
VBA

#vba

Table of Contents

About 1

Chapter 1: Getting started with VBA 2

Remarks 2

Versions 2

Examples 2

Accessing the Visual Basic Editor in Microsoft Office 2

First Module and Hello World 4

Debugging 5

Run code step by step 5

Watches window 5

Immediate Window 5

Debugging best practices 6

Chapter 2: API Calls 7

Introduction 7

Remarks 7

Examples 8

API declaration and usage 8

Windows API - Dedicated Module (1 of 2) 11

Windows API - Dedicated Module (2 of 2) 15

Mac APIs 19

Get total monitors and screen resolution 20

FTP and Regional APIs 21

Chapter 3: Arrays 25

Examples 25

Declaring an Array in VBA 25

Accessing Elements 25

Array Indexing 25

Specific Index 25

Dynamic Declaration 25

Use of Split to create an array from a string 26

Iterating elements of an array 27

For...Next 27

For Each...Next 28

Dynamic Arrays (Array Resizing and Dynamic Handling) 29

Dynamic Arrays 29

Adding Values Dynamically 29

Removing Values Dynamically 29

Resetting an Array and Reusing Dynamically 30

Jagged Arrays (Arrays of Arrays) 30

Jagged Arrays NOT Multidimensional Arrays 30

Creating a Jagged Array 31

Dynamically Creating and Reading Jagged Arrays 31

Multidimensional Arrays 33

Multidimensional Arrays 33

Two-Dimension Array 34

Three-Dimension Array 36

Chapter 4: Assigning strings with repeated characters 40

Remarks 40

Examples 40

Use the String function to assign a string with n repeated characters 40

Use the String and Space functions to assign an n-character string 40

Chapter 5: Attributes 41

Syntax 41

Examples 41

VB_Name 41

VB_GlobalNameSpace 41

VB_Createable 41

VB_PredeclaredId 42

Declaration 42

Call 42

VB_Exposed 42

VB_Description 43

VB_[Var]UserMemId 43

Specifying the default member of a class 43

Making a class iteratable with a For Each loop construct 44

Chapter 6: Automation or Using other applications Libraries 46

Introduction 46

Syntax 46

Remarks 46

Examples 46

VBScript Regular Expressions 46

Code 47

Scripting File System Object 48

Scripting Dictionary object 48

Internet Explorer Object 49

Internet Explorer Objec Basic Members 49

Web Scraping 49

Click 51

Microsoft HTML Object Library or IE Best friend 51

IE Main issues 52

Chapter 7: Collections 53

Remarks 53

Feature Comparison with Arrays and Dictionaries 53

Examples 53

Adding Items to a Collection 53

Removing Items From a Collection 55

Getting the Item Count of a Collection 56

Retrieving Items From a Collection 56

Determining if a Key or Item Exists in a Collection 58

Keys 58

Items 58

Clearing All Items From a Collection 59

Chapter 8: Comments 61

Remarks 61

Examples 61

Apostrophe Comments 61

REM Comments 62

Chapter 9: Concatenating strings 63

Remarks 63

Examples 63

Concatenate strings using the & operator 63

Concatenate an array of strings using the Join function 63

Chapter 10: Conditional Compilation 64

Examples 64

Changing code behavior at compile time 64

Using Declare Imports that work on all versions of Office 65

Chapter 11: Converting other types to strings 67

Remarks 67

Examples 67

Use CStr to convert a numeric type to a string 67

Use Format to convert and format a numeric type as a string 67

Use StrConv to convert a byte-array of single-byte characters to a string 67

Implicitly convert a byte array of multi-byte-characters to a string 67

Chapter 12: Copying, returning and passing arrays 69

Examples 69

Copying Arrays 69

Copying Arrays of Objects 70

Variants Containing an Array 70

Returning Arrays from Functions 70

Outputting an Array via an output argument 71

Outputting to a fixed array 71

Outputting an Array from a Class method 72

Passing Arrays to Proceedures 72

Chapter 13: CreateObject vs. GetObject 74

Remarks 74

Examples 74

Demonstrating GetObject and CreateObject 74

Chapter 14: Creating a Custom Class 76

Remarks 76

Examples 76

Adding a Property to a Class 76

Adding Functionality to a Class 77

Class module scope, instancing and re-use 78

Chapter 15: Creating a procedure 80

Examples 80

Introduction to procedures 80

Returning a value 80

Function With Examples 81

Chapter 16: Data Structures 82

Introduction 82

Examples 82

Linked List 82

Binary Tree 83

Chapter 17: Data Types and Limits 85

Examples 85

Byte 85

Integer 86

Boolean 86

Long 87

Single 87

Double 87

Currency 88

Date 88

String 88

Variable length 89

Fixed length 89

LongLong 89

Variant 90

LongPtr 91

Decimal 91

Chapter 18: Date Time Manipulation 93

Examples 93

Calendar 93

Example 93

Base functions 94

Retrieve System DateTime 94

Timer Function 94

IsDate() 95

Extraction functions 95

DatePart() Function 96

Calculation functions 97

DateDiff() 98

DateAdd() 98

Conversion and Creation 99

CDate() 99

DateSerial() 100

Chapter 19: Declaring and assigning strings 102

Remarks 102

Examples 102

Declare a string constant 102

Declare a variable-width string variable 102

Declare and assign a fixed-width string 102

Declare and assign a string array 102

Assign specific characters within a string using Mid statement 103

Assignment to and from a byte array 103

Chapter 20: Declaring Variables 104

Examples 104

Implicit And Explicit Declaration 104

Variables 104

Scope 104

Local variables 105

Static variables 105

Fields 106

Instance Fields 107

Encapsulating fields 107

Constants (Const) 108

Access Modifiers 109

Option Private Module 109

Type Hints 110

String-returning built-in functions 110

Declaring Fixed-Length Strings 112

When to use a Static variable 112

Chapter 21: Error Handling 115

Examples 115

Avoiding error conditions 115

On Error statement 116

Error Handling Strategies 116

Line numbers 117

Resume keyword 118

On Error Resume Next 118

Custom Errors 120

Raising your own runtime errors 120

Chapter 22: Events 122

Syntax 122

Remarks 122

Examples 122

Sources and Handlers 122

What are events? 122

Handlers 122

Sources 124

Passing data back to the event source 124

Using parameters passed by reference 124

Using mutable objects 125

Chapter 23: Flow control structures 127

Examples 127

Select Case 127

For Each loop 128

Syntax 129

Do loop 129

While loop 130

For loop 130

Chapter 24: Frequently used string manipulation 132

Introduction 132

Examples 132

String manipulation frequently used examples 132

Chapter 25: Interfaces 134

Introduction 134

Examples 134

Simple Interface - Flyable 134

Multiple Interfaces in One Class - Flyable and Swimable 135

Chapter 26: Macro security and signing of VBA-projects/-modules 138

Examples 138

Create a valid digital self-signed certificate SELFCERT.EXE 138

Chapter 27: Measuring the length of strings 151

Remarks 151

Examples 151

Use the Len function to determine the number of characters in a string 151

Use the LenB function to determine the number of bytes in a string 151

Prefer `If Len(myString) = 0 Then` over `If myString = "" Then` 151

Chapter 28: Naming Conventions 152

Examples 152

Variable Names 152

Hungarian Notation 153

Procedure Names 155

Chapter 29: Non-Latin Characters 157

Introduction 157

Examples 157

Non-Latin Text in VBA Code 157

Non-Latin Identifiers and Language Coverage 158

Chapter 30: Object-Oriented VBA 160

Examples 160

Abstraction 160

Abstraction levels help determine when to split things up. 160

Encapsulation 160

Encapsulation hides implementation details from client code. 160

Using interfaces to enforce immutability 161

Using a Factory Method to simulate a constructor 163

Polymorphism 164

Polymorphism is the ability to present the same interface for different underlying impleme 164

Testable code depends on abstractions 166

Chapter 31: Operators 167

Remarks 167

Examples 167

Mathematical Operators 167

Concatenation Operators 168

Comparison Operators 169

Notes 169

Bitwise \ Logical Operators 171

Chapter 32: Passing Arguments ByRef or ByVal 175

Introduction 175

Remarks 175

Passing arrays 175

Examples 175

Passing Simple Variables ByRef And ByVal 175

ByRef 176

Default modifier 176

Passing by reference 177

Forcing ByVal at call site 177

ByVal 178

Passing by value 178

Chapter 33: Procedure Calls 180

Syntax 180

Parameters 180

Remarks 180

Examples 180

Implicit Call Syntax 180

Edge case 180

Return Values 181

This is confusing. Why not just always use parentheses? 181

Run-time 181

Compile-time 182

Explicit Call Syntax 182

Optional Arguments 182

Chapter 34: Reading 2GB+ files in binary in VBA and File Hashes 184

Introduction 184

Remarks 184

METHODS FOR THE CLASS BY MICROSOFT 184

PROPERTIES OF THE CLASS BY MICROSOFT 185

NORMAL MODULE 185

Examples 185

This have to be in a Class module, examples later referred as "Random" 185

Code for Calculating File Hash in a Standard module 189

Calculating all Files Hash from a root Folder 191

Example of Worksheet: 191

Code 191

Chapter 35: Recursion 195

Introduction 195

Remarks 195

Examples 195

Factorials 195

Folder Recursion 195

Chapter 36: Scripting.Dictionary object 197

Remarks 197

Examples 197

Properties and Methods 197

Aggregating data with Scripting.Dictionary (Maximum, Count) 199

Getting unique values with Scripting.Dictionary 201

Chapter 37: Scripting.FileSystemObject 203

Examples 203

Creating a FileSystemObject 203

Reading a text file using a FileSystemObject 203

Creating a text file with FileSystemObject 204

Writing to an existing file with FileSystemObject 204

Enumerate files in a directory using FileSystemObject 204

Recursively enumerate folders and files 205

Strip file extension from a file name 206

Retrieve just the extension from a file name 206

Retrieve only the path from a file path 207

Using FSO.BuildPath to build a Full Path from folder path and file name 207

Chapter 38: Searching within strings for the presence of substrings 208

Remarks 208

Examples 208

Use InStr to determine if a string contains a substring 208

Use InStr to find the position of the first instance of a substring 208

Use InStrRev to find the position of the last instance of a substring 208

Chapter 39: Sorting 209

Introduction 209

Examples 209

Algorithm Implementation - Quick Sort on a One-Dimensional Array 209

Using the Excel Library to Sort a One-Dimensional Array 210

Chapter 40: String Literals - Escaping, non-printable characters and line-continuations 212

Remarks 212

Examples 212

Escaping the " character 212

Assigning long string literals 212

Using VBA string constants 213

Chapter 41: Substrings 215

Remarks 215

Examples 215

Use Left or Left$ to get the 3 left-most characters in a string 215

Use Right or Right$ to get the 3 right-most characters in a string 215

Use Mid or Mid$ to get specific characters from within a string 215

Use Trim to get a copy of the string without any leading or trailing spaces 215

Chapter 42: User Forms 217

Examples 217

Best Practices 217

Work with a new instance every time. 217

Implement the logic elsewhere. 217

Caller shouldn't be bothered with controls. 218

Handle the QueryClose event. 218

Hide, don't close. 219

Name things. 219

Handling QueryClose 219

A Cancellable UserForm 220

Chapter 43: VBA Option Keyword 222

Syntax 222

Parameters 222

Remarks 222

Examples 223

Option Explicit 223

Option Compare {Binary | Text | Database} 223

Option Compare Binary 223

Option Compare Text 224

Option Compare Database 225

Option Base {0 | 1} 225

Example in Base 0 : 225

Same Example with Base 1 226

The correct code with Base 1 is : 226

Chapter 44: VBA Run-Time Errors 228

Introduction 228

Examples 228

Run-time error '3': Return without GoSub 228

Incorrect Code 228

Why doesn't this work? 228

Correct Code 228

Why does this work? 228

Other notes 228

Run-time error '6': Overflow 229

Incorrect code 229

Why doesn't this work? 229

Correct code 229

Why does this work? 229

Other notes 229

Run-time error '9': Subscript out of range 229

Incorrect code 229

Why doesn't this work? 230

Correct code 230

Why does this work? 230

Other notes 230

Run-time error '13': Type mismatch 230

Incorrect code 230

Why doesn't this work? 231

Correct code 231

Why does this work? 231

Run-time error '91': Object variable or With block variable not set 231

Incorrect code 231

Why doesn't this work? 231

Correct code 231

Why does this work? 232

Other notes 232

Run-time error '20': Resume without error 232

Incorrect code 232

Why doesn't this work? 232

Correct Code 233

Why does this work? 233

Other notes 233

Chapter 45: Working with ADO 234

Remarks 234

Examples 234

Making a connection to a data source 234

Retrieving records with a query 235

Executing non-scalar functions 236

Creating parameterized commands 237

Chapter 46: Working With Files and Directories Without Using FileSystemObject 239

Remarks 239

Examples 239

Determining If Folders and Files Exist 239

Creating and Deleting File Folders 240

Credits 242

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version

from: vba

It is an unofficial and free VBA ebook created for educational purposes. All the content is extracted

from Stack Overflow Documentation, which is written by many hardworking individuals at Stack

Overflow. It is neither affiliated with Stack Overflow nor official VBA.

The content is released under Creative Commons BY-SA, and the list of contributors to each

chapter are provided in the credits section at the end of this book. Images may be copyright of

their respective owners unless otherwise specified. All trademarks and registered trademarks are

the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor

accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/vba
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with VBA

Remarks

This section provides an overview of what vba is, and why a developer might want to use it.

It should also mention any large subjects within vba, and link out to the related topics. Since the

Documentation for vba is new, you may need to create initial versions of those related topics.

Versions

Version Office Versions Release Date Notes Release Date

Vba6 ? - 2007 [Sometime after][1] 1992-06-30

Vba7 2010 - 2016 [blog.techkit.com][2] 2010-04-15

VBA for Mac 2004, 2011 - 2016 2004-05-11

Examples

Accessing the Visual Basic Editor in Microsoft Office

You can open the VB editor in any of the Microsoft Office applications by pressing Alt+F11 or going

to the Developer tab and clicking on the "Visual Basic" button. If you don't see the Developer tab

in the Ribbon, check if this is enabled.

By default the Developer tab is disabled. To enable the Developer tab go to File -> Options, select

Customize Ribbon in the list on the left. In the right "Customize the Ribbon" treeview find the

Developer tree item and set the check for the Developer checkbox to checked. Click Ok to close

the Options dialog.

https://riptutorial.com/ 2

The Developer tab is now visible in the Ribbon on which you can click on "Visual Basic" to open

the Visual Basic Editor. Alternatively you can click on "View Code" to directly view the code pane

of the currently active element, e.g. WorkSheet, Chart, Shape.

https://riptutorial.com/ 3

http://i.stack.imgur.com/8WoiR.png
http://i.stack.imgur.com/388eU.png

Sub HelloWorld()

F5

https://riptutorial.com/ 4

http://i.stack.imgur.com/azT5a.png

key. Congratulations! You've built your first own VBA Module.

Debugging

Debugging is a very powerful way to have a closer look and fix incorrectly working (or non

working) code.

Run code step by step

First thing you need to do during debugging is to stop the code at specific locations and then run it

line by line to see whether that happens what's expected.

Breakpoint (F9, Debug - Toggle breakpoint): You can add a breakpoint to any executed line

(e.g. not to declarations), when execution reaches that point it stops, and gives control to

user.

•

You can also add the Stop keyword to a blank line to have the code stop at that location on

runtime. This is useful if, for example, before declaration lines to which you can't add a

breakpoint with F9

•

Step into (F8, Debug - Step into): executes only one line of code, if that's a call of a user

defined sub / function, then that's executed line by line.

•

Step over (Shift+F8, Debug - Step over): executes one line of code, doesn't enter user

defined subs / functions.

•

Step out (Ctrl+Shift+F8, Debug - Step out): Exit current sub / function (run code until its

end).

•

Run to cursor (Ctrl+F8, Debug - Run to cursor): run code until reaching the line with the

cursor.

•

You can use Debug.Print to print lines to the Immediate Window at runtime. You may also

use Debug.? as a shortcut for Debug.Print

•

Watches window

Running code line by line is only the first step, we need to know more details and one tool for that

is the watch window (View - Watch window), here you can see values of defined expressions. To

add a variable to the watch window, either:

Right-click on it then select "Add watch".•

Right-click in watch window, select "Add watch".•

Go to Debug - Add watch.•

When you add a new expression you can choose whether you just want to see it's value, or also

break code execution when it's true or when its value changes.

Immediate Window

https://riptutorial.com/ 5

The immediate window allows you to execute arbitrary code or print items by preceeding them

with either the Print keyword or a single question mark "?"

Some examples:

? ActiveSheet.Name - returns name of the active sheet•

Print ActiveSheet.Name - returns the name of the active sheet•

? foo - returns the value of foo*•

x = 10 sets x to 10*•

* Getting/Setting values for variables via the Immediate Window can only be done during runtime

Debugging best practices

Whenever your code doesn't work as expected first thing you should do is to read it again

carefully, looking for mistakes.

If that doesn't help, then start debugging it; for short procedures it can be efficient to just execute it

line by line, for longer ones you probably need to set breakpoints or breaks on watched

expressions, the goal here is to find the line not working as expected.

Once you have the line which gives the incorrect result, but the reason is not yet clear, try to

simplify expressions, or replace variables with constants, that can help understanding whether

variables' value are wrong.

If you still can't solve it, and ask for help:

Include as small part of your code as possible for understanding of your problem•

If the problem is not related to the value of variables, then replace them by constants. (so,

instead of Sheets(a*b*c+d^2).Range(addressOfRange) write Sheets(4).Range("A2"))

•

Describe which line gives the wrong behaviour, and what it is (error, wrong result...)•

Read Getting started with VBA online: https://riptutorial.com/vba/topic/802/getting-started-with-vba

https://riptutorial.com/ 6

https://riptutorial.com/vba/topic/802/getting-started-with-vba

Chapter 2: API Calls

Introduction

API stands for Application Programming Interface

API's for VBA imply a set of methods that allow direct interaction with the operating system

System calls can be made by executing procedures defined in DLL files

Remarks

Common operating environment library files (DLL's):

Dynamic Link

Library
Description

Advapi32.dll
Advanced services library for APIs including many security and

Registry calls

Comdlg32.dll Common dialog API library

Gdi32.dll Graphics Device Interface API library

Kernel32.dll Core Windows 32-bit base API support

Lz32.dll 32-bit compression routines

Mpr.dll Multiple Provider Router library

Netapi32.dll 32-bit Network API library

Shell32.dll 32-bit Shell API library

User32.dll Library for user interface routines

Version.dll Version library

Winmm.dll Windows multimedia library

Winspool.drv Print spooler interface that contains the print spooler API calls

New arguments used for the 64 system:

Type Item Description

Indicates that the Declare statement is compatible with 64-bits. Qualifier PtrSafe

https://riptutorial.com/ 7

https://en.wikipedia.org/wiki/Application_programming_interface

Type Item Description

This attribute is mandatory on 64-bit systems

Data Type LongPtr

A variable data type which is a 4-bytes data type on 32-bit versions

and an 8-byte data type on 64-bit versions of Office 2010. This is

the recommended way of declaring a pointer or a handle for new

code but also for legacy code if it has to run in the 64-bit version of

Office 2010. It is only supported in the VBA 7 runtime on 32-bit and

64-bit. Note that you can assign numeric values to it but not

numeric types

Data Type LongLong

This is an 8-byte data type which is available only in 64-bit versions

of Office 2010. You can assign numeric values but not numeric

types (to avoid truncation)

Conversion Operator CLngPtr Converts a simple expression to a LongPtr data type

Conversion Operator CLngLng Converts a simple expression to a LongLong data type

Function VarPtr
Variant converter. Returns a LongPtr on 64-bit versions, and a

Long on 32-bit (4 bytes)

Function ObjPtr
Object converter. Returns a LongPtr on 64-bit versions, and a Long

on 32-bit (4 bytes)

Function StrPtr
String converter. Returns a LongPtr on 64-bit versions, and a Long

on 32-bit (4 bytes)

Full reference of call signatures:

Win32api32.txt for Visual Basic 5.0 (old API declarations, last reviewed Mar 2005, Microsoft)•

Win32API_PtrSafe with 64-bit Support (Office 2010, Microsoft)•

Examples

API declaration and usage

Declaring a DLL procedure to work with different VBA versions:

Option Explicit

#If Win64 Then

 Private Declare PtrSafe Sub xLib "Kernel32" Alias "Sleep" (ByVal dwMilliseconds As Long)

#ElseIf Win32 Then

 Private Declare Sub apiSleep Lib "Kernel32" Alias "Sleep" (ByVal dwMilliseconds As Long)

https://riptutorial.com/ 8

https://support.microsoft.com/en-us/help/178020/file-win32api.exe-
https://www.microsoft.com/en-us/download/details.aspx?id=9970
https://msdn.microsoft.com/en-us/library/aa716201(v=vs.60).aspx

#End If

The above declaration tells VBA how to call the function "Sleep" defined in file Kernel32.dll

Win64 and Win32 are predefined constants used for conditional compilation

Pre-defined Constants

Some compilation constants are already pre-defined. Which ones exist will depend on the bitness

of the office version you're running VBA in. Note that Vba7 was introduced alongside Office 2010

to support 64 bit versions of Office.

Constant 16 bit 32 bit 64 bit

Vba6 False If Vba6 False

Vba7 False If Vba7 True

Win16 True False False

Win32 False True True

Win64 False False True

Mac False If Mac If Mac

These constants refer to the Office version, not the Windows version. For example Win32 = TRUE

in 32-bit Office, even if the OS is a 64-bit version of Windows.

The main difference when declaring APIs is between 32 bit and 64 bit Office versions which

introduced new parameter types (see Remarks section for more details)

Notes:

Declarations are placed at the top of the module, and outside any Subs or

Functions

•

Procedures declared in standard modules are public by default•

To declare a procedure private to a module precede the declaration with the

Private keyword

•

DLL procedures declared in any other type of module are private to that module•

Simple example for the Sleep API call:

Public Sub TestPause()

 Dim start As Double

https://riptutorial.com/ 9

http://www.riptutorial.com/vba/topic/3364/conditional-compilation

 start = Timer

 Sleep 9000 'Pause execution for 9 seconds

 Debug.Print "Paused for " & Format(Timer - start, "#,###.000") & " seconds"

 'Immediate window result: Paused for 9.000 seconds

End Sub

It is recommended to create a dedicated API module to provide easy access to the system

functions from VBA wrappers -- normal VBA Subs or Functions that encapsulate the details

needed for the actual system call such as parameters used in libraries, and initialization of those

parameters

The module can contain all declarations and dependencies:

Method signatures and required data structures•

Wrappers that perform input validation, and ensure all parameters are passed as expected•

To declare a DLL procedure, add a Declare statement to the Declarations section of the code

window.

If the procedure returns a value, declare it as a Function:

Declare Function publicname Lib "libname" [Alias "alias"] [([[ByVal] variable [As type]
[,[ByVal] variable [As type]]...])] As Type

If a procedure does not return a value, declare it as a Sub:

Declare Sub publicname Lib "libname" [Alias "alias"] [([[ByVal] variable [As type] [,[ByVal]
variable [As type]]...])]

!!!•

Also of note is that most invalid calls to the API's will crash Excel, and possibly

corrupt data files

!!!•

Office 2011 for Mac

Private Declare Function system Lib "libc.dylib" (ByVal command As String) As Long

Sub RunSafari()
 Dim result As Long
 result = system("open -a Safari --args http://www.google.com")
 Debug.Print Str(result)

https://riptutorial.com/ 10

End Sub

The examples bellow (Windows API - Dedicated Module (1 and 2)) show an API module that

includes common declarations for Win64 and Win32

Windows API - Dedicated Module (1 of 2)

Option Explicit

#If Win64 Then 'Win64 = True, Win32 = False, Win16 = False
 Private Declare PtrSafe Sub apiCopyMemory Lib "Kernel32" Alias "RtlMoveMemory" (MyDest As
Any, MySource As Any, ByVal MySize As Long)
 Private Declare PtrSafe Sub apiExitProcess Lib "Kernel32" Alias "ExitProcess" (ByVal
uExitCode As Long)
 Private Declare PtrSafe Sub apiSetCursorPos Lib "User32" Alias "SetCursorPos" (ByVal X As
Integer, ByVal Y As Integer)
 Private Declare PtrSafe Sub apiSleep Lib "Kernel32" Alias "Sleep" (ByVal dwMilliseconds As
Long)
 Private Declare PtrSafe Function apiAttachThreadInput Lib "User32" Alias
"AttachThreadInput" (ByVal idAttach As Long, ByVal idAttachTo As Long, ByVal fAttach As Long)
As Long
 Private Declare PtrSafe Function apiBringWindowToTop Lib "User32" Alias "BringWindowToTop"
(ByVal lngHWnd As Long) As Long
 Private Declare PtrSafe Function apiCloseWindow Lib "User32" Alias "CloseWindow" (ByVal
hWnd As Long) As Long
 Private Declare PtrSafe Function apiDestroyWindow Lib "User32" Alias "DestroyWindow"
(ByVal hWnd As Long) As Boolean
 Private Declare PtrSafe Function apiEndDialog Lib "User32" Alias "EndDialog" (ByVal hWnd
As Long, ByVal result As Long) As Boolean
 Private Declare PtrSafe Function apiEnumChildWindows Lib "User32" Alias "EnumChildWindows"
(ByVal hWndParent As Long, ByVal pEnumProc As Long, ByVal lParam As Long) As Long
 Private Declare PtrSafe Function apiExitWindowsEx Lib "User32" Alias "ExitWindowsEx"
(ByVal uFlags As Long, ByVal dwReserved As Long) As Long
 Private Declare PtrSafe Function apiFindExecutable Lib "Shell32" Alias "FindExecutableA"
(ByVal lpFile As String, ByVallpDirectory As String, ByVal lpResult As String) As Long
 Private Declare PtrSafe Function apiFindWindow Lib "User32" Alias "FindWindowA" (ByVal
lpClassName As String, ByVal lpWindowName As String) As Long
 Private Declare PtrSafe Function apiFindWindowEx Lib "User32" Alias "FindWindowExA" (ByVal
hWnd1 As Long, ByVal hWnd2 As Long, ByVal lpsz1 As String, ByVal lpsz2 As String) As Long
 Private Declare PtrSafe Function apiGetActiveWindow Lib "User32" Alias "GetActiveWindow"
() As Long
 Private Declare PtrSafe Function apiGetClassNameA Lib "User32" Alias "GetClassNameA"
(ByVal hWnd As Long, ByVal szClassName As String, ByVal lLength As Long) As Long
 Private Declare PtrSafe Function apiGetCommandLine Lib "Kernel32" Alias "GetCommandLineW"
() As Long
 Private Declare PtrSafe Function apiGetCommandLineParams Lib "Kernel32" Alias
"GetCommandLineA" () As Long
 Private Declare PtrSafe Function apiGetDiskFreeSpaceEx Lib "Kernel32" Alias
"GetDiskFreeSpaceExA" (ByVal lpDirectoryName As String, lpFreeBytesAvailableToCaller As
Currency, lpTotalNumberOfBytes As Currency, lpTotalNumberOfFreeBytes As Currency) As Long
 Private Declare PtrSafe Function apiGetDriveType Lib "Kernel32" Alias "GetDriveTypeA"
(ByVal nDrive As String) As Long
 Private Declare PtrSafe Function apiGetExitCodeProcess Lib "Kernel32" Alias
"GetExitCodeProcess" (ByVal hProcess As Long, lpExitCode As Long) As Long
 Private Declare PtrSafe Function apiGetForegroundWindow Lib "User32" Alias
"GetForegroundWindow" () As Long
 Private Declare PtrSafe Function apiGetFrequency Lib "Kernel32" Alias
"QueryPerformanceFrequency" (cyFrequency As Currency) As Long

https://riptutorial.com/ 11

 Private Declare PtrSafe Function apiGetLastError Lib "Kernel32" Alias "GetLastError" () As
Integer
 Private Declare PtrSafe Function apiGetParent Lib "User32" Alias "GetParent" (ByVal hWnd
As Long) As Long
 Private Declare PtrSafe Function apiGetSystemMetrics Lib "User32" Alias "GetSystemMetrics"
(ByVal nIndex As Long) As Long
 Private Declare PtrSafe Function apiGetSystemMetrics32 Lib "User32" Alias
"GetSystemMetrics" (ByVal nIndex As Long) As Long
 Private Declare PtrSafe Function apiGetTickCount Lib "Kernel32" Alias
"QueryPerformanceCounter" (cyTickCount As Currency) As Long
 Private Declare PtrSafe Function apiGetTickCountMs Lib "Kernel32" Alias "GetTickCount" ()
As Long
 Private Declare PtrSafe Function apiGetUserName Lib "AdvApi32" Alias "GetUserNameA" (ByVal
lpBuffer As String, nSize As Long) As Long
 Private Declare PtrSafe Function apiGetWindow Lib "User32" Alias "GetWindow" (ByVal hWnd
As Long, ByVal wCmd As Long) As Long
 Private Declare PtrSafe Function apiGetWindowRect Lib "User32" Alias "GetWindowRect"
(ByVal hWnd As Long, lpRect As winRect) As Long
 Private Declare PtrSafe Function apiGetWindowText Lib "User32" Alias "GetWindowTextA"
(ByVal hWnd As Long, ByVal szWindowText As String, ByVal lLength As Long) As Long
 Private Declare PtrSafe Function apiGetWindowThreadProcessId Lib "User32" Alias
"GetWindowThreadProcessId" (ByVal hWnd As Long, lpdwProcessId As Long) As Long
 Private Declare PtrSafe Function apiIsCharAlphaNumericA Lib "User32" Alias
"IsCharAlphaNumericA" (ByVal byChar As Byte) As Long
 Private Declare PtrSafe Function apiIsIconic Lib "User32" Alias "IsIconic" (ByVal hWnd As
Long) As Long
 Private Declare PtrSafe Function apiIsWindowVisible Lib "User32" Alias "IsWindowVisible"
(ByVal hWnd As Long) As Long
 Private Declare PtrSafe Function apiIsZoomed Lib "User32" Alias "IsZoomed" (ByVal hWnd As
Long) As Long
 Private Declare PtrSafe Function apiLStrCpynA Lib "Kernel32" Alias "lstrcpynA" (ByVal
pDestination As String, ByVal pSource As Long, ByVal iMaxLength As Integer) As Long
 Private Declare PtrSafe Function apiMessageBox Lib "User32" Alias "MessageBoxA" (ByVal
hWnd As Long, ByVal lpText As String, ByVal lpCaption As String, ByVal wType As Long) As Long
 Private Declare PtrSafe Function apiOpenIcon Lib "User32" Alias "OpenIcon" (ByVal hWnd As
Long) As Long
 Private Declare PtrSafe Function apiOpenProcess Lib "Kernel32" Alias "OpenProcess" (ByVal
dwDesiredAccess As Long, ByVal bInheritHandle As Long, ByVal dwProcessId As Long) As Long
 Private Declare PtrSafe Function apiPathAddBackslashByPointer Lib "ShlwApi" Alias
"PathAddBackslashW" (ByVal lpszPath As Long) As Long
 Private Declare PtrSafe Function apiPathAddBackslashByString Lib "ShlwApi" Alias
"PathAddBackslashW" (ByVal lpszPath As String) As Long 'http://msdn.microsoft.com/en-
us/library/aa155716%28office.10%29.aspx
 Private Declare PtrSafe Function apiPostMessage Lib "User32" Alias "PostMessageA" (ByVal
hWnd As Long, ByVal wMsg As Long, ByVal wParam As Long, ByVal lParam As Long) As Long
 Private Declare PtrSafe Function apiRegQueryValue Lib "AdvApi32" Alias "RegQueryValue"
(ByVal hKey As Long, ByVal sValueName As String, ByVal dwReserved As Long, ByRef lValueType As
Long, ByVal sValue As String, ByRef lResultLen As Long) As Long
 Private Declare PtrSafe Function apiSendMessage Lib "User32" Alias "SendMessageA" (ByVal
hWnd As Long, ByVal wMsg As Long, ByVal wParam As Long, lParam As Any) As Long
 Private Declare PtrSafe Function apiSetActiveWindow Lib "User32" Alias "SetActiveWindow"
(ByVal hWnd As Long) As Long
 Private Declare PtrSafe Function apiSetCurrentDirectoryA Lib "Kernel32" Alias
"SetCurrentDirectoryA" (ByVal lpPathName As String) As Long
 Private Declare PtrSafe Function apiSetFocus Lib "User32" Alias "SetFocus" (ByVal hWnd As
Long) As Long
 Private Declare PtrSafe Function apiSetForegroundWindow Lib "User32" Alias
"SetForegroundWindow" (ByVal hWnd As Long) As Long
 Private Declare PtrSafe Function apiSetLocalTime Lib "Kernel32" Alias "SetLocalTime"
(lpSystem As SystemTime) As Long
 Private Declare PtrSafe Function apiSetWindowPlacement Lib "User32" Alias

https://riptutorial.com/ 12

"SetWindowPlacement" (ByVal hWnd As Long, ByRef lpwndpl As winPlacement) As Long
 Private Declare PtrSafe Function apiSetWindowPos Lib "User32" Alias "SetWindowPos" (ByVal
hWnd As Long, ByVal hWndInsertAfter As Long, ByVal X As Long, ByVal Y As Long, ByVal cx As
Long, ByVal cy As Long, ByVal wFlags As Long) As Long
 Private Declare PtrSafe Function apiSetWindowText Lib "User32" Alias "SetWindowTextA"
(ByVal hWnd As Long, ByVal lpString As String) As Long
 Private Declare PtrSafe Function apiShellExecute Lib "Shell32" Alias "ShellExecuteA"
(ByVal hWnd As Long, ByVal lpOperation As String, ByVal lpFile As String, ByVal lpParameters
As String, ByVal lpDirectory As String, ByVal nShowCmd As Long) As Long
 Private Declare PtrSafe Function apiShowWindow Lib "User32" Alias "ShowWindow" (ByVal hWnd
As Long, ByVal nCmdShow As Long) As Long
 Private Declare PtrSafe Function apiShowWindowAsync Lib "User32" Alias "ShowWindowAsync"
(ByVal hWnd As Long, ByVal nCmdShow As Long) As Long
 Private Declare PtrSafe Function apiStrCpy Lib "Kernel32" Alias "lstrcpynA" (ByVal
pDestination As String, ByVal pSource As String, ByVal iMaxLength As Integer) As Long
 Private Declare PtrSafe Function apiStringLen Lib "Kernel32" Alias "lstrlenW" (ByVal
lpString As Long) As Long
 Private Declare PtrSafe Function apiStrTrimW Lib "ShlwApi" Alias "StrTrimW" () As Boolean
 Private Declare PtrSafe Function apiTerminateProcess Lib "Kernel32" Alias
"TerminateProcess" (ByVal hWnd As Long, ByVal uExitCode As Long) As Long
 Private Declare PtrSafe Function apiTimeGetTime Lib "Winmm" Alias "timeGetTime" () As Long
 Private Declare PtrSafe Function apiVarPtrArray Lib "MsVbVm50" Alias "VarPtr" (Var() As
Any) As Long
 Private Type browseInfo 'used by apiBrowseForFolder
 hOwner As Long
 pidlRoot As Long
 pszDisplayName As String
 lpszTitle As String
 ulFlags As Long
 lpfn As Long
 lParam As Long
 iImage As Long
 End Type
 Private Declare PtrSafe Function apiBrowseForFolder Lib "Shell32" Alias
"SHBrowseForFolderA" (lpBrowseInfo As browseInfo) As Long
 Private Type CHOOSECOLOR 'used by apiChooseColor;
http://support.microsoft.com/kb/153929 and http://www.cpearson.com/Excel/Colors.aspx
 lStructSize As Long
 hWndOwner As Long
 hInstance As Long
 rgbResult As Long
 lpCustColors As String
 flags As Long
 lCustData As Long
 lpfnHook As Long
 lpTemplateName As String
 End Type
 Private Declare PtrSafe Function apiChooseColor Lib "ComDlg32" Alias "ChooseColorA"
(pChoosecolor As CHOOSECOLOR) As Long
 Private Type FindWindowParameters 'Custom structure for passing in the parameters in/out
of the hook enumeration function; could use global variables instead, but this is nicer
 strTitle As String 'INPUT
 hWnd As Long 'OUTPUT
 End Type 'Find a specific window with dynamic caption from a
list of all open windows: http://www.everythingaccess.com/tutorials.asp?ID=Bring-an-external-
application-window-to-the-foreground
 Private Declare PtrSafe Function apiEnumWindows Lib "User32" Alias "EnumWindows" (ByVal
lpEnumFunc As LongPtr, ByVal lParam As LongPtr) As Long
 Private Type lastInputInfo 'used by apiGetLastInputInfo, getLastInputTime
 cbSize As Long
 dwTime As Long

https://riptutorial.com/ 13

 End Type
 Private Declare PtrSafe Function apiGetLastInputInfo Lib "User32" Alias "GetLastInputInfo"
(ByRef plii As lastInputInfo) As Long
 'http://www.pgacon.com/visualbasic.htm#Take%20Advantage%20of%20Conditional%20Compilation
 'Logical and Bitwise Operators in Visual Basic: http://msdn.microsoft.com/en-
us/library/wz3k228a(v=vs.80).aspx and http://stackoverflow.com/questions/1070863/hidden-
features-of-vba
 Private Type SystemTime
 wYear As Integer
 wMonth As Integer
 wDayOfWeek As Integer
 wDay As Integer
 wHour As Integer
 wMinute As Integer
 wSecond As Integer
 wMilliseconds As Integer
 End Type
 Private Declare PtrSafe Sub apiGetLocalTime Lib "Kernel32" Alias "GetLocalTime" (lpSystem
As SystemTime)
 Private Type pointAPI 'used by apiSetWindowPlacement
 X As Long
 Y As Long
 End Type
 Private Type rectAPI 'used by apiSetWindowPlacement
 Left_Renamed As Long
 Top_Renamed As Long
 Right_Renamed As Long
 Bottom_Renamed As Long
 End Type
 Private Type winPlacement 'used by apiSetWindowPlacement
 length As Long
 flags As Long
 showCmd As Long
 ptMinPosition As pointAPI
 ptMaxPosition As pointAPI
 rcNormalPosition As rectAPI
 End Type
 Private Declare PtrSafe Function apiGetWindowPlacement Lib "User32" Alias
"GetWindowPlacement" (ByVal hWnd As Long, ByRef lpwndpl As winPlacement) As Long
 Private Type winRect 'used by apiMoveWindow
 Left As Long
 Top As Long
 Right As Long
 Bottom As Long
 End Type
 Private Declare PtrSafe Function apiMoveWindow Lib "User32" Alias "MoveWindow" (ByVal hWnd
As Long, xLeft As Long, ByVal yTop As Long, wWidth As Long, ByVal hHeight As Long, ByVal
repaint As Long) As Long

 Private Declare PtrSafe Function apiInternetOpen Lib "WiniNet" Alias "InternetOpenA"
(ByVal sAgent As String, ByVal lAccessType As Long, ByVal sProxyName As String, ByVal
sProxyBypass As String, ByVal lFlags As Long) As Long 'Open the Internet object 'ex:
lngINet = InternetOpen(“MyFTP Control”, 1, vbNullString, vbNullString, 0)
 Private Declare PtrSafe Function apiInternetConnect Lib "WiniNet" Alias "InternetConnectA"
(ByVal hInternetSession As Long, ByVal sServerName As String, ByVal nServerPort As Integer,
ByVal sUsername As String, ByVal sPassword As String, ByVal lService As Long, ByVal lFlags As
Long, ByVal lContext As Long) As Long 'Connect to the network 'ex: lngINetConn =
InternetConnect(lngINet, "ftp.microsoft.com", 0, "anonymous", "wally@wallyworld.com", 1, 0, 0)
 Private Declare PtrSafe Function apiFtpGetFile Lib "WiniNet" Alias "FtpGetFileA" (ByVal
hFtpSession As Long, ByVal lpszRemoteFile As String, ByVal lpszNewFile As String, ByVal
fFailIfExists As Boolean, ByVal dwFlagsAndAttributes As Long, ByVal dwFlags As Long, ByVal

https://riptutorial.com/ 14

dwContext As Long) As Boolean 'Get a file 'ex: blnRC = FtpGetFile(lngINetConn,
"dirmap.txt", "c:\dirmap.txt", 0, 0, 1, 0)
 Private Declare PtrSafe Function apiFtpPutFile Lib "WiniNet" Alias "FtpPutFileA" (ByVal
hFtpSession As Long, ByVal lpszLocalFile As String, ByVal lpszRemoteFile As String, ByVal
dwFlags As Long, ByVal dwContext As Long) As Boolean 'Send a file 'ex: blnRC =
FtpPutFile(lngINetConn, “c:\dirmap.txt”, “dirmap.txt”, 1, 0)
 Private Declare PtrSafe Function apiFtpDeleteFile Lib "WiniNet" Alias "FtpDeleteFileA"
(ByVal hFtpSession As Long, ByVal lpszFileName As String) As Boolean 'Delete a file 'ex: blnRC
= FtpDeleteFile(lngINetConn, “test.txt”)
 Private Declare PtrSafe Function apiInternetCloseHandle Lib "WiniNet" (ByVal hInet As
Long) As Integer 'Close the Internet object 'ex: InternetCloseHandle lngINetConn 'ex:
InternetCloseHandle lngINet
 Private Declare PtrSafe Function apiFtpFindFirstFile Lib "WiniNet" Alias
"FtpFindFirstFileA" (ByVal hFtpSession As Long, ByVal lpszSearchFile As String, lpFindFileData
As WIN32_FIND_DATA, ByVal dwFlags As Long, ByVal dwContent As Long) As Long
 Private Type FILETIME
 dwLowDateTime As Long
 dwHighDateTime As Long
 End Type
 Private Type WIN32_FIND_DATA
 dwFileAttributes As Long
 ftCreationTime As FILETIME
 ftLastAccessTime As FILETIME
 ftLastWriteTime As FILETIME
 nFileSizeHigh As Long
 nFileSizeLow As Long
 dwReserved0 As Long
 dwReserved1 As Long
 cFileName As String * 1 'MAX_FTP_PATH
 cAlternate As String * 14
 End Type 'ex: lngHINet = FtpFindFirstFile(lngINetConn, "*.*", pData, 0, 0)
 Private Declare PtrSafe Function apiInternetFindNextFile Lib "WiniNet" Alias
"InternetFindNextFileA" (ByVal hFind As Long, lpvFindData As WIN32_FIND_DATA) As Long 'ex:
blnRC = InternetFindNextFile(lngHINet, pData)
#ElseIf Win32 Then 'Win32 = True, Win16 = False

(continued in second example)

Windows API - Dedicated Module (2 of 2)

#ElseIf Win32 Then 'Win32 = True, Win16 = False
 Private Declare Sub apiCopyMemory Lib "Kernel32" Alias "RtlMoveMemory" (MyDest As Any,
MySource As Any, ByVal MySize As Long)
 Private Declare Sub apiExitProcess Lib "Kernel32" Alias "ExitProcess" (ByVal uExitCode As
Long)
 'Private Declare Sub apiGetStartupInfo Lib "Kernel32" Alias "GetStartupInfoA"
(lpStartupInfo As STARTUPINFO)
 Private Declare Sub apiSetCursorPos Lib "User32" Alias "SetCursorPos" (ByVal X As Integer,
ByVal Y As Integer) 'Logical and Bitwise Operators in Visual Basic:
http://msdn.microsoft.com/en-us/library/wz3k228a(v=vs.80).aspx and
http://stackoverflow.com/questions/1070863/hidden-features-of-vba
'http://www.pgacon.com/visualbasic.htm#Take%20Advantage%20of%20Conditional%20Compilation
 Private Declare Sub apiSleep Lib "Kernel32" Alias "Sleep" (ByVal dwMilliseconds As Long)
 Private Declare Function apiAttachThreadInput Lib "User32" Alias "AttachThreadInput"
(ByVal idAttach As Long, ByVal idAttachTo As Long, ByVal fAttach As Long) As Long
 Private Declare Function apiBringWindowToTop Lib "User32" Alias "BringWindowToTop" (ByVal
lngHWnd As Long) As Long
 Private Declare Function apiCloseHandle Lib "Kernel32" (ByVal hObject As Long) As Long
 Private Declare Function apiCloseWindow Lib "User32" Alias "CloseWindow" (ByVal hWnd As

https://riptutorial.com/ 15

Long) As Long
 'Private Declare Function apiCreatePipe Lib "Kernel32" (phReadPipe As Long, phWritePipe As
Long, lpPipeAttributes As SECURITY_ATTRIBUTES, ByVal nSize As Long) As Long
 'Private Declare Function apiCreateProcess Lib "Kernel32" Alias "CreateProcessA" (ByVal
lpApplicationName As Long, ByVal lpCommandLine As String, lpProcessAttributes As Any,
lpThreadAttributes As Any, ByVal bInheritHandles As Long, ByVal dwCreationFlags As Long,
lpEnvironment As Any, ByVal lpCurrentDriectory As String, lpStartupInfo As STARTUPINFO,
lpProcessInformation As PROCESS_INFORMATION) As Long
 Private Declare Function apiDestroyWindow Lib "User32" Alias "DestroyWindow" (ByVal hWnd
As Long) As Boolean
 Private Declare Function apiEndDialog Lib "User32" Alias "EndDialog" (ByVal hWnd As Long,
ByVal result As Long) As Boolean
 Private Declare Function apiEnumChildWindows Lib "User32" Alias "EnumChildWindows" (ByVal
hWndParent As Long, ByVal pEnumProc As Long, ByVal lParam As Long) As Long
 Private Declare Function apiExitWindowsEx Lib "User32" Alias "ExitWindowsEx" (ByVal uFlags
As Long, ByVal dwReserved As Long) As Long
 Private Declare Function apiFindExecutable Lib "Shell32" Alias "FindExecutableA" (ByVal
lpFile As String, ByVallpDirectory As String, ByVal lpResult As String) As Long
 Private Declare Function apiFindWindow Lib "User32" Alias "FindWindowA" (ByVal lpClassName
As String, ByVal lpWindowName As String) As Long
 Private Declare Function apiFindWindowEx Lib "User32" Alias "FindWindowExA" (ByVal hWnd1
As Long, ByVal hWnd2 As Long, ByVal lpsz1 As String, ByVal lpsz2 As String) As Long
 Private Declare Function apiGetActiveWindow Lib "User32" Alias "GetActiveWindow" () As
Long
 Private Declare Function apiGetClassNameA Lib "User32" Alias "GetClassNameA" (ByVal hWnd
As Long, ByVal szClassName As String, ByVal lLength As Long) As Long
 Private Declare Function apiGetCommandLine Lib "Kernel32" Alias "GetCommandLineW" () As
Long
 Private Declare Function apiGetCommandLineParams Lib "Kernel32" Alias "GetCommandLineA" ()
As Long
 Private Declare Function apiGetDiskFreeSpaceEx Lib "Kernel32" Alias "GetDiskFreeSpaceExA"
(ByVal lpDirectoryName As String, lpFreeBytesAvailableToCaller As Currency,
lpTotalNumberOfBytes As Currency, lpTotalNumberOfFreeBytes As Currency) As Long
 Private Declare Function apiGetDriveType Lib "Kernel32" Alias "GetDriveTypeA" (ByVal
nDrive As String) As Long
 Private Declare Function apiGetExitCodeProcess Lib "Kernel32" (ByVal hProcess As Long,
lpExitCode As Long) As Long
 Private Declare Function apiGetFileSize Lib "Kernel32" (ByVal hFile As Long,
lpFileSizeHigh As Long) As Long
 Private Declare Function apiGetForegroundWindow Lib "User32" Alias "GetForegroundWindow"
() As Long
 Private Declare Function apiGetFrequency Lib "Kernel32" Alias "QueryPerformanceFrequency"
(cyFrequency As Currency) As Long
 Private Declare Function apiGetLastError Lib "Kernel32" Alias "GetLastError" () As Integer
 Private Declare Function apiGetParent Lib "User32" Alias "GetParent" (ByVal hWnd As Long)
As Long
 Private Declare Function apiGetSystemMetrics Lib "User32" Alias "GetSystemMetrics" (ByVal
nIndex As Long) As Long
 Private Declare Function apiGetTickCount Lib "Kernel32" Alias "QueryPerformanceCounter"
(cyTickCount As Currency) As Long
 Private Declare Function apiGetTickCountMs Lib "Kernel32" Alias "GetTickCount" () As Long
 Private Declare Function apiGetUserName Lib "AdvApi32" Alias "GetUserNameA" (ByVal
lpBuffer As String, nSize As Long) As Long
 Private Declare Function apiGetWindow Lib "User32" Alias "GetWindow" (ByVal hWnd As Long,
ByVal wCmd As Long) As Long
 Private Declare Function apiGetWindowRect Lib "User32" Alias "GetWindowRect" (ByVal hWnd
As Long, lpRect As winRect) As Long
 Private Declare Function apiGetWindowText Lib "User32" Alias "GetWindowTextA" (ByVal hWnd
As Long, ByVal szWindowText As String, ByVal lLength As Long) As Long
 Private Declare Function apiGetWindowThreadProcessId Lib "User32" Alias
"GetWindowThreadProcessId" (ByVal hWnd As Long, lpdwProcessId As Long) As Long

https://riptutorial.com/ 16

 Private Declare Function apiIsCharAlphaNumericA Lib "User32" Alias "IsCharAlphaNumericA"
(ByVal byChar As Byte) As Long
 Private Declare Function apiIsIconic Lib "User32" Alias "IsIconic" (ByVal hWnd As Long) As
Long
 Private Declare Function apiIsWindowVisible Lib "User32" Alias "IsWindowVisible" (ByVal
hWnd As Long) As Long
 Private Declare Function apiIsZoomed Lib "User32" Alias "IsZoomed" (ByVal hWnd As Long) As
Long
 Private Declare Function apiLStrCpynA Lib "Kernel32" Alias "lstrcpynA" (ByVal pDestination
As String, ByVal pSource As Long, ByVal iMaxLength As Integer) As Long
 Private Declare Function apiMessageBox Lib "User32" Alias "MessageBoxA" (ByVal hWnd As
Long, ByVal lpText As String, ByVal lpCaption As String, ByVal wType As Long) As Long
 Private Declare Function apiOpenIcon Lib "User32" Alias "OpenIcon" (ByVal hWnd As Long) As
Long
 Private Declare Function apiOpenProcess Lib "Kernel32" Alias "OpenProcess" (ByVal
dwDesiredAccess As Long, ByVal bInheritHandle As Long, ByVal dwProcessId As Long) As Long
 Private Declare Function apiPathAddBackslashByPointer Lib "ShlwApi" Alias
"PathAddBackslashW" (ByVal lpszPath As Long) As Long
 Private Declare Function apiPathAddBackslashByString Lib "ShlwApi" Alias
"PathAddBackslashW" (ByVal lpszPath As String) As Long 'http://msdn.microsoft.com/en-
us/library/aa155716%28office.10%29.aspx
 Private Declare Function apiPostMessage Lib "User32" Alias "PostMessageA" (ByVal hWnd As
Long, ByVal wMsg As Long, ByVal wParam As Long, ByVal lParam As Long) As Long
 Private Declare Function apiReadFile Lib "Kernel32" (ByVal hFile As Long, lpBuffer As Any,
ByVal nNumberOfBytesToRead As Long, lpNumberOfBytesRead As Long, lpOverlapped As Any) As Long
 Private Declare Function apiRegQueryValue Lib "AdvApi32" Alias "RegQueryValue" (ByVal hKey
As Long, ByVal sValueName As String, ByVal dwReserved As Long, ByRef lValueType As Long, ByVal
sValue As String, ByRef lResultLen As Long) As Long
 Private Declare Function apiSendMessage Lib "User32" Alias "SendMessageA" (ByVal hWnd As
Long, ByVal wMsg As Long, ByVal wParam As Long, lParam As Any) As Long
 Private Declare Function apiSetActiveWindow Lib "User32" Alias "SetActiveWindow" (ByVal
hWnd As Long) As Long
 Private Declare Function apiSetCurrentDirectoryA Lib "Kernel32" Alias
"SetCurrentDirectoryA" (ByVal lpPathName As String) As Long
 Private Declare Function apiSetFocus Lib "User32" Alias "SetFocus" (ByVal hWnd As Long) As
Long
 Private Declare Function apiSetForegroundWindow Lib "User32" Alias "SetForegroundWindow"
(ByVal hWnd As Long) As Long
 Private Declare Function apiSetLocalTime Lib "Kernel32" Alias "SetLocalTime" (lpSystem As
SystemTime) As Long
 Private Declare Function apiSetWindowPlacement Lib "User32" Alias "SetWindowPlacement"
(ByVal hWnd As Long, ByRef lpwndpl As winPlacement) As Long
 Private Declare Function apiSetWindowPos Lib "User32" Alias "SetWindowPos" (ByVal hWnd As
Long, ByVal hWndInsertAfter As Long, ByVal X As Long, ByVal Y As Long, ByVal cx As Long, ByVal
cy As Long, ByVal wFlags As Long) As Long
 Private Declare Function apiSetWindowText Lib "User32" Alias "SetWindowTextA" (ByVal hWnd
As Long, ByVal lpString As String) As Long
 Private Declare Function apiShellExecute Lib "Shell32" Alias "ShellExecuteA" (ByVal hWnd
As Long, ByVal lpOperation As String, ByVal lpFile As String, ByVal lpParameters As String,
ByVal lpDirectory As String, ByVal nShowCmd As Long) As Long
 Private Declare Function apiShowWindow Lib "User32" Alias "ShowWindow" (ByVal hWnd As
Long, ByVal nCmdShow As Long) As Long
 Private Declare Function apiShowWindowAsync Lib "User32" Alias "ShowWindowAsync" (ByVal
hWnd As Long, ByVal nCmdShow As Long) As Long
 Private Declare Function apiStrCpy Lib "Kernel32" Alias "lstrcpynA" (ByVal pDestination As
String, ByVal pSource As String, ByVal iMaxLength As Integer) As Long
 Private Declare Function apiStringLen Lib "Kernel32" Alias "lstrlenW" (ByVal lpString As
Long) As Long
 Private Declare Function apiStrTrimW Lib "ShlwApi" Alias "StrTrimW" () As Boolean
 Private Declare Function apiTerminateProcess Lib "Kernel32" Alias "TerminateProcess"
(ByVal hWnd As Long, ByVal uExitCode As Long) As Long

https://riptutorial.com/ 17

 Private Declare Function apiTimeGetTime Lib "Winmm" Alias "timeGetTime" () As Long
 Private Declare Function apiVarPtrArray Lib "MsVbVm50" Alias "VarPtr" (Var() As Any) As
Long
 Private Declare Function apiWaitForSingleObject Lib "Kernel32" (ByVal hHandle As Long,
ByVal dwMilliseconds As Long) As Long
 Private Type browseInfo 'used by apiBrowseForFolder
 hOwner As Long
 pidlRoot As Long
 pszDisplayName As String
 lpszTitle As String
 ulFlags As Long
 lpfn As Long
 lParam As Long
 iImage As Long
 End Type
 Private Declare Function apiBrowseForFolder Lib "Shell32" Alias "SHBrowseForFolderA"
(lpBrowseInfo As browseInfo) As Long
 Private Type CHOOSECOLOR 'used by apiChooseColor;
http://support.microsoft.com/kb/153929 and http://www.cpearson.com/Excel/Colors.aspx
 lStructSize As Long
 hWndOwner As Long
 hInstance As Long
 rgbResult As Long
 lpCustColors As String
 flags As Long
 lCustData As Long
 lpfnHook As Long
 lpTemplateName As String
 End Type
 Private Declare Function apiChooseColor Lib "ComDlg32" Alias "ChooseColorA" (pChoosecolor
As CHOOSECOLOR) As Long
 Private Type FindWindowParameters 'Custom structure for passing in the parameters in/out
of the hook enumeration function; could use global variables instead, but this is nicer
 strTitle As String 'INPUT
 hWnd As Long 'OUTPUT
 End Type 'Find a specific window with dynamic caption from a
list of all open windows: http://www.everythingaccess.com/tutorials.asp?ID=Bring-an-external-
application-window-to-the-foreground
 Private Declare Function apiEnumWindows Lib "User32" Alias "EnumWindows" (ByVal lpEnumFunc
As Long, ByVal lParam As Long) As Long
 Private Type lastInputInfo 'used by apiGetLastInputInfo, getLastInputTime
 cbSize As Long
 dwTime As Long
 End Type
 Private Declare Function apiGetLastInputInfo Lib "User32" Alias "GetLastInputInfo" (ByRef
plii As lastInputInfo) As Long
 Private Type SystemTime
 wYear As Integer
 wMonth As Integer
 wDayOfWeek As Integer
 wDay As Integer
 wHour As Integer
 wMinute As Integer
 wSecond As Integer
 wMilliseconds As Integer
 End Type
 Private Declare Sub apiGetLocalTime Lib "Kernel32" Alias "GetLocalTime" (lpSystem As
SystemTime)
 Private Type pointAPI
 X As Long
 Y As Long

https://riptutorial.com/ 18

 End Type
 Private Type rectAPI
 Left_Renamed As Long
 Top_Renamed As Long
 Right_Renamed As Long
 Bottom_Renamed As Long
 End Type
 Private Type winPlacement
 length As Long
 flags As Long
 showCmd As Long
 ptMinPosition As pointAPI
 ptMaxPosition As pointAPI
 rcNormalPosition As rectAPI
 End Type
 Private Declare Function apiGetWindowPlacement Lib "User32" Alias "GetWindowPlacement"
(ByVal hWnd As Long, ByRef lpwndpl As winPlacement) As Long
 Private Type winRect
 Left As Long
 Top As Long
 Right As Long
 Bottom As Long
 End Type
 Private Declare Function apiMoveWindow Lib "User32" Alias "MoveWindow" (ByVal hWnd As
Long, xLeft As Long, ByVal yTop As Long, wWidth As Long, ByVal hHeight As Long, ByVal repaint
As Long) As Long
#Else ' Win16 = True
#End If

Mac APIs

Microsoft doesn't officially support APIs but with some research more declarations can be found

online

Office 2016 for Mac is sandboxed

Unlike other versions of Office apps that support VBA, Office 2016 for Mac apps are sandboxed.

Sandboxing restricts the apps from accessing resources outside the app container. This affects

any add-ins or macros that involve file access or communication across processes. You can

minimize the effects of sandboxing by using the new commands described in the following section.

New VBA commands for Office 2016 for Mac

The following VBA commands are new and unique to Office 2016 for Mac.

Command Use to

GrantAccessToMultipleFiles Request a user's permission to access multiple files at once

AppleScriptTask Call external AppleScript scripts from VB

MAC_OFFICE_VERSION IFDEF between different Mac Office versions at compile time

Office 2011 for Mac

https://riptutorial.com/ 19

https://msdn.microsoft.com/en-us/library/office/mt654019.aspx
https://msdn.microsoft.com/en-us/library/office/mt654020.aspx
https://msdn.microsoft.com/en-us/library/office/mt654021.aspx
https://msdn.microsoft.com/en-us/library/office/mt654025.aspx
https://stackoverflow.com/a/12320294/4914662

Private Declare Function system Lib "libc.dylib" (ByVal command As String) As Long
Private Declare Function popen Lib "libc.dylib" (ByVal command As String, ByVal mode As
String) As Long
Private Declare Function pclose Lib "libc.dylib" (ByVal file As Long) As Long
Private Declare Function fread Lib "libc.dylib" (ByVal outStr As String, ByVal size As Long,
ByVal items As Long, ByVal stream As Long) As Long
Private Declare Function feof Lib "libc.dylib" (ByVal file As Long) As Long

•

Office 2016 for Mac

Private Declare PtrSafe Function popen Lib "libc.dylib" (ByVal command As String, ByVal mode
As String) As LongPtr
Private Declare PtrSafe Function pclose Lib "libc.dylib" (ByVal file As LongPtr) As Long
Private Declare PtrSafe Function fread Lib "libc.dylib" (ByVal outStr As String, ByVal size As
LongPtr, ByVal items As LongPtr, ByVal stream As LongPtr) As Long
Private Declare PtrSafe Function feof Lib "libc.dylib" (ByVal file As LongPtr) As LongPtr

Get total monitors and screen resolution

Option Explicit

'GetSystemMetrics32 info: http://msdn.microsoft.com/en-us/library/ms724385(VS.85).aspx
#If Win64 Then
 Private Declare PtrSafe Function GetSystemMetrics32 Lib "User32" Alias "GetSystemMetrics"
(ByVal nIndex As Long) As Long
#ElseIf Win32 Then
 Private Declare Function GetSystemMetrics32 Lib "User32" Alias "GetSystemMetrics" (ByVal
nIndex As Long) As Long
#End If

'VBA Wrappers:
Public Function dllGetMonitors() As Long
 Const SM_CMONITORS = 80
 dllGetMonitors = GetSystemMetrics32(SM_CMONITORS)
End Function

Public Function dllGetHorizontalResolution() As Long
 Const SM_CXVIRTUALSCREEN = 78
 dllGetHorizontalResolution = GetSystemMetrics32(SM_CXVIRTUALSCREEN)
End Function

Public Function dllGetVerticalResolution() As Long
 Const SM_CYVIRTUALSCREEN = 79
 dllGetVerticalResolution = GetSystemMetrics32(SM_CYVIRTUALSCREEN)
End Function

Public Sub ShowDisplayInfo()
 Debug.Print "Total monitors: " & vbTab & vbTab & dllGetMonitors
 Debug.Print "Horizontal Resolution: " & vbTab & dllGetHorizontalResolution
 Debug.Print "Vertical Resolution: " & vbTab & dllGetVerticalResolution

 'Total monitors: 1
 'Horizontal Resolution: 1920
 'Vertical Resolution: 1080
End Sub

https://riptutorial.com/ 20

https://stackoverflow.com/a/40029588/4914662

FTP and Regional APIs

modFTP

Option Explicit
Option Compare Text
Option Private Module

'http://msdn.microsoft.com/en-us/library/aa384180(v=VS.85).aspx
'http://www.dailydoseofexcel.com/archives/2006/01/29/ftp-via-vba/
'http://www.15seconds.com/issue/981203.htm

'Open the Internet object
Private Declare Function InternetOpen Lib "wininet.dll" Alias "InternetOpenA" (_
 ByVal sAgent As String, _
 ByVal lAccessType As Long, _
 ByVal sProxyName As String, _
 ByVal sProxyBypass As String, _
 ByVal lFlags As Long _
) As Long
'ex: lngINet = InternetOpen(“MyFTP Control”, 1, vbNullString, vbNullString, 0)

'Connect to the network
Private Declare Function InternetConnect Lib "wininet.dll" Alias "InternetConnectA" (_
 ByVal hInternetSession As Long, _
 ByVal sServerName As String, _
 ByVal nServerPort As Integer, _
 ByVal sUsername As String, _
 ByVal sPassword As String, _
 ByVal lService As Long, _
 ByVal lFlags As Long, _
 ByVal lContext As Long _
) As Long
'ex: lngINetConn = InternetConnect(lngINet, "ftp.microsoft.com", 0, "anonymous",
"wally@wallyworld.com", 1, 0, 0)

'Get a file
Private Declare Function FtpGetFile Lib "wininet.dll" Alias "FtpGetFileA" (_
 ByVal hFtpSession As Long, _
 ByVal lpszRemoteFile As String, _
 ByVal lpszNewFile As String, _
 ByVal fFailIfExists As Boolean, _
 ByVal dwFlagsAndAttributes As Long, _
 ByVal dwFlags As Long, _
 ByVal dwContext As Long _
) As Boolean
'ex: blnRC = FtpGetFile(lngINetConn, "dirmap.txt", "c:\dirmap.txt", 0, 0, 1, 0)

'Send a file
Private Declare Function FtpPutFile Lib "wininet.dll" Alias "FtpPutFileA" _
(_
 ByVal hFtpSession As Long, _
 ByVal lpszLocalFile As String, _
 ByVal lpszRemoteFile As String, _
 ByVal dwFlags As Long, ByVal dwContext As Long _
) As Boolean
'ex: blnRC = FtpPutFile(lngINetConn, “c:\dirmap.txt”, “dirmap.txt”, 1, 0)

'Delete a file
Private Declare Function FtpDeleteFile Lib "wininet.dll" Alias "FtpDeleteFileA" _

https://riptutorial.com/ 21

(_
 ByVal hFtpSession As Long, _
 ByVal lpszFileName As String _
) As Boolean
'ex: blnRC = FtpDeleteFile(lngINetConn, “test.txt”)

'Close the Internet object
Private Declare Function InternetCloseHandle Lib "wininet.dll" (ByVal hInet As Long) As
Integer
'ex: InternetCloseHandle lngINetConn
'ex: InternetCloseHandle lngINet

Private Declare Function FtpFindFirstFile Lib "wininet.dll" Alias "FtpFindFirstFileA" _
(_
 ByVal hFtpSession As Long, _
 ByVal lpszSearchFile As String, _
 lpFindFileData As WIN32_FIND_DATA, _
 ByVal dwFlags As Long, _
 ByVal dwContent As Long _
) As Long
Private Type FILETIME
 dwLowDateTime As Long
 dwHighDateTime As Long
End Type
Private Type WIN32_FIND_DATA
 dwFileAttributes As Long
 ftCreationTime As FILETIME
 ftLastAccessTime As FILETIME
 ftLastWriteTime As FILETIME
 nFileSizeHigh As Long
 nFileSizeLow As Long
 dwReserved0 As Long
 dwReserved1 As Long
 cFileName As String * MAX_FTP_PATH
 cAlternate As String * 14
End Type
'ex: lngHINet = FtpFindFirstFile(lngINetConn, "*.*", pData, 0, 0)

Private Declare Function InternetFindNextFile Lib "wininet.dll" Alias "InternetFindNextFileA"
_
(_
 ByVal hFind As Long, _
 lpvFindData As WIN32_FIND_DATA _
) As Long
'ex: blnRC = InternetFindNextFile(lngHINet, pData)

Public Sub showLatestFTPVersion()
 Dim ftpSuccess As Boolean, msg As String, lngFindFirst As Long
 Dim lngINet As Long, lngINetConn As Long
 Dim pData As WIN32_FIND_DATA
 'init the filename buffer
 pData.cFileName = String(260, 0)

 msg = "FTP Error"
 lngINet = InternetOpen("MyFTP Control", 1, vbNullString, vbNullString, 0)
 If lngINet > 0 Then
 lngINetConn = InternetConnect(lngINet, FTP_SERVER_NAME, FTP_SERVER_PORT,
FTP_USER_NAME, FTP_PASSWORD, 1, 0, 0)

https://riptutorial.com/ 22

 If lngINetConn > 0 Then
 FtpPutFile lngINetConn, "C:\Tmp\ftp.cls", "ftp.cls", FTP_TRANSFER_BINARY, 0
 'lngFindFirst = FtpFindFirstFile(lngINetConn, "ExcelDiff.xlsm", pData, 0, 0)
 If lngINet = 0 Then
 msg = "DLL error: " & Err.LastDllError & ", Error Number: " & Err.Number & ",
Error Desc: " & Err.Description
 Else
 msg = left(pData.cFileName, InStr(1, pData.cFileName, String(1, 0),
vbBinaryCompare) - 1)
 End If
 InternetCloseHandle lngINetConn
 End If
 InternetCloseHandle lngINet
 End If
 MsgBox msg
End Sub

modRegional:

Option Explicit

Private Const LOCALE_SDECIMAL = &HE
Private Const LOCALE_SLIST = &HC

Private Declare Function GetLocaleInfo Lib "Kernel32" Alias "GetLocaleInfoA" (ByVal Locale As
Long, ByVal LCType As Long, ByVal lpLCData As String, ByVal cchData As Long) As Long
Private Declare Function SetLocaleInfo Lib "Kernel32" Alias "SetLocaleInfoA" (ByVal Locale As
Long, ByVal LCType As Long, ByVal lpLCData As String) As Boolean
Private Declare Function GetUserDefaultLCID% Lib "Kernel32" ()

Public Function getTimeSeparator() As String
 getTimeSeparator = Application.International(xlTimeSeparator)
End Function
Public Function getDateSeparator() As String
 getDateSeparator = Application.International(xlDateSeparator)
End Function
Public Function getListSeparator() As String
 Dim ListSeparator As String, iRetVal1 As Long, iRetVal2 As Long, lpLCDataVar As String,
Position As Integer, Locale As Long
 Locale = GetUserDefaultLCID()
 iRetVal1 = GetLocaleInfo(Locale, LOCALE_SLIST, lpLCDataVar, 0)
 ListSeparator = String$(iRetVal1, 0)
 iRetVal2 = GetLocaleInfo(Locale, LOCALE_SLIST, ListSeparator, iRetVal1)
 Position = InStr(ListSeparator, Chr$(0))
 If Position > 0 Then ListSeparator = Left$(ListSeparator, Position - 1) Else ListSeparator
= vbNullString
 getListSeparator = ListSeparator
End Function

Private Sub ChangeSettingExample() 'change the setting of the character displayed as the
decimal separator.
 Call SetLocalSetting(LOCALE_SDECIMAL, ",") 'to change to ","
 Stop 'check your control panel to verify or use the
GetLocaleInfo API function
 Call SetLocalSetting(LOCALE_SDECIMAL, ".") 'to back change to "."
End Sub

Private Function SetLocalSetting(LC_CONST As Long, Setting As String) As Boolean
 Call SetLocaleInfo(GetUserDefaultLCID(), LC_CONST, Setting)

https://riptutorial.com/ 23

End Function

Read API Calls online: https://riptutorial.com/vba/topic/10569/api-calls

https://riptutorial.com/ 24

https://riptutorial.com/vba/topic/10569/api-calls

Chapter 3: Arrays

Examples

Declaring an Array in VBA

Declaring an array is very similar to declaring a variable, except you need to declare the

dimension of the Array right after its name:

Dim myArray(9) As String 'Declaring an array that will contain up to 10 strings

By default, Arrays in VBA are indexed from ZERO, thus, the number inside the parenthesis

doesn't refer to the size of the array, but rather to the index of the last element

Accessing Elements

Accessing an element of the Array is done by using the name of the Array, followed by the index

of the element, inside parenthesis:

myArray(0) = "first element"
myArray(5) = "sixth element"
myArray(9) = "last element"

Array Indexing

You can change Arrays indexing by placing this line at the top of a module:

Option Base 1

With this line, all Arrays declared in the module will be indexed from ONE.

Specific Index

You can also declare each Array with its own index by using the To keyword, and the lower and

upper bound (= index):

Dim mySecondArray(1 To 12) As String 'Array of 12 strings indexed from 1 to 12
Dim myThirdArray(13 To 24) As String 'Array of 12 strings indexed from 13 to 24

Dynamic Declaration

When you do not know the size of your Array prior to its declaration, you can use the dynamic

declaration, and the ReDim keyword:

https://riptutorial.com/ 25

Dim myDynamicArray() As Strings 'Creates an Array of an unknown number of strings
ReDim myDynamicArray(5) 'This resets the array to 6 elements

Note that using the ReDim keyword will wipe out any previous content of your Array. To prevent this,

you can use the Preserve keyword after ReDim:

Dim myDynamicArray(5) As String
myDynamicArray(0) = "Something I want to keep"

ReDim Preserve myDynamicArray(8) 'Expand the size to up to 9 strings
Debug.Print myDynamicArray(0) ' still prints the element

Use of Split to create an array from a string

Split Function

returns a zero-based, one dimensional array containing a specified number of substrings.

Syntax

Split(expression [, delimiter [, limit [, compare]]])

Part Description

expression

Required. String expression containing substrings and delimiters. If expression

is a zero-length string("" or vbNullString), Split returns an empty array

containing no elements and no data. In this case, the returned array will have a

LBound of 0 and a UBound of -1.

delimiter

Optional. String character used to identify substring limits. If omitted, the space

character (" ") is assumed to be the delimiter. If delimiter is a zero-length

string, a single-element array containing the entire expression string is

returned.

limit
Optional. Number of substrings to be returned; -1 indicates that all substrings

are returned.

compare
Optional. Numeric value indicating the kind of comparison to use when

evaluating substrings. See Settings section for values.

Settings

The compare argument can have the following values:

Constant Value Description

Description -1
Performs a comparison using the setting of the Option

Compare statement.

https://riptutorial.com/ 26

Constant Value Description

vbBinaryCompare 0 Performs a binary comparison.

vbTextCompare 1 Performs a textual comparison.

vbDatabaseCompare 2
Microsoft Access only. Performs a comparison based on

information in your database.

Example

In this example it is demonstrated how Split works by showing several styles. The comments will

show the result set for each of the different performed Split options. Finally it is demonstrated how

to loop over the returned string array.

Sub Test

 Dim textArray() as String

 textArray = Split("Tech on the Net")
 'Result: {"Tech", "on", "the", "Net"}

 textArray = Split("172.23.56.4", ".")
 'Result: {"172", "23", "56", "4"}

 textArray = Split("A;B;C;D", ";")
 'Result: {"A", "B", "C", "D"}

 textArray = Split("A;B;C;D", ";", 1)
 'Result: {"A;B;C;D"}

 textArray = Split("A;B;C;D", ";", 2)
 'Result: {"A", "B;C;D"}

 textArray = Split("A;B;C;D", ";", 3)
 'Result: {"A", "B", "C;D"}

 textArray = Split("A;B;C;D", ";", 4)
 'Result: {"A", "B", "C", "D"}

 'You can iterate over the created array
 Dim counter As Long

 For counter = LBound(textArray) To UBound(textArray)
 Debug.Print textArray(counter)
 Next
 End Sub

Iterating elements of an array

For...Next

Using the iterator variable as the index number is the fastest way to iterate the elements of an

array:

https://riptutorial.com/ 27

Dim items As Variant
items = Array(0, 1, 2, 3)

Dim index As Integer
For index = LBound(items) To UBound(items)
 'assumes value can be implicitly converted to a String:
 Debug.Print items(index)
Next

Nested loops can be used to iterate multi-dimensional arrays:

Dim items(0 To 1, 0 To 1) As Integer
items(0, 0) = 0
items(0, 1) = 1
items(1, 0) = 2
items(1, 1) = 3

Dim outer As Integer
Dim inner As Integer
For outer = LBound(items, 1) To UBound(items, 1)
 For inner = LBound(items, 2) To UBound(items, 2)
 'assumes value can be implicitly converted to a String:
 Debug.Print items(outer, inner)
 Next
Next

For Each...Next

A For Each...Next loop can also be used to iterate arrays, if performance doesn't matter:

Dim items As Variant
items = Array(0, 1, 2, 3)

Dim item As Variant 'must be variant
For Each item In items
 'assumes value can be implicitly converted to a String:
 Debug.Print item
Next

A For Each loop will iterate all dimensions from outer to inner (the same order as the elements are

laid out in memory), so there is no need for nested loops:

Dim items(0 To 1, 0 To 1) As Integer
items(0, 0) = 0
items(1, 0) = 1
items(0, 1) = 2
items(1, 1) = 3

Dim item As Variant 'must be Variant
For Each item In items
 'assumes value can be implicitly converted to a String:
 Debug.Print item
Next

https://riptutorial.com/ 28

Note that For Each loops are best used to iterate Collection objects, if performance matters.

All 4 snippets above produce the same output:

 0
 1
 2
 3

Dynamic Arrays (Array Resizing and Dynamic Handling)

Dynamic Arrays

Adding and reducing variables on an array dynamically is a huge advantage for when the

information you are treating does not have a set number of variables.

Adding Values Dynamically

You can simply resize the Array with the ReDim Statement, this will resize the array but to if you

which to retain the information already stored in the array you'll need the part Preserve.

In the example below we create an array and increase it by one more variable in each iteration

while preserving the values already in the array.

Dim Dynamic_array As Variant
' first we set Dynamic_array as variant

For n = 1 To 100

 If IsEmpty(Dynamic_array) Then
 'isempty() will check if we need to add the first value to the array or subsequent
ones

 ReDim Dynamic_array(0)
 'ReDim Dynamic_array(0) will resize the array to one variable only
 Dynamic_array(0) = n

 Else
 ReDim Preserve Dynamic_array(0 To UBound(Dynamic_array) + 1)
 'in the line above we resize the array from variable 0 to the UBound() = last
variable, plus one effectivelly increeasing the size of the array by one
 Dynamic_array(UBound(Dynamic_array)) = n
 'attribute a value to the last variable of Dynamic_array
 End If

Next

Removing Values Dynamically

We can utilise the same logic to to decrease the the array. In the example the value "last" will be

https://riptutorial.com/ 29

removed from the array.

Dim Dynamic_array As Variant
Dynamic_array = Array("first", "middle", "last")

ReDim Preserve Dynamic_array(0 To UBound(Dynamic_array) - 1)
' Resize Preserve while dropping the last value

Resetting an Array and Reusing Dynamically

We can as well re-utilise the arrays we create as not to have many on memory, which would make

the run time slower. This is useful for arrays of various sizes. One snippet you could use to re-

utilise the array is to ReDim the array back to (0), attribute one variable to to the array and freely

increase the array again.

In the snippet below I construct an array with the values 1 to 40, empty the array, and refill the

array with values 40 to 100, all this done dynamically.

Dim Dynamic_array As Variant

For n = 1 To 100

 If IsEmpty(Dynamic_array) Then
 ReDim Dynamic_array(0)
 Dynamic_array(0) = n

 ElseIf Dynamic_array(0) = "" Then
 'if first variant is empty (= "") then give it the value of n
 Dynamic_array(0) = n
 Else
 ReDim Preserve Dynamic_array(0 To UBound(Dynamic_array) + 1)
 Dynamic_array(UBound(Dynamic_array)) = n
 End If
 If n = 40 Then
 ReDim Dynamic_array(0)
 'Resizing the array back to one variable without Preserving,
 'leaving the first value of the array empty
 End If

Next

Jagged Arrays (Arrays of Arrays)

Jagged Arrays NOT Multidimensional Arrays

Arrays of Arrays(Jagged Arrays) are not the same as Multidimensional Arrays if you think about

them visually Multidimensional Arrays would look like Matrices (Rectangular) with defined number

of elements on their dimensions(inside arrays), while Jagged array would be like a yearly calendar

with the inside arrays having different number of elements, like days in on different months.

Although Jagged Arrays are quite messy and tricky to use due to their nested levels and don't

have much type safety, but they are very flexible, allow you to manipulate different types of data

https://riptutorial.com/ 30

quite easily, and don't need to contain unused or empty elements.

Creating a Jagged Array

In the below example we will initialise a jagged array containing two arrays one for Names and

another for Numbers, and then accessing one element of each

Dim OuterArray() As Variant
Dim Names() As Variant
Dim Numbers() As Variant
'arrays are declared variant so we can access attribute any data type to its elements

Names = Array("Person1", "Person2", "Person3")
Numbers = Array("001", "002", "003")

OuterArray = Array(Names, Numbers)
'Directly giving OuterArray an array containing both Names and Numbers arrays inside

Debug.Print OuterArray(0)(1)
Debug.Print OuterArray(1)(1)
'accessing elements inside the jagged by giving the coordenades of the element

Dynamically Creating and Reading Jagged Arrays

We can as well be more dynamic in our approx to construct the arrays, imagine that we have a

customer data sheet in excel and we want to construct an array to output the customer details.

 Name - Phone - Email - Customer Number
Person1 - 153486231 - 1@STACK - 001
Person2 - 153486242 - 2@STACK - 002
Person3 - 153486253 - 3@STACK - 003
Person4 - 153486264 - 4@STACK - 004
Person5 - 153486275 - 5@STACK - 005

We will Dynamically construct an Header array and a Customers array, the Header will contain the

column titles and the Customers array will contain the information of each customer/row as arrays.

Dim Headers As Variant
' headers array with the top section of the customer data sheet
 For c = 1 To 4
 If IsEmpty(Headers) Then
 ReDim Headers(0)
 Headers(0) = Cells(1, c).Value
 Else
 ReDim Preserve Headers(0 To UBound(Headers) + 1)
 Headers(UBound(Headers)) = Cells(1, c).Value
 End If
 Next

Dim Customers As Variant
'Customers array will contain arrays of customer values
Dim Customer_Values As Variant
'Customer_Values will be an array of the customer in its elements (Name-Phone-Email-CustNum)

https://riptutorial.com/ 31

 For r = 2 To 6
 'iterate through the customers/rows
 For c = 1 To 4
 'iterate through the values/columns

 'build array containing customer values
 If IsEmpty(Customer_Values) Then
 ReDim Customer_Values(0)
 Customer_Values(0) = Cells(r, c).Value
 ElseIf Customer_Values(0) = "" Then
 Customer_Values(0) = Cells(r, c).Value
 Else
 ReDim Preserve Customer_Values(0 To UBound(Customer_Values) + 1)
 Customer_Values(UBound(Customer_Values)) = Cells(r, c).Value
 End If
 Next

 'add customer_values array to Customers Array
 If IsEmpty(Customers) Then
 ReDim Customers(0)
 Customers(0) = Customer_Values
 Else
 ReDim Preserve Customers(0 To UBound(Customers) + 1)
 Customers(UBound(Customers)) = Customer_Values
 End If

 'reset Custumer_Values to rebuild a new array if needed
 ReDim Customer_Values(0)
 Next

 Dim Main_Array(0 To 1) As Variant
 'main array will contain both the Headers and Customers

 Main_Array(0) = Headers
 Main_Array(1) = Customers

To better understand the way to Dynamically construct a one dimensional array please check
Dynamic Arrays (Array Resizing and Dynamic Handling) on the Arrays documentation.

The Result of the above snippet is an Jagged Array with two arrays one of those arrays with 4

elements, 2 indention levels, and the other being itself another Jagged Array containing 5 arrays of

4 elements each and 3 indention levels, see below the structure:

Main_Array(0) - Headers - Array("Name","Phone","Email","Customer Number")
 (1) - Customers(0) - Array("Person1",153486231,"1@STACK",001)
 Customers(1) - Array("Person2",153486242,"2@STACK",002)
 ...
 Customers(4) - Array("Person5",153486275,"5@STACK",005)

To access the information you'll have to bear in mind the structure of the Jagged Array you create,

in the above example you can see that the Main Array contains an Array of Headers and an Array of

Arrays (Customers) hence with different ways of accessing the elements.

Now we'll read the information of the Main Array and print out each of the Customers information

as Info Type: Info.

https://riptutorial.com/ 32

For n = 0 To UBound(Main_Array(1))
 'n to iterate from fisrt to last array in Main_Array(1)

 For j = 0 To UBound(Main_Array(1)(n))
 'j will iterate from first to last element in each array of Main_Array(1)

 Debug.Print Main_Array(0)(j) & ": " & Main_Array(1)(n)(j)
 'print Main_Array(0)(j) which is the header and Main_Array(0)(n)(j) which is the
element in the customer array
 'we can call the header with j as the header array has the same structure as the
customer array
 Next
Next

REMEMBER to keep track of the structure of your Jagged Array, in the example above to access

the Name of a customer is by accessing Main_Array -> Customers -> CustomerNumber -> Name which

is three levels, to return "Person4" you'll need the location of Customers in the Main_Array, then

the Location of customer four on the Customers Jagged array and lastly the location of the

element you need, in this case Main_Array(1)(3)(0) which is

Main_Array(Customers)(CustomerNumber)(Name).

Multidimensional Arrays

Multidimensional Arrays

As the name indicates, multi dimensional arrays are arrays that contain more than one dimension,

usually two or three but it can have up to 32 dimensions.

A multi array works like a matrix with various levels, take in example a comparison between one,

two, and three Dimensions.

One Dimension is your typical array, it looks like a list of elements.

Dim 1D(3) as Variant

1D - Visually
(0)
(1)
(2)

Two Dimensions would look like a Sudoku Grid or an Excel sheet, when initializing the array you

would define how many rows and columns the array would have.

Dim 2D(3,3) as Variant
'this would result in a 3x3 grid

2D - Visually
(0,0) (0,1) (0,2)
(1,0) (1,1) (1,2)
(2,0) (2,1) (2,2)

https://riptutorial.com/ 33

Three Dimensions would start to look like Rubik's Cube, when initializing the array you would

define rows and columns and layers/depths the array would have.

Dim 3D(3,3,2) as Variant
'this would result in a 3x3x3 grid

3D - Visually
 1st layer 2nd layer 3rd layer
 front middle back
(0,0,0) (0,0,1) (0,0,2) ¦ (1,0,0) (1,0,1) (1,0,2) ¦ (2,0,0) (2,0,1) (2,0,2)
(0,1,0) (0,1,1) (0,1,2) ¦ (1,1,0) (1,1,1) (1,1,2) ¦ (2,1,0) (2,1,1) (2,1,2)
(0,2,0) (0,2,1) (0,2,2) ¦ (1,2,0) (1,2,1) (1,2,2) ¦ (2,2,0) (2,2,1) (2,2,2)

Further dimensions could be thought as the multiplication of the 3D, so a 4D(1,3,3,3) would be two

side-by-side 3D arrays.

Two-Dimension Array

Creating

The example below will be a compilation of a list of employees, each employee will have a set of

information on the list (First Name, Surname, Address, Email, Phone ...), the example will

essentially be storing on the array (employee,information) being the (0,0) is the first employee's

first name.

Dim Bosses As Variant
'set bosses as Variant, so we can input any data type we want

Bosses = [{"Jonh","Snow","President";"Ygritte","Wild","Vice-President"}]
'initialise a 2D array directly by filling it with information, the redult wil be a array(1,2)
size 2x3 = 6 elements

Dim Employees As Variant
'initialize your Employees array as variant
'initialize and ReDim the Employee array so it is a dynamic array instead of a static one,
hence treated differently by the VBA Compiler
ReDim Employees(100, 5)
'declaring an 2D array that can store 100 employees with 6 elements of information each, but
starts empty
'the array size is 101 x 6 and contains 606 elements

For employee = 0 To UBound(Employees, 1)
'for each employee/row in the array, UBound for 2D arrays, which will get the last element on
the array
'needs two parameters 1st the array you which to check and 2nd the dimension, in this case 1 =
employee and 2 = information
 For information_e = 0 To UBound(Employees, 2)
 'for each information element/column in the array

 Employees(employee, information_e) = InformationNeeded ' InformationNeeded would be
the data to fill the array
 'iterating the full array will allow for direct attribution of information into the
element coordinates
 Next

https://riptutorial.com/ 34

Next

Resizing

Resizing or ReDim Preserve a Multi-Array like the norm for a One-Dimension array would get an

error, instead the information needs to be transferred into a Temporary array with the same size

as the original plus the number of row/columns to add. In the example below we'll see how to

initialize a Temp Array, transfer the information over from the original array, fill the remaining

empty elements, and replace the temp array by the original array.

Dim TempEmp As Variant
'initialise your temp array as variant
ReDim TempEmp(UBound(Employees, 1) + 1, UBound(Employees, 2))
'ReDim/Resize Temp array as a 2D array with size UBound(Employees)+1 = (last element in
Employees 1st dimension) + 1,
'the 2nd dimension remains the same as the original array. we effectively add 1 row in the
Employee array

'transfer
For emp = LBound(Employees, 1) To UBound(Employees, 1)
 For info = LBound(Employees, 2) To UBound(Employees, 2)
 'to transfer Employees into TempEmp we iterate both arrays and fill TempEmp with the
corresponding element value in Employees
 TempEmp(emp, info) = Employees(emp, info)

 Next
Next

'fill remaining
'after the transfers the Temp array still has unused elements at the end, being that it was
increased
'to fill the remaining elements iterate from the last "row" with values to the last row in the
array
'in this case the last row in Temp will be the size of the Employees array rows + 1, as the
last row of Employees array is already filled in the TempArray

For emp = UBound(Employees, 1) + 1 To UBound(TempEmp, 1)
 For info = LBound(TempEmp, 2) To UBound(TempEmp, 2)

 TempEmp(emp, info) = InformationNeeded & "NewRow"

 Next
Next

'erase Employees, attribute Temp array to Employees and erase Temp array
Erase Employees
Employees = TempEmp
Erase TempEmp

Changing Element Values

To change/alter the values in a certain element can be done by simply calling the coordinate to

change and giving it a new value: Employees(0, 0) = "NewValue"

Alternatively iterate through the coordinates use conditions to match values corresponding to the

parameters needed:

https://riptutorial.com/ 35

For emp = 0 To UBound(Employees)
 If Employees(emp, 0) = "Gloria" And Employees(emp, 1) = "Stephan" Then
 'if value found
 Employees(emp, 1) = "Married, Last Name Change"
 Exit For
 'don't iterate through a full array unless necessary
 End If
Next

Reading

Accessing the elements in the array can be done with a Nested Loop (iterating every element),

Loop and Coordinate (iterate Rows and accessing columns directly), or accessing directly with

both coordinates.

'nested loop, will iterate through all elements
For emp = LBound(Employees, 1) To UBound(Employees, 1)
 For info = LBound(Employees, 2) To UBound(Employees, 2)
 Debug.Print Employees(emp, info)
 Next
Next

'loop and coordinate, iteration through all rows and in each row accessing all columns
directly
For emp = LBound(Employees, 1) To UBound(Employees, 1)
 Debug.Print Employees(emp, 0)
 Debug.Print Employees(emp, 1)
 Debug.Print Employees(emp, 2)
 Debug.Print Employees(emp, 3)
 Debug.Print Employees(emp, 4)
 Debug.Print Employees(emp, 5)
Next

'directly accessing element with coordinates
Debug.Print Employees(5, 5)

Remember, it's always handy to keep an array map when using Multidimensional arrays, they can

easily become confusion.

Three-Dimension Array

For the 3D array, we'll use the same premise as the 2D array, with the addition of not only storing

the Employee and Information but as well Building they work in.

The 3D array will have the Employees (can be thought of as Rows), the Information (Columns),

and Building that can be thought of as different sheets on an excel document, they have the same

size between them, but every sheets has a different set of information in its cells/elements. The 3D

array will contain n number of 2D arrays.

Creating

https://riptutorial.com/ 36

A 3D array needs 3 coordinates to be initialized Dim 3Darray(2,5,5) As Variant the first coordinate

on the array will be the number of Building/Sheets (different sets of rows and columns), second

coordinate will define Rows and third Columns. The Dim above will result in a 3D array with 108

elements (3*6*6), effectively having 3 different sets of 2D arrays.

Dim ThreeDArray As Variant
'initialise your ThreeDArray array as variant
ReDim ThreeDArray(1, 50, 5)
'declaring an 3D array that can store two sets of 51 employees with 6 elements of information
each, but starts empty
'the array size is 2 x 51 x 6 and contains 612 elements

For building = 0 To UBound(ThreeDArray, 1)
 'for each building/set in the array
 For employee = 0 To UBound(ThreeDArray, 2)
 'for each employee/row in the array
 For information_e = 0 To UBound(ThreeDArray, 3)
 'for each information element/column in the array

 ThreeDArray(building, employee, information_e) = InformationNeeded '
InformationNeeded would be the data to fill the array
 'iterating the full array will allow for direct attribution of information into the
element coordinates
 Next
 Next
Next

Resizing

Resizing a 3D array is similar to resizing a 2D, first create a Temporary array with the same size of

the original adding one in the coordinate of the parameter to increase, the first coordinate will

increase the number of sets in the array, the second and third coordinates will increase the

number of Rows or Columns in each set.

The example below increases the number of Rows in each set by one, and fills those recently

added elements with new information.

Dim TempEmp As Variant
'initialise your temp array as variant
ReDim TempEmp(UBound(ThreeDArray, 1), UBound(ThreeDArray, 2) + 1, UBound(ThreeDArray, 3))
'ReDim/Resize Temp array as a 3D array with size UBound(ThreeDArray)+1 = (last element in
Employees 2nd dimension) + 1,
'the other dimension remains the same as the original array. we effectively add 1 row in the
for each set of the 3D array

'transfer
For building = LBound(ThreeDArray, 1) To UBound(ThreeDArray, 1)
 For emp = LBound(ThreeDArray, 2) To UBound(ThreeDArray, 2)
 For info = LBound(ThreeDArray, 3) To UBound(ThreeDArray, 3)
 'to transfer ThreeDArray into TempEmp by iterating all sets in the 3D array and
fill TempEmp with the corresponding element value in each set of each row
 TempEmp(building, emp, info) = ThreeDArray(building, emp, info)

 Next
 Next

https://riptutorial.com/ 37

Next

'fill remaining
'to fill the remaining elements we need to iterate from the last "row" with values to the last
row in the array in each set, remember that the first empty element is the original array
Ubound() plus 1
For building = LBound(TempEmp, 1) To UBound(TempEmp, 1)
 For emp = UBound(ThreeDArray, 2) + 1 To UBound(TempEmp, 2)
 For info = LBound(TempEmp, 3) To UBound(TempEmp, 3)

 TempEmp(building, emp, info) = InformationNeeded & "NewRow"

 Next
 Next
Next

'erase Employees, attribute Temp array to Employees and erase Temp array
Erase ThreeDArray
ThreeDArray = TempEmp
Erase TempEmp

Changing Element Values and Reading

Reading and changing the elements on the 3D array can be done similarly to the way we do the

2D array, just adjust for the extra level in the loops and coordinates.

Do
' using Do ... While for early exit
 For building = 0 To UBound(ThreeDArray, 1)
 For emp = 0 To UBound(ThreeDArray, 2)
 If ThreeDArray(building, emp, 0) = "Gloria" And ThreeDArray(building, emp, 1) =
"Stephan" Then
 'if value found
 ThreeDArray(building, emp, 1) = "Married, Last Name Change"
 Exit Do
 'don't iterate through all the array unless necessary
 End If
 Next
 Next
Loop While False

'nested loop, will iterate through all elements
For building = LBound(ThreeDArray, 1) To UBound(ThreeDArray, 1)
 For emp = LBound(ThreeDArray, 2) To UBound(ThreeDArray, 2)
 For info = LBound(ThreeDArray, 3) To UBound(ThreeDArray, 3)
 Debug.Print ThreeDArray(building, emp, info)
 Next
 Next
Next

'loop and coordinate, will iterate through all set of rows and ask for the row plus the value
we choose for the columns
For building = LBound(ThreeDArray, 1) To UBound(ThreeDArray, 1)
 For emp = LBound(ThreeDArray, 2) To UBound(ThreeDArray, 2)
 Debug.Print ThreeDArray(building, emp, 0)
 Debug.Print ThreeDArray(building, emp, 1)
 Debug.Print ThreeDArray(building, emp, 2)
 Debug.Print ThreeDArray(building, emp, 3)
 Debug.Print ThreeDArray(building, emp, 4)

https://riptutorial.com/ 38

 Debug.Print ThreeDArray(building, emp, 5)
 Next
Next

'directly accessing element with coordinates
Debug.Print Employees(0, 5, 5)

Read Arrays online: https://riptutorial.com/vba/topic/3064/arrays

https://riptutorial.com/ 39

https://riptutorial.com/vba/topic/3064/arrays

Chapter 4: Assigning strings with repeated

characters

Remarks

There are times you need to assign a string variable with a specific character repeated a specific

number of times. VBA provides two main functions for this purpose:

String/String$•

Space/Space$.•

Examples

Use the String function to assign a string with n repeated characters

Dim lineOfHyphens As String
'Assign a string with 80 repeated hyphens
lineOfHyphens = String$(80, "-")

Use the String and Space functions to assign an n-character string

Dim stringOfSpaces As String

'Assign a string with 255 repeated spaces using Space$
stringOfSpaces = Space$(255)

'Assign a string with 255 repeated spaces using String$
stringOfSpaces = String$(255, " ")

Read Assigning strings with repeated characters online:

https://riptutorial.com/vba/topic/3581/assigning-strings-with-repeated-characters

https://riptutorial.com/ 40

https://riptutorial.com/vba/topic/3581/assigning-strings-with-repeated-characters

Chapter 5: Attributes

Syntax

Attribute VB_Name = "ClassOrModuleName"•

Attribute VB_GlobalNameSpace = False ' Ignored•

Attribute VB_Creatable = False ' Ignored•

Attribute VB_PredeclaredId = {True | False}•

Attribute VB_Exposed = {True | False}•

Attribute variableName.VB_VarUserMemId = 0 ' Zero indicates that this is the default

member of the class.

•

Attribute variableName.VB_VarDescription = "some string" ' Adds the text to the Object

Browser information for this variable.

•

Attribute procName.VB_Description = "some string" ' Adds the text to the Object Browser

information for the procedure.

•

Attribute procName.VB_UserMemId = {0 | -4}

' 0: Makes the function the default member of the class.○

' -4: Specifies that the function returns an Enumerator.○

•

Examples

VB_Name

VB_Name specifies the class or module name.

Attribute VB_Name = "Class1"

A new instance of this class would be created with

Dim myClass As Class1
myClass = new Class1

VB_GlobalNameSpace

In VBA, this attribute is ignored. It was not ported over from VB6.

In VB6, it creates a Default Global Instance of the class (a "shortcut") so that class members can

be accessed without using the class name. For example, DateTime (as in DateTime.Now) is actually

part of the VBA.Conversion class.

Debug.Print VBA.Conversion.DateTime.Now
Debug.Print DateTime.Now

VB_Createable

https://riptutorial.com/ 41

This attribute is ignored. It was not ported over from VB6.

In VB6, it was used in combination with the VB_Exposed attribute to control accessibility of classes

outside of the current project.

VB_Exposed=True
VB_Creatable=True

Would result in a Public Class, that could be accessed from other projects, but this functionality

does not exist in VBA.

VB_PredeclaredId

Creates a Global Default Instance of a class. The default instance is accessed via the name of the

class.

Declaration

VERSION 1.0 CLASS
BEGIN
 MultiUse = -1 'True
END
Attribute VB_Name = "Class1"
Attribute VB_GlobalNameSpace = False
Attribute VB_Creatable = False
Attribute VB_PredeclaredId = True
Attribute VB_Exposed = False
Option Explicit

Public Function GiveMeATwo() As Integer
 GiveMeATwo = 2
End Function

Call

Debug.Print Class1.GiveMeATwo

In some ways, this simulates the behavior of static classes in other languages, but unlike other

languages, you can still create an instance of the class.

Dim cls As Class1
Set cls = New Class1
Debug.Print cls.GiveMeATwo

VB_Exposed

Controls the instancing characteristics of a class.

Attribute VB_Exposed = False

https://riptutorial.com/ 42

Makes the class Private. It cannot be accessed outside of the current project.

Attribute VB_Exposed = True

Exposes the class Publicly, outside of the project. However, since VB_Createable is ignored in VBA,

instances of the class can not be created directly. This is equivalent to a the following VB.Net

class.

Public Class Foo
 Friend Sub New()
 End Sub
End Class

In order to get an instance from outside the project, you must expose a factory to create instances.

One way of doing this is with a regular Public module.

Public Function CreateFoo() As Foo
 CreateFoo = New Foo
End Function

Since public modules are accessible from other projects, this allows us to create new instances of

our Public - Not Createable classes.

VB_Description

Adds a text description to a class or module member that becomes visible in the Object Explorer.

Ideally, all public members of a public interface / API should have a description.

Public Function GiveMeATwo() As Integer
 Attribute GiveMeATwo.VB_Description = "Returns a two!"
 GiveMeATwo = 2
End Property

Note: all accessor members of a property (Get, Let, Set) use the same description.

VB_[Var]UserMemId

VB_VarUserMemId (for module-scope variables) and VB_UserMemId (for procedures) attributes are used

in VBA mostly for two things.

Specifying the default member of a class

A List class that would encapsulate a Collection would want to have an Item property, so the client

https://riptutorial.com/ 43

code can do this:

For i = 1 To myList.Count 'VBA Collection Objects are 1-based
 Debug.Print myList.Item(i)
Next

But with a VB_UserMemId attribute set to 0 on the Item property, the client code can do this:

For i = 1 To myList.Count 'VBA Collection Objects are 1-based
 Debug.Print myList(i)
Next

Only one member can legally have VB_UserMemId = 0 in any given class. For properties, specify the

attribute in the Get accessor:

Option Explicit
Private internal As New Collection

Public Property Get Count() As Long
 Count = internal.Count
End Property

Public Property Get Item(ByVal index As Long) As Variant
Attribute Item.VB_Description = "Gets or sets the element at the specified index."
Attribute Item.VB_UserMemId = 0
'Gets the element at the specified index.
 Item = internal(index)
End Property

Public Property Let Item(ByVal index As Long, ByVal value As Variant)
'Sets the element at the specified index.
 With internal
 If index = .Count + 1 Then
 .Add item:=value
 ElseIf index = .Count Then
 .Remove index
 .Add item:=value
 ElseIf index < .Count Then
 .Remove index
 .Add item:=value, before:=index
 End If
 End With
End Property

Making a class iteratable with a For Each loop

construct

With the magic value -4, the VB_UserMemId attribute tells VBA that this member yields an

enumerator - which allows the client code to do this:

Dim item As Variant

https://riptutorial.com/ 44

For Each item In myList
 Debug.Print item
Next

The easiest way to implement this method is by calling the hidden [_NewEnum] property getter on an

internal/encapsulated Collection; the identifier needs to be enclosed in square brackets because

of the leading underscore that makes it an illegal VBA identifier:

Public Property Get NewEnum() As IUnknown
Attribute NewEnum.VB_Description = "Gets an enumerator that iterates through the List."
Attribute NewEnum.VB_UserMemId = -4
Attribute NewEnum.VB_MemberFlags = "40" 'would hide the member in VB6. not supported in VBA.
'Gets an enumerator that iterates through the List.
 Set NewEnum = internal.[_NewEnum]
End Property

Read Attributes online: https://riptutorial.com/vba/topic/5321/attributes

https://riptutorial.com/ 45

https://riptutorial.com/vba/topic/5321/attributes

Chapter 6: Automation or Using other

applications Libraries

Introduction

If you use the objects in other applications as part of your Visual Basic application, you may want

to establish a reference to the object libraries of those applications. This Documentation provides

a list, sources and examples of how to use libraries of different softwares, like Windows Shell,

Internet Explorer, XML HttpRequest, and others.

Syntax

expression.CreateObject(ObjectName)•

expression; Required. An expression that returns an Application object.•

ObjectName; Required String. The class name of the object to create. For information about

valid class names, see OLE Programmatic Identifiers.

•

Remarks

MSDN-Understanding Automation•

When an application supports Automation, the objects the application exposes can be

accessed by Visual Basic. Use Visual Basic to manipulate these objects by invoking

methods on the object or by getting and setting the object's properties.

MSDN-Check or Add an Object Library Reference•

If you use the objects in other applications as part of your Visual Basic application, you

may want to establish a reference to the object libraries of those applications. Before

you can do that, you must first be sure that the application provides an object library.

MSDN-References Dialog Box•

Allows you to select another application's objects that you want available in your code

by setting a reference to that application's object library.

MSDN-CreateObject Method•

Creates an Automation object of the specified class. If the application is already

running, CreateObject will create a new instance.

Examples

VBScript Regular Expressions

https://riptutorial.com/ 46

https://msdn.microsoft.com/en-us/library/office/gg251656.aspx
https://msdn.microsoft.com/en-us/library/office/gg264402.aspx
https://msdn.microsoft.com/en-us/library/office/gg251371.aspx
https://msdn.microsoft.com/en-us/library/office/aa220083(v=office.11).aspx

Set createVBScriptRegExObject = CreateObject("vbscript.RegExp")

Tools> References> Microsoft VBScript Regular Expressions #.#

Associated DLL: VBScript.dll

Source: Internet Explorer 1.0 and 5.5

MSDN-Microsoft Beefs Up VBScript with Regular Expressions•

MSDN-Regular Expression Syntax (Scripting)•

experts-exchange - Using Regular Expressions in Visual Basic for Applications and Visual

Basic 6

•

How to use Regular Expressions (Regex) in Microsoft Excel both in-cell and loops on SO.•

regular-expressions.info/vbscript•

regular-expressions.info/vbscriptexample•

WIKI-Regular expression•

Code

You can use this functions to get RegEx results, concatenate all matches (if more than 1) into 1

string, and display result in excel cell.

Public Function getRegExResult(ByVal SourceString As String, Optional ByVal RegExPattern As
String = "\d+", _
 Optional ByVal isGlobalSearch As Boolean = True, Optional ByVal isCaseSensitive As Boolean
= False, Optional ByVal Delimiter As String = ";") As String

 Static RegExObject As Object
 If RegExObject Is Nothing Then
 Set RegExObject = createVBScriptRegExObject
 End If

 getRegExResult = removeLeadingDelimiter(concatObjectItems(getRegExMatches(RegExObject,
SourceString, RegExPattern, isGlobalSearch, isCaseSensitive), Delimiter), Delimiter)

End Function

Private Function getRegExMatches(ByRef RegExObj As Object, _
 ByVal SourceString As String, ByVal RegExPattern As String, ByVal isGlobalSearch As
Boolean, ByVal isCaseSensitive As Boolean) As Object

 With RegExObj
 .Global = isGlobalSearch
 .IgnoreCase = Not (isCaseSensitive) 'it is more user friendly to use positive meaning
of argument, like isCaseSensitive, than to use negative IgnoreCase
 .Pattern = RegExPattern
 Set getRegExMatches = .Execute(SourceString)
 End With

End Function

Private Function concatObjectItems(ByRef Obj As Object, Optional ByVal DelimiterCustom As
String = ";") As String
 Dim ObjElement As Variant
 For Each ObjElement In Obj
 concatObjectItems = concatObjectItems & DelimiterCustom & ObjElement.Value

https://riptutorial.com/ 47

https://msdn.microsoft.com/en-us/library/ms974570.aspx
https://msdn.microsoft.com/en-us/library/1400241x(VS.85).aspx
https://www.experts-exchange.com/articles/1336/Using-Regular-Expressions-in-Visual-Basic-for-Applications-and-Visual-Basic-6.html
https://www.experts-exchange.com/articles/1336/Using-Regular-Expressions-in-Visual-Basic-for-Applications-and-Visual-Basic-6.html
http://stackoverflow.com/q/22542834/4636801
http://www.regular-expressions.info/vbscript.html
http://www.regular-expressions.info/vbscriptexample.html
https://en.wikipedia.org/wiki/Regular_expression

 Next
End Function

Public Function removeLeadingDelimiter(ByVal SourceString As String, ByVal Delimiter As
String) As String
 If Left$(SourceString, Len(Delimiter)) = Delimiter Then
 removeLeadingDelimiter = Mid$(SourceString, Len(Delimiter) + 1)
 End If
End Function

Private Function createVBScriptRegExObject() As Object
 Set createVBScriptRegExObject = CreateObject("vbscript.RegExp") 'ex.:
createVBScriptRegExObject.Pattern
End Function

Scripting File System Object

Set createScriptingFileSystemObject = CreateObject("Scripting.FileSystemObject")

Tools> References> Microsoft Scripting Runtime

Associated DLL: ScrRun.dll

Source: Windows OS

MSDN-Accessing Files with FileSystemObject

The File System Object (FSO) model provides an object-based tool for working with

folders and files. It allows you to use the familiar object.method syntax with a rich set of

properties, methods, and events to process folders and files. You can also employ the

traditional Visual Basic statements and commands.

The FSO model gives your application the ability to create, alter, move, and delete

folders, or to determine if and where particular folders exist. It also enables you to get

information about folders, such as their names and the date they were created or last

modified.

MSDN-FileSystemObject topics: "...explain the concept of the FileSystemObject and how to use it.

" exceltrick-FileSystemObject in VBA – Explained

Scripting.FileSystemObject

Scripting Dictionary object

Set dict = CreateObject("Scripting.Dictionary")

Tools> References> Microsoft Scripting Runtime

Associated DLL: ScrRun.dll

Source: Windows OS

Scripting.Dictionary object

MSDN-Dictionary Object

https://riptutorial.com/ 48

https://msdn.microsoft.com/en-us/library/aa711216(v=vs.71).aspx
https://msdn.microsoft.com/en-us/library/6kxy1a51(v=vs.84).aspx
http://www.exceltrick.com/formulas_macros/filesystemobject-in-vba/
http://www.riptutorial.com/vba/topic/990/scripting-filesystemobject
http://www.riptutorial.com/vba/topic/3667/scripting-dictionary-object
https://msdn.microsoft.com/en-us/library/x4k5wbx4(v=vs.84).aspx

Internet Explorer Object

Set createInternetExplorerObject = CreateObject("InternetExplorer.Application")

Tools> References> Microsoft Internet Controls

Associated DLL: ieframe.dll

Source: Internet Explorer Browser

MSDN-InternetExplorer object

Controls an instance of Windows Internet Explorer through automation.

Internet Explorer Objec Basic Members

The code below should introduce how the IE object works and how to manipulate it through VBA. I

recommend stepping through it, otherwise it might error out during multiple navigations.

Sub IEGetToKnow()
 Dim IE As InternetExplorer 'Reference to Microsoft Internet Controls
 Set IE = New InternetExplorer

 With IE
 .Visible = True 'Sets or gets a value that indicates whether the object is visible or
hidden.

 'Navigation
 .Navigate2 "http://www.example.com" 'Navigates the browser to a location that might
not be expressed as a URL, such as a PIDL for an entity in the Windows Shell namespace.
 Debug.Print .Busy 'Gets a value that indicates whether the object is engaged in a
navigation or downloading operation.
 Debug.Print .ReadyState 'Gets the ready state of the object.
 .Navigate2 "http://www.example.com/2"
 .GoBack 'Navigates backward one item in the history list
 .GoForward 'Navigates forward one item in the history list.
 .GoHome 'Navigates to the current home or start page.
 .Stop 'Cancels a pending navigation or download, and stops dynamic page elements, such
as background sounds and animations.
 .Refresh 'Reloads the file that is currently displayed in the object.

 Debug.Print .Silent 'Sets or gets a value that indicates whether the object can
display dialog boxes.
 Debug.Print .Type 'Gets the user type name of the contained document object.

 Debug.Print .Top 'Sets or gets the coordinate of the top edge of the object.
 Debug.Print .Left 'Sets or gets the coordinate of the left edge of the object.
 Debug.Print .Height 'Sets or gets the height of the object.
 Debug.Print .Width 'Sets or gets the width of the object.
 End With

 IE.Quit 'close the application window
End Sub

Web Scraping

https://riptutorial.com/ 49

https://msdn.microsoft.com/en-us/library/aa752084(v=vs.85).aspx

The most common thing to do with IE is to scrape some information of a website, or to fill a

website form and submit information. We will look at how to do it.

Let us consider example.com source code:

<!doctype html>
<html>
 <head>
 <title>Example Domain</title>
 <meta charset="utf-8" />
 <meta http-equiv="Content-type" content="text/html; charset=utf-8" />
 <meta name="viewport" content="width=device-width, initial-scale=1" />
 <style ... </style>
 </head>

 <body>
 <div>
 <h1>Example Domain</h1>
 <p>This domain is established to be used for illustrative examples in documents.
You may use this
 domain in examples without prior coordination or asking for permission.</p>
 <p>More information...</p>
 </div>
 </body>
</html>

We can use code like below to get and set informations:

Sub IEWebScrape1()
 Dim IE As InternetExplorer 'Reference to Microsoft Internet Controls
 Set IE = New InternetExplorer

 With IE
 .Visible = True
 .Navigate2 "http://www.example.com"

 'we add a loop to be sure the website is loaded and ready.
 'Does not work consistently. Cannot be relied upon.
 Do While .Busy = True Or .ReadyState <> READYSTATE_COMPLETE 'Equivalent = .ReadyState
<> 4
 ' DoEvents - worth considering. Know implications before you use it.
 Application.Wait (Now + TimeValue("00:00:01")) 'Wait 1 second, then check again.
 Loop

 'Print info in immediate window
 With .Document 'the source code HTML "below" the displayed page.
 Stop 'VBE Stop. Continue line by line to see what happens.
 Debug.Print .GetElementsByTagName("title")(0).innerHtml 'prints "Example Domain"
 Debug.Print .GetElementsByTagName("h1")(0).innerHtml 'prints "Example Domain"
 Debug.Print .GetElementsByTagName("p")(0).innerHtml 'prints "This domain is
established..."
 Debug.Print .GetElementsByTagName("p")(1).innerHtml 'prints "More information..."
 Debug.Print .GetElementsByTagName("p")(1).innerText 'prints "More information..."
 Debug.Print .GetElementsByTagName("a")(0).innerText 'prints "More information..."

 'We can change the localy displayed website. Don't worry about breaking the site.
 .GetElementsByTagName("title")(0).innerHtml = "Psst, scraping..."
 .GetElementsByTagName("h1")(0).innerHtml = "Let me try something fishy." 'You have

https://riptutorial.com/ 50

http://www.example.com/

just changed the local HTML of the site.
 .GetElementsByTagName("p")(0).innerHtml = "Lorem ipsum........... The End"
 .GetElementsByTagName("a")(0).innerText = "iana.org"
 End With '.document

 .Quit 'close the application window
 End With 'ie

End Sub

What is going on? The key player here is the .Document, that is the HTML source code. We can

apply some queries to get the Collections or Object we want.

For example the IE.Document.GetElementsByTagName("title")(0).innerHtml. GetElementsByTagName

returns a Collection of HTML Elements, that have the "title" tag. There is only one such tag in the

source code. The Collection is 0-based. So to get the first element we add (0). Now, in our case,

we want only the innerHtml (a String), not the Element Object itself. So we specify the property we

want.

Click

To follow a link on a site, we can use multiple methods:

Sub IEGoToPlaces()
 Dim IE As InternetExplorer 'Reference to Microsoft Internet Controls
 Set IE = New InternetExplorer

 With IE
 .Visible = True
 .Navigate2 "http://www.example.com"
 Stop 'VBE Stop. Continue line by line to see what happens.

 'Click
 .Document.GetElementsByTagName("a")(0).Click
 Stop 'VBE Stop.

 'Return Back
 .GoBack
 Stop 'VBE Stop.

 'Navigate using the href attribute in the <a> tag, or "link"
 .Navigate2 .Document.GetElementsByTagName("a")(0).href
 Stop 'VBE Stop.

 .Quit 'close the application window
 End With
End Sub

Microsoft HTML Object Library or IE Best friend

To get the most out of the HTML that gets loaded into the IE, you can (or should) use another

Library, i.e. Microsoft HTML Object Library. More about this in another example.

https://riptutorial.com/ 51

IE Main issues

The main issue with IE is verifying that the page is done loading and is ready to be interacted with.

The Do While... Loop helps, but is not reliable.

Also, using IE just to scrape HTML content is OVERKILL. Why? Because the Browser is meant for

browsing, i.e. displaying the web page with all the CSS, JavaScripts, Pictures, Popups, etc. If you

only need the raw data, consider different approach. E.g. using XML HTTPRequest. More about

this in another example.

Read Automation or Using other applications Libraries online:

https://riptutorial.com/vba/topic/8916/automation-or-using-other-applications-libraries

https://riptutorial.com/ 52

https://en.wikipedia.org/wiki/XMLHttpRequest
https://riptutorial.com/vba/topic/8916/automation-or-using-other-applications-libraries

Chapter 7: Collections

Remarks

A Collection is a container object that is included in the VBA runtime. No additional references are

required in order to use it. A Collection can be used to store items of any data type and allows

retrieval by either the ordinal index of the item or by using an optional unique key.

Feature Comparison with Arrays and Dictionaries

Collection Array Dictionary

Can be resized Yes Sometimes1 Yes

Items are ordered Yes Yes Yes2

Items are strongly typed No Yes No

Items can be retrieved by ordinal Yes Yes No

New items can be inserted at

ordinal
Yes No No

How to determine if an item exists Iterate all items
Iterate all

items
Iterate all items

Items can be retrieved by key Yes No Yes

Keys are case-sensitive No N/A Optional3

How to determine if a key exists Error handler N/A .Exists function

Remove all items Iterate and
.Remove

Erase, ReDim
.RemoveAll

function

1 Only dynamic arrays can be resized, and only the last dimension of multi-dimensional arrays.

2 The underlying .Keys and .Items are ordered.

3 Determined by the .CompareMode property.

Examples

Adding Items to a Collection

https://riptutorial.com/ 53

http://www.riptutorial.com/vba/topic/3064/arrays
http://www.riptutorial.com/vba/topic/3667/scripting-dictionary-object

Items are added to a Collection by calling its .Add method:

Syntax:

.Add(item, [key], [before, after])

Parameter Description

item

The item to store in the Collection. This can be essentially any value that a

variable can be assigned to, including primitive types, arrays, objects, and

Nothing.

key

Optional. A String that serves as a unique identifier for retrieving items from the

Collection. If the specified key already exists in the Collection, it will result in a

Run-time error 457: "This key is already associated with an element of this

collection".

before

Optional. An existing key (String value) or index (numeric value) to insert the

item before in the Collection. If a value is given, the after parameter must be

empty or a Run-time error 5: "Invalid procedure call or argument" will result. If a

String key is passed that does not exist in the Collection, a Run-time error 5:

"Invalid procedure call or argument" will result. If a numeric index is passed that

is does not exist in the Collection, a Run-time error 9: "Subscript out of range"

will result.

after

Optional. An existing key (String value) or index (numeric value) to insert the

item after in the Collection. If a value is given, the before parameter must be

empty. Errors raised are identical to the before parameter.

Notes:

Keys are not case-sensitive. .Add "Bar", "Foo" and .Add "Baz", "foo" will result in a key

collision.

•

If neither of the optional before or after parameters are given, the item will be added after the

last item in the Collection.

•

Insertions made by specifying a before or after parameter will alter the numeric indexes of

existing members to match thier new position. This means that care should be taken when

making insertions in loops using numeric indexes.

•

Sample Usage:

Public Sub Example()
 Dim foo As New Collection

 With foo
 .Add "One" 'No key. This item can only be retrieved by index.

https://riptutorial.com/ 54

 .Add "Two", "Second" 'Key given. Can be retrieved by key or index.
 .Add "Three", , 1 'Inserted at the start of the collection.
 .Add "Four", , , 1 'Inserted at index 2.
 End With

 Dim member As Variant
 For Each member In foo
 Debug.Print member 'Prints "Three, Four, One, Two"
 Next
End Sub

Removing Items From a Collection

Items are removed from a Collection by calling its .Remove method:

Syntax:

.Remove(index)

Parameter Description

index

The item to remove from the Collection. If the value passed is a numeric type or

Variant with a numeric sub-type, it will be interpreted as a numeric index. If the

value passed is a String or Variant containing a string, it will be interpreted as

the a key. If a String key is passed that does not exist in the Collection, a Run-

time error 5: "Invalid procedure call or argument" will result. If a numeric index is

passed that is does not exist in the Collection, a Run-time error 9: "Subscript

out of range" will result.

Notes:

Removing an item from a Collection will change the numeric indexes of all the items after it

in the Collection. For loops that use numeric indexes and remove items should run

backwards (Step -1) to prevent subscript exceptions and skipped items.

•

Items should generally not be removed from a Collection from inside of a For Each loop as it

can give unpredictable results.

•

Sample Usage:

Public Sub Example()
 Dim foo As New Collection

 With foo
 .Add "One"
 .Add "Two", "Second"
 .Add "Three"
 .Add "Four"
 End With

 foo.Remove 1 'Removes the first item.

https://riptutorial.com/ 55

 foo.Remove "Second" 'Removes the item with key "Second".
 foo.Remove foo.Count 'Removes the last item.

 Dim member As Variant
 For Each member In foo
 Debug.Print member 'Prints "Three"
 Next
End Sub

Getting the Item Count of a Collection

The number of items in a Collection can be obtained by calling its .Count function:

Syntax:

.Count()

Sample Usage:

Public Sub Example()
 Dim foo As New Collection

 With foo
 .Add "One"
 .Add "Two"
 .Add "Three"
 .Add "Four"
 End With

 Debug.Print foo.Count 'Prints 4
End Sub

Retrieving Items From a Collection

Items can be retrieved from a Collection by calling the .Item function.

Syntax:

.Item(index)

Parameter Description

index

The item to retrieve from the Collection. If the value passed is a numeric type or

Variant with a numeric sub-type, it will be interpreted as a numeric index. If the

value passed is a String or Variant containing a string, it will be interpreted as

the a key. If a String key is passed that does not exist in the Collection, a Run-

time error 5: "Invalid procedure call or argument" will result. If a numeric index is

passed that is does not exist in the Collection, a Run-time error 9: "Subscript

out of range" will result.

https://riptutorial.com/ 56

Notes:

.Item is the default member of Collection. This allows flexibility in syntax as demonstrated in

the sample usage below.

•

Numeric indexes are 1-based.•

Keys are not case-sensitive. .Item("Foo") and .Item("foo") refer to the same key.•

The index parameter is not implicitly cast to a number from a String or visa-versa. It is

entirely possible that .Item(1) and .Item("1") refer to different items of the Collection.

•

Sample Usage (Indexes):

Public Sub Example()
 Dim foo As New Collection

 With foo
 .Add "One"
 .Add "Two"
 .Add "Three"
 .Add "Four"
 End With

 Dim index As Long
 For index = 1 To foo.Count
 Debug.Print foo.Item(index) 'Prints One, Two, Three, Four
 Next
End Sub

Sample Usage (Keys):

Public Sub Example()
 Dim keys() As String
 keys = Split("Foo,Bar,Baz", ",")
 Dim values() As String
 values = Split("One,Two,Three", ",")

 Dim foo As New Collection
 Dim index As Long
 For index = LBound(values) To UBound(values)
 foo.Add values(index), keys(index)
 Next

 Debug.Print foo.Item("Bar") 'Prints "Two"
End Sub

Sample Usage (Alternate Syntax):

Public Sub Example()
 Dim foo As New Collection

 With foo
 .Add "One", "Foo"
 .Add "Two", "Bar"
 .Add "Three", "Baz"

https://riptutorial.com/ 57

 End With

 'All lines below print "Two"
 Debug.Print foo.Item("Bar") 'Explicit call syntax.
 Debug.Print foo("Bar") 'Default member call syntax.
 Debug.Print foo!Bar 'Bang syntax.
End Sub

Note that bang (!) syntax is allowed because .Item is the default member and can take a single

String argument. The utility of this syntax is questionable.

Determining if a Key or Item Exists in a Collection

Keys

Unlike a Scripting.Dictionary, a Collection does not have a method for determining if a given key

exists or a way to retrieve keys that are present in the Collection. The only method to determine if

a key is present is to use the error handler:

Public Function KeyExistsInCollection(ByVal key As String, _
 ByRef container As Collection) As Boolean
 With Err
 If container Is Nothing Then .Raise 91
 On Error Resume Next
 Dim temp As Variant
 temp = container.Item(key)
 On Error GoTo 0

 If .Number = 0 Then
 KeyExistsInCollection = True
 ElseIf .Number <> 5 Then
 .Raise .Number
 End If
 End With
End Function

Items

The only way to determine if an item is contained in a Collection is to iterate over the Collection

until the item is located. Note that because a Collection can contain either primitives or objects,

some extra handling is needed to avoid run-time errors during the comparisons:

Public Function ItemExistsInCollection(ByRef target As Variant, _
 ByRef container As Collection) As Boolean
 Dim candidate As Variant
 Dim found As Boolean

 For Each candidate In container
 Select Case True
 Case IsObject(candidate) And IsObject(target)
 found = candidate Is target
 Case IsObject(candidate), IsObject(target)

https://riptutorial.com/ 58

http://www.riptutorial.com/vba/topic/3667/scripting-dictionary-object

 found = False
 Case Else
 found = (candidate = target)
 End Select
 If found Then
 ItemExistsInCollection = True
 Exit Function
 End If
 Next
End Function

Clearing All Items From a Collection

The easiest way to clear all of the items from a Collection is to simply replace it with a new

Collection and let the old one go out of scope:

Public Sub Example()
 Dim foo As New Collection

 With foo
 .Add "One"
 .Add "Two"
 .Add "Three"
 End With

 Debug.Print foo.Count 'Prints 3
 Set foo = New Collection
 Debug.Print foo.Count 'Prints 0
End Sub

However, if there are multiple references to the Collection held, this method will only give you an

empty Collection for the variable that is assigned.

Public Sub Example()
 Dim foo As New Collection
 Dim bar As Collection

 With foo
 .Add "One"
 .Add "Two"
 .Add "Three"
 End With

 Set bar = foo
 Set foo = New Collection

 Debug.Print foo.Count 'Prints 0
 Debug.Print bar.Count 'Prints 3
End Sub

In this case, the easiest way to clear the contents is by looping through the number of items in the

Collection and repeatedly remove the lowest item:

Public Sub ClearCollection(ByRef container As Collection)
 Dim index As Long

https://riptutorial.com/ 59

 For index = 1 To container.Count
 container.Remove 1
 Next
End Sub

Read Collections online: https://riptutorial.com/vba/topic/5838/collections

https://riptutorial.com/ 60

https://riptutorial.com/vba/topic/5838/collections

Chapter 8: Comments

Remarks

Comment Blocks

If you need to comment or uncomment several lines at once, you can use the IDE's Edit Toolbar

buttons:

Comment Block - Adds a single apostrophe to the start of all selected lines

Uncomment Block - Removes the first apostrophe from the start of all selected lines

Multi-line Comments Many other languages support multi-line block comments, but VBA only

allows single-line comments.

Examples

Apostrophe Comments

A comment is marked by an apostrophe ('), and ignored when the code executes. Comments help

explain your code to future readers, including yourself.

Since all lines starting with a comment are ignored, they can also be used to prevent code from

executing (while you debug or refactor). Placing an apostrophe ' before your code turns it into a

comment. (This is called commenting out the line.)

Sub InlineDocumentation()
 'Comments start with an "'"

 'They can be place before a line of code, which prevents the line from executing
 'Debug.Print "Hello World"

 'They can also be placed after a statement
 'The statement still executes, until the compiler arrives at the comment
 Debug.Print "Hello World" 'Prints a welcome message

'Comments can have 0 indention....
 '... or as much as needed

 '''' Comments can contain multiple apostrophes ''''

 'Comments can span lines (using line continuations) _
 but this can make for hard to read code

 'If you need to have mult-line comments, it is often easier to

https://riptutorial.com/ 61

http://i.stack.imgur.com/1fTtY.png
http://i.stack.imgur.com/gbE0b.png

 'use an apostrophe on each line

 'The continued statement syntax (:) is treated as part of the comment, so
 'it is not possible to place an executable statement after a comment
 'This won't run : Debug.Print "Hello World"
End Sub

'Comments can appear inside or outside a procedure

REM Comments

Sub RemComments()
 Rem Comments start with "Rem" (VBA will change any alternate casing to "Rem")
 Rem is an abbreviation of Remark, and similar to DOS syntax
 Rem Is a legacy approach to adding comments, and apostrophes should be preferred

 Rem Comments CANNOT appear after a statement, use the apostrophe syntax instead
 Rem Unless they are preceded by the instruction separator token
 Debug.Print "Hello World": Rem prints a welcome message
 Debug.Print "Hello World" 'Prints a welcome message

 'Rem cannot be immediately followed by the following characters "!,@,#,$,%,&"
 'Whereas the apostrophe syntax can be followed by any printable character.

End Sub

Rem Comments can appear inside or outside a procedure

Read Comments online: https://riptutorial.com/vba/topic/2059/comments

https://riptutorial.com/ 62

https://riptutorial.com/vba/topic/2059/comments

Chapter 9: Concatenating strings

Remarks

Strings can be concatenated, or joined together, using one or more concatenation operator &.

String arrays can also be concatenated using the Join function and providing a string (which can

be zero-length) to be used between each array element.

Examples

Concatenate strings using the & operator

Const string1 As String = "foo"
Const string2 As String = "bar"
Const string3 As String = "fizz"
Dim concatenatedString As String

'Concatenate two strings
concatenatedString = string1 & string2
'concatenatedString = "foobar"

'Concatenate three strings
concatenatedString = string1 & string2 & string3
'concatenatedString = "foobarfizz"

Concatenate an array of strings using the Join function

'Declare and assign a string array
Dim widgetNames(2) As String
widgetNames(0) = "foo"
widgetNames(1) = "bar"
widgetNames(2) = "fizz"

'Concatenate with Join and separate each element with a 3-character string
concatenatedString = VBA.Strings.Join(widgetNames, " > ")
'concatenatedString = "foo > bar > fizz"

'Concatenate with Join and separate each element with a zero-width string
concatenatedString = VBA.Strings.Join(widgetNames, vbNullString)
'concatenatedString = "foobarfizz"

Read Concatenating strings online: https://riptutorial.com/vba/topic/3580/concatenating-strings

https://riptutorial.com/ 63

https://riptutorial.com/vba/topic/3580/concatenating-strings

Chapter 10: Conditional Compilation

Examples

Changing code behavior at compile time

The #Const directive is used to define a custom preprocessor constant. These can later be used by

#If to control which blocks of code get compiled and executed.

#Const DEBUGMODE = 1

#If DEBUGMODE Then
 Const filepath As String = "C:\Users\UserName\Path\To\File.txt"
#Else
 Const filepath As String = "\\server\share\path\to\file.txt"
#End If

This results in the value of filepath being set to "C:\Users\UserName\Path\To\File.txt". Removing

the #Const line, or changing it to #Const DEBUGMODE = 0 would result in the filepath being set to

"\\server\share\path\to\file.txt".

#Const Scope

The #Const directive is only effective for a single code file (module or class). It must be declared for

each and every file you wish to use your custom constant in. Alternatively, you can declare a

#Const globally for your project by going to Tools >> [Your Project Name] Project Properties. This

will bring up the project properties dialog box where we’ll enter the constant declaration. In the

“Conditional Compilation Arguments” box, type in [constName] = [value]. You can enter more than

1 constant by separating them with a colon, like [constName1] = [value1] : [constName2] = [value2]

.

https://riptutorial.com/ 64

Pre-defined Constants

Some compilation constants are already pre-defined. Which ones exist will depend on the bitness

of the office version you're running VBA in. Note that Vba7 was introduced alongside Office 2010

to support 64 bit versions of Office.

Constant 16 bit 32 bit 64 bit

Vba6 False If Vba6 False

Vba7 False If Vba7 True

Win16 True False False

Win32 False True True

Win64 False False True

Mac False If Mac If Mac

Note that Win64/Win32 refer to the Office version, not the Windows version. For example Win32 =

TRUE in 32-bit Office, even if the OS is a 64-bit version of Windows.

Using Declare Imports that work on all versions of Office

#If Vba7 Then
 ' It's important to check for Win64 first,
 ' because Win32 will also return true when Win64 does.

 #If Win64 Then

https://riptutorial.com/ 65

http://i.stack.imgur.com/rEY6K.png

 Declare PtrSafe Function GetFoo64 Lib "exampleLib32" () As LongLong
 #Else
 Declare PtrSafe Function GetFoo Lib "exampleLib32" () As Long
 #End If
#Else
 ' Must be Vba6, the PtrSafe keyword didn't exist back then,
 ' so we need to declare Win32 imports a bit differently than above.

 #If Win32 Then
 Declare Function GetFoo Lib "exampleLib32"() As Long
 #Else
 Declare Function GetFoo Lib "exampleLib"() As Integer
 #End If
#End If

This can be simplified a bit depending on what versions of office you need to support. For

example, not many people are still supporting 16 bit versions of Office. The last version of 16 bit

office was version 4.3, released in 1994, so the following declaration is sufficient for nearly all

modern cases (including Office 2007).

#If Vba7 Then
 ' It's important to check for Win64 first,
 ' because Win32 will also return true when Win64 does.

 #If Win64 Then
 Declare PtrSafe Function GetFoo64 Lib "exampleLib32" () As LongLong
 #Else
 Declare PtrSafe Function GetFoo Lib "exampleLib32" () As Long
 #End If
#Else
 ' Must be Vba6. We don't support 16 bit office, so must be Win32.

 Declare Function GetFoo Lib "exampleLib32"() As Long
#End If

If you don't have to support anything older than Office 2010, this declaration works just fine.

' We only have 2010 installs, so we already know we have Vba7.

#If Win64 Then
 Declare PtrSafe Function GetFoo64 Lib "exampleLib32" () As LongLong
#Else
 Declare PtrSafe Function GetFoo Lib "exampleLib32" () As Long
#End If

Read Conditional Compilation online: https://riptutorial.com/vba/topic/3364/conditional-compilation

https://riptutorial.com/ 66

https://en.wikipedia.org/wiki/History_of_Microsoft_Office
https://en.wikipedia.org/wiki/History_of_Microsoft_Office
https://riptutorial.com/vba/topic/3364/conditional-compilation

Chapter 11: Converting other types to strings

Remarks

VBA will implicitly convert some types to string as necessary and without any extra work on the

part of the programmer, but VBA also provides a number of explicit string conversion functions,

and you can also write your own.

Three of the most frequently used functions are CStr, Format and StrConv.

Examples

Use CStr to convert a numeric type to a string

Const zipCode As Long = 10012
Dim zipCodeText As String
'Convert the zipCode number to a string of digit characters
zipCodeText = CStr(zipCode)
'zipCodeText = "10012"

Use Format to convert and format a numeric type as a string

Const zipCode As long = 10012
Dim zeroPaddedNumber As String
zeroPaddedZipCode = Format(zipCode, "00000000")
'zeroPaddedNumber = "00010012"

Use StrConv to convert a byte-array of single-byte characters to a string

'Declare an array of bytes, assign single-byte character codes, and convert to a string
Dim singleByteChars(4) As Byte
singleByteChars(0) = 72
singleByteChars(1) = 101
singleByteChars(2) = 108
singleByteChars(3) = 108
singleByteChars(4) = 111
Dim stringFromSingleByteChars As String
stringFromSingleByteChars = StrConv(singleByteChars, vbUnicode)
'stringFromSingleByteChars = "Hello"

Implicitly convert a byte array of multi-byte-characters to a string

'Declare an array of bytes, assign multi-byte character codes, and convert to a string
Dim multiByteChars(9) As Byte
multiByteChars(0) = 87
multiByteChars(1) = 0
multiByteChars(2) = 111
multiByteChars(3) = 0

https://riptutorial.com/ 67

multiByteChars(4) = 114
multiByteChars(5) = 0
multiByteChars(6) = 108
multiByteChars(7) = 0
multiByteChars(8) = 100
multiByteChars(9) = 0

Dim stringFromMultiByteChars As String
stringFromMultiByteChars = multiByteChars
'stringFromMultiByteChars = "World"

Read Converting other types to strings online: https://riptutorial.com/vba/topic/3467/converting-

other-types-to-strings

https://riptutorial.com/ 68

https://riptutorial.com/vba/topic/3467/converting-other-types-to-strings
https://riptutorial.com/vba/topic/3467/converting-other-types-to-strings

Chapter 12: Copying, returning and passing

arrays

Examples

Copying Arrays

You can copy a VBA array into an array of the same type using the = operator. The arrays must be

of the same type otherwise the code will throw a "Can't assign to array" compilation error.

Dim source(0 to 2) As Long
Dim destinationLong() As Long
Dim destinationDouble() As Double

destinationLong = source ' copies contents of source into destinationLong
destinationDouble = source ' does not compile

The source array can be fixed or dynamic, but the destination array must be dynamic. Trying to

copy to a fixed array will throw a "Can't assign to array" compilation error. Any preexisting data in

the receiving array is lost and its bounds and dimenions are changed to the same as the source

array.

Dim source() As Long
ReDim source(0 To 2)

Dim fixed(0 To 2) As Long
Dim dynamic() As Long

fixed = source ' does not compile
dynamic = source ' does compile

Dim dynamic2() As Long
ReDim dynamic2(0 to 6, 3 to 99)

dynamic2 = source ' dynamic2 now has dimension (0 to 2)

Once the copy is made the two arrays are seperate in memory, i.e. the two variables are not

references to same underlying data, so changes made to one array do not appear in the other.

Dim source(0 To 2) As Long
Dim destination() As Long

source(0) = 3
source(1) = 1
source(2) = 4

destination = source
destination(0) = 2

Debug.Print source(0); source(1); source(2) ' outputs: 3 1 4

https://riptutorial.com/ 69

Debug.Print destination(0); destination(1); destination(2) ' outputs: 2 1 4

Copying Arrays of Objects

With arrays of objects the references to those objects are copied, not the objects themselves. If a

change is made to an object in one array it will also appear to be changed in the other array - they

are both referencing the same object. However, setting an element to a different object in one

array won't set it to that object the other array.

Dim source(0 To 2) As Range
Dim destination() As Range

Set source(0) = Range("A1"): source(0).Value = 3
Set source(1) = Range("A2"): source(1).Value = 1
Set source(2) = Range("A3"): source(2).Value = 4

destination = source

Set destination(0) = Range("A4") 'reference changed in destination but not source

destination(0).Value = 2 'affects an object only in destination
destination(1).Value = 5 'affects an object in both source and destination

Debug.Print source(0); source(1); source(2) ' outputs 3 5 4
Debug.Print destination(0); destination(1); destination(2) ' outputs 2 5 4

Variants Containing an Array

You can also copy an array into and from a variant variable. When copying from a variant, it must

contain an array of the same type as the receiving array otherwise it will throw a "Type mismatch"

runtime error.

Dim var As Variant
Dim source(0 To 2) As Range
Dim destination() As Range

var = source
destination = var

var = 5
destination = var ' throws runtime error

Returning Arrays from Functions

A function in a normal module (but not a Class module) can return an array by putting () after the

data type.

Function arrayOfPiDigits() As Long()
 Dim outputArray(0 To 2) As Long

 outputArray(0) = 3

https://riptutorial.com/ 70

 outputArray(1) = 1
 outputArray(2) = 4

 arrayOfPiDigits = outputArray
End Function

The result of the function can then be put into a dynamic array of the same type or a variant. The

elements can also be accessed directly by using a second set of brackets, however this will call

the function each time, so its best to store the results in a new array if you plan to use them more

than once

Sub arrayExample()

 Dim destination() As Long
 Dim var As Variant

 destination = arrayOfPiDigits()
 var = arrayOfPiDigits

 Debug.Print destination(0) ' outputs 3
 Debug.Print var(1) ' outputs 1
 Debug.Print arrayOfPiDigits()(2) ' outputs 4

End Sub

Note that what is returned is actually a copy of the array inside the function, not a reference. So if

the function returns the contents of a Static array its data can't be changed by the calling

procedure.

Outputting an Array via an output argument

It is normally good coding practice for a procedure's arguments to be inputs and to output via the

return value. However, the limitations of VBA sometimes make it necessary for a procedure to

output data via a ByRef argument.

Outputting to a fixed array

Sub threePiDigits(ByRef destination() As Long)
 destination(0) = 3
 destination(1) = 1
 destination(2) = 4
End Sub

Sub printPiDigits()
 Dim digits(0 To 2) As Long

 threePiDigits digits
 Debug.Print digits(0); digits(1); digits(2) ' outputs 3 1 4
End Sub

https://riptutorial.com/ 71

Outputting an Array from a Class method

An output argument can also be used to output an array from a method/proceedure in a Class

module

' Class Module 'MathConstants'
Sub threePiDigits(ByRef destination() As Long)
 ReDim destination(0 To 2)

 destination(0) = 3
 destination(1) = 1
 destination(2) = 4
End Sub

' Standard Code Module
Sub printPiDigits()
 Dim digits() As Long
 Dim mathConsts As New MathConstants

 mathConsts.threePiDigits digits
 Debug.Print digits(0); digits(1); digits(2) ' outputs 3 1 4
End Sub

Passing Arrays to Proceedures

Arrays can be passed to proceedures by putting () after the name of the array variable.

Function countElements(ByRef arr() As Double) As Long
 countElements = UBound(arr) - LBound(arr) + 1
End Function

Arrays must be passed by reference. If no passing mechanism is specified, e.g. myFunction(arr()),

then VBA will assume ByRef by default, however it is good coding practice to make it explicit.

Trying to pass an array by value, e.g. myFunction(ByVal arr()) will result in an "Array argument

must be ByRef" compilation error (or a "Syntax error" compilation error if Auto Syntax Check is not

checked in the VBE options).

Passing by reference means that any changes to the array will be preserved in the calling

proceedure.

Sub testArrayPassing()
 Dim source(0 To 1) As Long
 source(0) = 3
 source(1) = 1

 Debug.Print doubleAndSum(source) ' outputs 8
 Debug.Print source(0); source(1) ' outputs 6 2
End Sub

Function doubleAndSum(ByRef arr() As Long)
 arr(0) = arr(0) * 2
 arr(1) = arr(1) * 2
 doubleAndSum = arr(0) + arr(1)

https://riptutorial.com/ 72

End Function

If you want to avoid changing the original array then be careful to write the function so that it

doesn't change any elements.

Function doubleAndSum(ByRef arr() As Long)
 doubleAndSum = arr(0) * 2 + arr(1) * 2
End Function

Alternatively create a working copy of the array and work with the copy.

Function doubleAndSum(ByRef arr() As Long)
 Dim copyOfArr() As Long
 copyOfArr = arr

 copyOfArr(0) = copyOfArr(0) * 2
 copyOfArr(1) = copyOfArr(1) * 2

 doubleAndSum = copyOfArr(0) + copyOfArr(1)
End Function

Read Copying, returning and passing arrays online: https://riptutorial.com/vba/topic/9069/copying--

returning-and-passing-arrays

https://riptutorial.com/ 73

https://riptutorial.com/vba/topic/9069/copying--returning-and-passing-arrays
https://riptutorial.com/vba/topic/9069/copying--returning-and-passing-arrays

Chapter 13: CreateObject vs. GetObject

Remarks

At its simplest, CreateObject creates an instance of an object whereas GetObject gets an existing

instance of an object. Determining whether an object can be created or gotten will depend on it's

Instancing property. Some objects are SingleUse (eg, WMI) and cannot be created if they already

exist. Other objects (eg, Excel) are MultiUse and allow multiple instances to run at once. If an

instance of an object does not already exist and you attempt GetObject, you will receive the

following trappable message: Run-time error '429': ActiveX component can't create object.

GetObject requires at least one of these two optional parameters to be present:

Pathname - Variant (String): The full path, including filename, of the file containing the

object. This parameter is optional, but Class is required if Pathname is omitted.

1.

Class - Variant (String): A string representing the formal definition (Application and

ObjectType) of the object. Class is required if Pathname is omitted.

2.

CreateObject has one required parameter and one optional parameter:

Class - Variant (String): A string representing the formal definition (Application and

ObjectType) of the object. Class is a required parameter.

1.

Servername - Variant (String): The name of the remote computer on which the object will be

created. If omitted, the object will be created on the local machine.

2.

Class is always comprised of two parts in the form of Application.ObjectType:

Application - The name of the application which the object is part of. |1.

Object Type - The type of object being created. |2.

Some example classes are:

Word.Application1.

Excel.Sheet2.

Scripting.FileSystemObject3.

Examples

Demonstrating GetObject and CreateObject

MSDN-GetObject Function

Returns a reference to an object provided by an ActiveX component.

Use the GetObject function when there is a current instance of the object or if you want

https://riptutorial.com/ 74

https://msdn.microsoft.com/en-us/library/aa242107%28v=vs.60%29.aspx?f=255&MSPPError=-2147217396
https://msdn.microsoft.com/en-us/library/office/gg251785.aspx

to create the object with a file already loaded. If there is no current instance, and you

don't want the object started with a file loaded, use the CreateObject function.

Sub CreateVSGet()
 Dim ThisXLApp As Excel.Application 'An example of early binding
 Dim AnotherXLApp As Object 'An example of late binding
 Dim ThisNewWB As Workbook
 Dim AnotherNewWB As Workbook
 Dim wb As Workbook

 'Get this instance of Excel
 Set ThisXLApp = GetObject(ThisWorkbook.Name).Application
 'Create another instance of Excel
 Set AnotherXLApp = CreateObject("Excel.Application")
 'Make the 2nd instance visible
 AnotherXLApp.Visible = True
 'Add a workbook to the 2nd instance
 Set AnotherNewWB = AnotherXLApp.Workbooks.Add
 'Add a sheet to the 2nd instance
 AnotherNewWB.Sheets.Add

 'You should now have 2 instances of Excel open
 'The 1st instance has 1 workbook: Book1
 'The 2nd instance has 1 workbook: Book2

 'Lets add another workbook to our 1st instance
 Set ThisNewWB = ThisXLApp.Workbooks.Add
 'Now loop through the workbooks and show their names
 For Each wb In ThisXLApp.Workbooks
 Debug.Print wb.Name
 Next
 'Now the 1st instance has 2 workbooks: Book1 and Book3
 'If you close the first instance of Excel,
 'Book1 and Book3 will close, but book2 will still be open

End Sub

Read CreateObject vs. GetObject online: https://riptutorial.com/vba/topic/7729/createobject-vs--

getobject

https://riptutorial.com/ 75

https://riptutorial.com/vba/topic/7729/createobject-vs--getobject
https://riptutorial.com/vba/topic/7729/createobject-vs--getobject

Chapter 14: Creating a Custom Class

Remarks

This article will show how to create a complete custom class in VBA. It uses the example of a

DateRange object, because a starting and ending date are often passed together to functions.

Examples

Adding a Property to a Class

A Property procedure is a series of statement that retrieves or modifies a custom property on a

module.

There are three types of property accessors:

A Get procedure that returns the value of a property.1.

A Let procedure that assigns a (non-Object) value to an object.2.

A Set procedure that assigns an Object reference.3.

Property accessors are often defined in pairs, using both a Get and Let/Set for each property. A

property with only a Get procedure would be read-only, while a property with only a Let/Set

procedure would be write-only.

In the following example, four property accessors are defined for the DateRange class:

StartDate (read/write). Date value representing the earlier date in a range. Each procedure

uses the value of the module variable, mStartDate.

1.

EndDate (read/write). Date value representing the later date in a range. Each procedure uses

the value of the module variable, mEndDate.

2.

DaysBetween (read-only). Calculated Integer value representing the number of days between

the two dates. Because there is only a Get procedure, this property cannot be modified

directly.

3.

RangeToCopy (write-only). A Set procedure used to copy the values of an existing DateRange

object.

4.

Private mStartDate As Date ' Module variable to hold the starting date
Private mEndDate As Date ' Module variable to hold the ending date

' Return the current value of the starting date
Public Property Get StartDate() As Date
 StartDate = mStartDate
End Property

' Set the starting date value. Note that two methods have the name StartDate
Public Property Let StartDate(ByVal NewValue As Date)
 mStartDate = NewValue
End Property

https://riptutorial.com/ 76

' Same thing, but for the ending date
Public Property Get EndDate() As Date
 EndDate = mEndDate
End Property

Public Property Let EndDate(ByVal NewValue As Date)
 mEndDate = NewValue
End Property

' Read-only property that returns the number of days between the two dates
Public Property Get DaysBetween() As Integer
 DaysBetween = DateDiff("d", mStartDate, mEndDate)
End Function

' Write-only property that passes an object reference of a range to clone
Public Property Set RangeToCopy(ByRef ExistingRange As DateRange)

Me.StartDate = ExistingRange.StartDate
Me.EndDate = ExistingRange.EndDate

End Property

Adding Functionality to a Class

Any public Sub, Function, or Property inside a class module can be called by preceding the call with

an object reference:

Object.Procedure

In a DateRange class, a Sub could be used to add a number of days to the end date:

Public Sub AddDays(ByVal NoDays As Integer)
 mEndDate = mEndDate + NoDays
End Sub

A Function could return the last day of the next month-end (note that GetFirstDayOfMonth would not

be visible outside the class because it is private):

Public Function GetNextMonthEndDate() As Date
 GetNextMonthEndDate = DateAdd("m", 1, GetFirstDayOfMonth())
End Function

Private Function GetFirstDayOfMonth() As Date
 GetFirstDayOfMonth = DateAdd("d", -DatePart("d", mEndDate), mEndDate)
End Function

Procedures can accept arguments of any type, including references to objects of the class being

defined.

The following example tests whether the current DateRange object has a starting date and ending

date that includes the starting and ending date of another DateRange object.

https://riptutorial.com/ 77

Public Function ContainsRange(ByRef TheRange As DateRange) As Boolean
 ContainsRange = TheRange.StartDate >= Me.StartDate And TheRange.EndDate <= Me.EndDate
End Function

Note the use of the Me notation as a way to access the value of the object running the code.

Class module scope, instancing and re-use

By default, a new class module is a Private class, so it is only available for instantiation and use

within the VBProject in which it is defined. You can declare, instantiate and use the class

anywhere in the same project:

'Class List has Instancing set to Private
'In any other module in the SAME project, you can use:

Dim items As List
Set items = New List

But often you'll write classes that you'd like to use in other projects without copying the module

between projects. If you define a class called List in ProjectA, and want to use that class in

ProjectB, then you'll need to perform 4 actions:

Change the instancing property of the List class in ProjectA in the Properties window, from

Private to PublicNotCreatable

1.

Create a public "factory" function in ProjectA that creates and returns an instance of a List

class. Typically the factory function would include arguments for the initialization of the class

instance. The factory function is required because the class can be used by ProjectB but

ProjectB cannot directly create an instance of ProjectA's class.

 Public Function CreateList(ParamArray values() As Variant) As List
 Dim tempList As List
 Dim itemCounter As Long
 Set tempList = New List
 For itemCounter = LBound(values) to UBound(values)
 tempList.Add values(itemCounter)
 Next itemCounter
 Set CreateList = tempList
 End Function

2.

In ProjectB add a reference to ProjectA using the Tools..References... menu.3.

In ProjectB, declare a variable and assign it an instance of List using the factory function

from ProjectA

 Dim items As ProjectA.List
 Set items = ProjectA.CreateList("foo","bar")

 'Use the items list methods and properties
 items.Add "fizz"
 Debug.Print items.ToString()
 'Destroy the items object

4.

https://riptutorial.com/ 78

 Set items = Nothing

Read Creating a Custom Class online: https://riptutorial.com/vba/topic/4464/creating-a-custom-

class

https://riptutorial.com/ 79

https://riptutorial.com/vba/topic/4464/creating-a-custom-class
https://riptutorial.com/vba/topic/4464/creating-a-custom-class

Chapter 15: Creating a procedure

Examples

Introduction to procedures

A Sub is a procedure that performs a specific task but does not return a specific value.

Sub ProcedureName ([argument_list])
 [statements]
End Sub

If no access modifier is specified, a procedure is Public by default.

A Function is a procedure that is given data and returns a value, ideally without global or module-

scope side-effects.

Function ProcedureName ([argument_list]) [As ReturnType]
 [statements]
End Function

A Property is a procedure that encapsulates module data. A property can have up to 3 accessors:

Get to return a value or object reference, Let to assign a value, and/or Set to assign an object

reference.

Property Get|Let|Set PropertyName([argument_list]) [As ReturnType]
 [statements]
End Property

Properties are usually used in class modules (although they are allowed in standard modules as

well), exposing accessor to data that is otherwise inaccessible to the calling code. A property that

only exposes a Get accessor is "read-only"; a property that would only expose a Let and/or Set

accessor is "write-only". Write-only properties are not considered a good programming practice - if

the client code can write a value, it should be able to read it back. Consider implementing a Sub

procedure instead of making a write-only property.

Returning a value

A Function or Property Get procedure can (and should!) return a value to its caller. This is done by

assigning the identifier of the procedure:

Property Get Foo() As Integer
 Foo = 42
End Property

https://riptutorial.com/ 80

Function With Examples

As stated above Functions are smaller procedures that contain small pieces of code which may be

repetitive inside a Procedure.

Functions are used to reduce redundancy in code.

Similar to a Procedure, A function can be declared with or without an arguments list.

Function is declared as a return type, as all functions return a value. The Name and the Return

Variable of a function are the Same.

Function With Parameter:

 Function check_even(i as integer) as boolean
 if (i mod 2) = 0 then
 check_even = True
 else
 check_even=False
 end if
 end Function

1.

Function Without Parameter:

 Function greet() as String
 greet= "Hello Coder!"
 end Function

2.

The Function can be called in various ways inside a function. Since a Function declared with a

return type is basically a variable. it is used similar to a variable.

Functional Calls:

 call greet() 'Similar to a Procedural call just allows the Procedure to use the
 'variable greet
 string_1=greet() 'The Return value of the function is used for variable
 'assignment

Further the function can also be used as conditions for if and other conditional statements.

 for i = 1 to 10
 if check_even(i) then
 msgbox i & " is Even"
 else
 msgbox i & " is Odd"
 end if
 next i

Further more Functions can have modifiers such as By ref and By val for their arguments.

Read Creating a procedure online: https://riptutorial.com/vba/topic/1474/creating-a-procedure

https://riptutorial.com/ 81

https://riptutorial.com/vba/topic/1474/creating-a-procedure

Chapter 16: Data Structures

Introduction

[TODO: This topic should be an example of all the basic CS 101 data structures along with some

explanation as an overview of how data structures can be implemented in VBA. This would be a

good opportunity to tie in and reinforce concepts introduced in Class-related topics in VBA

documentation.]

Examples

Linked List

This linked list example implements Set abstract data type operations.

SinglyLinkedNode class

Option Explicit

Private Value As Variant
Private NextNode As SinglyLinkedNode '"Next" is a keyword in VBA and therefore is not a valid
variable name

LinkedList class

Option Explicit

Private head As SinglyLinkedNode

'Set type operations

Public Sub Add(value As Variant)
 Dim node As SinglyLinkedNode

 Set node = New SinglyLinkedNode
 node.value = value
 Set node.nextNode = head

 Set head = node
End Sub

Public Sub Remove(value As Variant)
 Dim node As SinglyLinkedNode
 Dim prev As SinglyLinkedNode

 Set node = head

 While Not node Is Nothing
 If node.value = value Then
 'remove node
 If node Is head Then
 Set head = node.nextNode

https://riptutorial.com/ 82

https://en.wikipedia.org/wiki/Set_(abstract_data_type)

 Else
 Set prev.nextNode = node.nextNode
 End If
 Exit Sub
 End If
 Set prev = node
 Set node = node.nextNode
 Wend

End Sub

Public Function Exists(value As Variant) As Boolean
 Dim node As SinglyLinkedNode

 Set node = head
 While Not node Is Nothing
 If node.value = value Then
 Exists = True
 Exit Function
 End If
 Set node = node.nextNode
 Wend
End Function

Public Function Count() As Long
 Dim node As SinglyLinkedNode

 Set node = head

 While Not node Is Nothing
 Count = Count + 1
 Set node = node.nextNode
 Wend

End Function

Binary Tree

This is an example of an unbalanced binary search tree. A binary tree is structured conceptually

as a hierarchy of nodes descending downward from a common root, where each node has two

children: left and right. For example, suppose the numbers 7, 5, 9, 3, 11, 6, 12, 14 and 15 were

inserted into a BinaryTree. The structure would be as below. Note that this binary tree is not

balanced, which can be a desirable characteristic for guaranteeing the performance of lookups -

see AVL trees for an example of a self-balancing binary search tree.

 7
 / \
 5 9
 / \ \
 3 6 11
 \
 12
 \
 14
 \
 15

https://riptutorial.com/ 83

https://en.wikipedia.org/wiki/Binary_search_tree
https://en.wikipedia.org/wiki/Self-balancing_binary_search_tree
https://en.wikipedia.org/wiki/AVL_tree

BinaryTreeNode class

Option Explicit

Public left As BinaryTreeNode
Public right As BinaryTreeNode
Public key As Variant
Public value As Variant

BinaryTree class

[TODO]

Read Data Structures online: https://riptutorial.com/vba/topic/8628/data-structures

https://riptutorial.com/ 84

https://riptutorial.com/vba/topic/8628/data-structures

Chapter 17: Data Types and Limits

Examples

Byte

Dim Value As Byte

A Byte is an unsigned 8 bit data type. It can represent integer numbers between 0 and 255 and

attempting to store a value outside of that range will result in runtime error 6: Overflow. Byte is the

only intrinsic unsigned type available in VBA.

The casting function to convert to a Byte is CByte(). For casts from floating point types, the result is

rounded to the nearest integer value with .5 rounding up.

Byte Arrays and Strings

Strings and byte arrays can be substituted for one another through simple assignment (no

conversion functions necessary).

For example:

Sub ByteToStringAndBack()

Dim str As String
str = "Hello, World!"

Dim byt() As Byte
byt = str

Debug.Print byt(0) ' 72

Dim str2 As String
str2 = byt

Debug.Print str2 ' Hello, World!

End Sub

In order to be able to encode Unicode characters, each character in the string takes up two bytes

in the array, with the least significant byte first. For example:

Sub UnicodeExample()

Dim str As String
str = ChrW(&H2123) & "." ' Versicle character and a dot

Dim byt() As Byte
byt = str

Debug.Print byt(0), byt(1), byt(2), byt(3) ' Prints: 35,33,46,0

https://riptutorial.com/ 85

https://msdn.microsoft.com/en-us/library/aa264525
https://msdn.microsoft.com/en-us/library/aa264525
https://msdn.microsoft.com/en-us/library/office/gg278896.aspx
http://unicode.org/

End Sub

Integer

Dim Value As Integer

An Integer is a signed 16 bit data type. It can store integer numbers in the range of -32,768 to

32,767 and attempting to store a value outside of that range will result in runtime error 6: Overflow.

Integers are stored in memory as little-endian values with negatives represented as a two's

complement.

Note that in general, it is better practice to use a Long rather than an Integer unless the smaller

type is a member of a Type or is required (either by an API calling convention or some other

reason) to be 2 bytes. In most cases VBA treats Integers as 32 bit internally, so there is usually no

advantage to using the smaller type. Additionally, there is a performance penalty incurred every

time an Integer type is used as it is silently cast as a Long.

The casting function to convert to an Integer is CInt(). For casts from floating point types, the

result is rounded to the nearest integer value with .5 rounding up.

Boolean

Dim Value As Boolean

A Boolean is used to store values that can be represented as either True or False. Internally, the

data type is stored as a 16 bit value with 0 representing False and any other value representing

True.

It should be noted that when a Boolean is cast to a numeric type, all of the bits are set to 1. This

results in an internal representation of -1 for signed types and the maximum value for an unsigned

type (Byte).

Dim Example As Boolean
Example = True
Debug.Print CInt(Example) 'Prints -1
Debug.Print CBool(42) 'Prints True
Debug.Print CByte(True) 'Prints 255

The casting function to convert to a Boolean is CBool(). Even though it is represented internally as

a 16 bit number, casting to a Boolean from values outside of that range is safe from overflow,

although it sets all 16 bits to 1:

Dim Example As Boolean
Example = CBool(2 ^ 17)
Debug.Print CInt(Example) 'Prints -1
Debug.Print CByte(Example) 'Prints 255

https://riptutorial.com/ 86

https://en.wikipedia.org/wiki/Endianness
https://en.wikipedia.org/wiki/Two%27s_complement
https://en.wikipedia.org/wiki/Two%27s_complement
http://www.riptutorial.com/vba/example/11779/long

Long

Dim Value As Long

A Long is a signed 32 bit data type. It can store integer numbers in the range of -2,147,483,648 to

2,147,483,647 and attempting to store a value outside of that range will result in runtime error 6:

Overflow.

Longs are stored in memory as little-endian values with negatives represented as a two's

complement.

Note that since a Long matches the width of a pointer in a 32 bit operating system, Longs are

commonly used for storing and passing pointers to and from API functions.

The casting function to convert to a Long is CLng(). For casts from floating point types, the result is

rounded to the nearest integer value with .5 rounding up.

Single

Dim Value As Single

A Single is a signed 32 bit floating point data type. It is stored internally using a little-endian IEEE

754 memory layout. As such, there is not a fixed range of values that can be represented by the

data type - what is limited is the precision of value stored. A Single can store a value integer

values in the range of -16,777,216 to 16,777,216 without a loss of precision. The precision of

floating point numbers depends on the exponent.

A Single will overflow if assigned a value greater than roughly 2128. It will not overflow with

negative exponents, although the usable precision will be questionable before the upper limit is

reached.

As with all floating point numbers, care should be taken when making equality comparisons. Best

practice is to include a delta value appropriate to the required precision.

The casting function to convert to a Single is CSng().

Double

Dim Value As Double

A Double is a signed 64 bit floating point data type. Like the Single, it is stored internally using a

little-endian IEEE 754 memory layout and the same precautions regarding precision should be

taken. A Double can store integer values in the range of -9,007,199,254,740,992 to

9,007,199,254,740,992 without a loss of precision. The precision of floating point numbers

depends on the exponent.

A Double will overflow if assigned a value greater than roughly 21024. It will not overflow with

https://riptutorial.com/ 87

https://en.wikipedia.org/wiki/Endianness
https://en.wikipedia.org/wiki/Two%27s_complement
https://en.wikipedia.org/wiki/Two%27s_complement
https://en.wikipedia.org/wiki/Endianness
https://en.wikipedia.org/wiki/Single-precision_floating-point_format
https://en.wikipedia.org/wiki/Single-precision_floating-point_format
http://www.riptutorial.com/vba/example/11780/single
https://en.wikipedia.org/wiki/Endianness
https://en.wikipedia.org/wiki/Double-precision_floating-point_format

negative exponents, although the usable precision will be questionable before the upper limit is

reached.

The casting function to convert to a Double is CDbl().

Currency

Dim Value As Currency

A Currency is a signed 64 bit floating point data type similar to a Double, but scaled by 10,000 to

give greater precision to the 4 digits to the right of the decimal point. A Currency variable can store

values from -922,337,203,685,477.5808 to 922,337,203,685,477.5807, giving it the largest

capacity of any intrinsic type in a 32 bit application. As the name of the data type implies, it is

considered best practice to use this data type when representing monetary calculations as the

scaling helps to avoid rounding errors.

The casting function to convert to a Currency is CCur().

Date

Dim Value As Date

A Date type is represented internally as a signed 64 bit floating point data type with the value to

the left of the decimal representing the number of days from the epoch date of December 30th,

1899 (although see the note below). The value to the right of the decimal represents the time as a

fractional day. Thus, an integer Date would have a time component of 12:00:00AM and x.5 would

have a time component of 12:00:00PM.

Valid values for Dates are between January 1st 100 and December 31st 9999. Since a Double has

a larger range, it is possible to overflow a Date by assigning values outside of that range.

As such, it can be used interchangeably with a Double for Date calculations:

Dim MyDate As Double
MyDate = 0 'Epoch date.
Debug.Print Format$(MyDate, "yyyy-mm-dd") 'Prints 1899-12-30.
MyDate = MyDate + 365
Debug.Print Format$(MyDate, "yyyy-mm-dd") 'Prints 1900-12-30.

The casting function to convert to a Date is CDate(), which accepts any numeric type string

date/time representation. It is important to note that string representations of dates will be

converted based on the current locale setting in use, so direct casts should be avoided if the code

is meant to be portable.

String

A String represents a sequence of characters, and comes in two flavors:

https://riptutorial.com/ 88

http://www.riptutorial.com/vba/example/11781/double
http://www.riptutorial.com/vba/example/11781/double

Variable length

Dim Value As String

A variable length String allows appending and truncation and is stored in memory as a COM

BSTR. This consists of a 4 byte unsigned integer that stores the length of the String in bytes

followed by the string data itself as wide characters (2 bytes per character) and terminated with 2

null bytes. Thus, the maximum string length that can be handled by VBA is 2,147,483,647

characters.

The internal pointer to the structure (retrievable by the StrPtr() function) points to the memory

location of the data, not the length prefix. This means that a VBA String can be passed directly API

functions that require a pointer to a character array.

Because the length can change, VBA reallocates memory for a String every time the variable is

assigned to, which can impose performance penalties for procedures that alter them repeatedly.

Fixed length

Dim Value As String * 1024 'Declares a fixed length string of 1024 characters.

Fixed length strings are allocated 2 bytes for each character and are stored in memory as a simple

byte array. Once allocated, the length of the String is immutable. They are not null terminated in

memory, so a string that fills the memory allocated with non-null characters is unsuitable for

passing to API functions expecting a null terminated string.

Fixed length strings carry over a legacy 16 bit index limitation, so can only be up to 65,535

characters in length. Attempting to assign a value longer than the available memory space will not

result in a runtime error - instead the resulting value will simply be truncated:

Dim Foobar As String * 5
Foobar = "Foo" & "bar"
Debug.Print Foobar 'Prints "Fooba"

The casting function to convert to a String of either type is CStr().

LongLong

Dim Value As LongLong

A LongLong is a signed 64 bit data type and is only available in 64 bit applications. It is not

available in 32 bit applications running on 64 bit operating systems. It can store integer values in

the range of -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807 and attempting to store a

value outside of that range will result in runtime error 6: Overflow.

LongLongs are stored in memory as little-endian values with negatives represented as a two's

https://riptutorial.com/ 89

https://msdn.microsoft.com/en-us/library/windows/desktop/ms221069(v=vs.85).aspx
https://en.wikipedia.org/wiki/Endianness
https://en.wikipedia.org/wiki/Two%27s_complement

complement.

The LongLong data type was introduced as part of VBA's 64 bit operating system support. In 64

bit applications, this value can be used to store and pass pointers to 64 bit APIs.

The casting function to convert to a LongLong is CLngLng(). For casts from floating point types, the

result is rounded to the nearest integer value with .5 rounding up.

Variant

Dim Value As Variant 'Explicit
Dim Value 'Implicit

A Variant is a COM data type that is used for storing and exchanging values of arbitrary types, and

any other type in VBA can be assigned to a Variant. Variables declared without an explicit type

specified by As [Type] default to Variant.

Variants are stored in memory as a VARIANT structure that consists of a byte type descriptor (

VARTYPE) followed by 6 reserved bytes then an 8 byte data area. For numeric types (including

Date and Boolean), the underlying value is stored in the Variant itself. For all other types, the data

area contains a pointer to the underlying value.

The underlying type of a Variant can be determined with either the VarType() function which returns

the numeric value stored in the type descriptor, or the TypeName() function which returns the string

representation:

Dim Example As Variant
Example = 42
Debug.Print VarType(Example) 'Prints 2 (VT_I2)
Debug.Print TypeName(Example) 'Prints "Integer"
Example = "Some text"
Debug.Print VarType(Example) 'Prints 8 (VT_BSTR)
Debug.Print TypeName(Example) 'Prints "String"

Because Variants can store values of any type, assignments from literals without type hints will be

implicitly cast to a Variant of the appropriate type according to the table below. Literals with type

hints will be cast to a Variant of the hinted type.

Value Resulting type

String values String

Non-floating point numbers in Integer range Integer

Non-floating point numbers in Long range Long

Non-floating point numbers outside of Long range Double

https://riptutorial.com/ 90

https://en.wikipedia.org/wiki/Two%27s_complement
https://msdn.microsoft.com/en-us/library/windows/desktop/ms221627(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms221170(v=vs.85).aspx
https://i.stack.imgur.com/RFvAd.png
http://www.riptutorial.com/vba/example/2960/type-hints

Value Resulting type

All floating point numbers Double

Note: Unless there is a specific reason to use a Variant (i.e. an iterator in a For Each loop or an

API requirement), the type should generally be avoided for routine tasks for the following reasons:

They are not type safe, increasing the possibility of runtime errors. For example, a Variant

holding an Integer value will silently change itself into a Long instead of overflowing.

•

They introduce processing overhead by requiring at least one additional pointer dereference.•

The memory requirement for a Variant is always at least 8 bytes higher than needed to store

the underlying type.

•

The casting function to convert to a Variant is CVar().

LongPtr

Dim Value As LongPtr

The LongPtr was introduced into VBA in order to support 64 bit platforms. On a 32 bit system, it is

treated as a Long and on 64 bit systems it is treated as a LongLong.

It's primary use is in providing a portable way to store and pass pointers on both architectures

(See Changing code behavior at compile time.

Although it is treated by the operating system as a memory address when used in API calls, it

should be noted that VBA treats it like signed type (and therefore subject to unsigned to signed

overflow). For this reason, any pointer arithmetic performed using LongPtrs should not use > or <

comparisons. This "quirk" also makes it possible that adding simple offsets pointing to valid

addresses in memory can cause overflow errors, so caution should be taken when working with

pointers in VBA.

The casting function to convert to a LongPtr is CLngPtr(). For casts from floating point types, the

result is rounded to the nearest integer value with .5 rounding up (although since it is usually a

memory address, using it as an assignment target for a floating point calculation is dangerous at

best).

Decimal

Dim Value As Variant
Value = CDec(1.234)

'Set Value to the smallest possible Decimal value
Value = CDec("0.0000000000000000000000000001")

The Decimal data-type is only available as a sub-type of Variant, so you must declare any variable

that needs to contain a Decimal as a Variant and then assign a Decimal value using the CDec

function. The keyword Decimal is a reserved word (which suggests that VBA was eventually going

https://riptutorial.com/ 91

http://www.riptutorial.com/vba/example/11779/long
http://www.riptutorial.com/vba/example/11785/longlong
http://www.riptutorial.com/vba/example/11557/changing-code-behavior-at-compile-time

to add first-class support for the type), so Decimal cannot be used as a variable or procedure

name.

The Decimal type requires 14 bytes of memory (in addition to the bytes required by the parent

Variant) and can store numbers with up to 28 decimal places. For numbers without any decimal

places, the range of allowed values is -79,228,162,514,264,337,593,543,950,335 to

+79,228,162,514,264,337,593,543,950,335 inclusive. For numbers with the maximum 28 decimal

places, the range of allowed values is -7.9228162514264337593543950335 to

+7.9228162514264337593543950335 inclusive.

Read Data Types and Limits online: https://riptutorial.com/vba/topic/3418/data-types-and-limits

https://riptutorial.com/ 92

https://riptutorial.com/vba/topic/3418/data-types-and-limits

Chapter 18: Date Time Manipulation

Examples

Calendar

VBA supports 2 calendars : Gregorian and Hijri

The Calendar property is used to modify or display the current calendar.

The 2 values for the Calendar are:

Value Constant Description

0 vbCalGreg Gregorian calendar (default)

1 vbCalHijri Hijri calendar

Example

Sub CalendarExample()
 'Cache the current setting.
 Dim Cached As Integer
 Cached = Calendar

 ' Dates in Gregorian Calendar
 Calendar = vbCalGreg
 Dim Sample As Date
 'Create sample date of 2016-07-28
 Sample = DateSerial(2016, 7, 28)

 Debug.Print "Current Calendar : " & Calendar
 Debug.Print "SampleDate = " & Format$(Sample, "yyyy-mm-dd")

 ' Date in Hijri Calendar
 Calendar = vbCalHijri
 Debug.Print "Current Calendar : " & Calendar
 Debug.Print "SampleDate = " & Format$(Sample, "yyyy-mm-dd")

 'Reset VBA to cached value.
 Cached = Calendar
End Sub

This Sub prints the following ;

Current Calendar : 0
SampleDate = 2016-07-28
Current Calendar : 1
SampleDate = 1437-10-23

https://riptutorial.com/ 93

https://en.wikipedia.org/wiki/Gregorian_calendar
https://en.wikipedia.org/wiki/Islamic_calendar

Base functions

Retrieve System DateTime

VBA supports 3 built-in functions to retrieve the date and/or time from the system's clock.

Function Return Type Return Value

Now Date Returns the current date and time

Date Date Returns the date portion of the current date and time

Time Date Returns the time portion of the current date and time

Sub DateTimeExample()

 ' ---
 ' Note : EU system with default date format DD/MM/YYYY
 ' ---

 Debug.Print Now ' prints 28/07/2016 10:16:01 (output below assumes this date and time)
 Debug.Print Date ' prints 28/07/2016
 Debug.Print Time ' prints 10:16:01

 ' Apply a custom format to the current date or time
 Debug.Print Format$(Now, "dd mmmm yyyy hh:nn") ' prints 28 July 2016 10:16
 Debug.Print Format$(Date, "yyyy-mm-dd") ' prints 2016-07-28
 Debug.Print Format$(Time, "hh") & " hour " & _
 Format$(Time, "nn") & " min " & _
 Format$(Time, "ss") & " sec " ' prints 10 hour 16 min 01 sec

End Sub

Timer Function

The Timer function returns a Single representing the number of seconds elapsed since midnight.

The precision is one hundredth of a second.

Sub TimerExample()

 Debug.Print Time ' prints 10:36:31 (time at execution)
 Debug.Print Timer ' prints 38191,13 (seconds since midnight)

End Sub

Because Now and Time functions are only precise to seconds, Timer offers a convenient way to

increase accuracy of time measurement:

Sub GetBenchmark()

https://riptutorial.com/ 94

 Dim StartTime As Single
 StartTime = Timer 'Store the current Time

 Dim i As Long
 Dim temp As String
 For i = 1 To 1000000 'See how long it takes Left$ to execute 1,000,000 times
 temp = Left$("Text", 2)
 Next i

 Dim Elapsed As Single
 Elapsed = Timer - StartTime
 Debug.Print "Code completed in " & CInt(Elapsed * 1000) & " ms"

End Sub

IsDate()

IsDate() tests whether an expression is a valid date or not. Returns a Boolean.

Sub IsDateExamples()

 Dim anything As Variant

 anything = "September 11, 2001"

 Debug.Print IsDate(anything) 'Prints True

 anything = #9/11/2001#

 Debug.Print IsDate(anything) 'Prints True

 anything = "just a string"

 Debug.Print IsDate(anything) 'Prints False

 anything = vbNull

 Debug.Print IsDate(anything) 'Prints False

End Sub

Extraction functions

These functions take a Variant that can be cast to a Date as a parameter and return an Integer

representing a portion of a date or time. If the parameter can not be cast to a Date, it will result in a

run-time error 13: Type mismatch.

Function Description
Returned

value

Year() Returns the year portion of the date argument.
Integer (100 to

9999)

Integer (1 to Month() Returns the month portion of the date argument.

https://riptutorial.com/ 95

Function Description
Returned

value

12)

Day() Returns the day portion of the date argument.
Integer (1 to

31)

WeekDay()
Returns the day of the week of the date argument. Accepts an

optional second argument definining the first day of the week
Integer (1 to 7)

Hour() Returns the hour portion of the date argument.
Integer (0 to

23)

Minute() Returns the minute portion of the date argument.
Integer (0 to

59)

Second() Returns the second portion of the date argument.
Integer (0 to

59)

Examples:

Sub ExtractionExamples()

 Dim MyDate As Date

 MyDate = DateSerial(2016, 7, 28) + TimeSerial(12, 34, 56)

 Debug.Print Format$(MyDate, "yyyy-mm-dd hh:nn:ss") ' prints 2016-07-28 12:34:56

 Debug.Print Year(MyDate) ' prints 2016
 Debug.Print Month(MyDate) ' prints 7
 Debug.Print Day(MyDate) ' prints 28
 Debug.Print Hour(MyDate) ' prints 12
 Debug.Print Minute(MyDate) ' prints 34
 Debug.Print Second(MyDate) ' prints 56

 Debug.Print Weekday(MyDate) ' prints 5
 'Varies by locale - i.e. will print 4 in the EU and 5 in the US
 Debug.Print Weekday(MyDate, vbUseSystemDayOfWeek)
 Debug.Print Weekday(MyDate, vbMonday) ' prints 4
 Debug.Print Weekday(MyDate, vbSunday) ' prints 5

End Sub

DatePart() Function

DatePart() is also a function returning a portion of a date, but works differently and allow more

possibilities than the functions above. It can for instance return the Quarter of the year or the

Week of the year.

Syntax:

https://riptutorial.com/ 96

DatePart (interval, date [, firstdayofweek] [, firstweekofyear])

interval argument can be :

Interval Description

"yyyy" Year (100 to 9999)

"y" Day of the year (1 to 366)

"m" Month (1 to 12)

"q" Quarter (1 to 4)

"ww" Week (1 to 53)

"w" Day of the week (1 to 7)

"d" Day of the month (1 to 31)

"h" Hour (0 to 23)

"n" Minute (0 to 59)

"s" Second (0 to 59)

firstdayofweek is optional. it is a constant that specifies the first day of the week. If not specified,

vbSunday is assumed.

firstweekofyear is optional. it is a constant that specifies the first week of the year. If not specified,

the first week is assumed to be the week in which January 1 occurs.

Examples:

Sub DatePartExample()

 Dim MyDate As Date

 MyDate = DateSerial(2016, 7, 28) + TimeSerial(12, 34, 56)

 Debug.Print Format$(MyDate, "yyyy-mm-dd hh:nn:ss") ' prints 2016-07-28 12:34:56

 Debug.Print DatePart("yyyy", MyDate) ' prints 2016
 Debug.Print DatePart("y", MyDate) ' prints 210
 Debug.Print DatePart("h", MyDate) ' prints 12
 Debug.Print DatePart("Q", MyDate) ' prints 3
 Debug.Print DatePart("w", MyDate) ' prints 5
 Debug.Print DatePart("ww", MyDate) ' prints 31

End Sub

Calculation functions

https://riptutorial.com/ 97

DateDiff()

DateDiff() returns a Long representing the number of time intervals between two specified dates.

Syntax

DateDiff (interval, date1, date2 [, firstdayofweek] [, firstweekofyear])

interval can be any of the intervals defined in the DatePart() function•

date1 and date2 are the two dates you want to use in the calculation•

firstdayofweek and firstweekofyear are optional. Refer to DatePart() function for explanations•

Examples

Sub DateDiffExamples()

 ' Check to see if 2016 is a leap year.
 Dim NumberOfDays As Long
 NumberOfDays = DateDiff("d", #1/1/2016#, #1/1/2017#)

 If NumberOfDays = 366 Then
 Debug.Print "2016 is a leap year." 'This will output.
 End If

 ' Number of seconds in a day
 Dim StartTime As Date
 Dim EndTime As Date
 StartTime = TimeSerial(0, 0, 0)
 EndTime = TimeSerial(24, 0, 0)
 Debug.Print DateDiff("s", StartTime, EndTime) 'prints 86400

End Sub

DateAdd()

DateAdd() returns a Date to which a specified date or time interval has been added.

Syntax

DateAdd (interval, number, date)

interval can be any of the intervals defined in the DatePart() function•

number Numeric expression that is the number of intervals you want to add. It can be

positive (to get dates in the future) or negative (to get dates in the past).

•

date is a Date or literal representing date to which the interval is added•

Examples :

Sub DateAddExamples()

https://riptutorial.com/ 98

http://www.riptutorial.com/vba/example/15553/extraction-functions
http://www.riptutorial.com/vba/example/15553/extraction-functions
http://www.riptutorial.com/vba/example/15553/extraction-functions

 Dim Sample As Date
 'Create sample date and time of 2016-07-28 12:34:56
 Sample = DateSerial(2016, 7, 28) + TimeSerial(12, 34, 56)

 ' Date 5 months previously (prints 2016-02-28):
 Debug.Print Format$(DateAdd("m", -5, Sample), "yyyy-mm-dd")

 ' Date 10 months previously (prints 2015-09-28):
 Debug.Print Format$(DateAdd("m", -10, Sample), "yyyy-mm-dd")

 ' Date in 8 months (prints 2017-03-28):
 Debug.Print Format$(DateAdd("m", 8, Sample), "yyyy-mm-dd")

 ' Date/Time 18 hours previously (prints 2016-07-27 18:34:56):
 Debug.Print Format$(DateAdd("h", -18, Sample), "yyyy-mm-dd hh:nn:ss")

 ' Date/Time in 36 hours (prints 2016-07-30 00:34:56):
 Debug.Print Format$(DateAdd("h", 36, Sample), "yyyy-mm-dd hh:nn:ss")

End Sub

Conversion and Creation

CDate()

CDate() converts something from any datatype to a Date datatype

Sub CDateExamples()

 Dim sample As Date

 ' Converts a String representing a date and time to a Date
 sample = CDate("September 11, 2001 12:34")
 Debug.Print Format$(sample, "yyyy-mm-dd hh:nn:ss") ' prints 2001-09-11 12:34:00

 ' Converts a String containing a date to a Date
 sample = CDate("September 11, 2001")
 Debug.Print Format$(sample, "yyyy-mm-dd hh:nn:ss") ' prints 2001-09-11 00:00:00

 ' Converts a String containing a time to a Date
 sample = CDate("12:34:56")
 Debug.Print Hour(sample) ' prints 12
 Debug.Print Minute(sample) ' prints 34
 Debug.Print Second(sample) ' prints 56

 ' Find the 10000th day from the epoch date of 1899-12-31
 sample = CDate(10000)
 Debug.Print Format$(sample, "yyyy-mm-dd") ' prints 1927-05-18

End Sub

Note that VBA also has a loosely typed CVDate() that functions in the same way as the CDate()

function other than returning a date typed Variant instead of a strongly typed Date. The CDate()

version should be preferred when passing to a Date parameter or assigning to a Date variable, and

the CVDate() version should be preferred when when passing to a Variant parameter or assigning

to a Variant variable. This avoids implicit type casting.

https://riptutorial.com/ 99

DateSerial()

DateSerial() function is used to create a date. It returns a Date for a specified year, month, and

day.

Syntax:

DateSerial (year, month, day)

With year, month and day arguments being valid Integers (Year from 100 to 9999, Month from 1 to

12, Day from 1 to 31).

Examples

Sub DateSerialExamples()

 ' Build a specific date
 Dim sample As Date
 sample = DateSerial(2001, 9, 11)
 Debug.Print Format$(sample, "yyyy-mm-dd") ' prints 2001-09-11

 ' Find the first day of the month for a date.
 sample = DateSerial(Year(sample), Month(sample), 1)
 Debug.Print Format$(sample, "yyyy-mm-dd") ' prints 2001-09-11

 ' Find the last day of the previous month.
 sample = DateSerial(Year(sample), Month(sample), 1) - 1
 Debug.Print Format$(sample, "yyyy-mm-dd") ' prints 2001-09-11

End Sub

Note that DateSerial() will accept "invalid" dates and calculate a valid date from it. This can be

used creatively for good:

Positive Example

Sub GoodDateSerialExample()

 'Calculate 45 days from today
 Dim today As Date
 today = DateSerial (2001, 9, 11)
 Dim futureDate As Date
 futureDate = DateSerial(Year(today), Month(today), Day(today) + 45)
 Debug.Print Format$(futureDate, "yyyy-mm-dd") 'prints 2009-10-26

End Sub

However, it is more likely to cause grief when attempting to create a date from unvalidated user

input:

Negative Example

Sub BadDateSerialExample()

https://riptutorial.com/ 100

 'Allow user to enter unvalidate date information
 Dim myYear As Long
 myYear = InputBox("Enter Year")
 'Assume user enters 2009
 Dim myMonth As Long
 myMonth = InputBox("Enter Month")
 'Assume user enters 2
 Dim myDay As Long
 myDay = InputBox("Enter Day")
 'Assume user enters 31
 Debug.Print Format$(DateSerial(myYear, myMonth, myDay), "yyyy-mm-dd")
 'prints 2009-03-03

End Sub

Read Date Time Manipulation online: https://riptutorial.com/vba/topic/4452/date-time-manipulation

https://riptutorial.com/ 101

https://riptutorial.com/vba/topic/4452/date-time-manipulation

Chapter 19: Declaring and assigning strings

Remarks

Strings are a Reference type and are central to most programming tasks. Strings are assigned

text, even if the text happens to be numeric. Strings can be zero-length, or any length up to 2GB.

Modern versions of VBA store Strings internally using a Byte array of Multi-Byte Character Set

bytes (an alternative to Unicode).

Examples

Declare a string constant

Const appName As String = "The App For That"

Declare a variable-width string variable

Dim surname As String 'surname can accept strings of variable length
surname = "Smith"
surname = "Johnson"

Declare and assign a fixed-width string

'Declare and assign a 1-character fixed-width string
Dim middleInitial As String * 1 'middleInitial must be 1 character in length
middleInitial = "M"

'Declare and assign a 2-character fixed-width string `stateCode`,
'must be 2 characters in length
Dim stateCode As String * 2
stateCode = "TX"

Declare and assign a string array

'Declare, dimension and assign a string array with 3 elements
Dim departments(2) As String
departments(0) = "Engineering"
departments(1) = "Finance"
departments(2) = "Marketing"

'Declare an undimensioned string array and then dynamically assign with
'the results of a function that returns a string array
Dim stateNames() As String
stateNames = VBA.Strings.Split("Texas;California;New York", ";")

'Declare, dimension and assign a fixed-width string array
Dim stateCodes(2) As String * 2
stateCodes(0) = "TX"

https://riptutorial.com/ 102

https://msdn.microsoft.com/en-us/library/t63sy5hs.aspx

stateCodes(1) = "CA"
stateCodes(2) = "NY"

Assign specific characters within a string using Mid statement

VBA offers a Mid function for returning substrings within a string, but it also offers the Mid

Statement which can be used to assign substrings or individual characters withing a string.

The Mid function will typically appear on the right-hand-side of an assignment statement or in a

condition, but the Mid Statement typically appears on the left hand side of an assignment

statement.

Dim surname As String
surname = "Smith"

'Use the Mid statement to change the 3rd character in a string
Mid(surname, 3, 1) = "y"
Debug.Print surname

'Output:
'Smyth

Note: If you need to assign to individual bytes in a string instead of individual characters within a

string (see the Remarks below regarding the Multi-Byte Character Set), the MidB statement can be

used. In this instance, the second argument for the MidB statement is the 1-based position of the

byte where the replacement will start so the equivalent line to the example above would be

MidB(surname, 5, 2) = "y".

Assignment to and from a byte array

Strings can be assigned directly to byte arrays and visa-versa. Remember that Strings are stored

in a Multi-Byte Character Set (see Remarks below) so only every other index of the resulting array

will be the portion of the character that falls within the ASCII range.

Dim bytes() As Byte
Dim example As String

example = "Testing."
bytes = example 'Direct assignment.

'Loop through the characters. Step 2 is used due to wide encoding.
Dim i As Long
For i = LBound(bytes) To UBound(bytes) Step 2
 Debug.Print Chr$(bytes(i)) 'Prints T, e, s, t, i, n, g, .
Next

Dim reverted As String
reverted = bytes 'Direct assignment.
Debug.Print reverted 'Prints "Testing."

Read Declaring and assigning strings online: https://riptutorial.com/vba/topic/3446/declaring-and-

assigning-strings

https://riptutorial.com/ 103

https://riptutorial.com/vba/topic/3446/declaring-and-assigning-strings
https://riptutorial.com/vba/topic/3446/declaring-and-assigning-strings

Chapter 20: Declaring Variables

Examples

Implicit And Explicit Declaration

If a code module does not contain Option Explicit at the top of the module, then the compiler will

automatically (that is, "implicitly") create variables for you when you use them. They will default to

variable type Variant.

Public Sub ExampleDeclaration()

 someVariable = 10 '
 someOtherVariable = "Hello World"
 'Both of these variables are of the Variant type.

End Sub

In the above code, if Option Explicit is specified, the code will interrupt because it is missing the

required Dim statements for someVariable and someOtherVariable.

Option Explicit

Public Sub ExampleDeclaration()

 Dim someVariable As Long
 someVariable = 10

 Dim someOtherVariable As String
 someOtherVariable = "Hello World"

End Sub

It is considered best practice to use Option Explicit in code modules, to ensure that you declare all

variables.

See VBA Best Practices how to set this option by default.

Variables

Scope

A variable can be declared (in increasing visibility level):

At procedure level, using the Dim keyword in any procedure; a local variable.•

At module level, using the Private keyword in any type of module; a private field.•

At instance level, using the Friend keyword in any type of class module; a friend field.•

At instance level, using the Public keyword in any type of class module; a public field.•

Globally, using the Public keyword in a standard module; a global variable.•

https://riptutorial.com/ 104

http://www.riptutorial.com/excel-vba/topic/1107/vba-best-practices

Variables should always be declared with the smallest possible scope: prefer passing parameters

to procedures, rather than declaring global variables.

See Access Modifiers for more information.

Local variables

Use the Dim keyword to declare a local variable:

Dim identifierName [As Type][, identifierName [As Type], ...]

The [As Type] part of the declaration syntax is optional. When specified, it sets the variable's data

type, which determines how much memory will be allocated to that variable. This declares a String

variable:

Dim identifierName As String

When a type is not specified, the type is implicitly Variant:

Dim identifierName 'As Variant is implicit

The VBA syntax also supports declaring multiple variables in a single statement:

Dim someString As String, someVariant, someValue As Long

Notice that the [As Type] has to be specified for each variable (other than 'Variant' ones). This is a

relatively common trap:

Dim integer1, integer2, integer3 As Integer 'Only integer3 is an Integer.
 'The rest are Variant.

Static variables

Local variables can also be Static. In VBA the Static keyword is used to make a variable

"remember" the value it had, last time a procedure was called:

Private Sub DoSomething()
 Static values As Collection
 If values Is Nothing Then
 Set values = New Collection
 values.Add "foo"
 values.Add "bar"
 End If
 DoSomethingElse values
End Sub

Here the values collection is declared as a Static local; because it's an object variable, it is

initialized to Nothing. The condition that follows the declaration verifies if the object reference was

https://riptutorial.com/ 105

http://www.riptutorial.com/vba/example/2959/access-modifiers

Set before - if it's the first time the procedure runs, the collection gets initialized. DoSomethingElse

might be adding or removing items, and they'll still be in the collection next time DoSomething is

called.

Alternative

VBA's Static keyword can easily be misunderstood - especially by seasoned

programmers that usually work in other languages. In many languages, static is used

to make a class member (field, property, method, ...) belong to the type rather than to

the instance. Code in static context cannot reference code in instance context. The

VBA Static keyword means something wildly different.

Often, a Static local could just as well be implemented as a Private, module-level variable (field) -

however this challenges the principle by which a variable should be declared with the smallest

possible scope; trust your instincts, use whichever you prefer - both will work... but using Static

without understanding what it does could lead to interesting bugs.

Dim vs. Private

The Dim keyword is legal at procedure and module levels; its usage at module level is equivalent to

using the Private keyword:

Option Explicit
Dim privateField1 As Long 'same as Private privateField2 as Long
Private privateField2 As Long 'same as Dim privateField2 as Long

The Private keyword is only legal at module level; this invites reserving Dim for local variables and

declaring module variables with Private, especially with the contrasting Public keyword that would

have to be used anyway to declare a public member. Alternatively use Dim everywhere - what

matters is consistency:

"Private fields"

DO use Private to declare a module-level variable.•

DO use Dim to declare a local variable.•

DO NOT use Dim to declare a module-level variable.•

"Dim everywhere"

DO use Dim to declare anything private/local.•

DO NOT use Private to declare a module-level variable.•

AVOID declaring Public fields.*•

*In general, one should avoid declaring Public or Global fields anyway.

Fields

A variable declared at module level, in the declarations section at the top of the module body, is a

https://riptutorial.com/ 106

field. A Public field declared in a standard module is a global variable:

Public PublicField As Long

A variable with a global scope can be accessed from anywhere, including other VBA projects that

would reference the project it's declared in.

To make a variable global/public, but only visible from within the project, use the Friend modifier:

Friend FriendField As Long

This is especially useful in add-ins, where the intent is that other VBA projects reference the add-in

project and can consume the public API.

Friend FriendField As Long 'public within the project, aka for "friend" code
Public PublicField As Long 'public within and beyond the project

Friend fields are not available in standard modules.

Instance Fields

A variable declared at module level, in the declarations section at the top of the body of a class

module (including ThisWorkbook, ThisDocument, Worksheet, UserForm and class modules), is an

instance field: it only exists as long as there's an instance of the class around.

'> Class1
Option Explicit
Public PublicField As Long

'> Module1
Option Explicit
Public Sub DoSomething()
 'Class1.PublicField means nothing here
 With New Class1
 .PublicField = 42
 End With
 'Class1.PublicField means nothing here
End Sub

Encapsulating fields

Instance data is often kept Private, and dubbed encapsulated. A private field can be exposed

using a Property procedure. To expose a private variable publicly without giving write access to the

caller, a class module (or a standard module) implements a Property Get member:

Option Explicit
Private encapsulated As Long

https://riptutorial.com/ 107

Public Property Get SomeValue() As Long
 SomeValue = encapsulated
End Property

Public Sub DoSomething()
 encapsulated = 42
End Sub

The class itself can modify the encapsulated value, but the calling code can only access the Public

members (and Friend members, if the caller is in the same project).

To allow the caller to modify:

An encapsulated value, a module exposes a Property Let member.•

An encapsulated object reference, a module exposes a Property Set member.•

Constants (Const)

If you have a value that never changes in your application, you can define a named constant and

use it in place of a literal value.

You can use Const only at module or procedure level. This means the declaration context for a

variable must be a class, structure, module, procedure, or block, and cannot be a source file,

namespace, or interface.

Public Const GLOBAL_CONSTANT As String = "Project Version #1.000.000.001"
Private Const MODULE_CONSTANT As String = "Something relevant to this Module"

Public Sub ExampleDeclaration()

 Const SOME_CONSTANT As String = "Hello World"

 Const PI As Double = 3.141592653

End Sub

Whilst it can be considered good practice to specify Constant types, it isn't strictly required. Not

specifying the type will still result in the correct type:

Public Const GLOBAL_CONSTANT = "Project Version #1.000.000.001" 'Still a string
Public Sub ExampleDeclaration()

 Const SOME_CONSTANT = "Hello World" 'Still a string
 Const DERIVED_CONSTANT = SOME_CONSTANT 'DERIVED_CONSTANT is also a string
 Const VAR_CONSTANT As Variant = SOME_CONSTANT 'VAR_CONSTANT is Variant/String

 Const PI = 3.141592653 'Still a double
 Const DERIVED_PI = PI 'DERIVED_PI is also a double
 Const VAR_PI As Variant = PI 'VAR_PI is Variant/Double

End Sub

Note that this is specific to Constants and in contrast to variables where not specifying the type

https://riptutorial.com/ 108

results in a Variant type.

While it is possible to explicitly declare a constant as a String, it is not possible to declare a

constant as a string using fixed-width string syntax

'This is a valid 5 character string constant
Const FOO As String = "ABCDE"

'This is not valid syntax for a 5 character string constant
Const FOO As String * 5 = "ABCDE"

Access Modifiers

The Dim statement should be reserved for local variables. At module-level, prefer explicit access

modifiers:

Private for private fields, which can only be accessed within the module they're declared in.•

Public for public fields and global variables, which can be accessed by any calling code.•

Friend for variables public within the project, but inaccessible to other referencing VBA

projects (relevant for add-ins)

•

Global can also be used for Public fields in standard modules, but is illegal in class modules

and is obsolete anyway - prefer the Public modifier instead. This modifier isn't legal for

procedures either.

•

Access modifiers are applicable to variables and procedures alike.

Private ModuleVariable As String
Public GlobalVariable As String

Private Sub ModuleProcedure()

 ModuleVariable = "This can only be done from within the same Module"

End Sub

Public Sub GlobalProcedure()

 GlobalVariable = "This can be done from any Module within this Project"

End Sub

Option Private Module

Public parameterless Sub procedures in standard modules are exposed as macros and can be

attached to controls and keyboard shortcuts in the host document.

Conversely, public Function procedures in standard modules are exposed as user-defined

functions (UDF's) in the host application.

Specifying Option Private Module at the top of a standard module prevents its members from being

https://riptutorial.com/ 109

exposed as macros and UDF's to the host application.

Type Hints

Type Hints are heavily discouraged. They exist and are documented here for historical and

backward-compatibility reasons. You should use the As [DataType] syntax instead.

Public Sub ExampleDeclaration()

 Dim someInteger% '% Equivalent to "As Integer"
 Dim someLong& '& Equivalent to "As Long"
 Dim someDecimal@ '@ Equivalent to "As Currency"
 Dim someSingle! '! Equivalent to "As Single"
 Dim someDouble# '# Equivalent to "As Double"
 Dim someString$ '$ Equivalent to "As String"

 Dim someLongLong^ '^ Equivalent to "As LongLong" in 64-bit VBA hosts
End Sub

Type hints significantly decrease code readability and encourage a legacy Hungarian Notation

which also hinders readability:

Dim strFile$
Dim iFile%

Instead, declare variables closer to their usage and name things for what they're used, not after

their type:

Dim path As String
Dim handle As Integer

Type hints can also be used on literals, to enforce a specific type. By default, a numeric literal

smaller than 32,768 will be interpreted as an Integer literal, but with a type hint you can control

that:

Dim foo 'implicit Variant
foo = 42& ' foo is now a Long
foo = 42# ' foo is now a Double
Debug.Print TypeName(42!) ' prints "Single"

Type hints are usually not needed on literals, because they would be assigned to a variable

declared with an explicit type, or implicitly converted to the appropriate type when passed as

parameters. Implicit conversions can be avoided using one of the explicit type conversion

functions:

'Calls procedure DoSomething and passes a literal 42 as a Long using a type hint
DoSomething 42&

'Calls procedure DoSomething and passes a literal 42 explicitly converted to a Long
DoSomething CLng(42)

https://riptutorial.com/ 110

https://en.wikipedia.org/wiki/Hungarian_notation

String-returning built-in functions

The majority of the built-in functions that handle strings come in two versions: A loosely typed

version that returns a Variant, and a strongly typed version (ending with $) that returns a String.

Unless you are assigning the return value to a Variant, you should prefer the version that returns a

String - otherwise there is an implicit conversion of the return value.

Debug.Print Left(foo, 2) 'Left returns a Variant
Debug.Print Left$(foo, 2) 'Left$ returns a String

These functions are:

VBA.Conversion.Error -> VBA.Conversion.Error$•

VBA.Conversion.Hex -> VBA.Conversion.Hex$•

VBA.Conversion.Oct -> VBA.Conversion.Oct$•

VBA.Conversion.Str -> VBA.Conversion.Str$•

VBA.FileSystem.CurDir -> VBA.FileSystem.CurDir$•

VBA.[_HiddenModule].Input -> VBA.[_HiddenModule].Input$•

VBA.[_HiddenModule].InputB -> VBA.[_HiddenModule].InputB$•

VBA.Interaction.Command -> VBA.Interaction.Command$•

VBA.Interaction.Environ -> VBA.Interaction.Environ$•

VBA.Strings.Chr -> VBA.Strings.Chr$•

VBA.Strings.ChrB -> VBA.Strings.ChrB$•

VBA.Strings.ChrW -> VBA.Strings.ChrW$•

VBA.Strings.Format -> VBA.Strings.Format$•

VBA.Strings.LCase -> VBA.Strings.LCase$•

VBA.Strings.Left -> VBA.Strings.Left$•

VBA.Strings.LeftB -> VBA.Strings.LeftB$•

VBA.Strings.LTtrim -> VBA.Strings.LTrim$•

VBA.Strings.Mid -> VBA.Strings.Mid$•

VBA.Strings.MidB -> VBA.Strings.MidB$•

VBA.Strings.Right -> VBA.Strings.Right$•

VBA.Strings.RightB -> VBA.Strings.RightB$•

VBA.Strings.RTrim -> VBA.Strings.RTrim$•

VBA.Strings.Space -> VBA.Strings.Space$•

VBA.Strings.Str -> VBA.Strings.Str$•

VBA.Strings.String -> VBA.Strings.String$•

VBA.Strings.Trim -> VBA.Strings.Trim$•

VBA.Strings.UCase -> VBA.Strings.UCase$•

Note that these are function aliases, not quite type hints. The Left function corresponds to the

hidden B_Var_Left function, while the Left$ version corresponds to the hidden B_Str_Left function.

In very early versions of VBA the $ sign isn't an allowed character and the function name had to be

enclosed in square brackets. In Word Basic, there were many, many more functions that returned

strings that ended in $.

https://riptutorial.com/ 111

Declaring Fixed-Length Strings

In VBA, Strings can be declared with a specific length; they are automatically padded or truncated

to maintain that length as declared.

Public Sub TwoTypesOfStrings()

 Dim FixedLengthString As String * 5 ' declares a string of 5 characters
 Dim NormalString As String

 Debug.Print FixedLengthString ' Prints " "
 Debug.Print NormalString ' Prints ""

 FixedLengthString = "123" ' FixedLengthString now equals "123 "
 NormalString = "456" ' NormalString now equals "456"

 FixedLengthString = "123456" ' FixedLengthString now equals "12345"
 NormalString = "456789" ' NormalString now equals "456789"

End Sub

When to use a Static variable

A Static variable declared locally is not destructed and does not lose its value when the Sub

procedure is exited. Subsequent calls to the procedure do not require re-initialization or

assignment although you may want to 'zero' any remembered value(s).

These are particularly useful when late binding an object in a 'helper' sub that is called repeatedly.

Snippet 1: Reuse a Scripting.Dictionary object across many worksheets

Option Explicit

Sub main()
 Dim w As Long

 For w = 1 To Worksheets.Count
 processDictionary ws:=Worksheets(w)
 Next w
End Sub

Sub processDictionary(ws As Worksheet)
 Dim i As Long, rng As Range
 Static dict As Object

 If dict Is Nothing Then
 'initialize and set the dictionary object
 Set dict = CreateObject("Scripting.Dictionary")
 dict.CompareMode = vbTextCompare
 Else
 'remove all pre-existing dictionary entries
 ' this may or may not be desired if a single dictionary of entries
 ' from all worksheets is preferred
 dict.RemoveAll
 End If

https://riptutorial.com/ 112

http://www.riptutorial.com/vba/topic/3667/scripting-dictionary-object

 With ws

 'work with a fresh dictionary object for each worksheet
 ' without constructing/destructing a new object each time
 ' or do not clear the dictionary upon subsequent uses and
 ' build a dictionary containing entries from all worksheets

 End With
End Sub

Snippet 2: Create a worksheet UDF that late binds the VBScript.RegExp object

Option Explicit

Function numbersOnly(str As String, _
 Optional delim As String = ", ")
 Dim n As Long, nums() As Variant
 Static rgx As Object, cmat As Object

 'with rgx as static, it only has to be created once
 'this is beneficial when filling a long column with this UDF
 If rgx Is Nothing Then
 Set rgx = CreateObject("VBScript.RegExp")
 Else
 Set cmat = Nothing
 End If

 With rgx
 .Global = True
 .MultiLine = True
 .Pattern = "[0-9]{1,999}"
 If .Test(str) Then
 Set cmat = .Execute(str)
 'resize the nums array to accept the matches
 ReDim nums(cmat.Count - 1)
 'populate the nums array with the matches
 For n = LBound(nums) To UBound(nums)
 nums(n) = cmat.Item(n)
 Next n
 'convert the nums array to a delimited string
 numbersOnly = Join(nums, delim)
 Else
 numbersOnly = vbNullString
 End If
 End With
End Function

https://riptutorial.com/ 113

 Example of UDF with Static object filled through a half-million rows

*Elapsed times to fill 500K rows with UDF:

 - with Dim rgx As Object: 148.74 seconds

 - with Static rgx As Object: 26.07 seconds

* These should be considered for relative comparison only. Your own results will vary according to the

complexity and

 scope of the operations performed.

Remember that a UDF is not calculated once in the lifetime of a workbook. Even a non-volatile

UDF will recalculate whenever the values within the range(s) it references are subject to change.

Each subsequent recalculation event only increases the benefits of a statically declared variable.

A Static variable is available for the lifetime of the module, not the procedure or function in

which it was declared and assigned.

•

Static variables can only be declared locally.•

Static variable hold many of the same properties of a private module level variable but with a

more restricted scope.

•

Related reference: Static (Visual Basic)

Read Declaring Variables online: https://riptutorial.com/vba/topic/877/declaring-variables

https://riptutorial.com/ 114

http://i.stack.imgur.com/BN6gX.png
https://msdn.microsoft.com/en-us/library/z2cty7t8.aspx
https://riptutorial.com/vba/topic/877/declaring-variables

Chapter 21: Error Handling

Examples

Avoiding error conditions

When a runtime error occurs, good code should handle it. The best error handling strategy is to

write code that checks for error conditions and simply avoids executing code that results in a

runtime error.

One key element in reducing runtime errors, is writing small procedures that do one thing. The

fewer reasons procedures have to fail, the easier the code as a whole is to debug.

Avoiding runtime error 91 - Object or With block variable not set:

This error will be raised when an object is used before its reference is assigned. One might have a

procedure that receives an object parameter:

Private Sub DoSomething(ByVal target As Worksheet)
 Debug.Print target.Name
End Sub

If target isn't assigned a reference, the above code will raise an error that is easily avoided by

checking if the object contains an actual object reference:

Private Sub DoSomething(ByVal target As Worksheet)
 If target Is Nothing Then Exit Sub
 Debug.Print target.Name
End Sub

If target isn't assigned a reference, then the unassigned reference is never used, and no error

occurs.

This way of early-exiting a procedure when one or more parameter isn't valid, is called a guard

clause.

Avoiding runtime error 9 - Subscript out of range:

This error is raised when an array is accessed outside of its boundaries.

Private Sub DoSomething(ByVal index As Integer)
 Debug.Print ActiveWorkbook.Worksheets(index)
End Sub

Given an index greater than the number of worksheets in the ActiveWorkbook, the above code will

raise a runtime error. A simple guard clause can avoid that:

https://riptutorial.com/ 115

Private Sub DoSomething(ByVal index As Integer)
 If index > ActiveWorkbook.Worksheets.Count Or index <= 0 Then Exit Sub
 Debug.Print ActiveWorkbook.Worksheets(index)
End Sub

Most runtime errors can be avoided by carefully verifying the values we're using before we use

them, and branching on another execution path accordingly using a simple If statement - in guard

clauses that makes no assumptions and validates a procedure's parameters, or even in the body

of larger procedures.

On Error statement

Even with guard clauses, one cannot realistically always account for all possible error conditions

that could be raised in the body of a procedure. The On Error GoTo statement instructs VBA to jump

to a line label and enter "error handling mode" whenever an unexpected error occurs at runtime.

After handling an error, code can resume back into "normal" execution using the Resume keyword.

Line labels denote subroutines: because subroutines originate from legacy BASIC code and uses

GoTo and GoSub jumps and Return statements to jump back to the "main" routine, it's fairly easy to

write hard-to-follow spaghetti code if things aren't rigorously structured. For this reason, it's best

that:

a procedure has one and only one error-handling subroutine•

the error-handling subroutine only ever runs in an error state•

This means a procedure that handles its errors, should be structured like this:

Private Sub DoSomething()
 On Error GoTo CleanFail

 'procedure code here

CleanExit:
 'cleanup code here
 Exit Sub

CleanFail:
 'error-handling code here
 Resume CleanExit
End Sub

Error Handling Strategies

Sometimes you want to handle different errors with different actions. In that case you will inspect

the global Err object, which will contain information about the error that was raised - and act

accordingly:

CleanExit:

https://riptutorial.com/ 116

 Exit Sub

CleanFail:
 Select Case Err.Number
 Case 9
 MsgBox "Specified number doesn't exist. Please try again.", vbExclamation
 Resume
 Case 91
 'woah there, this shouldn't be happening.
 Stop 'execution will break here
 Resume 'hit F8 to jump to the line that raised the error
 Case Else
 MsgBox "An unexpected error has occurred:" & vbNewLine & Err.Description,
vbCritical
 Resume CleanExit
 End Select
End Sub

As a general guideline, consider turning on the error handling for entire subroutine or function, and

handle all the errors that may occur within its scope. If you need to only handle errors in the small

section section of the code -- turn error handling on and off a the same level:

Private Sub DoSomething(CheckValue as Long)

 If CheckValue = 0 Then
 On Error GoTo ErrorHandler ' turn error handling on
 ' code that may result in error
 On Error GoTo 0 ' turn error handling off - same level
 End If

CleanExit:
 Exit Sub

ErrorHandler:
 ' error handling code here
 ' do not turn off error handling here
 Resume

End Sub

Line numbers

VBA supports legacy-style (e.g. QBASIC) line numbers. The Erl hidden property can be used to

identify the line number that raised the last error. If you're not using line numbers, Erl will only ever

return 0.

Sub DoSomething()
10 On Error GoTo 50
20 Debug.Print 42 / 0
30 Exit Sub
40
50 Debug.Print "Error raised on line " & Erl ' returns 20
End Sub

https://riptutorial.com/ 117

If you are using line numbers, but not consistently, then Erl will return the last line number before

the instruction that raised the error.

Sub DoSomething()
10 On Error GoTo 50
 Debug.Print 42 / 0
30 Exit Sub

50 Debug.Print "Error raised on line " & Erl 'returns 10
End Sub

Keep in mind that Erl also only has Integer precision, and will silently overflow. This means that

line numbers outside of the integer range will give incorrect results:

Sub DoSomething()
99997 On Error GoTo 99999
99998 Debug.Print 42 / 0
99999
 Debug.Print Erl 'Prints 34462
End Sub

The line number isn't quite as relevant as the statement that caused the error, and numbering

lines quickly becomes tedious and not quite maintenance-friendly.

Resume keyword

An error-handling subroutine will either:

run to the end of the procedure, in which case execution resumes in the calling procedure.•

or, use the Resume keyword to resume execution inside the same procedure.•

The Resume keyword should only ever be used inside an error handling subroutine, because if VBA

encounters Resume without being in an error state, runtime error 20 "Resume without error" is

raised.

There are several ways an error-handling subroutine may use the Resume keyword:

Resume used alone, execution continues on the statement that caused the error. If the error

isn't actually handled before doing that, then the same error will be raised again, and

execution might enter an infinite loop.

•

Resume Next continues execution on the statement immediately following the statement

that caused the error. If the error isn't actually handled before doing that, then execution is

permitted to continue with potentially invalid data, which may result in logical errors and

unexpected behavior.

•

Resume [line label] continues execution at the specified line label (or line number, if you're

using legacy-style line numbers). This would typically allow executing some cleanup code

before cleanly exiting the procedure, such as ensuring a database connection is closed

before returning to the caller.

•

https://riptutorial.com/ 118

http://www.riptutorial.com/vba/example/11777/integer

On Error Resume Next

The On Error statement itself can use the Resume keyword to instruct the VBA runtime to effectively

ignore all errors.

If the error isn't actually handled before doing that, then execution is permitted to

continue with potentially invalid data, which may result in logical errors and

unexpected behavior.

The emphasis above cannot be emphasized enough. On Error Resume Next effectively ignores

all errors and shoves them under the carpet. A program that blows up with a runtime error

given invalid input is a better program than one that keeps running with unknown/unintended data

- be it only because the bug is much more easily identifiable. On Error Resume Next can easily hide

bugs.

The On Error statement is procedure-scoped - that's why there should normally be only one, single

such On Error statement in a given procedure.

However sometimes an error condition can't quite be avoided, and jumping to an error-handling

subroutine only to Resume Next just doesn't feel right. In this specific case, the known-to-possibly-

fail statement can be wrapped between two On Error statements:

On Error Resume Next
[possibly-failing statement]
Err.Clear 'resets current error
On Error GoTo 0

The On Error GoTo 0 instruction resets error handling in the current procedure, such that any

further instruction causing a runtime error would be unhandled within that procedure and instead

passed up the call stack until it is caught by an active error handler. If there is no active error

handler in the call stack, it will be treated as an unhandled exception.

Public Sub Caller()
 On Error GoTo Handler

 Callee

 Exit Sub
Handler:
 Debug.Print "Error " & Err.Number & " in Caller."
End Sub

Public Sub Callee()
 On Error GoTo Handler

 Err.Raise 1 'This will be handled by the Callee handler.
 On Error GoTo 0 'After this statement, errors are passed up the stack.
 Err.Raise 2 'This will be handled by the Caller handler.

 Exit Sub
Handler:

https://riptutorial.com/ 119

 Debug.Print "Error " & Err.Number & " in Callee."
 Resume Next
End Sub

Custom Errors

Often when writing a specialized class, you'll want it to raise its own specific errors, and you'll want

a clean way for user/calling code to handle these custom errors. A neat way to achieve this is by

defining a dedicated Enum type:

Option Explicit
Public Enum FoobarError
 Err_FooWasNotBarred = vbObjectError + 1024
 Err_BarNotInitialized
 Err_SomethingElseHappened
End Enum

Using the vbObjectError built-in constant ensures the custom error codes don't overlap with

reserved/existing error codes. Only the first enum value needs to be explicitly specified, for the

underlying value of each Enum member is 1 greater than the previous member, so the underlying

value of Err_BarNotInitialized is implicitly vbObjectError + 1025.

Raising your own runtime errors

A runtime error can be raised using the Err.Raise statement, so the custom Err_FooWasNotBarred

error can be raised as follows:

Err.Raise Err_FooWasNotBarred

The Err.Raise method can also take custom Description and Source parameters - for this reason it's

a good idea to also define constants to hold each custom error's description:

Private Const Msg_FooWasNotBarred As String = "The foo was not barred."
Private Const Msg_BarNotInitialized As String = "The bar was not initialized."

And then create a dedicated private method to raise each error:

Private Sub OnFooWasNotBarredError(ByVal source As String)
 Err.Raise Err_FooWasNotBarred, source, Msg_FooWasNotBarred
End Sub

Private Sub OnBarNotInitializedError(ByVal source As String)
 Err.Raise Err_BarNotInitialized, source, Msg_BarNotInitialized
End Sub

The class' implementation can then simply call these specialized procedures to raise the error:

Public Sub DoSomething()
 'raises the custom 'BarNotInitialized' error with "DoSomething" as the source:

https://riptutorial.com/ 120

 If Me.Bar Is Nothing Then OnBarNotInitializedError "DoSomething"
 '...
End Sub

The client code can then handle Err_BarNotInitialized as it would any other error, inside its own

error-handling subroutine.

Note: the legacy Error keyword can also be used in place of Err.Raise, but it's

obsolete/deprecated.

Read Error Handling online: https://riptutorial.com/vba/topic/3211/error-handling

https://riptutorial.com/ 121

https://riptutorial.com/vba/topic/3211/error-handling

Chapter 22: Events

Syntax

Source Module: [Public] Event [identifier]([argument_list])•

Handler Module: Dim|Private|Public WithEvents [identifier] As [type]•

Remarks

An event can only be Public. The modifier is optional because class module members

(including events) are implicitly Public by default.

•

A WithEvents variable can be Private or Public, but not Friend. The modifier is mandatory

because WithEvents isn't a keyword that declares a variable, but a modifier keyword part of

the variable declaration syntax. Hence the Dim keyword must be used if an access modifier

isn't present.

•

Examples

Sources and Handlers

What are events?

VBA is event-driven: VBA code runs in response to events raised by the host application or the

host document - understanding events is fundamental to understanding VBA.

APIs often expose objects that raise a number of events in response to various states. For

example an Excel.Application object raises an event whenever a new workbook is created,

opened, activated, or closed. Or whenever a worksheet gets calculated. Or just before a file is

saved. Or immediately after. A button on a form raises a Click event when the user clicks it, the

user form itself raises an event just after it's activated, and another just before it's closed.

From an API perspective, events are extension points: the client code can chose to implement

code that handles these events, and execute custom code whenever these events are fired: that's

how you can execute your custom code automatically every time the selection changes on any

worksheet - by handling the event that gets fired when the selection changes on any worksheet.

An object that exposes events is an event source. A method that handles an event is a handler.

Handlers

https://riptutorial.com/ 122

VBA document modules (e.g. ThisDocument, ThisWorkbook, Sheet1, etc.) and UserForm modules are

class modules that implement special interfaces that expose a number of events. You can browse

these interfaces in the left-side dropdown at the top of the code pane:

The right-side dropdown lists the members of the interface selected in the left-side dropdown:

The VBE automatically generates an event handler stub when an item is selected on the right-side

list, or navigates there if the handler exists.

You can define a module-scoped WithEvents variable in any module:

Private WithEvents Foo As Workbook
Private WithEvents Bar As Worksheet

Each WithEvents declaration becomes available to select from the left-side dropdown. When an

event is selected in the right-side dropdown, the VBE generates an event handler stub named

after the WithEvents object and the name of the event, joined with an underscore:

Private WithEvents Foo As Workbook
Private WithEvents Bar As Worksheet

Private Sub Foo_Open()

End Sub

Private Sub Bar_SelectionChange(ByVal Target As Range)

End Sub

Only types that expose at least one event can be used with WithEvents, and WithEvents declarations

cannot be assigned a reference on-the-spot with the New keyword. This code is illegal:

Private WithEvents Foo As New Workbook 'illegal

https://riptutorial.com/ 123

The object reference must be Set explicitly; in a class module, a good place to do that is often in

the Class_Initialize handler, because then the class handles that object's events for as long as its

instance exists.

Sources

Any class module (or document module, or user form) can be an event source. Use the Event

keyword to define the signature for the event, in the declarations section of the module:

Public Event SomethingHappened(ByVal something As String)

The signature of the event determines how the event is raised, and what the event handlers will

look like.

Events can only be raised within the class they're defined in - client code can only handle them.

Events are raised with the RaiseEvent keyword; the event's arguments are provided at that point:

Public Sub DoSomething()
 RaiseEvent SomethingHappened("hello")
End Sub

Without code that handles the SomethingHappened event, running the DoSomething procedure will still

raise the event, but nothing will happen. Assuming the event source is the above code in a class

named Something, this code in ThisWorkbook would show a message box saying "hello" whenever

test.DoSomething gets called:

Private WithEvents test As Something

Private Sub Workbook_Open()
 Set test = New Something
 test.DoSomething
End Sub

Private Sub test_SomethingHappened(ByVal bar As String)
'this procedure runs whenever 'test' raises the 'SomethingHappened' event
 MsgBox bar
End Sub

Passing data back to the event source

Using parameters passed by reference

An event may define a ByRef parameter meant to be returned to the caller:

Public Event BeforeSomething(ByRef cancel As Boolean)
Public Event AfterSomething()

https://riptutorial.com/ 124

Public Sub DoSomething()
 Dim cancel As Boolean
 RaiseEvent BeforeSomething(cancel)
 If cancel Then Exit Sub

 'todo: actually do something

 RaiseEvent AfterSomething
End Sub

If the BeforeSomething event has a handler that sets its cancel parameter to True, then when

execution returns from the handler, cancel will be True and AfterSomething will never be raised.

Private WithEvents foo As Something

Private Sub foo_BeforeSomething(ByRef cancel As Boolean)
 cancel = MsgBox("Cancel?", vbYesNo) = vbYes
End Sub

Private Sub foo_AfterSomething()
 MsgBox "Didn't cancel!"
End Sub

Assuming the foo object reference is assigned somewhere, when foo.DoSomething runs, a message

box prompts whether to cancel, and a second message box says "didn't cancel" only when No was

selected.

Using mutable objects

You could also pass a copy of a mutable object ByVal, and let handlers modify that object's

properties; the caller can then read the modified property values and act accordingly.

'class module ReturnBoolean
Option Explicit
Private encapsulated As Boolean

Public Property Get ReturnValue() As Boolean
'Attribute ReturnValue.VB_UserMemId = 0
 ReturnValue = encapsulated
End Property

Public Property Let ReturnValue(ByVal value As Boolean)
 encapsulated = value
End Property

Combined with the Variant type, this can be used to create rather non-obvious ways to return a

value to the caller:

Public Event SomeEvent(ByVal foo As Variant)

Public Sub DoSomething()
 Dim result As ReturnBoolean

https://riptutorial.com/ 125

 result = New ReturnBoolean

 RaiseEvent SomeEvent(result)

 If result Then ' If result.ReturnValue Then
 'handler changed the value to True
 Else
 'handler didn't modify the value
 End If
End Sub

The handler would look like this:

Private Sub source_SomeEvent(ByVal foo As Variant) 'foo is actually a ReturnBoolean object
 foo = True 'True is actually assigned to foo.ReturnValue, the class' default member
End Sub

Read Events online: https://riptutorial.com/vba/topic/5278/events

https://riptutorial.com/ 126

https://riptutorial.com/vba/topic/5278/events

Chapter 23: Flow control structures

Examples

Select Case

Select Case can be used when many different conditions are possible. The conditions are checked

from top to bottom and only the first case that match will be executed.

Sub TestCase()
 Dim MyVar As String

 Select Case MyVar 'We Select the Variable MyVar to Work with
 Case "Hello" 'Now we simply check the cases we want to check
 MsgBox "This Case"
 Case "World"
 MsgBox "Important"
 Case "How"
 MsgBox "Stuff"
 Case "Are"
 MsgBox "I'm running out of ideas"
 Case "You?", "Today" 'You can separate several conditions with a comma
 MsgBox "Uuuhm..." 'if any is matched it will go into the case
 Case Else 'If none of the other cases is hit
 MsgBox "All of the other cases failed"
 End Select

 Dim i As Integer
 Select Case i
 Case Is > 2 '"Is" can be used instead of the variable in conditions.
 MsgBox "i is greater than 2"
 'Case 2 < Is '"Is" can only be used at the beginning of the condition.
 'Case Else is optional
 End Select
End Sub

The logic of the Select Case block can be inverted to support testing of different variables too, in

this kind of scenario we can also use logical operators:

Dim x As Integer
Dim y As Integer

x = 2
y = 5

Select Case True
 Case x > 3
 MsgBox "x is greater than 3"
 Case y < 2
 MsgBox "y is less than 2"
 Case x = 1
 MsgBox "x is equal to 1"
 Case x = 2 Xor y = 3
 MsgBox "Go read about ""Xor"""

https://riptutorial.com/ 127

 Case Not y = 5
 MsgBox "y is not 5"
 Case x = 3 Or x = 10
 MsgBox "x = 3 or 10"
 Case y < 10 And x < 10
 MsgBox "x and y are less than 10"
 Case Else
 MsgBox "No match found"
End Select

Case statements can also use arithmetic operators. Where an arithmetic operator is being used

against the Select Case value it should be preceded with the Is keyword:

Dim x As Integer

x = 5

Select Case x
 Case 1
 MsgBox "x equals 1"
 Case 2, 3, 4
 MsgBox "x is 2, 3 or 4"
 Case 7 To 10
 MsgBox "x is between 7 and 10 (inclusive)"
 Case Is < 2
 MsgBox "x is less than one"
 Case Is >= 7
 MsgBox "x is greater than or equal to 7"
 Case Else
 MsgBox "no match found"
End Select

For Each loop

The For Each loop construct is ideal for iterating all elements of a collection.

Public Sub IterateCollection(ByVal items As Collection)

 'For Each iterator must always be variant
 Dim element As Variant

 For Each element In items
 'assumes element can be converted to a string
 Debug.Print element
 Next

End Sub

Use For Each when iterating object collections:

Dim sheet As Worksheet
For Each sheet In ActiveWorkbook.Worksheets
 Debug.Print sheet.Name
Next

https://riptutorial.com/ 128

Avoid For Each when iterating arrays; a For loop will offer significantly better performance with

arrays. Conversely, a For Each loop will offer better performance when iterating a Collection.

Syntax

For Each [item] In [collection]
 [statements]
Next [item]

The Next keyword may optionally be followed by the iterator variable; this can help clarify nested

loops, although there are better ways to clarify nested code, such as extracting the inner loop into

its own procedure.

Dim book As Workbook
For Each book In Application.Workbooks

 Debug.Print book.FullName

 Dim sheet As Worksheet
 For Each sheet In ActiveWorkbook.Worksheets
 Debug.Print sheet.Name
 Next sheet
Next book

Do loop

 Public Sub DoLoop()
 Dim entry As String
 entry = ""
 'Equivalent to a While loop will ask for strings until "Stop" in given
 'Prefer using a While loop instead of this form of Do loop
 Do While entry <> "Stop"
 entry = InputBox("Enter a string, Stop to end")
 Debug.Print entry
 Loop

 'Equivalent to the above loop, but the condition is only checked AFTER the
 'first iteration of the loop, so it will execute even at least once even
 'if entry is equal to "Stop" before entering the loop (like in this case)
 Do
 entry = InputBox("Enter a string, Stop to end")
 Debug.Print entry
 Loop While entry <> "Stop"

 'Equivalent to writing Do While Not entry="Stop"
 '
 'Because the Until is at the top of the loop, it will
 'not execute because entry is still equal to "Stop"
 'when evaluating the condition
 Do Until entry = "Stop"
 entry = InputBox("Enter a string, Stop to end")
 Debug.Print entry
 Loop

https://riptutorial.com/ 129

 'Equivalent to writing Do ... Loop While Not i >= 100
 Do
 entry = InputBox("Enter a string, Stop to end")
 Debug.Print entry
 Loop Until entry = "Stop"
End Sub

While loop

'Will return whether an element is present in the array
Public Function IsInArray(values() As String, ByVal whatToFind As String) As Boolean
 Dim i As Integer
 i = 0

 While i < UBound(values) And values(i) <> whatToFind
 i = i + 1
 Wend

 IsInArray = values(i) = whatToFind
End Function

For loop

The For loop is used to repeat the enclosed section of code a given number of times. The following

simple example illustrates the basic syntax:

Dim i as Integer 'Declaration of i
For i = 1 to 10 'Declare how many times the loop shall be executed
 Debug.Print i 'The piece of code which is repeated
Next i 'The end of the loop

The code above declares an Integer i. The For loop assigns every value between 1 and 10 to i

and then executes Debug.Print i - i.e. the code prints the numbers 1 through 10 to the immediate

window. Note that the loop variable is incremented by the Next statement, that is after the enclosed

code executes as opposed to before it executes.

By default, the counter will be incremented by 1 each time the loop executes. However, a Step can

be specified to change the amount of the increment as either a literal or the return value of a

function. If the starting value, ending value, or Step value is a floating point number, it will be

rounded to the nearest integer value. Step can be either a positive or negative value.

Dim i As Integer
For i = 1 To 10 Step 2
 Debug.Print i 'Prints 1, 3, 5, 7, and 9
Next

In general a For loop would be used in situations where it is known before the loop starts how

many times to execute the enclosed code (otherwise a Do or While loop may be more appropriate).

This is because the exit condition is fixed after the first entry into loop, as this code demonstrates:

https://riptutorial.com/ 130

Private Iterations As Long 'Module scope

Public Sub Example()
 Dim i As Long
 Iterations = 10
 For i = 1 To Iterations
 Debug.Print Iterations 'Prints 10 through 1, descending.
 Iterations = Iterations - 1
 Next
End Sub

A For loop can be exited early with the Exit For statement:

Dim i As Integer

For i = 1 To 10
 If i > 5 Then
 Exit For
 End If
 Debug.Print i 'Prints 1, 2, 3, 4, 5 before loop exits early.
Next

Read Flow control structures online: https://riptutorial.com/vba/topic/1873/flow-control-structures

https://riptutorial.com/ 131

https://riptutorial.com/vba/topic/1873/flow-control-structures

Chapter 24: Frequently used string

manipulation

Introduction

Quick examples for MID LEFT and RIGHT string functions using INSTR FIND and LEN.

How do you find the text between two search terms (Say: after a colon and before a comma)?

How do you get the remainder of a word (using MID or using RIGHT)? Which of these functions

use Zero-based params and return codes vs One-based? What happens when things go wrong?

How do they handle empty strings, unfound results and negative numbers?

Examples

String manipulation frequently used examples

Better MID() and other string extraction examples, currently lacking from the web. Please help me

make a good example, or complete this one here. Something like this:

DIM strEmpty as String, strNull as String, theText as String
DIM idx as Integer
DIM letterCount as Integer
DIM result as String

strNull = NOTHING
strEmpty = ""
theText = "1234, 78910"

' -----------------
' Extract the word after the comma ", " and before "910" result: "78" ***
' -----------------

' Get index (place) of comma using INSTR
idx = ... ' some explanation here
if idx < ... ' check if no comma found in text

' or get index of comma using FIND
idx = ... ' some explanation here... Note: The difference is...
if idx < ... ' check if no comma found in text

result = MID(theText, ..., LEN(...

' Retrieve remaining word after the comma
result = MID(theText, idx+1, LEN(theText) - idx+1)

' Get word until the comma using LEFT
result = LEFT(theText, idx - 1)

' Get remaining text after the comma-and-space using RIGHT
result = ...

https://riptutorial.com/ 132

' What happens when things go wrong
result = MID(strNothing, 1, 2) ' this causes ...
result = MID(strEmpty, 1, 2) ' which causes...
result = MID(theText, 30, 2) ' and now...
result = MID(theText, 2, 999) ' no worries...
result = MID(theText, 0, 2)
result = MID(theText, 2, 0)
result = MID(theText -1, 2)
result = MID(theText 2, -1)
idx = INSTR(strNothing, "123")
idx = INSTR(theText, strNothing)
idx = INSTR(theText, strEmpty)
i = LEN(strEmpty)
i = LEN(strNothing) '...

Please feel free to edit this example and make it better. As long as it remains clear, and has in it

common usage practices.

Read Frequently used string manipulation online: https://riptutorial.com/vba/topic/8890/frequently-

used-string-manipulation

https://riptutorial.com/ 133

https://riptutorial.com/vba/topic/8890/frequently-used-string-manipulation
https://riptutorial.com/vba/topic/8890/frequently-used-string-manipulation

Chapter 25: Interfaces

Introduction

An Interface is a way to define a set of behaviors that a class will perform. The definition of an

interface is a list of method signatures (name, parameters, and return type). A class having all of

the methods is said to "implement" that interface.

In VBA, using interfaces lets the compiler check that a module implements all of its methods. A

variable or parameter can be defined in terms of an interface instead of a specific class.

Examples

Simple Interface - Flyable

The interface Flyable is a class module with the following code:

Public Sub Fly()
 ' No code.
End Sub

Public Function GetAltitude() As Long
 ' No code.
End Function

A class module, Airplane, uses the Implements keyword to tell the compiler to raise an error unless

it has two methods: a Flyable_Fly() sub and a Flyable_GetAltitude() function that returns a Long.

Implements Flyable

Public Sub Flyable_Fly()
 Debug.Print "Flying With Jet Engines!"
End Sub

Public Function Flyable_GetAltitude() As Long
 Flyable_GetAltitude = 10000
End Function

A second class module, Duck, also implements Flyable:

Implements Flyable

Public Sub Flyable_Fly()
 Debug.Print "Flying With Wings!"
End Sub

Public Function Flyable_GetAltitude() As Long
 Flyable_GetAltitude = 30
End Function

https://riptutorial.com/ 134

We can write a routine that accepts any Flyable value, knowing that it will respond to a command

of Fly or GetAltitude:

Public Sub FlyAndCheckAltitude(F As Flyable)
 F.Fly
 Debug.Print F.GetAltitude
End Sub

Because the interface is defined, the IntelliSense popup window will show Fly and GetAltitude for F

.

When we run the following code:

Dim MyDuck As New Duck
Dim MyAirplane As New Airplane

FlyAndCheckAltitude MyDuck
FlyAndCheckAltitude MyAirplane

The output is:

Flying With Wings!
30
Flying With Jet Engines!
10000

Note that even though the subroutine is named Flyable_Fly in both Airplane and Duck, it can be

called as Fly when the variable or parameter is defined as Flyable. If the variable is defined

specifically as a Duck, it would have to be called as Flyable_Fly.

Multiple Interfaces in One Class - Flyable and Swimable

Using the Flyable example as a starting point, we can add a second interface, Swimmable, with the

following code:

Sub Swim()
 ' No code
End Sub

The Duck object can Implement both flying and swimming:

Implements Flyable
Implements Swimmable

Public Sub Flyable_Fly()
 Debug.Print "Flying With Wings!"
End Sub

Public Function Flyable_GetAltitude() As Long
 Flyable_GetAltitude = 30
End Function

https://riptutorial.com/ 135

Public Sub Swimmable_Swim()
 Debug.Print "Floating on the water"
End Sub

A Fish class can implement Swimmable, too:

Implements Swimmable

Public Sub Swimmable_Swim()
 Debug.Print "Swimming under the water"
End Sub

Now, we can see that the Duck object can be passed to a Sub as a Flyable on one hand, and a

Swimmable on the other:

Sub InterfaceTest()

Dim MyDuck As New Duck
Dim MyAirplane As New Airplane
Dim MyFish As New Fish

Debug.Print "Fly Check..."

FlyAndCheckAltitude MyDuck
FlyAndCheckAltitude MyAirplane

Debug.Print "Swim Check..."

TrySwimming MyDuck
TrySwimming MyFish

End Sub

Public Sub FlyAndCheckAltitude(F As Flyable)
 F.Fly
 Debug.Print F.GetAltitude
End Sub

Public Sub TrySwimming(S As Swimmable)
 S.Swim
End Sub

The output of this code is:

Fly Check...

Flying With Wings!

30

Flying With Jet Engines!

10000

Swim Check...

https://riptutorial.com/ 136

Floating on the water

Swimming under the water

Read Interfaces online: https://riptutorial.com/vba/topic/8784/interfaces

https://riptutorial.com/ 137

https://riptutorial.com/vba/topic/8784/interfaces

Chapter 26: Macro security and signing of

VBA-projects/-modules

Examples

Create a valid digital self-signed certificate SELFCERT.EXE

To run macros and maintain the security Office applications provide against malicious code, it is

necessary to digitally sign the VBAProject.OTM from the VBA editor > Tools > Digital Signature.

Office comes with a utility to create a self-signed digital certificate that you can employ on the PC

to sign your projects.

This utility SELFCERT.EXE is in the Office program folder,

Click on Digital Certificate for VBA Projects to open the certificate wizard.

In the dialog enter a suitable name for the certificate and click OK.

https://riptutorial.com/ 138

https://i.stack.imgur.com/FjwVD.png

If all goes well you will see a confirmation:

You can now close the SELFCERT wizard and turn your attention to the certificate you have

created.

If you try to employ the certificate you have just created and you check its properties

https://riptutorial.com/ 139

https://i.stack.imgur.com/tbaZ5.png
https://i.stack.imgur.com/XVtmg.png

You will see that the certificate is not trusted and the reason is indicated in the dialog.

The certificate has been created in the Current User > Personal > Certificates store. It needs to go

in Local Computer > Trusted Root Certificate Authorities > Certificates store, so you need to

export from the former and import to the latter.

Pressing the Windows Key+R which will open the 'Run' Window. then Enter 'mmc' in the window as

https://riptutorial.com/ 140

https://i.stack.imgur.com/2zTPg.png
https://i.stack.imgur.com/ZJiw2.png

shown below and click 'OK '.

The Microsoft Management Console will open and look like the following.

From the File menu, select Add/Remove Snap-in... Then from the ensuing dialog, double click

Certificates and then click OK

https://riptutorial.com/ 141

https://i.stack.imgur.com/gIi1B.png
https://i.stack.imgur.com/WwrQL.png

Expand the dropdown in the left window for Certificates - Current User' and select certificates as

shown below. The center panel will then show the certificates in that location, which will include

the certificate you created earlier:

https://riptutorial.com/ 142

https://i.stack.imgur.com/K0dW0.png

Right click the certificate and select All Tasks > Export:

https://riptutorial.com/ 143

https://i.stack.imgur.com/xUFK4.png

Export Wizard

https://riptutorial.com/ 144

https://i.stack.imgur.com/Rp7Rd.png

Click Next

https://riptutorial.com/ 145

https://i.stack.imgur.com/VlTfq.png
https://i.stack.imgur.com/Fa4jb.png

the Only one pre-selected option will be available, so click 'Next' again:

The top item will already be pre-selected. Click Next again and choose a name and location to

save the exported certificate.

https://riptutorial.com/ 146

https://i.stack.imgur.com/tVRfM.png

Click Next again to save the certificate

Once focus is returned to the Management Console.

Expand the Certificates menu and from the Trusted Root Certification Authorities menu, select

Certificates.

https://riptutorial.com/ 147

https://i.stack.imgur.com/6xmub.png

Right click. Select All Tasks and Import

https://riptutorial.com/ 148

https://i.stack.imgur.com/ymFx2.png
https://i.stack.imgur.com/vYVwj.png

Click next and Save to the Trusted Root Certification Authorities store:

https://riptutorial.com/ 149

https://i.stack.imgur.com/Y5Lp5.png
https://i.stack.imgur.com/o0avf.png

Then Next > Finish, now close the Console.

If you now use the certificate and check its properties, you will see that it is a trusted certificate

and you can use it to sign your project:

Read Macro security and signing of VBA-projects/-modules online:

https://riptutorial.com/vba/topic/7733/macro-security-and-signing-of-vba-projects--modules

https://riptutorial.com/ 150

https://i.stack.imgur.com/DlxuT.png
https://riptutorial.com/vba/topic/7733/macro-security-and-signing-of-vba-projects--modules

Chapter 27: Measuring the length of strings

Remarks

A string's length can be measured in two ways: The most frequently used measure of length is the

number of characters using the Len functions, but VBA can also reveal the number of bytes using

LenB functions. A double-byte or Unicode character is more than one byte long.

Examples

Use the Len function to determine the number of characters in a string

Const baseString As String = "Hello World"

Dim charLength As Long

charLength = Len(baseString)
'charlength = 11

Use the LenB function to determine the number of bytes in a string

Const baseString As String = "Hello World"

Dim byteLength As Long

byteLength = LenB(baseString)
'byteLength = 22

Prefer `If Len(myString) = 0 Then` over `If myString = "" Then`

When checking if a string is zero-length, it is better practice, and more efficient, to inspect the

length of the string rather than comparing the string to an empty string.

Const myString As String = vbNullString

'Prefer this method when checking if myString is a zero-length string
If Len(myString) = 0 Then
 Debug.Print "myString is zero-length"
End If

'Avoid using this method when checking if myString is a zero-length string
If myString = vbNullString Then
 Debug.Print "myString is zero-length"
End If

Read Measuring the length of strings online: https://riptutorial.com/vba/topic/3576/measuring-the-

length-of-strings

https://riptutorial.com/ 151

https://riptutorial.com/vba/topic/3576/measuring-the-length-of-strings
https://riptutorial.com/vba/topic/3576/measuring-the-length-of-strings

Chapter 28: Naming Conventions

Examples

Variable Names

Variables hold data. Name them after what they're used for, not after their data type or scope,

using a noun. If you feel compelled to number your variables (e.g. thing1, thing2, thing3), then

consider using an appropriate data structure instead (e.g. an array, a Collection, or a Dictionary).

Names of variables that represent an iteratable set of values - e.g. an array, a Collection, a

Dictionary, or a Range of cells, should be plural.

Some common VBA naming conventions go thus:

For procedure-level Variables:

camelCase

Public Sub ExampleNaming(ByVal inputValue As Long, ByRef inputVariable As Long)

 Dim procedureVariable As Long
 Dim someOtherVariable As String

End Sub

For module-level Variables:

PascalCase

Public GlobalVariable As Long
Private ModuleVariable As String

For Constants:

SHOUTY_SNAKE_CASE is commonly used to differentiate constants from variables:

Public Const GLOBAL_CONSTANT As String = "Project Version #1.000.000.001"
Private Const MODULE_CONSTANT As String = "Something relevant to this Module"

Public Sub SomeProcedure()

 Const PROCEDURE_CONSTANT As Long = 10

End Sub

However PascalCase names make cleaner-looking code and are just as good, given IntelliSense

uses different icons for variables and constants:

https://riptutorial.com/ 152

Hungarian Notation

Name them after what they're used for, not after their data type or scope.

"Hungarian Notation makes it easier to see what the type of a variable is"

If you write your code such as procedures adhere to the Single Responsibility Principle (as it

should), you should never be looking at a screenful of variable declarations at the top of any

procedure; declare variables as close as possible to their first usage, and their data type will

always be in plain sight if you declare them with an explicit type. The VBE's Ctrl+i shortcut can be

used to display a variable's type in a tooltip, too.

What a variable is used for is much more useful information than its data type, especially in a

language such as VBA which happily and implicitly converts a type into another as needed.

Consider iFile and strFile in this example:

Function bReadFile(ByVal strFile As String, ByRef strData As String) As Boolean
 Dim bRetVal As Boolean
 Dim iFile As Integer

 On Error GoTo CleanFail

 iFile = FreeFile
 Open strFile For Input As #iFile
 Input #iFile, strData

 bRetVal = True

CleanExit:
 Close #iFile
 bReadFile = bRetVal
 Exit Function
CleanFail:
 bRetVal = False
 Resume CleanExit
End Function

Compare to:

Function CanReadFile(ByVal path As String, ByRef outContent As String) As Boolean

https://riptutorial.com/ 153

 On Error GoTo CleanFail

 Dim handle As Integer
 handle = FreeFile

 Open path For Input As #handle
 Input #handle, outContent

 Dim result As Boolean
 result = True

CleanExit:
 Close #handle
 CanReadFile = result
 Exit Function
CleanFail:
 result = False
 Resume CleanExit
End Function

strData is passed ByRef in the top example, but beside the fact that we're lucky enough to see that

it's explicitly passed as such, there's no indication that strData is actually returned by the function.

The bottom example names it outContent; this out prefix is what Hungarian Notation was invented

for: to help clarify what a variable is used for, in this case to clearly identify it as an "out"

parameter.

This is useful, because IntelliSense by itself doesn't display ByRef, even when the parameter is

explicitly passed by reference:

Which leads to...

Hungarian Done Right

Hungarian Notation originally didn't have anything to do with variable types. In fact, Hungarian

Notation done right is actually useful. Consider this small example (ByVal and As Integer removed

for brevety):

Public Sub Copy(iX1, iY1, iX2, iY2)
End Sub

Compare to:

Public Sub Copy(srcColumn, srcRow, dstColumn, dstRow)
End Sub

src and dst are Hungarian Notation prefixes here, and they convey useful information that cannot

otherwise already be inferred from the parameter names or IntelliSense showing us the declared

type.

https://riptutorial.com/ 154

http://www.joelonsoftware.com/articles/Wrong.html

Of course there's a better way to convey it all, using proper abstraction and real words that can be

pronounced out loud and make sense - as a contrived example:

Type Coordinate
 RowIndex As Long
 ColumnIndex As Long
End Type

Sub Copy(source As Coordinate, destination As Coordinate)
End Sub

Procedure Names

Procedures do something. Name them after what they're doing, using a verb. If accurately naming

a procedure is not possible, likely the procedure is doing too many things and needs to be broken

down into smaller, more specialized procedures.

Some common VBA naming conventions go thus:

For all Procedures:

PascalCase

Public Sub DoThing()

End Sub

Private Function ReturnSomeValue() As [DataType]

End Function

For event handler procedures:

ObjectName_EventName

Public Sub Workbook_Open()

End Sub

Public Sub Button1_Click()

End Sub

Event handlers are usually automatically named by the VBE; renaming them without renaming the

object and/or the handled event will break the code - the code will run and compile, but the handler

procedure will be orphaned and will never be executed.

Boolean Members

Consider a Boolean-returning function:

Function bReadFile(ByVal strFile As String, ByRef strData As String) As Boolean

https://riptutorial.com/ 155

End Function

Compare to:

Function CanReadFile(ByVal path As String, ByRef outContent As String) As Boolean
End Function

The Can prefix does serve the same purpose as the b prefix: it identifies the function's return value

as a Boolean. But Can reads better than b:

If CanReadFile(path, content) Then

Compared to:

If bReadFile(strFile, strData) Then

Consider using prefixes such as Can, Is or Has in front of Boolean-returning members (functions

and properties), but only when it adds value. This conforms with the current Microsoft naming

guidelines.

Read Naming Conventions online: https://riptutorial.com/vba/topic/1184/naming-conventions

https://riptutorial.com/ 156

https://msdn.microsoft.com/en-us/library/ms229012(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ms229012(v=vs.110).aspx
https://riptutorial.com/vba/topic/1184/naming-conventions

Chapter 29: Non-Latin Characters

Introduction

VBA can read and write strings in any language or script using Unicode. However, there are

stricter rules in place for Identifier Tokens.

Examples

Non-Latin Text in VBA Code

In spreadsheet cell A1, we have the following Arabic pangram:

ِراطعِم َءالجَن اهِب ُعيجَضلا ىظحَي — تَغَزَب ذِإ ِسمَشلا ِلثِمَك ِدوَخ َقلَخ فِص

VBA provides the AscW and ChrW functions to work with multi-byte character codes. We can also

use Byte arrays to manipulate the string variable directly:

Sub NonLatinStrings()

Dim rng As Range
Set rng = Range("A1")
Do Until rng = ""
 Dim MyString As String
 MyString = rng.Value

 ' AscW functions
 Dim char As String
 char = AscW(Left(MyString, 1))
 Debug.Print "First char (ChrW): " & char
 Debug.Print "First char (binary): " & BinaryFormat(char, 12)

 ' ChrW functions
 Dim uString As String
 uString = ChrW(char)
 Debug.Print "String value (text): " & uString ' Fails! Appears as '?'
 Debug.Print "String value (AscW): " & AscW(uString)

 ' Using a Byte string
 Dim StringAsByt() As Byte
 StringAsByt = MyString
 Dim i As Long
 For i = 0 To 1 Step 2
 Debug.Print "Byte values (in decimal): " & _
 StringAsByt(i) & "|" & StringAsByt(i + 1)
 Debug.Print "Byte values (binary): " & _
 BinaryFormat(StringAsByt(i)) & "|" & BinaryFormat(StringAsByt(i + 1))
 Next i
 Debug.Print ""

 ' Printing the entire string to the immediate window fails (all '?'s)
 Debug.Print "Whole String" & vbNewLine & rng.Value
 Set rng = rng.Offset(1)

https://riptutorial.com/ 157

http://www.unicode.org/
https://msdn.microsoft.com/en-us/library/ee200272.aspx

Loop

End Sub

This produces the following output for the Arabic Letter Sad:

First char (ChrW): 1589

First char (binary): 00011000110101

String value (text): ?

String value (AscW): 1589

Byte values (in decimal): 53|6

Byte values (binary): 00110101|00000110

Whole String

??? ????? ????? ??????? ??????? ??? ??????? — ????? ???????? ???? ???????

???????

Note that VBA is unable to print non-Latin text to the immediate window even though the string

functions work correctly. This is a limitation of the IDE and not the language.

Non-Latin Identifiers and Language Coverage

VBA Identifiers (variable and function names) can use the Latin script and may also be able to use

Japanese, Korean, Simplified Chinese, and Traditional Chinese scripts.

The extended Latin script has full coverage for many languages:

English, French, Spanish, German, Italian, Breton, Catalan, Danish, Estonian, Finnish, Icelandic,

Indonesian, Irish, Lojban, Mapudungun, Norwegian, Portuguese, Scottish Gaelic, Swedish,

Tagalog

Some languages are only partially covered:

Azeri, Croatian, Czech, Esperanto, Hungarian, Latvian, Lithuanian, Polish, Romanian, Serbian,

Slovak, Slovenian, Turkish, Yoruba, Welsh

Some languages have little or no coverage:

Arabic, Bulgarian, Cherokee, Dzongkha, Greek, Hindi, Macedonian, Malayalam, Mongolian,

Russian, Sanskrit, Thai, Tibetan, Urdu, Uyghur

The following variable declarations are all valid:

Dim Yec’hed As String 'Breton
Dim «Dóna» As String 'Catalan
Dim fræk As String 'Danish
Dim tšellomängija As String 'Estonian
Dim Törkylempijävongahdus As String 'Finnish
Dim j’examine As String 'French
Dim Paß As String 'German
Dim þjófum As String 'Icelandic
Dim hÓighe As String 'Irish
Dim sofybakni As String 'Lojban (.o’i does not work)
Dim ñizol As String 'Mapudungun

https://riptutorial.com/ 158

http://www.fileformat.info/info/unicode/char/0635/index.htm
https://msdn.microsoft.com/en-us/library/ee200272.aspx
https://msdn.microsoft.com/en-us/library/ee199767.aspx
https://msdn.microsoft.com/en-us/library/ee177191.aspx
https://msdn.microsoft.com/en-us/library/ee199765.aspx
https://msdn.microsoft.com/en-us/library/ee199727.aspx

Dim Vår As String 'Norwegian
Dim «brações» As String 'Portuguese
Dim d’fhàg As String 'Scottish Gaelic

Note that in the VBA IDE, a single apostrophe within a variable name does not turn the line into a

comment (as it does on Stack Overflow).

Also, languages that use two angles to indicate a quote «» are allowed to use those in variable

names desipte the fact that the ""-type quotes are not.

Read Non-Latin Characters online: https://riptutorial.com/vba/topic/10555/non-latin-characters

https://riptutorial.com/ 159

https://riptutorial.com/vba/topic/10555/non-latin-characters

Chapter 30: Object-Oriented VBA

Examples

Abstraction

Abstraction levels help determine when to split things up.

Abstraction is achieved by implementing functionality with increasingly detailed code. The entry

point of a macro should be a small procedure with a high abstraction level that makes it easy to

grasp at a glance what's going on:

Public Sub DoSomething()
 With New SomeForm
 Set .Model = CreateViewModel
 .Show vbModal
 If .IsCancelled Then Exit Sub
 ProcessUserData .Model
 End With
End Sub

The DoSomething procedure has a high abstraction level: we can tell that it's displaying a form and

creating some model, and passing that object to some ProcessUserData procedure that knows what

to do with it - how the model is created is the job of another procedure:

Private Function CreateViewModel() As ISomeModel
 Dim result As ISomeModel
 Set result = SomeModel.Create(Now, Environ$("UserName"))
 result.AvailableItems = GetAvailableItems
 Set CreateViewModel = result
End Function

The CreateViewModel function is only responsible for creating some ISomeModel instance. Part of that

responsibility is to acquire an array of available items - how these items are acquired is an

implementation detail that's abstracted behind the GetAvailableItems procedure:

Private Function GetAvailableItems() As Variant
 GetAvailableItems = DataSheet.Names("AvailableItems").RefersToRange
End Function

Here the procedure is reading the available values from a named range on a DataSheet worksheet.

It could just as well be reading them from a database, or the values could be hard-coded: it's an

implementation detail that's none of a concern for any of the higher abstraction levels.

Encapsulation

Encapsulation hides implementation details from client code.

https://riptutorial.com/ 160

The Handling QueryClose example demonstrates encapsulation: the form has a checkbox control,

but its client code doesn't work with it directly - the checkbox is an implementation detail, what the

client code needs to know is whether the setting is enabled or not.

When the checkbox value changes, the handler assigns a private field member:

Private Type TView
 IsCancelled As Boolean
 SomeOtherSetting As Boolean
 'other properties skipped for brievety
End Type
Private this As TView

'...

Private Sub SomeOtherSettingInput_Change()
 this.SomeOtherSetting = CBool(SomeOtherSettingInput.Value)
End Sub

And when the client code wants to read that value, it doesn't need to worry about a checkbox -

instead it simply uses the SomeOtherSetting property:

Public Property Get SomeOtherSetting() As Boolean
 SomeOtherSetting = this.SomeOtherSetting
End Property

The SomeOtherSetting property encapsulates the checkbox' state; client code doesn't need to know

that there's a checkbox involved, only that there's a setting with a Boolean value. By encapsulating

the Boolean value, we've added an abstraction layer around the checkbox.

Using interfaces to enforce immutability

Let's push that a step further by encapsulating the form's model in a dedicated class module. But if

we made a Public Property for the UserName and Timestamp, we would have to expose Property Let

accessors, making the properties mutable, and we don't want the client code to have the ability to

change these values after they're set.

The CreateViewModel function in the Abstraction example returns an ISomeModel class: that's our

interface, and it looks something like this:

Option Explicit

Public Property Get Timestamp() As Date
End Property

Public Property Get UserName() As String
End Property

Public Property Get AvailableItems() As Variant
End Property

Public Property Let AvailableItems(ByRef value As Variant)

https://riptutorial.com/ 161

http://www.riptutorial.com/vba/example/19037/handling-queryclose

End Property

Public Property Get SomeSetting() As String
End Property

Public Property Let SomeSetting(ByVal value As String)
End Property

Public Property Get SomeOtherSetting() As Boolean
End Property

Public Property Let SomeOtherSetting(ByVal value As Boolean)
End Property

Notice Timestamp and UserName properties only expose a Property Get accessor. Now the SomeModel

class can implement that interface:

Option Explicit
Implements ISomeModel

Private Type TModel
 Timestamp As Date
 UserName As String
 SomeSetting As String
 SomeOtherSetting As Boolean
 AvailableItems As Variant
End Type
Private this As TModel

Private Property Get ISomeModel_Timestamp() As Date
 ISomeModel_Timestamp = this.Timestamp
End Property

Private Property Get ISomeModel_UserName() As String
 ISomeModel_UserName = this.UserName
End Property

Private Property Get ISomeModel_AvailableItems() As Variant
 ISomeModel_AvailableItems = this.AvailableItems
End Property

Private Property Let ISomeModel_AvailableItems(ByRef value As Variant)
 this.AvailableItems = value
End Property

Private Property Get ISomeModel_SomeSetting() As String
 ISomeModel_SomeSetting = this.SomeSetting
End Property

Private Property Let ISomeModel_SomeSetting(ByVal value As String)
 this.SomeSetting = value
End Property

Private Property Get ISomeModel_SomeOtherSetting() As Boolean
 ISomeModel_SomeOtherSetting = this.SomeOtherSetting
End Property

Private Property Let ISomeModel_SomeOtherSetting(ByVal value As Boolean)
 this.SomeOtherSetting = value
End Property

https://riptutorial.com/ 162

Public Property Get Timestamp() As Date
 Timestamp = this.Timestamp
End Property

Public Property Let Timestamp(ByVal value As Date)
 this.Timestamp = value
End Property

Public Property Get UserName() As String
 UserName = this.UserName
End Property

Public Property Let UserName(ByVal value As String)
 this.UserName = value
End Property

Public Property Get AvailableItems() As Variant
 AvailableItems = this.AvailableItems
End Property

Public Property Let AvailableItems(ByRef value As Variant)
 this.AvailableItems = value
End Property

Public Property Get SomeSetting() As String
 SomeSetting = this.SomeSetting
End Property

Public Property Let SomeSetting(ByVal value As String)
 this.SomeSetting = value
End Property

Public Property Get SomeOtherSetting() As Boolean
 SomeOtherSetting = this.SomeOtherSetting
End Property

Public Property Let SomeOtherSetting(ByVal value As Boolean)
 this.SomeOtherSetting = value
End Property

The interface members are all Private, and all members of the interface must be implemented for

the code to compile. The Public members are not part of the interface, and are therefore not

exposed to code written against the ISomeModel interface.

Using a Factory Method to simulate a constructor

Using a VB_PredeclaredId attribute, we can make the SomeModel class have a default instance, and

write a function that works like a type-level (Shared in VB.NET, static in C#) member that the client

code can call without needing to first create an instance, like we did here:

Private Function CreateViewModel() As ISomeModel
 Dim result As ISomeModel
 Set result = SomeModel.Create(Now, Environ$("UserName"))
 result.AvailableItems = GetAvailableItems
 Set CreateViewModel = result

https://riptutorial.com/ 163

http://www.riptutorial.com/vba/example/18932/vb-predeclaredid

End Function

This factory method assigns the property values that are read-only when accessed from the

ISomeModel interface, here Timestamp and UserName:

Public Function Create(ByVal pTimeStamp As Date, ByVal pUserName As String) As ISomeModel
 With New SomeModel
 .Timestamp = pTimeStamp
 .UserName = pUserName
 Set Create = .Self
 End With
End Function

Public Property Get Self() As ISomeModel
 Set Self = Me
End Property

And now we can code against the ISomeModel interface, which exposes Timestamp and UserName as

read-only properties that can never be reassigned (as long as the code is written against the

interface).

Polymorphism

Polymorphism is the ability to present the same interface for different

underlying implementations.

The ability to implement interfaces allows completely decoupling the application logic from the UI,

or from the database, or from this or that worksheet.

Say you have an ISomeView interface that the form itself implements:

Option Explicit

Public Property Get IsCancelled() As Boolean
End Property

Public Property Get Model() As ISomeModel
End Property

Public Property Set Model(ByVal value As ISomeModel)
End Property

Public Sub Show()
End Sub

The form's code-behind could look like this:

Option Explicit
Implements ISomeView

Private Type TView
 IsCancelled As Boolean
 Model As ISomeModel

https://riptutorial.com/ 164

End Type
Private this As TView

Private Property Get ISomeView_IsCancelled() As Boolean
 ISomeView_IsCancelled = this.IsCancelled
End Property

Private Property Get ISomeView_Model() As ISomeModel
 Set ISomeView_Model = this.Model
End Property

Private Property Set ISomeView_Model(ByVal value As ISomeModel)
 Set this.Model = value
End Property

Private Sub ISomeView_Show()
 Me.Show vbModal
End Sub

Private Sub SomeOtherSettingInput_Change()
 this.Model.SomeOtherSetting = CBool(SomeOtherSettingInput.Value)
End Sub

'...other event handlers...

Private Sub OkButton_Click()
 Me.Hide
End Sub

Private Sub CancelButton_Click()
 this.IsCancelled = True
 Me.Hide
End Sub

Private Sub UserForm_QueryClose(Cancel As Integer, CloseMode As Integer)
 If CloseMode = VbQueryClose.vbFormControlMenu Then
 Cancel = True
 this.IsCancelled = True
 Me.Hide
 End If
End Sub

But then, nothing forbids creating another class module that implements the ISomeView interface

without being a user form - this could be a SomeViewMock class:

Option Explicit
Implements ISomeView

Private Type TView
 IsCancelled As Boolean
 Model As ISomeModel
End Type
Private this As TView

Public Property Get IsCancelled() As Boolean
 IsCancelled = this.IsCancelled
End Property

Public Property Let IsCancelled(ByVal value As Boolean)
 this.IsCancelled = value

https://riptutorial.com/ 165

End Property

Private Property Get ISomeView_IsCancelled() As Boolean
 ISomeView_IsCancelled = this.IsCancelled
End Property

Private Property Get ISomeView_Model() As ISomeModel
 Set ISomeView_Model = this.Model
End Property

Private Property Set ISomeView_Model(ByVal value As ISomeModel)
 Set this.Model = value
End Property

Private Sub ISomeView_Show()
 'do nothing
End Sub

And now we can change the code that works with a UserForm and make it work off the ISomeView

interface, e.g. by giving it the form as a parameter instead of instantiating it:

Public Sub DoSomething(ByVal view As ISomeView)
 With view
 Set .Model = CreateViewModel
 .Show
 If .IsCancelled Then Exit Sub
 ProcessUserData .Model
 End With
End Sub

Because the DoSomething method depends on an interface (i.e. an abstraction) and not a concrete

class (e.g. a specific UserForm), we can write an automated unit test that ensures that

ProcessUserData isn't executed when view.IsCancelled is True, by making our test create a

SomeViewMock instance, setting its IsCancelled property to True, and passing it to DoSomething.

Testable code depends on abstractions

Writing unit tests in VBA can be done, there are add-ins out there that even integrate it into the

IDE. But when code is tightly coupled with a worksheet, a database, a form, or the file system,

then the unit test starts requiring an actual worksheet, database, form, or file system - and these

dependencies are new out-of-control failure points that testable code should isolate, so that unit

tests don't require an actual worksheet, database, form, or file system.

By writing code against interfaces, in a way that allows test code to inject stub/mock

implementations (like the above SomeViewMock example), you can write tests in a "controlled

environment", and simulate what happens when every single one of the 42 possible permutations

of user interactions on the form's data, without even once displaying a form and manually clicking

on a form control.

Read Object-Oriented VBA online: https://riptutorial.com/vba/topic/5357/object-oriented-vba

https://riptutorial.com/ 166

https://riptutorial.com/vba/topic/5357/object-oriented-vba

Chapter 31: Operators

Remarks

Operators are evaluated in the following order:

Mathematical operators•

Bitwise operators•

Concatenation operators•

Comparison operators•

Logical operators•

Operators with matching precedence are evaluated from left to right. The default order can be

overridden by using parentheses (and) to group expressions.

Examples

Mathematical Operators

Listed in order of precedence:

Token Name Description

^ Exponentiation

Return the result of raising the left-hand operand to the power of

the right-hand operand. Note that the value returned by

exponentiation is always a Double, regardless of the value types

being divided. Any coercion of the result into a variable type takes

place after the calculation is performed.

/ Division1

Returns the result of dividing the left-hand operand by the right-

hand operand. Note that the value returned by division is always a

Double, regardless of the value types being divided. Any coercion of

the result into a variable type takes place after the calculation is

performed.

* Multiplication1 Returns the product of 2 operands.

\
Integer

Division

Returns the integer result of dividing the left-hand operand by the

right-hand operand after rounding both sides with .5 rounding

down. Any remainder of the division is ignored. If the right-hand

operand (the divisor) is 0, a Run-time error 11: Division by zero will

result. Note that this is after all rounding is performed -

expressions such as 3 \ 0.4 will also result in a division by zero

error.

Returns the integer remainder of dividing the left-hand operand by Mod Modulo

https://riptutorial.com/ 167

Token Name Description

the right-hand operand. The operand on each side is rounded to

an integer before the division, with .5 rounding down. For example,

both 8.6 Mod 3 and 12 Mod 2.6 result in 0. If the right-hand operand

(the divisor) is 0, a Run-time error 11: Division by zero will result.

Note that this is after all rounding is performed - expressions such

as 3 Mod 0.4 will also result in a division by zero error.

- Subtraction2 Returns the result of subtracting the right-hand operand from the

left-hand operand.

+ Addition2
Returns the sum of 2 operands. Note that this token also treated as

a concatenation operator when it is applied to a String. See

Concatenation Operators.

1 Multiplication and division are treated as having the same precedence.

2 Addition and subtraction are treated as having the same precedence.

Concatenation Operators

VBA supports 2 different concatenation operators, + and & and both perform the exact same

function when used with String types - the right-hand String is appended to the end of the left-

hand String.

If the & operator is used with a variable type other than a String, it is implicitly cast to a String

before being concatenated.

Note that the + concatenation operator is an overload of the + addition operator. The behavior of +

is determined by the variable types of the operands and precedence of operator types. If both

operands are typed as a String or Variant with a sub-type of String, they are concatenated:

Public Sub Example()
 Dim left As String
 Dim right As String

 left = "5"
 right = "5"

 Debug.Print left + right 'Prints "55"
End Sub

If either side is a numeric type and the other side is a String that can be coerced into a number,

the type precedence of mathematical operators causes the operator to be treated as the addition

operator and the numeric values are added:

Public Sub Example()
 Dim left As Variant
 Dim right As String

https://riptutorial.com/ 168

http://www.riptutorial.com/vba/topic/3418/data-types-and-limits

 left = 5
 right = "5"

 Debug.Print left + right 'Prints 10
End Sub

This behavior can lead to subtle, hard to debug errors - especially if Variant types are being used,

so only the & operator should typically be used for concatenation.

Comparison Operators

Token Name Description

= Equal to

Returns True if the left-hand and right-hand operands are

equal. Note that this is an overload of the assignment

operator.

<> Not equal to
Returns True if the left-hand and right-hand operands are

not equal.

> Greater than
Returns True if the left-hand operand is greater than the

right-hand operand.

< Less than
Returns True if the left-hand operand is less than the right-

hand operand.

>= Greater than or equal
Returns True if the if the left-hand operand is greater than

or equal to the right-hand operand.

<= Less than or equal
Returns True if the if the left-hand operand is less than or

equal to the right-hand operand.

Is Reference equity

Returns True if the left-hand object reference is the same

instance as the right-hand object reference. It can also be

used with Nothing (the null object reference) on either side.

Note: The Is operator will attempt to coerce both operands

into an Object before performing the comparison. If either

side is a primitive type or a Variant that does not contain

an object (either a non-object subtype or vtEmpty), the

comparison will result in a Run-time error 424 - "Object

required". If either operand belongs to a different interface

of the same object, the comparison will return True. If you

need to test for equity of both the instance and the

interface, use ObjPtr(left) = ObjPtr(right) instead.

Notes

https://riptutorial.com/ 169

The VBA syntax allows for "chains" of comparison operators, but these constructs should

generally be avoided. Comparisons are always performed from left to right on only 2 operands at a

time, and each comparison results in a Boolean. For example, the expression...

a = 2: b = 1: c = 0
expr = a > b > c

...may be read in some contexts as a test of whether b is between a and c. In VBA, this evaluates

as follows:

a = 2: b = 1: c = 0
expr = a > b > c
expr = (2 > 1) > 0
expr = True > 0
expr = -1 > 0 'CInt(True) = -1
expr = False

Any comparison operator other than Is used with an Object as an operand will be performed on

the return value of the Object's default member. If the object does not have a default member, the

comparison will result in a Run-time error 438 - "Object doesn't support his property or method".

If the Object is unintitialized, the comparison will result in a Run-time error 91 - "Object variable or

With block variable not set".

If the literal Nothing is used with any comparison operator other than Is, it will result in a Compile

error - "Invalid use of object".

If the default member of the Object is another Object, VBA will continually call the default member

of each successive return value until a primitive type is returned or an error is raised. For example,

assume SomeClass has a default member of Value, which is an instance of ChildClass with a default

member of ChildValue. The comparison...

Set x = New SomeClass
Debug.Print x > 42

...will be evaluated as:

Set x = New SomeClass
Debug.Print x.Value.ChildValue > 42

If either operand is a numeric type and the other operand is a String or Variant of subtype String,

a numeric comparison will be performed. In this case, if the String cannot be cast to a number, a

Run-time error 13 - "Type mismatch" will result from the comparison.

If both operands are a String or a Variant of subtype String, a string comparison will be performed

based on the Option Compare setting of the code module. These comparisons are performed on a

character by character basis. Note that the character representation of a String containing a

number is not the same as a comparison of the numeric values:

https://riptutorial.com/ 170

http://www.riptutorial.com/vba/example/18935/vb--var-usermemid
http://www.riptutorial.com/vba/example/13937/option-compare--binary---text---database-

Public Sub Example()
 Dim left As Variant
 Dim right As Variant

 left = "42"
 right = "5"
 Debug.Print left > right 'Prints False
 Debug.Print Val(left) > Val(right) 'Prints True
End Sub

For this reason, make sure that String or Variant variables are cast to numbers before performing

numeric inequity comparisons on them.

If one operand is a Date, a numeric comparison on the underlying Double value will be performed if

the other operand is numeric or can be cast to a numeric type.

If the other operand is a String or a Variant of subtype String that can be cast to a Date using the

current locale, the String will be cast to a Date. If it cannot be cast to a Date in the current locale, a

Run-time error 13 - "Type mismatch" will result from the comparison.

Care should be taken when making comparisons between Double or Single values and Booleans.

Unlike other numeric types, non-zero values cannot be assumed to be True due to VBA's behavior

of promoting the data type of a comparison involving a floating point number to Double:

Public Sub Example()
 Dim Test As Double

 Test = 42 Debug.Print CBool(Test) 'Prints True.
 'True is promoted to Double - Test is not cast to Boolean
 Debug.Print Test = True 'Prints False

 'With explicit casts:
 Debug.Print CBool(Test) = True 'Prints True
 Debug.Print CDbl(-1) = CDbl(True) 'Prints True
End Sub

Bitwise \ Logical Operators

All of the logical operators in VBA can be thought of as "overrides" of the bitwise operators of the

same name. Technically, they are always treated as bitwise operators. All of the comparison

operators in VBA return a Boolean, which will always have none of its bits set (False) or all of its

bits set (True). But it will treat a value with any bit set as True. This means that the result of the

casting the bitwise result of an expression to a Boolean (see Comparison Operators) will always be

the same as treating it as a logical expression.

Assigning the result of an expression using one of these operators will give the bitwise result. Note

that in the truth tables below, 0 is equivalent to False and 1 is equivalent to True.

And

Returns True if the expressions on both sides evaluate to True.

https://riptutorial.com/ 171

http://www.riptutorial.com/vba/example/11783/date
http://www.riptutorial.com/vba/example/11778/boolean
http://www.riptutorial.com/vba/example/11778/boolean

Left-hand Operand Right-hand Operand Result

0 0 0

0 1 0

1 0 0

1 1 1

Or

Returns True if either side of the expression evaluates to True.

Left-hand Operand Right-hand Operand Result

0 0 0

0 1 1

1 0 1

1 1 1

Not

Returns True if the expression evaluates to False and False if the expression evaluations to True.

Right-hand Operand Result

0 1

1 0

Not is the only operand without a Left-hand operand. The Visual Basic Editor will automatically

simplify expressions with a left hand argument. If you type...

Debug.Print x Not y

...the VBE will change the line to:

Debug.Print Not x

Similar simplifications will be made to any expression that contains a left-hand operand (including

expressions) for Not.

Xor

https://riptutorial.com/ 172

Also known as "exclusive or". Returns True if both expressions evaluate to different results.

Left-hand Operand Right-hand Operand Result

0 0 0

0 1 1

1 0 1

1 1 0

Note that although the Xor operator can be used like a logical operator, there is absolutely no

reason to do so as it gives the same result as the comparison operator <>.

Eqv

Also known as "equivalence". Returns True when both expressions evaluate to the same result.

Left-hand Operand Right-hand Operand Result

0 0 1

0 1 0

1 0 0

1 1 1

Note that the Eqv function is very rarely used as x Eqv y is equivalent to the much more readable

Not (x Xor y).

Imp

Also known as "implication". Returns True if both operands are the same or the second operand is

True.

Left-hand Operand Right-hand Operand Result

0 0 1

0 1 1

1 0 0

1 1 1

Note that the Imp function is very rarely used. A good rule of thumb is that if you can't explain what

https://riptutorial.com/ 173

it means, you should use another construct.

Read Operators online: https://riptutorial.com/vba/topic/5813/operators

https://riptutorial.com/ 174

https://riptutorial.com/vba/topic/5813/operators

Chapter 32: Passing Arguments ByRef or

ByVal

Introduction

The ByRef and ByVal modifiers are part of a procedure's signature and indicate how an argument is

passed to a procedure. In VBA a parameter is passed ByRef unless specified otherwise (i.e. ByRef

is implicit if absent).

Note In many other programming languages (including VB.NET), parameters are implicitly passed

by value if no modifier is specified: consider specifying ByRef modifiers explicitly to avoid possible

confusion.

Remarks

Passing arrays

Arrays must be passed by reference. This code compiles, but raises run-time error 424 "Object

Required":

Public Sub Test()
 DoSomething Array(1, 2, 3)
End Sub

Private Sub DoSomething(ByVal foo As Variant)
 foo.Add 42
End Sub

This code does not compile:

Private Sub DoSomething(ByVal foo() As Variant) 'ByVal is illegal for arrays
 foo.Add 42
End Sub

Examples

Passing Simple Variables ByRef And ByVal

Passing ByRef or ByVal indicates whether the actual value of an argument is passed to the

CalledProcedure by the CallingProcedure, or whether a reference (called a pointer in some other

languages) is passed to the CalledProcedure.

If an argument is passed ByRef, the memory address of the argument is passed to the

CalledProcedure and any modification to that parameter by the CalledProcedure is made to the value

in the CallingProcedure.

https://riptutorial.com/ 175

If an argument is passed ByVal, the actual value, not a reference to the variable, is passed to the

CalledProcedure.

A simple example will illustrate this clearly:

Sub CalledProcedure(ByRef X As Long, ByVal Y As Long)
 X = 321
 Y = 654
End Sub

Sub CallingProcedure()
 Dim A As Long
 Dim B As Long
 A = 123
 B = 456

 Debug.Print "BEFORE CALL => A: " & CStr(A), "B: " & CStr(B)
 ''Result : BEFORE CALL => A: 123 B: 456

 CalledProcedure X:=A, Y:=B

 Debug.Print "AFTER CALL = A: " & CStr(A), "B: " & CStr(B)
 ''Result : AFTER CALL => A: 321 B: 456
End Sub

Another example:

Sub Main()
 Dim IntVarByVal As Integer
 Dim IntVarByRef As Integer

 IntVarByVal = 5
 IntVarByRef = 10

 SubChangeArguments IntVarByVal, IntVarByRef '5 goes in as a "copy". 10 goes in as a
reference
 Debug.Print "IntVarByVal: " & IntVarByVal 'prints 5 (no change made by SubChangeArguments)
 Debug.Print "IntVarByRef: " & IntVarByRef 'prints 99 (the variable was changed in
SubChangeArguments)
End Sub

Sub SubChangeArguments(ByVal ParameterByVal As Integer, ByRef ParameterByRef As Integer)
 ParameterByVal = ParameterByVal + 2 ' 5 + 2 = 7 (changed only inside this Sub)
 ParameterByRef = ParameterByRef + 89 ' 10 + 89 = 99 (changes the IntVarByRef itself - in
the Main Sub)
End Sub

ByRef

Default modifier

If no modifier is specified for a parameter, that parameter is implicitly passed by reference.

Public Sub DoSomething1(foo As Long)

https://riptutorial.com/ 176

End Sub

Public Sub DoSomething2(ByRef foo As Long)
End Sub

The foo parameter is passed ByRef in both DoSomething1 and DoSomething2.

Watch out! If you're coming to VBA with experience from other languages, this is very

likely the exact opposite behavior to the one you're used to. In many other

programming languages (including VB.NET), the implicit/default modifier passes

parameters by value.

Passing by reference

When a value is passed ByRef, the procedure receives a reference to the value.

Public Sub Test()
 Dim foo As Long
 foo = 42
 DoSomething foo
 Debug.Print foo
End Sub

Private Sub DoSomething(ByRef foo As Long)
 foo = foo * 2
End Sub

Calling the above Test procedure outputs 84. DoSomething is given foo and receives a

reference to the value, and therefore works with the same memory address as the caller.

•

When a reference is passed ByRef, the procedure receives a reference to the pointer.

Public Sub Test()
 Dim foo As Collection
 Set foo = New Collection
 DoSomething foo
 Debug.Print foo.Count
End Sub

Private Sub DoSomething(ByRef foo As Collection)
 foo.Add 42
 Set foo = Nothing
End Sub

The above code raises run-time error 91, because the caller is calling the Count member of

an object that no longer exists, because DoSomething was given a reference to the object

pointer and assigned it to Nothing before returning.

•

Forcing ByVal at call site

https://riptutorial.com/ 177

http://www.riptutorial.com/vba/example/27750/run-time-error--91---object-variable-or-with-block-variable-not-set

Using parentheses at the call site, you can override ByRef and force an argument to be passed

ByVal:

Public Sub Test()
 Dim foo As Long
 foo = 42
 DoSomething (foo)
 Debug.Print foo
End Sub

Private Sub DoSomething(ByRef foo As Long)
 foo = foo * 2
End Sub

The above code outputs 42, regardless of whether ByRef is specified implicitly or explicitly.

Watch out! Because of this, using extraneous parentheses in procedure calls can

easily introduce bugs. Pay attention to the whitespace between the procedure name

and the argument list:

bar = DoSomething(foo) 'function call, no whitespace; parens are part of args list
DoSomething (foo) 'procedure call, notice whitespace; parens are NOT part of args
list
DoSomething foo 'procedure call does not force the foo parameter to be ByVal

ByVal

Passing by value

When a value is passed ByVal, the procedure receives a copy of the value.

Public Sub Test()
 Dim foo As Long
 foo = 42
 DoSomething foo
 Debug.Print foo
End Sub

Private Sub DoSomething(ByVal foo As Long)
 foo = foo * 2
End Sub

Calling the above Test procedure outputs 42. DoSomething is given foo and receives a copy of

the value. The copy is multiplied by 2, and then discarded when the procedure exits; the

caller's copy was never altered.

•

When a reference is passed ByVal, the procedure receives a copy of the pointer.

Public Sub Test()
 Dim foo As Collection
 Set foo = New Collection
 DoSomething foo
 Debug.Print foo.Count

•

https://riptutorial.com/ 178

End Sub

Private Sub DoSomething(ByVal foo As Collection)
 foo.Add 42
 Set foo = Nothing
End Sub

Calling the above Test procedure outputs 1. DoSomething is given foo and receives a copy of

the pointer to the Collection object. Because the foo object variable in the Test scope points

to the same object, adding an item in DoSomething adds the item to the same object. Because

it's a copy of the pointer, setting its reference to Nothing does not affect the caller's own copy.

Read Passing Arguments ByRef or ByVal online: https://riptutorial.com/vba/topic/7363/passing-

arguments-byref-or-byval

https://riptutorial.com/ 179

https://riptutorial.com/vba/topic/7363/passing-arguments-byref-or-byval
https://riptutorial.com/vba/topic/7363/passing-arguments-byref-or-byval

Chapter 33: Procedure Calls

Syntax

IdentifierName [arguments]•

Call IdentifierName[(arguments)]•

[Let|Set] expression = IdentifierName[(arguments)]•

[Let|Set] IdentifierName[(arguments)] = expression•

Parameters

Parameter Info

IdentifierName The name of the procedure to call.

arguments A comma-separated list of arguments to be passed to the procedure.

Remarks

The first two syntaxes are for calling Sub procedures; notice the first syntax involves no

parentheses.

See This is confusing. Why not just always use parentheses? for a thorough explanation of the

differences between the first two syntaxes.

The third syntax is for calling Function and Property Get procedures; when there are parameters,

the parentheses are always mandatory. The Let keyword is optional when assigning a value, but

the Set keyword is required when assigning a reference.

Fourth syntax is for calling Property Let and Property Set procedures; the expression on the right-

hand side of the assignment is passed to the property's value parameter.

Examples

Implicit Call Syntax

ProcedureName
ProcedureName argument1, argument2

Call a procedure by its name without any parentheses.

Edge case

https://riptutorial.com/ 180

http://www.riptutorial.com/vba/example/3818/this-is-confusing--why-not-just-always-use-parentheses-

The Call keyword is only required in one edge case:

Call DoSomething : DoSomethingElse

DoSomething and DoSomethingElse are procedures being called. If the Call keyword was removed,

then DoSomething would be parsed as a line label rather than a procedure call, which would break

the code:

DoSomething: DoSomethingElse 'only DoSomethingElse will run

Return Values

To retrieve the result of a procedure call (e.g. Function or Property Get procedures), put the call on

the right-hand side of an assignment:

result = ProcedureName
result = ProcedureName(argument1, argument2)

Parentheses must be present if there are parameters. If the procedure has no parameters, the

parentheses are redundant.

This is confusing. Why not just always use parentheses?

Parentheses are used to enclose the arguments of function calls. Using them for procedure calls

can cause unexpected problems.

Because they can introduce bugs, both at run-time by passing a possibly unintended value to the

procedure, and at compile-time by simply being invalid syntax.

Run-time

Redundant parentheses can introduce bugs. Given a procedure that takes an object reference as

a parameter...

Sub DoSomething(ByRef target As Range)
End Sub

...and called with parentheses:

DoSomething (Application.ActiveCell) 'raises an error at runtime

This will raise an "Object Required" runtime error #424. Other errors are possible in other

circumstances: here the Application.ActiveCell Range object reference is being evaluated and

passed by value regardless of the procedure's signature specifying that target would be passed

ByRef. The actual value passed ByVal to DoSomething in the above snippet, is

Application.ActiveCell.Value.

https://riptutorial.com/ 181

Parentheses force VBA to evaluate the value of the bracketed expression, and pass the result

ByVal to the called procedure. When the type of the evaluated result mismatches the procedure's

expected type and cannot be implicitly converted, a runtime error is raised.

Compile-time

This code will fail to compile:

MsgBox ("Invalid Code!", vbCritical)

Because the expression ("Invalid Code!", vbCritical) cannot be evaluated to a value.

This would compile and work:

MsgBox ("Invalid Code!"), (vbCritical)

But would definitely look silly. Avoid redundant parentheses.

Explicit Call Syntax

Call ProcedureName
Call ProcedureName(argument1, argument2)

The explicit call syntax requires the Call keyword and parentheses around the argument list;

parentheses are redundant if there are no parameters. This syntax was made obsolete when the

more modern implicit call syntax was added to VB.

Optional Arguments

Some procedures have optional arguments. Optional arguments always come after required

arguments, but the procedure can be called without them.

For example, if the function, ProcedureName were to have two required arguments (argument1,

argument2), and one optional argument, optArgument3, it could be called at least four ways:

' Without optional argument
result = ProcedureName("A", "B")

' With optional argument
result = ProcedureName("A", "B", "C")

' Using named arguments (allows a different order)
result = ProcedureName(optArgument3:="C", argument1:="A", argument2:="B")

' Mixing named and unnamed arguments
result = ProcedureName("A", "B", optArgument3:="C")

The structure of the function header being called here would look something like this:

https://riptutorial.com/ 182

Function ProcedureName(argument1 As String, argument2 As String, Optional optArgument3 As
String) As String

The Optional keyword indicates that this argument can be omitted. As mentioned before - any

optional arguments introduced in the header must appear at the end, after any required

arguments.

You can also provide a default value for the argument in the case that a value isn't passed to the

function:

Function ProcedureName(argument1 As String, argument2 As String, Optional optArgument3 As
String = "C") As String

In this function, if the argument for c isn't supplied it's value will default to "C". If a value is supplied

then this will override the default value.

Read Procedure Calls online: https://riptutorial.com/vba/topic/1179/procedure-calls

https://riptutorial.com/ 183

https://riptutorial.com/vba/topic/1179/procedure-calls

Chapter 34: Reading 2GB+ files in binary in

VBA and File Hashes

Introduction

There is a built in easy way to read files in binary within VBA, however it has a restriction of 2GB

(2,147,483,647 bytes - max of Long data type). As technology evolves, this 2GB limit is easily

breached. e.g. an ISO image of Operating System install DVD disc. Microsoft does provide a way

to overcome this via low level Windows API and here is a backup of it.

Also demonstrate (Read part) for calculating File Hashes without external program like fciv.exe

from Microsoft.

Remarks

METHODS FOR THE CLASS BY MICROSOFT

Method Name Description

IsOpen Returns a boolean to indicate whether the file is open.

OpenFile(sFileName

As String)
Opens the file specified by the sFileName argument.

CloseFile Closes the currently open file.

ReadBytes(

ByteCount As Long)

Reads ByteCount bytes and returns them in a Variant byte array and

moves the pointer.

WriteBytes(

DataBytes() As Byte)

Writes the contents of the byte array to the current position in the file

and moves the pointer.

Flush Forces Windows to flush the write cache.

SeekAbsolute(

HighPos As Long,

LowPos As Long)

Moves the file pointer to the designated position from the beginning

of the file. Though VBA treats the DWORDS as signed values, the

API treats them as unsigned. Make the high-order argument non-

zero to exceed 4GB. The low-order DWORD will be negative for

values between 2GB and 4GB.

SeekRelative(Offset

As Long)

Moves the file pointer up to +/- 2GB from the current location. You

can rewrite this method to allow for offsets greater than 2GB by

converting a 64-bit signed offset into two 32-bit values.

https://riptutorial.com/ 184

PROPERTIES OF THE CLASS BY MICROSOFT

Property Description

FileHandle
The file handle for the currently open file. This is not compatible with VBA file

handles.

FileName The name of the currently open file.

AutoFlush Sets/indicates whether WriteBytes will automatically call the Flush method.

NORMAL MODULE

Function Notes

GetFileHash(sFile As

String, uBlockSize As

Double, sHashType As

String)

Simply throw in the full path to be hashed, Blocksize to use

(number of bytes), and the type of Hash to use - one of the private

constants: HashTypeMD5, HashTypeSHA1, HashTypeSHA256,

HashTypeSHA384, HashTypeSHA512. This was designed to be

as generic as possible.

You should un/comment the uFileSize As Double accordingly. I have tested MD5 and SHA1.

Examples

This have to be in a Class module, examples later referred as "Random"

' How To Seek Past VBA's 2GB File Limit
' Source: https://support.microsoft.com/en-us/kb/189981 (Archived)
' This must be in a Class Module

Option Explicit

Public Enum W32F_Errors
 W32F_UNKNOWN_ERROR = 45600
 W32F_FILE_ALREADY_OPEN
 W32F_PROBLEM_OPENING_FILE
 W32F_FILE_ALREADY_CLOSED
 W32F_Problem_seeking
End Enum

Private Const W32F_SOURCE = "Win32File Object"
Private Const GENERIC_WRITE = &H40000000
Private Const GENERIC_READ = &H80000000
Private Const FILE_ATTRIBUTE_NORMAL = &H80
Private Const CREATE_ALWAYS = 2
Private Const OPEN_ALWAYS = 4
Private Const INVALID_HANDLE_VALUE = -1

https://riptutorial.com/ 185

Private Const FILE_BEGIN = 0, FILE_CURRENT = 1, FILE_END = 2

Private Const FORMAT_MESSAGE_FROM_SYSTEM = &H1000

Private Declare Function FormatMessage Lib "kernel32" Alias "FormatMessageA" (_
 ByVal dwFlags As Long, _
 lpSource As Long, _
 ByVal dwMessageId As Long, _
 ByVal dwLanguageId As Long, _
 ByVal lpBuffer As String, _
 ByVal nSize As Long, _
 Arguments As Any) As Long

Private Declare Function ReadFile Lib "kernel32" (_
 ByVal hFile As Long, _
 lpBuffer As Any, _
 ByVal nNumberOfBytesToRead As Long, _
 lpNumberOfBytesRead As Long, _
 ByVal lpOverlapped As Long) As Long

Private Declare Function CloseHandle Lib "kernel32" (ByVal hObject As Long) As Long

Private Declare Function WriteFile Lib "kernel32" (_
 ByVal hFile As Long, _
 lpBuffer As Any, _
 ByVal nNumberOfBytesToWrite As Long, _
 lpNumberOfBytesWritten As Long, _
 ByVal lpOverlapped As Long) As Long

Private Declare Function CreateFile Lib "kernel32" Alias "CreateFileA" (_
 ByVal lpFileName As String, _
 ByVal dwDesiredAccess As Long, _
 ByVal dwShareMode As Long, _
 ByVal lpSecurityAttributes As Long, _
 ByVal dwCreationDisposition As Long, _
 ByVal dwFlagsAndAttributes As Long, _
 ByVal hTemplateFile As Long) As Long

Private Declare Function SetFilePointer Lib "kernel32" (_
 ByVal hFile As Long, _
 ByVal lDistanceToMove As Long, _
 lpDistanceToMoveHigh As Long, _
 ByVal dwMoveMethod As Long) As Long

Private Declare Function FlushFileBuffers Lib "kernel32" (ByVal hFile As Long) As Long

Private hFile As Long, sFName As String, fAutoFlush As Boolean

Public Property Get FileHandle() As Long
 If hFile = INVALID_HANDLE_VALUE Then
 RaiseError W32F_FILE_ALREADY_CLOSED
 End If
 FileHandle = hFile
End Property

Public Property Get FileName() As String
 If hFile = INVALID_HANDLE_VALUE Then
 RaiseError W32F_FILE_ALREADY_CLOSED
 End If
 FileName = sFName
End Property

https://riptutorial.com/ 186

Public Property Get IsOpen() As Boolean
 IsOpen = hFile <> INVALID_HANDLE_VALUE
End Property

Public Property Get AutoFlush() As Boolean
 If hFile = INVALID_HANDLE_VALUE Then
 RaiseError W32F_FILE_ALREADY_CLOSED
 End If
 AutoFlush = fAutoFlush
End Property

Public Property Let AutoFlush(ByVal NewVal As Boolean)
 If hFile = INVALID_HANDLE_VALUE Then
 RaiseError W32F_FILE_ALREADY_CLOSED
 End If
 fAutoFlush = NewVal
End Property

Public Sub OpenFile(ByVal sFileName As String)
 If hFile <> INVALID_HANDLE_VALUE Then
 RaiseError W32F_FILE_ALREADY_OPEN, sFName
 End If
 hFile = CreateFile(sFileName, GENERIC_WRITE Or GENERIC_READ, 0, 0, OPEN_ALWAYS,
FILE_ATTRIBUTE_NORMAL, 0)
 If hFile = INVALID_HANDLE_VALUE Then
 RaiseError W32F_PROBLEM_OPENING_FILE, sFileName
 End If
 sFName = sFileName
End Sub

Public Sub CloseFile()
 If hFile = INVALID_HANDLE_VALUE Then
 RaiseError W32F_FILE_ALREADY_CLOSED
 End If
 CloseHandle hFile
 sFName = ""
 fAutoFlush = False
 hFile = INVALID_HANDLE_VALUE
End Sub

Public Function ReadBytes(ByVal ByteCount As Long) As Variant
 Dim BytesRead As Long, Bytes() As Byte
 If hFile = INVALID_HANDLE_VALUE Then
 RaiseError W32F_FILE_ALREADY_CLOSED
 End If
 ReDim Bytes(0 To ByteCount - 1) As Byte
 ReadFile hFile, Bytes(0), ByteCount, BytesRead, 0
 ReadBytes = Bytes
End Function

Public Sub WriteBytes(DataBytes() As Byte)
 Dim fSuccess As Long, BytesToWrite As Long, BytesWritten As Long
 If hFile = INVALID_HANDLE_VALUE Then
 RaiseError W32F_FILE_ALREADY_CLOSED
 End If
 BytesToWrite = UBound(DataBytes) - LBound(DataBytes) + 1
 fSuccess = WriteFile(hFile, DataBytes(LBound(DataBytes)), BytesToWrite, BytesWritten, 0)
 If fAutoFlush Then Flush
End Sub

https://riptutorial.com/ 187

Public Sub Flush()
 If hFile = INVALID_HANDLE_VALUE Then
 RaiseError W32F_FILE_ALREADY_CLOSED
 End If
 FlushFileBuffers hFile
End Sub

Public Sub SeekAbsolute(ByVal HighPos As Long, ByVal LowPos As Long)
 If hFile = INVALID_HANDLE_VALUE Then
 RaiseError W32F_FILE_ALREADY_CLOSED
 End If
 LowPos = SetFilePointer(hFile, LowPos, HighPos, FILE_BEGIN)
End Sub

Public Sub SeekRelative(ByVal Offset As Long)
 Dim TempLow As Long, TempErr As Long
 If hFile = INVALID_HANDLE_VALUE Then
 RaiseError W32F_FILE_ALREADY_CLOSED
 End If
 TempLow = SetFilePointer(hFile, Offset, ByVal 0&, FILE_CURRENT)
 If TempLow = -1 Then
 TempErr = Err.LastDllError
 If TempErr Then
 RaiseError W32F_Problem_seeking, "Error " & TempErr & "." & vbCrLf & CStr(TempErr)
 End If
 End If
End Sub

Private Sub Class_Initialize()
 hFile = INVALID_HANDLE_VALUE
End Sub

Private Sub Class_Terminate()
 If hFile <> INVALID_HANDLE_VALUE Then CloseHandle hFile
End Sub

Private Sub RaiseError(ByVal ErrorCode As W32F_Errors, Optional sExtra)
 Dim Win32Err As Long, Win32Text As String
 Win32Err = Err.LastDllError
 If Win32Err Then
 Win32Text = vbCrLf & "Error " & Win32Err & vbCrLf & _
 DecodeAPIErrors(Win32Err)
 End If
 Select Case ErrorCode
 Case W32F_FILE_ALREADY_OPEN
 Err.Raise W32F_FILE_ALREADY_OPEN, W32F_SOURCE, "The file '" & sExtra & "' is
already open." & Win32Text
 Case W32F_PROBLEM_OPENING_FILE
 Err.Raise W32F_PROBLEM_OPENING_FILE, W32F_SOURCE, "Error opening '" & sExtra &
"'." & Win32Text
 Case W32F_FILE_ALREADY_CLOSED
 Err.Raise W32F_FILE_ALREADY_CLOSED, W32F_SOURCE, "There is no open file."
 Case W32F_Problem_seeking
 Err.Raise W32F_Problem_seeking, W32F_SOURCE, "Seek Error." & vbCrLf & sExtra
 Case Else
 Err.Raise W32F_UNKNOWN_ERROR, W32F_SOURCE, "Unknown error." & Win32Text
 End Select
End Sub

Private Function DecodeAPIErrors(ByVal ErrorCode As Long) As String
 Dim sMessage As String, MessageLength As Long

https://riptutorial.com/ 188

 sMessage = Space$(256)
 MessageLength = FormatMessage(FORMAT_MESSAGE_FROM_SYSTEM, 0&, ErrorCode, 0&, sMessage,
256&, 0&)
 If MessageLength > 0 Then
 DecodeAPIErrors = Left(sMessage, MessageLength)
 Else
 DecodeAPIErrors = "Unknown Error."
 End If
End Function

Code for Calculating File Hash in a Standard module

Private Const HashTypeMD5 As String = "MD5" ' https://msdn.microsoft.com/en-
us/library/system.security.cryptography.md5cryptoserviceprovider(v=vs.110).aspx
Private Const HashTypeSHA1 As String = "SHA1" ' https://msdn.microsoft.com/en-
us/library/system.security.cryptography.sha1cryptoserviceprovider(v=vs.110).aspx
Private Const HashTypeSHA256 As String = "SHA256" ' https://msdn.microsoft.com/en-
us/library/system.security.cryptography.sha256cryptoserviceprovider(v=vs.110).aspx
Private Const HashTypeSHA384 As String = "SHA384" ' https://msdn.microsoft.com/en-
us/library/system.security.cryptography.sha384cryptoserviceprovider(v=vs.110).aspx
Private Const HashTypeSHA512 As String = "SHA512" ' https://msdn.microsoft.com/en-
us/library/system.security.cryptography.sha512cryptoserviceprovider(v=vs.110).aspx

Private uFileSize As Double ' Comment out if not testing performance by FileHashes()

Sub FileHashes()
 Dim tStart As Date, tFinish As Date, sHash As String, aTestFiles As Variant, oTestFile As
Variant, aBlockSizes As Variant, oBlockSize As Variant
 Dim BLOCKSIZE As Double

 ' This performs performance testing on different file sizes and block sizes
 aBlockSizes = Array("2^12-1", "2^13-1", "2^14-1", "2^15-1", "2^16-1", "2^17-1", "2^18-1",
"2^19-1", "2^20-1", "2^21-1", "2^22-1", "2^23-1", "2^24-1", "2^25-1", "2^26-1")
 aTestFiles = Array("C:\ISO\clonezilla-live-2.2.2-37-amd64.iso",
"C:\ISO\HPIP201.2014_0902.29.iso",
"C:\ISO\SW_DVD5_Windows_Vista_Business_W32_32BIT_English.ISO",
"C:\ISO\Win10_1607_English_x64.iso",
"C:\ISO\SW_DVD9_Windows_Svr_Std_and_DataCtr_2012_R2_64Bit_English.ISO")
 Debug.Print "Test files: " & Join(aTestFiles, " | ")
 Debug.Print "BlockSizes: " & Join(aBlockSizes, " | ")
 For Each oTestFile In aTestFiles
 Debug.Print oTestFile
 For Each oBlockSize In aBlockSizes
 BLOCKSIZE = Evaluate(oBlockSize)
 tStart = Now
 sHash = GetFileHash(CStr(oTestFile), BLOCKSIZE, HashTypeMD5)
 tFinish = Now
 Debug.Print sHash, uFileSize, Format(tFinish - tStart, "hh:mm:ss"), oBlockSize & "
(" & BLOCKSIZE & ")"
 Next
 Next
End Sub

Private Function GetFileHash(ByVal sFile As String, ByVal uBlockSize As Double, ByVal
sHashType As String) As String
 Dim oFSO As Object ' "Scripting.FileSystemObject"
 Dim oCSP As Object ' One of the "CryptoServiceProvider"
 Dim oRnd As Random ' "Random" Class by Microsoft, must be in the same file
 Dim uBytesRead As Double, uBytesToRead As Double, bDone As Boolean

https://riptutorial.com/ 189

 Dim aBlock() As Byte, aBytes As Variant ' Arrays to store bytes
 Dim aHash() As Byte, sHash As String, i As Long
 'Dim uFileSize As Double ' Un-Comment if GetFileHash() is to be used individually

 Set oRnd = New Random ' Class by Microsoft: Random
 Set oFSO = CreateObject("Scripting.FileSystemObject")
 Set oCSP = CreateObject("System.Security.Cryptography." & sHashType &
"CryptoServiceProvider")

 If oFSO Is Nothing Or oRnd Is Nothing Or oCSP Is Nothing Then
 MsgBox "One or more required objects cannot be created"
 GoTo CleanUp
 End If

 uFileSize = oFSO.GetFile(sFile).Size ' FILELEN() has 2GB max!
 uBytesRead = 0
 bDone = False
 sHash = String(oCSP.HashSize / 4, "0") ' Each hexadecimal has 4 bits

 Application.ScreenUpdating = False
 ' Process the file in chunks of uBlockSize or less
 If uFileSize = 0 Then
 ReDim aBlock(0)
 oCSP.TransformFinalBlock aBlock, 0, 0
 bDone = True
 Else
 With oRnd
 .OpenFile sFile
 Do
 If uBytesRead + uBlockSize < uFileSize Then
 uBytesToRead = uBlockSize
 Else
 uBytesToRead = uFileSize - uBytesRead
 bDone = True
 End If
 ' Read in some bytes
 aBytes = .ReadBytes(uBytesToRead)
 aBlock = aBytes
 If bDone Then
 oCSP.TransformFinalBlock aBlock, 0, uBytesToRead
 uBytesRead = uBytesRead + uBytesToRead
 Else
 uBytesRead = uBytesRead + oCSP.TransformBlock(aBlock, 0, uBytesToRead,
aBlock, 0)
 End If
 DoEvents
 Loop Until bDone
 .CloseFile
 End With
 End If
 If bDone Then
 ' convert Hash byte array to an hexadecimal string
 aHash = oCSP.hash
 For i = 0 To UBound(aHash)
 Mid$(sHash, i * 2 + (aHash(i) > 15) + 2) = Hex(aHash(i))
 Next
 End If
 Application.ScreenUpdating = True
 ' Clean up
 oCSP.Clear
CleanUp:

https://riptutorial.com/ 190

 Set oFSO = Nothing
 Set oRnd = Nothing
 Set oCSP = Nothing
 GetFileHash = sHash
End Function

The output is pretty interesting, my test files indicates that BLOCKSIZE = 131071 (2^17-1)

gives overall best performance with 32bit Office 2010 on Windows 7 x64, next best is

2^16-1 (65535). Note 2^27-1 yields Out of memory.

File Size

(bytes)
File Name

146,800,640 clonezilla-live-2.2.2-37-amd64.iso

798,210,048 HPIP201.2014_0902.29.iso

2,073,016,320 SW_DVD5_Windows_Vista_Business_W32_32BIT_English.ISO

4,380,387,328 Win10_1607_English_x64.iso

5,400,115,200 SW_DVD9_Windows_Svr_Std_and_DataCtr_2012_R2_64Bit_English.ISO

Calculating all Files Hash from a root Folder

Another variation from the code above gives you more performance when you want to get hash

codes of all files from a root folder including all sub folders.

Example of Worksheet:

Code

Option Explicit

Private Const HashTypeMD5 As String = "MD5" ' https://msdn.microsoft.com/en-
us/library/system.security.cryptography.md5cryptoserviceprovider(v=vs.110).aspx
Private Const HashTypeSHA1 As String = "SHA1" ' https://msdn.microsoft.com/en-
us/library/system.security.cryptography.sha1cryptoserviceprovider(v=vs.110).aspx
Private Const HashTypeSHA256 As String = "SHA256" ' https://msdn.microsoft.com/en-
us/library/system.security.cryptography.sha256cryptoserviceprovider(v=vs.110).aspx
Private Const HashTypeSHA384 As String = "SHA384" ' https://msdn.microsoft.com/en-
us/library/system.security.cryptography.sha384cryptoserviceprovider(v=vs.110).aspx
Private Const HashTypeSHA512 As String = "SHA512" ' https://msdn.microsoft.com/en-
us/library/system.security.cryptography.sha512cryptoserviceprovider(v=vs.110).aspx

Private Const BLOCKSIZE As Double = 131071 ' 2^17-1

https://riptutorial.com/ 191

https://i.stack.imgur.com/7wEZ3.png

Private oFSO As Object
Private oCSP As Object
Private oRnd As Random ' Requires the Class from Microsoft https://support.microsoft.com/en-
us/kb/189981
Private sHashType As String
Private sRootFDR As String
Private oRng As Range
Private uFileCount As Double

Sub AllFileHashes() ' Active-X button calls this
 Dim oWS As Worksheet
 ' | A: FileHash | B: FileSize | C: FileName | D: FilaName and Path | E: File Last
Modification Time | F: Time required to calculate has code (seconds)
 With ThisWorkbook
 ' Clear All old entries on all worksheets
 For Each oWS In .Worksheets
 Set oRng = Intersect(oWS.UsedRange, oWS.UsedRange.Offset(2))
 If Not oRng Is Nothing Then oRng.ClearContents
 Next
 With .Worksheets(1)
 sHashType = Trim(.Range("A1").Value) ' Range(A1)
 sRootFDR = Trim(.Range("C1").Value) ' Range(C1) Column B for file size
 If Len(sHashType) = 0 Or Len(sRootFDR) = 0 Then Exit Sub
 Set oRng = .Range("A3") ' First entry on First Page
 End With
 End With

 uFileCount = 0
 If oRnd Is Nothing Then Set oRnd = New Random ' Class by Microsoft: Random
 If oFSO Is Nothing Then Set oFSO = CreateObject("Scripting.FileSystemObject") ' Just to
get correct FileSize
 If oCSP Is Nothing Then Set oCSP = CreateObject("System.Security.Cryptography." &
sHashType & "CryptoServiceProvider")

 ProcessFolder oFSO.GetFolder(sRootFDR)

 Application.StatusBar = False
 Application.ScreenUpdating = True
 oCSP.Clear
 Set oCSP = Nothing
 Set oRng = Nothing
 Set oFSO = Nothing
 Set oRnd = Nothing
 Debug.Print "Total file count: " & uFileCount
End Sub

Private Sub ProcessFolder(ByRef oFDR As Object)
 Dim oFile As Object, oSubFDR As Object, sHash As String, dStart As Date, dFinish As Date
 Application.ScreenUpdating = False
 For Each oFile In oFDR.Files
 uFileCount = uFileCount + 1
 Application.StatusBar = uFileCount & ": " & Right(oFile.Path, 255 - Len(uFileCount) -
2)
 oCSP.Initialize ' Reinitialize the CryptoServiceProvider
 dStart = Now
 sHash = GetFileHash(oFile, BLOCKSIZE, sHashType)
 dFinish = Now
 With oRng
 .Value = sHash
 .Offset(0, 1).Value = oFile.Size ' File Size in bytes

https://riptutorial.com/ 192

 .Offset(0, 2).Value = oFile.Name ' File name with extension
 .Offset(0, 3).Value = oFile.Path ' Full File name and Path
 .Offset(0, 4).Value = FileDateTime(oFile.Path) ' Last modification timestamp of
file
 .Offset(0, 5).Value = dFinish - dStart ' Time required to calculate hash code
 End With
 If oRng.Row = Rows.Count Then
 ' Max rows reached, start on Next sheet
 If oRng.Worksheet.Index + 1 > ThisWorkbook.Worksheets.Count Then
 MsgBox "All rows in all worksheets have been used, please create more sheets"
 End
 End If
 Set oRng = ThisWorkbook.Sheets(oRng.Worksheet.Index + 1).Range("A3")
 oRng.Worksheet.Activate
 Else
 ' Move to next row otherwise
 Set oRng = oRng.Offset(1)
 End If
 Next
 'Application.StatusBar = False
 Application.ScreenUpdating = True
 oRng.Activate
 For Each oSubFDR In oFDR.SubFolders
 ProcessFolder oSubFDR
 Next
End Sub

Private Function GetFileHash(ByVal sFile As String, ByVal uBlockSize As Double, ByVal
sHashType As String) As String
 Dim uBytesRead As Double, uBytesToRead As Double, bDone As Boolean
 Dim aBlock() As Byte, aBytes As Variant ' Arrays to store bytes
 Dim aHash() As Byte, sHash As String, i As Long, oTmp As Variant
 Dim uFileSize As Double ' Un-Comment if GetFileHash() is to be used individually

 If oRnd Is Nothing Then Set oRnd = New Random ' Class by Microsoft: Random
 If oFSO Is Nothing Then Set oFSO = CreateObject("Scripting.FileSystemObject") ' Just to
get correct FileSize
 If oCSP Is Nothing Then Set oCSP = CreateObject("System.Security.Cryptography." &
sHashType & "CryptoServiceProvider")

 If oFSO Is Nothing Or oRnd Is Nothing Or oCSP Is Nothing Then
 MsgBox "One or more required objects cannot be created"
 Exit Function
 End If

 uFileSize = oFSO.GetFile(sFile).Size ' FILELEN() has 2GB max
 uBytesRead = 0
 bDone = False
 sHash = String(oCSP.HashSize / 4, "0") ' Each hexadecimal is 4 bits

 ' Process the file in chunks of uBlockSize or less
 If uFileSize = 0 Then
 ReDim aBlock(0)
 oCSP.TransformFinalBlock aBlock, 0, 0
 bDone = True
 Else
 With oRnd
 On Error GoTo CannotOpenFile
 .OpenFile sFile
 Do
 If uBytesRead + uBlockSize < uFileSize Then

https://riptutorial.com/ 193

 uBytesToRead = uBlockSize
 Else
 uBytesToRead = uFileSize - uBytesRead
 bDone = True
 End If
 ' Read in some bytes
 aBytes = .ReadBytes(uBytesToRead)
 aBlock = aBytes
 If bDone Then
 oCSP.TransformFinalBlock aBlock, 0, uBytesToRead
 uBytesRead = uBytesRead + uBytesToRead
 Else
 uBytesRead = uBytesRead + oCSP.TransformBlock(aBlock, 0, uBytesToRead,
aBlock, 0)
 End If
 DoEvents
 Loop Until bDone
 .CloseFile
CannotOpenFile:
 If Err.Number <> 0 Then ' Change the hash code to the Error description
 oTmp = Split(Err.Description, vbCrLf)
 sHash = oTmp(1) & ":" & oTmp(2)
 End If
 End With
 End If
 If bDone Then
 ' convert Hash byte array to an hexadecimal string
 aHash = oCSP.hash
 For i = 0 To UBound(aHash)
 Mid$(sHash, i * 2 + (aHash(i) > 15) + 2) = Hex(aHash(i))
 Next
 End If
 GetFileHash = sHash
End Function

Read Reading 2GB+ files in binary in VBA and File Hashes online:

https://riptutorial.com/vba/topic/8786/reading-2gbplus-files-in-binary-in-vba-and-file-hashes

https://riptutorial.com/ 194

https://riptutorial.com/vba/topic/8786/reading-2gbplus-files-in-binary-in-vba-and-file-hashes

Chapter 35: Recursion

Introduction

A function that calls itself is said to be recursive. Recursive logic can often be implemented as a

loop, too. Recursion must be controlled with a parameter, so that the function knows when to stop

recursing and deepening the call stack. Infinite recursion eventually causes a run-time error '28':

"Out of stack space".

See Recursion.

Remarks

Recursion allows for repeated, self-referencing calls of a procedure.

Examples

Factorials

Function Factorial(Value As Long) As Long
 If Value = 0 Or Value = 1 Then
 Factorial = 1
 Else
 Factorial = Factorial(Value - 1) * Value
 End If
End Function

Folder Recursion

Early Bound (with a reference to Microsoft Scripting Runtime)

 Sub EnumerateFilesAndFolders(_
 FolderPath As String, _
 Optional MaxDepth As Long = -1, _
 Optional CurrentDepth As Long = 0, _
 Optional Indentation As Long = 2)

 Dim FSO As Scripting.FileSystemObject
 Set FSO = New Scripting.FileSystemObject

 'Check the folder exists
 If FSO.FolderExists(FolderPath) Then
 Dim fldr As Scripting.Folder
 Set fldr = FSO.GetFolder(FolderPath)

 'Output the starting directory path
 If CurrentDepth = 0 Then
 Debug.Print fldr.Path
 End If

https://riptutorial.com/ 195

http://www.riptutorial.com/vba/topic/3236/recursion

 'Enumerate the subfolders
 Dim subFldr As Scripting.Folder
 For Each subFldr In fldr.SubFolders
 Debug.Print Space$((CurrentDepth + 1) * Indentation) & subFldr.Name
 If CurrentDepth < MaxDepth Or MaxDepth = -1 Then
 'Recursively call EnumerateFilesAndFolders
 EnumerateFilesAndFolders subFldr.Path, MaxDepth, CurrentDepth + 1,
Indentation
 End If
 Next subFldr

 'Enumerate the files
 Dim fil As Scripting.File
 For Each fil In fldr.Files
 Debug.Print Space$((CurrentDepth + 1) * Indentation) & fil.Name
 Next fil
 End If
 End Sub

Read Recursion online: https://riptutorial.com/vba/topic/3236/recursion

https://riptutorial.com/ 196

https://riptutorial.com/vba/topic/3236/recursion

Chapter 36: Scripting.Dictionary object

Remarks

You must add Microsoft Scripting Runtime to the VBA project through the VBE's Tools →
References command in order to implement early binding of the Scripting Dictionary object. This
library reference is carried with the project; it does not have to be re-referenced when the VBA
project is distributed and run on another computer.

Examples

Properties and Methods

A Scripting Dictionary object stores information in Key/Item pairs. The Keys must be unique and

not an array but the associated Items can be repeated (their uniqueness is held by the companion

Key) and can be of any type of variant or object.

A dictionary can be thought of as a two field in-memory database with a primary unique index on

the first 'field' (the Key). This unique index on the Keys property allows very fast 'lookups' to

retrieve a Key's associated Item value.

Properties

name read/write type description

CompareMode
read /

write

CompareMode

constant

Setting the CompareMode can only be

performed on an empty dictionary. Accepted

values are 0 (vbBinaryCompare), 1

(vbTextCompare), 2 (vbDatabaseCompare).

Count
read

only

unsigned long

integer

A one-based count of the key/item pairs in the

scripting dictionary object.

Key
read /

write

non-array

variant
Each individual unique key in the dictionary.

Item(Key)
read /

write
any variant

Default property. Each individual item

associated with a key in the dictionary. Note

that attempting to retrieve an item with a key

that does not exist in the dictionary will

implicitly add the passed key.

Methods

https://riptutorial.com/ 197

https://msdn.microsoft.com/en-us/library/x4k5wbx4(v=vs.84).aspx

name description

Add(Key,

Item)

Adds a new Key and Item to the dictionary. The new key must not exist in the

dictionary's current Keys collection but an item can be repeated among many

unique keys.

Exists(Key) Boolean test to determine if a Key already exists in the dictionary.

Keys Returns the array or collection of unique keys.

Items Returns the array or collection of associated items.

Remove(

Key)
Removes an individual dictionary key and its associated item.

RemoveAll Clears all of a dictionary object's keys and items.

Sample Code

'Populate, enumerate, locate and remove entries in a dictionary that was created
'with late binding
Sub iterateDictionaryLate()
 Dim k As Variant, dict As Object

 Set dict = CreateObject("Scripting.Dictionary")
 dict.CompareMode = vbTextCompare 'non-case sensitive compare model

 'populate the dictionary
 dict.Add Key:="Red", Item:="Balloon"
 dict.Add Key:="Green", Item:="Balloon"
 dict.Add Key:="Blue", Item:="Balloon"

 'iterate through the keys
 For Each k In dict.Keys
 Debug.Print k & " - " & dict.Item(k)
 Next k

 'locate the Item for Green
 Debug.Print dict.Item("Green")

 'remove key/item pairs from the dictionary
 dict.Remove "blue" 'remove individual key/item pair by key
 dict.RemoveAll 'remove all remaining key/item pairs

End Sub

'Populate, enumerate, locate and remove entries in a dictionary that was created
'with early binding (see Remarks)
Sub iterateDictionaryEarly()
 Dim d As Long, k As Variant
 Dim dict As New Scripting.Dictionary

 dict.CompareMode = vbTextCompare 'non-case sensitive compare model

 'populate the dictionary
 dict.Add Key:="Red", Item:="Balloon"

https://riptutorial.com/ 198

 dict.Add Key:="Green", Item:="Balloon"
 dict.Add Key:="Blue", Item:="Balloon"
 dict.Add Key:="White", Item:="Balloon"

 'iterate through the keys
 For Each k In dict.Keys
 Debug.Print k & " - " & dict.Item(k)
 Next k

 'iterate through the keys by the count
 For d = 0 To dict.Count - 1
 Debug.Print dict.Keys(d) & " - " & dict.Items(d)
 Next d

 'iterate through the keys by the boundaries of the keys collection
 For d = LBound(dict.Keys) To UBound(dict.Keys)
 Debug.Print dict.Keys(d) & " - " & dict.Items(d)
 Next d

 'locate the Item for Green
 Debug.Print dict.Item("Green")
 'locate the Item for the first key
 Debug.Print dict.Item(dict.Keys(0))
 'locate the Item for the last key
 Debug.Print dict.Item(dict.Keys(UBound(dict.Keys)))

 'remove key/item pairs from the dictionary
 dict.Remove "blue" 'remove individual key/item pair by key
 dict.Remove dict.Keys(0) 'remove first key/item by index position
 dict.Remove dict.Keys(UBound(dict.Keys)) 'remove last key/item by index position
 dict.RemoveAll 'remove all remaining key/item pairs

End Sub

Aggregating data with Scripting.Dictionary (Maximum, Count)

Dictionaries are great for managing information where multiple entries occur, but you are only

concerned with a single value for each set of entries — the first or last value, the mininmum or

maximum value, an average, a sum etc.

Consider a workbook that holds a log of user activity, with a script that inserts the username and

edit date every time someone edits the workbook:

Log worksheet

A B

bob 10/12/2016 9:00

alice 10/13/2016 13:00

bob 10/13/2016 13:30

alice 10/13/2016 14:00

https://riptutorial.com/ 199

A B

alice 10/14/2016 13:00

Let's say you want to output the last edit time for each user, into a worksheet named Summary.

Notes:
1. The data is assumed to be in ActiveWorkbook.
2. We are using an array to pull the values from the worksheet; this is more efficient than iterating over each cell.
3. The Dictionary is created using early binding.

Sub LastEdit()
Dim vLog as Variant, vKey as Variant
Dim dict as New Scripting.Dictionary
Dim lastRow As Integer, lastColumn As Integer
Dim i as Long
Dim anchor As Range

With ActiveWorkbook
 With .Sheets("Log")
 'Pull entries in "log" into a variant array
 lastRow = .Range("a" & .Rows.Count).End(xlUp).Row
 vlog = .Range("a1", .Cells(lastRow, 2)).Value2

 'Loop through array
 For i = 1 to lastRow
 Dim username As String
 username = vlog(i, 1)
 Dim editDate As Date
 editDate = vlog(i, 2)

 'If the username is not yet in the dictionary:
 If Not dict.Exists(username) Then
 dict(username) = editDate
 ElseIf dict(username) < editDate Then
 dict(username) = editDate
 End If
 Next
 End With

 With .Sheets("Summary")
 'Loop through keys
 For Each vKey in dict.Keys
 'Add the key and value at the next available row
 Anchor = .Range("A" & .Rows.Count).End(xlUp).Offset(1,0)
 Anchor = vKey
 Anchor.Offset(0,1) = dict(vKey)
 Next vKey
 End With
End With
End Sub

and the output will look like this:

Summary worksheet

https://riptutorial.com/ 200

A B

bob 10/13/2016 13:30

alice 10/14/2016 13:00

If on the other hand you want to output how many times each user edited the workbook, the body

of the For loop should look like this:

 'Loop through array
 For i = 1 to lastRow
 Dim username As String
 username = vlog(i, 1)

 'If the username is not yet in the dictionary:
 If Not dict.Exists(username) Then
 dict(username) = 1
 Else
 dict(username) = dict(username) + 1
 End If
 Next

and the output will look like this:

Summary worksheet

A B

bob 2

alice 3

Getting unique values with Scripting.Dictionary

The Dictionary allows getting a unique set of values very simply. Consider the following function:

Function Unique(values As Variant) As Variant()
 'Put all the values as keys into a dictionary
 Dim dict As New Scripting.Dictionary
 Dim val As Variant
 For Each val In values
 dict(val) = 1 'The value doesn't matter here
 Next
 Unique = dict.Keys
End Function

which you could then call like this:

Dim duplicates() As Variant
duplicates = Array(1, 2, 3, 1, 2, 3)
Dim uniqueVals() As Variant

https://riptutorial.com/ 201

uniqueVals = Unique(duplicates)

and uniqueVals would contain only {1,2,3}.

Note: This function can be used with any enumerable object.

Read Scripting.Dictionary object online: https://riptutorial.com/vba/topic/3667/scripting-dictionary-

object

https://riptutorial.com/ 202

https://riptutorial.com/vba/topic/3667/scripting-dictionary-object
https://riptutorial.com/vba/topic/3667/scripting-dictionary-object

Chapter 37: Scripting.FileSystemObject

Examples

Creating a FileSystemObject

Const ForReading = 1
Const ForWriting = 2
Const ForAppending = 8

Sub FsoExample()
 Dim fso As Object ' declare variable
 Set fso = CreateObject("Scripting.FileSystemObject") ' Set it to be a File System Object

 ' now use it to check if a file exists
 Dim myFilePath As String
 myFilePath = "C:\mypath\to\myfile.txt"
 If fso.FileExists(myFilePath) Then
 ' do something
 Else
 ' file doesn't exist
 MsgBox "File doesn't exist"
 End If
End Sub

Reading a text file using a FileSystemObject

Const ForReading = 1
Const ForWriting = 2
Const ForAppending = 8

Sub ReadTextFileExample()
 Dim fso As Object
 Set fso = CreateObject("Scripting.FileSystemObject")

 Dim sourceFile As Object
 Dim myFilePath As String
 Dim myFileText As String

 myFilePath = "C:\mypath\to\myfile.txt"
 Set sourceFile = fso.OpenTextFile(myFilePath, ForReading)
 myFileText = sourceFile.ReadAll ' myFileText now contains the content of the text file
 sourceFile.Close ' close the file
 ' do whatever you might need to do with the text

 ' You can also read it line by line
 Dim line As String
 Set sourceFile = fso.OpenTextFile(myFilePath, ForReading)
 While Not sourceFile.AtEndOfStream ' while we are not finished reading through the file
 line = sourceFile.ReadLine
 ' do something with the line...
 Wend
 sourceFile.Close
End Sub

https://riptutorial.com/ 203

Creating a text file with FileSystemObject

Sub CreateTextFileExample()
 Dim fso As Object
 Set fso = CreateObject("Scripting.FileSystemObject")

 Dim targetFile As Object
 Dim myFilePath As String
 Dim myFileText As String

 myFilePath = "C:\mypath\to\myfile.txt"
 Set targetFile = fso.CreateTextFile(myFilePath, True) ' this will overwrite any existing
file
 targetFile.Write "This is some new text"
 targetFile.Write " And this text will appear right after the first bit of text."
 targetFile.WriteLine "This bit of text includes a newline character to ensure each write
takes its own line."
 targetFile.Close ' close the file
End Sub

Writing to an existing file with FileSystemObject

Const ForReading = 1
Const ForWriting = 2
Const ForAppending = 8

Sub WriteTextFileExample()
 Dim oFso
 Set oFso = CreateObject("Scripting.FileSystemObject")

 Dim oFile as Object
 Dim myFilePath as String
 Dim myFileText as String

 myFilePath = "C:\mypath\to\myfile.txt"
 ' First check if the file exists
 If oFso.FileExists(myFilePath) Then
 ' this will overwrite any existing filecontent with whatever you send the file
 ' to append data to the end of an existing file, use ForAppending instead
 Set oFile = oFso.OpenTextFile(myFilePath, ForWriting)
 Else
 ' create the file instead
 Set oFile = oFso.CreateTextFile(myFilePath) ' skipping the optional boolean for
overwrite if exists as we already checked that the file doesn't exist.
 End If
 oFile.Write "This is some new text"
 oFile.Write " And this text will appear right after the first bit of text."
 oFile.WriteLine "This bit of text includes a newline character to ensure each write takes
its own line."
 oFile.Close ' close the file
End Sub

Enumerate files in a directory using FileSystemObject

Early bound (requires a reference to Microsoft Scripting Runtime):

https://riptutorial.com/ 204

Public Sub EnumerateDirectory()
 Dim fso As Scripting.FileSystemObject
 Set fso = New Scripting.FileSystemObject

 Dim targetFolder As Folder
 Set targetFolder = fso.GetFolder("C:\")

 Dim foundFile As Variant
 For Each foundFile In targetFolder.Files
 Debug.Print foundFile.Name
 Next
End Sub

Late bound:

Public Sub EnumerateDirectory()
 Dim fso As Object
 Set fso = CreateObject("Scripting.FileSystemObject")

 Dim targetFolder As Object
 Set targetFolder = fso.GetFolder("C:\")

 Dim foundFile As Variant
 For Each foundFile In targetFolder.Files
 Debug.Print foundFile.Name
 Next
End Sub

Recursively enumerate folders and files

Early Bound (with a reference to Microsoft Scripting Runtime)

Sub EnumerateFilesAndFolders(_
 FolderPath As String, _
 Optional MaxDepth As Long = -1, _
 Optional CurrentDepth As Long = 0, _
 Optional Indentation As Long = 2)

 Dim FSO As Scripting.FileSystemObject
 Set FSO = New Scripting.FileSystemObject

 'Check the folder exists
 If FSO.FolderExists(FolderPath) Then
 Dim fldr As Scripting.Folder
 Set fldr = FSO.GetFolder(FolderPath)

 'Output the starting directory path
 If CurrentDepth = 0 Then
 Debug.Print fldr.Path
 End If

 'Enumerate the subfolders
 Dim subFldr As Scripting.Folder
 For Each subFldr In fldr.SubFolders
 Debug.Print Space$((CurrentDepth + 1) * Indentation) & subFldr.Name
 If CurrentDepth < MaxDepth Or MaxDepth = -1 Then
 'Recursively call EnumerateFilesAndFolders
 EnumerateFilesAndFolders subFldr.Path, MaxDepth, CurrentDepth + 1, Indentation

https://riptutorial.com/ 205

 End If
 Next subFldr

 'Enumerate the files
 Dim fil As Scripting.File
 For Each fil In fldr.Files
 Debug.Print Space$((CurrentDepth + 1) * Indentation) & fil.Name
 Next fil
 End If
End Sub

Output when called with arguments like: EnumerateFilesAndFolders "C:\Test"

C:\Test
 Documents
 Personal
 Budget.xls
 Recipes.doc
 Work
 Planning.doc
 Downloads
 FooBar.exe
 ReadMe.txt

Output when called with arguments like: EnumerateFilesAndFolders "C:\Test", 0

C:\Test
 Documents
 Downloads
 ReadMe.txt

Output when called with arguments like: EnumerateFilesAndFolders "C:\Test", 1, 4

C:\Test
 Documents
 Personal
 Work
 Downloads
 FooBar.exe
 ReadMe.txt

Strip file extension from a file name

Dim fso As New Scripting.FileSystemObject
Debug.Print fso.GetBaseName("MyFile.something.txt")

Prints MyFile.something

Note that the GetBaseName() method already handles multiple periods in a file name.

Retrieve just the extension from a file name

Dim fso As New Scripting.FileSystemObject

https://riptutorial.com/ 206

Debug.Print fso.GetExtensionName("MyFile.something.txt")

Prints txt Note that the GetExtensionName() method already handles multiple periods in a file name.

Retrieve only the path from a file path

The GetParentFolderName method returns the parent folder for any path. While this can also be

used with folders, it is arguably more useful for extracting the path from an absolute file path:

Dim fso As New Scripting.FileSystemObject
Debug.Print fso.GetParentFolderName("C:\Users\Me\My Documents\SomeFile.txt")

Prints C:\Users\Me\My Documents

Note that the trailing path separator is not included in the returned string.

Using FSO.BuildPath to build a Full Path from folder path and file name

If you're accepting user input for folder paths, you might need to check for trailing backslashes (\)

before building a file path. The FSO.BuildPath method makes this simpler:

 Const sourceFilePath As String = "C:\Temp" '<-- Without trailing backslash
 Const targetFilePath As String = "C:\Temp\" '<-- With trailing backslash

 Const fileName As String = "Results.txt"

 Dim FSO As FileSystemObject
 Set FSO = New FileSystemObject

 Debug.Print FSO.BuildPath(sourceFilePath, fileName)
 Debug.Print FSO.BuildPath(targetFilePath, fileName)

Output:

C:\Temp\Results.txt
C:\Temp\Results.txt

Read Scripting.FileSystemObject online: https://riptutorial.com/vba/topic/990/scripting-

filesystemobject

https://riptutorial.com/ 207

https://riptutorial.com/vba/topic/990/scripting-filesystemobject
https://riptutorial.com/vba/topic/990/scripting-filesystemobject

Chapter 38: Searching within strings for the

presence of substrings

Remarks

When you need to check for the presence or position of a substring within a string, VBA offers the

InStr and InStrRev functions that return the character position of the substring in the string, if it is

present.

Examples

Use InStr to determine if a string contains a substring

Const baseString As String = "Foo Bar"
Dim containsBar As Boolean

'Check if baseString contains "bar" (case insensitive)
containsBar = InStr(1, baseString, "bar", vbTextCompare) > 0
'containsBar = True

'Check if baseString contains bar (case insensitive)
containsBar = InStr(1, baseString, "bar", vbBinaryCompare) > 0
'containsBar = False

Use InStr to find the position of the first instance of a substring

Const baseString As String = "Foo Bar"
Dim containsBar As Boolean

Dim posB As Long
posB = InStr(1, baseString, "B", vbBinaryCompare)
'posB = 5

Use InStrRev to find the position of the last instance of a substring

Const baseString As String = "Foo Bar"
Dim containsBar As Boolean

'Find the position of the last "B"
Dim posX As Long
'Note the different number and order of the paramters for InStrRev
posX = InStrRev(baseString, "X", -1, vbBinaryCompare)
'posX = 0

Read Searching within strings for the presence of substrings online:

https://riptutorial.com/vba/topic/3480/searching-within-strings-for-the-presence-of-substrings

https://riptutorial.com/ 208

https://riptutorial.com/vba/topic/3480/searching-within-strings-for-the-presence-of-substrings

Chapter 39: Sorting

Introduction

Unlike the .NET framework, the Visual Basic for Applications library does not include routines to

sort arrays.

There are two types of workarounds: 1) implementing a sorting algorithm from scratch, or 2) using

sorting routines in other commonly-available libraries.

Examples

Algorithm Implementation - Quick Sort on a One-Dimensional Array

From VBA array sort function?

Public Sub QuickSort(vArray As Variant, inLow As Long, inHi As Long)

 Dim pivot As Variant
 Dim tmpSwap As Variant
 Dim tmpLow As Long
 Dim tmpHi As Long

 tmpLow = inLow
 tmpHi = inHi

 pivot = vArray((inLow + inHi) \ 2)

 While (tmpLow <= tmpHi)

 While (vArray(tmpLow) < pivot And tmpLow < inHi)
 tmpLow = tmpLow + 1
 Wend

 While (pivot < vArray(tmpHi) And tmpHi > inLow)
 tmpHi = tmpHi - 1
 Wend

 If (tmpLow <= tmpHi) Then
 tmpSwap = vArray(tmpLow)
 vArray(tmpLow) = vArray(tmpHi)
 vArray(tmpHi) = tmpSwap
 tmpLow = tmpLow + 1
 tmpHi = tmpHi - 1
 End If

 Wend

 If (inLow < tmpHi) Then QuickSort vArray, inLow, tmpHi
 If (tmpLow < inHi) Then QuickSort vArray, tmpLow, inHi

End Sub

https://riptutorial.com/ 209

http://stackoverflow.com/questions/152319/vba-array-sort-function

Using the Excel Library to Sort a One-Dimensional Array

This code takes advantage of the Sort class in the Microsoft Excel Object Library.

For further reading, see:

Copy a range to a virtual range•

How to copy selected range into given array?•

Sub testExcelSort()

Dim arr As Variant

InitArray arr
ExcelSort arr

End Sub

Private Sub InitArray(arr As Variant)

Const size = 10
ReDim arr(size)

Dim i As Integer

' Add descending numbers to the array to start
For i = 0 To size
 arr(i) = size - i
Next i

End Sub

Private Sub ExcelSort(arr As Variant)

' Ininitialize the Excel objects (required)
Dim xl As New Excel.Application
Dim wbk As Workbook
Set wbk = xl.Workbooks.Add
Dim sht As Worksheet
Set sht = wbk.ActiveSheet

' Copy the array to the Range object
Dim rng As Range
Set rng = sht.Range("A1")
Set rng = rng.Resize(UBound(arr, 1), 1)
rng.Value = xl.WorksheetFunction.Transpose(arr)

' Run the worksheet's sort routine on the Range
Dim MySort As Sort
Set MySort = sht.Sort

With MySort
 .SortFields.Clear
 .SortFields.Add rng, xlSortOnValues, xlAscending, xlSortNormal
 .SetRange rng
 .Header = xlNo
 .Apply
End With

https://riptutorial.com/ 210

http://stackoverflow.com/questions/28616373/copy-a-range-to-a-virtual-range
http://stackoverflow.com/questions/18000617/how-to-copy-selected-range-into-given-array

' Copy the results back to the array
CopyRangeToArray rng, arr

' Clear the objects
Set rng = Nothing
wbk.Close False
xl.Quit

End Sub

Private Sub CopyRangeToArray(rng As Range, arr)

Dim i As Long
Dim c As Range

' Can't just set the array to Range.value (adds a dimension)
For Each c In rng.Cells
 arr(i) = c.Value
 i = i + 1
Next c

End Sub

Read Sorting online: https://riptutorial.com/vba/topic/8836/sorting

https://riptutorial.com/ 211

https://riptutorial.com/vba/topic/8836/sorting

Chapter 40: String Literals - Escaping, non-

printable characters and line-continuations

Remarks

The assignment of string-literals in VBA is confined by the limitations of the IDE and the codepage

of the current user's language settings. The examples above demonstrate the special-cases of

escaped strings, special, non-printable strings and long string-literals.

When assigning string-literals that contain characters that are specific to a certain codepage, you

may need to consider internationalization concerns by assigning a string from a separate unicode

resource file.

Examples

Escaping the " character

VBA syntax requires that a string-literal appear within " marks, so when your string needs to

contain quotation marks, you'll need to escape/prepend the " character with an extra " so that VBA

understands that you intend the "" to be interpreted as a " string.

'The following 2 lines produce the same output
Debug.Print "The man said, ""Never use air-quotes"""
Debug.Print "The man said, " & """" & "Never use air-quotes" & """"

'Output:
'The man said, "Never use air-quotes"
'The man said, "Never use air-quotes"

Assigning long string literals

The VBA editor only allows 1023 characters per line, but typically only the first 100-150 characters

are visible without scrolling. If you need to assign long string literals, but you want to keep your

code readable, you'll need to use line-continuations and concatenation to assign your string.

Debug.Print "Lorem ipsum dolor sit amet, consectetur adipiscing elit. " & _
 "Integer hendrerit maximus arcu, ut elementum odio varius " & _
 "nec. Integer ipsum enim, iaculis et egestas ac, condiment" & _
 "um ut tellus."
'Output:
'Lorem ipsum dolor sit amet, consectetur adipiscing elit. Integer hendrerit maximus arcu, ut
elementum odio varius nec. Integer ipsum enim, iaculis et egestas ac, condimentum ut tellus.

VBA will let you use a limited number of line-continuations (the actual number varies by the length

of each line within the continued-block), so if you have very long strings, you'll need to assign and

re-assign with concatenation.

https://riptutorial.com/ 212

Dim loremIpsum As String

'Assign the first part of the string
loremIpsum = "Lorem ipsum dolor sit amet, consectetur adipiscing elit. " & _
 "Integer hendrerit maximus arcu, ut elementum odio varius "
'Re-assign with the previous value AND the next section of the string
loremIpsum = loremIpsum & _
 "nec. Integer ipsum enim, iaculis et egestas ac, condiment" & _
 "um ut tellus."

Debug.Print loremIpsum

'Output:
'Lorem ipsum dolor sit amet, consectetur adipiscing elit. Integer hendrerit maximus arcu, ut
elementum odio varius nec. Integer ipsum enim, iaculis et egestas ac, condimentum ut tellus.

Using VBA string constants

VBA defines a number of string constants for special characters like:

vbCr : Carriage-Return 'Same as "\r" in C style languages.•

vbLf : Line-Feed 'Same as "\n" in C style languages.•

vbCrLf : Carriage-Return & Line-Feed (a new-line in Windows)•

vbTab: Tab Character•

vbNullString: an empty string, like ""•

You can use these constants with concatenation and other string functions to build string-literals

with special-characters.

Debug.Print "Hello " & vbCrLf & "World"
'Output:
'Hello
'World

Debug.Print vbTab & "Hello" & vbTab & "World"
'Output:
' Hello World

Dim EmptyString As String
EmptyString = vbNullString
Debug.Print EmptyString = ""
'Output:
'True

Using vbNullString is considered better practice than the equivalent value of "" due to differences

in how the code is compiled. Strings are accessed via a pointer to an allocated area of memory,

and the VBA compiler is smart enough to use a null pointer to represent vbNullString. The literal ""

is allocated memory as if it were a String typed Variant, making the use of the constant much more

efficient:

Debug.Print StrPtr(vbNullString) 'Prints 0.
Debug.Print StrPtr("") 'Prints a memory address.

https://riptutorial.com/ 213

Read String Literals - Escaping, non-printable characters and line-continuations online:

https://riptutorial.com/vba/topic/3445/string-literals---escaping--non-printable-characters-and-line-

continuations

https://riptutorial.com/ 214

https://riptutorial.com/vba/topic/3445/string-literals---escaping--non-printable-characters-and-line-continuations
https://riptutorial.com/vba/topic/3445/string-literals---escaping--non-printable-characters-and-line-continuations

Chapter 41: Substrings

Remarks

VBA has built-in functions for extracting specific parts of strings, including:

Left/Left$•

Right/Right$•

Mid/Mid$•

Trim/Trim$•

To avoid implicit type conversion onverhead (and therefore for better performance), use the $-

suffixed version of the function when a string variable is passed to the function, and/or if the result

of the function is assigned to a string variable.

Passing a Null parameter value to a $-suffixed function will raise a runtime error ("invalid use of

null") - this is especially relevant for code involving a database.

Examples

Use Left or Left$ to get the 3 left-most characters in a string

Const baseString As String = "Foo Bar"

Dim leftText As String
leftText = Left$(baseString, 3)
'leftText = "Foo"

Use Right or Right$ to get the 3 right-most characters in a string

Const baseString As String = "Foo Bar"
Dim rightText As String
rightText = Right$(baseString, 3)
'rightText = "Bar"

Use Mid or Mid$ to get specific characters from within a string

Const baseString As String = "Foo Bar"

'Get the string starting at character 2 and ending at character 6
Dim midText As String
midText = Mid$(baseString, 2, 5)
'midText = "oo Ba"

Use Trim to get a copy of the string without any leading or trailing spaces

https://riptutorial.com/ 215

'Trim the leading and trailing spaces in a string
Const paddedText As String = " Foo Bar "
Dim trimmedText As String
trimmedText = Trim$(paddedText)
'trimmedText = "Foo Bar"

Read Substrings online: https://riptutorial.com/vba/topic/3481/substrings

https://riptutorial.com/ 216

https://riptutorial.com/vba/topic/3481/substrings

Chapter 42: User Forms

Examples

Best Practices

A UserForm is a class module with a designer and a default instance. The designer can be

accessed by pressing Shift+F7 while viewing the code-behind, and the code-behind can be

accessed by pressing F7 while viewing the designer.

Work with a new instance every time.

Being a class module, a form is therefore a blueprint for an object. Because a form can hold state

and data, it's a better practice to work with a new instance of the class, rather than with the

default/global one:

With New UserForm1
 .Show vbModal
 If Not .IsCancelled Then
 '...
 End If
End With

Instead of:

UserForm1.Show vbModal
If Not UserForm1.IsCancelled Then
 '...
End If

Working with the default instance can lead to subtle bugs when the form is closed with the red "X"

button and/or when Unload Me is used in the code-behind.

Implement the logic elsewhere.

A form should be concerned with nothing but presentation: a button Click handler that connects to

a database and runs a parameterized query based on user input, is doing too many things.

Instead, implement the applicative logic in the code that's responsible for displaying the form, or

even better, in dedicated modules and procedures.

Write the code in such a way that the UserForm is only ever responsible for knowing how to

display and collect data: where the data comes from, or what happens with the data afterwards, is

none of its concern.

https://riptutorial.com/ 217

http://www.riptutorial.com/vba/example/18932/vb-predeclaredid

Caller shouldn't be bothered with controls.

Make a well-defined model for the form to work with, either in its own dedicated class module, or

encapsulated within the form's code-behind itself - expose the model with Property Get

procedures, and have the client code work with these: this makes the form an abstraction over

controls and their nitty-gritty details, exposing only the relevant data to the client code.

This means code that looks like this:

With New UserForm1
 .Show vbModal
 If Not .IsCancelled Then
 MsgBox .Message, vbInformation
 End If
End With

Instead of this:

With New UserForm1
 .Show vbModal
 If Not .IsCancelled Then
 MsgBox .txtMessage.Text, vbInformation
 End If
End With

Handle the QueryClose event.

Forms typically have a Close button, and prompts/dialogs have Ok and Cancel buttons; the user may

close the form using the form's control box (the red "X" button), which destroys the form instance

by default (another good reason to work with a new instance every time).

With New UserForm1
 .Show vbModal
 If Not .IsCancelled Then 'if QueryClose isn't handled, this can raise a runtime error.
 '...
 End With
End With

The simplest way to handle the QueryClose event is to set the Cancel parameter to True, and then to

hide the form instead of closing it:

Private Sub UserForm_QueryClose(Cancel As Integer, CloseMode As Integer)
 Cancel = True
 Me.Hide
End Sub

That way the "X" button will never destroy the instance, and the caller can safely access all the

public members.

https://riptutorial.com/ 218

Hide, don't close.

The code that creates an object should be responsible for destroying it: it's not the form's

responsibility to unload and terminate itself.

Avoid using Unload Me in a form's code-behind. Call Me.Hide instead, so that the calling code can

still use the object it created when the form closes.

Name things.

Use the properties toolwindow (F4) to carefully name each control on a form. The name of a

control is used in the code-behind, so unless you're using a refactoring tool that can handle this,

renaming a control will break the code - so it's much easier to do things right in the first place,

than try to puzzle out exactly which of the 20 textboxes TextBox12 stands for.

Traditionally, UserForm controls are named with Hungarian-style prefixes:

lblUserName for a Label control that indicates a user name.•

txtUserName for a TextBox control where the user can enter a user name.•

cboUserName for a ComboBox control where the user can enter or pick a user name.•

lstUserName for a ListBox control where the user can pick a user name.•

btnOk or cmdOk for a Button control labelled "Ok".•

The problem is that when e.g. the UI gets redesigned and a ComboBox changes to a ListBox, the

name needs to change to reflect the new control type: it's better to name controls for what they

represent, rather than after their control type - to decouple the code from the UI as much as

possible.

UserNameLabel for a read-only label that indicates a user name.•

UserNameInput for a control where the user can enter or pick a user name.•

OkButton for a command button labelled "Ok".•

Whichever style is chosen, anything is better than leaving all controls their default names.

Consistency in naming style is ideal, too.

Handling QueryClose

The QueryClose event is raised whenever a form is about to be closed, whether it's via user action

or programmatically. The CloseMode parameter contains a VbQueryClose enum value that indicates

how the form was closed:

Constant Description Value

vbFormControlMenu Form is closing in response to user action 0

vbFormCode Form is closing in response to an Unload statement 1

vbAppWindows Windows session is ending 2

https://riptutorial.com/ 219

Constant Description Value

vbAppTaskManager Windows Task Manager is closing the host application 3

vbFormMDIForm Not supported in VBA 4

For better readability, it's best to use these constants instead of using their value directly.

A Cancellable UserForm

Given a form with a Cancel button

The form's code-behind could look like this:

Option Explicit
Private Type TView
 IsCancelled As Boolean
 SomeOtherSetting As Boolean
 'other properties skipped for brievety
End Type
Private this As TView

Public Property Get IsCancelled() As Boolean
 IsCancelled = this.IsCancelled
End Property

Public Property Get SomeOtherSetting() As Boolean
 SomeOtherSetting = this.SomeOtherSetting
End Property

'...more properties...

Private Sub SomeOtherSettingInput_Change()
 this.SomeOtherSetting = CBool(SomeOtherSettingInput.Value)
End Sub

Private Sub OkButton_Click()
 Me.Hide
End Sub

https://riptutorial.com/ 220

Private Sub CancelButton_Click()
 this.IsCancelled = True
 Me.Hide
End Sub

Private Sub UserForm_QueryClose(Cancel As Integer, CloseMode As Integer)
 If CloseMode = VbQueryClose.vbFormControlMenu Then
 Cancel = True
 this.IsCancelled = True
 Me.Hide
 End If
End Sub

The calling code could then display the form, and know whether it was cancelled:

Public Sub DoSomething()
 With New UserForm1
 .Show vbModal
 If .IsCancelled Then Exit Sub
 If .SomeOtherSetting Then
 'setting is enabled
 Else
 'setting is disabled
 End If
 End With
End Sub

The IsCancelled property returns True when the Cancel button is clicked, or when the user closes

the form using the control box.

Read User Forms online: https://riptutorial.com/vba/topic/5351/user-forms

https://riptutorial.com/ 221

https://riptutorial.com/vba/topic/5351/user-forms

Chapter 43: VBA Option Keyword

Syntax

Option optionName [value]•

Option Explicit•

Option Compare {Text | Binary | Database}•

Option Private Module•

Option Base {0 | 1}•

Parameters

Option Detail

Explicit

Require variable declaration in the module it's specified in (ideally all of

them); with this option specified, using an undeclared (/mispelled)

variable becomes a compilation error.

Compare Text
Makes the module's string comparisons be case-insensitive, based on

system locale, prioritizing alphabetical equivalency (e.g. "a" = "A").

Compare Binary

Default string comparison mode. Makes the module's string

comparisons be case sensitive, comparing strings using the binary

representation / numeric value of each character (e.g. ASCII).

Compare Database
(MS-Access only) Makes the module's string comparisons work the

way they would in an SQL statement.

Private Module

Prevents the module's Public member from being accessed from

outside of the project that the module resides in, effectively hiding

procedures from the host application (i.e. not available to use as

macros or user-defined functions).

Option Base 0

Default setting. Sets the implicit array lower bound to 0 in a module.

When an array is declared without an explicit lower boundary value, 0

will be used.

Option Base 1
Sets the implicit array lower bound to 1 in a module. When an array is

declared without an explicit lower boundary value, 1 will be used.

Remarks

It is much easier to control the boundaries of arrays by declaring the boundaries explicitly rather

than letting the compiler fall back on an Option Base {0|1} declaration. This can be done like so:

https://riptutorial.com/ 222

Dim myStringsA(0 To 5) As String '// This has 6 elements (0 - 5)
Dim myStringsB(1 To 5) As String '// This has 5 elements (1 - 5)
Dim myStringsC(6 To 9) As String '// This has 3 elements (6 - 9)

Examples

Option Explicit

It is deemed best practice to always use Option Explicit in VBA as it forces the developer to

declare all their variables before use. This has other benefits too, such as auto-capitalization for

declared variable names and IntelliSense.

Option Explicit

Sub OptionExplicit()
 Dim a As Integer
 a = 5
 b = 10 '// Causes compile error as 'b' is not declared
End Sub

Setting Require Variable Declaration within the VBE's Tools ► Options ► Editor
property page will put the Option Explicit statement at the top of each newly created

code sheet.

This will avoid silly coding mistakes like misspellings as well as influencing you to use the correct

variable type in the variable declaration. (Some more examples are given at ALWAYS Use "Option

Explicit".)

Option Compare {Binary | Text | Database}

Option Compare Binary

https://riptutorial.com/ 223

https://msdn.microsoft.com/en-us/library/y9341s4f.aspx
http://i.stack.imgur.com/C29RO.png
http://www.riptutorial.com/excel-vba/example/3554/always-use--option-explicit-
http://www.riptutorial.com/excel-vba/example/3554/always-use--option-explicit-

Binary comparison makes all checks for string equality within a module/class case sensitive.

Technically, with this option, string comparisons are performed using sort order of the binary

representations of each character.

A < B < E < Z < a < b < e < z

If no Option Compare is specified in a module, Binary is used by default.

Option Compare Binary

Sub CompareBinary()

 Dim foo As String
 Dim bar As String

 '// Case sensitive
 foo = "abc"
 bar = "ABC"

 Debug.Print (foo = bar) '// Prints "False"

 '// Still differentiates accented characters
 foo = "ábc"
 bar = "abc"

 Debug.Print (foo = bar) '// Prints "False"

 '// "b" (Chr 98) is greater than "a" (Chr 97)
 foo = "a"
 bar = "b"

 Debug.Print (bar > foo) '// Prints "True"

 '// "b" (Chr 98) is NOT greater than "á" (Chr 225)
 foo = "á"
 bar = "b"

 Debug.Print (bar > foo) '// Prints "False"

End Sub

Option Compare Text

Option Compare Text makes all string comparisons within a module/class use a case insensitive

comparison.

(A | a) < (B | b) < (Z | z)

Option Compare Text

Sub CompareText()

 Dim foo As String
 Dim bar As String

 '// Case insensitivity

https://riptutorial.com/ 224

 foo = "abc"
 bar = "ABC"

 Debug.Print (foo = bar) '// Prints "True"

 '// Still differentiates accented characters
 foo = "ábc"
 bar = "abc"

 Debug.Print (foo = bar) '// Prints "False"

 '// "b" still comes after "a" or "á"
 foo = "á"
 bar = "b"

 Debug.Print (bar > foo) '// Prints "True"

End Sub

Option Compare Database

Option Compare Database is only available within MS Access. It sets the module/class to use the

current database settings to determine whether to use Text or Binary mode.

Note: The use of this setting is discouraged unless the module is used for writing custom Access

UDFs (User defined functions) that should treat text comparisons in the same manner as SQL

queries in that database.

Option Base {0 | 1}

Option Base is used to declare the default lower bound of array elements. It is declared at module

level and is valid only for the current module.

By default (and thus if no Option Base is specified), the Base is 0. Which means that the first

element of any array declared in the module has an index of 0.

If Option Base 1 is specified, the first array element has the index 1

Example in Base 0 :

Option Base 0

Sub BaseZero()

 Dim myStrings As Variant

 ' Create an array out of the Variant, having 3 fruits elements
 myStrings = Array("Apple", "Orange", "Peach")

 Debug.Print LBound(myStrings) ' This Prints "0"
 Debug.Print UBound(myStrings) ' This print "2", because we have 3 elements beginning at 0
-> 0,1,2

https://riptutorial.com/ 225

 For i = 0 To UBound(myStrings)

 Debug.Print myStrings(i) ' This will print "Apple", then "Orange", then "Peach"

 Next i

End Sub

Same Example with Base 1

Option Base 1

Sub BaseOne()

 Dim myStrings As Variant

 ' Create an array out of the Variant, having 3 fruits elements
 myStrings = Array("Apple", "Orange", "Peach")

 Debug.Print LBound(myStrings) ' This Prints "1"
 Debug.Print UBound(myStrings) ' This print "3", because we have 3 elements beginning at 1
-> 1,2,3

 For i = 0 To UBound(myStrings)

 Debug.Print myStrings(i) ' This triggers an error 9 "Subscript out of range"

 Next i

End Sub

The second example generated a Subscript out of range (Error 9) at the first loop stage because

an attempt to access the index 0 of the array was made, and this index doesn't exists as the

module is declared with Base 1

The correct code with Base 1 is :

 For i = 1 To UBound(myStrings)

 Debug.Print myStrings(i) ' This will print "Apple", then "Orange", then "Peach"

 Next i

It should be noted that the Split function always creates an array with a zero-based element index

regardless of any Option Base setting. Examples on how to use the Split function can be found

here

Split Function

Returns a zero-based, one-dimensional array containing a specified number of substrings.

In Excel, the Range.Value and Range.Formula properties for a multi-celled range always returns a 1-

based 2D Variant array.

https://riptutorial.com/ 226

https://msdn.microsoft.com/en-us/library/aa264519.aspx
https://msdn.microsoft.com/en-us/library/aa263365.aspx
http://www.riptutorial.com/vba/example/10413/use-of-split-to-create-an-array-from-a-string

Likewise, in ADO, the Recordset.GetRows method always returns a 1-based 2D array.

One recommended 'best practice' is to always use the LBound and UBound functions to determine

the extents of an array.

'for single dimensioned array
Debug.Print LBound(arr) & ":" & UBound(arr)
Dim i As Long
For i = LBound(arr) To UBound(arr)
 Debug.Print arr(i)
Next i

'for two dimensioned array
Debug.Print LBound(arr, 1) & ":" & UBound(arr, 1)
Debug.Print LBound(arr, 2) & ":" & UBound(arr, 2)
Dim i As long, j As Long
For i = LBound(arr, 1) To UBound(arr, 1)
 For j = LBound(arr, 2) To UBound(arr, 2)
 Debug.Print arr(i, j)
 Next j
Next i

The Option Base 1 must be at the top of every code module where an array is created or re-

dimensioned if arrays are to be consistently created with an lower boundary of 1.

Read VBA Option Keyword online: https://riptutorial.com/vba/topic/3992/vba-option-keyword

https://riptutorial.com/ 227

https://msdn.microsoft.com/en-us/library/t9a7w1ac.aspx
https://msdn.microsoft.com/en-us/library/office/gg278658.aspx
https://riptutorial.com/vba/topic/3992/vba-option-keyword

Chapter 44: VBA Run-Time Errors

Introduction

Code that compiles can still run into errors, at run-time. This topic lists the most common ones,

their causes, and how to avoid them.

Examples

Run-time error '3': Return without GoSub

Incorrect Code

Sub DoSomething()
 GoSub DoThis
DoThis:
 Debug.Print "Hi!"
 Return
End Sub

Why doesn't this work?

Execution enters the DoSomething procedure, jumps to the DoThis label, prints "Hi!" to the debug

output, returns to the instruction immediately after the GoSub call, prints "Hi!" again, and then

encounters a Return statement, but there's nowhere to return to now, because we didn't get here

with a GoSub statement.

Correct Code

Sub DoSomething()
 GoSub DoThis
 Exit Sub
DoThis:
 Debug.Print "Hi!"
 Return
End Sub

Why does this work?

By introducing an Exit Sub instruction before the DoThis line label, we have segregated the DoThis

subroutine from the rest of the procedure body - the only way to execute the DoThis subroutine is

via the GoSub jump.

Other notes

https://riptutorial.com/ 228

GoSub/Return is deprecated, and should be avoided in favor of actual procedure calls. A procedure

should not contain subroutines, other than error handlers.

This is very similar to Run-time error '20': Resume without error; in both situations, the solution is

to ensure that the normal execution path cannot enter a sub-routine (identified by a line label)

without an explicit jump (assuming On Error GoTo is considered an explicit jump).

Run-time error '6': Overflow

Incorrect code

Sub DoSomething()
 Dim row As Integer
 For row = 1 To 100000
 'do stuff
 Next
End Sub

Why doesn't this work?

The Integer data type is a 16-bit signed integer with a maximum value of 32,767; assigning it to

anything larger than that will overflow the type and raise this error.

Correct code

Sub DoSomething()
 Dim row As Long
 For row = 1 To 100000
 'do stuff
 Next
End Sub

Why does this work?

By using a Long (32-bit) integer instead, we can now make a loop that iterates more than 32,767

times without overflowing the counter variable's type.

Other notes

See Data Types and Limits for more information.

Run-time error '9': Subscript out of range

Incorrect code

Sub DoSomething()
 Dim foo(1 To 10)

https://riptutorial.com/ 229

http://www.riptutorial.com/vba/example/27776/run-time-error--20---resume-without-error
http://www.riptutorial.com/vba/topic/3418/data-types-and-limits

 Dim i As Long
 For i = 1 To 100
 foo(i) = i
 Next
End Sub

Why doesn't this work?

foo is an array that contains 10 items. When the i loop counter reaches a value of 11, foo(i) is out

of range. This error occurs whenever an array or collection is accessed with an index that doesn't

exist in that array or collection.

Correct code

Sub DoSomething()
 Dim foo(1 To 10)
 Dim i As Long
 For i = LBound(foo) To UBound(foo)
 foo(i) = i
 Next
End Sub

Why does this work?

Use LBound and UBound functions to determine the lower and upper boundaries of an array,

respectively.

Other notes

When the index is a string, e.g. ThisWorkbook.Worksheets("I don't exist"), this error means the

supplied name doesn't exist in the queried collection.

The actual error is implementation-specific though; Collection will raise run-time error 5 "Invalid

procedure call or argument" instead:

Sub RaisesRunTimeError5()
 Dim foo As New Collection
 foo.Add "foo", "foo"
 Debug.Print foo("bar")
End Sub

Run-time error '13': Type mismatch

Incorrect code

Public Sub DoSomething()
 DoSomethingElse "42?"
End Sub

https://riptutorial.com/ 230

Private Sub DoSomethingElse(foo As Date)
' Debug.Print MonthName(Month(foo))
End Sub

Why doesn't this work?

VBA is trying really hard to convert the "42?" argument into a Date value. When it fails, the call to

DoSomethingElse cannot be executed, because VBA doesn't know what date to pass, so it raises

run-time error 13 type mismatch, because the type of the argument doesn't match the expected

type (and can't be implicitly converted either).

Correct code

Public Sub DoSomething()
 DoSomethingElse Now
End Sub

Private Sub DoSomethingElse(foo As Date)
' Debug.Print MonthName(Month(foo))
End Sub

Why does this work?

By passing a Date argument to a procedure that expects a Date parameter, the call can succeed.

Run-time error '91': Object variable or With block variable not set

Incorrect code

Sub DoSomething()
 Dim foo As Collection
 With foo
 .Add "ABC"
 .Add "XYZ"
 End With
End Sub

Why doesn't this work?

Object variables hold a reference, and references need to be set using the Set keyword. This error

occurs whenever a member call is made on an object whose reference is Nothing. In this case foo

is a Collection reference, but it's not initialized, so the reference contains Nothing - and we can't

call .Add on Nothing.

Correct code

https://riptutorial.com/ 231

Sub DoSomething()
 Dim foo As Collection
 Set foo = New Collection
 With foo
 .Add "ABC"
 .Add "XYZ"
 End With
End Sub

Why does this work?

By assigning the object variable a valid reference using the Set keyword, the .Add calls succeed.

Other notes

Often, a function or property can return an object reference - a common example is Excel's

Range.Find method, which returns a Range object:

Dim resultRow As Long
resultRow = SomeSheet.Cells.Find("Something").Row

However the function can very well return Nothing (if the search term isn't found), so it's likely that

the chained .Row member call fails.

Before calling object members, verify that the reference is set with a If Not xxxx Is Nothing

condition:

Dim result As Range
Set result = SomeSheet.Cells.Find("Something")

Dim resultRow As Long
If Not result Is Nothing Then resultRow = result.Row

Run-time error '20': Resume without error

Incorrect code

Sub DoSomething()
 On Error GoTo CleanFail
 DoSomethingElse

CleanFail:
 Debug.Print Err.Number
 Resume Next
End Sub

Why doesn't this work?

If the DoSomethingElse procedure raises an error, execution jumps to the CleanFail line label, prints

the error number, and the Resume Next instruction jumps back to the instruction that immediately

https://riptutorial.com/ 232

follows the line where the error occurred, which in this case is the Debug.Print instruction: the error-

handling subroutine is executing without an error context, and when the Resume Next instruction is

reached, run-time error 20 is raised because there is nowhere to resume to.

Correct Code

Sub DoSomething()
 On Error GoTo CleanFail
 DoSomethingElse

 Exit Sub
CleanFail:
 Debug.Print Err.Number
 Resume Next
End Sub

Why does this work?

By introducing an Exit Sub instruction before the CleanFail line label, we have segregated the

CleanFail error-handling subroutine from the rest of the procedure body - the only way to execute

the error-handling subroutine is via an On Error jump; therefore, no execution path reaches the

Resume instruction outside of an error context, which avoids run-time error 20.

Other notes

This is very similar to Run-time error '3': Return without GoSub; in both situations, the solution is to

ensure that the normal execution path cannot enter a sub-routine (identified by a line label) without

an explicit jump (assuming On Error GoTo is considered an explicit jump).

Read VBA Run-Time Errors online: https://riptutorial.com/vba/topic/8917/vba-run-time-errors

https://riptutorial.com/ 233

http://www.riptutorial.com/vba/topic/8917/vba-run-time-errors
https://riptutorial.com/vba/topic/8917/vba-run-time-errors

Chapter 45: Working with ADO

Remarks

The examples shown in this topic use early binding for clarity, and require a reference to the

Microsoft ActiveX Data Object x.x Library. They can be converted to late binding by replacing the

strongly typed references with Object and replacing object creation using New with CreateObject

where appropriate.

Examples

Making a connection to a data source

The first step in accessing a data source via ADO is creating an ADO Connection object. This is

typically done using a connection string to specify the data source parameters, although it is also

possible to open a DSN connection by passing the DSN, user ID, and password to the .Open

method.

Note that a DSN is not required to connect to a data source via ADO - any data source that has an

ODBC provider can be connected to with the appropriate connection string. While specific

connection strings for different providers are outside of the scope of this topic,

ConnectionStrings.com is an excellent reference for finding the appropriate string for your

provider.

Const SomeDSN As String = "DSN=SomeDSN;Uid=UserName;Pwd=MyPassword;"

Public Sub Example()
 Dim database As ADODB.Connection
 Set database = OpenDatabaseConnection(SomeDSN)
 If Not database Is Nothing Then
 '... Do work.
 database.Close 'Make sure to close all database connections.
 End If
End Sub

Public Function OpenDatabaseConnection(ConnString As String) As ADODB.Connection
 On Error GoTo Handler
 Dim database As ADODB.Connection
 Set database = New ADODB.Connection

 With database
 .ConnectionString = ConnString
 .ConnectionTimeout = 10 'Value is given in seconds.
 .Open
 End With

 OpenDatabaseConnection = database

 Exit Function
Handler:
 Debug.Print "Database connection failed. Check your connection string."

https://riptutorial.com/ 234

https://www.connectionstrings.com/

End Function

Note that the database password is included in the connection string in the example above only for

the sake of clarity. Best practices would dictate not storing database passwords in code. This can

be accomplished by taking the password via user input or using Windows authentication.

Retrieving records with a query

Queries can be performed in two ways, both of which return an ADO Recordset object which is a

collection of returned rows. Note that both of the examples below use the OpenDatabaseConnection

function from the Making a connection to a data source example for the purpose of brevity.

Remember that the syntax of the SQL passed to the data source is provider specific.

The first method is to pass the SQL statement directly to the Connection object, and is the easiest

method for executing simple queries:

Public Sub DisplayDistinctItems()
 On Error GoTo Handler
 Dim database As ADODB.Connection
 Set database = OpenDatabaseConnection(SomeDSN)

 If Not database Is Nothing Then
 Dim records As ADODB.Recordset
 Set records = database.Execute("SELECT DISTINCT Item FROM Table")
 'Loop through the returned Recordset.
 Do While Not records.EOF 'EOF is false when there are more records.
 'Individual fields are indexed either by name or 0 based ordinal.
 'Note that this is using the default .Fields member of the Recordset.
 Debug.Print records("Item")
 'Move to the next record.
 records.MoveNext
 Loop
 End If
CleanExit:
 If Not records Is Nothing Then records.Close
 If Not database Is Nothing And database.State = adStateOpen Then
 database.Close
 End If
 Exit Sub
Handler:
 Debug.Print "Error " & Err.Number & ": " & Err.Description
 Resume CleanExit
End Sub

The second method is to create an ADO Command object for the query you want to execute. This

requires a little more code, but is necessary in order to use parametrized queries:

Public Sub DisplayDistinctItems()
 On Error GoTo Handler
 Dim database As ADODB.Connection
 Set database = OpenDatabaseConnection(SomeDSN)

 If Not database Is Nothing Then
 Dim query As ADODB.Command
 Set query = New ADODB.Command

https://riptutorial.com/ 235

http://www.riptutorial.com/vba/example/12351/making-a-connection-to-a-data-source

 'Build the command to pass to the data source.
 With query
 .ActiveConnection = database
 .CommandText = "SELECT DISTINCT Item FROM Table"
 .CommandType = adCmdText
 End With
 Dim records As ADODB.Recordset
 'Execute the command to retrieve the recordset.
 Set records = query.Execute()

 Do While Not records.EOF
 Debug.Print records("Item")
 records.MoveNext
 Loop
 End If
CleanExit:
 If Not records Is Nothing Then records.Close
 If Not database Is Nothing And database.State = adStateOpen Then
 database.Close
 End If
 Exit Sub
Handler:
 Debug.Print "Error " & Err.Number & ": " & Err.Description
 Resume CleanExit
End Sub

Note that commands sent to the data source are vulnerable to SQL injection, either intentional

or unintentional. In general, queries should not be created by concatenating user input of any kind.

Instead, they should be parameterized (see Creating parameterized commands).

Executing non-scalar functions

ADO connections can be used to perform pretty much any database function that the provider

supports via SQL. In this case it isn't always necessary to use the Recordset returned by the

Execute function, although it can be useful for obtaining key assignments after INSERT statements

with @@Identity or similar SQL commands. Note that the example below uses the

OpenDatabaseConnection function from the Making a connection to a data source example for the

purpose of brevity.

Public Sub UpdateTheFoos()
 On Error GoTo Handler
 Dim database As ADODB.Connection
 Set database = OpenDatabaseConnection(SomeDSN)

 If Not database Is Nothing Then
 Dim update As ADODB.Command
 Set update = New ADODB.Command
 'Build the command to pass to the data source.
 With update
 .ActiveConnection = database
 .CommandText = "UPDATE Table SET Foo = 42 WHERE Bar IS NULL"
 .CommandType = adCmdText
 .Execute 'We don't need the return from the DB, so ignore it.
 End With
 End If
CleanExit:

https://riptutorial.com/ 236

http://www.riptutorial.com/vba/example/12354/creating-parameterized-commands
http://www.riptutorial.com/vba/example/12351/making-a-connection-to-a-data-source

 If Not database Is Nothing And database.State = adStateOpen Then
 database.Close
 End If
 Exit Sub
Handler:
 Debug.Print "Error " & Err.Number & ": " & Err.Description
 Resume CleanExit
End Sub

Note that commands sent to the data source are vulnerable to SQL injection, either intentional

or unintentional. In general, SQL statements should not be created by concatenating user input of

any kind. Instead, they should be parameterized (see Creating parameterized commands).

Creating parameterized commands

Any time SQL executed through an ADO connection needs to contain user input, it is considered

best practice to parameterize it in order to minimize the chance of SQL injection. This method is

also more readable than long concatenations and facilitates more robust and maintainable code

(i.e. by using a function that returns an array of Parameter).

In standard ODBC syntax, parameters are given ? "placeholders" in the query text, and then

parameters are appended to the Command in the same order that they appear in the query.

Note that the example below uses the OpenDatabaseConnection function from the Making a

connection to a data source for brevity.

Public Sub UpdateTheFoos()
 On Error GoTo Handler
 Dim database As ADODB.Connection
 Set database = OpenDatabaseConnection(SomeDSN)

 If Not database Is Nothing Then
 Dim update As ADODB.Command
 Set update = New ADODB.Command
 'Build the command to pass to the data source.
 With update
 .ActiveConnection = database
 .CommandText = "UPDATE Table SET Foo = ? WHERE Bar = ?"
 .CommandType = adCmdText

 'Create the parameters.
 Dim fooValue As ADODB.Parameter
 Set fooValue = .CreateParameter("FooValue", adNumeric, adParamInput)
 fooValue.Value = 42

 Dim condition As ADODB.Parameter
 Set condition = .CreateParameter("Condition", adBSTR, adParamInput)
 condition.Value = "Bar"

 'Add the parameters to the Command
 .Parameters.Append fooValue
 .Parameters.Append condition
 .Execute
 End With
 End If
CleanExit:

https://riptutorial.com/ 237

http://www.riptutorial.com/vba/example/12354/creating-parameterized-commands
http://www.riptutorial.com/vba/example/12351/making-a-connection-to-a-data-source
http://www.riptutorial.com/vba/example/12351/making-a-connection-to-a-data-source

 If Not database Is Nothing And database.State = adStateOpen Then
 database.Close
 End If
 Exit Sub
Handler:
 Debug.Print "Error " & Err.Number & ": " & Err.Description
 Resume CleanExit
End Sub

Note: The example above demonstrates a parameterized UPDATE statement, but any SQL

statement can be given parameters.

Read Working with ADO online: https://riptutorial.com/vba/topic/3578/working-with-ado

https://riptutorial.com/ 238

https://riptutorial.com/vba/topic/3578/working-with-ado

Chapter 46: Working With Files and

Directories Without Using FileSystemObject

Remarks

The Scripting.FileSystemObject is much more robust that the legacy methods in this topic. It should

be preferred in almost all cases.

Examples

Determining If Folders and Files Exist

Files:

To determine if a file exists, simply pass the filename to the Dir$ function and test to see if it

returns a result. Note that Dir$ supports wild-cards, so to test for a specific file, the passed

pathName should to be tested to ensure that it does not contain them. The sample below raises an

error - if this isn't the desired behavior, the function can be changed to simply return False.

Public Function FileExists(pathName As String) As Boolean
 If InStr(1, pathName, "*") Or InStr(1, pathName, "?") Then
 'Exit Function 'Return False on wild-cards.
 Err.Raise 52 'Raise error on wild-cards.
 End If
 FileExists = Dir$(pathName) <> vbNullString
End Function

Folders (Dir$ method):

The Dir$() function can also be used to determine if a folder exists by specifying passing

vbDirectory for the optional attributes parameter. In this case, the passed pathName value must end

with a path separator (\), as matching filenames will cause false positives. Keep in mind that wild-

cards are only allowed after the last path separator, so the example function below will throw a

run-time error 52 - "Bad file name or number" if the input contains a wild-card. If this isn't the

desired behavior, uncomment On Error Resume Next at the top of the function. Also remember that

Dir$ supports relative file paths (i.e. ..\Foo\Bar), so results are only guaranteed to be valid as long

as the current working directory is not changed.

Public Function FolderExists(ByVal pathName As String) As Boolean
 'Uncomment the "On Error" line if paths with wild-cards should return False
 'instead of raising an error.
 'On Error Resume Next
 If pathName = vbNullString Or Right$(pathName, 1) <> "\" Then
 Exit Function
 End If
 FolderExists = Dir$(pathName, vbDirectory) <> vbNullString

https://riptutorial.com/ 239

End Function

Folders (ChDir method):

The ChDir statement can also be used to test if a folder exists. Note that this method will

temporarily change the environment that VBA is running in, so if that is a consideration, the Dir$

method should be used instead. It does have the advantage of being much less forgiving with its

parameter. This method also supports relative file paths, so has the same caveat as the Dir$

method.

Public Function FolderExists(ByVal pathName As String) As Boolean
 'Cache the current working directory
 Dim cached As String
 cached = CurDir$

 On Error Resume Next
 ChDir pathName
 FolderExists = Err.Number = 0
 On Error GoTo 0
 'Change back to the cached working directory.
 ChDir cached
End Function

Creating and Deleting File Folders

NOTE: For brevity, the examples below use the FolderExists function from the Determining If

Folders and Files Exist example in this topic.

The MkDir statement can be used to create a new folder. It accepts paths containing drive letters (

C:\Foo), UNC names (\\Server\Foo), relative paths (..\Foo), or the current working directory (Foo).

If the drive or UNC name is omitted (i.e. \Foo), the folder is created on the current drive. This may

or may not be the same drive as the current working directory.

Public Sub MakeNewDirectory(ByVal pathName As String)
 'MkDir will fail if the directory already exists.
 If FolderExists(pathName) Then Exit Sub
 'This may still fail due to permissions, etc.
 MkDir pathName
End Sub

The RmDir statement can be used to delete existing folders. It accepts paths in the same forms as

MkDir and uses the same relationship to the current working directory and drive. Note that the

statement is similar to the Windows rd shell command, so will throw a run-time error 75: "Path/File

access error" if the target directory is not empty.

Public Sub DeleteDirectory(ByVal pathName As String)
 If Right$(pathName, 1) <> "\" Then

https://riptutorial.com/ 240

 pathName = pathName & "\"
 End If
 'Rmdir will fail if the directory doesn't exist.
 If Not FolderExists(pathName) Then Exit Sub
 'Rmdir will fail if the directory contains files.
 If Dir$(pathName & "*") <> vbNullString Then Exit Sub

 'Rmdir will fail if the directory contains directories.
 Dim subDir As String
 subDir = Dir$(pathName & "*", vbDirectory)
 Do
 If subDir <> "." And subDir <> ".." Then Exit Sub
 subDir = Dir$(, vbDirectory)
 Loop While subDir <> vbNullString

 'This may still fail due to permissions, etc.
 RmDir pathName
End Sub

Read Working With Files and Directories Without Using FileSystemObject online:

https://riptutorial.com/vba/topic/5706/working-with-files-and-directories-without-using-

filesystemobject

https://riptutorial.com/ 241

https://riptutorial.com/vba/topic/5706/working-with-files-and-directories-without-using-filesystemobject
https://riptutorial.com/vba/topic/5706/working-with-files-and-directories-without-using-filesystemobject

Credits

S.

No
Chapters Contributors

1 Getting started with VBA

0m3r, Andre Terra, Benno Grimm, Bookeater, Comintern,

Community, Derpcode, Kaz, lfrandom, litelite, Maarten van

Stam, Macro Man, Máté Juhász, Nick Dewitt,

PankajKushwaha, RubberDuck, Stefan Pinnow

2 API Calls paul bica

3 Arrays
Comintern, Dave, Hubisan, jamheadart, Josan Iracheta,

Maarten van Stam, Mark.R, Mat's Mug, Miguel_Ryu, Tazaf

4
Assigning strings with

repeated characters
ThunderFrame

5 Attributes hymced, Mat's Mug, RamenChef, RubberDuck

6
Automation or Using other

applications Libraries
Branislav Kollár

7 Collections Comintern

8 Comments
Comintern, Hosch250, Johnny C, litelite, Macro Man,

Nijin22, Shawn V. Wilson, ThunderFrame

9 Concatenating strings ThunderFrame

10 Conditional Compilation Macro Man, Mat's Mug, RubberDuck, Steve Rindsberg

11
Converting other types to

strings
ThunderFrame

12
Copying, returning and

passing arrays
Mark.R

13
CreateObject vs.

GetObject
Branislav Kollár, Dave, Tim

14 Creating a Custom Class
Branislav Kollár, Macro Man, Mat's Mug, Neil Mussett,

ThunderFrame

15 Creating a procedure
Comintern, LiamH, Mat's Mug, Sivaprasath Vadivel,

Tomas Zubiri

16 Data Structures Blackhawk

https://riptutorial.com/ 242

https://riptutorial.com/contributor/4539709/0m3r
https://riptutorial.com/contributor/447485/andre-terra
https://riptutorial.com/contributor/6476653/benno-grimm
https://riptutorial.com/contributor/6548647/bookeater
https://riptutorial.com/contributor/4088852/comintern
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/5412719/derpcode
https://riptutorial.com/contributor/4169411/kaz
https://riptutorial.com/contributor/1760495/lfrandom
https://riptutorial.com/contributor/3072566/litelite
https://riptutorial.com/contributor/5793786/maarten-van-stam
https://riptutorial.com/contributor/5793786/maarten-van-stam
https://riptutorial.com/contributor/4240221/macro-man
https://riptutorial.com/contributor/4721734/mate-juhasz
https://riptutorial.com/contributor/1641172/nick-dewitt
https://riptutorial.com/contributor/3025905/pankajkushwaha
https://riptutorial.com/contributor/3198973/rubberduck
https://riptutorial.com/contributor/5776000/stefan-pinnow
https://riptutorial.com/contributor/4914662/paul-bica
https://riptutorial.com/contributor/4088852/comintern
https://riptutorial.com/contributor/6255978/dave
https://riptutorial.com/contributor/1365754/hubisan
https://riptutorial.com/contributor/6480658/jamheadart
https://riptutorial.com/contributor/2481559/josan-iracheta
https://riptutorial.com/contributor/5793786/maarten-van-stam
https://riptutorial.com/contributor/5773890/mark-r
https://riptutorial.com/contributor/1188513/mat-s-mug
https://riptutorial.com/contributor/3005534/miguel-ryu
https://riptutorial.com/contributor/4687028/tazaf
https://riptutorial.com/contributor/5757159/thunderframe
https://riptutorial.com/contributor/2981328/hymced
https://riptutorial.com/contributor/1188513/mat-s-mug
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/3198973/rubberduck
https://riptutorial.com/contributor/4636801/branislav-kollar
https://riptutorial.com/contributor/4088852/comintern
https://riptutorial.com/contributor/4088852/comintern
https://riptutorial.com/contributor/2509848/hosch250
https://riptutorial.com/contributor/5444958/johnny-c
https://riptutorial.com/contributor/3072566/litelite
https://riptutorial.com/contributor/4240221/macro-man
https://riptutorial.com/contributor/3298787/nijin22
https://riptutorial.com/contributor/2821274/shawn-v--wilson
https://riptutorial.com/contributor/5757159/thunderframe
https://riptutorial.com/contributor/5757159/thunderframe
https://riptutorial.com/contributor/4240221/macro-man
https://riptutorial.com/contributor/1188513/mat-s-mug
https://riptutorial.com/contributor/3198973/rubberduck
https://riptutorial.com/contributor/1667023/steve-rindsberg
https://riptutorial.com/contributor/5757159/thunderframe
https://riptutorial.com/contributor/5773890/mark-r
https://riptutorial.com/contributor/4636801/branislav-kollar
https://riptutorial.com/contributor/6255978/dave
https://riptutorial.com/contributor/5094258/tim
https://riptutorial.com/contributor/4636801/branislav-kollar
https://riptutorial.com/contributor/4240221/macro-man
https://riptutorial.com/contributor/1188513/mat-s-mug
https://riptutorial.com/contributor/2103496/neil-mussett
https://riptutorial.com/contributor/5757159/thunderframe
https://riptutorial.com/contributor/4088852/comintern
https://riptutorial.com/contributor/5043393/liamh
https://riptutorial.com/contributor/1188513/mat-s-mug
https://riptutorial.com/contributor/7509720/sivaprasath-vadivel
https://riptutorial.com/contributor/3555025/tomas-zubiri
https://riptutorial.com/contributor/2832561/blackhawk

17 Data Types and Limits
Comintern, FreeMan, Neil Mussett, StackzOfZtuff,

Stephen Leppik, ThunderFrame

18 Date Time Manipulation Comintern, FreeMan, Thomas G

19
Declaring and assigning

strings
Comintern, ThunderFrame

20 Declaring Variables

Comintern, dadde, Dave, Franck Dernoncourt, Jeeped,

Kaz, lfrandom, litelite, Macro Man, Mark.R, Mat's Mug,

Neil Mussett, RubberDuck, Shawn V. Wilson, SWa,

Thierry Dalon, ThunderFrame, Tom, Victor Moraes, Zaider

21 Error Handling Comintern, Logan Reed, Mat's Mug

22 Events Mat's Mug

23 Flow control structures

Benno Grimm, Comintern, Kelly Tessena Keck, Leviathan,

litelite, Macro Man, Martin, Mat's Mug, Roland, Siva,

ThunderFrame

24
Frequently used string

manipulation
pashute

25 Interfaces Neil Mussett

26
Macro security and signing

of VBA-projects/-modules
0m3r

27
Measuring the length of

strings
Steve Rindsberg, ThunderFrame

28 Naming Conventions FreeMan, Kaz, Mat's Mug, Victor Moraes

29 Non-Latin Characters Neil Mussett

30 Object-Oriented VBA IvenBach, Mat's Mug

31 Operators Comintern, Macro Man

32
Passing Arguments ByRef

or ByVal

Branislav Kollár, Comintern, Mat's Mug, R3uK,

RamenChef, ZygD

33 Procedure Calls Macro Man, Mat's Mug, Neil Mussett, Sam Johnson

34

Reading 2GB+ files in

binary in VBA and File

Hashes

PatricK

35 Recursion Mat's Mug, ThunderFrame

https://riptutorial.com/ 243

https://riptutorial.com/contributor/4088852/comintern
https://riptutorial.com/contributor/2344413/freeman
https://riptutorial.com/contributor/2103496/neil-mussett
https://riptutorial.com/contributor/4247268/stackzofztuff
https://riptutorial.com/contributor/6388243/stephen-leppik
https://riptutorial.com/contributor/5757159/thunderframe
https://riptutorial.com/contributor/4088852/comintern
https://riptutorial.com/contributor/2344413/freeman
https://riptutorial.com/contributor/4197505/thomas-g
https://riptutorial.com/contributor/4088852/comintern
https://riptutorial.com/contributor/5757159/thunderframe
https://riptutorial.com/contributor/4088852/comintern
https://riptutorial.com/contributor/2808645/dadde
https://riptutorial.com/contributor/6255978/dave
https://riptutorial.com/contributor/395857/franck-dernoncourt
https://riptutorial.com/contributor/4039065/jeeped
https://riptutorial.com/contributor/4169411/kaz
https://riptutorial.com/contributor/1760495/lfrandom
https://riptutorial.com/contributor/3072566/litelite
https://riptutorial.com/contributor/4240221/macro-man
https://riptutorial.com/contributor/5773890/mark-r
https://riptutorial.com/contributor/1188513/mat-s-mug
https://riptutorial.com/contributor/2103496/neil-mussett
https://riptutorial.com/contributor/3198973/rubberduck
https://riptutorial.com/contributor/2821274/shawn-v--wilson
https://riptutorial.com/contributor/1240154/swa
https://riptutorial.com/contributor/2043349/thierry-dalon
https://riptutorial.com/contributor/5757159/thunderframe
https://riptutorial.com/contributor/4583203/tom
https://riptutorial.com/contributor/6352151/victor-moraes
https://riptutorial.com/contributor/1359794/zaider
https://riptutorial.com/contributor/4088852/comintern
https://riptutorial.com/contributor/6563468/logan-reed
https://riptutorial.com/contributor/1188513/mat-s-mug
https://riptutorial.com/contributor/1188513/mat-s-mug
https://riptutorial.com/contributor/6476653/benno-grimm
https://riptutorial.com/contributor/4088852/comintern
https://riptutorial.com/contributor/2077432/kelly-tessena-keck
https://riptutorial.com/contributor/6216216/leviathan
https://riptutorial.com/contributor/3072566/litelite
https://riptutorial.com/contributor/4240221/macro-man
https://riptutorial.com/contributor/6627047/martin
https://riptutorial.com/contributor/1188513/mat-s-mug
https://riptutorial.com/contributor/2485248/roland
https://riptutorial.com/contributor/5773692/siva
https://riptutorial.com/contributor/5757159/thunderframe
https://riptutorial.com/contributor/141947/pashute
https://riptutorial.com/contributor/2103496/neil-mussett
https://riptutorial.com/contributor/4539709/0m3r
https://riptutorial.com/contributor/1667023/steve-rindsberg
https://riptutorial.com/contributor/5757159/thunderframe
https://riptutorial.com/contributor/2344413/freeman
https://riptutorial.com/contributor/4169411/kaz
https://riptutorial.com/contributor/1188513/mat-s-mug
https://riptutorial.com/contributor/6352151/victor-moraes
https://riptutorial.com/contributor/2103496/neil-mussett
https://riptutorial.com/contributor/7420518/ivenbach
https://riptutorial.com/contributor/1188513/mat-s-mug
https://riptutorial.com/contributor/4088852/comintern
https://riptutorial.com/contributor/4240221/macro-man
https://riptutorial.com/contributor/4636801/branislav-kollar
https://riptutorial.com/contributor/4088852/comintern
https://riptutorial.com/contributor/1188513/mat-s-mug
https://riptutorial.com/contributor/4628637/r3uk
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/2753501/zygd
https://riptutorial.com/contributor/4240221/macro-man
https://riptutorial.com/contributor/1188513/mat-s-mug
https://riptutorial.com/contributor/2103496/neil-mussett
https://riptutorial.com/contributor/28627/sam-johnson
https://riptutorial.com/contributor/2636247/patrick
https://riptutorial.com/contributor/1188513/mat-s-mug
https://riptutorial.com/contributor/5757159/thunderframe

36 Scripting.Dictionary object
Comintern, Jeeped, Kyle, RamenChef, Tim, Wolf, Zev

Spitz

37 Scripting.FileSystemObject
Comintern, Dave, Macro Man, Mikegrann, RubberDuck,

Siva, Steve Rindsberg, ThunderFrame

38

Searching within strings

for the presence of

substrings

ThunderFrame

39 Sorting Neil Mussett

40

String Literals - Escaping,

non-printable characters

and line-continuations

Comintern, ThunderFrame

41 Substrings Mat's Mug, ThunderFrame

42 User Forms Mat's Mug

43 VBA Option Keyword

Jeeped, Maarten van Stam, Macro Man, Mat's Mug,

RamenChef, RubberDuck, Stefan Pinnow, Thomas G,

ThunderFrame

44 VBA Run-Time Errors Branislav Kollár, Macro Man, Mat's Mug

45 Working with ADO Comintern, SandPiper, Tazaf

46

Working With Files and

Directories Without Using

FileSystemObject

Comintern, Macro Man, SandPiper

https://riptutorial.com/ 244

https://riptutorial.com/contributor/4088852/comintern
https://riptutorial.com/contributor/4039065/jeeped
https://riptutorial.com/contributor/4043845/kyle
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/5094258/tim
https://riptutorial.com/contributor/2932052/wolf
https://riptutorial.com/contributor/111794/zev-spitz
https://riptutorial.com/contributor/111794/zev-spitz
https://riptutorial.com/contributor/4088852/comintern
https://riptutorial.com/contributor/6255978/dave
https://riptutorial.com/contributor/4240221/macro-man
https://riptutorial.com/contributor/3397613/mikegrann
https://riptutorial.com/contributor/3198973/rubberduck
https://riptutorial.com/contributor/5773692/siva
https://riptutorial.com/contributor/1667023/steve-rindsberg
https://riptutorial.com/contributor/5757159/thunderframe
https://riptutorial.com/contributor/5757159/thunderframe
https://riptutorial.com/contributor/2103496/neil-mussett
https://riptutorial.com/contributor/4088852/comintern
https://riptutorial.com/contributor/5757159/thunderframe
https://riptutorial.com/contributor/1188513/mat-s-mug
https://riptutorial.com/contributor/5757159/thunderframe
https://riptutorial.com/contributor/1188513/mat-s-mug
https://riptutorial.com/contributor/4039065/jeeped
https://riptutorial.com/contributor/5793786/maarten-van-stam
https://riptutorial.com/contributor/4240221/macro-man
https://riptutorial.com/contributor/1188513/mat-s-mug
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/3198973/rubberduck
https://riptutorial.com/contributor/5776000/stefan-pinnow
https://riptutorial.com/contributor/4197505/thomas-g
https://riptutorial.com/contributor/5757159/thunderframe
https://riptutorial.com/contributor/4636801/branislav-kollar
https://riptutorial.com/contributor/4240221/macro-man
https://riptutorial.com/contributor/1188513/mat-s-mug
https://riptutorial.com/contributor/4088852/comintern
https://riptutorial.com/contributor/6186333/sandpiper
https://riptutorial.com/contributor/4687028/tazaf
https://riptutorial.com/contributor/4088852/comintern
https://riptutorial.com/contributor/4240221/macro-man
https://riptutorial.com/contributor/6186333/sandpiper

	About
	Chapter 1: Getting started with VBA
	Remarks
	Versions
	Examples
	Accessing the Visual Basic Editor in Microsoft Office
	First Module and Hello World
	Debugging

	Run code step by step
	Watches window
	Immediate Window
	Debugging best practices
	Chapter 2: API Calls
	Introduction
	Remarks
	Examples
	API declaration and usage
	Windows API - Dedicated Module (1 of 2)
	Windows API - Dedicated Module (2 of 2)
	Mac APIs
	Get total monitors and screen resolution
	FTP and Regional APIs

	Chapter 3: Arrays
	Examples
	Declaring an Array in VBA

	Accessing Elements
	Array Indexing
	Specific Index
	Dynamic Declaration
	Use of Split to create an array from a string
	Iterating elements of an array

	For...Next
	For Each...Next
	Dynamic Arrays (Array Resizing and Dynamic Handling)

	Dynamic Arrays
	Adding Values Dynamically
	Removing Values Dynamically
	Resetting an Array and Reusing Dynamically
	Jagged Arrays (Arrays of Arrays)

	Jagged Arrays NOT Multidimensional Arrays
	Creating a Jagged Array
	Dynamically Creating and Reading Jagged Arrays
	Multidimensional Arrays

	Multidimensional Arrays
	Two-Dimension Array
	Three-Dimension Array

	Chapter 4: Assigning strings with repeated characters
	Remarks
	Examples
	Use the String function to assign a string with n repeated characters
	Use the String and Space functions to assign an n-character string

	Chapter 5: Attributes
	Syntax
	Examples
	VB_Name
	VB_GlobalNameSpace
	VB_Createable
	VB_PredeclaredId

	Declaration
	Call
	VB_Exposed
	VB_Description
	VB_[Var]UserMemId

	Specifying the default member of a class
	Making a class iteratable with a For Each loop construct
	Chapter 6: Automation or Using other applications Libraries
	Introduction
	Syntax
	Remarks
	Examples
	VBScript Regular Expressions

	Code
	Scripting File System Object
	Scripting Dictionary object
	Internet Explorer Object

	Internet Explorer Objec Basic Members
	Web Scraping
	Click
	Microsoft HTML Object Library or IE Best friend
	IE Main issues

	Chapter 7: Collections
	Remarks
	Feature Comparison with Arrays and Dictionaries
	Examples
	Adding Items to a Collection
	Removing Items From a Collection
	Getting the Item Count of a Collection
	Retrieving Items From a Collection
	Determining if a Key or Item Exists in a Collection

	Keys
	Items
	Clearing All Items From a Collection

	Chapter 8: Comments
	Remarks
	Examples
	Apostrophe Comments
	REM Comments

	Chapter 9: Concatenating strings
	Remarks
	Examples
	Concatenate strings using the & operator
	Concatenate an array of strings using the Join function

	Chapter 10: Conditional Compilation
	Examples
	Changing code behavior at compile time
	Using Declare Imports that work on all versions of Office

	Chapter 11: Converting other types to strings
	Remarks
	Examples
	Use CStr to convert a numeric type to a string
	Use Format to convert and format a numeric type as a string
	Use StrConv to convert a byte-array of single-byte characters to a string
	Implicitly convert a byte array of multi-byte-characters to a string

	Chapter 12: Copying, returning and passing arrays
	Examples
	Copying Arrays

	Copying Arrays of Objects
	Variants Containing an Array
	Returning Arrays from Functions

	Outputting an Array via an output argument
	Outputting to a fixed array
	Outputting an Array from a Class method
	Passing Arrays to Proceedures

	Chapter 13: CreateObject vs. GetObject
	Remarks
	Examples
	Demonstrating GetObject and CreateObject

	Chapter 14: Creating a Custom Class
	Remarks
	Examples
	Adding a Property to a Class
	Adding Functionality to a Class
	Class module scope, instancing and re-use

	Chapter 15: Creating a procedure
	Examples
	Introduction to procedures

	Returning a value
	Function With Examples

	Chapter 16: Data Structures
	Introduction
	Examples
	Linked List
	Binary Tree

	Chapter 17: Data Types and Limits
	Examples
	Byte
	Integer
	Boolean
	Long
	Single
	Double
	Currency
	Date
	String

	Variable length
	Fixed length
	LongLong
	Variant
	LongPtr
	Decimal

	Chapter 18: Date Time Manipulation
	Examples
	Calendar

	Example
	Base functions

	Retrieve System DateTime
	Timer Function
	IsDate()
	Extraction functions

	DatePart() Function
	Calculation functions

	DateDiff()
	DateAdd()
	Conversion and Creation

	CDate()
	DateSerial()

	Chapter 19: Declaring and assigning strings
	Remarks
	Examples
	Declare a string constant
	Declare a variable-width string variable
	Declare and assign a fixed-width string
	Declare and assign a string array
	Assign specific characters within a string using Mid statement
	Assignment to and from a byte array

	Chapter 20: Declaring Variables
	Examples
	Implicit And Explicit Declaration
	Variables

	Scope
	Local variables
	Static variables
	Fields
	Instance Fields
	Encapsulating fields
	Constants (Const)
	Access Modifiers

	Option Private Module
	Type Hints

	String-returning built-in functions
	Declaring Fixed-Length Strings
	When to use a Static variable

	Chapter 21: Error Handling
	Examples
	Avoiding error conditions
	On Error statement

	Error Handling Strategies
	Line numbers
	Resume keyword

	On Error Resume Next
	Custom Errors

	Raising your own runtime errors
	Chapter 22: Events
	Syntax
	Remarks
	Examples
	Sources and Handlers

	What are events?
	Handlers
	Sources
	Passing data back to the event source

	Using parameters passed by reference
	Using mutable objects
	Chapter 23: Flow control structures
	Examples
	Select Case
	For Each loop

	Syntax
	Do loop
	While loop
	For loop

	Chapter 24: Frequently used string manipulation
	Introduction
	Examples
	String manipulation frequently used examples

	Chapter 25: Interfaces
	Introduction
	Examples
	Simple Interface - Flyable
	Multiple Interfaces in One Class - Flyable and Swimable

	Chapter 26: Macro security and signing of VBA-projects/-modules
	Examples
	Create a valid digital self-signed certificate SELFCERT.EXE

	Chapter 27: Measuring the length of strings
	Remarks
	Examples
	Use the Len function to determine the number of characters in a string
	Use the LenB function to determine the number of bytes in a string
	Prefer `If Len(myString) = 0 Then` over `If myString = "" Then`

	Chapter 28: Naming Conventions
	Examples
	Variable Names

	Hungarian Notation
	Procedure Names

	Chapter 29: Non-Latin Characters
	Introduction
	Examples
	Non-Latin Text in VBA Code
	Non-Latin Identifiers and Language Coverage

	Chapter 30: Object-Oriented VBA
	Examples
	Abstraction
	Abstraction levels help determine when to split things up.
	Encapsulation
	Encapsulation hides implementation details from client code.
	Using interfaces to enforce immutability
	Using a Factory Method to simulate a constructor
	Polymorphism
	Polymorphism is the ability to present the same interface for different underlying implementations.
	Testable code depends on abstractions

	Chapter 31: Operators
	Remarks
	Examples
	Mathematical Operators
	Concatenation Operators
	Comparison Operators

	Notes
	Bitwise \ Logical Operators

	Chapter 32: Passing Arguments ByRef or ByVal
	Introduction
	Remarks
	Passing arrays
	Examples
	Passing Simple Variables ByRef And ByVal
	ByRef

	Default modifier
	Passing by reference

	Forcing ByVal at call site
	ByVal
	Passing by value

	Chapter 33: Procedure Calls
	Syntax
	Parameters
	Remarks
	Examples
	Implicit Call Syntax

	Edge case
	Return Values
	This is confusing. Why not just always use parentheses?

	Run-time
	Compile-time
	Explicit Call Syntax
	Optional Arguments

	Chapter 34: Reading 2GB+ files in binary in VBA and File Hashes
	Introduction
	Remarks
	METHODS FOR THE CLASS BY MICROSOFT
	PROPERTIES OF THE CLASS BY MICROSOFT
	NORMAL MODULE
	Examples
	This have to be in a Class module, examples later referred as "Random"
	Code for Calculating File Hash in a Standard module
	Calculating all Files Hash from a root Folder

	Example of Worksheet:
	Code

	Chapter 35: Recursion
	Introduction
	Remarks
	Examples
	Factorials
	Folder Recursion

	Chapter 36: Scripting.Dictionary object
	Remarks
	Examples
	Properties and Methods
	Aggregating data with Scripting.Dictionary (Maximum, Count)
	Getting unique values with Scripting.Dictionary

	Chapter 37: Scripting.FileSystemObject
	Examples
	Creating a FileSystemObject
	Reading a text file using a FileSystemObject
	Creating a text file with FileSystemObject
	Writing to an existing file with FileSystemObject
	Enumerate files in a directory using FileSystemObject
	Recursively enumerate folders and files
	Strip file extension from a file name
	Retrieve just the extension from a file name
	Retrieve only the path from a file path
	Using FSO.BuildPath to build a Full Path from folder path and file name

	Chapter 38: Searching within strings for the presence of substrings
	Remarks
	Examples
	Use InStr to determine if a string contains a substring
	Use InStr to find the position of the first instance of a substring
	Use InStrRev to find the position of the last instance of a substring

	Chapter 39: Sorting
	Introduction
	Examples
	Algorithm Implementation - Quick Sort on a One-Dimensional Array
	Using the Excel Library to Sort a One-Dimensional Array

	Chapter 40: String Literals - Escaping, non-printable characters and line-continuations
	Remarks
	Examples
	Escaping the " character
	Assigning long string literals
	Using VBA string constants

	Chapter 41: Substrings
	Remarks
	Examples
	Use Left or Left$ to get the 3 left-most characters in a string
	Use Right or Right$ to get the 3 right-most characters in a string
	Use Mid or Mid$ to get specific characters from within a string
	Use Trim to get a copy of the string without any leading or trailing spaces

	Chapter 42: User Forms
	Examples
	Best Practices
	Work with a new instance every time.
	Implement the logic elsewhere.
	Caller shouldn't be bothered with controls.
	Handle the QueryClose event.
	Hide, don't close.
	Name things.
	Handling QueryClose

	A Cancellable UserForm

	Chapter 43: VBA Option Keyword
	Syntax
	Parameters
	Remarks
	Examples
	Option Explicit
	Option Compare {Binary | Text | Database}

	Option Compare Binary
	Option Compare Text
	Option Compare Database
	Option Base {0 | 1}

	Example in Base 0 :
	Same Example with Base 1
	The correct code with Base 1 is :

	Chapter 44: VBA Run-Time Errors
	Introduction
	Examples
	Run-time error '3': Return without GoSub

	Incorrect Code
	Why doesn't this work?

	Correct Code
	Why does this work?

	Other notes
	Run-time error '6': Overflow

	Incorrect code
	Why doesn't this work?

	Correct code
	Why does this work?

	Other notes
	Run-time error '9': Subscript out of range

	Incorrect code
	Why doesn't this work?

	Correct code
	Why does this work?

	Other notes
	Run-time error '13': Type mismatch

	Incorrect code
	Why doesn't this work?

	Correct code
	Why does this work?
	Run-time error '91': Object variable or With block variable not set

	Incorrect code
	Why doesn't this work?

	Correct code
	Why does this work?

	Other notes
	Run-time error '20': Resume without error

	Incorrect code
	Why doesn't this work?

	Correct Code
	Why does this work?

	Other notes

	Chapter 45: Working with ADO
	Remarks
	Examples
	Making a connection to a data source
	Retrieving records with a query
	Executing non-scalar functions
	Creating parameterized commands

	Chapter 46: Working With Files and Directories Without Using FileSystemObject
	Remarks
	Examples
	Determining If Folders and Files Exist
	Creating and Deleting File Folders

	Credits

