them into subdirectories:

1
2
3
4
5
6
7
8
9
10
11
12
13
14

<your-project>/
├─ ...
└─ src/
└─ AppBundle/
├─ ...
└─ Controller/
├─ DefaultController.php
├─ ...
├─ Api/
│ ├─ ...
│ └─ ...
└─ Backend/
├─ ...
└─ ...

Template Configuration

Don't use the @Template annotation to configure the template used by the controller.

The @Template annotation is useful, but also involves some magic. We don't think its benefit is worth
the magic, and so recommend against using it.

Most of the time, @Template is used without any parameters, which makes it more difficult to know
which template is being rendered. It also makes it less obvious to beginners that a controller should
always return a Response object (unless you're using a view layer).

What does the Controller look like

Considering all this, here is an example of what the controller should look like for the homepage of our
app:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

namespace AppBundle\Controller;

use AppBundle\Entity\Post;
use Symfony\Bundle\FrameworkBundle\Controller\Controller;
use Symfony\Component\Routing\Annotation\Route;

class DefaultController extends Controller
{

/**
* @Route("/", name="homepage")
*/
public function indexAction()
{

$posts = $this->getDoctrine()
->getRepository(Post::class)
->findLatest();

return $this->render('default/index.html.twig', array(
'posts' => $posts,

));
}

}

PDF brought to you by

generated on November 13, 2018

Chapter 5: Controllers | 20

Listing 5-4

Listing 5-5

Fetching Services

If you extend the base Controller class, you can access services directly from the container via $this-
>container->get() or $this->get(). But instead, you should use dependency injection to fetch
services: most easily done by type-hinting action method arguments:

Don't use $this->get() or $this->container->get() to fetch services from the container. Instead,

use dependency injection.

By not fetching services directly from the container, you can make your services private, which has several
advantages.

Using the ParamConverter

If you're using Doctrine, then you can optionally use the ParamConverter1 to automatically query for an
entity and pass it as an argument to your controller.

Use the ParamConverter trick to automatically query for Doctrine entities when it's simple and convenient.

For example:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

use AppBundle\Entity\Post;
use Symfony\Component\Routing\Annotation\Route;

/**
* @Route("/{id}", name="admin_post_show")
*/
public function showAction(Post $post)
{

$deleteForm = $this->createDeleteForm($post);

return $this->render('admin/post/show.html.twig', array(
'post' => $post,
'delete_form' => $deleteForm->createView(),

));
}

Normally, you'd expect a $id argument to showAction(). Instead, by creating a new argument

($post) and type-hinting it with the Post class (which is a Doctrine entity), the ParamConverter

automatically queries for an object whose $id property matches the {id} value. It will also show a 404

page if no Post can be found.

When Things Get More Advanced

The above example works without any configuration because the wildcard name {id} matches the
name of the property on the entity. If this isn't true, or if you have even more complex logic, the
easiest thing to do is just query for the entity manually. In our application, we have this situation in

CommentController:

1
2
3
4
5
6

/**
* @Route("/comment/{postSlug}/new", name="comment_new")
*/
public function newAction(Request $request, $postSlug)
{

$post = $this->getDoctrine()

1. https://symfony.com/doc/current/bundles/SensioFrameworkExtraBundle/annotations/converters.html

PDF brought to you by

generated on November 13, 2018

Chapter 5: Controllers | 21

Listing 5-6

7
8
9
10
11
12
13
14
15

->getRepository(Post::class)
->findOneBy(array('slug' => $postSlug));

if (!$post) {
throw $this->createNotFoundException();

}

// ...
}

You can also use the @ParamConverter configuration, which is infinitely flexible:

1
2
3
4
5
6
7
8
9
10
11
12
13

use AppBundle\Entity\Post;
use Sensio\Bundle\FrameworkExtraBundle\Configuration\ParamConverter;
use Symfony\Component\HttpFoundation\Request;
use Symfony\Component\Routing\Annotation\Route;

/**
* @Route("/comment/{postSlug}/new", name="comment_new")
* @ParamConverter("post", options={"mapping"={"postSlug"="slug"}})
*/
public function newAction(Request $request, Post $post)
{

// ...
}

The point is this: the ParamConverter shortcut is great for simple situations. But you shouldn't forget that
querying for entities directly is still very easy.

Pre and Post Hooks

If you need to execute some code before or after the execution of your controllers, you can use the
EventDispatcher component to set up before and after filters.

Next: Templates

PDF brought to you by

generated on November 13, 2018

Chapter 5: Controllers | 22

Chapter 6

Templates

When PHP was created 20 years ago, developers loved its simplicity and how well it blended HTML
and dynamic code. But as time passed, other template languages - like Twig1 - were created to make
templating even better.

Use Twig templating format for your templates.

Generally speaking, PHP templates are much more verbose than Twig templates because they lack native
support for lots of modern features needed by templates, like inheritance, automatic escaping and named
arguments for filters and functions.

Twig is the default templating format in Symfony and has the largest community support of all non-PHP
template engines (it's used in high profile projects such as Drupal 8).

In addition, Twig is the only template format with guaranteed support in Symfony 3.0. As a matter of
fact, PHP may be removed from the officially supported template engines.

Template Locations

Store all your application's templates in app/Resources/views/ directory.

Traditionally, Symfony developers stored the application templates in the Resources/views/
directory of each bundle. Then they used the Twig namespaced path to refer to them (e.g. @AcmeDemo/
Default/index.html.twig).

But for the templates used in your application, it's much more convenient to store them in the app/
Resources/views/ directory. For starters, this drastically simplifies their logical names:

Templates Stored inside Bundles Templates Stored in app/app/

@AcmeDemo/index.html.twig index.html.twig

@AcmeDemo/Default/index.html.twig default/index.html.twig

1. https://twig.symfony.com/

PDF brought to you by

generated on November 13, 2018

Chapter 6: Templates | 23

Listing 6-1

Listing 6-2

Listing 6-3

Templates Stored inside Bundles Templates Stored in app/app/

@AcmeDemo/Default/subdir/index.html.twig default/subdir/index.html.twig

Another advantage is that centralizing your templates simplifies the work of your designers. They don't
need to look for templates in lots of directories scattered through lots of bundles.

Use lowercased snake_case for directory and template names.

Use a prefixed underscore for partial templates in template names.

You often want to reuse template code using the include function to avoid redundant code. To
determine those partials easily in the filesystem you should prefix partials and any other template without

HTML body or extends tag with a single underscore.

Twig Extensions

Define your Twig extensions in the AppBundle/Twig/ directory. Your application will automatically detect

them and configure them.

Our application needs a custom md2html Twig filter so that we can transform the Markdown contents
of each post into HTML.

To do this, first, install the excellent Parsedown2 Markdown parser as a new dependency of the project:

1 $ composer require erusev/parsedown

Then, create a new Markdown class that will be used later by the Twig extension. It just needs to define
one single method to transform Markdown content into HTML:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

namespace AppBundle\Utils;

class Markdown
{

private $parser;

public function __construct()
{

$this->parser = new \Parsedown();
}

public function toHtml($text)
{

return $this->parser->text($text);
}

}

Next, create a new Twig extension and define a new filter called md2html using the Twig\TwigFilter
class. Inject the newly defined Markdown class in the constructor of the Twig extension:

1
2
3
4
5

namespace AppBundle\Twig;

use AppBundle\Utils\Markdown;
use Twig\Extension\AbstractExtension;
use Twig\TwigFilter;

2. http://parsedown.org/

PDF brought to you by

generated on November 13, 2018

Chapter 6: Templates | 24

6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

class AppExtension extends AbstractExtension
{

private $parser;

public function __construct(Markdown $parser)
{

$this->parser = $parser;
}

public function getFilters()
{

return array(
new TwigFilter(

'md2html',
array($this, 'markdownToHtml'),
array('is_safe' => array('html'), 'pre_escape' => 'html')

),
);

}

public function markdownToHtml($content)
{

return $this->parser->toHtml($content);
}

public function getName()
{

return 'app_extension';
}

}

And that's it!

If you're using the default services.yml configuration, you're done! Symfony will automatically know
about your new service and tag it to be used as a Twig extension.

Next: Forms

PDF brought to you by

generated on November 13, 2018

Chapter 6: Templates | 25

Listing 7-1

Chapter 7

Forms

Forms are one of the most misused Symfony components due to its vast scope and endless list of features.
In this chapter we'll show you some of the best practices so you can leverage forms but get work done
quickly.

Building Forms

Define your forms as PHP classes.

The Form component allows you to build forms right inside your controller code. This is perfectly fine
if you don't need to reuse the form somewhere else. But for organization and reuse, we recommend that
you define each form in its own PHP class:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

namespace AppBundle\Form;

use AppBundle\Entity\Post;
use Symfony\Component\Form\AbstractType;
use Symfony\Component\Form\FormBuilderInterface;
use Symfony\Component\OptionsResolver\OptionsResolver;
use Symfony\Component\Form\Extension\Core\Type\TextareaType;
use Symfony\Component\Form\Extension\Core\Type\EmailType;
use Symfony\Component\Form\Extension\Core\Type\DateTimeType;

class PostType extends AbstractType
{

public function buildForm(FormBuilderInterface $builder, array $options)
{

$builder
->add('title')
->add('summary', TextareaType::class)
->add('content', TextareaType::class)
->add('authorEmail', EmailType::class)
->add('publishedAt', DateTimeType::class)

;
}

public function configureOptions(OptionsResolver $resolver)
{

PDF brought to you by

generated on November 13, 2018

Chapter 7: Forms | 26

Listing 7-2

Listing 7-3

Listing 7-4

26
27
28
29
30

$resolver->setDefaults(array(
'data_class' => Post::class,

));
}

}

Put the form type classes in the AppBundle\Form namespace, unless you use other custom form classes like

data transformers.

To use the class, use createForm() and pass the fully qualified class name:

1
2
3
4
5
6
7
8
9
10
11

// ...
use AppBundle\Form\PostType;

// ...
public function newAction(Request $request)
{

$post = new Post();
$form = $this->createForm(PostType::class, $post);

// ...
}

Registering Forms as Services

You can also register your form type as a service. This is only needed if your form type requires some
dependencies to be injected by the container, otherwise it is unnecessary overhead and therefore not
recommended to do this for all form type classes.

Form Button Configuration

Form classes should try to be agnostic to where they will be used. This makes them easier to re-use later.

Add buttons in the templates, not in the form classes or the controllers.

The Symfony Form component allows you to add buttons as fields on your form. This is a nice way to
simplify the template that renders your form. But if you add the buttons directly in your form class, this
would effectively limit the scope of that form:

1
2
3
4
5
6
7
8
9
10
11
12

class PostType extends AbstractType
{

public function buildForm(FormBuilderInterface $builder, array $options)
{

$builder
// ...
->add('save', SubmitType::class, array('label' => 'Create Post'))

;
}

// ...
}

This form may have been designed for creating posts, but if you wanted to reuse it for editing posts, the
button label would be wrong. Instead, some developers configure form buttons in the controller:

1
2
3

namespace AppBundle\Controller\Admin;

use Symfony\Component\HttpFoundation\Request;

PDF brought to you by

generated on November 13, 2018

Chapter 7: Forms | 27

Listing 7-5

Listing 7-6

4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

use Symfony\Bundle\FrameworkBundle\Controller\Controller;
use Symfony\Component\Form\Extension\Core\Type\SubmitType;
use AppBundle\Entity\Post;
use AppBundle\Form\PostType;

class PostController extends Controller
{

// ...

public function newAction(Request $request)
{

$post = new Post();
$form = $this->createForm(PostType::class, $post);
$form->add('submit', SubmitType::class, array(

'label' => 'Create',
'attr' => array('class' => 'btn btn-default pull-right'),

));

// ...
}

}

This is also an important error, because you are mixing presentation markup (labels, CSS classes, etc.)
with pure PHP code. Separation of concerns is always a good practice to follow, so put all the view-related
things in the view layer:

1
2
3
4
5
6

{{ form_start(form) }}
{{ form_widget(form) }}

<input type="submit" value="Create"
class="btn btn-default pull-right" />

{{ form_end(form) }}

Validation

The constraints option allows you to attach validation constraints to any form field. However, doing that
prevents the validation from being reused in other forms or other places where the mapped object is used.

Do not define your validation constraints in the form but on the object the form is mapped to.

For example, to validate that the title of the post edited with a form is not blank, add the following in the

Post object:

1
2
3
4
5
6
7
8
9
10
11
12

// src/Entity/Post.php

// ...
use Symfony\Component\Validator\Constraints as Assert;

class Post
{

/**
* @Assert\NotBlank()
*/
public $title;

}

PDF brought to you by

generated on November 13, 2018

Chapter 7: Forms | 28

Listing 7-7

Listing 7-8

Rendering the Form

There are a lot of ways to render your form, ranging from rendering the entire thing in one line to
rendering each part of each field independently. The best way depends on how much customization you
need.

One of the simplest ways - which is especially useful during development - is to render the form tags and

use the form_widget() function to render all of the fields:

1
2
3

{{ form_start(form, {'attr': {'class': 'my-form-class'} }) }}
{{ form_widget(form) }}

{{ form_end(form) }}

If you need more control over how your fields are rendered, then you should remove the

form_widget(form) function and render your fields individually. See How to Customize Form

Rendering for more information on this and how you can control how the form renders at a global level
using form theming.

Handling Form Submits

Handling a form submit usually follows a similar template:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

public function newAction(Request $request)
{

// build the form ...

$form->handleRequest($request);

if ($form->isSubmitted() && $form->isValid()) {
$entityManager = $this->getDoctrine()->getManager();
$entityManager->persist($post);
$entityManager->flush();

return $this->redirect($this->generateUrl(
'admin_post_show',
array('id' => $post->getId())

));
}

// render the template
}

There are really only two notable things here. First, we recommend that you use a single action for both

rendering the form and handling the form submit. For example, you could have a newAction() that

only renders the form and a createAction() that only processes the form submit. Both those actions

will be almost identical. So it's much simpler to let newAction() handle everything.

Second, is it required to call $form->isSubmitted() in the if statement before calling isValid().

Calling isValid() with an unsubmitted form is deprecated since version 3.2 and will throw an
exception in 4.0.

Next: Internationalization

PDF brought to you by

generated on November 13, 2018

Chapter 7: Forms | 29

Listing 8-1

Chapter 8

Internationalization

Internationalization and localization adapt the applications and their contents to the specific region or
language of the users. In Symfony this is an opt-in feature that needs to be enabled before using it. To do

this, uncomment the following translator configuration option and set your application locale:

1
2
3
4
5
6
7
8
9

app/config/config.yml
framework:

...
translator: { fallbacks: ['%locale%'] }

app/config/parameters.yml
parameters:

...
locale: en

Translation Source File Format

The Symfony Translation component supports lots of different translation formats: PHP, Qt, .po, .mo,
JSON, CSV, INI, etc.

Use the XLIFF format for your translation files.

Of all the available translation formats, only XLIFF and gettext have broad support in the tools used by
professional translators. And since it's based on XML, you can validate XLIFF file contents as you write
them.

Symfony supports notes in XLIFF files, making them more user-friendly for translators. At the end, good
translations are all about context, and these XLIFF notes allow you to define that context.

The PHP Translation Bundle1 includes advanced extractors that can read your project and
automatically update the XLIFF files.

1. https://github.com/php-translation/symfony-bundle

PDF brought to you by

generated on November 13, 2018

Chapter 8: Internationalization | 30

Listing 8-2

Translation Source File Location

Store the translation files in the app/Resources/translations/ directory.

Traditionally, Symfony developers have created these files in the Resources/translations/
directory of each bundle. But since the app/Resources/ directory is considered the global location for

the application's resources, storing translations in app/Resources/translations/ centralizes them
and gives them priority over any other translation file. This let's you override translations defined in third-
party bundles.

Translation Keys

Always use keys for translations instead of content strings.

Using keys simplifies the management of the translation files because you can change the original
contents without having to update all of the translation files.

Keys should always describe their purpose and not their location. For example, if a form has a field

with the label "Username", then a nice key would be label.username, not

edit_form.label.username.

Example Translation File

Applying all the previous best practices, the sample translation file for English in the application would
be:

1
2
3
4
5
6
7
8
9
10
11
12

<!-- app/Resources/translations/messages.en.xlf -->
<?xml version="1.0"?>
<xliff version="1.2" xmlns="urn:oasis:names:tc:xliff:document:1.2">

<file source-language="en" target-language="en" datatype="plaintext" original="file.ext">
<body>

<trans-unit id="title_post_list">
<source>title.post_list</source>
<target>Post List</target>

</trans-unit>
</body>

</file>
</xliff>

Next: Security

PDF brought to you by

generated on November 13, 2018

Chapter 8: Internationalization | 31

Chapter 9

Security

Authentication and Firewalls (i.e. Getting the User's Credentials)

You can configure Symfony to authenticate your users using any method you want and to load user
information from any source. This is a complex topic, but the Security guide has a lot of information
about this.

Regardless of your needs, authentication is configured in security.yml, primarily under the

firewalls key.

Unless you have two legitimately different authentication systems and users (e.g. form login for the main site

and a token system for your API only), we recommend having only one firewall entry with the anonymous
key enabled.

Most applications only have one authentication system and one set of users. For this reason, you only
need one firewall entry. There are exceptions of course, especially if you have separated web and API
sections on your site. But the point is to keep things simple.

Additionally, you should use the anonymous key under your firewall. If you need to require users to

be logged in for different sections of your site (or maybe nearly all sections), use the access_control
area.

Use the bcrypt encoder for encoding your users' passwords.

If your users have a password, then we recommend encoding it using the bcrypt encoder, instead of the

traditional SHA-512 hashing encoder. The main advantages of bcrypt are the inclusion of a salt value to
protect against rainbow table attacks, and its adaptive nature, which allows to make it slower to remain
resistant to brute-force search attacks.

Argon2i is the hashing algorithm as recommended by industry standards, but this won't be available

to you unless you are using PHP 7.2+ or have the libsodium1 extension installed. bcrypt is sufficient
for most applications.

PDF brought to you by

generated on November 13, 2018

Chapter 9: Security | 32

Listing 9-1

With this in mind, here is the authentication setup from our application, which uses a login form to load
users from the database:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

app/config/security.yml
security:

encoders:
AppBundle\Entity\User: bcrypt

providers:
database_users:

entity: { class: AppBundle:User, property: username }

firewalls:
secured_area:

pattern: ^/
anonymous: true
form_login:

check_path: login
login_path: login

logout:
path: security_logout
target: homepage

... access_control exists, but is not shown here

The source code for our project contains comments that explain each part.

Authorization (i.e. Denying Access)

Symfony gives you several ways to enforce authorization, including the access_control configuration
in security.yml, the @Security annotation and using isGranted on the

security.authorization_checker service directly.

• For protecting broad URL patterns, use access_control;
• Whenever possible, use the @Security annotation;
• Check security directly on the security.authorization_checker service whenever you have a more complex

situation.

There are also different ways to centralize your authorization logic, like with a custom security voter or
with ACL.

• For fine-grained restrictions, define a custom security voter;
• For restricting access to any object by any user via an admin interface, use the Symfony ACL.

The @Security Annotation

For controlling access on a controller-by-controller basis, use the @Security annotation whenever
possible. It's easy to read and is placed consistently above each action.

1. https://pecl.php.net/package/libsodium

PDF brought to you by

generated on November 13, 2018

Chapter 9: Security | 33

Listing 9-2

Listing 9-3

Listing 9-4

Listing 9-5

In our application, you need the ROLE_ADMIN in order to create a new post. Using @Security, this
looks like:

1
2
3
4
5
6
7
8
9
10
11
12
13
14

use Sensio\Bundle\FrameworkExtraBundle\Configuration\Security;
use Symfony\Component\Routing\Annotation\Route;
// ...

/**
* Displays a form to create a new Post entity.
*
* @Route("/new", name="admin_post_new")
* @Security("has_role('ROLE_ADMIN')")
*/
public function newAction()
{

// ...
}

Using Expressions for Complex Security Restrictions

If your security logic is a little bit more complex, you can use an expression inside @Security. In the
following example, a user can only access the controller if their email matches the value returned by the

getAuthorEmail() method on the Post object:

1
2
3
4
5
6
7
8
9
10
11
12

use AppBundle\Entity\Post;
use Sensio\Bundle\FrameworkExtraBundle\Configuration\Security;
use Symfony\Component\Routing\Annotation\Route;

/**
* @Route("/{id}/edit", name="admin_post_edit")
* @Security("user.getEmail() == post.getAuthorEmail()")
*/
public function editAction(Post $post)
{

// ...
}

Notice that this requires the use of the ParamConverter2, which automatically queries for the Post object

and puts it on the $post argument. This is what makes it possible to use the post variable in the
expression.

This has one major drawback: an expression in an annotation cannot easily be reused in other parts of
the application. Imagine that you want to add a link in a template that will only be seen by authors. Right
now you'll need to repeat the expression code using Twig syntax:

1
2
3

{% if app.user and app.user.email == post.authorEmail %}
 ...

{% endif %}

The easiest solution - if your logic is simple enough - is to add a new method to the Post entity that
checks if a given user is its author:

1
2
3
4
5
6
7
8
9

// src/AppBundle/Entity/Post.php
// ...

class Post
{

// ...

/**
* Is the given User the author of this Post?

2. https://symfony.com/doc/current/bundles/SensioFrameworkExtraBundle/annotations/converters.html

PDF brought to you by

generated on November 13, 2018

Chapter 9: Security | 34

Listing 9-6

Listing 9-7

Listing 9-8

10
11
12
13
14
15
16
17

*
* @return bool
*/

public function isAuthor(User $user = null)
{

return $user && $user->getEmail() === $this->getAuthorEmail();
}

}

Now you can reuse this method both in the template and in the security expression:

1
2
3
4
5
6
7
8
9
10
11
12

use AppBundle\Entity\Post;
use Sensio\Bundle\FrameworkExtraBundle\Configuration\Security;
use Symfony\Component\Routing\Annotation\Route;

/**
* @Route("/{id}/edit", name="admin_post_edit")
* @Security("post.isAuthor(user)")
*/
public function editAction(Post $post)
{

// ...
}

1
2
3

{% if post.isAuthor(app.user) %}
 ...

{% endif %}

Checking Permissions without @Security

The above example with @Security only works because we're using the ParamConverter, which gives

the expression access to the post variable. If you don't use this, or have some other more advanced use-
case, you can always do the same security check in PHP:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

/**
* @Route("/{id}/edit", name="admin_post_edit")
*/
public function editAction($id)
{

$post = $this->getDoctrine()
->getRepository(Post::class)
->find($id);

if (!$post) {
throw $this->createNotFoundException();

}

if (!$post->isAuthor($this->getUser())) {
$this->denyAccessUnlessGranted('edit', $post);

}
// equivalent code without using the "denyAccessUnlessGranted()" shortcut:
//
// use Symfony\Component\Security\Core\Exception\AccessDeniedException;
// ...
//
// if (!$this->get('security.authorization_checker')->isGranted('edit', $post)) {
// throw $this->createAccessDeniedException();
// }

// ...
}

PDF brought to you by

generated on November 13, 2018

Chapter 9: Security | 35

Listing 9-9

Security Voters

If your security logic is complex and can't be centralized into a method like isAuthor(), you should
leverage custom voters. These are an order of magnitude easier than ACLs and will give you the flexibility
you need in almost all cases.

First, create a voter class. The following example shows a voter that implements the same

getAuthorEmail() logic you used above:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

namespace AppBundle\Security;

use Symfony\Component\Security\Core\Authentication\Token\TokenInterface;
use Symfony\Component\Security\Core\Authorization\AccessDecisionManagerInterface;
use Symfony\Component\Security\Core\Authorization\Voter\Voter;
use Symfony\Component\Security\Core\User\UserInterface;
use AppBundle\Entity\Post;

class PostVoter extends Voter
{

const CREATE = 'create';
const EDIT = 'edit';

/**
* @var AccessDecisionManagerInterface
*/
private $decisionManager;

public function __construct(AccessDecisionManagerInterface $decisionManager)
{

$this->decisionManager = $decisionManager;
}

protected function supports($attribute, $subject)
{

if (!in_array($attribute, array(self::CREATE, self::EDIT))) {
return false;

}

if (!$subject instanceof Post) {
return false;

}

return true;
}

protected function voteOnAttribute($attribute, $subject, TokenInterface $token)
{

$user = $token->getUser();
/** @var Post */
$post = $subject; // $subject must be a Post instance, thanks to the supports method

if (!$user instanceof UserInterface) {
return false;

}

switch ($attribute) {
case self::CREATE:

// if the user is an admin, allow them to create new posts
if ($this->decisionManager->decide($token, array('ROLE_ADMIN'))) {

return true;
}

break;
case self::EDIT:

// if the user is the author of the post, allow them to edit the posts
if ($user->getEmail() === $post->getAuthorEmail()) {

return true;
}

PDF brought to you by

generated on November 13, 2018

Chapter 9: Security | 36

Listing 9-10

Listing 9-11

61
62
63
64
65
66

break;
}

return false;
}

}

If you're using the default services.yml configuration, your application will autoconfigure your security

voter and inject an AccessDecisionManagerInterface instance into it thanks to autowiring.

Now, you can use the voter with the @Security annotation:

1
2
3
4
5
6
7
8

/**
* @Route("/{id}/edit", name="admin_post_edit")
* @Security("is_granted('edit', post)")
*/
public function editAction(Post $post)
{

// ...
}

You can also use this directly with the security.authorization_checker service or via the even
easier shortcut in a controller:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

/**
* @Route("/{id}/edit", name="admin_post_edit")
*/
public function editAction($id)
{

$post = ...; // query for the post

$this->denyAccessUnlessGranted('edit', $post);

// or without the shortcut:
//
// use Symfony\Component\Security\Core\Exception\AccessDeniedException;
// ...
//
// if (!$this->get('security.authorization_checker')->isGranted('edit', $post)) {
// throw $this->createAccessDeniedException();
// }

}

Learn More

The FOSUserBundle3, developed by the Symfony community, adds support for a database-backed user
system in Symfony. It also handles common tasks like user registration and forgotten password
functionality.

Enable the Remember Me feature to allow your users to stay logged in for a long period of time.

When providing customer support, sometimes it's necessary to access the application as some other user
so that you can reproduce the problem. Symfony provides the ability to impersonate users.

If your company uses a user login method not supported by Symfony, you can develop your own user
provider and your own authentication provider.

Next: Web Assets

3. https://github.com/FriendsOfSymfony/FOSUserBundle

PDF brought to you by

generated on November 13, 2018

Chapter 9: Security | 37

Listing 10-1

Chapter 10

Web Assets

Web assets are things like CSS, JavaScript and image files that make the frontend of your site look

and work great. Symfony developers have traditionally stored these assets in the Resources/public/
directory of each bundle.

Store your assets in the web/ directory.

Scattering your web assets across tens of different bundles makes it more difficult to manage them. Your
designers' lives will be much easier if all the application assets are in one location.

Templates also benefit from centralizing your assets, because the links are much more concise:

1
2
3
4
5
6
7

<link rel="stylesheet" href="{{ asset('css/bootstrap.min.css') }}" />
<link rel="stylesheet" href="{{ asset('css/main.css') }}" />

{# ... #}

<script src="{{ asset('js/jquery.min.js') }}"></script>
<script src="{{ asset('js/bootstrap.min.js') }}"></script>

Keep in mind that web/ is a public directory and that anything stored here will be publicly
accessible, including all the original asset files (e.g. Sass, LESS and CoffeeScript files).

Using Assetic

Starting from Symfony 2.8, Assetic is no longer included by default in the Symfony Standard Edition.
Refer to this article to learn how to install and enable Assetic in your Symfony application.

These days, you probably can't simply create static CSS and JavaScript files and include them in your
template. Instead, you'll probably want to combine and minify these to improve client-side performance.
You may also want to use LESS or Sass (for example), which means you'll need some way to process these
into CSS files.

PDF brought to you by

generated on November 13, 2018

Chapter 10: Web Assets | 38

Listing 10-2

A lot of tools exist to solve these problems, including pure-frontend (non-PHP) tools like GruntJS.

Use Assetic to compile, combine and minimize web assets, unless you're comfortable with frontend tools like
GruntJS.

Assetic is an asset manager capable of compiling assets developed with a lot of different frontend
technologies like LESS, Sass and CoffeeScript. Combining all your assets with Assetic is a matter of
wrapping all the assets with a single Twig tag:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

{% stylesheets
'css/bootstrap.min.css'
'css/main.css'
filter='cssrewrite' output='css/compiled/app.css' %}
<link rel="stylesheet" href="{{ asset_url }}" />

{% endstylesheets %}

{# ... #}

{% javascripts
'js/jquery.min.js'
'js/bootstrap.min.js'
output='js/compiled/app.js' %}
<script src="{{ asset_url }}"></script>

{% endjavascripts %}

Frontend-Based Applications

Recently, frontend technologies like AngularJS have become pretty popular for developing frontend web
applications that talk to an API.

If you are developing an application like this, you should use the tools that are recommended by the
technology, such as Bower and GruntJS. You should develop your frontend application separately from
your Symfony backend (even separating the repositories if you want).

Learn More about Assetic

Assetic can also minimize CSS and JavaScript assets using UglifyCSS/UglifyJS to speed up your websites.
You can even compress images with Assetic to reduce their size before serving them to the user. Check
out the official Assetic documentation1 to learn more about all the available features.

Next: Tests

1. https://github.com/kriswallsmith/assetic

PDF brought to you by

generated on November 13, 2018

Chapter 10: Web Assets | 39

Listing 11-1

Chapter 11

Tests

Roughly speaking, there are two types of test. Unit testing allows you to test the input and output of
specific functions. Functional testing allows you to command a "browser" where you browse to pages on
your site, click links, fill out forms and assert that you see certain things on the page.

Unit Tests

Unit tests are used to test your "business logic", which should live in classes that are independent of
Symfony. For that reason, Symfony doesn't really have an opinion on what tools you use for unit testing.
However, the most popular tools are PHPUnit1 and PHPSpec2.

Functional Tests

Creating really good functional tests can be tough so some developers skip these completely. Don't skip
the functional tests! By defining some simple functional tests, you can quickly spot any big errors before
you deploy them:

Define a functional test that at least checks if your application pages are successfully loading.

A functional test like this is simple to implement thanks to PHPUnit data providers:

1
2
3
4
5
6
7
8
9
10
11

// tests/AppBundle/ApplicationAvailabilityFunctionalTest.php
namespace Tests\AppBundle;

use Symfony\Bundle\FrameworkBundle\Test\WebTestCase;

class ApplicationAvailabilityFunctionalTest extends WebTestCase
{

/**
* @dataProvider urlProvider
*/
public function testPageIsSuccessful($url)

1. https://phpunit.de/

2. https://www.phpspec.net/

PDF brought to you by

generated on November 13, 2018

Chapter 11: Tests | 40

Listing 11-2

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

{
$client = self::createClient();
$client->request('GET', $url);

$this->assertTrue($client->getResponse()->isSuccessful());
}

public function urlProvider()
{

return array(
array('/'),
array('/posts'),
array('/post/fixture-post-1'),
array('/blog/category/fixture-category'),
array('/archives'),
// ...

);
}

}

This code checks that all the given URLs load successfully, which means that their HTTP response status

code is between 200 and 299. This may not look that useful, but given how little effort this took, it's
worth having it in your application.

In computer software, this kind of test is called smoke testing3 and consists of "preliminary testing to reveal
simple failures severe enough to reject a prospective software release".

Hardcode URLs in a Functional Test

Some of you may be asking why the previous functional test doesn't use the URL generator service:

Hardcode the URLs used in the functional tests instead of using the URL generator.

Consider the following functional test that uses the router service to generate the URL of the tested
page:

1
2
3
4
5
6
7
8

public function testBlogArchives()
{

$client = self::createClient();
$url = $client->getContainer()->get('router')->generate('blog_archives');
$client->request('GET', $url);

// ...
}

This will work, but it has one huge drawback. If a developer mistakenly changes the path of the

blog_archives route, the test will still pass, but the original (old) URL won't work! This means that
any bookmarks for that URL will be broken and you'll lose any search engine page ranking.

Testing JavaScript Functionality

The built-in functional testing client is great, but it can't be used to test any JavaScript behavior on your
pages. If you need to test this, consider using the Mink4 library from within PHPUnit.

Of course, if you have a heavy JavaScript frontend, you should consider using pure JavaScript-based
testing tools.

3. https://en.wikipedia.org/wiki/Smoke_testing_(software)

4. http://mink.behat.org

PDF brought to you by

generated on November 13, 2018

Chapter 11: Tests | 41

Learn More about Functional Tests

Consider using the HautelookAliceBundle5 to generate real-looking data for your test fixtures using Faker6

and Alice7.

5. https://github.com/hautelook/AliceBundle

6. https://github.com/fzaninotto/Faker

7. https://github.com/nelmio/alice

PDF brought to you by

generated on November 13, 2018

Chapter 11: Tests | 42

	The Best Practices Book Version: 3.4 generated on November 13, 2018
	

	Contents at a Glance
	The Symfony Framework Best Practices
	What is this Guide About?
	Who this Book Is for (Hint: It's not a Tutorial)
	The Application
	Don't Update Your Existing Applications

	Creating the Project
	Installing Symfony
	Creating the Blog Application
	Structuring the Application
	Application Bundles

	Extending the Directory Structure

	Configuration
	Infrastructure-Related Configuration
	Canonical Parameters

	Application-Related Configuration
	Constants vs Configuration Options

	Parameter Naming
	Semantic Configuration: Don't Do It
	Moving Sensitive Options Outside of Symfony Entirely

	Organizing Your Business Logic
	Storing Classes Outside of the Bundle?
	Services: Naming and Format
	Service Format: YAML
	Service: No Class Parameter
	Using a Persistence Layer
	Doctrine Mapping Information
	Data Fixtures

	Coding Standards

	Controllers
	Routing Configuration
	Template Configuration
	What does the Controller look like
	Fetching Services
	Using the ParamConverter
	When Things Get More Advanced

	Pre and Post Hooks

	Templates
	Template Locations
	Twig Extensions

	Forms
	Building Forms
	Registering Forms as Services

	Form Button Configuration
	Validation
	Rendering the Form
	Handling Form Submits

	Internationalization
	Translation Source File Format
	Translation Source File Location
	Translation Keys
	Example Translation File

	Security
	Authentication and Firewalls (i.e. Getting the User's Credentials)
	Authorization (i.e. Denying Access)
	The @Security Annotation
	Using Expressions for Complex Security Restrictions

	Checking Permissions without @Security
	Security Voters
	Learn More

	Web Assets
	Using Assetic
	Frontend-Based Applications
	Learn More about Assetic

	Tests
	Unit Tests
	Functional Tests
	Hardcode URLs in a Functional Test

	Testing JavaScript Functionality
	Learn More about Functional Tests

